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ABSTRACT 

 

Modified Organoclay Containing Chelating Ligand for Adsorption of Heavy Metals in Solution 

 

by 

Mary Akuyea Addy 

 

 

Presence of a chelating ligand in the clay structure significantly improves its ability to 

immobilize heavy metals from contaminated sludge or wastewater. Two-step modification 

procedure comprising sequential pillaring and grafting of chelating agent to the modified clay is 

involved. 

 

Montmorillonite and kaolin were chosen as typical examples of expandable and non-expandable 

clays, correspondingly. Modifications with silica and ferric oxide were targeted on development 

of mesoporous structure.  Laboratory tests of the organoclay efficiency for purification of 

wastewater were conducted with the most promising sample, i.e. organoclay with the highest 

specific loading of chelating agent.  Experiments were conducted with model wastewater 

containing either individual or mixed cations of heavy metals. 

 

The modified organoclay displayed a high adsorption capacity on heavy metal cations even in 

acidic media.  The method of modification presented in this work can be used for synthesis of 

efficient adsorbents for applications in contaminated areas. 
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CHAPTER 1 

INTRODUCTION 

General Review on Pollution 

In the mid-20
th

 century, eutrophication was acknowledged as a pollution problem in 

North America and European lakes and rivers.  Research shows that 54% of lakes in Asia are 

eutrophic, 28% in Africa, 53% in Europe, 48% in N. America, and 41% in S. America.                                       

Research into waste water treatment has been a topic of interest due to the increasing 

rate of organics, heavy metals, and micronutrients pollution in rivers and lakes which brings 

about eutrophication, groundwater contamination, and traditional water pollution.  Waterbodies 

contaminated with heavy metals like lead and mercury are a current problem worldwide and 

high concentration of such metals pose threat to human life and the environment. Environment 

protection requires economically feasible, highly effective materials for adsorption of heavy 

metals [1]. 

                                         Composition of Sewage Sludge 

In the US, use of sewage sludge from industries has been an environmental problem of 

concern.  The sludge usually contain N (1-3%), P (1-2%), K (0.5-1.2%), and significant quantity 

of microelements like heavy metals.  Due to this composition, the convenient method of 

recycling sludge is transforming it into biosolids by biothermal treatment and later used as 

fertilizers.  In Europe, sewage treatment plants produce 8.106 t of sludge each year and the 

application of the sludge to soil is the commonest way of getting rid of it. 

However, the treated sludge contains a high content of heavy metals that usually accumulate 

during the treatment.  The presence of heavy metals in the sludge limits the possibility of their 
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recycling as fertilizer because their disposal on the lands may cause a serious effect on 

microbial communities, threaten ground water aquifers, and also change the natural solubility 

equilibrium for clays by complexation mechanism and ion exchange [2].  

Effect of Heavy Metals in Living Organism (Man) 

Unfortunately, heavy metals are some of the natural components of the Earth's crust that 

cannot be degraded or destroyed.  However, heavy metal pollution is basically from industrial 

discharges such as mining ores and contaminated waste from industries [3]. 

Because heavy metals bioaccumulate, they are dangerous, and their accumulation in man 

may either be acute or chronic depending on the term of exposure. They accidentally get to our 

bodies through contaminated food, drinking water, and air.  

Some of these metals like copper, zinc, and iron are essential in maintaining the 

metabolism of the human body.  Nevertheless, high concentration in man leads to poisoning. 

Small amount may cause damage to the brain and the central nervous system and growth 

retardation in unborn babies and little children.  Depending on the term of exposure in adults, 

heavy metals can cause damage to most of the organs in the body.  For example, long-term 

exposure of lead can damage the central nervous system of humans, that of cadmium is 

associated with renal dysfunction, and high exposure can lead to obstructive lung disease that 

has been linked to lung cancer and damage to human’s respiratory systems.  Although essential 

to man, high concentration of copper causes anemia, liver and kidney damage, and stomach and 

intestinal irritation.  Mercury causes damage to the brain and the central nervous system.  
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Some Sources of These Metals 

  Cadmium metals are from batteries, burning fuel  

 Copper metals are from bearing wear, engine parts, brake emissions  

 Chromium metals are from air conditioning coolants, engine parts, brake emissions  

 Iron metals are from auto body rust, engine parts      

 Lead metals are from leaded gasoline, tire wear, lubricating oil and grease, bearing wear  

 Nickel metals are from diesel fuel and gasoline, lubricating oil, brake emissions    

 Zinc metals are from tire wear, motor oil, grease, brake emissions, corrosion of 

galvanized parts [4]. 

Metals Found in Tennessee Waterbodies  

In Tennessee, reservoirs and lakes are normally used as domestic water supply, livestock 

and wildlife watering, industrial water supply, navigation, irrigation, fish and aquatic life, and 

recreation, so any pollutant in such waterbodies can make its way in man through the food 

chain.  From the Tennessee Department of Environment and Conservation, one of the frequent 

pollutants in reservoirs and lakes are metals.  These metals get into the waterbodies by legal 

activities, atmospheric deposition, or industrial discharges.  Example, Cu, Fe, and Zn deposition 

is mainly by mining operations.  The most common metals impacting Tennessee waters include 

mercury, iron, manganese, arsenic, and lead.  Zinc, copper, and chromium levels can also 

violate water quality standards [5]. 

Purification Techniques  

Water purification is the means by which chemical, biological, and/or material 

contaminants are removed from water in order to make it safe for use or reuse.  There are many 

conventional techniques like flocculation and coagulation, chlorination, ion exchange, bioresins, 
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activated sludge, and natural zeolites which water and wastewater are treated to remove heavy 

metals.  Most of these techniques are expensive, labor intensive, and also not effective for 

concentrations below 100 ppm.  These conventional precipitation techniques usually rely on 

precipitate being formed from addition of chemical agents, then collection and processing, and 

finally burial of sludge that contains toxic metals.  The cost and energy use involved in these 

steps is substantial because of the amount of materials involved and that need to be handled.  

There are two possibilities to improve the quality of the sludge or soil: removal of heavy 

metals or irreversible immobilization [6-12].  The most cost-effective strategy of remediation of 

contaminated soils is based on the irreversible immobilization of heavy metals.  In this method, 

the risks related to the presence of soluble or available heavy metal ions are reduced, although 

the metals are still present.  However, heavy metals are converted into an insoluble state that 

reduces the risk of leaching from the ground and makes them available for further 

bioremediation.  No waste processing or disposal is necessary in this case, which is a significant 

economic advantage.  For the adsorption of heavy metals, the application of low-cost materials 

seems to be a suitable option for waste water treatment.  Recent studies illustrated that some 

materials can be effective for immobilizing heavy metals from sludge.  For example, Ciccu et 

al. showed that addition of fly ash and red muds (bauxite ore processing waste) significantly 

reduced heavy metal ion (Pb, Zn, Cd, Cu, As) contents in ground water [13].  Querol et al. 

successfully immobilized Zn, Pb, As, Cu, Sb, Co, Tl, and Cd on zeolite materials synthesized 

from coal fly ash [14].  Raicevic et al. used apatite minerals to adsorb Pb, Cd, as well as other 

toxic metals from polluted soils [15].  Clay materials (Na-bentonite, Ca-bentonite, and zeolite) 

were used for immobilization of heavy metals (Zn, Cd, Cu, and Ni) in sewage sludge-

contaminated soil [16, 17].  The extractability of these metals was significantly decreased. 
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Heavy metals can have different mobility when they are present in their various forms. 

Simple and complex cations are the most mobile, and exchangeable cations in organic and 

inorganic complexes are of medium mobility, while chelated complexes are less mobile. 

Ravishankar et al. evaluated several contaminated sludge to study bioleaching processes         

[18, 19].  They concluded that the most stable sludge contained higher contents of organically 

bound metals. The degree of immobilization on inorganic materials is not sufficiently high.  

This means that metals are the most stable and show the lowest leaching if they are 

organically bound.  In contrast, leaching was more severe when they were adsorbed on 

inorganic materials [15].  However, up to now immobilized organic substances were not used 

for contaminated sludge treatment. 

Clay (MMT and Kaolin) 

Clay is a naturally occurring compound of aluminum silicate ((AlO)2 SiO3) composed of 

fine grained minerals.  These minerals, Andalusite, Sillimanite, and Kyanite, although 

polymorphic, the chemical composition is the same [20, 21]. 

By the gradual chemical weathering of rocks over long periods of time, the minerals are 

formed, mainly silicate-bearing, by low concentrations of carbonic acid and other diluted 

solvents.  These acidic solvents pass through the weathering rock after leaching through the 

upper weathered layers.  Also, some clay minerals are formed by hydrothermal activity.  The 

minerals are hydrous aluminum phyllosilicates, sometimes with variable amounts of iron, 

magnesium, alkali metals, alkaline earths, and other cations.  Clay deposits are mostly 

composed of clay minerals, a subtype of phyllosilicates minerals that impact plasticity and 

harden when fired or dried [22].  Clay deposits may be formed in place as residual deposits in 

soil, but thick deposits usually are formed as the result of a secondary sedimentary deposition 
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process after they have been eroded and transported from their original location of formation.  

Clay deposits are typically associated with very low energy depositional environments like large 

lakes and marine deposits. 

Basically, the differences in size and mineralogy can be used to distinguished clay from 

other types of fine-grained soils.  Comparatively, clay particle sizes are smaller than those of 

silts, nevertheless there is some overlap in both particle size and other physical properties, and 

there are many naturally occurring deposits that include both silts and clays. 

Generally, there are four main groups of clays, namely kaolinite, montmorillonite-

smectite, illite, and chlorite.  Thirty different types of "pure" clays make up these four 

categories, but most "natural" clays are mixtures of these different types, along with other 

weathered minerals.  Clays are of two distinct structural units; Tetrahedral (1:1) and Octahedral 

(2:1), and each different type falls within one of them. 

The structure of kaolinite is well known, and it is build up by an octahedrical layers 

(sheet) of Al2O3 and tetrahedrical layers of SiO4, which varies in 1:1 ratio.  The main 

constituent of kaolin, also called China clay (Figure 1), is kaolinite with its chemical structure, 

Al2Si2O5(OH)4 (39.8 % alumina, 46.3% silica,13.9% water) and its crystalochemical formula is 

Al4Si4O10(OH)8.  
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           Kaolin                     Montmorillonite                               

 

Figure 1.   Structure of hydrated MMT and Kaolin Clay 

Kaolinite is build up from pseudohexagonal triclinic crystals with diameter between 0.2–

10 µm, with thickness of 0.7 nm, molecular weight of 258.073 g/mol and its density is 2.6 

g/cm
3
.  Thus, the 1:1 sheet structure of kaolinite can be expressed as [Si2O5]2 sheet and 

[Al2(OH)4]2 sheet with pseudo-hexagonal symmetry.  The kaolin crystal has a plate-like 

morphology.  An ideal cell of the kaolinite is electrically neutral. The first model of the 

structure kaolinite was designed by Brindley et al. [23].  Because the layers between the sheets 

are close one to other, the water molecules could not get between the sheets.  

Montmorillonite structure (Figure 1) is an octahedral laminated sheet that is sandwiched 

between tetrahedral silicate layers (sheet).  Research shows that it can form many 
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nanocomposites with different organic compounds within an interlayer spacing of ca. 0.9 – 1.2 

nm due to its excellent cation exchange properties.  Montmorillonite clay has an excellent 

sorption property and possesses sorption sites available within its interlayer space as well as on 

the outer surface and edges.  This is a very soft phyllosilicate group of minerals that typically 

form in microscopic crystals which forms clay.  Montmorillonite is a member of the smectite 

(2:1 clay) family, which means it has 2 tetrahedral sheets that sandwich a central octahedral 

sheet.  The particles are plate-shaped with an average diameter of approximately 1 µm [24]. 

Montmorillonite has variable water content and it increases greatly in volume when it 

absorbs water.  Chemically it is hydrated sodium calcium aluminium magnesium silicate 

hydroxide (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2•nH2O.  Potassium, iron, and other cations are 

common substitutes; the exact ratio of cations varies with source.  It often occurs intermixed 

with chlorite, muscovite, illite, cookeite, and kaolinite [24]. 

Research Using Clay 

Research shows that some types of clay have catalytic or adsorptive properties [25-31]. 

Example, bentonite that has adsorptive properties, has been used to remove a number of 

chemicals species like amines, organic pigments, cations (Ni, Zn), phenols, and ketones, and 

other contaminants.  Kaolin, for instance, is still been used in treating some heavy fractions in 

hydrocracking process developed over 80 years ago.  In addition to treatment, it is used as an 

additive in resent residual fluid catalytic cracking (RFCC) catalyst.  Naturally occurring 

abundant clays have very good potential, hindered however by weak adsorption of heavy metal 

directly on the clay’s surface.  Such adsorption occurs mainly by ion-exchange mechanism, i.e. 

cations of clay are reversibly exchanged for cations of heavy metals.  Cation exchange capacity 
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of untreated clay is not enough for wide scale applications [32].  Metals’ adsorption by clays 

strongly depends on pH of media and becomes much less effective from acidic solutions. 

Much stronger binding of heavy metals might be achieved with the help of chelating 

agents.  For adsorption purposes, chelating agents should be immobilized on the solid carriers. 

This type of adsorbents may potentially extract heavy metals from acidic media.  The main 

obstacle to use clays as a chelates’ carrier is relatively small surface available for ligand 

immobilization. 

Treatment of lamellar clays to improve porosity is known as pillaring, i.e. formation of 

intercalation compounds in which distance between lamellas increase by insertion of host 

compound.  The obligatory requirements for pillared clays are robustness of the intercalation 

compound to prevent collapse on dehydration or during application.  Spacing between pillars 

should be large enough to allow access of molecules of interest [33-39].i.e. chelating ligands in 

our case.  The production process should be scalable and cheap [40].  Because clays are natural 

product variation of their properties might be significant; therefore, the production process 

should be adoptable to reasonable variation of the properties and composition of the raw clay. 

In a review of [19], the authors summarized various routes of the pillaring. The most 

widely traditional route is pillaring with inorganic cations of multivalent elements such as iron, 

aluminum, zirconium, chromium, etc.  Inorganic cations might be used individually or as a 

mixture [16, 41-47].  All these publications by Canzares et al., Aouad et al.,  Mahboub et al., 

Moreno et al.,  Occelli et al., Perez-Vidala et al., Sychev et al., and Yan et al., reported 

significant increase of BET surface area.  In the work of [48], the final product combined micro- 

and mesopores with overall BET surface area of 383 m
2
/g was prepared.  Increase of overall 
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BET surface area from 35.1 to 323.2 m
2
/g by montmorillonite pillaring, with TiCl4 in alkaline 

media was described by Yuan et al. [49]. 

Less widely used but promising route of pillaring in prospective of ligand grafting is 

based on various modifications of sol-gel process [1, 50-53].  Literature data showed that total 

BET surface by this process might exceed 700 m
2
/g.  Solution of tetraethoxysilane (TEOS) in 

low molecular weight alcohol applied to the clays dispersion.  Alkaline or acidic hydrolysis 

leads to formation of silicate–ions, with formation of amorphous silica three-dimensional 

network.  Amorphous silica might form pillars between the lamellas of clay.  However, no 

reasons for silica domains to be localized only in the intragallery space were found in literature. 

Introduction of surfactants into TEOS process allows making a template heterostructure. 

In the work in [54], the use of cetyltrimethyl ammonium bromide was described to achieve 

bimodal mesoporous structure of montmorillonite in hydrothermal process.  Octadecylamine 

has also been used to intercalate a fine and a coarse grained Mg-Vermiculite, and into 

montmorillonite [55-56].  Loading of surfactant exceeded critical micellization concentration 

for the extent at which rod type micelles were formed.  Intercalation of these micelles into 

intragallery space and further loading and hydrolysis of TEOS resulted in formation of silica 

bulk layer penetrated by micelles [57].  Calcination at moderate temperature eliminated the 

organic component with formation of porous clay heterostructure. 

The clays’ structures are well documented in literature.  According to classification 

presented in [58], kaolin falls into a category of materials with rigid, i.e. non-expandable 

structure in contrast to expandable montmorillonite.  Structures of kaolin and hydrated 

montmorillonite are presented in Figure 1.  As one can see, interlayer distance for kaolin is 



21 
 

about twice smaller than the similar parameter for montmorillonite (7.2 vs. 15 Å [59]), which 

leaves no space for kaolin swelling.  In contrast to montmorillonite, kaolin layers are strongly 

bonded with hydrogen bonds [60].  A major part of literature devoted to pillaring considers 

various types of montmorillonite.  Much less was published about modification of kaolin.  

Application of modified kaolin and montmorillonite for adsorption of heavy metals from water 

has been reported [61].  The authors concluded that application of clays is economically feasible 

for adsorption of heavy metals.  Modification of clays significantly increased adsorption 

capacity. 

Organoclays are very prospective materials that might find numerous applications in 

various fields of science and engineering [17, 62].  In the present work, we study modification 

of clays with two step-processes, i.e. sequential pillaring and ligand grafting.  We choose clays 

modification by combining of pillaring with grafting of chelating agents to the surface of two 

abundant clays, i.e. montmorillonite and kaolin.  Use of kaolin and montmorillonite disclose 

impact of swelling tendency on effectiveness of the final organoclay adsorbent for heavy 

metals.  The work is focused on clays modification to make them suitable for adsorption of 

heavy metals from diluted wastewater. 
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CHAPTER 2 

EXPERIMENTATION / METHODOLOGY 

Materials Used 

Kaolin, tetraethoxysilane (TEOS), (C2H3O2)2Ni4H2O, (C2H3O2)2Cd2H2O, and 

(C2H3O2)4Pb were purchased from Sigma-Aldrich (St. Louis, MO). 

 Montmorillonite K-10 was purchased fromAcros Organic (Geel, Belgium).  FeCl36H2O, 

Fe(NO3)39H2O, CuSO45H2O, ZnCl2 were purchased from Fisher Scientific (Pittsburgh, PA). 

Octadecyltrimethylammonium Chloride (TCI America, Portland, OR) was used as a template 

(Appendix A).  A chelating ligand, N-[3-(trimethoxysilyl)propyl]ethylenediaminetriacetic acid 

trisodium salt (TMS-EDTA) (Appendix C), was obtained from Gelest Inc. (Morrisville, PA). 

Methods 

Modification by Ferric Oxide 

Ferric oxide was introduced into clays (samples 2 and 5 in Table 1) using a slightly 

modified method in [63].  Raw clay 1 or 4 (10 g) was suspended in 55mL of deionized water at 

1000 rpm stirring.  Na2CO3 (6.5 g) was dissolved in 50 mL of 0.2 M Fe(NO3)3 at constant 

stirring until homogenous mixture was formed.  The mixture was aged during 26 hours.  Then it 

was added dropwise to the clay suspension at stirring for two hours at 60 C.  The sample was 

allowed to age for 20 h at room temperature, washed with deionized water, filtered, dried, and 

calcined on air at 300 C for 3 h. 
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Table 1.  Properties of Raw and Modified Clays 

Sample Clay Oxide Amount 

of intro-

duced 

oxide, 

% 

BET 

surface 

area, 

m
2
/g 

Total

porev

olu-

me, 

cc/g 

Micro-

pore 

volu-

me, 

cc/g 

Average 

pore 

radius, 

A 

Loading 

of 

TMS-

EDTA, 

mmol/g 

Average 

TMS-

EDTA 

density, 

molecules

/nm
2
 

1 Mont-

moril-

lonite 

- - 219 0.282 0.189 16.5 0.05 0.14 

2 Fe2O3 42 277 0.320 0.237 16.5 0.21 0.45 

3 SiO2 177 96 0.194 0.087 16.4 1.25 7.80 

4 Kaolin  - - 18 0.034 0.016 16.0 0.04 1.30 

5 Fe2O3 42 102 0.204 0.091 25.4 0.11 0.65 

6 SiO2 68 91 0.049 0.058 16.5 1.04 6.80 

 

Modification by Silica 

Raw clay 1 or 4 (10 g) was suspended in 64 mL of deionized water and then stirred 

vigorously at 1000 rpm.  A solution of TEOS (60 g), (Appendix B) and octadecyltrimethyl 

ammonium chloride (9.7 g)  in 20 mL of 2-propanol (Templating approach, Figure 2) was 

slowly added to the clay suspension, which then formed a gel.  The pH of the reaction mixture 

was adjusted to 10 by adding NH4OH solution, and then stirred for two hours.  The product (3 

and 6 in Table 1) was filtered, washed with deionized water, dried, and calcined on air at 300C 

for 3 h. 
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Figure 2.  Templating Approach for Silica Pillaring 

Mass Increments after Pillaring 

This analysis was done by taking small amount of the raw clays, weighing them, and 

then introducing the oxides into them.  The weights of the raw clays were noted and after the 

introduction of the oxides, the pillared clays were dried at 300
o
C using the BET analyzer.  The 

weights of the dried pillared clays were determined and recorded as shown in Figure 3.  
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     Figure 3.  Mass Increments after Pillaring of MMT and Kaolin Clays 

Immobilization of Chelating Ligand 

Grafting of the ligand to the surfaces of modified clays was conducted according to the 

procedure described by Vasiliev et al. [64].  The sketch in Figure 4 illustrates grafting process 

and the structure of product 7.  Finally bulk sample of just montmorillonite silica pillared clay 

was prepared for the adsorption of heavy metals analysis.                                             
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 Figure 4.   Immobilization of Ligand on Pillared Clay Surface 

Adsorption of Heavy Metals  

For adsorption studies, solutions of an individual metal salts with metal concentrations 

of 5.0 ppm were prepared.  In the case of Pb
4+

 solution concentration of 71.0 ppm was chosen 

due to higher detection limit of the instrument (AAS) on this metal.  All metal salts except 

(C2H3O2)4Pb were dissolved in deionized water.  In order to prevent hydrolysis, (C2H3O2)4Pb 

was acidified by a solution of HNO3 to pH=3.8.  For study of relative adsorption capacity on 

different metals, a solution containing mixture of six metal salts with total metal ions 

concentration 42.3 ppm (5 ppm of each metal), and 120.3 ppm (20 ppm of each metal) were 

prepared in an acidified water solution.  The solutions were passed through the column filled 

with modified clay 7 (0.75 g) using a Carter Cassette peristaltic pump (Thermo Fisher 

Scientific, Barrington, IL) as in Figure 5, at the constant average rate of15 mL/min.  
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Figure 5.  Set Up for the Adsorption of Heavy Metals   

The aliquots of the output solutions were taken every hour for six different times and analyzed 

for residual metal content using the AAS.  Using a calibration curve, the concentration of all the 

output on the solutions was determined.  Finally, the concentrations of the single (5 ppm), and 

mixed metals of 5 ppm and 20 ppm individual salt, were plotted against time/h. Concentrations 

of heavy metals were measured using an AA-6300 Atomic Absorption Spectrophotometer 

(Shimadzu Corp., Kyoto, Japan). 
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Characterization Techniques 

Porosimetry 

Porous structure of the clays was studied on a Quantachrome Nova porosimeter 

(Boynton Beach, FL). The measurements were conducted by BET adsorption of N2 at -196 
o
C 

as in the equation below: 

 

Prior to measurements, the samples were degassed in vacuum at 300 
o
C for 3 h.  Total 

pore volume and pore size distribution were calculated using BJH method.  Micropore volume 

was determined by DR method.  

Elemental Analysis 

Amount of the ligand immobilized on clay surface was calculated from contents of C, H, 

and N.  Elemental analysis was provided by Robertson Microlit Lab. (Ledgewood, NJ).      

FT-IR Analysis 

IR spectra were recorded on a Shimadzu IR Prestige-21 spectrometer (Shimadzu Corp., 

Kyoto, Japan).  

Thermal Stability 

DSC data were acquired on a Perkin Elmer Diamond DSC instrument (Waltham, MS). 

TGA analysis was carried out on a Perkin Elmer TGA-7 (Waltham, MS).  Thermoanalysis 
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studies were conducted under nitrogen blanket at heating rate 10 
o
C/min.  The range of 

temperatures was 20-600 
o
C for DSC and 20-700 

o
C for TGA.  

Concentrations of heavy metals were measured using an AA-6300 Atomic Absorption 

Spectrophotometer (Shimadzu Corp., Kyoto, Japan). 
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CHAPTER 3 

RESULTS AND DISCUSSION 

Results 

Modification of Clays with Oxides 

Amount of Oxides Introduced to Clays.  As seen in Table 1, montmorillonite (1) had a 

significantly higher capacity on both oxides (Fe2O3 and SiO2) than kaolin (4).  For both types of 

clays, the amount of introduced silica was higher than amount of ferric oxide as seen in Figure 

3.  In the product 3, its amount exceeded the amount of the raw clay used for modification. 

Porous Characteristics of the Clays 

Adsorption / desorption isotherms of all raw and modified clays were determined as in 

Appendix D and E.  BET surface areas of samples 1-3 are significantly higher than 

corresponding samples 4-6.  However, modification of 1 with silica reduced BET surface 

(sample 3).  The average pore radius did not change after experiments except modification of 

kaolin by ferric oxide.  The data on the samples porosity are shown in Table 1. 

Immobilization of Organic Ligand 

Starting materials 1 and 4 had little capacities on the ligand (Table 1).  Ferric-modified 

clays (2 and 5) showed higher TMS-EDTA loading while modification with silica resulted in 

increase of immobilization capacity (3 and 6) as in Figure 6.  
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     Figure 6.  Loading of the Ligand on Silica and Iron Pillared Clay 

In all experiments montmorillonite had higher immobilization capacity than kaolin.  Thus, the 

loading of TMS-EDTA on sample 3 was 20.2 % higher than on sample 6. 

 

Thermoanalysis Data 

DSC curve displayed three endothermic effects at the following temperatures (ΔH, J/g): 

213 (6.9); 318 (3.7); 350 (3.8) (Appendix F).  TGA thermogram of this sample showed a slight 

loss in mass at heating to 180 

C (0.5%) [65].  In the range 180-317 


C the weight loss was 
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12.8%.  Then the rate of weight loss became slower and the total weight loss up to 700 

C was 

22% (Appendix G). 

FT-IR Spectroscopy 

IR spectra of all samples have characteristic bands of alumosilicate network at 792-806 

cm
-1

 (νsSi-O) and 1051-1053 cm
-1

 (νsSi-O-Si).  In the spectra of organically modified samples, 

the first band can also be attributed to νasSi-C of immobilized TMS-EDTA.  Additionally, their 

spectra contain weak bands attributed to vibrations of organic groups (cm
-1

): 2852 and 2920 

(νCH2), 1560 and 1655 (νCOO
-
) (Appendix H). 

Adsorption of Heavy Metals 

Contents of metal ions in solutions of single metal salts and their mixture are shown in 

Tables 2-3.  After passing through the column, concentrations of all individual metals 

significantly reduced.  In the case of the metal mixture, prevalent adsorption of Fe
3+

 cations was 

observed. 

Table 2.  Concentrations of Heavy Metals after Adsorption from Solutions of Single Salts  

Time, h Concentration, ppm 

Cu
2+

 Ni
2+

 Cd
2+

 Zn
2+

 Fe
3+

 Pb
4+

 

Initial 5.00 5.00 5.00 5.00 5.00 5.00 71.0 

1 0.03 0.28 0.01 0.05 0.60  

Below 

detection 

limit 

2.00 

2 0.03 0.11 0.01 0.00 0.20 1.50 

3 0.03 0.17 0.00 0.00 0.15 2.00 

4 0.03 0.06 0.02 0.00 0.05 2.25 

5 0.03 0.17 0.02 0.00 0.15 2.00 

6 0.03 0.11 0.02 0.00 0.15  2.00 
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Table 3a.  Concentrations of Heavy Metals after Adsorption from Solutions of Mixed Salts                    

                  (5 ppm)                                

Time, h Concentration, ppm 

Cu
2+

 Ni
2+

 Cd
2+

 Zn
2+

 Fe
3+

     Pb
4+

 

Initial 6.38 7.00 8.00 7.00 6.45  7.50 

1 0.26 5.83 6.71 6.49 2.10  6.75 

2 3.97 6.28 6.93 6.47 0.95 6.25 

3 5.00 6.22 6.91 6.43 0.85 6.25 

4 4.97 6.06 6.86 6.33 0.55 6.25 

5 5.09 5.94 6.69 6.23 1.10 6.00 

6 5.09 6.06 6.97 6.19 1.30  6.00 

 

 

Table 3b.  Concentrations of Heavy Metals after Adsorption from Solutions of Mixed Salts    

                   (20ppm) 

Time, h Concentration, ppm 

Cu
2+

 Ni
2+

 Cd
2+

 Zn
2+

 Fe
3+

 Pb
4+

 

Initial 21.88 22.63 19.49 13.14 18.68 24.52 

1 15.72 20.32 17.57 12.59 10.05 20.24 

21.90 

21.43 

21.43 

21.43 

2 20.00 20.70 17.51 12.49 13.22 

3 19.88 20.70 18.07 12.43 16.54 

4 19.79 20.48 18.59 12.26 17.41 

5 19.59 20.59 18.82 12.19 17.56 

6 19.74 20.59 17.81 12.04 17.66 21.19 
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Discussion 

Modification with Oxides 

BET isotherms of the raw clays 1 and 4 showed a big difference in porous structures of 

kaolin and montmorillonite.  BET isotherm of 4 is typical for non-porous materials.  This result 

agrees with literature data on raw kaolin as a non-porous material [66].  In contrast to kaolin, 

BET isotherm of montmorillonite 1 is typical for mesoporous structures.  It is close to type IV 

and has profound hysteresis, indicating relatively high pore volume. 

Modification of both clays with ferric oxide resulted in significant increase of their 

surface areas and pore volumes at relatively small amount of introduced oxide.  Total amount of 

introduced ferric oxide was higher in the case of montmorillonite compared to kaolin.  Table 1 

data, along with data for BET isotherm of sample 2, are in good agreement with literature            

[49, 67-69] and prove a significant increase of montmorillonite porosity after modification.  

BET isotherm of sample 2 belongs to mixed II+IV type with the gradual slope increase in the 

range P/Po=0.1-0.4.  This shape is characteristic for wide pore size distribution.  Shape of the 

pores is cylindrical as one can see from hysteresis of type H1 in accordance with IUPAC 

classification [70].  One can define the modification of 1 by ferric oxide as pillaring. 

For kaolin, development of porous structure was also clearly indicated by BET 

isotherms.  Its isotherm shows a profound hysteresis loop for sample 5, while practically no 

hysteresis was observed in raw clays 4.  This result was unexpected as this clay is non-

expandable.  However, similar methodology of kaolinite treatment has been reported [66].  

Exfoliation of raw kaolinite led to increase of total surface area.  Micropores, probably not 

detectable by nitrogen BET, were reported in this work after treatment of the clay with 3- 

chloropropyltriethoxysilane with calcination at moderate temperature.  Development of porous 
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structure in kaolin was also reported in several recent publications [71, 72].  Surface charge of 

kaolin particles strongly depends on pH and ionic strength of the solution.  At low pH, one can 

expect positive charging of the particles’ edges and negative charging of the faces.  Treatment 

of kaolin with ferric salt in alkaline media probably leads initially to adsorption of hydrated 

ionic iron species such as [Fe(H2O)5(OH)]
2+

, [Fe(H2O)4(OH)2]
+
, etc.  At high pH, edges gain 

negative charge [73] and electrostatic forces should facilitate adsorption of positive ferric ionic 

species to the edges of the particles.  Results of this experiment prove the ability of kaolin to 

form mesoporous structure in spite of its non-expandable properties.  In contrast to sample 2, 

the shape of hysteresis in the isotherm of sample 5 has mixed H1-H3 type showing presence of 

both cylindrical and slit pores. 

While modification with ferric oxide increased both total BET surface area and porosity 

of montmorillonite, silica modification unexpectedly reduced them (Table 1).  It should be 

noted that the total amount of introduced silica was much higher than ferric oxide for both 

clays.  Modification of montmorillonite by silica using TEOS and a surfactant as a gallery 

template was reported earlier.  Li et al. [1] defined the products as silica-pillared clays.  In their 

work, such a material was identified as silica-clay composite.  Unfortunately in both reports 

amounts of reacted TEOS were not presented.  Considering high amount of TEOS incorporated 

into the structure of clay, we suggest that obtained material is rather composite than simply 

pillared clay.  The silica component of this composite might be responsible for reduced porosity 

due to partial filling of the interlayer space with formed silica.  In the case of kaolin, BET 

isotherm of sample 6 has stepwise shape (type VI) that indicates formation of two monolayers 

and proves bimodal pore size distribution.  The product has low porosity formed mainly by 

micropores.  A possible explanation of this result is formation of silica from TEOS 
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independently from kaolin particles.  Thus, this method was not effective in modification of 

kaolin.  

Immobilization of Ligand 

Raw kaolin 4 displayed very low immobilization capacity on organic molecules due to 

its almost non-porous structure.  A small amount of the TMS-EDTA was probably immobilized 

on external surface of clay particles.  If we take into account the volume of a single molecule of 

TMS-EDTA (386.18 Å3, calculated using Spartan ‘06 software), the total pore volume in kaolin 

(Table 1) is almost three fold lower than the total volume of immobilized molecules.  In 

contrast, high porosity of montmorillonite should enable immobilization of TMS-EDTA in 

mesopores. 

However, in spite of such significant structural differences, ligand loading on sample 1 

is not very different from the loading on sample 4.  It is evident that even in the case of 

expandable clay, steric hindrances still restrict accessibility of potential immobilization sites in 

the interlayer space to large molecules of TMS-EDTA. 

Total amount of immobilized ligand was strongly affected by modification of clay either 

by ferric oxide or by silica.  Thus, introduction of 40% of Fe2O3 to kaolin, and 42% to 

montmorillonite increased immobilization capacity of these clays by 298% and 385%, 

respectively (Figure 6).  Such a notable effect might be referred to disappearance of steric 

hindrances that makes almost all interlayer space accessible for TMS-EDTA. 

In the case of silica-modified clays, total specific loading of TMS–EDTA increased by a 

factor of over 25 in comparison to raw clay (Figure 6).  Such an effect cannot be explained by 

increase of specific surface area.  It is worth mentioning that TMS–EDTA loading density to 3 
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and 6 is higher than to mesoporous silica gel itself [64].  Possibly, a significant part of TMS-

EDTA was grafted in micropores, which surface area cannot be calculated using BET method. 

Characterization 

Comparison of IR spectra of raw sample 1 and organomodified clay 7 clearly prove 

presence of organic molecules in the material.  Thermal analysis of 7 showed total weight losses 

of about 23% wt up to 700 
o
C.   If we assume scission of the ligand molecule on Si-C bond, this 

amount is in good agreement with the total weight loading of TMS-EDTA. 

DSC pattern of silica-modified montmorillonite shows three well-defined endothermic 

peaks that might be attributed to multistep decomposition of immobilized ligand.  There are no 

literature data on thermal behavior of TMS-EDTA.  The temperature of the first peak is very 

close to the decomposition temperature of EDTA (237-245 
o
C).  Thermal destruction of EDTA 

is a multistep process involving initial cleavage of C-N bonds and followed by decarboxylation 

of acidic carboxyl groups [74].  In addition, the second and the third peaks are in the region of 

decomposition of most of hybrid organic/inorganic materials and might be attributed to Si-C 

bond cleavage.  Thus, thermal decomposition of immobilized ligand is a complex three-step 

process.  Alternatively, multiple peaks might be originated from multiphase nature of the 

obtained material where TMS-EDTA molecules might be immobilized on both silica and clay 

surfaces. 

Adsorption of Heavy Metals 

High loading of chelated ligands disclose the procedure to the design of effective 

adsorbents for environmental protection.  Adsorption of heavy metal on clays is well known 

technology of water clean-up [75-78].  However, natural clays can adsorb metal cations only on 

ion exchanging sites ≡Si-O- or ≡Al-O- on the clay surfaces.  The complexes of metals with 
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these sites are not stable, and metal adsorption is reversible.  In addition, clay surfaces are 

protonated at low pH, which makes positive charge and prevents adsorption of metal cations 

[6].  More stable complexes can be formed with organic chelate ligands (Figure 7). 

 

  Figure 7.   Adsorption of Heavy Metals by Organoclay 

In particular, log K for complexes of Zn
2+

, Cd
2+

, Ni
2+

 and Cu
2+

 with EDTA are 16.5, 16.6, 18.6, 

and 18.8, respectively.  Cations Fe
3+

 form much more stable complexes with EDTA               

(log K = 25.7).  For comparison, the range of log K for the reaction of metal cations, with 

cation-exchanging sites on montmorillonite surface are very low.  Thus, for negatively charged 

sites their values are in the range 2.37-2.56.  For neutral surface OH
-
 groups they are still lower 

[78]. 
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We studied adsorption of four divalent cations (Zn
2+

, Cd
2+

, Ni
2+

, and Cu
2+

), one trivalent 

(Fe
3+

), and one tetravalent (Pb
4+

) heavy metals on sample 7 from solutions of single salts and 

their mixture.  Table 2 lists results of column adsorption of individual heavy metals from 

aqueous solutions.  One can see that effectiveness of modified clay as an adsorbent with all 

single heavy metals is pretty high.  Concentrations of metals in eluents after adsorption were 0.1 

-4.3% of initial concentrations.  Table 3a and Table 3b also list results of column adsorption of 

mixture of heavy metal from aqueous solutions of 5 ppm and 20 ppm respectively. 

Compounds containing Pb
4+

 do not belong to common contaminants of environment. 

One of the sources of Pb
4+

 in soil was tetraethyl lead Pb(C2H5)4 used in the past as an antiknock 

additive to fuels.  At present time, this additive is not used in most countries in the world.  Lead 

(IV) tetraacetate is hydrolyzed in neutral aqueous solution and can be dissolved only in acidic 

media.  Normally, clays do not adsorb metal cations effectively at low pH; however, organoclay 

7 displayed high adsorption capacity on this metal even in presence of acid (Appendices I-K). 

Industrial wastewaters usually contain mixed contaminants.  For estimation of 

adsorption selectivity, clean-up of an acidic mixture of heavy metal salts was conducted on the 

column filled with 7 (Figure 5).  Analysis of eluent samples showed a preferable adsorption of 

Fe
3+

 cations that is in agreement with literature data on the stability of metal complexes with 

EDTA. 

Conclusion 

Highly porous materials were obtained by modification of montmorillonite and kaolin 

with ferric oxide.  The modified clays contain both micropores and mesopores.  Modification of 

clays with silica led to mixed silica-clay composites with relatively lower porosity.  An 
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interesting characteristic of such composites is extremely high loading capacity for chelating of 

ligand N-[3- (trimethoxysilyl)propyl]ethylenediaminetriacetic acid trisodium salt.   Obtained 

organoclay based on silica modified montmorillonite was successfully used for adsorption of 

heavy metal cations from individual and mixed solutions of their salts. 
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APPENDICES 

Appendix A: Trimethylstearrylammonium Chloride (The surfactant) 
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Appendix B: Tetraethoxysilane (The Precursor) 
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Appendix C: TMS-EDTA, Chelated Ligand 
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Appendix D: Structural Characteristics of MMT Pillared Clay 

 

 

 

        

 

 

 

 

 

 

 

 

 

MMT CLAY 

 Fe-Pillared Clay 

 Si-Pillared Clay 

 Raw Clay 



54 
 

Appendix E: Structural Characteristics of Kaolin Pillared Clay 
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Appendix F:  DSC Analysis 
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Appendix G:   TGA Analysis 
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Appendix H: FT-IR Spectra of Organoclay 
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AAS RESULTS 

Appendix I: Initial Concentration of 5 ppm for all Single Salt and 71 ppm for Pb
4+
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Appendix J: Initial Concentration of 5 ppm (Mixture of Six Salts) 
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Appendix K: Initial Concentration of 20 ppm (Mixture of Six Salts) 
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