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ABSTRACT 

Contraction-Expansion Protocols 

by 

Nadine Katia Njoya 

 

An approach to a new class of compounds known as bridgehead dienone is described. The route 

is based on a tandem contraction-expansion event in which the contraction triggers the 

expansion. The two steps involved are a palladium-catalyzed Favorskii contraction and a cis-

divinyl cyclopropanone rearrangement. Progress towards these goals is reported. 
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CHAPTER 1 

INTRODUCTION 

 
A large number of synthetic routes to molecules exhibiting some biological activity 

incorporate a ring contraction, a ring expansion, or both in their synthetic pathways. The 

synthetic usefulness of such operations has been established through numerous reviews recently 

published and their applications have been found in domains such as organic synthesis, 

biochemistry, natural-product synthesis, chemical biology, and medicinal chemistry. Thus, the 

application of ring contraction and expansion is widespread. 

To provide a backdrop for our studies, a review of the current methods for contraction 

and expansion is presented first; followed by our results, their discussion and an experimental 

section that will describe the various procedures used. 

Main Ring Contraction Reactions 

 

A ring contraction reaction is a type of organic reaction in which usually a hydrocarbon 

ring is reduced in size. Ring contraction reactions are an important method to increase molecular 

complexity in a single step, because, in many cases, the reorganization of the bonds occurs with 

a high level of selectivity, affording products not easily accessible by other approaches [1]. 
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There are five principal ring contraction reactions: 

a) acid-induced ring contractions 

b) base-induced ring contractions 

c) oxidative rearrangements 

d) photochemical rearrangements 

e) Wolff rearrangements [2]. 

 

Acid-Induced Ring Contractions 

Wagner-Meerwein Rearrangements. Rearrangement in chemical reactions involving 

carbocation intermediates, e.g. SN1 and E1 reactions are not uncommon and typically consist of 

1,2-shifts of hydride, alkyl or aryl groups. Occasionally, 1,3- or longer shifts are encountered. 

These shifts, known as Wagner- Meerwein rearrangements, are mainly used, depending on the 

most desirable outcome, to generate more stable carbocations, or relieving the ring strain. In the 

case of a cyclic compound, the pathway can lead to a ring contraction [2]. 
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Scheme 1. Wagner-Meerwein Rearrangements3 

(Adapted from Medicinal Natural Products: A Biosynthetic Approach by Paul M. Dewick [3]) 

The rearrangement was first discovered in bicyclic terpenes [4]. 

Scheme 2. Conversion of Isoborneol to Camphene4 
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Other examples include the synthesis of molecules such as isocomene [5], arborescin [6]. 

Scheme 3. Synthesis of Isocomene5 

 

                                                                                                                

O
BzO H

OMs

O

AcOK, AcOH
reflux, 72 %

O

H

H

BzO

O

O

H

H

BzO

O

+

O
H

BzO

O

O
H

O

O

Arborescin  

Scheme 4. Synthesis of Arborescin6 

Two approaches make use of the Wagner-Meerwein rearrangement and involve the 

formation of 5-7 fused ring systems: 
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- The treatment of halides with silver salts leading to ring contraction products in good 

yield [2]. 

Example: A santonin derivative 

 

Scheme 5. Treatment of Halides with Silver Salts, a Santonin Derivative2 

- Treatment with acetic acid and sodium acetate. 

Example: synthesis of (±)-Bulnesol 

 

Scheme 6. Synthesis of (±)-Bulnesol2 
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            Pinacol Rearrangements. Vicinal diols can be converted to aldehydes or ketones when 

treated with an acid. The reaction goes through a carbenium ion intermediate with a concomitant 

shift of an alkyl group and owes its names to the conversion of pinacol to pinacolone [7]. 

 

Scheme 7. Conversion of Pinacol to Pinacolone7 

Ring contraction products, with a good level of selectivity, have been obtained using this 

approach [2]; this can be exemplified as follows: 

- Enhancement of the rearrangement of some vicinal diols by combining a Lewis acid with 

a trialkyl orthoester. Spirocyclic molecules are obtained in appreciable yields via a cyclic ortho 

ester intermediate.  
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Scheme 8. Enhancement of Vicinal Diols Rearrangement2 

Also examples of ring contraction products have been obtained by semi-pinacol 

rearrangement: 

- Rearrangement of mono-protected 1,2-diol substrate: 

 

Scheme 9. Rearrangement of a Mono Protected 1,2-diol Substrate2 
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- Rearrangement of α-halohydrins: 

 

Scheme 10. Rearrangement of α-Halohydrins2 

Rearrangement of Epoxides. Epoxides are one of the most versatile functional groups in 

organic chemistry due to their ready availability and ease of transformation into a wide variety of 

functional groups. The rearrangement of epoxides to carbonyl compounds is a useful synthetic 

transformation and several reagents have been utilized for this purpose. The constitution of the 

rearrangement product is determined by the identity of the Lewis acid, the migratory aptitude of 

the epoxide substituents, and the solvent [8]. 

Often, the presence of an electron withdrawing group in the substrate directs the oxirane 

opening, allowing a good level of regioselectivity in the reaction as outlined in below.  
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O

R1

R2

EWG

favored
pathway

disfavored
pathway

O

R1

R2

EWG

O

R1

R2

EWG

R1, R2 = H, alkyl or aryl  

Scheme 11. Regioselectivity of Epoxides Rearrangement2 

The ring contraction of cyclohexene oxide leads to cyclopentanecarboxaldehyde in good 

yield as illustrated below. 

 

Scheme 12. Ring Contraction of Cyclohexene Oxide2 

An unusual way to obtain ring contraction products from epoxides has been observed by 

treating an epoxy-cholestane with a Grignard reagent as shown below: 
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Scheme 13. Epoxides Ring Contraction by Treatment with Grignard Reagent2 

Upon treatment with acids, trisubstituted epoxides undergo ring opening following the 

Markovnikov rule, yielding ring contraction products bearing a quaternary carbon stereocenter. 

However, cyclohexanones are formed exclusively depending on the reaction conditions because 

hydride migration occurs preferentially to the alkyl group [2]. An example is illustrated below: 
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O

Al

Br O Br

Me

Methylaluminium

Bis(4-bromo-2,6-di-t-butylphenoxide)

MABR

O
Ph

CHO

Ph

Ph

O

MABR
CH2Cl2, -78 0C

98%

InCl3, THF
88%

 

Scheme 14. Differences in Substituted Epoxides Reactivity with varying Reaction Conditions2 

A useful application of the rearrangement of trisubstituted epoxides is the construction of 

functionalized enantiomerically pure cyclopentanes as exemplified below [2]: 
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O
O

BF3.Et2O
CH2Cl2

93%

O

CHO

O

OTBS

MABR
CH2Cl2, -78 0C

82%

OHC

OTBS

 

Scheme 15. Formation of Cyclopentanes from Substituted Epoxides2 

Recently, the acidity of bismuth has also been exploited to promote the rearrangement of 

epoxides to carbonyl compounds. For example, the rearrangement of α-pinene oxide occurs quite 

readily at room temperature to give the expected aldehyde in good yield [8]: 

 

Scheme 16. Rearrangement of α-Pinene Oxide8 
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Tetrasubstituted epoxides within a carbocyclic structure can also undergo rearrangements to 

yield ring contraction products. As expected, the ring opening process can occur in two different 

ways giving rise to a mixture of isomers. However, a control of the reaction conditions may 

result in a favored stereochemistry of the product. Yamano and Ito reported the following 

reaction: 

 

Scheme 17. Ring Contraction of Tetrasubstituted Epoxides9 

In this instance, the most stable carbon atom bears the positive charge at the transition state 

making the reaction stereospecific. 

Base-Induced Ring Contractions 

            Farvoskii Rearrangement. Named after its discoverer, Alexei Yevgrafovich Favorskii, 

this method is widely used in the ring contraction of six-membered carbocyclic compounds. It 

 

http://en.wikipedia.org/wiki/Alexei_Yevgrafovich_Favorskii
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involves the treatment of α-halogenated ketones (having acidic α’-hydrogens) with nucleophilic 

bases. The reaction usually proceeds via a cyclopropanone intermediate which undergoes ring 

opening and yields the contracted product. This can be shown below [10]: 

O

Cl

RONa
ROH

O

Cl

O
O

OR

O

OR

O O

H+RO

 

Scheme 18. Favorskii Rearrangement10 

Favorskii rearrangements can be promoted either by: 

- Alkoxides: 

Cl

Me

THPO

Me

O

1.5 NaOMe, MeOH
rt, 10 min

CO2Me

Me H

THPO

Me

80%  

Scheme 19. Alkoxides-Promoted Favorskii Rearrangement11 
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Or by 

- Amines: 

 

Scheme 20. Amines-Promoted Favorskii Rearrangement11 

          This rearrangement will be discussed more thoroughly later on. 

Oxidative Rearrangements 

 A relatively low number of oxidizers can actually lead to ring contraction product 

although they are widespread in organic chemistry. Those are outlined in the following 

paragraphs: 

Thallium (III)-Promoted Ring Contraction. The three most common salts of thallium are 

thallium tri-acetate (TTA), thallium tris-trifluoroacetate (TTFA), and thallium trinitrate (TTN), 

the latter being the most widespread [12]. Among the most useful synthetic applications of these 

salts are the ring contraction of simple cyclic olefins such as cyclobutene, cyclohexenes, 

cycloheptene, and cyclooctene [13] and the cyclofunctionalization of unsaturated alcohols [14]. 

The following reactions illustrating successively the formation of indans and the oxidation of 3-

alkenols have been reported: 

 



    

 

29 

 

Scheme 21. Formation of Indans13 

 

Scheme 22. Oxidation of 3-Alkenols14 

Another important use of TTN is that it promotes the ring contraction of 

alkylcyclohexanones to cyclopentanecarboxylic acids by oxidative rearrangement [2].This can be 

exemplified as follows: 
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O

1.5 eq. TTN
2 days
85%

CO2H

O

2 eq. TTN
3 days
36%

CO2H

 

Scheme 23. TTN- Promotion Ring Contraction of Alkylcyclohexanones15 

Lead (IV)-Promoted Ring Contraction. The most common oxidant is lead tetraacetate 

(LTA). Examples have been found in which cyclohexanones or their corresponding enamines are 

contracted to cyclopentyl units. 

O

LTA, CH(OEt)3
HClO4
65%

CO2Et

N

LTA, BF3.Et2O
EtOH, benzene

78%

CO2Et

 

Scheme 24. Lead (IV)-Promoted Ring Contraction2 

 



    

 

31 

Hypervalent Iodine-Promoted Ring Contraction. Hypervalent iodine reagents are useful 

in the oxidative rearrangement of cycloalkenes and cycloalkanones which lead to a ring 

contraction [16]. This is outlined successively in the equations below: 

 

Scheme 25. Hypervalent Iodine-Promoted Ring Contraction16 

Selenium (IV) -Promoted Ring Contraction. It is known that cycloalkanones oxidized 

with hydrogen peroxide in the presence of selenium dioxide  undergo Favorski-type 

rearrangement involving ring contraction and formation of cycloalkanecarboxylic acids. 
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Recently, the action of poly(bis-9,10-anthracenylene) diselenide, named PADS has been 

investigated and good yields of cycloalkanecarboxylic acids have been obtained [17]. 

This is shown in the equation below: 

 

Scheme 26. Selenium (IV)-Promoted Ring Contraction17 

Photochemical Rearrangements 

The most common photochemical rearrangements lead to the ring contraction of cross-

conjugated dienones as displayed by the following equation in which a santonin derivative 

undergoes photochemical conversion on radiation in acetic acid to yield an enone. This is also an 

efficient way of making fused 5 and 7 ring systems. 

 



    

 

O

OAc

CO2Me

Me

O

OAc

OAc

CO2Me

Me

hν, AcOH

 

Scheme 27. Santonin Derivative Ring Contraction on Radiation18 

(Adapted from Photochemistry by A. Gilbert [18]) 

Another example of photochemical rearrangement involves the preparation of 

cyclopropanes from cyclobutanones that is done through photodecarbonylation [19]. 

 

Scheme 28. Formation of Cyclopropanes from Cyclobutanones through Photodecarbonylation19 

 

33 
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Wolff Rearrangements 

This type of rearrangement converts α-diazo-ketones into ketenes. It is catalyzed by light, 

heat, or transition metals such as silver [20]. Ketenes are usually intermediate compounds and 

can be further reacted to amides, carboxylic acids, or esters. An illustration of the light and 

rhodium–catalyzed Wolff rearrangements is shown below: 

 

Scheme 29. Light-Catalyzed Wolff Rearrangement21 

 

Scheme 30. Rhodium-Catalyzed Wolff Rearrangement22 

Now, we will proceed with an investigation of the most common ring expansion 

reactions. 
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Main Ring Expansion Reactions 

When a carbocycle or heterocycle gains one or more atoms and is consequently enlarged, 

it has undergone a ring expansion.  

Ring expansion reactions are of great interest in synthetic organic chemistry because they 

provide efficient tactics for the preparation of biologically active natural products and drugs [23]. 

Over the past decades, the research in this area has increased exponentially. This point is 

supported by the numerous papers published on the subject; papers exhibiting great advances or 

refinements in the techniques of ring enlargement. In the following paragraphs, the most 

common ring expansion reactions are described and illustrated and some innovative approaches 

are also be mentioned. 

The following classification presents reactions according to the number of atoms being 

incorporated in the ring enlarging step [24]: 

Ring Enlargement by One Carbon Atom 

- Wolff rearrangement: 

 

Scheme 31. Wolff Rearrangement 
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- Wagner- Meerwein rearrangement: 

 

Scheme 32. Wagner-Meerwein Rearrangement25 

- Demjanov rearrangement: Chemical reaction of primary amines with nitrous acid to give 

rearranged alcohols [26]. 

 

Scheme 33. Demjanov Rearrangement26 
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- Tiffeneau-Demjanov rearrangement: Often used to transform a cyclic ketone into a 

homologue that is one ring size larger [27]. 

O

R

R= H or CH3

HCN

R

CN
OH

H2, Pt

R
CH2 NH2

R

CH2 N2

OH

HNO2
0 0C

-H+

-N2

O

R

OH

 

Scheme 34. Tiffeneau-Demjanov Rearrangement27 

- Dienone-phenol rearrangement: 

 

Scheme 35. Dienone-Phenol Rearrangement28 
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- Dowd-Beckwith ring expansion reaction: This reaction is initiated by thermal 

decomposition of AIBN and involves a bicyclic intermediate [29]. 

 

Scheme 36. Dowd-Beckwith Ring Expansion29 
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‐  Asymmetric epoxidation: 

R

Ar

ketone
Oxone

R

Ar

O

R
Ar

O

90 % ee

ketone:

O

OO

O

O N

O

Tol

N-tolyl-oxazolidinone  

Scheme 37. Asymmetric Epoxidation30 

A good number of metal-catalyzed one-carbon ring expansion reactions have been reported. 

 Pd-catalyzed ring expansion: 

 

Scheme 38. Pd-Catalyzed Ring Expansion31 
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  Ru-catalyzed ring expansion: 

 

Scheme 39. Ru-Catalyzed Ring Expansion32 

 In addition, examples of gold [33], zinc [34], samarium [35], lithium, and magnesium 

[36] one-carbon ring expansion reactions have also been reported. 

Ring Enlargement by Two or More Carbon Atoms 

Common methods such as the migration of allylic alcohols [37] (scheme 40, a) or ethers 

or the thermal cycloconversion of [2+2]-cycloadducts [38] (scheme 40, b) usually yield 

carbocycles enlarged by two carbon atoms. 
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Scheme 40. Ring Enlargement by Two or More Carbon Atoms37,38 

Examples of cobalt [39], nickel [40], potassium carbonate [41] catalyzed and free radical 

[42] two-carbon ring expansion reactions have been recently published. Three-carbon ring 

enlargement can be effected by ylide or Vedejs rearrangement [43] (Scheme 41), radical 

processes [44,45,46],  and Flash Vacuum Thermolysis (FVT) [24] 

 

Scheme 41. Ylide Rearrangement4 (Adapted from Nitrogen, Oxygen and Sulfur 

Chemistry: A Practical Approach in Chemistry byJ. Stephen Clark [43]) 
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The four-carbon ring enlargement is carried through the Cope rearrangement [47]: 

 

Scheme 42. Cope Rearrangement 47 

Recent publications expand on the rhodium-catalyzed [48], anionic [49], and free radical [50] 

four-carbon ring expansion reactions. 
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Scheme 43. Ring Enlargements by Varying Number of Carbon Atoms24 

In the scheme above, the reactions a, b, and c allow the insertion of a specific number of carbon 

atoms while d, e, and f display ways by which starting rings can be expanded by an unspecified 

number of carbon atoms.  
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Heterolytic Ring Enlargement 

Beckmann Rearrangement. It is an acid-catalyzed rearrangement of an oxime to an amide 

[51]. 

 

Scheme 44. Beckmann Rearrangement51 

Baeyer-Villiger Rearrangement. It involves the acid-catalyzed reaction of ketones with 

hydroperoxide derivatives [27]. 

 

Scheme 45. Baeyer-Villiger Rearrangement27 

Stieglitz Rearrangement. It consists in the rearrangement of azacations by a mechanism 

similar to the pinacol rearrangement. 
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Scheme 46: Stieglitz Rearrangement27 

This summarizes some of the most common and well-known ring contraction and 

enlargement reactions. Many discoveries or improvements of the existing methods have already 

been made and more are still to come. It is therefore undeniable that the processes of ring 

contraction and expansion play a very important part in most of the synthetic routes. Ours is not 

an exception to the rule and the following section is dedicated to the objective of our research. 

Objective of the Research 

Our project aims at the synthesis of a bridged 6-7 carbon-membered ring. In order to do 

so several approaches have been devised, all having in common two final key-steps: 

 -  A new palladium-catalyzed Favorskii rearrangement: This step will yield a contracted 3-

membered ring intermediate which will not be isolated but convert (because of the strain) into an 

expanded ring through: 

-  A never-before encountered cis-divinylcyclopropanone rearrangement that will give rise 

to the final compound. 
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Previous Studies 

The Favorskii Rearrangement. As mentioned earlier, it is a base-catalyzed rearrangement 

and was discovered in 1914. Its mechanism was not really obvious to chemists for a while. Some 

insight came with the work of Bordewell and Lotfield, who proved the existence of a 

cyclopropane intermediate. The former scientist observed the formation of the same product 

from two different α-haloketones (scheme 47, a). The latter, using 14C isotope labeling on 2-

chlorocyclohexanone, detected an even distribution of the isotope between the two formed 

products (scheme 47, b) [52]. 

Scheme 47. Elucidation Steps for the Mechanism of the Favorskii Rearrangement52 

The Favorskii rearrangement is fairly well known for the synthesis of cubane in which it 

is used twice in a consecutive fashion [53]. 
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Scheme 48. Synthesis of Cubane53 

Apart from α-haloketones, the Favorskii rearrangement has also been performed on: 

-   α-hydroxyketones: 

 

Scheme 49: Favorskii Rearrangement of α-Hydroxyketones54 

-           α,β-epoxyketones: 

 

Scheme 50: Favorskii Rearrangement of α,β-Epoxyketones55 
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There exist two main variants to the Favorskii rearrangement: 

- The Wallach degradation: Conversion of 2,6-dibromocyclohexanone to cyclopentanone  

- The Quasi- Favorskii rearrangement: It differs from the Favorskii rearrangement by the 

lack of acidic α-hydrogens from the starting material and it proceeds through the semi-benzilic 

mechanism [56]. 

 

Scheme 51. Quasi-Favorskii Rearrangement56 

A cis-divinylcyclopropanone rearrangement has never been reported in the literature. The 

closest mechanism to it is: 

The Cis-Divinylcyclopropane Rearrangement. 

It usually occurs in the sequence: 

- Asymmetric cyclopropanation 

- Cope rearrangement 

The product, whose main framework is made of a cycloheptadiene, exhibits controlled 

stereochemistry at three stereocenters. This can be explained by the stereodefined boat-liked 

shape of the transition state [57]. 

 



    

 

49 

Scheme 52. Cis-Divinylcyclopropane Rearrangement57 (Adapted from Modern Rhodium-Catalyzed 

Organic 

Reactions by A. Evans and J. Tsuji [57]) 

 

Proposed Approach 

Our goal is to synthesize (1Z,5Z)-bicyclo[4.3.1]deca-1,5-dien-10-one shown below:  

 

11 

In order to do so, a number of approaches have been devised. The original consists of 

eight steps excluding the first two which yield known compounds (Scheme 5, 2 and 3).They 

are: 

- An alcohol function protection 
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- An addition reaction to form an enol 

-  Isopropylation of the alcohol function of the enol 

-  Elimination of the isopropoxide group 

-  Deprotection of the alcohol function 

-  Acylation of the alcohol function 

-  Favorskii rearrangement 

-  Cyclopropanone rearrangement 

 

Scheme 53. Proposed Synthetic Pathway 
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Scheme 54. Proposed Mechanism for the Favorskii Rearrangement 

 

 

Scheme 55. Cis-Divinylcylopropanone Rearrangement 
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CHAPTER 2 

RESULTS AND DISCUSSION 

Synthesis of Cyclohexane-1,2-dione 

 

2 

This compound was prepared, following a known procedure, by slow addition of a 

mixture of SeO2, dioxane, and water to cyclohexanone with continuous cooling (Scheme 56) 

[58]. 

O

H2O + SeO2 H2SeO3

+
H2SeO3

Corey- Schaefer

-H2O

O
Se

O

OH

O

OSeOH

H2O

O

OH

O

O

1

2

Base

Scheme 56. Selenium Dioxide Oxidation of Cyclohexanone59 
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The diketone 2 in aqueous conditions undergoes keto-enol tautomerism and yields the 

corresponding enol (which is the predominant product according to the 1H NMR spectrum 

interpretation, appendix A). 

 

Scheme 57. Keto-Enol Tautomerism 

The product was initially obtained as a light yellow oil which crystallizes quite readily at room 

temperature. The yield was 63%. The main difficulty encountered with this reaction was the 

handling of toxic selenium formed in its course.  

Synthesis of 2-Vinyl-2-hydroxycyclohexanone 

 

3 

This compound was obtained by adding two equivalents of vinylmagnesium bromide in 

1M THF to the diketone 2 in THF. The proposed mechanism of the reaction is as follows: 
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Scheme 58. Grignard Addition Step Mechanism 

The Grignard addition product (compound 3) is a brown oil.The yield was never more 

than 48% although a 98% yield is reported in the literature [60].  Our approach involved 

dropwise addition of the vinylmagnesium bromide to compound 2 in THF dropwise at 0 oC. 

Since the reaction is exothermic, we made sure that its temperature never rose above 5 oC. In 

order to improve the yield, we decided first to carry out the addition at -78 oC and then allow the 

temperature to rise gradually to 0 oC. Due to the fact that vinylmagnesium bromide crystallizes at 

temperatures below 25 oC [61], we could not add it in a dropwise fashion; also attempts to stir 

the reaction mixture also failed due to its solidification.  

Another alternative way was to add ketone 2 in THF to the Grignard reagent at 0 oC 

(dropwise while monitoring the temperature). This also was not really efficient as less than 20% 

of the product was obtained. 
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Synthesis of 2-(Methoxymethoxy)-2-vinylcyclohexanone 

 

4 

The purpose of this step was to protect the alcohol function of the Grignard addition 

product 3. The reaction usually takes 3-4 days at room temperature, however when heated at 

reflux, the reaction went to completion upon overnight stirring. The proposed mechanism of the 

reaction is as follows: 

 

Scheme 59. Mechanism of the MOMCl Addition 

This compound was characterized using 1H and 13C NMR, IR (Infrared) and GCMS (Gas 

Chromatography-Mass Spectrometry) spectra and the characteristic peaks are reported in the 

experimental section. 

The GCMS spectrum exhibits three peaks at m/z 184, 153, 139. The fragmentation can be 

illustrated as follows:  
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Scheme 60. Proposed Fragmentation for Compound 4 

Synthesis of (Z)-6-(Hydroxymethylene)-2-(methoxymethoxy)-2-vinylcyclohexanone 

 

6 

Literature procedure for the synthesis of compound 5 was used [62]. The protected 

alcohol 4 was treated with 2.8 equivalents of sodium metal in methanol and 2.5 equivalents of 

methyl formate in benzene. A 23% yield of brown oil was obtained. Although we never got a 

clean 1H NMR spectrum for compound 5, the relevant peaks were however identified and only 

few peaks were assigned as impurities. Due to the small amount of product obtained (80 mg), 

we decided not to further purify it but instead perform the next step to test its feasibility. 

Compound 6 was synthesized following reported procedure [63]. 

 



    

 

57 

 

Figure1. Structure of (E)-6-(Isopropoxymethylene)-2-(methoxymethoxy)-2-vinylcyclohexanone 

The enol 5, in a 1:1 mixture of benzene-isopropyl alcohol, was treated with 0.3 

equivalents of p-TsOH. Upon analysis of the 1H NMR of the brown sticky product, we could not 

account for the protons peaks of the MOM-protecting group. When setting up the reaction, we 

were aware of the acidic nature of the reaction mixture but did not think that 0.3 equivalents of 

the p-TsOH could take off the MOM-protection; however, that observation could only be the 

result of the acidic conditions under which the reaction was carried out. 

We had to find another approach to proceed with our synthetic pathway. 

Alternate Routes to Compound 7: (E)-6-Ethylidene-2-(methoxymethoxy)-2-vinylcyclohexanone 

 

7 
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Through Acetaldehyde Addition  

Scheme 61. Proposed Synthesis of 7 via Acetaldehyde Addition 

Most of the starting material was recovered upon treating 4 with acetaldehyde. We 

decided to slightly modify the route. 

Through Silylation of Compound 4 

 

Scheme 62. Proposed Synthesis of 7 via Silylation of 4 
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The first step leading to the silylated compound has never been a success. Each time the 

reaction was attempted, the product turned into a white solid, insoluble in most deuterated 

solvents and only slightly soluble in DMSO-D6. 1H NMR interpretation did not reveal any of the 

expected peaks. 

Another concern with both routes was the predicted formation of four diastereomers of 

the alcohol (schemes 60 and 61), which would have lowered the yield of compound 7. 

Dr. David Gordon Joseph Young (East Tennessee State University) synthesized 

compound 7 (40%) from compound 4 by treating it with 1.5 equivalents of NaOH and 10 

equivalents of (acetaldehyde) CH3CHO in ethanol. The reaction has been attempted several 

times and although the 1H and 13C NMR spectra exhibited the peaks of relevance, a large ratio of 

impurities was observed. 

Conclusions 

The objective of the research has not been reached. A reason can be the low yields of the 

Grignard addition step.  However, the yield and the purity of compound 3 have been 

significantly improved by reflux and column chromatography. Although all attempts to move 

forward were unsuccessful, we believe that more trials along with changes in conditions may 

lead to compound 7 in a reasonable yield. Three steps will then be left to synthesize the bridged 

6-7 membered ring (including the alcohol deprotection step). 
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CHAPTER 3 

EXPERIMENTAL SECTION 

General Methods 

 All proton (1H) and carbon (13C) NMR spectra were recorded on a JEOL-NMR 

ECLIPSE Spectrometer operating at 400 MHz for proton and 100 MHz for carbon nuclei. 

Chemical shifts were recorded as δ values in part per million (ppm). Spectra were acquired in 

deuteriochloroform (CDCl3) at 20 oC. The internal standard was tetramethylsilane ((CH3)4Si) (δ 

0.00) for the 1H NMR spectra while it was the central peak of CDCl3 (δ 77.00) for the proton-

decoupled 13C NMR spectra. The multiplicity of the signals is reported as follows: s, singlet; d, 

doublet; dd, doublet of doublet; t, triplet, q, quartet; m, multiplet. Infrared spectrum was obtained 

using an FTIR (Fourier Tranformer Infrared Spectrophotometer) Shimadzu (IRPrestige-21). The 

mass spectral analysis was performed using a Shimadzu GCMS-QP2010 Plus instrument at East 

Tennessee State University. 

Analytical thin layer chromatography (TLC) was conducted using EMD Chemicals Inc. 

(60 F254 silica gel 20x20 cm 250 µm) plates. They were visualized under a 254 nm UV lamp 

(115 V~ 60 Hz, 0.16 AMPS) and were consequently treated with revealing dips:  mainly, 

potassium permanganate-sodium carbonate-5% aqueous NaOH-water (3g: 20g: 5 mL: 300 mL) 

and phosphomolybdic acid-95% ethanol (250g: 1 gallon). Column chromatography was 

performed using Sorbent Technologies silica gel (230 x 450 mesh, 60 Ä) as the stationary phase. 
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All commercial reagents were used without further purification unless otherwise noted. 

All reactions requiring anhydrous conditions were carried out under dry N2 atmosphere, using 

flame dried glassware. Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl 

prior to use. 

Organic solutions were concentrated under reduced pressure on a rotatory evaporator 

with water bath temperature generally below 200 F. Yields refer to isolated yields of material. 

Experimental Procedures 

 
O

O

2

 

 

1,2-Cyclohexanedione [64].To 207.1 mL (196.3 g, 2 mol) of cyclohexanone was added a 

solution containing 57.5 mL (59.4 g, 0.67 mol) of dioxane, 38.3 g (0.34 mol) of selenium dioxide 

and 11.5 mL of water over a 3-hours period. Stirring was continued for 5 additional hours at 

water-bath temperatures and 6 more hours at room temperature. The reaction mixture was 

filtered and the red solid was then returned to the flask and extracted with 34.5 mL of ethanol for 

1 hour through reflux. The solution, obtained by decantation from selenium, was combined with 

the above filtrate and the unreacted cyclohexanone and dioxane were partially removed by 

concentration in vacuo. The concentrate was then distilled in vacuo. The fraction between 75-79 oC 

was essentially made up of the product which crystallized at room temperature (light yellow 

crystals, 63 % yield): 1H NMR (CDCl3, 400 MHz, ppm) δ 1.96-2.07 (m, 2H, CH2), 2.34-2.38 (m, 
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2H, CH2), 2.48-2.52 (m, 2H, CH2), 5.99 (s, 1H, OH), 6.12 (t, 1H, J = 4.76, CH=); 13C NMR 

(CDCl3, 100 MHz, ppm) δ 23.31 (s), 23.97(s), 36.56 (s), 118.65 (s), 147.11 (s), 195.76 (s). 

                                                

 
OH

O
3

 

 

2-Hydroxy-2-vinylcyclohexanone [60].  2.5 g (22.32 mmol) of diketone 2 in 44.64 mL 

of anhydrous THF was added 44.64 mL (44.64 mmol) of vinylmagnesium bromide at 0 oC such 

that the temperature of the resulting solution did not exceed 5 0C. After 4 hours, the reaction 

was quenched with 20 mL of NH4Cl and stirred for 10 minutes. The pH of the solution was 

rendered neutral by gradual addition of 1 M HCl (aq). The aqueous layer was then extracted 

with three 30-mL portions of ether, the combined organic layers were washed with two 25-mL 

portions of water and with 25 mL of brine. The residue was dried (MgSO4) and concentrated in 

vacuo. The residue was chromatographed over 25 g of silica gel (eluted with hexanes-ethyl 

acetate, 6:1) to afford 1.15 g (37 %) of 3 as a brownish oil: 1H NMR (CDCl3, 400 MHz, ppm) δ 

1.71-2.53 (m, 6H, CH2), 4.11 (broad, 1H, OH), 5.45-5.24 (dd, 2H, J = 17.20, 10.64 MHz, 

H2C=), 6.14 (dd, 1H, J =  6.6, 10.24 MHz, CH=); 13C NMR (CDCl3, 100 MHz, ppm) δ 22.54 

(s), 27.89 (s), 38.54 (s), 41.34 (s), 116.81 (s), 137.42 (s), 211.41 (s). 
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O

OCH2OCH3

4

 

 

 

2-(Methoxymethoxy)-2-vinylcyclohexanone. To a solution of  850 mg (6.07 mmol) of 

ketone 3 in 10 ml of CH2Cl2 was added 3.01 mL (18.71) mmol) of N,N-diisopropylethylamine 

and 1.15 mL (15.17 mmol) of chloromethyl methyl ether (MOMCl). The reaction was refluxed 

overnight. The reaction was washed with 10 mL of water and the aqueous layer was extracted 

with three 10-mL portions of CH2Cl2. The combined organic layers were washed once 15 mL of 

brine, dried (MgSO4) and concentrated in vacuo. The residue was chromatographed over 15 g of 

silica (eluted with hexanes-ethyl acetate 6:1) to afford 840 mg (71.2 %) of a light yellow oil: IR 

(neat) 1716 (s), 1082 (s), 1008 (w), 921 (s) cm-1; 1H NMR (CDCl3, 400 MHz, ppm) δ 1.57-2.02 

(m, 6H, CH2), 2.34 (m, H, HCH), 2.65 (m, H, HCH), 3.32 (s, 3H, OCH3), 4.64-4.64 (q, 2H, J = 

6.95, OCH2), 5.20-5.37 (dd, 2H, J = 1.12, 17.96 MHz, CH2=), 5.97-6.19 (dd, 1H, J = 10.96, 4.48 

MHz, CH=); 13C NMR (CDCl3, 100 MHz, ppm) δ 21.85 (s), 27.84 (s), 39.42 (s), 40.18 (s), 56.31 

(s), 84.23 (s), 93.04 (s), 119.09 (s), 137.12 (s), 210.00 (s); GCMS (m/z), 184, 153, 139.  
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APPENDICES 

APPENDIX A: 1H NMR Spectrum of Compound 2 

Solvent: d-CDCl3/ TMS 
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APPENDIX B: 13C NMR Spectrum of Compound 2 

Solvent: d-CDCl3/ TMS 
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APPENDIX C: 1H NMR Spectrum of Compound 3 

Solvent: d-CDCl3/ TMS 
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 APPENDIX D: 13C NMR Spectrum of Compound 3 

Solvent: d-CDCl3/TMS
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APPENDIX E: 1H NMR Spectrum of Compound 4 

Solvent: d-CDCl3/ TMS 
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APPENDIX F: 13C NMR Spectrum of Compound 4 

Solvent: d-CDCl3/TMS 
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APPENDIX G: GCMS Spectrum of Compound 4 

1 mL of 100 µL of compound 3 in 10 mL of hexanes 
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APPENDIX H: IR Spectrum of Compound 4  
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