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ABSTRACT

Synthesis of Marine Chemicals and Derivatives as Potential Anti-Cancer Drugs
by

Laude Bannerman-Akwei

Two natural marine compounds, 3-bromo-4,5-dihydroxybenzaldehyde 2 and 2,3-dibromo-4,5-
dihydroxybenzaldehyde 5 together with two novel derivatives, 3-bromo-5-(tert-butyl-dimethyl-
silanyloxy)-4-hydroxybenzaldehyde 3 and 1-bromo-2,3-dimethoxy-5-nitrooxy-methylbenzene 9,
were synthesized. Compounds 2, 3, and 5 were evaluated for their biological activity towards
the inhibition of prostate cancer cell growth using staurosporine as a positive control. All three
compounds have shown significant inhibition of prostate cancer cell growth. Compound 9 is yet

to be evaluated.
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CHAPTER 1

INTRODUCTION

The need to discover new drugs has become imperative due to the advent of many drug
resistant diseases. Nature has continuously provided human beings with a broad and
structurally diverse arsenal of pharmacologically active compounds that continue to be used as
highly effective drugs to combat a multitude of deadly diseases or as lead structures for the
development of novel synthetically derived drugs that mirror their models from nature [1].
Natural product chemists therefore continue to explore nature for new sources of lead
compounds in search of new drugs and medicines as well as improving the efficiency of drugs
[2]. Drugs of natural origin have been categorized into three groups; the original natural
product, semi-synthetic products derived form the chemical modifications of natural products
and total synthetic analogues based on natural product models or pharmacophores [3].

Most of the 877 new small molecule chemical entities introduced as drugs worldwide
during 1981-2002 were either natural products, natural product derivatives, or natural product
mimics. The percentages were even greater when considering only the antibacterial (79%) and
anticancer (74%) compounds [4]. Despite the continuous research being done by natural
product chemists, the rate of discovery of truly novel natural product drugs has actually
decreased. Reasons for this fact are related to high cost and time consuming of conventional
programs in natural products, which led to the exploitation of modern high-throughput
screening and combinatorial strategies by the pharmaceutical industry to generate new lead

structures. However, far from being competitive, combinatorial and natural product chemistry
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should complement on a synergistic perspective, because nature continues to be the most
diverse and active compound library known [5].

More than 70% of our planet’s surface is covered by sea and these waters harbor
approximately 75% of all living organisms. The marine environment has therefore become an
invaluable resource for new drug discoveries due to its diversity of life and associated
secondary metabolites. Many species of marine organisms have evolved and developed the
enzymatic capability to produce chemical entities that might serve not only as defense
mechanism systems against micro and macro predators but also as regulators of biological
function. These compounds offer a good starting point in the quest for innovative marine
derived anticancer drugs. In recent years, marine natural product bioprospecting has yielded a
considerable number of drug candidates and most of these molecules are still in preclinical or

early clinical development [6, 7, 8].

Marine Natural Products

The Discovery Phase

The pioneering work of Bergman et al. (1951) in the discovery of the biologically active,
pharmaceutically important, and novel arabino-nucleosides from the sponge Cryptotethya
crypta sparked the interest in marine natural product and served to highlight the biomedical
potential of the field [9]. Although the initial work of Bergman et al. was curiosity driven, the
discovery of the arabino-nucleosides now serves as lead structures for the development of

antiviral drugs such as ara-A and the anticancer drug for leukemia ara-C [1].
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Current Perspective

The field has blossomed and matured since the pioneering work of Bergman et al. with
the isolation of several different compounds. Most of these compounds have shown significant
cytotoxic activity (mostly anticancer or antitumor agents) than with terrestrial sources. Thus,
whereas an estimated 1 in 10,000 compounds of terrestrial origin screened for antitumor
activity yield a candidate for drug development, the corresponding figure for marine sources is
closer to 1in 100 [6]. A good number of promising compounds that have been identified are
either already at advance stages of clinical trials or have been selected as promising candidates
for extended preclinical evaluation [1].

In 2006, 779 new compounds together with their relevant biological activities, source
organisms, and country of origin were published in 283 articles [10]. With over 200,000
invertebrate and algal species in the ocean [11] the future of marine natural product chemistry

can only be bright.

The Chemistry of Marine Natural Products

Marine Toxins

This is dominated by the polyether toxins and it includes; brevetoxin B 1 isolated from
the dinoflagellate Gymmodinium breve[12], ciguatoxin 2 extracted from moray eels
Gymmothorax javanicus [13], maitotoxin 3 isolated from Gambierdiscus toxicus[14, 15], and
yessotoxin 4 isolated from scallops Patinopecten yessoensis implicated in diarrheic shellfish

poisoning and from the same source pectenotoxin-15 has also been isolated [16].
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Marine Chemical Ecology

Chemical production in sessile marine organisms helps them to deter predators and also
to prevent settling by fouling organisms. A good number of antifoulants has been discovered by
natural product chemists as a result of this chemical defense mechanism. Examples include
furospongolide 6 [17] and ambiol A 7 [18] from sponges and renillafoulins (8-10) from octocoral
[19]. Compounds such as stypoldione 11 and latrunculin A 12 from Stypopodium zonale[20] and
Latrunculia magnifica [21] respectively were discovered based on their ichthyoxicity but were

later shown to be cytotoxic [22].

Furospongolide 6

1y
"1oH

Ambiol A7
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Renillafoulin A 8 R1=R2 = Ac
Renillafoulin B 9 R1= Ac, R2 = C2H5CO-

Renillafoulin C 10 R1= Ac, R2 = n-C3H7CO-

latrunculin A 12
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Marine Biomedicinals

This area is concerned primarily with the discovery of bioactive compounds as
pharmaceutical agents. Several compounds with antioxidant, antimalaria, antiviral,
antibacterial, anti-inflammatory, and anticancer activities have been discovered. The majority
of these compounds currently in clinical or preclinical screening are anticancer agents [1].

The discovery of the nucleosides spongouridine 13 and spongothymidine 14 from the
sponge Cryptotethya crypta [23] served as the lead structures for the synthesis of ara-A 15 an

antiviral agent [24], and ara-C 16 an anticancer agent for the treatment of leukemia [25].

[¢] (0] NH, NH,
N =
o N o N N/\N o N
HO HO HO HO
(0] (0] (0] (0]
HO HO HO HO
OH OH OH OH
Spongouridine 13 Spongothymidine 14 Ara-A 15 Ara-C 16

The most advance anticancer drug currently under clinical investigation is the marine alkaloid
ecteinascidin 743 17 isolated from the Caribbean tunicate Ecteinnascidia turbinate with its
synthetic analogue phthalascidin 18 for the treatment of various types of cancers [6, 26].
Bryostatin 1 19 isolated from the bryozoan Bugula nertitina [27] is another promising
anticancer drug under clinical investigation for the treatment of solid tumors, leukemias,

lymphomas, and melanoma [28].
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Other potential anticancer agents currently under clinical investigation include
dehydrodidemnin B 20 isolated from the tunicate, Aplidium albicans [28], dolastatin 10 21 from
the seahare, Dolabella auricularia [29], isohomohalichondrin B 22 from the sponge Axinella sp

[30], eleutherobin 23 form the soft coral, Eleutherobia albifora [31], curacin A 24 from the
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curacao cynobacteria, Lyngbya majuscule [32], and kahalalide F 25 from the Hawaiian mollusk,

Elysia rufescens [33].
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A good number of anti-inflammatory agents have also been isolated from marine
organisms such as pseudopterosins A 26 and E 27 from the Caribbean gorgonian,

Pseudopterogorgia elisabethae [34, 35], topsentin 28 from the sponge spongosorites ruetzleri
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[36], and manoalide 29 from the sponge, luffariella variabilis [37], which has become a standard

drug in inflammation research.
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Manoalide 29

Some compounds are also employed as reagents in cellular biology. Examples include
jaspamide 30 [38, 39] that acts on actin, ilimaquinone 31[40] that causes vesiculation of the
golgi apparatus [41], and adociasulfate 32 that is an inhibitor of the intracellular motor protein

kinesin [42, 43].

OH

///
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4

Jaspamide 30 llimaquinone 31
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The Role of Secondary Metabolites in Marine Organisms

In general secondary metabolites from any source can be considered as the products of
a process of “natural combinatorial chemistry”. This is either because they are the product of
genes that have frequently been “shaffled” between taxa or because they are the products of
what might be described as “co-metabolism” whereby a molecule is biosynthesized by one
organism and then modified by another [44].

The role of secondary metabolites in marine organisms has been a subject of debate for
many years. Different views have been generated by two schools of thought on the role of
secondary metabolites in producing organisms. The first school of thought postulates that
secondary metabolites are waste products that do not play any role in the survival of the
organism [45]; to the contrary the second school of thought suggests that secondary
metabolites are involve in definite biological activities that enhance the survival of the

producing organism [46].
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Clearly the precursors for these biosynthetic compounds and the energy involved in
these biosynthetic pathways can not be dispensable because these resources can be channeled
into the growth and reproduction of the producing organism [47], and as such secondary
metabolites must play a role in the survival of the producing organism that is chemical means of
defense. Secondary metabolites mediate a wide range of ecological interaction or allelopathic
interaction between marine organisms ranging from fouling, competition for space, and

recognition of food [48, 49].

Marine Chemicals as Anticancer Drugs

The design and synthesis of chemical drugs used in the treatment of cancer is one of the
main objectives of scientists in medicinal chemistry. Cancer continues to be one of the major
causes of death worldwide, and it is ranked second to heart diseases in killer diseases in the US,
with an estimated 1.3million cases in 2006 and 556,902 deaths for that year. The progress
made in reducing the morbidity and mortality of this dreadful disease can only be said to be
modest. [50,51,52]. Table 1 shows some of the compounds that have been isolated from

marine sources that have shown significant anticancer and antitumor activities.
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Table 1: Some Marine Derived Anticancer Compounds [6]

Organism Group Metabolite
Ecteinascidia tubinata Tunicate ET-743
Aplidium albicans Tunicate Aplidine
Elisia rufescens Mollusc Kahalilide
Spisula polynyma Mollusc ES-285
Micromonospora marina Actinomycete Thiocoraline
Bugula neritina Bryozoan Bryostatin 1
Portieria hornemannii Red alga Halomon
Aplysia kurodai Sea hare Aplyronine A
Dolabella auricularia Sea hare Dolastatin 10
Crambe crambe Sponge Crambescidin-816
Halichondria okadai Sponge Halichondrin B
Lissodendoryx spp. Sponge Isohomohalichondrin B
Mycale spp. sponge Mycapeoxide B
Trididemnum soldium Tunicate Didemnin B

The marine pharmacy holds more than 35,000 marine-derived biological samples, with
approximately 150 compounds shown to be cytotoxic against tumor cells. Furthermore,
approximately 35 compounds have a known mechanism(s) of action for their antitumor effect
while 124 marine compounds are yet to be studied for their detailed mechanism of antitumor
activity. Out of the 35 antitumor compounds, at least a dozen of them are currently in various

phases of human clinical trials for treatment of different cancers [53].
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The major demerit associated with pharmacological research involving marine
organisms is the extremely scarce availability of biologically active substances for bioassays and
therapy and its inherently slow nature. Chemical synthesis offers an alternative to overcome

the supply issue as well as accelerating the bioassays and therapeutic processes [54, 55].

Purpose of this Research

The fundamental goal of this research is to synthesize two marine bioactive compounds;
3-Bromo-4,5-dihydroxybenzaldehyde 2 and 2,3-Dibromo-4,5-dihydroxybenzaldehyde 5 as well
as two novel derivatives, 3-Bromo-5-(tert-butyl-dimethyl-silanyloxy)-4-hydroxybenzaldehyde 3
and 1-bromo-2,3-dimethoxy-5-nitrooxymethylbenzene 9. The biological activity of these
compounds on prostate cancer cells will then be examined at the school of medical sciences,
ETSU. The commercially available bromovanillin 1 and dibromovanillin 4 will serve as the
precursors for all the synthetic compounds.

Compound 2 has been isolated from Polysiphonai urceolata [56] and 5 from
Polysiphonia brodiaei [57]. However both 2 and 5 have been isolated from Rhodomela
convfervoides [58]. All species belong to the marine red algae family Rhodomelaceae that is

known to be rich in bromoine-containing compounds or bromophenols [56].

Proposed Synthetic Approach

Synthesis of 2 will be a single step demethylation of bromovanillin 1, which will then
serve as the precursor for the synthesis of our novel derivative 3 by protection of one hydroxyl

functional group (Scheme 1)
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CHO CHO CHO

CHCl;, AICl; CH,Cl,, imidazole _
pyridine, reflux TBSCI, rt
Br OMe Br OH Br OTBS

OH OH OH

Scheme 1. Proposed Synthetic Pathway for 2 and 3

Synthesis of compound 5 will follow the same synthetic route as compound 2 that is

demethylation of compound 4 (Scheme 2).

CHO CHO

Br Br

CHCl;, AICI4
pyridine, reflux,

Br OMe Br OH

OH OH

Scheme 2. Proposed Synthetic Pathway of Compound 5

The synthesis of our second novel derivative begins with the preparation of methyl
iodide. This will be achieved by refluxing MeOH in HI (Scheme 3). Next, we will then perform a
methylation of 1 to form compound 6 that will then undergo reduction leading to the formation
of 7. Compound 7 will then be chlorinated in an intramolecular Sy2 reaction to obtain

compound 8 that will later be nitrated to yield the novel derivative 9 (Scheme 4).

CH,OH + HI reflux, 120°C, CHyl + H,0

Scheme 3. Preparation of Mel
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CHO CHO CH,OH

DMF, NaH, __ WetTHF, _
Mel, rt NaBHy, 1t

Br OMe Br OMe Br OMe

OH OMe OMe

CH,Cl,, 0°C,
PCls, 15mins,
0°C

CH,ONO, GH.CI

CH';CN, AgNO3,
1t

Br OMe Br OMe

OMe OMe

Scheme 4. Proposed Synthetic Pathway of Compound 9
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CHAPTER 2

RESULTS AND DISCUSSION

Synthesis of 3-Bromo-4,5-dihydroxybenzaldehyde 2

Compound 2 was obtained as a light brown solid after the demethylation of bromo
vanillin 1. The reaction proceeds through a solvated five-member cyclic intermediate 1a which
is attacked by pyridine in nucleophilic displacement reaction resulting in the formation of 1b
that yields compound 2 on hydrolysis (Scheme 5) [59]. A moderate yield of 63% was obtained

which is lower than the reported literature yield (83%) [60].

CHO CHO CHO
—_—
—_—
Br” i “~OMe Br /\oMe Br /6Me
OH OAIC, O—AICl,
N— AICl,
1a

H+
-
Br 6]
Br OH /
O——AICI

1b

Scheme 5. Mechanism of Demethylation

The biological activity of this compound was carried out on prostate cancer cells using

staurosporine as a positive control agent. Compound 2 recorded a 22% inhibition rate and the
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positive agent staurosporine recorded a 23% inhibition rate. These results suggest that
compound 2 can be effectively compared to the positive control agent staurosporine in terms

of efficacy although there is 1% difference between the inhibition rates (Appendix 23)

Synthesis of 3-Bromo-5-(tert-butyl-dimethyl-silanyloxy)-4-hydroxybenzaldehyde 3

This synthesis was achieved by the modification of a reported literature [61]. Protection
of the hydroxy functional group in 2 with a TBS group via an Sy2 reaction mechanism (Scheme
6) afforded compound 3 in 70% yield. This reaction is expected to occur on the hydroxyl group
at the meta position due to the bulky nature of bromine (steric effects). It must however be
noted that the double protected compound was also isolated in very low yield (15%).
Compound 3 was characterized by *H and >C NMR, IR, and melting point. (See experimental
procedures for data and appendix for spectra.) GCMS analysis of compound 3 exhibited two

major peaks at m/z 273 and 166. The proposed fragmentation pattern is shown in Scheme 7.

CHO CHO CHO
— —_—
/" N TBS—Cl
Br O—Hq NH Br 0 ~— Br oTBS
"/ _NA
OH P OH OH
2 3

Scheme 6. Mechanism of Alcohol Protection

Novel compound 3 had a 16% inhibition rate, a decrease of 6% compared to its natural
product compound 2 and 7% less than the positive control agent staurosporine. This implies

that compound 3 might have a lower efficacy than both the positive control agent
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staurosporine and compound 2. This may be due the substitution of one hydroxy functional

group with a TBS group. Introduction of a TBS group on the benzene ring will donate electrons
to the ring system and thereby causing a decrease in the reactivity of the carbonyl carbon. The
decrease in the inhibition rate of compound 3 can be attributed to the decrease in reactivity of

the carbonyl functional group.

CHO CHO oHo
- — I
Br O0——Si(Me), Br O——SiH(Me), Br o] TI
OH C(Me), OH OH Me
m/z 273
m/z 331 m/z 274
CHO co
CH, e cH, —— CH,
_” ” B = o—|l'
Br 0 Ti Br O_T' " |'
OH Me OH Me OH Me
m/z 273
CH CH,
cH, &—— ” CIR — ”
|| —3S;j Br (6] Si
O_T' O T| |
OH Me
OH Me OH Me
m/z 166

Scheme 7. Proposed Fragmentation Pattern of Compound 3
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Synthesis of 2,3-Dibromo-4,5-dihydroxybenzaldehyde 5

Demethylation of compound 4 afforded compound 5 (Scheme 8) in 63% yield [60]. The

product was impure after recrystallization in 50% aqueous EtOH .

CHO CHO

Br Br

CHCl;, AICl;
pyridine, reflux,
Br OMe Br OH

OH OH

Scheme 8. Synthesis of Compound 5

This reaction follows the same mechanism as outlined in Scheme 5 [59]. Purification of this
compound by column chromatography on silica gel was impossible due to the decomposition of
the compound upon contact with silica gel. The recystallization technique was therefore
employed to purify the compound. However, purification of this compound was not entirely
successful upon using several different solvent combinations. The best solvent combination, 5-
10% EtOAc in hexane gave a purity of 84% and a yield of 40%.

In our attempt to synthesize the pure compound, the starting material was exhausted
and an alternate route was designed for the synthesis of compound 5 (Scheme 9) using

compound 2 [57] as the precursor due to time constraint.
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CHO CHO

CHCI'; BI‘Z

Br OH Br OH

OH OH

2 5

Scheme 9. Alternate Route for the Synthesis of Compound 5
Although compound 5 was isolated in the pure form, it was found out that the rate of
conversion of compound 2 to 5 was very low (31% yield). The low yield can be attributed to
formation of side products such as the isomer of compound 5 and quinone. GCMS analysis of
compound 5 exhibited 2 major peaks at m/z 295 and 293 with a minor peak at 215 as shown in
the fragmentation (Scheme10)

CHO CHO

Br Br

Br OH Br 0

OH 0
m/z 295 m/z 293

Br:

OH

OH
m/z 215

Scheme 10. Fragmentation of Compound 5
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Compound 5 gave the most significant result for biological activity. The observed
percentage inhibition rate of prostate cancer cell growth was 35%. That is an increase of 12%
more than the positive control agent staurosporine (23%). This can clearly be attributed to the
addition of a bromine group to the aromatic ring system. The strong electron withdrawing
bromine groups decreases the electron density of the ring system and this may increase the

reactivity of the carbonyl carbon.

Synthesis of 3-bromo-4,5-dimethoxybenzaldehyde 6

The commercially available bromovanillin 1 served as the precursor for the synthesis of
6 [63]. It was expected that 1eq of NaH should be enough to deprotonate the hydrogen of the
alcohol at the para position as shown in the reaction mechanism (Scheme 11). However, upon
using leq of NaH and 4eq of Mel the yields of the reaction were always less than 45%. We
therefore decided to increase the amount of NaH to 2eq which increased the yield to 64%.
Further increase in NaH however did not increase the yield of the reaction. The Mel was

prepared prior to this reaction and stored at 0°C.

CHO CHO CHO
_— - o
Br OMe Br OMe Br OMe
A~
O—Hr\IH 0'\_4 OMe
Me |
1 ~ 6

Scheme 11. Mechanism of Methylation
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Synthesis of (3-bromo-4,5-dimethoxy-phenyl)-methanol 7

Compound 7 was synthesized by reduction of 6 with NaBH, in wet THF using reported
literature [63]; however, extension of the reaction time from 5mins to 2 hours and finally to 6
hours increased the yield of the reaction from 46% to 81%. This reaction proceeds by the
transfer of a hydride ion from the metal to the carbonyl carbon on the benzene ring. The

hydride ion therefore acts as the nucleophile as shown in Scheme 12.

Hq /\o) 7N

HC CH,0 H—oOH CH,OH
Nt
- . _ >
Br OMe Br OMe Br OMe
OMe OMe OMe
6 7

Scheme 12. Mechanism of Carbonyl Reduction

Synthesis of 1-bromo-5-chloromethyl-2,3-dimethoxybenzene 8

Compound 8 was synthesized by the chlorination of 7 in to yield 81% of a pale yellow
liquid [64]. Initially we recorded a 51% yield for this reaction after work-up prior to purification
by column chromatography on silica gel. However we recorded a yield of 81% after column
purification on silica gel without a work-up.

This reaction proceeds through an Sy2 intramolecular mechanism with a nucleophilic

attack of phosphorus by oxygen forming the phosphate ester in the process. An intramolecular
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attack of the benzylic carbon by chlorine then liberates the phosphate ester to form compound

8 (Scheme 13).

§

/» PCl, ﬁ (|7"
CH,OH CH,0——FPCl, CH,CI
\_/
_HC1 -OPCl,
Br OMe Br OMe Br OMe
OMe OMe OMe

Scheme 13. Mechanism of Chlorination

Synthesis of 1-bromo-2,3-dimethoxy-5-nitrooxymethylbenzene 9

Nitration of compound 8 with AgNO3 in CH3CN for 24hrs afforded compound 9 in 88%
[65]. Also, there was no work-up prior to purification by column chromatography on silica gel.
The reaction proceeds via an Sy2 mechanism as shown in Scheme 14. This compound was
characterized by 'H and BBC NMR, IR (See experimental procedures for data and Appendix for
spectra.) GCMS analysis was not possible due to the decomposition of the compound in the
GCMS. The -ONO, asymmetric stretching vibration was observed at 1625.99 cm™ in the IR
analysis which well within the literature value range of 1660-1615 cm™ [66]. Also, this

compound is yet to be evaluated for its biological activity.
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H,C——Cl CH,ONO,
-AgCl _
MeO Br MeO Br
OMe OMe
8 9

Scheme 14. Mechanism of Nitration

Inhibition of Cancer Cell Growth

There was a significant reduction in the number of cancer cells after the treatment of
the human prostate cell culture with compounds 2, 3, and 5 (concentration = 100uM). The
reduction in the number of prostate cancer cells by 2, 3, and 5 is similar to the positive control
agent staurosporin. This indicates the efficacy of the compounds in the inhibition of human

prostate cancer cell growth.

Conclusion
The objective of the research has been reached to a large extent with all desired
compounds synthesized in high to moderate yields. Compounds 2, 3, 5, and 9 have been
synthesized in 64%, 70%, 30%, and 88% yields respectively while the biological activity of 2, 3,
and 5 were observed at 22%, 16%, and 35% respectively in the inhibition of prostate cancer cell
growth (concentration = 100uM). It must be emphasize that the biological activity of compound

9 was not available at the time of writing this report and this was solely due to time constraint.
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From the results obtained it can be concluded that compounds 2, 3, and 5 are effective
in the prevention of prostate cancer cell growth. However, compound 5 is the best among the

three compounds.
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CHAPTER 3

EXPERIMENTAL

General Methods

All commercial reagents were used without further purification unless otherwise stated.
All proton (*H) and carbon (**C) NMR spectra were recorded on JEOL-NMR Eclipse spectrometer
operating at 400MHz and 100MHz for proton and carbon nuclei respectively. Spectra were
acquired in CDCl3 unless otherwise stated. Chemical shifts were recorded as delta values in
parts per million (ppm) relative to TMS. The multiplicity of signals is reported as follows: s,
singlet; d, doublet. Mass spectral analysis was carried out using a Shimadzu GCMS-QP2010 Plus
instrument and Infrared spectra were obtained using the Shimadzu IRPrestige-21 FTIR (Fourier
Tranformer Infrared Spectrophotometer)

Thin layer chromatography (TLC) was performed with silica gel plate and visualized
under a UV fluorescent indicator and column chromatography was carried out on silica gel. All
melting points were recorded on Cambridge MEL-TEMP instrument and were not corrected.
DMF and THF were distilled over CaH, and Na respectively.

Non aqueous extracts were dried with MgSO4 before evaporation in the fume hood and
also all organic solvents were evaporated in the fume hood after purification by flash column

chromatography unless otherwise stated.
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Experimental Procedures

Synthesis of 3-Bromo-4,5-dihydroxybenzaldehyde 2

CHO

Br OH

OH

To a stirred solution of 3-Bromo-4-hydroxy-5-methoxy-benzaldehyde 1 (2.0 g, 8.66
mmol) in chloroform (20mL) cooled in a water bath (5-10 °C), was added AICl; (1.6 g, 12.1
mmol) followed by dropwise addition of pyridine (3.0 mL). The resulting solution was refluxed
gently with stirring for 24 hours. The dark solution was then concentrated in vacuo and to the
cooled residue was added 3 M HCI till the reaction mixture was acidic. The solid was separated
by suction filteration and washed with acid to give after recystallization in aqueous EtOH, 1.21 g
(64% yield) of the 3-Bromo-4,5-dihydroxy-benzaldehyde, mp 229-231 °C, lit. mp 230-232 °C
[60]. *H NMR (DMSO-Dg 400 MHz, ppm) & 10.49 (2H, br s, OH); 9.69 (1H, s, CHO); 7.57 (1H, d, J =
1.84 MHz, ArH-1); 7.24 (1H, d, J = 1.80 MHz, ArH-2). *C NMR (DMSO-Dg 100 MHz, ppm ) &

191.09, 149.89, 147.07, 129.57, 127.93, 113.29, and 109.98.
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Synthesis of 3-Bromo-5-(tert-butyl-dimethyl-silanyloxy)-4-hydroxybenzaldehyde 3

CHO

Br OTBS

OH

To a stirred solution of 2 (0.355 g, 1.64 mmol) in CH,Cl, (10 mL) was added imidazole
(0.17 g, 2.46 mmol) followed by TBSCI (0.29 g, 1.97 mmol). The resulting solution was stirred for
6 hours at room temperature. Water was then added to terminate the reaction and the mixture
was extracted with CH,Cl, (2 x 10 mL) and dried with MgSQ,4. The solvents were removed by
evaporation in the fume hood and purification was done by flash chromatography on a column
of silica gel using 3-5% EtOAc in hexane as eluent to afford 3 as a pure white solid (0.38 g, 70%)
mp 96-99 °C. IR (KBr) vmax 3181, 2927, 2861, 1680, 1570, 1500, 1439, 1321, 1255, 1229, 1093,
892 and 782 cm™. 'H NMR (CDCl5 400 MHz, ppm) § 9.74 (1H, s, CHO); § 7.64 (1H, d, J = 1.80
MHz, ArH-2); 6 7.28 (1H, d, J = 1.48 MHz, ArH-6); 6 6.32 (1H, s, OH); 6 1.02 (9H, s, C-(Me)s); 6
0.31 (6H, s, Si-(Me),). *C NMR (CDCl5 100 MHz, ppm) & 189.61, 150.79, 143.77, 130.04, 129.82,

116.03, 108.81, 25.71, 18.31 and -4.28. GCMS (m/z) 274, 273, 166,
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Synthesis of 2,3-Dibromo-4,5-dihydroxybenzaldehyde 5 - route 1

CHO

Br:

Br OH

OH

To a stirred solution of 4 (0.5 g, 1.6 mmol) in chloroform (10mL) cooled in a water bath
(5-10 °C), was added AICI3 (0.32 g, 2.24 mmol) followed by dropwise addition of pyridine 4.5 eq
(0.58 mL). The resulting solution was refluxed gently with stirring for 24 hours. The dark
solution was then concentrated in vacuo and to the cooled residue was added 3 M HCI till the
reaction mixture was acidic. The solid was separated by suction filteration and washed with
acid to give after recystallization in aqueous EtOH, 0.31 g (63% vyield) of the 2,3-Dibromo-4,5-
dihydroxy-benzaldehyde 5, mp 196-200 °C, lit. mp 204-206 °C [57]. *H NMR (DMSO-D¢ 400
MHz, ppm) & 10.02 (1H, s, CHO); 7.31 (1H, s, ArH). 3C NMR (DMSO-D6 100 MHz, ppm) & 191.54,

151.43, 145.88, 126.93, 120.69, 114.46 and 114.21. GCMS (m/z) 295, 293, 215.

Synthesis of 2,3-Dibromo-4,5-dihydroxybenzaldehyde 5 - route 2

Bromine (0.5 mL, 10.5 mmol) was added dropwise to a stirring and gently refluxing
solution of 2 (0.93 g, 4.28 mmol) in chloroform (10 mL). The mixture was stirred under gently
reflux for 24 hours after which 10 mL of chloroform was added. The solid that was formed was
collected and recystallize in EtOAc to afford 0.38 g of compound 5 (31% yield). mp 199-203 °C,

lit. mp 204-206 °C [57]. MS (m/z) 295, 293, 265, 215, 187, 159, 131 and 107. *H NMR (DMSO-Ds
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400 MHz, ppm) & 10.11 (1H, s, CHO); 7.60 (1H, s, ArH). **C NMR (DMSO-D6 100 MHz, ppm) &

189.13, 149.17, 143.77, 126.88, 125.42, 113.86 and 109.13. GCMS (m/z) 295, 293, 215.

Preparation of Methyl lodode

MeOH (5 mL, 125 mmol) was added to HI (28 mL) and refluxed for 2 hours in an oil bath
at 120°C. The Mel produced was collected in an ice bath at 0°C and dried over CaH; to yield 5.8

mL (75%) of pure Mel; *H NMR (CDCl; 400 MHz, ppm) & 2.18 (3H, s, Me).

Synthesis of 3-bromo-4,5-dimethoxybenzaldehyde 6

CHO

Br OMe

OMe

To a stirred solution of 3-Bromo-4-hydroxy-5-methoxy-benzaldehyde 1 (1.0 g, 4.33
mmol) in DMF (10 mL) was added NaH (0.21 g, 8.65 mmol) in small portions over 15 minutes.
Mel (1.5 mL, 24 mmol) was added after 15 minutes and the resulting solution was stirred for 16
hours at room temperature. The reaction was terminated by the addition of H,0 and the
mixture was extracted with hexane (3 x 10mL) and dried with MgSO, . The solvents were
removed by evaporation in the fume hood and purification was done by flash chromatography
on a column of silica gel using 4% EtOAc in hexane as eluent to afford 0.68 g Of compound 6
(64%) as a pure white solid, mp 50-53 °C, lit. mp 51-53 °C [62]. *H NMR (DMSO-D¢ 400 MHz,

ppm) 6 9.88 (1H, s, CHO); 7.78 (1H, d, J = 3.32 MHz, ArH-2); 7.54 (1H, d, J = 1.84 MHz, ArH-6);
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3.88 (3H, s, OMe); 3.84 (3H, s, OMe). *C NMR (CDCl5 100 MHz, ppm) 6 189.99, 154.27, 151.88,

133.12, 128.90, 110.12, 60.93 and 56.33.

Synthesis of (3-bromo-4,5-dimethoxy-phenyl)-methanol 7

CH,OH

Br OMe

OMe

To a stirred solution of 6 (0.52 g, 2.0 mmol) in THF-H,0 (9.7 : 0.3 mL), NaBH,4 (0.075 g,
2.0 mmol) was added. The resulting solution was stirred 6 hours at room temperature. Progress
of the reaction was monitored by TLC. After completion of the reaction, 10 mL distilled water
was added to quench the reaction. The mixture was extracted with EtOAc (3 x 10 mL) and the
solvents were removed by evaporation in the fume hood and purification was done by flash
chromatography on a column of silica gel using 10-20% EtOAc in hexane as eluent to afford
compound 7 as a colorless liquid (0.423 g, 81%). IR (KBr) vimax 3394.72, 2937.59, 1597.06,
1568.16, 1489.05, 1462.04, 1411.89, 1273.02, 1232.51, 1138.0, 1039.63, 999.13, 840.96, 813.96
771.53 665.44 and 445.56 cm™. *H NMR (CDCl; 400 MHz, ppm) & 7.02 (1H, d, J = 1.84 MHz, ArH-
1); 6.80 (1H, d, J = 1.84 MHz, ArH-6); 4.52 (2H, s, CH,); 3.80 (3H, s, OMe); 3.77 (3H, s, OMe);
2.69 (1H, s, OH). *C NMR (CDCl5 100 MHz, ppm) 6 153.80, 145.69, 138.21, 122.92, 117.60,

110.26, 64.53, 60.68, and 56.12.
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Synthesis of 1-bromo-5-chloromethyl-2,3-dimethoxybenzene 8

CH,CI

Br OMe

OMe

To a stirred solution of 7 (0.52 g, 2.1 mmol) in CH,Cl;, (5 mL) cooled in a water bath (0-
5°C) was added PCl5 (0.42 g, 2.0 mmol). The resultant solution was stirred for 15 minutes and
the progress of the reaction was monitored by TLC. Flash chromatography on a column of silica
gel using 10-20% EtOAc in hexane as eluent was carried out after completion of the reaction to
afford compound 8 as a pale yellow liquid (0.456 g, 81%). IR (KBr) vimax 1597.06, 1568.13,
1489.05, 1411.89, 1309.67, 1276.88, 1234.44, 1139.33, 1045.42, 997.2, 815.89, 707.88, and
623.01 cm™ 'H NMR (CDCl3) 6 7.15 (1H, d, J = 1.84 MHz, ArH-2); 6.87 (1H, d, J = 0.76 MHz, ArH-
6); 4.49 (2H, d, J = 0.76 MHz, CH2); 3.86 (6H, d, J = 1.74MHz, 20Me). *C NMR (CDCl; 100 MHz,

ppm) 6 153.86, 146.64, 134.48, 124.86, 117.66, 112.01, 60.72, 56.22, and 45.55.
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Synthesis of 1-bromo-2,3-dimethoxy-5-nitrooxymethylbenzene 9

CH,ONO,

Br OMe

OMe

To a stirred solution of 8 (0.5 g, 1.88 mmol) in CH3CN (5 mL) was added AgNOs (0.5 g).

The resultant solution was stirred for 24 hours. Flash chromatography on a column of silica gel
using 3% EtOAc in hexane as eluent was carried out after completion of the reaction without
any work up to afford compound 9 as a pale yellow liquid (0.484 g, 88%). IR (KBr) vinax 1625.99,
1570.06, 1489.05, 1462.04, 1415.75, 1311.59, 1274.95, 1238.30, 1143.79, 1045.42, 997.20,
925.83, 846.75, 819.75, 754.17, 705.95, and 634.58 cm™. *H NMR (CDCl3 400 MHz, ppm) 6 7.17
(1H, d, J = 1.88 MHz, ArH-2); 6.86 (1H, d, J = 1.84 MHz, ArH-6); 5.32 (2H, d, J = 1.8 MHz, CH,);
3.86 (6H, d, /= 5.48 MHz, 20Me). B3C NMR (CDCl3 100 MHz, ppm) 6 154.00, 147.51, 129.26,

125.57,117.97, 112.29, 73.84, 60.71, and 56.27.

48



Biological Activity

The prostate cancer cell line (LNCaP) was purchase from the American Type Tissue
Collection (ATCC; Manassas, VA). Cells were cultured in RPMI-1640 with phenol red (Invtrogen
Corporation, Grand Island, NY) medium containing 10% fetal calf serum (FBS) (Invitrogen
Corporation, Grand Island NY) and antibiotics (50 Ul penicillin, 50ug/mL streptomycin) (Sigma
Chemical Co., St. Louis, MO) at 37°C and 5% CO,. For the negative control group, only medium
(buffer) was added to the cells. For the positive control group, the cells were treated with
staurosporine (0.5uM, Sigma Chemical Co., St. Louis, MO). For the NCX 4040 treating group, the
cells were treated with NCX 4040 (20uM)

The synthesized marine chemicals and derivatives were tested for their efficacy in
inhibition of the growth of the human prostate cancer cell line LNCaP [67-70]. In this assay, the
medium (buffer only) was used as a negative control and a known apoptosis inducing drug,
staurosporine (0.5uM), was used as a positive control. The inhibiting effect of NCX 4040 on
human prostate cancer cell (LNCaP) growth was then determined based on the cell numbers

before and after the treatment with the drugs (concentration = 100uM).
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APPENDIX C. *H NMR Spectrum of Compound 3 in CDCls
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APPENDIX E. IR Spectrum of Compound 3
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APPENDIX F. GCMS Spectrum of Compound 3 in acetone
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CHO
Br
Br OH
OH
5
21
- (4
i
3_
i_
3
i
=& |
|
g |r 3 E |||'|‘| é
a{l Al g _:’l t\, ~£5‘1\_._,_M.,
o irz:.t‘).r.fm '11!;0"” "Tﬁ?'_vﬁ-&;" T80 I_‘wl.":\,‘ 70 & 50 40 '.I" 0 A 28 10 T -14 =24
i 7 REEE :

X : parts per Mitkioe : 1H

60



{Hilbions)

10.0 11IJJ BI.O 13].0 14].0 1.51-0 150 l‘l-'l‘lJ 18|,0 19.0 200

O L& 20 30 40 S50 &0 TD B0 90
1 | | I P T WA

APPENDIX H. 1H NMR Spectrum of Compound 5 in DMSO-d¢ - route 2

CHO

Br.

Br OH
OH
5

- e e R e ST
120 1.0 IIKH 9.0 80

T s ey e et S ; .
7.0 6.0 50 40 30 20 e 0

X : parts per Million : 1H

61



(Millions)

120 130

110

0 30 4.0 50 60 7.0 8.0 2.0

Lo

APPENDIX I. 13C NMR Spectrum of Compound 5 in DMSO-ds

CHO

Br

Br OH
OH
5

2200 2100 2008 1900 1800 1700 1600  1S0.0 140D IJGJI 1200 1100 1000 900 B0 ?‘..0 0.0 S0 l?((l 30.0 200
il AN\

&

150.8517
144.8107
1153243
1100862 ——

126.6035
126.0147

a
=
b |
&
X : parts per Million : 13C

62

100

o

=10.0

200



APPENDIX ]J. GCMS Spectrum of Compound 5 in acetone
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APPENDIX K. 1H NMR Spectrum of Mel in CDCI3
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APPENDIX L. 1H NMR Spectrum of Compound 6 in CDCl3
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APPENDIX M. 13C NMR Spectrum of Compound 6 in CDCl3
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APPENDIX 0. 13C NMR Spectrum of Compound 7 in CDCl3
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APPENDIX P. IR Spectrum of Compound 7
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APPENDIX Q. 1H NMR Spectrum of Compound 8 in CDCI3
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APPENDIX S. IR Spectrum of Compound 8
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APPENDIX T. 1H NMR Spectrum of Compound 9 in CDCl3
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APPENDIX V. IR Spectrum of Compound 9
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