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ABSTRACT 

Fabrication of Chemically Modified Nanometer-sized Gold Electrodes and Their Application in 

Electrocatalysis at Pt Nanoparticles 

by  

Jude Chimi Lakbub 

 Hydrogen evolution via proton reduction occurs at a high rate at the surface of Pt than at Au 

electrodes.  Using cyclic voltammetry, chemically modified nanometer-sized Au electrodes, 

prepared by the Laser-Assisted Puller Method, were employed to examine current amplification by 

electrocalysis at Pt nanoparticles adsorbed on the modified Au electrode surfaces.  The electrodes 

were modified with Self-Assembled Monolayers (SAMs) of cysteamine and soaked in Pt colloid 

solutions overnight.  Monitoring the decrements of the characteristic steady-state catalytic current 

for proton reduction indicated that aggregates of Pt nanoparticles are adsorbed on the cysteamine 

monolayers and desorb from them particle by particle. The results also indicate that some particles 

are strongly attached to the modified electrode surface and do not deplete even after thorough 

rinsing. 
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CHAPTER 1 

INTRODUCTION 

Electrode Modification and Electrocatalysis by Nanoparticles 

The use of molecules to modify electrode surfaces has been of increasing interest to 

electrochemists in recent years.  The resulting electrode is known as a chemically modified 

electrode (CME) which as a result of the modification has very thin monolayer or multilayer film 

of a particular chemical species at the electrode surface [1].  Molecules that spontaneously 

assemble on electrode surfaces to form self-assembled monolayers (SAMs) have attracted great 

attention as electrochemists continuously study the structures, chemical and electrochemical 

properties, and characteristics and explore the applications of electrodes modified by such 

molecules [2-5]. One major application of electrodes modified by SAMs is in the study of 

electrocatalysis by nanoparticles adsorbed on the thin monolayer films of the modified electrodes 

[6-8].  In such application, the modified electrode is held at a potential where the reaction to be 

catalyzed is slow, or does not occur at all at the bare electrode (Figure 1).  For example, Xiaol et 

al. [6] used hydrazine oxidation to study electrocatalysis by Pt particles that are adsorbed on a 

modified Au electrode.  The electrode potential was held at 0.1 V, a potential at which oxidation 

of hydrazine does not occur at the Au electrode but occurs at Pt particles at high rates when they 

are adsorbed on the electrode.  This research focuses on the same phenomenon, but rather uses 

the electrocatalysis of protons at the Pt nanoparticles (PtNPs) adsorbed on a cysteamine modified 

electrode to study the depletion of the particles from the electrode surface.  At the applied 

potential, proton reduction does not occur at the bare Au electrode or at the Au/Cysteamine 

electrode when scanned in acid, but occurs significantly when PtNPs are adsorbed on the 

cysteamine monolayer and scanned in sulfuric acid.    
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The properties of metal nanoparticles adsorbed on a monolayer on a CME surface differ 

from those in bulk solution as well as a bare electrode of the same metal, and they are affected by 

interplay of different factors such as interaction with the monolayer, quality of the monolayer, 

inter-particle spacing, and size distribution of the particles [8].  For instance, the catalytic current 

generated will depend on the size of the particles. Larger particles, or aggregates of particles, will 

produce higher current [9].  Although the concentration of the species to be reduced, hydrazine 

and protons for example, also influence the magnitude of the current produced [9], the 

concentration of such species is always held constant such that any change in current is as a 

result of a change at the Pt particle surfaces where the reduction occurs. 

Figure 1:  Schematic of proton reduction at PtNPs and bare electrode. (a) Reduction of proton 

at a Pt NP adsorbed at a monolayer producing leading to high current flow, (b) Reduction of 

proton at the bare electrode does not occur or occurs at a low rate, producing a very low 

current that is close to the background current 

H H
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Pt 
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AU 
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Despite the availability of several substrates and molecules that can be used to prepare, 

study, and apply CMEs, gold-alkanethiol couples are those that are widely used.  This is because 

alkanethiols spontaneously form very stable, well-ordered monolayers on gold.  The stability and 

organization of the monolayer on Au depend on factors such as concentration of the alkanethiol, 

the temperature, chain length, nature of the solvent used, and the cleanliness and structure of the 

Au prior to modification [10].  L. M. Fischer et al. [11] have reported several methods such as 

using a weak form of Aqua Regia for a maximum of 2 mins ( they observed gold was etched 

after about 8 mins), reducing agent solutions, Piranha solution, sulfuric acid potential cycling etc 

for cleaning gold electrodes in preparation for applications in electroanalysis. Widig et al. [12] 

described the bond between alkanethiols and gold to be very strong and of covalent character, 

hence the stability of alkanethiols on gold.    

Alkanethiols of varying chain lengths, C3, C4, and C5 up to C14, C15, C16, etc. have 

been studied.  Xiao et al. [6] showed that the catalytic current at Pt nanoparticles on SAMs-Au 

couple decreases dramatically with increase in the chain length.  A plot of the catalytic current 

versus the carbon chain length of the SAMs showed an exponential decay in the current.  They 

reported that the decay was similar to that of electron transport through SAMs.  This is consistent 

with work that has been done by our research group, Sun’s Group [13]:  Hexadecanethiol 

(C16H33SH), a long chain alkanethiol, was used to modify a nanometer-sized Au electrode with 

an effective radius of about 51nm.  The limiting current after modification decreased 

dramatically as well as the effective radius of the electrode which decreased to about 2.1 nm, an 

outrageous decrease of over 90%.  The current was attributed to defects in the monolayer.  Thus, 

to get a good and relatively high current flow for studies of electrocatalysis by metal 

nanoparticles immobilized on Au CMEs surfaces, short chain alkanethiols such as cysteamine 



  

12 
 

can be used to modify the electrodes.  Also, with such short chain molecules, the metal 

nanoparticles adsorbed on them will be at close proximity to the Au surface, hence a short 

distance for electrons tunneling from the Au surface to the particles to induce electrocatalysis, 

which is indicated by the flow of a current (catalytic current).   

The current, I, generated at the surface of a metal nanoparticle is given by  

I = 4π(ln2)nFDCr                                                                                                (1) 

Where: 4π(ln2) is a geometric factor that depend on the particle shape and how it is situated on 

the electrode surface, D and C are the diffusion coefficient and concentration of the reactants 

respectively, F is Faraday constant, r is the radius of a nanoparticle, n the number electrons 

transferred.  Clearly from (1), the current is directly proportional to the radius of the particle 

provided the diffusion coefficient and the concentration of the electroactive species are kept 

constant.  However, some current flow may not result from a single particle but from single 

particles that have collided to form a mass of particles.  Hence, to distinguish between current 

flow resulting from a single particle and that from an aggregate of particles, it is important to 

know the approximate sizes of the particles used in the experiment.  As such the current flow 

observed can be used to calculate the approximate radius of the particle size, and if the calculated 

radius is far larger (more than double or almost double) the known radius of the particles used, 

then it is evident that the current resulted from a mass of particles.  Even though equation (1) can 

be used to judge whether current flow is from a single particle or a mass of a particles, it cannot 

be used to tell the exact size of a mass of particles.  This is because particle aggregates would 

definitely not be spherical; hence the equation can only be used to approximate the sizes of 

aggregates of particles. 
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Although most of the works on electrocatalysis have been done using ultramicro 

electrodes, the use of nanometer-sized electrodes in electroanalysis is expediting.  Nanometer-

sized electrodes were used in this research because of the outrageous advantages found for using 

such small electrodes.  For example, they have been used for studies of microenvironments of 

biological systems such as cells [14], they have been used in scanning probe microscopies as 

local probes [11, 15], used to detect and study single molecules (sensors) [16], and also applied 

in the study of fast electron-transfer reactions [17].  Another important advantage of nanometer-

sized electrodes is the small charging current associated with them that enable better flow of 

Faradaic current.  Faradaic and charging currents both flow when an electrode is scanned in 

solution, but the current of interest is the Faradaic current.  For large electrodes, the charging 

current is large and ‘disturbs’ the precise detection of Faradaic current.  But charging current is 

proportional to electrode size, and is therefore smaller for nanometer-sized electrodes than larger 

electrodes.  Although Faradaic current also decreases with electrode size, the decrease is much 

smaller than that for the charging current. 

Chemically Modified Electrodes 

As mentioned above, CMEs are electrodes that are prepared by the adsorption of 

chemical species (especially SAMs) on bare electrode surfaces.  Generally, the chemical and 

electrochemical properties of a chemically modified electrode are tailored to a great extent by the 

specific chemical species used for its modification.  Hence, while CMEs undergo reduction and 

oxidation reactions like bare electrodes, their unique feature is a thin layer/film of a selected 

chemical that is coated or spontaneously absorbed at the surface of a bare electrode endowing the 

electrode with some desirable properties such as electrical, chemical, transport, optical, or 

electrochemical properties as well as selectivity and permeability [1].  Because of their ease of 
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preparation and the possibility to use different techniques and chemicals to manipulate their 

structures and properties, CMEs, particularly those modified with SAMs, find numerous 

applications in electrocatalysis at single nanoparticles [6, 9, 18], electrochemical, chemical, and 

biosensors [19] corrosion studies [20], kinetics of electron transfer [21], ion transport [22], and 

so forth. 

The first step involved in preparing a CME is the preparation of the bare electrode. 

Fabrication of Nanometer-Sized Electrodes 

CMEs have been prepared using ultramicro electrodes.  However, in recent years, 

electrochemists are switching to nanometer-sized electrodes.  Nanometer- sized electrodes are 

electrodes whose effective radii are in the nanometer range. This switch is due to the numerous 

advantages associated with their use. Some of these advantages have been mentioned above.  

The size of a CME depends largely on the size of the bare electrode on which the modifying 

species is adsorbed.  Although the modification of an electrode can be relatively easy and 

straightforward, the fabrication of electrodes with effective radii of several nanometers is 

challenging.  Three main techniques have been used to fabricate such small electrodes.  These 

include the Laser Assisted Puller Method, the etching method, and deposition method. The Puller 

method is discussed in the experimental section and therefore only the etching and deposition 

methods are discussed here. 

Etching Method 

Electrochemical etching has been used to prepare very sharp tips of several nanometers in 

radius from mircrowires that are then treated and used as electrodes.  For example, O. Sklyar et 

al. [15] and S. K. Lee et al. [23] prepared nanometer-sized electrodes with effective radii from 
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4nm to about 300nm using this method.  They used a three-step procedure: electrochemical 

etching, coating with a non-conducting chemical, and treatment with heat.  The process begins 

with the electrochemical etching of a microwire, gold microwire for example, to form a sharp tip, 

followed by electrophoretic coating with a suitable non-conducting chemical to cover the whole 

electrode surface.  Lastly the coated electrode is heated to expose a very small conductive 

electrode area at the tip.   

Instead of using a direct method of heating the insulating material to expose the 

nanometer-sized tip, S. K. Lee et al. reported an enchanting method where the size of the tip can 

be controlled while stripping the insulating coat.  In situ cyclic voltammetry measurements were 

used to monitor the exposed tip by measuring the current flow while thermally stripping the 

insulating coat in hot aqueous solution.  There was no current flow at room temperature, but as 

the temperature of the solution was increased, and stripping of the insulating coat began, current 

started flowing.  Stripping could be stopped when the current corresponding to the desired size of 

the electrode was obtained.  Although their method is challenging, it is very interesting because 

electrodes of about a particular radius can be fabricated.   

The tips of electrodes prepared by this method are approximated to be hemispherical 

[23].  The effective radius of such a hemispherical electrode is calculated from the steady-state 

limiting current using the equation below. 

ilim  = 2πnFDCr                                                                                                      (2) 

In equation (1), ilim is the steady-state limiting current, 2π is the electrode geometric factor, n the 

number of electrons transferred per molecule, F is Faraday constant, D the diffusion coefficient 
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of the electroactive species, C the bulk concentration of the electroactive species, and r the 

effective radius of the electrode.   

Relatively larger electrodes have been prepared by electrochemically etching microwires 

and using them as electrodes without coating with insulating material.  M. C. Baykul [24] 

prepared gold electrodes (200 to 500 nm) to use for STM by direct etching without coating the 

tips.  However, the set-up for the etching process was unique.  A set up was done where gold 

wire, 0.25 mm, was used as anode with a copper ring as the cathode and 0.8 M KCN solution as 

the electrolyte.  The gold wire was clamped in a vertical position in the solution and dc potential 

of 8 V or more applied.  The wire was etched at the position of the meniscus of the electrolyte.  

The part of the gold wire in solution dropped off when its weight exceeded the etched neck, and 

the tip of the other part on the clamp was used as the nano electrode. 

Deposition Method 

This is an electrochemical deposition method that is mainly used to fabricate Au 

nanoelectrodes as small as 4 nm in radius.  It relies on the Puller method.  The method takes 

advantage of the fact that it is relatively easy to produce disk-shaped Pt nanoelectrodes of about 

4 nm in radius using the Laser-Assisted Puller method, but difficult for Au.  Bo Zhang et al. [25] 

used this technique to produce Au electrodes of about 4 nm in radius.  The method consists of 

four steps as shown in Figure 2.  First a disk-shaped Pt nanoelectrode is prepared by using the 

Puller method.  Second, Pt is electrochemically etched from the Pt nanoelectrodes, producing a 

Pt nanopore electrode.  In the third step, Au nanowire is electrochemically deposited in the 

nanopore and lastly the tip is polished, exposing disk-shaped Au nanoelectrode, whose radius is 

same as the radius of the initial Pt nanoelectrode. 
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Polishing the electrode gives it a disk shape, thus the effective radius can calculated from the 

steady-state limiting current equation as shown below: 

ilim = 4nFDCr                                                                                                       (2) 

r    =                                                                                                                     (3) 

Where: ilim is the steady-state limiting current, n the number of electrons transferred per 

molecule, F is Faraday constant, D the diffusion coefficient of an electroactive species, and C the 

bulk concentration of the electroactive species.  

ilim 

4nFDC  

Pt 

NanoPore Au 

Etching Electrodeposition 

with Gold 

Polish 

(a) (b) (d) (c) 

Figure 2:  Electrodeposition method for the fabrication of nanometer-sized Au electrode using a 

Pt nanoelectrode. (a) Polished Pt nanoelectrode, (b) Etched Pt nanoelectrode, (c) 

Electrodeposited Au in Pt nanoelectrode template, and (d) Polished Au nanoelectrode 
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Self-Assembled Monolayers (SAMs) 

Monolayers formed on electrode surfaces by the spontaneous adsorption of molecules on 

bare electrode surfaces are known as self- assembled monolayers (SAMs).  They have attracted 

considerable attention in recent years. This is mainly because they are well ordered, stable, easy 

to produce, and can contain a variety of functional groups, hence a variety of properties.  Like 

any other CME, they also give the modified electrodes different properties from the bare or 

traditional electrodes.   

 Research in the area of SAMs goes far back to 1946 when Ziesman et al. published their 

work on the formation of a monomolecular layer on a metal surface by adsorption (self-

assembly) of a surfactant onto a metal surface [26].
 
 The technique would become more popular 

through the work of Allara and Nuzzo [27] published in 1983.  They prepared the first gold-

alkylthiolate monolayer by the adsorption (self-assembly) of di-n-alkyl disulfides from solution 

on the gold substrates.  Maoz and Sagiv [28] introduced trichlorosilanes on silicon oxide.  In 

recent years however, many different substrates and modifying species (both electroactive and 

nonelectroactive) have been used to prepare SAM-substrate couples.  However, gold- 

alkylthiolate monolayers remain the most widely studied substrate-SAMs systems.  

Preparation Methods of Chemically Modified Electrodes 

The preparation, characterization, electrochemical behavior, structure, and application of 

modified electrodes are the main areas of concern for researches who use CMEs.  In order to 

prepare a modified electrode for a particular function, choosing a substrate and the modifying 

species are important.  The substrate is the bare, or unmodified, electrode on which the 
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modifying species bond or are coated. There are four main methods by which CMEs are made.  

J. M. Zen et al. [29] and R. A. Durst et al. [1] discussed these four routes in detail.  

Preparation by Sorption  

Sorption based CMEs are prepared by using the physical and chemical interaction 

properties of both the bare electrode and the modifying chemical [1]. Hence, physisorption 

(coating for example) and chemisorption are two ways by which a CME can be prepared by 

sorption.  Although those prepared by the physisorbed method find applications in 

electroanalysis, Zen et al. [29] reported that they are very unstable.  Monolayer formation by 

chemisorption involves the adsorption of the molecules on the electrode surface by means of 

chemical bonds.  Formation of the monolayers on substrates can be done in several ways. 

Preparation from solution 

This is a widely used simple and straightforward method to prepare chemically modified 

electrodes.  It involves the immersion of the unmodified electrode in a suitable solution of the 

modifying species for a length of time during which the adsorbate spontaneously adsorb on the 

electrode surface forming the monolayer.  Ethanol is mostly used as solvent, but depending on 

the modifying compounds, other solvents such as water, chloroform, toluene, acetone, 

acetonitrile, and dichloromethane can also be used.  V. Lakshminarayanan and Ujjal Kumar [30] 

have reported on solvent effects on monolayers and stated that the permeability of alkanethiol 

SAMs depend on the solvent used for their preparation.   

Several groups have used different lengths of time for this process, from 2hrs [31], 15hrs 

[32], up to overnight [33].  Kind and Woll reported that only one layer is formed on the electrode 

surface because the anchor groups of the modifying species are highly specific and would attach 
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only to the electrode surface and not to the surface of the first monolayer [34].  Bard and 

Faulkner [35, pp 581-585] describe this adsorption as specific adsorption, referring to a strong 

interaction between the substrate and the modifying compound.  They describe three ways by 

which monolayers are formed in solution; irreversible adsorption, covalent attachment, and 

organized assemblies, and further attribute the spontaneity of the adsorption to the fact that the 

substrate environment is energetically more stable than that of the solution.  

Structure of Chemically Modified Electrodes 

Atomic force microscopy (AFM) and scanning tunneling microscopy (STM) are the most 

widely used techniques to determine and study the structures of CMEs, particularly SAMs.  

Despite the wide use of these and other techniques, some researchers have reported that the 

structures of SAMs have not been fully understood as there are still debates about them [36].  

The generally accepted structure of SAMs on substrates is shown in Figure 3.  The thin films on 

modified electrodes are mostly used to immobilize electroactive species on the electrode surface, 

making it possible to study the electrochemical reactions that occur between the electrode and 

the immobilized electroactive species as well as the monolayers themselves.  

 

 

 

 

 

 

Y 

X 

Y 

X 

Y 

X 

Substrate 

SAM 

Figure 3: General representation of a substrate-SAMs couple. Y is the head 

group that is chemisorbed on the substrate and X is the tail functional 

group. Between Y and X are carbon chains, can also be cyclic compounds 
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Characterization of Chemically Modified Electrodes 

There are a good number of spectroscopic and electrochemical techniques that are widely 

used for the characterization of CMEs.  These include spectroscopic methods like X-ray 

Photoelectron Spectroscopy (XPS), infrared (IR), Raman and UV/visible spectroscopies, X-ray 

Diffraction (XRD), Scanning Tunneling, Scanning Electron, and Atomic force microscopies 

(STM, SEM, and AFM respectively) as well as electrochemical methods such as cyclic 

voltammetry.  A brief discussion of some of the techniques is also given below, followed by 

Table 1 that summarizes uses and principles of other characterization techniques that have not 

been discussed.  The references provided in the table are for researches where the techniques 

have been used for characterization or where they are discussed in detail.  The majority of the 

techniques are surface techniques, that is, they are used to study the nature or structure of the 

electrode surface.   

Cyclic Voltammetry 

 Cyclic voltammetry is the most widely used method for electrochemical studies.  It is 

based on oxidation/ reduction reactions by electrochemical species.   

                     O + e                  R                                                                                            (4) 

Either a two (working and reference electrodes) or three (working, reference, and counter 

electrodes) compartment setup can be used.  A potential is applied between the working and 

reference electrode that leads to the flow of current.  The current produced, as a result of 

oxidation/reduction processes, can be measured and plotted against time or voltage.  The plot is 

called a cyclic voltammogram.  This method has been used to study the reactions at chemically 

modified electrodes.  
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Scanning Tunneling Microscopy (STM) 

STM has been widely used for the structural characterization of CMEs [37]. The method 

depends on the tunneling of currents between a very small conducting tip of a scanning tunneling 

microscope and the surface of the electrode.  The current measured as the tip scans across the 

electrode surface is recorded on a computer in the form of a contour plot (image) [38], hence the 

image of the surface is obtained and can be studied.  Because the method depends on the flow of 

current, it therefore requires the sample to be conductive, thus a good method for investigating 

redox and conducting CMEs [39].  Using this method, Christof Woll and Martin Kind [34] were 

able to find structural anomalies on a decanethiolate SAM on gold substrate.  

Infrared (IR) Spectroscopy 

Generally, IR spectroscopy relies on the vibrational modes of chemical species.  It is 

applied in the chemistry of CMEs to obtain a great deal of information about the orientation, 

chemical identity, and lateral arrangements of the ultrathin layers of SAMs at an electrode 

surface [5, 34].  Using IR spectroscopy, it is possible to obtain the vibrational spectra of only 

absorbed species, especially those like OH and CO that have high IR absorption coefficients. 

Thus, the technique has been used to study the species (Reactants, intermediates, and products) 

absorbed in the thin layer of a CMEs [35, pp703].  For instance, Korzeniewski et al. [40] applied 

in situ FTIR reflectance spectroscopy to investigate the structural properties of polymer 

polyaniline coated on Pt electrode and the interactions between a dopant anion and the polymer. 

They were able to study the nature of the polymer-dopant bonding and observed that for anions 

within the polyaniline film, their vibrational bands were blue shifted relative to the same anions 

in the bulk solution and concluded that it was engendered by weak ionic interactions between the 

polyaniline film and the dopant anions.   
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Ellipsometry 

This is a technique that is used to study film growth and changes in the thickness of a 

film on an electrode surface.  For example, it can be used to observe changes in the thickness of 

a monolayer before and after reaction with molecules to detect if there is any adsorption of the 

molecules onto the layer.  The method is based on measuring the change in amplitude and phase 

of a polarized light beam after reflection at the surface of a CME.  The refractive index and 

thickness of a film on the CME can be determined.  It measures precisely the polarization state of 

light reflected at a surface [41]. 

Table 1:  Summary of uses and principles of some characterization methods 

Technique Uses and Principle Reference 

 

AFM 

-Useful for studying changes in electrode surfaces as a result of 

adsorption, etching, etc.  Provides high resolution image of surface. 

-Done by measuring changing deflections when the sharp tip of a 

cantilever is brought close to the electrode surface. 

34, 35 

 

SECM 

-Useful for studying the rates and pathways of electrochemical 

reactions.  Also used in imaging electrode surfaces. 

- Based on measurement of current resulting from an electrochemical 

reaction at the electrode tip. 

14 

 

XRD 

-Provides structural information about atoms at the electrode surface. 

-Done by determining the diffraction pattern of a monochromatic x-

ray beam that is scattered at the electrode surface. 

36 

 

SPRS 

-Study absorption of molecules on electrode surfaces (e.g biological 

molecules and SAMs).  Determine changes in thickness of layers. 

-Based on collective vibrations of electrons (plasmons) at electrode 

surface after interaction with light. 

35 
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Table 1 (continued) 

 

XPS 

-Provides atomic information about the surface of an electrode. 

-Based on the detection and measurement of energies of electrons 

ejected from the surface when irradiated with monochromatic x-rays. 

42 

 

AES 

-Used to determine elemental composition of electrode surfaces and 

can also identify chemical states of atoms at the surface. 

-Based on the analysis of energy distribution of Auger electrons 

emitted from the surface when irradiated with an electron beam. 

34, 35 

 

LEED 

-Characterize electrode surfaces by providing information about their 

geometric pattern of atoms. 

- Observation of diffraction pattern of  low energy electrons  

(10-500 eV) from the electrode surface. 

34, 35 

 

NEXAFS 

-Used for studying electrode surfaces.  

-Provides information about the surfaces by determining the 

absorption of x-ray photons by atoms at the core of the surfaces as a 

function of the energy of the incident photon. 

34, 35 

HAS -Provides information about electrode surfaces via diffraction 

patterns of low-energy helium atoms emitted from the surfaces. 

34 

 

The abbreviations of the techniques are : Atomic Force Microscopy (AFM), Scanning 

Electrochemical Microscopy (SECM), X-Ray Diffraction (XRD), Surface Plasmon Resonance 

Spectroscopy (SPRS), X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectrometry 

(AES), Low Energy Electron Diffraction (LEED), Near-Edge X-ray Absorption Fine Structure 

Spectroscopy (NEXAFS), Helium Atom Scattering (HAS).   
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Applications of Chemically Modified Electrodes 

“Although electrode surfaces can be modified by adsorption, it would be of interest to 

more drastically and permanently modify the surface by covalently binding molecules to it.  If a 

method for securely anchoring such molecules could be found, advantage could be taken of the 

molecular structure to build surfaces with unique and widely varying properties.” [43] The 

choice of this quote (from reference 43 published in 1975) to introduce applications of CMEs is 

because in recent years, more than three decades after it was mentioned, advantage has actually 

been taken of the numerous properties of molecules like alkanethiols that covalently bind on 

electrode surfaces for a good number of applications of the modified electrodes.  The thin 

layer/film on CMEs formed by the molecules, endows the CMEs with some desirable properties 

such as electrical, chemical, optical, and electrochemical properties that have been exploited in 

various applications of such electrodes.  As such CMEs have established their applications in 

areas such as electrocatalysis, sensors (single nano particles and single molecules detection), 

corrosion prevention, and study of the kinetics of electron transfer.  Because of the progressive 

use of CMEs in the manufacture of sensors and in electrocatalysis, only these two applications 

are discussed. 

Chemical Sensors 

A chemical sensor is a device that can detect a particular chemical species (analyte) in 

solution and be used to determine the concentration of the species.  CMEs have been used to 

fabricate such devices [44].  The molecules used to prepare such electrodes can only interact 

with the analyte of interest. This technique has been employed in the manufacture of biosensors 

such as the glucose sensor [45].  Biosensors detect organic and biological species or other 

chemical species in biological systems. The basic principle behind their fabrication is to 
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immobilize biologically sensitive molecules, for example DNA, antigen/antibody, or an enzyme, 

on the electrode surface that can recognize and interact with a particular biological analyte and 

produce an electrochemically detectable signal in the process [35, pp 587].  The glucose sensor, 

for example, is based on the enzyme glucose oxidase that catalyzes the oxidation of glucose to 

gluconolactone, releasing two electrons in the process [45].  Hence, because enzymes are 

themselves selective (they recognize and bind specific biological molecules) electrodes modified 

with enzymes become selective to the specific molecules recognized by the enzyme adsorbed on 

their surfaces.  

Also, electrodes coated with thin film of Nafion help solved a problem of dopamine and 

ascorbate determination in neurophysiology [46].  Adams and co-workers [46] showed that 

dopamine can be detected in the brains of living rats by surgically embedding an electrode in the 

rat’s brain.  However, ascorbate present in the cerebral fluid that was analyzed is oxidized at 

almost the same potential as dopamine and hence interferes with the determination of dopamine. 

The electrode was made to be selective by coating it with a thin Nafion film [47].  Nafion is a 

cation exchange polymer that detects cations and rejects anions.  Because dopamine is a cation 

and ascorbate an anion at physiological pH values, the Nafion-modified electrode could detect 

only dopamine.  This led to the use of Nafion-coated electrodes for in vivo analysis of dopamine 

and other cationic neurotransmitters, and as standards for these kinds of investigations.  

Electrocatalysis 

Electrocatalysis at a modified electrode surface refers to a redox reaction between an 

analyte in solution and the electrode that when mediated by a redox couple (mediator) 

immobilized at the electrode surface, occurs at a lower overpotential than would otherwise occur 

at the bare electrode surface [1].  Redox reactions of some important analytes at bare electrode 
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surfaces are slow and require potentials that are higher than their formal redox potentials for the 

reactions to take place at desirably higher rates.  When such electrodes are modified by 

immobilizing a redox couple (mediator) at their surfaces, the rates of the redox reactions are 

accelerated and occur at lower potentials near the formal potential of the mediator [48].  

Several redox polymer films have been coated (immobilized) on electrode surfaces and 

used for electrocatalysis, that is, the redox polymers are used to catalyze electrochemical 

reactions [49].  The immobilized redox couple serves both as catalyst for the redox reaction and 

a charge carrier. Two types of catalysis, redox catalysis and chemical catalysis can occur as a 

result of reactions between a charged mediator and an analyte.  

Research Objective 

The objective of this research was to study desorption of platinum nanoparticles adsorbed 

on chemically modified Au nanometer-sized electrodes.  This was done by studying the decrease 

in the electrocatalytic current produced as a result of proton reduction at the surfaces of the 

PtNPs.  The work done was comprised of three important steps.  First was the fabrication of 

nanometer-sized bare Au electrodes.  For this, the laser assisted Puller method was used.  The 

electrodes fabricated were in the range 100 to 250 nm in radius.  Second, the bare Au electrodes 

were modified by soaking in a solution of cysteamine, which formed monolayers on the Au 

electrodes.  Last, the electrodes were soaked in a solution of PtNPs.  PtNPs were adsorbed on the 

monolayer, and the Au/cysteamine/PtNPs electrodes then scanned in sulfuric acid solution, and 

the resulting catalytic current monitored with increasing potential cycles. 
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CHAPTER 2 

EXPERIMENTAL SECTION 

Chemicals 

The following chemicals were purchased from the suppliers indicated and were used as 

received: Potassium Nitrate (KNO3), technical grade Sulfuric Acid (H2SO4, Fischer Scientifics), 

Sodium Borohydrite (NaBH4, 96+%, Fluka), hydrogen hexachlorolatinate (IV) (Pt 30%, Alfa 

Aesar), trisodium citrate dihydrate (99+%, Aldrich), ferrocenemethanol (97%, FeCH2OH, 

Aldrich), USP grade Ethanol (CH3CH2OH) obtained from Pharmaco Products Inc, and 

Cysteamine (C2H7NS.HCl) from Tokyo Chemical Industry CO. LTD.  Aqueous solutions were 

prepared using deionized water (Milli-Q, Millipore Corp).  

Instruments 

Nanometer-sized Au electrodes were prepared using a P-2000 laser based micropipette 

puller (Sutter Instrument Co)  and were polished using a Microelectrode Beveler (model BV-10, 

Sutter instrument Co).  An optical microscope (Nikon) was used to observe electrodes.  CV 

experiments required the use of a preamplifier (BAS PA-1). 

Au microwires (25.00um in diameter), Ag wire, and borosilicate glass capillary tubings (1.0 mm 

o.d, 0.58 mm i.d), were obtained from Sutter Instruments.  

Fabrication of Gold (Au) Nanoelectrodes 

Chemically modified nanometer-sized Au electrodes were prepared by a two- step 

process shown schematically in Figure 4.  First, bare nanometer-sized Au electrodes were 

fabricated using a laser-assisted pulling method [15] as follows:  Annealed Au microwire (about 

1cm long) was inserted and sealed in borosilicate glass capillary tubing and then pulled into two 

ultrasharp Au nanowire tips using a P-2000 Laser based micropipette puller.  The tips of the 

capillary tubing were sealed by heating and mechanically polished by means of a Microelectrode 

Beveler, exposing a disk shaped Au nanosurface.  The electrodes were observed using the 
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reflection model of an optical microscope at 1000 magnification.  Only electrodes for which a 

tiny, shiny, disk-shaped spot (Figure 7) was observed were used for the rest of the experiment.  

 

 

 

 

 

 

 

 

 

 

 

 

A conducting microwire was inserted at the open end of the capillary tubing to make 

contact with the Au wire and then sealed.   In some cases where there was little or no contact 

between the two wires, a small amount of silver powder was inserted at the open end of the 

capillary tubing before inserting the conducting wire to ensure good contact between the two 

wires.   

Laser Pulling Anneal Polish & 

connect 

(a) 

(b1) 

(b2) 

(c) 

(d) 

Figure 4:  Schematic of the laser assisted Puller method for the fabrication of nanometer-sized 

Gold electrode; (a) Au microwire inserted in glass pipette, (b1) Recessed electrode, (b2) Protruded 

electrode, (c) annealed electrode, and (d) polished and connected electrode 
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Characterization and Modification with SAMs 

After preparation of nanometer-seized bare electrodes, they were thoroughly rinsed with 

deionized water and scanned in 1.0 mM FcCH2OH (with 0.1 mM KNO3 as supporting 

electrolyte) until a stable cyclic voltammogram with almost no perturbations was obtained.  A 

one-compartment, two electrode cell system and a preamplifier in a Faraday cage was used, with 

a Ag silver wire (0.25 mm in diameter) serving as a quasi- reference electrode (AgQRE).  The 

cleanliness of electrodes was ensured by scanning in 0.5M H2SO4 to obtain the characteristic 

peaks of a clean Au electrode.  In cases where the peaks were not observed, the electrodes were 

heated for about 3 or 4 seconds in a hot coil (at about 150 
0
C), rinsed thoroughly with deionized 

water, and scanned in acid again. This was repeated until the characteristic peaks were obtained.  

Only electrodes that exhibited the characteristic peaks of clean Au were used for further 

experiments. 

Modification of the nanometer-sized electrodes (Figure 5) was done by immersing in a 

0.1M cysteamine/ethanol solution for at least 3 hours.   

 

 

 

 

After soaking electrodes were removed from cysteamine solution, they were rinsed with ethanol 

first and then thoroughly again with deionized water.  They were scanned in ferrocenemethanol 

(FcMeOH) and then sulfuric acid to obtain background current, followed by soaking in Pt 

Figure 5: Modification of gold electrode with Cysteamine and then Pt nanoparticles 
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nanoparticles solution for about three hours and overnight in some cases.  After removal from the 

PtNP solution, they were scanned in sulfuric acid.  Figure 6 shows the experimental set-up. 

 

 

 

 

 

 

 

 

 

 

 

Preparation and Characterization of Pt Nanoparticles 

Pt nanoparticles were synthesized as reported in reference 17.  Briefly, to 100 mL of 0.4 

mM aqueous H2PtCl6 was added 50 mL of 2.8 mM trisodium citrate dihydrate aqueous solution.  

The mixture was stirred vigorously with a magnetic stirrer while adding 10 mL of 12 mM 

NaBH4 drop wise.  A pale yellow solution was formed that turned dark brown in about 5 

minutes.  The solution was continuously stirred vigorously for 4 hrs and stored in a refrigerator. 

Preamplifier Computer 
Read 

out (CV) 

Electrolyte 

Ag wire (AgQRE) 

Au WE 

Figure 6: Schematic diagram for cyclic voltammetry experiment. The electrolyte depends on the stage of 

the experiment and is either 1Mm Ferrocenemethanol (with 0.1M KNO3 as supporting electrolyte), or 

0.5 M H2SO4, or Pt particles solution 

Faraday’s Cage 
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The sizes of the Pt NPs prepared by this method ranges from 2 to 6 nm in diameter, most of them 

at 4 ± 0.8 nm in diameter [18]. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

Cleanliness of Gold Nanoelectrodes 

 Cleanliness of fabricated gold electrodes was ensured by scanning in 0.5 M sulfuric acid.  

Figure 7 shows the optical microscopic image (magnification of 1000) of the top view of a well-

polished nanometer-sized electrode prepared by the Puller method.  The disk-shaped shiny spot 

at the middle of the bright cycle of the picture is gold electrode.  It shows that the surface of the 

electrode is flat, hence well-polished.   

                                    

Figure 7:  Top view of the optical microscopic image of a well-polished nanometer-sized Au 

electrode.  The magnification is 1000x   

Figure 9 (a) is the cyclic voltammogram (CV) of the electrode obtained by scanning in a 

solution containing 1.0 mM FcMeOH (with 0.1 M KNO3 as supporting electrolyte) vs AgQRE 

before modification with cysteamine.   The shiny spot on the image, Figure 7, and the good 
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quality sigmoidal shaped cyclic voltammogram do not mean that the surface of the electrode is 

clean and clear of any impurities. Our group had shown in a previous work [13] that a 

nanoelectrode with a good voltammogram does not indicate its cleanliness and purity; rather, the 

voltammogram of the electrode in sulfuric acid, Figure 8, does.   

 

Figure 8: Cyclic voltammogram obtained at a clean Au nanometer-sized electrode recorded in a 

0.5 M H2SO4 solution.  The scan rate was 150 mV/s, and the number of scans was 15.  It shows 

the characteristic features of clean gold electrodes, the gold oxidation formation peaks (at 1.0 and 

1.1 V), gold oxide stripping peak (at 0.7 V), and the flat portion (0.2 to 0.6 V) 

When scanned in H2SO4 between -0.1 to 1.4V, the cyclic voltammogram of a clean and 

well-polished nanoelectrode exhibits the characteristic gold oxidation and gold oxide stripping 

peaks of a clean macro gold electrode at about 1.1 to 1.4V and around 0.9V respectively, with a 

flat portion of the curve between the oxide stripping peak and a hydrogen evolution region found 

at about –0.1V.  Hence, the cleanliness of each nanometer-sized electrode used for the 
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experiment was verified by scanning in 0.5 M sulfuric acid vs AgQRE until the CV, with the 

characteristic peaks, became stable (approximately 15 cycles).  Figure 8 shows a cyclic 

voltammogram in 0.5 M sulfuric acid for one of the electrodes used in the experiment.  The gold 

oxidation and oxide stripping peaks and flat portions of the curve are indicative of the cleanliness 

of the electrode. 

Voltammogram at Bare Au and Au/Cysteamine Modified Electrodes 

The steady state limiting current observed for the bare Au electrodes in FcMeOH 

solution, figure 9 (a) (red) for example, were used to calculate the effective radii of the 

electrodes. The diffusion coefficient of FcMeOH is 7.6 × 10
-6

 cm
2
 s

-1
 and only one electron is 

transferred per mole of FcMeOH, equation (4). 

FcMeOH                       [FcMeOH]
+
 + e                                                        (4) 

Hence, using equations (2) and (3), the effective radius for the bare Au electrode shown in Figure 

9 (a) is 200 nm.  

Figure 9 (b) (blue) shows the CV of the electrode in FcMeOH after modification with 

cysteamine.  Normally, the limiting current for the oxidation of ferrocenemethanol should be 

unaffected by short chain SAMs [6] because such short chains do not suppress electron tunneling 

through them. Therefore, the limiting current for the oxidation of FcMeOH should be 

approximately the same before and after modification with cysteamine.  However, Figure 9 

shows that the limiting current decreased by about 9 pA after modification with cysteamine.   
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Figure 9: CV curves for bare and modified Au electrodes in a solution of 1 mM FcMeOH and 

0.1 M KNO3 (supporting electrolyte). (a) is the CV for the bare electrode (200 nm in radius) 

before modification with cysteamine and  (b) is that after modification. The scan rates were 50 

mV/s for both electrodes.  The non-zero offset was probably due to instrumental drift  

This was observed for over 80% of the electrodes used for experiments.  This could be as a result 

of multilayer formed on the electrode surface. That is, some cysteamine molecules stick together 

at the surface of a monolayer that has been formed thus hampering electron tunneling to the 

surface.   

Cyclic Voltammetry in Sulfuric Acid after Soaking in Pt Nanoparticles 

In some cases, electrodes were soaked in PtNP solution for at least 2 hours 30 minutes, or 

overnight, and yet in others, scanned in a solution of the particles.  The only difference that was 

observed with respect to the soaking/scanning times was that slightly higher currents were 

obtained for relatively longer time periods, which indicated that more Pt particles were adsorbed 
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on the monolayer during that time.  Before soaking in Pt nanoparticles, modified electrodes were 

scanned in sulfuric acid between –0.6 and 0.3 V vs AgQRE to obtain a background CV shown in 

Figure 10 (red).  No drastic increase in current was observed at this range. There was only a very 

small increase in current at about -0.6 V.  We assume this was due to some minimal proton 

reduction at the Au surface or at the monolayer surface. 

 

Figure 10: Electrochemical reduction of protons at Au/Cysteamine electrode without (red, blank) 

and with (blue) PtNPs on the surface of the cysteamine.  The electrolyte was 0.5 M H2SO4 and 

potential sweep rate was 100 mV/s.  The electrode was not rinsed after soaking in PtNPs 

solution. The current for the first potential cycle was higher than the instrument limit  
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The blue curve in Figure 10 shows the CV for an electrode scanned in 0.5 M sulfuric acid (0.3 to 

-0.6 V) after soaking in Pt nanoparticles. Because there was very low current observed before 

soaking in particles, the sharp increase in current at about -0.6 V is an indication that PtNPs were 

adsorbed on cysteamine and catalyzed the reduction of proton to hydrogen.  The steady-state 

current for the very first potential cycle shown is greater than 100 pA.   However, the current 

decreased uniformly in a step-wise manner with increasing number of potential cycles but did 

not reach the background current (the current of the modified electrode in the same potential 

range in acid without particles).  The magnitude of the decrease of the first potential cycle was 

large but then degreased and became almost constant before decreasing again to some smaller 

value.   

The current for a single PtNP is approximately between 40 to 65 pA depending on the 

particle size distribution [39].  Because the current observed after the first cycle (Figure 10 (blue) 

was very large, over 100 pA, which clearly does not represent catalysis at a single Pt NP.  Hence, 

we assume that the high current was as a result of proton reduction at the surface of an aggregate 

or several aggregates of PtNPs at the surface.  The Pt colloid solution was stored in a refrigerator 

after preparation and used continuously throughout the experiment.  Although the particles were 

stabilized by citrate to prevent aggregation, it is possible that some of them could still have 

collided to form aggregates during the storage time, and the aggregates attached to the 

cysteamine layer when the electrode was immersed in the solution.  Because the magnitude of 

the current decrease after the first potential cycle is large compared to the others, it is evident that 

some particle aggregates first desorb from the monolayer surface.  We attribute the series of 

almost constant magnitudes of current decrements after the first potential cycle to single particles 

desorption from the monolayer.  Some very small decrements of current shown in Table 2 that 
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were less than 1 pA were also observed, which presents the possibility of very small particles 

present.  We believe that some of these decrements of current could also be as a result of 

adsorption of some extrinsic impurities that led to deactivation of the particles, causing decrease 

in current. 

Figure 11 shows the result of an electrode that was rinsed slightly after soaking in PtNPs 

before scanning in sulfuric acid.  We observed that in this case, the current for the first potential 

cycle was 50 pA, which is less than half that for the first potential cycle in Figure 10, where the 

electrode was not rinsed before scanning in acid.   

 

Figure 11: Electrochemical reduction of protons at an Au/Cysteamine (red) and 

Au/Cysteamine/PtNPs electrode rinsed slightly after soaking in PtNPs solution.  Solution was 0.5 

M H2SO4 and scan rate was 100 mV/s  
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This shows that light rinsing of the electrodes before scanning took off some of the PtNPs 

that we assume were loosely bound to the cysteamine surface.  However, even after thorough 

rinsing, the final currents after all the stepwise decrements were still quite higher than the 

background currents.  This was observed for all electrodes that were used.  It shows that some of 

the PtNPs were strongly bound to the cysteamine monolayer and could not be removed even 

with thorough rinsing.  It is also possible that some very small particles could have migrated by 

mass transfer into the cysteamine monolayer and were trapped at some defects within the 

monolayer network where they could still catalyze proton reduction, or they migrated to the Au 

surface and were permanently immobilized on it, and reduction still occurred at their surfaces.  

The transient currents for desorption of particles from two electrode surfaces are 

presented in Table 2.  The current observed are those we assume are as a result of depletion of 

some very small particles.  The currents were so small and were read by zooming the current 

values for each potential cycle.   

The very small current change values (the magnitude of the decrements) could indicate 

the presence of very small particles (less than 1 nm in diameter) in the particle solution.  These 

are obviously smaller than the expected particle sizes (between 2 to 6 nm in diameter with most 

of them about 4.0 nm in diameter) as reported by literature for the preparation method that was 

used to prepare the particles.  Perhaps, as suggested earlier, these very small particles penetrated 

the cysteamine monolayer and migrated to the electrode surface where they were immobilized on 

Au, accounting for the final current for each electrode being higher than the background current.  

Also, the electrostatic interaction between the Pt particles and the Nitrogen atoms of the 

cysteamine could be very strong that thorough rinsing will not take off some of the particles.  
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The table also confirms that currents decrease with increasing number of cycles (steps), with the 

magnitude of decrease for the various steps of each electrode being very small and close. 

Table 2: Currents observed as a result of desorption of PtNPs from two electrode surfaces after 

thorough rinsing. 

 

 

 

 

 

 

 

Conclusion 

Nanometer-sized Au electrodes of effective radii between 100 to 250 nm have been 

fabricated using the laser assisted Puller method and were chemically modified with cysteamine. 

We have demonstrated that Pt nanoparticles are absorbed on the surface of the CMEs after 

soaking or scanning in a solution of the particles.  The Au/Cysteamine/PtNPs electrodes were 

characterized using steady-state cyclic voltammetry.  We showed that the PtNPs on the modified 

electrodes catalyze proton reduction, characterized by a high current that was extremely low at 

the bare Au electrodes.  The observed current decreased with increasing potential cycles.  We 

attribute these decrements to desorption of Pt particles form the cysteamine surface.  Further 

Electrode 1 Electrode 2 

Step Current(pA) Current Change (pA) Current(Pa) Current Change (pA) 

1 14.38 0.37 10.71 0.05 

2 14.01 0.31 10.66 0.14 

3 13.70 0.35 10.52 0.12 

4 13.35 0.45 10.40 0.17 

5 12.90 - 10.23 - 
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examination of the magnitudes of current decrements indicates that they depend on the particle 

sizes desorbed from the surface between scanning cycles.  We conclude that particle aggregates, 

single particles, and even particles smaller than the estimated particle sizes desorbed from the 

electrode surfaces as the electrodes were continuously scanned in acidic solution.   

Future Work 

 The reported work focused on the adsorption and desorption of PtNPs from the surfaces 

of CMEs.   Changes in the monolayer network resulting from adsorption and desorption of the 

particles have not been studied due to lack of instrumentation.  In the future, this work can be 

completed by using surface techniques to study the changes in the structure of the monolayers 

and the particle distribution on them at the beginning of experiments and progressively as the 

particles desorb from the electrode surfaces.  Surface techniques like AFM and ellipsometry can 

be used to examine the nature of the particle aggregates on the electrode surface and the changes 

in monolayer.  This will provide valuable information that can lead to approximation of the 

amount of particles on the electrode surface and either reinforce the observations of this research 

or bring forth new ideas for further research. 

 Also, these same studies can be carried out on nanometer-sized electrodes whose 

effective radii are approximately the same to those of the particles to observe if there will be any 

major differences in the observed current pattern. 
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