SCHOOL of GRADUATE STUDIES

Computational Investigation of Spin Traps Using Hybrid Solvation Models.

Sai Sriharsha Manoj Konda
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd
Part of the Analytical Chemistry Commons

Recommended Citation

Konda, Sai Sriharsha Manoj, "Computational Investigation of Spin Traps Using Hybrid Solvation Models." (2009). Electronic Theses and Dissertations. Paper 1801. https://dc.etsu.edu/etd/1801

A thesis
presented to the faculty of the Department of Chemistry
East Tennessee State University
In partial fulfillment of the requirements for the degree Master of Science in Chemistry

by
Sai Sriharsha Manoj Konda
August 2009

Dr. Scott Kirkby, Chair
Dr. Jeffery Wardeska
Dr. David Young
Dr. David Close

Keywords: Spin traps, Solvation Models, COSMO, PBN, DMPO

ABSTRACT
Computational Investigation of Spin Traps Using Hybrid Solvation Models
by
Sai Sriharsha Manoj Konda

The cyclic nitrone 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), and the lesser known linear phenyl-N-tert-butylnitrone (PBN) and its phosphorylated analogues have been used as spin traps for the investigation of free radicals in biological systems. Theoretical work on these molecules suggests that there are important differences in their properties between biological systems and isolated molecules in the gas phase, most likely resulting from intra and intermolecular hydrogen bonding. Most dielectric solvation models such as the polarized continuum model and COSMO are incapable of direct determination of solvent-spin trap chemical interactions. To examine this, hybrid models incorporating COSMO for long range effects and discrete solvent molecules for short range effects, at the DFT/B3LYP/6-31G* level of theory, have been used to study the stabilization and alteration of the spin trap molecules properties in protic and aprotic polar solvents. The hybrid models have been successfully implemented to support the prominent role played by hydrogen bonding interactions in the stabilization of spin traps.

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my thesis advisor Dr. Scott Kirkby for his continuous support and encouragement for my research. I could not have asked for a more experienced and patient advisor and mentor for my thesis. I also would like to thank my thesis committee, Dr. Jeffery Wardeska, Dr. David Young, and Dr. David Close. Funding, in part, was provided by School of Graduate Studies Research Grant program. Sincere thanks to my parents for their continuous support and advice. Special thanks to my colleagues, faculty and staff of the Chemistry Department at ETSU, for their unending support and motivation.

CONTENTS

Page

ABSTRACT 2
ACKNOWLEDGMENTS 3
LIST OF TABLES 8
LIST OF FIGURES 10
Chapter

1. INTRODUCTION 11
Generation of Hydroxyl radicals 12
Fenton reaction. 12
Photolysis 12
Potassium Peroxynitrite 13
Reactions of Hydroxyl radicals 13
Electron Transfer 13
Hydrogen Abstraction 14
Addition Reactions 15
Addition Reactions with Aromatic compounds 16
Detection of Radicals 17
Electron Paramagnetic Resonance 18
Hyperfine Coupling 22
Spin-trapping 23
History and Development 23
ESR Spectroscopy and Spin Trapping 25
Spin Trap Stabilities 26
C-Nitroso Spin Traps 26
Dimerization 26
Photochemical Degradation 27
Redox Reactions 27
Dissociative α-cleavage 28
Nitrones 29
Dimerization 30
Disproportionation 30
Dissociative α-cleavage 31
Addition reactions 32
Decomposition 33
Phosphorylated Nitrones 36
Applications of Spin Traps 37
2. QUANTUM MECHANICS 38
Schrödinger Equation 38
Approximations 45
The Born-Oppenheimer Approximation 45
Hartree-Fock Theory 47
Hartree's Procedure 49
Density Functional Theory 60
Hohenberg-Kohn Theorem 61
Kohn-Sham Method 63
Solvation 67
Poisson Equation 68
Self-Consistent-Reaction-Field (SCRF) Models 69
Born-Kirkwood-Onsager Method 69
Gibbs Energy of Solvation 72
Electrostatic Contribution 74
Cavitation Contribution 74
Dispersion-repulsion Contribution 76
Molecular Motion 77
Classic Continuum-Solvent Methods 77
Solvent Accessible Surface Area 77
Generalized Born Model 78
Polarized-Continuum Method (PCM) 78
Conductor-like Solvation Model (COSMO) 80
Atomic Units 80
Basis Sets 81
3. RESULTS AND DISCUSSION 86
Computational Details 86
Input Files 86
Discussion of Results 91
DMPO Solvation Studies 93
PBN Solvation Studies 101
PBN-Me Solvation Studies 114
PPN Solvation Studies 121
Aprotic Studies 128
Conclusion 130
4. FUTURE WORK 131
REFERENCES 133
APPENDICES 141
Appendix A: Single Point Energy Tables 141
Appendix B: Structural Details of DMPO 143
Appendix C: Structural Details of PBN/PBN-OH 145
Appendix D: Structural Details of PBN-Me 149
Appendix E: Structural Details of PPN 152
Appendix F: COSMO Files 155
APPENDIX G: Output Coordinates for the Optimized Spin Traps 160
VITA 166

LIST OF TABLES

Table Page

1. Chemical Nomenclature of the spin traps in this work 24
2. Advantages and disadvantages of DMPO and PBN 35
3. NWChem input file of DMPO 87
4. NWChem input file of DMPO solvation using COSMO model 89
5. Dipole moments of DMPO-type and the PBN-type Spin Traps at the COSMO/B3LYP/6-31G* level 91
6. Geometry changes (trends in bond lengths and bond and bond angles) in DMPO 96
7. Trends in torsion angles in DMPO 98
8. Hydrogen bond lengths in DMPO hybrid model 99
9. Trends in dipole moments for the DMPO spin trap 100
10. Calculated single point energies and dipole moments for the hydroxyl radical, spin trap and two adduct conformers at the B3LYP/6-31G* level 103
11. Geometry changes (trends in bond lengths and bond angles) in $\mathrm{PBN}-\mathrm{OH}$ cis adduct 107
12. Trends in torsion angles for the $\mathrm{PBN}-\mathrm{OH}$ cis adduct 109
13. Hydrogen bond lengths in $\mathrm{PBN}-\mathrm{OH}$ cis adduct 110
14. Geometry changes (trends in bond angles) in PBN-OH trans adduct 111
15. Hydrogen bond lengths in PBN-OH trans adduct 111
16. Torsion angle comparison between cis and trans PBN-OH adducts 112
17. Trends in dipole moment for the $\mathrm{PBN}-\mathrm{OH}$ cis adduct 113
18. Geometry changes (trends in bond angles) in PBN-Me adduct 117
19. Trends in torsion angles for the $\mathrm{PBN}-\mathrm{Me}$ adduct 118
20. Hydrogen bond lengths in PBN-Me cis adduct 119
21. Trends in dipole moment for PBN-Me adduct 120
22. Geometry changes (trends in bond lengths and bond angles)
in PPN spin trap 124
23. Trends in torsion angles for the PPN spin trap 125
24. Hydrogen bond lengths in PPN spin trap 126
25. Trends in dipole moment for PPN spin trap 127
26. Molecular energies of PBN in acetonitrile 129
27. Difference in single point energies of DMPO when surrounded by water molecules 141
28. Difference in single point energies of $\mathrm{PBN}-\mathrm{OH}$ cis adduct when surrounded by water molecules 141
29. Difference in single point energies of PBN-Me adduct when surrounded by water molecules 142
30. Difference in single point energies of PPN
when surrounded by water molecules 142

LIST OF FIGURES

Figure

1. PBN-type and DMPO-type spin traps 18
2. DMPO spin trap 93
3. DMPO spin trap surrounded by water molecules 94
4. Plot of the difference in the single point energy of DMPO as a function of the number of water molecules in the hybrid model 95
5. PBN-OH adduct in the cis conformation with respect to the nitroxide group 101
6. PBN-OH adduct in the trans conformation with respect to the nitroxide group 102
7. Plot of the difference in single point energies of the PBN-OH cis-adduct as a function of the number of water molecules 104
8. PBN-OH cis adduct surrounded by water molecules 105
9. PBN-OH trans adduct surrounded by water molecules 106
10. PBN-Me cis adduct 114
11. PBN-Me cis adduct surrounded by water molecules 115
12. Plot of the difference in single point energies of the PBN-Me adduct as a function of the number of the water molecules 116
13. PPN spin trap 121
14. PPN spin trap surrounded by water molecules 122
15. Plot of the difference in single point energies of PPN as a function of the number of water molecules 123
16. PBN spin trap surrounded by acetonitrile molecules 128

CHAPTER 1

INTRODUCTION

A general definition of the term 'radical' is often defined as a group of atoms having unpaired electrons such as the methyl radical $\left(\mathrm{CH}_{3}{ }^{\circ}\right)$ and the hydroxyl radical $\left(\mathrm{OH}^{*}\right)$. We can however define a 'free radical' as any entity possessing unpaired electrons and capable of independent existence. Free radicals may be broadly classified by the atom on which the unpaired spin is localized. Hence we can have oxygen centered radicals, carbon centered radicals, phosphorous centered radicals, nitrogen centered radicals, etc.. The role of radicals in biological systems may be both deleterious and beneficial. Many undesired processes in biological systems [1, 2] including ionizing radiation damage, aging, and many cancers are believed to be the result of free radicals. Free radicals are also believed to be the precursors for oxidative damage processes like lipid peroxidation, enzyme inactivation, and DNA cleavage.[3, 4] These damaging processes lead to various diseases like ischemic and postischemic reperfusion cell damage (a condition that results in blood flow deprivation of the tissues and organs).[5] The C-centered radicals that are generated during metabolism of certain drugs such as 1, 2disubstituted hydrazines are considered as both carcinogenic and as antitumor agents.[4] Thiyl radicals that are generated as a result of hydrogen abstraction of thiols by C-centered and Ocentered radicals are also considered as prevalent damaging agents.[4] Nitric oxide is an important mediator in processes like neurotransmission, and as a regulator of the superoxide radical ion.[5] The most damaging groups of radicals are the oxygen free radicals (OFR) and reactive oxygen species (ROS). These are considered to be precursors to heart damage, cardiovascular dysfunction, lung damage, oncogenesis, and ischemic injury. The superoxide radical anion undergoes dismutation to generate hydrogen peroxide, a source for the most reactive hydroxyl radical.[5]

Generation of Hydroxyl radicals

Fenton Reaction

In 1894, Fenton observed that many organic molecules react with a mixture of hydrogen peroxide and Fe (II) salts.[6] The reactivity was attributed to the generation of the hydroxyl radical:

$$
\mathrm{Fe}^{2+}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \text { intermediate complex } \longrightarrow \mathrm{Fe}^{3+}+\mathrm{OH}^{+}+\mathrm{OH}^{-}
$$

Other possible reactions are:

$$
\begin{gathered}
\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \text { intermediate complex } \longrightarrow \mathrm{He}^{2+}+\mathrm{O}_{2}^{-}+2 \mathrm{H}^{+} \\
\dot{\mathrm{OH}}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}^{+}+\mathrm{O}_{2}^{-} \\
\mathrm{O}_{2}^{-}+\mathrm{Fe}^{3+} \longrightarrow \mathrm{Fe}^{2+}+\mathrm{O}_{2}^{-} \\
\mathrm{OH}+\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}^{3+}+\mathrm{OH}^{-}
\end{gathered}
$$

In addition to the single-electron reduction of hydrogen peroxide using Fenton's procedure, reduction by other metal ions such as Ti^{3+} also give the hydroxide ion and the hydroxyl radical.[7]

Photolysis

Hydroxyl radicals may be generated by photolysis of hydrogen peroxide or hydroperoxides.[8] The one disadvantage with this method is that the short wavelength (254 nm) used is absorbed by the substrate rather than the peroxide.[9] Hydroxyl radicals may be generated at longer wavelengths ($>300 \mathrm{~nm}$) by the irradiation of phthalimide hydroperoxides, but the efficiency is low.[10]

Potassium Peroxynitrite

Irradiation of potassium nitrate at 254 nm generates a solid solution of potassium peroxynitrite $\left(\mathrm{O}=\mathrm{N}-\mathrm{OO}-\mathrm{K}^{+}\right)$in potassium nitrate. Hydroxyl radicals are generated as a result of the homolysis of peroxynitrous acid when the solid is added to an aqueous solution at pH 7.0 .

Reactions of Hydroxyl Radicals

The hydroxyl radical has a high rate-constant (on the order of $\sim 10^{9} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ [4]) for reaction with a number of species in biological systems. The reactions may be classified as: electron transfer, hydrogen abstraction, and addition reactions.

Electron Transfer

Both inorganic and organic compounds participate in electron transfer reactions with the hydroxyl radicals, e.g.

$$
\begin{gathered}
\mathrm{Cl}^{-}+\mathrm{OH}^{-} \longrightarrow \mathrm{Cl}^{-}+\mathrm{OH}^{-} \\
\mathrm{Cl}^{-}+\mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}^{-}
\end{gathered}
$$

Hydrogen Abstraction

Owing to the high reactivity of the hydroxyl radical, hydrogen abstraction may take place from most organic substrates. The reactivity is much higher than its alkoxy analogues such as the t-butoxy radical. For example, consider the reaction of the hydroxyl radical with alcohols where the radical abstracts the H atom from the alcohol generating water and leaving a free electron on the carbon atom:

$$
\mathrm{CH}_{3} \mathrm{OH}+\mathrm{OH}^{\cdot} \longrightarrow{ }^{\circ} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}
$$

The carbon-centred radical may react further to generate radicals or non-radical species. The intermediate radical may undergo oxidation, reduction, or dimerization reactions that are responsible for the generation of non-radical species.

In the above reactions the alpha hydrogens are more readily abstracted than the beta or the gamma hydrogens.[11] The difference in the $\mathrm{C}-\mathrm{H}$ bond dissociation energies is reflected in the reactivity of the alpha or beta hydrogens that increase as primary $<$ secondary $<$ tertiary.[12] Heteroatoms such as oxygen and nitrogen in the alcohol and amide functionalities facilitate faster abstraction of the alpha hydrogens.[13] The abstraction rate is slower in the presence of electron withdrawing groups such as aldehydes, ketones, and halogens.[13]

Addition Reactions

Hydroxyl radicals also have a high reactivity towards aliphatic unsaturated species and aromatic compounds. The hydroxyl radical reacts with aromatic species through an addition mechanism, and a similar reaction takes place with purine and pyrimidine bases that are the major components of DNA and RNA. The reaction with thymine occurs as follows:

The thymine radical reacts further with oxygen to generate a more reactive thymine peroxyl radical. Hence the hydroxyl radical has damaging consequences for the base pairs in DNA and RNA. The irreversible nature of the damage, if unrepaired, eventually leads to the death of the cell.[14]

The hydroxyvinyl radical is generated upon the reaction with acetylene, and the radical may either be oxidized by cupric ions to give hydroxyacetaldehyde or reduced by ferrous ions to generate acetaldehyde.[14]

Malic acid can be generated by the ferrous ion reduction of the radical intermediate that is obtained by the addition reaction of hydroxyl radical and maleic acid.[15, 16]

Addition reaction with Aromatic compounds

Addition reactions take place with an aromatic compound

Detection of Radicals

The trapping and subsequent characterization of free radicals become very important in order to understand the various biological mechanisms. Because of their high reactivity, and hence short lifetimes, radicals and their reactions often need to be studied by indirect means. The available detection techniques are as follows:

1. Flash photolysis
2. Pulse radiolysis
3. Nuclear Magnetic Resonance
4. Electron Nuclear Double Resonance (ENDOR)
5. Chemically Induced Dynamic Nuclear Polarization (CIDNP)
6. Electron Spin Resonance (ESR)/ Electron Paramagnetic Resonance (EPR)

Of all the techniques listed above, ESR/EPR is the most commonly used. A common drawback with all these techniques is that the lifetime of the radical is often too short to be detected by any of them. Hence the challenge is to generate stable radicals that may be detected. One such route is to react the radical with a molecule that will result in a more stable product (or adduct), but one that still preserves the unpaired spin. Such species are referred to as spin traps.[17]

Spin traps have been used extensively by biochemists [18-21] for their intended purpose, but spin traps with better reactivity and selectivity among the common oxidative radicals are still needed. To improve the selectivity, details of the reaction mechanism must be properly understood so that the relevant structure property relationships may be deduced.

Most current spin traps are based on nitrones and may be divided into two families: the linear or PBN (Phenyl-N-tert-butylnitrone) type and the cyclic or DMPO (5,5-Dimethyl-pyrrolidinium-N-oxide) type.

Figure 1. PBN-type and DMPO-type spin traps.

Electron Paramagnetic Resonance

The primary technique used for the detection of paramagnetic species is Electron Paramagnetic Resonance (EPR) or Electron Spin Resonance (ESR). This branch of spectroscopy is predominantly absorption spectroscopy. The energy absorbed corresponds to the electromagnetic radiation of frequencies that range from 1 megahertz $\left(10^{6} \mathrm{~Hz}\right)$ to several terahertz $\left(10^{12} \mathrm{~Hz}\right)$, although the most common is the X-band at 9.5 GHz .

EPR spectroscopy monitors the absorption of energy when the molecule of interest is irradiated with an electromagnetic field. The electromagnetic field consists of oscillating electric and magnetic fields that are mutually perpendicular to each other. It is the magnetic field component $\left(\mathrm{B}_{0}\right)$ that interacts with the paramagnetic species resulting in the absorption of energy. This absorption can occur only when the 'resonance' condition is met, i.e. when the spacing between the energy levels $\Delta E=h v$ (which is the quanta of radiation). Spin is an inherent property of electrons and nuclei and is an intrinsic angular momentum. Electron spin states are not of equivalent energy in the presence of an external magnetic field, as any moving charge generates a magnetic field of its own. This gives rise to the magnetic moment (μ) generated as a result of the charge and the spin. The relation between the magnetic dipole moment and spin angular momentum S is:

$$
\begin{equation*}
\mu=\gamma S \tag{1-1}
\end{equation*}
$$

where γ is the gyromagnetic ratio. The gyromagnetic ratio of a particle or a system is defined as the ratio of the magnetic moment to its angular momentum. The classical expression for γ is:

$$
\begin{equation*}
\gamma=q / 2 m \tag{1-2}
\end{equation*}
$$

where q and m are the charge and mass of the particle respectively. The electron spin is a pure quantum mechanical phenomenon and does not have a classical mechanical analogue. A dimensionless factor called the g-factor is introduced into the gyromagnetic ratio expression for an isolated electron

$$
\begin{equation*}
\gamma_{e}=-g_{e}\left(e / 2 m_{e}\right) \tag{1-3}
\end{equation*}
$$

The Bohr magneton is a constant defined in SI units as:

$$
\begin{equation*}
\beta=e \hbar / 2 m_{e} \tag{1-4}
\end{equation*}
$$

Hence the magnetogyric ratio may be expressed in terms of the Bohr magneton as:

$$
\begin{equation*}
\gamma_{e}=-\left(2 \pi g_{e} \beta / h\right) \tag{1-5}
\end{equation*}
$$

The magnetic dipole moment may now be expressed as:

$$
\begin{equation*}
\mu=-\left(2 \pi g_{e} \beta / h\right) S \tag{1-6}
\end{equation*}
$$

The Uncertainty Principle states that only a single Cartesian component may be well defined and that it can have only one of the two possible values. If we consider the component of S along the z-axis then,

$$
\begin{equation*}
S_{z}=\left(\hbar / M_{s}\right) \tag{1-7}
\end{equation*}
$$

where $M_{s}= \pm 1 / 2, M_{s}$ is called the spin quantum number. Substitution of this result in Equation 1-6 gives an expression for magnetic dipole moment as:

$$
\begin{equation*}
\mu=-g_{e} \beta M_{s} \tag{1-8}
\end{equation*}
$$

The energy of interaction of the magnetic dipole moment with the external magnetic field is given as:

$$
\begin{equation*}
E=-\mu . B \tag{1-9}
\end{equation*}
$$

Hence the energy separation between the spin states may be written as:

$$
\begin{equation*}
\Delta E=g_{e} \beta B M_{s}= \pm g_{e} \beta B \tag{1-10}
\end{equation*}
$$

This electronic energy is designated as the Zeeman interaction after Peter Zeeman who discovered the effects of magnetic fields on atomic spectra. In the presence of the external magnetic field, the electronic spin aligns itself in a parallel or anti-parallel configuration. The ground state corresponds to the parallel configuration and the energy separation between these configurations is given by the above expression. The spectrum is generated by varying the magnetic field and the transition occurs when the resonance condition is met. The electron present in the ground state absorbs this energy resulting in a transition to the higher level. The available energy states are described by a matrix energy function called the spin Hamiltonian. The various energy levels may be derived from this matrix. The Zeeman Hamiltonian expression can be written as

$$
\begin{equation*}
H_{z}=g_{e} \beta S_{z} B_{0} \tag{1-11}
\end{equation*}
$$

where the applied magnetic field is directed along the z-direction. The spin Hamiltonian is given as:

$$
\begin{equation*}
H=H_{e l e c t}+H_{c f}+H_{L S}+H_{S S}+H_{z e e}+H_{h f s}+H_{Q}+H_{N} \tag{1-12}
\end{equation*}
$$

where the terms are given below along with the approximate magnitude:

$$
\begin{aligned}
& \mathcal{H}_{e f e c t}=\text { electronic energy } \sim 10^{4}-10^{5} \mathrm{~cm}^{-1} \\
& \mathcal{H}_{c f}=\text { crystal field energy } \sim 10^{3}-10^{4} \mathrm{~cm}^{-1} \\
& \mathcal{H}_{\mathcal{L S}}=\text { spin-orbit interaction } \sim 10^{2} \mathrm{~cm}^{-1} \\
& \mathcal{H}_{S S}=\text { spin-spin interaction } \sim 0-1 \mathrm{~cm}^{-1} \\
& \mathcal{H}_{Z e e}=\text { Zeeman energy } \sim 0-1 \mathrm{~cm}^{-1} \\
& \mathcal{H}_{h f s}=\text { hyperfine structure } \sim 0-10^{2} \mathrm{~cm}^{-1} \\
& \mathcal{H}_{Q}=\text { quadrapole energy } \sim 0-10^{2} \mathrm{~cm}^{-1} \\
& \mathcal{H}_{\mathscr{N}}=\text { nuclear spin energy } \sim 0-10^{3} \mathrm{~cm}^{-1}
\end{aligned}
$$

The statistical distribution of the paramagnetic species is given by the Boltzmann distribution that gives the ratio of the number of electrons in the upper and lower levels.

$$
\begin{equation*}
N_{\text {upper }} / N_{\text {lower }}=\exp [-h v / k T] \tag{1-13}
\end{equation*}
$$

where h is the Planck's constant and k is the Boltzmann constant. The ratio at room temperature indicates that the higher energy state has a lower population as compared to the ground state and hence we observe a net absorption of energy.

Hyperfine Coupling

The unpaired electron is influenced by the magnetic field of neighboring spin systems such as a nucleus with spin. As a consequence, the net field experienced by the electron is slightly greater than or smaller than the field it would have experienced in the absence of the neighboring spin system. The change is dependent on the direction of the perturbing additional field. For an applied field of B_{0} and a perturbing field of δB, resonance now occurs at $B_{I}=B-$ δB and $B_{2}=B+\delta B$. The spacing between the two lines is defined as the coupling constant. As the original lines are now split, the spacing between the lines is also known as the splitting constant. The splitting constant in other words indicates the degree of interaction of the unpaired electron with the spin system. The unpaired electron can experience a field generated by two different types of nuclei: equivalent and non-equivalent nuclei. For the n equivalent nuclei with a net spin of $n \mathrm{I}$, the total number of lines are predicted to be $2 n \mathrm{I}+1$. For non-equivalent nuclei the number of lines will be given by the product of individual sets of nuclei: $\left(2 n_{1} \mathrm{I}_{1}+1\right) *\left(2 n_{2} \mathrm{I}_{2}+\right.$ 1)....where n_{1}, n_{2} are the number of nuclei with spins I_{1} and I_{2} respectively. Historically the splitting of lines observed due to the interaction of unpaired electrons is termed as fine splitting. The pattern obtained from the interaction of unpaired electrons with nuclear spins is termed hyperfine splitting, and the pattern obtained from the interaction of unpaired electrons with nonbonded nuclei is termed as super-hyperfine splitting.

The predominant mechanisms by which the electrons and nuclei interact are:
a) Fermi-contact interaction: applicable to isotropic interactions and the spectra is independent of the sample orientation in the applied magnetic field.
b) Dipolar interaction: applicable to anisotropic interactions and the spectra is dependent on the sample orientation.
c) Spin polarization: applicable for $л$ - electron rich radicals such as aromatic radicals.

Spin-trapping

The term spin trapping refers to the method of detecting radicals wherein an addition reaction occurs between an unsaturated compound and a radical resulting in the generation of another radical with a longer lifetime. The most commonly used unsaturated compounds for spin trapping are C-nitroso and nitrones. The resultant species are aminoxyl or nitroxide radicals and are more stable than the parent radicals and may be detected by ESR spectroscopy.

Nitrone
Nitroxide radical

The C-nitroso and the nitrone compounds are known as spin traps, and the addition products are designated as spin adducts.

History and Development

The idea of spin traps originated with two papers by Iwamura and Inamoto where they reported the addition of cyano radicals to PBN generating a stable nitroxide.[22, 23]

The first proposal for the use of the above addition reaction for free radical detection was given by Janzen and Blackburn [17, 24, 25] for nitrones and by Lagercrantz [26, 27] and Perkins [28] for C-nitroso compounds. Leaver and Ramsey [29] investigated the hydrogen abstraction in the photolysis of benzophenone by using the addition reaction of radicals to 2-methyl-2nitrosopropane. Terabe and Konaka [30] used nitrosobenzene for the detection of radicals generated in nickel peroxide oxidation of hydrocarbons. Studies indicated that both nitrones and nitroso compounds were capable of trapping C-centered radicals.[31] Nitrogen-centered radicals are also trapped to give stable adducts.[32] Oxygen-centered radicals form unstable adducts with nitroso compounds but readily form stable adducts with nitrones.[33] Sulfur radicals form unstable adducts with both nitrones and nitroso compounds.[34] Phosphorus-centered radicals are readily trapped by both species of spin traps.[35] The chemical nomenclature employed in naming the spin traps is as follows (see Table 1):

Table 1. Chemical Nomenclature of the spin traps in this work.

Acronym	Formal Name
DMPO	2,2-Dimethyl-pyrrolidinium-N-oxide
DMPO-OH	2,2-Dimethyl-5-hydroxylpyrrolidine-N-oxide
PBN	Hydroxy-phenyl-N-tert-butylnitrone
PBN-OH	Methyl-phenyl-N-tert-butylnitrone
PBN-Me	N-benzylidene-1-diethoxyphosphoryl-1- methylethylamine N-oxide
PPN	

ESR Spectroscopy and Spin Trapping

The common nomenclature employed in labeling the positions of the nuclei in the aminoxyl function is as follows

The structural characterization of the radical trapped may be deduced from the spectra. The salient features employed in characterization are as follows

1. Splitting pattern
2. Nitrogen and other nuclear hyperfine splitting constants
3. Line-widths of the individual lines
4. g-value

The ESR spectra of C-nitroso spin traps are more easily interpreted than the nitrones as the radical is directly bound to the aminoxyl group. This generates a characteristic pattern specific to the radical attached to the nitrogen atom.

1:3:3:1 quartets

1:2:1 triplets

1:1 doublets

In addition, the spacing between the lines (isotropic hyperfine splitting constant (hfsc)) is also characteristic for the kind of radical trapped. If the aminoxyl nitrogen is ${ }^{14} \mathrm{~N}$, the unpaired spin interacts with the nitrogen nucleus to give three nondegenerate energy levels due to hyperfine coupling. These energy levels are further split due to the interaction with the β hydrogen nucleus. The magnitude of the ${ }^{14} \mathrm{~N}$-hfsc varies with the spin density and the planarity about the nitrogen atom. The g-value increases for electrons localized on atoms having higher
atomic numbers. Hence the g-value varies with the nature of the neighboring groups being either electron-withdrawing or electron-donating. In the case of nitrones, the free radical is bound in the β-position. In the presence of additional nuclei with non zero spins, the β-hfsc will provide additional information. Hence we have an additional set of unique parameters for identification of the radicals.

Spin Trap Stabilities

C-nitroso Spin Traps

Dimerization. The C -nitroso spin trap adducts are susceptible to dimerization as is evident in the case of 2-methyl-2-nitrosopropane (MNP).[36]

The C-nitroso aromatic spin trap adducts are more stable and tend to dimerize less. The more common nitroso aromatic compounds are as follows:

Nitroso benzene

Nitroso durene

Pentamethyl nitrosobenzene

Photochemical Degradation. One of the major side reactions in using acyclic nitroso spin traps is their photo dissociation leading to the generation of NO radicals.

The NO radicals are trapped by the nitroso spin trap present in high concentration to generate extremely stable aminoxyls. This generates a false positive as the aminoxyls are ESR active. The aromatic nitroso spin traps are less sensitive to photolysis. The structure of the nitrosoalkane often dictates the $\lambda_{\max }$ of the reaction. For example, the photolysis of nitrosobenzene takes place in the ultraviolet range, $320-360 \mathrm{~nm}$, [37] where as the photolysis of MNP (2-methyl-2nitrosopropane) occurs at longer wavelengths, around 680 nm .[38] Hence the experimental conditions change according to the spin trap employed for trapping radicals.

Redox Reactions. The reactions of the nitroso spin traps in biological systems are restricted because of a series of redox reactions.

Studies on MNP have indicated a reduction to hydroxylamine, [39] and further oxidation by superoxide radical anion yielding hydronitroxide.[39]

In the biological system, aromatic nitroso spin traps are oxidized by peroxidases to iminoxyls. For example, 1-nitroso-2-naphthol is oxidized as [40]

Dissociative α-cleavage. Spin traps are stabilized by the presence of bulky groups on the nitroxyl carbon. The bulky groups can however initiate dissociation reactions which reduce the lifetime of the adducts. For example, MNP dissociates to give trimethyl radical.[41]

In conclusion, C-nitroso spin traps are toxic, carcinogenic, or mutagenic, due to which they are rarely employed for in-vivo studies.[42-45].

Nitrones

The most stable nitrones are the five and six carbon atom systems.

5,5- Dimethyl-pyrrolidinium-N-oxide

The instability of the smaller nitrone systems is reflected in the case of N-tert-Butyl nitrone. It rearranges on standing to N -tert-butyl formamide.

The stability of the spin trap is improved by attaching a tert-butyl or aryl group to the carbon atom adjacent to the nitrone functionality.

C-phenyl N-tert-butyl nitrone

C-tert-butyl-N-tert-butyl nitrone

Dimerization. A loss of ESR signals for the nitrones at low temperatures is attributed to the dimerization of alkyl aryl nitrones.[46]

Intermolecular H-bonding can also facilitate dimerization in nitrones possessing heteroatoms. In the case of DMPO the dimerization occurs as [47, 48]

Disproportionation. Dimerization may sometimes lead to disproportionation.[49-51] Disproportionation is often induced by the presence of β - hydrogen.

The extent of disproportionation depends on the proximity of the aminoxyls. The reactivity may be related to the dihedral angle of the β-hydrogen bond. The smaller the dihedral angle, the greater are the hyperfine splitting constants; however, there is also a greater probability of disproportionation.

Dissociative α-cleavage. PBN spin adducts suffer from these types of reactions. The possible dissociative reactions are as follows:

Addition Reactions. Hydride abstraction may occur in nitrones to generate stable carbanions. Intermolecular addition reactions can occur in air to generate the nitroxide triplet.[52]

Enolization of the DMPO may lead to dimerization that generates a paramagnetic species that can contaminate the aqueous solution of the spin trap.[52]

Decomposition. One of the common pathways for the decomposition of the alkylperoxyl adduct of DMPO is the rearrangement to DMPOX (2-alkylperoxyl-5,5-dimethyl-pyrrolidone-(2)oxyl).[53, 54]

Similar decomposition reactions occur for the linear nitrone PBN-OOR yielding PBNOX (benzoyl tert- butyl aminoxyl radical).[55, 56]

Superoxide radical ion is trapped by DMPO to yield the DMPO-OOH radical adduct. [57-59] However reports have suggested a decomposition of the DMPO-OOH to DMPO-OH. [60, 61] Based on the mechanism proposed by Finkelstein, et al., DMPO-OOH rearranges to yield 4-methyl-4-nitrosopentanal and OH radical.[62]

The rearrangement reaction is facilitated by the presence of good leaving groups as is the case with TFDMPO-OH (hydroxyl adduct of trifluoro-5,5-dimethyl pyrrolidinium-N-oxide) [63]

In the case of acyclic nitrones, the decomposition rate depends on the nature of the substituent on the aromatic ring. Electron donating groups increase the rate of decomposition. In contrast, electron withdrawing groups hinder the decay process.[64, 65]

The advantages and disadvantages of the linear nitrone PBN, and the cyclic nitrone DMPO can be summarized as follows (see Table 2):

Table 2. Advantages and disadvantages of DMPO and PBN.[65]

Spin Trap	Advantages	Disadvantages
	1. Solid at room temperature and hence relatively stable. 2. Longer lifetimes for the spin adducts.	1. Less definitive spectrum (cannot distinguish between OH and OOH radical adducts). 2. Lower rate constant of spin trapping
DMPO	1. High spectrum sensitivity. 2. Higher rate constants for trapping radicals.	1. Shorter lived spin adducts.

Phosphorylated Nitrones

Aryl or tertiary alkyl nitroso compounds were initially used as scavengers for forming phosphorus substituted nitroxides.[66,67] The resulting nitroxides were either due to an electron transfer mechanism [66] or the result of the homolytic reactivity of the nitric oxide functionality.[67] As a result, the use of nitroso spin traps in organophosphorus reactions can lead to false positive results. The alternative is to use nitrones that do not undergo homolytic dissociation in the presence of organophosphorus compounds. The added advantage is the presence of a β-phosphorus atom that provides additional hyperfine splitting and hence can be used for accurate diagnosis. Reports of phosphorylated DMPO were first published by Tordo et al. in 1978.[68] They have also reported long half-lives for the various β-phosphorylated nitroxides as compared to the cyclic nitroxides. The stability of the spin traps also increases when the atoms adjacent to the radical center are heteroatoms.[69, 70] Reports of phosphorylated PBN nitrone were first published by Tordo et al. in 1995.[71] Reports of phosphorylated analogues like N -benzyl-idene-1-diethoxyphosphoryl-1-methylethylamine N -oxide (PPN), 1-diethoxyphosphoryl-1-methyl-N-[(1-oxidopyridin-1-ium-4-yl)methylidene]ethylamine n-oxide (4-PyOPN) were made for the first time. The authors reported longer half-lives of the radical adducts as compared to PBN , and also reported additional hfsc from the β-phosphorus atom.

PPN

The phosphorylated PBN nitrones were shown to be efficient spin traps for trapping oxyl radicals in polar environments.[72] Theoretical studies describing the spin trapping of superoxide radical by the phosphorylated PBN nitrone were published in 2006.[73] All the above mentioned studies indicate the potential capability of phosphorylated nitrones in spin trapping.

Applications of Spin Traps

Nitrones and nitroxides have been recognized as versatile functional groups with a broad spectrum of applications.

Nitrones

1. Extensively used in 1,3-dipolar cycloaddition reactions for natural product synthesis.[74]
2. Spin trapping radicals for in vivo and in vitro studies.[75]

Nitroxides

1. Widely employed as biophysical probes and contrast agents in magnetic resonance spectroscopy [76]
2. Employed in enantioselective oxidation processes [77]
3. Living radical polymerizations [78]
4. Used as spin labels [79]

Other areas of applications of spin traps can be broadly categorized as

1. Sonolysis [80]
2. Lipid peroxidation studies [81]
3. Smoke toxicity studies [82]
4. Fenton-type reactions [83]
5. In vivo and in vitro enzymatic reactions [84, 85]

CHAPTER 2

QUANTUM MECHANICS

Schrödinger Equation

Classical mechanics is deterministic in nature. This means that we can predict the future state of the classical mechanical system given an exact knowledge of its present state. This concept is very feasible and practicable when we deal with macroscopic particles. However in order to deal with microscopic particles we need a new tool called quantum mechanics. In the early $19^{\text {th }}$ century, phenomena like black body radiation and the photoelectric effect could not be explained by classical mechanics. These phenomena could be successfully explained by quantum mechanics by considering the wave-particle duality of light. The same concept was attributed to matter, and this effect was more pronounced for microscopic particles. Heisenberg came up with his Uncertainty Principle that implied the act of measurement introduced a perturbation in the system being measured. In other words we cannot simultaneously predict the exact position and velocity of a microscopic particle. This is a direct consequence of the wave-particle duality. Hence the basic knowledge required by classical mechanics cannot be obtained for microscopic particles.

Quantum mechanics postulates the existence of a function called the wave function or the state function (Ψ) in order to describe the state of the system. The wave function contains all the possible information about the state of the system. The evolution of the wave function with time is governed by the time-dependent Schrödinger equation:[86-89]

$$
\begin{equation*}
\frac{-\hbar}{i} \frac{\partial \psi(x, t)}{\partial t}=\frac{-\hbar^{2}}{2 m} \nabla^{2} \psi(x, t)+V(x, t) \psi(x, t) \tag{2-1}
\end{equation*}
$$

where m is the mass of the particle, ∇^{2} is the second order differential operator known as the Laplacian operator, and \hbar is the reduced Planck's constant equal to $h / 2 \pi$. The Laplacian operator is given as:

$$
\begin{equation*}
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \tag{2-2}
\end{equation*}
$$

The Schrödinger equation enables us to obtain information about the wave function at a time t given the information about the initial wave function. The probability density for locating the particle at a certain position is given as

$$
\begin{equation*}
|\Psi(x, t)|^{2} d x \tag{2-3}
\end{equation*}
$$

which is the probability of finding the particle at a given time t located between x and $x+d x$. This was proposed by Max Born and is known as Born's postulate.[90] However the simpler time-independent Schrödinger equation is widely employed in quantum mechanics. When the potential energy is independent of time, that is it is a function of distance only, the total energy of the system remains constant and is said to be conserved. Hence the wave function may be separated into spatial and time functions.

$$
\begin{equation*}
\Psi(x, t)=\psi(x) f(t) \tag{2-4}
\end{equation*}
$$

Substituting this expression in Equation 2-1 and differentiating with respect to time gives

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m} f(t) \frac{d^{2} \psi(x, t)}{d x^{2}}+V(x) \psi(x) f(t)=\frac{-\hbar}{i} \frac{d f(t)}{d t} \psi(x) \tag{2-5}
\end{equation*}
$$

dividing both sides by $\Psi(x, t)=\psi(x) f(t)$ gives

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m} \frac{1}{\psi(x)} \frac{d^{2} \psi(x)}{d x^{2}}+V(x) \psi(x)=\frac{-\hbar}{i} \frac{1}{f(t)} \frac{d f(t)}{d t} \tag{2-6}
\end{equation*}
$$

The left hand side of the equation is time independent and the right hand side is position independent. Hence the two terms should be equal to E. Equating the left hand side of the equation to E gives the time-independent Schrödinger equation for a particle of mass m.

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m} \frac{d^{2} \psi(r)}{d r^{2}}+V(r) \psi(r)=E \psi(r) \tag{2-7}
\end{equation*}
$$

The classical-mechanical Hamiltonian function is the total energy expressed in terms of Cartesian coordinates and conjugate momenta. This Hamiltonian function gives an expression for the total energy, which is the sum of potential and kinetic energies. The Hamiltonian function is

$$
\begin{equation*}
H=\frac{p_{x}^{2}}{2 m}+V(x) \tag{2-8}
\end{equation*}
$$

For every physical property there corresponds a quantum mechanical operator. This is a fundamental postulate of quantum mechanics. Hence corresponding to the Hamiltonian function we have the operator:

$$
\begin{equation*}
\hat{H}=\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x) \tag{2-9}
\end{equation*}
$$

The Schrödinger equation is an eigenvalue problem with the wave function being the eigenfunction and the energy being the eigenvalue. The operator corresponding to these eigenvalues and eigenfunctions is known as the Hamiltonian operator.

$$
\begin{equation*}
\hat{H} \psi=E \psi \tag{2-10}
\end{equation*}
$$

The total energy contains contributions from the kinetic energy and potential energy components. The kinetic energy is the sum total of the individual kinetic energies of all the particles constituting the system.

$$
\begin{equation*}
T=\frac{-\hbar^{2}}{2 m} \sum_{n}\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right] \tag{2-11}
\end{equation*}
$$

and the potential energy is the sum of the electrostatic interactions between the particles.

$$
\begin{equation*}
V=\frac{1}{4 \pi \varepsilon_{0}} \sum_{l} \sum_{m<l} \frac{q_{l} q_{m}}{r_{l m}} \tag{2-12}
\end{equation*}
$$

where ε_{0} is the permittivity of free space, $q_{l,}, q_{m}$ are the charges on the $l^{t h}$ and $m^{t h}$ particle separated by a distance $r_{l m}$.

In addition to the orbital angular momentum, the electron also possess an intrinsic angular momentum arising from its spin. This is defined as the spin angular momentum, or simply, spin. The concept of spin is a purely quantum mechanical phenomenon, and does not have any classical-mechanical analogue. In the nonrelativistic picture of quantum mechanics, spin is introduced as an additional hypothesis. The wave function is now dependent upon the spin of the electron apart from the Cartesian coordinates. As an approximation, the Hamiltonian
is considered independent of the spin variables. Hence the state function may now be expressed as a product of the spatial and spin functions.

$$
\begin{equation*}
\Psi\left(x, y, z, m_{s}\right)=\psi(x, y, z) g\left(m_{s}\right) \tag{2-13}
\end{equation*}
$$

where $g\left(m_{s}\right)$ is either one of the spin eigenfunctions denoted as α or β depending on m_{s}, which can take either of the two values, i.e. $+1 / 2$ or $-1 / 2$. The Schrödinger equation can then be expressed as

$$
\begin{equation*}
\hat{H}\left[\psi(x, y, z) g\left(m_{s}\right)\right]=g\left(m_{s}\right) \hat{H}[\psi(x, y, z)]=E\left[\psi(x, y, z) g\left(m_{s}\right)\right] \tag{2-14}
\end{equation*}
$$

The energy of the system is not affected by the introduction of the spin; however the number of possible energy states is doubled. The energy states are now given as $\psi(x, y, z) \alpha$ and $\psi(x, y, z) \beta$. The effect created by the spin can be seen in the degeneracy of the hydrogen-atom energy levels that is $2 n^{2}$ rather than n^{2}.

The Uncertainty Principle [91] imposes a constraint on the identification of the path of a microscopic particle. The restriction imposed on the wave function due to the fundamental indistinguishability is that the wave function for a system of electrons must be antisymmetric with respect to the interchange of any two electrons. The antisymmetric condition means that

$$
\begin{equation*}
\psi\left(q_{1}, q_{2}, q_{3}, q_{4}, \ldots \ldots, q_{n}\right)=-\psi\left(q_{2}, q_{1}, q_{3}, q_{4}, \ldots \ldots, q_{n}\right) \tag{2-15}
\end{equation*}
$$

This postulate is known as the Pauli Principle when applied to a system of electrons.[92] Particles described by antisymmetric wave functions are called fermions (e.g. electrons) and those requiring symmetric wave functions are called bosons (e.g. pions). An application of the Pauli Principle to the helium atom wave function can be described as follows

$$
\begin{equation*}
\psi\left(r_{1}, r_{2}\right)=1 s \alpha\left(r_{1}\right) 1 s \beta\left(r_{2}\right) \tag{2-16}
\end{equation*}
$$

where $1 s \alpha$ and $1 s \beta$ are abbreviated notations for the hydrogen-atom like wave functions with α and β as the respective spin eigenfunctions. The arguments r_{1} and r_{2} denote the coordinate system (x, y, z, σ) of electrons 1 and 2 respectively. The indistinguishability of the electrons gives rise to the equivalent wave function

$$
\begin{equation*}
\psi\left(r_{2}, r_{1}\right)=1 s \alpha\left(r_{2}\right) 1 s \beta\left(r_{1}\right) \tag{2-17}
\end{equation*}
$$

Mathematically, indistinguishability imposes the condition of linear combination of all possible configurations. For the helium atom, the wave function can now be written as:

$$
\begin{align*}
& \Psi_{1}=\psi\left(r_{1}, r_{2}\right)+\psi\left(r_{2}, r_{1}\right)=1 s \alpha\left(r_{1}\right) 1 s \beta\left(r_{2}\right)+1 s \alpha\left(r_{2}\right) 1 s \beta\left(r_{1}\right) \tag{2-18}\\
& \Psi_{2}=\psi\left(r_{1}, r_{2}\right)-\psi\left(r_{2}, r_{1}\right)=1 s \alpha\left(r_{1}\right) 1 s \beta\left(r_{2}\right)-1 s \alpha\left(r_{2}\right) 1 s \beta\left(r_{1}\right) \tag{2-19}
\end{align*}
$$

Ψ_{2} has the unique property of being antisymmetric in that it changes sign when the electrons are interchanged

$$
\begin{equation*}
\Psi_{2}\left(r_{2}, r_{1}\right)=\psi\left(r_{2}, r_{1}\right)-\psi\left(r_{1}, r_{2}\right)=-\Psi_{2}\left(r_{1}, r_{2}\right) \tag{2-20}
\end{equation*}
$$

Hence the ground state of the helium atom may be described by the antisymmetric wave function Ψ_{2}.

Many approximations have to be made in order to solve a many particle Schrödinger equation. For example the Hamiltonian for a helium atom may be written as follows

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 M} \nabla^{2}-\frac{\hbar^{2}}{2 m_{e}} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 m_{e}} \nabla_{2}^{2}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|R-r_{1}\right|}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left|R-r_{2}\right|}+\frac{e^{2}}{4 \pi \varepsilon_{0}\left|r_{1}-r_{2}\right|} \tag{2-21}
\end{equation*}
$$

where ∇^{2} is the Laplacian operator with respect to the helium nucleus, $\nabla_{1}{ }^{2}$ and $\nabla_{2}{ }^{2}$ are the operators corresponding to the coordinates of the two electrons, M is the mass of the nucleus, m_{e} is the electronic mass, R is the position of the helium nucleus and r_{1}, r_{2} are the positions of the two electrons. Assuming that the nucleus is at a fixed position with respect to the electron's motion and neglecting relativistic effects, the Hamiltonian can be simplified to:

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m_{e}}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)-\frac{2 e^{2}}{4 \pi \varepsilon_{0}}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)+\frac{e^{2}}{4 \pi \varepsilon_{0}\left|r_{1}-r_{2}\right|} \tag{2-22}
\end{equation*}
$$

and the Schrödinger equation can be written as

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m_{e}}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right) \psi\left(r_{1}, r_{2}\right)-\frac{2 e^{2}}{4 \pi \varepsilon_{0}}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right) \psi\left(r_{1}, r_{2}\right)+\frac{e^{2}}{4 \pi \varepsilon_{0}\left|r_{1}-r_{2}\right|} \psi\left(r_{1}, r_{2}\right)=E \psi\left(r_{1}, r_{2}\right) \tag{2-23}
\end{equation*}
$$

However this simplified equation cannot be solved. The $\frac{e^{2}}{4 \pi \varepsilon_{0}\left|r_{1}-r_{2}\right|}$ term, known as the interelectronic term, is responsible for the difficulty associated with solving the above equation. In the absence of this term, the Schrödinger equation would have been separable and the Hamiltonian would be the product of the Hamiltonian operators for two hydrogen-like atoms. The total energy would have been the sum of the individual hydrogen-like atoms and the wave function would be a product of two hydrogen-like atomic orbitals. Hence we need approximation methods in order to solve the many body Schrödinger equation.

Some of the mathematical approximations are as follows: the Variational method, Perturbation theory, the Born-Oppenheimer approximation, Hartree-Fock Self Consistent theory, and Density Functional Theory (DFT).

Approximations

The Born-Oppenheimer Approximation

Approximating the nuclei and electrons as point masses, and ignoring relativistic interactions, the molecular Hamiltonian can be written as

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2} \sum_{i} \frac{1}{m_{i}} \nabla_{i}^{2}-\frac{\hbar^{2}}{2 m_{e}} \sum_{l} \nabla_{l}^{2}+\sum_{i} \sum_{j>i} \frac{Z_{i} Z_{j} e^{2}}{r_{i j}}-\sum_{i} \sum_{l} \frac{Z_{1} e^{2}}{r_{l i}}+\sum_{m} \sum_{l>m} \frac{e^{2}}{r_{l m}} \tag{2-24}
\end{equation*}
$$

where i and j refer to nuclei and l and m refer to electrons. The first term is the kinetic energy operator for the nuclei, and the second term is the kinetic energy operator for electrons. The third term is the electrostatic energy of repulsion between the nuclei separated by a distance $\mathrm{r}_{i j}$. The fourth term is the electrostatic energy for attraction between nucleus i and electron l separated by a distance $\mathrm{r}_{l i}$. The fourth term is the potential energy of the repulsions between electrons l and m. The H_{2} molecular Hamiltonian is

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m_{p}} \nabla_{i}^{2}-\frac{\hbar^{2}}{2 m_{p}} \nabla_{j}^{2}-\frac{\hbar^{2}}{2 m_{e}} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 m_{e}} \nabla_{2}^{2}+\frac{e^{2}}{r_{i j}}-\frac{e^{2}}{r_{1 i}}-\frac{e^{2}}{r_{1 j}}-\frac{e^{2}}{r_{2 i}}-\frac{e^{2}}{r_{2 j}}+\frac{e^{2}}{r_{12}} \tag{2-25}
\end{equation*}
$$

The Schrödinger equation can be written as

$$
\begin{equation*}
\hat{H} \psi\left(q_{l}, q_{i}\right)=E \psi\left(q_{l}, q_{i}\right) \tag{2-26}
\end{equation*}
$$

The approximation lies in the fact that the nuclei are much heavier than electrons. As electrons move much faster than the nuclei, the nuclei can be considered to be fixed with respect to the motion of the electrons. Omitting the nuclear kinetic energy terms in Equation 2-24 the Schrödinger equation for electronic motion is

$$
\begin{equation*}
\left(\hat{H}_{e l}+V_{N N}\right) \psi_{e l}=U \psi_{e l} \tag{2-27}
\end{equation*}
$$

where the electronic Hamiltonian is

$$
\begin{equation*}
\hat{H}_{e l}=-\frac{\hbar^{2}}{2 m_{e}} \sum_{i} \nabla_{i}^{2}-\sum_{i} \sum_{l} \frac{Z_{i} e^{2}}{r_{l i}}+\sum_{m} \sum_{l>m} \frac{e^{2}}{r_{l m}} \tag{2-28}
\end{equation*}
$$

The nuclear repulsion term V_{NN} is given as

$$
\begin{equation*}
V_{N N}=\sum_{i} \sum_{j>i} \frac{Z_{i} Z_{j} e^{2}}{r_{i j}} \tag{2-29}
\end{equation*}
$$

The energy U is the total energy inclusive of the internuclear repulsion experienced by the nuclei i and j. The internuclear distance $r_{i j}$ is fixed at a constant value and hence the electronic wave functions and energies depend parametrically on the nuclear coordinates

$$
\begin{align*}
\psi_{e l} & =\psi_{e l, n}\left(q_{l}, q_{i}\right) \tag{2-30}\\
U & =U_{n}\left(q_{n}\right) \tag{2-31}
\end{align*}
$$

The electronic Hamiltonian is dependent on electronic coordinates and is independent of nuclear coordinates. The nuclear repulsion term V_{NN} is constant for a particular nuclear configuration and is independent of the electronic coordinates. Hence V_{NN} can be omitted from the electronic Schrödinger equation to give

$$
\begin{equation*}
\hat{H}_{e l} \psi_{e l}=E_{e l} \psi_{e l} \tag{2-32}
\end{equation*}
$$

The purely electronic energy $\mathrm{E}_{\text {el }}$ is related to the total energy as

$$
\begin{equation*}
U=E_{e l}+V_{N N} \tag{2-33}
\end{equation*}
$$

The electronic Schrödinger equation is solved for a fixed nuclear configuration to obtain $\mathrm{E}_{\text {el. }}$ The total energy is then found using Equation 2-33, whereas the constant V_{NN} is calculated from Equation 2-29. Thus the nuclei in the Born-Oppenheimer approximation move on a potential energy surface defined by the solutions to the electronic Hamiltonian. Hence the solutions to the nuclear Schrödinger equation are:

$$
\begin{equation*}
\hat{H}_{n u c l} \psi_{n u c l}=U \psi_{n u c l} \tag{2-34}
\end{equation*}
$$

The approximation yields reasonable results for the ground electronic states of diatomic molecules.[93]

Hartree-Fock Theory

The exact wave function for the hydrogen atom is known. For systems like helium and lithium the wave function may be calculated to a high degree of accuracy by incorporating the interelectronic distance as a variable in the variational function. The Hartree-Fock procedure is employed in order to find the wave functions for many-electron systems. The Hamiltonian for an n-electron system is given as

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m_{e}} \sum_{i=1}^{n} \nabla_{i}^{2}-\sum_{i=1}^{n} \frac{Z e^{2}}{r_{i}}+\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{e^{2}}{r_{i j}} \tag{2-35}
\end{equation*}
$$

The first summation includes the kinetic energy terms for n-electrons. The second summation is the potential energy for attraction between the electrons and the nucleus of charge Ze . The last sum is the interelectronic repulsion term, and the restriction $j=i+1$ avoids double counting of the same repulsions and terms like $e^{2} / r_{i j}$. As an initial approximation the zeroth-order wave function can be obtained by ignoring the interelectronic repulsion term, which makes the Hamiltonian separable. The zeroth-order wave function can then be written as a product of n hydrogen-like orbitals. An orbital by definition is a one-electron wave function.

$$
\begin{equation*}
\psi^{(0)}=f_{1}\left(r_{1}, \theta_{1}, \phi_{1}\right) f_{2}\left(r_{2}, \theta_{2}, \phi_{2}\right) f_{3}\left(r_{3}, \theta_{3}, \phi_{3}\right) \ldots f_{n}\left(r_{n}, \theta_{n}, \phi_{n}\right) \tag{2-36}
\end{equation*}
$$

where the hydrogen-like wave functions are given as

$$
\begin{equation*}
f=R_{n l}(r) Y_{l}^{m}(\theta, \phi) \tag{2-37}
\end{equation*}
$$

where $\mathrm{R}_{\mathrm{n} 1}(\mathrm{r})$ is the radial component of the hydrogen-like orbitals given as:

$$
\begin{equation*}
R_{n l}(r)=-\left\{\frac{(n-l-1)!}{2 n[(n+l)!]}\right\}^{1 / 2}\left(\frac{2}{n a_{0}}\right)^{l+3 / 2} r^{l} e^{-r / n a_{0}} L_{n+l}^{2 l+1}\left(\frac{2 r}{n a_{0}}\right) \tag{2-38}
\end{equation*}
$$

where $L_{n+l}{ }^{2 l+1}\left(\frac{2 r}{n a_{0}}\right)$ are called the associated Laguerre polynomials, and n and l are quantum numbers. $Y_{l}^{m}(\theta, \varphi)$ are called the spherical harmonics, given as

$$
\begin{equation*}
Y_{l}^{m}(\theta, \phi)=\left[\frac{(2 l+1)}{4 \pi} \frac{(l-|m|)!}{(l+|m|)!}\right]^{1 / 2} P_{l}^{|m|}(\cos \theta) e^{i m \phi} \tag{2-39}
\end{equation*}
$$

where $P_{l}^{|m|}(\cos \theta)$ are known as the associated Legendre functions.

The quantitative problem associated with Equation 2-36 is that all the orbitals use the same nuclear charge. The approximation can be made more accurate by employing different effective atomic numbers for different orbitals to account for the screening effect. This leads to the use of a variational function that is not restricted to any form of orbitals. The new variational function can now be written as

$$
\begin{equation*}
\phi=g_{1}\left(r_{1}, \theta_{1}, \phi_{1}\right) g_{2}\left(r_{2}, \theta_{2}, \phi_{2}\right) g_{3}\left(r_{3}, \theta_{3}, \phi_{3}\right) \ldots g_{n}\left(r_{n}, \theta_{n}, \phi_{n}\right) \tag{2-40}
\end{equation*}
$$

The functions g_{i} are then defined so as to minimize the variational integral given as

$$
\begin{equation*}
E_{1} \leq \frac{\int \phi^{*} H \hat{\phi} d \tau}{\int \phi^{*} \phi d \tau} \tag{2-41}
\end{equation*}
$$

where E_{I} is the ground state energy for the system. The procedure for calculating the g_{i} 's is known as the Hartree self-consistent-field (SCF) method.[94]

Hartree's Procedure. The first step involves an initial guess for the product wave function

$$
\begin{equation*}
\phi=s_{1}\left(r_{1}, \theta_{1}, \phi_{1}\right) s_{2}\left(r_{2}, \theta_{2}, \phi_{2}\right) s_{3}\left(r_{3}, \theta_{3}, \phi_{3}\right) \ldots s_{n}\left(r_{n}, \theta_{n}, \phi_{n}\right) \tag{2-42}
\end{equation*}
$$

where the s_{i} 's are products of the normalized radial functions multiplied by the respective spherical harmonics. The primary approximation that is made is the central field approximation. This means that the electrostatic electron-electron repulsion term is averaged. The first electron experiences an averaged field created by smearing out the other electrons. Coulomb's law gives the potential energy of interactions between two charges q_{1} and q_{2} as (in atomic units)

$$
\begin{equation*}
V_{12}=\frac{q_{1} q_{2}}{r_{12}} \tag{2-43}
\end{equation*}
$$

The electrons are approximated to be averaged out as a continuous charge distribution with ρ_{2} as the charge density. Considering the infinitesimal charge $\rho_{2} d v_{2}$ in an infinitesimal volume $d v_{2}$, the average interactions between q_{1} and the infinitesimal elements of charge q_{2} is given as

$$
\begin{equation*}
V_{12}=\frac{q_{1}}{4 \pi \varepsilon_{0}} \int \frac{\rho_{2}}{r_{12}} d v_{2} \tag{2-44}
\end{equation*}
$$

where r_{12} is the distance between the first electron with charge q_{1} and the charge distribution with charge density ρ_{2}. The probability density of electron i is $\left|\mathbf{s}_{\mathbf{i}}\right|^{2}$, hence $\rho_{2}=-e\left|\mathbf{s}_{2}\right|^{2}$, and for electron 1, $q_{I}=-e$. Hence

$$
\begin{equation*}
V_{12}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \int \frac{\left|s_{2}\right|^{2}}{r_{12}} d v_{2} \tag{2-45}
\end{equation*}
$$

Summing the interactions with other electrons

$$
\begin{equation*}
V_{12}+V_{13}+\ldots+V_{1 n}=\sum_{j=2}^{n} \frac{e^{2}}{4 \pi \varepsilon_{0}} \int \frac{\left|S_{j}\right|^{2}}{r_{1 j}} d v_{j} \tag{2-46}
\end{equation*}
$$

The potential energy of interaction between electron 1 and the other electrons and the nucleus is given as

$$
\begin{equation*}
V\left(r_{1}, \theta_{1}, \phi_{1}\right)=\sum_{j=2}^{n} \frac{e^{2}}{4 \pi \varepsilon_{0}} \int \frac{\left|S_{j}\right|^{2}}{r_{1 j}} d v_{j}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{1}} \tag{2-47}
\end{equation*}
$$

The central-field approximation uses the result that the effective potential acting on an electron is a function of r only. Hence, averaging out $V_{l}\left(r_{1}, \theta_{l}, \varphi_{I}\right)$ over the angles θ and φ we get

$$
\begin{equation*}
V_{1}\left(r_{1}\right)=\frac{\int_{0}^{2 \pi} \int_{0}^{\pi} V\left(r_{1}, \theta_{1}, \phi_{1}\right) \sin \theta_{1} d \theta_{1} d \phi_{1}}{\int_{0}^{2 \pi} \int_{0}^{\pi} \sin \theta d \theta d \phi} \tag{2-48}
\end{equation*}
$$

Substituting for $V_{l}\left(r_{l}\right)$ in the one-electron Schrödinger equation, we have

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 m_{e}} \nabla_{1}^{2}+V_{1}\left(r_{1}\right)\right] t_{1}(1)=\varepsilon_{1} t_{1}(1) \tag{2-49}
\end{equation*}
$$

The Schrödinger equation is then solved to obtain the improved wave functions t_{l} and the orbital energy ε_{1}. This procedure is repeated iteratively until the input and output wave functions match, or are self-consistent. The orbitals obtained by this method are known as Hartree-Fock orbitals. The effective Hamiltonian operator is known as the Fock operator, and the Schrödinger equation is given as

$$
\begin{equation*}
\hat{F}_{i} t_{i}(i)=\varepsilon_{i} t_{i}(i) \tag{2-50}
\end{equation*}
$$

The orbital energies in the SCF approximation are obtained by iteratively solving the oneelectron Schrödinger equation. However a correction term has to be introduced in order to avoid double counting of the repulsion terms. The corrected energies are given as

$$
\begin{equation*}
E=\sum_{i=1}^{n} \varepsilon_{i}-\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \iint \frac{e^{\prime 2}\left|g_{i}(i)\right|^{2}\left|g_{j}(j)\right|^{2}}{r_{i j}} d v_{i} d v_{j} \tag{2-51}
\end{equation*}
$$

The approximation to the exact wave function should take Pauli's principle into consideration and should be antisymmetric with respect to the interchange of electrons. Hence we consider anti-symmetrized spin-orbitals and the SCF calculation that employs them is known as the Hartree-Fock calculation.[95, 96]

The differential equation for evaluating the Hartree-Fock orbitals is:

$$
\hat{F} u_{i}=\varepsilon_{i} u_{i} \quad i=1,2 \ldots \mathrm{n}
$$

where the operator F is once again the Fock (or Hartree-Fock) operator and u_{i} is the spin orbital corresponding to the orbital energy ε_{i}.

In the early 1930s Slater used determinants to construct antisymmetric wave
functions.[97] For example, the wave function for helium can be written as a linear combination of terms in order to generate the antisymmetric wave function.

$$
\begin{equation*}
\Psi=\psi\left(r_{1}, r_{2}\right)-\psi\left(r_{2}, r_{1}\right)=1 s \alpha\left(r_{1}\right) 1 s \beta\left(r_{2}\right)-1 s \alpha\left(r_{2}\right) \operatorname{ls} \beta\left(r_{1}\right) \tag{2-53}
\end{equation*}
$$

The wave function can be expressed in determinant form as

$$
\Psi=\left(\begin{array}{ll}
\operatorname{sso}\left(r_{1}\right) & 1 s \beta\left(r_{1}\right) \tag{2-54}\\
\operatorname{lso}\left(r_{2}\right) & 1 s \beta\left(r_{2}\right)
\end{array}\right)
$$

where $1 \mathrm{~s} \alpha$ and $1 \mathrm{~s} \beta$ are the hydrogen atom-like wave functions with α and β being the spin eigenfunctions. The arguments 1 and 2 denote the coordinates (x, y, z, σ) of electrons 1 and 2 respectively. Upon expanding the above determinant we obtain the antisymmetric wave function Equation 2-53. These determinants are known as the Slater determinants and the wave function Ψ given by the Slater determinant is known as the deterimental wave function. The N -electron deterimental wave function may be written as

$$
\Psi=\left(\begin{array}{ccc}
a_{1}(1) & \cdots & a_{N}(1) \tag{2-55}\\
\vdots & \ddots & \vdots \\
a_{1}(N) & \cdots & a_{N}(N)
\end{array}\right)
$$

where the a_{n} 's are the orthonormal spin orbitals.

The Hartree-Fock wave function for molecules is written as a Slater determinant of spin orbitals, each orbital being a product of the spatial wave function dependent on the coordinates $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and the spin function (α or β).

Variation theorem predicts the Hartree-Fock molecular energy as

$$
\begin{equation*}
E_{H F}=\langle S| H_{e l}+V_{N N}|S\rangle \tag{2-56}
\end{equation*}
$$

where S is the Slater determinant HF-wave function, $H_{e l}$ and $V_{N N}$ are the electronic Hamiltonian and potential energy term for nuclear repulsion respectively. The electronic Hamiltonian is the sum of one-electron Hamiltonians given as

$$
\begin{equation*}
f_{i}=-\frac{1}{2} \nabla_{i}^{2}-\sum_{\alpha} \frac{Z_{\alpha}}{r_{i \alpha}} \tag{2-57}
\end{equation*}
$$

and the two electron operator given as

$$
\begin{equation*}
g_{i j}=\frac{1}{r_{i j}} \tag{2-58}
\end{equation*}
$$

The SCF energy for a closed-subshell configuration is given as

$$
\begin{equation*}
E=\langle S| \hat{H}|S\rangle=2 \sum_{i=1}^{n / 2}\left\langle\phi_{1}(1)\right| f_{i}\left|\phi_{1}(1)\right\rangle+\sum_{j=1}^{n / 2} \sum_{i=1}^{n / 2}\left(2 J_{i j}-K_{i j}\right) \tag{2-59}
\end{equation*}
$$

The HF energy for diatomic or polyatomic molecule is modified as

$$
\begin{equation*}
E_{H F}=2 \sum_{i=1}^{n / 2} H_{i i}^{\text {core }}+\sum_{j=1}^{n / 2} \sum_{i=1}^{n / 2}\left(2 J_{i j}-K_{i j}\right)+V_{N N} \tag{2-60}
\end{equation*}
$$

where

$$
\begin{align*}
& H_{i i}^{\text {core }}=\left\langle\phi_{1}(1)\right| H^{\text {core }}(1)\left|\phi_{1}(1)\right\rangle=\left\langle\phi_{1}(1)\right|-\frac{1}{2} \nabla_{i}^{2}-\sum_{\alpha} \frac{Z_{\alpha}}{r_{i \alpha}}\left|\phi_{1}(1)\right\rangle \tag{2-61}\\
& J_{i j}=\left\langle\phi_{i}(1) \phi_{j}(2)\right| 1 / r_{12}\left|\phi_{i}(1) \phi_{j}(2)\right\rangle \tag{2-62}\\
& K_{i j}=\left\langle\phi_{i}(1) \phi_{j}(2)\right| 1 / r_{12}\left|\phi_{i}(1) \phi_{j}(2)\right\rangle \tag{2-63}
\end{align*}
$$

$H_{i i}^{\text {core }}$ is the one-electron core Hamiltonian, $J_{i j}$ and $K_{i j}$ are the Coulomb and exchange integrals respectively integrated over the spatial coordinates for electrons 1 and 2 respectively. The objective of the Hartree-Fock method is to minimize the variation integral by obtaining suitable orbitals φ_{i}. The orbitals are assumed to be orthogonal and hence satisfy the differential equation

$$
\begin{equation*}
\stackrel{\hat{F}}{ }(1) \phi_{i}=\varepsilon_{i} \phi_{i} \tag{2-64}
\end{equation*}
$$

where ε_{i} is the orbital energy and the Hartree-Fock operator is given as

$$
\begin{equation*}
\hat{F}(1)=\hat{H}^{\text {core }}(1)+\sum_{j=1}^{n / 2}\left[2 J_{j}(1)-K_{j}(1)\right] \tag{2-65}
\end{equation*}
$$

and the Coulomb operator and exchange operator are:

$$
\begin{align*}
& J_{i j} f(1)=f(1) \int\left|\varphi_{j}(2)\right|^{2} \frac{1}{r_{12}} d v_{2} \tag{2-66}\\
& K_{i j} f(1)=\varphi_{j}(1) \int \frac{\varphi_{j}^{*}(2) f(2)}{r_{12}} d v_{2} \tag{2-67}
\end{align*}
$$

Where f is an arbitrary function and the definite integrals are integrated over all space. The Coulomb operator $J_{i j}$ is the potential energy of interaction between electron 1 and the smeared out charge distribution with charge density $-\left|\varphi_{j}(2)\right|^{2}$. The exchange integral $K_{i j}$ is however a purely quantum-mechanical effect and has no classical mechanical analogue. It arises from the antisymmetric nature of the wave function with respect to electron exchange.

In order to obtain expressions for the orbital energies ε_{i}, Equation 2-64 is multiplied by $\varphi_{i}^{*}(1)$, and integrating over all space we have

$$
\begin{equation*}
\varepsilon_{i}=\int \varphi_{i}^{*}(1) \hat{F}(1) \varphi_{i}(1) d v_{1} \tag{2-68}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{i}=\left\langle\phi_{i}(1)\right| H^{\text {core }}(1)\left|\phi_{i}(1)\right\rangle+\sum_{j}\left[2\left\langle\phi_{i}(1)\right| \hat{J}_{j}(1)\left|\phi_{i}(1)\right\rangle-\left\langle\phi_{i}(1)\right| \hat{K}_{j}(1)\left|\phi_{i}(1)\right\rangle\right] \tag{2-69}
\end{equation*}
$$

that simplifies to

$$
\begin{equation*}
\varepsilon_{i}=\hat{H}_{i i}^{\text {core }}+\sum_{i=1}^{n / 2}\left(2 J_{i j}-K_{i j}\right) \tag{2-70}
\end{equation*}
$$

Summing the above equation over $n / 2$ occupied orbitals gives:

$$
\begin{equation*}
\sum_{i=1}^{n / 2} \varepsilon_{i}=\sum_{i=1}^{n / 2} \hat{H}_{i i}^{\text {core }}+\sum_{j=1}^{n / 2} \sum_{i=1}^{n / 2}\left(2 J_{i j}-K_{i j}\right) \tag{2-71}
\end{equation*}
$$

Solving for $\Sigma H_{i i}^{\text {core }}$, the Hartree-Fock energy is given as

$$
\begin{equation*}
E_{H F}=2 \sum_{i=1}^{n / 2} \varepsilon_{i}-\sum_{j=1}^{n / 2} \sum_{i=1}^{n / 2}\left(2 J_{i j}-K_{i j}\right)+V_{N N} \tag{2-72}
\end{equation*}
$$

If the initial guess for the molecular orbitals can be taken as a linear combination of atomic orbitals then we can have a more accurate molecular SCF wave function. Roothaan proposed that the spatial orbitals φ_{i} be taken as linear combination of one-electron basis functions. [98]

$$
\begin{equation*}
\varphi_{i}=\sum_{j=1}^{s} c_{j i} \chi_{j} \tag{2-73}
\end{equation*}
$$

In order to correctly represent the molecular orbitals φ_{i}, the basis functions χ_{j} should form a complete set. The number of basis functions, s, should be as large as possible to minimize the error. Substituting the expression for φ_{i} in Equation 2-64 gives

$$
\begin{equation*}
\sum_{j} c_{j i} \stackrel{\wedge}{F} \chi_{j}=\varepsilon_{i} \sum_{j} c_{j i} \chi_{j} \tag{2-74}
\end{equation*}
$$

Multiplication by χ_{p} and integration gives

$$
\sum_{j=1}^{s} c_{j i}\left(F_{p j}-\varepsilon_{i} S_{p j}\right)=0
$$

$$
\begin{equation*}
p=1,2, \ldots, s \tag{2-75}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{p j}=\left\langle\chi_{j}\right| \hat{F}\left|\chi_{p}\right\rangle \tag{2-76}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{p j}=\left\langle\chi_{j} \mid \chi_{p}\right\rangle \tag{2-77}
\end{equation*}
$$

For the solutions to be nontrivial the coefficients of the secular determinant should vanish, hence

$$
\begin{equation*}
\operatorname{det}\left(F_{p j}-\varepsilon_{i} S_{p j}\right)=0 \tag{2-78}
\end{equation*}
$$

The roots of the secular equation provide the orbital energies ε_{i}. The Hartree-FockRoothan equations Equation 2-75 are solved iteratively to yield the unknown coefficients $c_{j i}$.

The Hartree-Fock-SCF wave function averages out the interactions between electrons. However electrons tend to repel each other and the concept of a Coulomb hole comes into the picture. This is a region in which the probability of finding another electron is small. Hence the motions of electrons are correlated, and the wave function should be corrected for instantaneous electron correlation. The correlation energy is defined as

$$
\begin{equation*}
E_{\text {corr }}=C E=E_{\text {exact }}-E_{H F} \tag{2-79}
\end{equation*}
$$

Many theories have been developed to compute the correlation energies. One example is that of the perturbation schemes where the HF orbital can be considered as the zeroeth-order wave function and the correlation energy can be solved as a first order perturbation.

Density Functional Theory

The probability distribution function of finding an electron in a given volume element in terms of spatial and spin coordinates may be given as

$$
\begin{equation*}
\rho(x, y, z)=\left|\varphi\left(x_{1}, \ldots, z_{n}, m_{s 1}, \ldots, m_{s n}\right)\right|^{2} d x_{1} d y_{1} d z_{1} \ldots d x_{n} d y_{n} d z_{n} \tag{2-80}
\end{equation*}
$$

This distribution function gives the probability of finding electron n with spin $m_{s n}$ in the volume element $d x_{n} d y_{n} d z_{n}$ at $\left(x_{n}, y_{n}, z_{n}\right)$. Ignoring the spin, the probability of finding each electron in a given volume element is:

$$
\begin{equation*}
\rho(x, y, z)=\sum_{m_{s 1}} \ldots \sum_{m_{s n}}|\varphi|^{2} d x_{1} \ldots d z_{n} \tag{2-81}
\end{equation*}
$$

The probability density for finding electron 1 in a given region (x, y, z) is

$$
\rho(x, y, z)=n \sum_{m_{s}} \int \ldots \int\left|\varphi\left(x, y, z, x_{2}, \ldots, z_{n}, m_{s 1}, \ldots, m_{s n}\right)\right|^{2} d x_{2} \ldots d z_{n}
$$

and in vector notation this is:

$$
\begin{equation*}
\rho(r)=n \sum_{m_{s}} \int \ldots \int\left|\varphi\left(r, r_{2}, \ldots, r_{n}, m_{s 1}, \ldots, m_{s n}\right)\right|^{2} d r_{2} \ldots d r_{n} \tag{2-83}
\end{equation*}
$$

For an electron i, the function, $f\left(r_{i}\right)$ is assumed to be dependent on the spatial coordinates $\left(x_{i}, y_{i}\right.$, z_{i}). For an n-electron system the average is defined as

$$
\langle\varphi| \sum_{i=1}^{n} f\left(r_{i}\right)|\varphi\rangle=\int \varphi^{*} \sum_{i=1}^{n} f\left(r_{i}\right) \varphi d \tau=\sum_{i=1}^{n} \int \varphi^{2} f\left(r_{i}\right) d \tau
$$

Due to the indistinguishability of the electrons, the value of the last integral should be the same for any value of n. Hence

$$
\begin{equation*}
\langle\varphi| \sum_{i=1}^{n} f\left(r_{i}\right)|\varphi\rangle=\int n|\varphi|^{2} f\left(r_{i}\right) d \tau \tag{2-85}
\end{equation*}
$$

The probability density is introduced using Equation 2-83. Hence the equation transforms as

$$
\begin{equation*}
\int \varphi^{*} \sum_{i=1}^{n} f\left(r_{i}\right) \varphi d \tau=\int \rho(r) f(r) d \tau \tag{2-86}
\end{equation*}
$$

Hohenberg-Kohn Theorem. In 1964, Pierre Hohenberg and Walter Kohn proposed the use of electron density for the calculation of molecular properties. They proved the theorem for systems possessing a nondegenerate ground state and proposed that the wave function and the molecular electronic properties may be uniquely determined by the ground state electron probability density $\rho_{0}(x, y, z)$.[99] One defines a functional as being a function of another function. According to the Hohenberg-Kohn theorem, the ground state electronic energy, E_{0}, is a functional of the electron probability density and is written as:

$$
\begin{equation*}
E_{0}=E_{0}\left(\rho_{0}\right) \tag{2-87}
\end{equation*}
$$

This idea was termed as the Density-functional theory, wherein the ground state electronic energy and other ground sate properties are calculated from the electron density and not from the wave function of the system. The pure electronic Hamiltonian for the ground state electronic wave function in atomic units is:

$$
\begin{gather*}
\hat{H}=-\frac{1}{2} \sum_{i=1}^{n} \nabla_{i}^{2}+\sum_{i=1}^{n} v\left(r_{i}\right)+\sum_{i} \sum_{j>i} \frac{1}{r_{i j}} \tag{2-88}\\
v\left(r_{i}\right)=-\sum_{\alpha} \frac{Z_{\alpha}}{r_{i \alpha}} \tag{2-89}
\end{gather*}
$$

The term, $v\left(r_{i}\right)$, is the Coulomb potential for the interaction between electron i and the nuclei. Because the Hamiltonian is solved for fixed nuclear coordinates, $v\left(r_{i}\right)$ is dependent only on the electronic coordinates. This quantity is known as the external potential, as the potential is developed by charges external to the electrons. The wave function and the energy of the system are determined as a solution to the Schrödinger equation with a prior knowledge of the external potential and the number of electrons. The Hohenberg-Kohn theorem states that the external potential and the number of electrons are given by the ground state electron probability density. Hence the electron density yields the wave functions and energy of the system under consideration. The number of electrons is given by integrating Equation 2-83 to obtain

$$
\begin{equation*}
\int \rho_{0}(r) d r=n \tag{2-90}
\end{equation*}
$$

As the name suggests, the ground state electronic energy is a functional of the electron probability density written as

$$
\begin{equation*}
E_{0}=E_{v}\left[\rho_{0}\right] \tag{2-91}
\end{equation*}
$$

The ground state energy is given as

$$
\begin{equation*}
E_{0}=E_{v}\left[\rho_{0}\right]=\bar{T}\left[\rho_{0}\right]+\bar{V}_{N e}\left[\rho_{0}\right]+\bar{V}_{e e}\left[\rho_{0}\right] \tag{2-92}
\end{equation*}
$$

where the energy is the sum of the average kinetic-energy term, average electron-nuclear attraction term, and the average electron-electron repulsion term. The electron-nuclear attraction term is given as

$$
\begin{equation*}
\bar{V}_{N e}=\left\langle\varphi_{0}\right| \sum_{i=1}^{n} v\left(r_{i}\right)\left|\varphi_{0}\right\rangle=\int \rho(r) v(r) d \tau \tag{2-93}
\end{equation*}
$$

The unknowns in the expression for the ground state energy term are $T[\rho]$ and $V_{e e}[\rho]$.

Kohn-Sham Method. The disadvantage with Hohenberg-Kohn theorem was the lack of information regarding the evaluation of the ground state energy term from the electron density. In 1965, Kohn and Sham devised a technique for finding ρ_{0} and for evaluating E_{0} from ρ_{0}. [100] They considered a fictitious non-interacting system of n electrons wherein the external potential $v_{s}(r)$ is adjusted to make the electron probability density of the reference system $\rho_{s}(r)$ equal to the exact ground state electron density $\rho_{0}(r)$ of the molecule of interest. The Hamiltonian for the reference system is:

$$
\begin{equation*}
\hat{H}=-\frac{1}{2} \sum_{i=1}^{n}\left[-\frac{1}{2} \nabla_{i}^{2}+v_{s}\left(r_{i}\right)\right]=\sum_{i=1}^{n}{\hat{h_{i}}}^{K S} \tag{2-94}
\end{equation*}
$$

where $h_{K S}$ is the Kohn-Sham Hamiltonian. The reference system can be related to the real one by including an extra term in the Hamiltonian as

$$
\begin{equation*}
\hat{H}=\hat{T}+\sum_{i} v\left(r_{i}\right)+\lambda \hat{V}_{e e} \tag{2-95}
\end{equation*}
$$

where the variable λ can vary from 0 (no interelectronic repulsions that is the reference system) to 1 (the real system). The ground state wave function may be written as the Slater determinant of Kohn-Sham spin orbitals given as

$$
\begin{equation*}
\varphi_{s, 0}=\left|u_{1} u_{2} \ldots u_{n}\right| \tag{2-96}
\end{equation*}
$$

where,

$$
\begin{equation*}
u_{i}=\theta_{i}^{K S}\left(r_{i}\right) \sigma_{(i)} \tag{2-97}
\end{equation*}
$$

and the Schrödinger equation is:

$$
\begin{equation*}
{\hat{h_{i}}}^{K S} \theta_{i}^{K S}=\boldsymbol{\varepsilon}_{i}^{K S} \boldsymbol{\theta}_{i}^{K S} \tag{2-98}
\end{equation*}
$$

Kohn and Sham modified Equation 2-92, and defined the new terms as follows

$$
\begin{equation*}
\Delta \bar{T}[\rho]=\bar{T}[\rho]-\bar{T}_{s}[\rho] \tag{2-99}
\end{equation*}
$$

where the quantity on the left hand side is the difference between the average ground state kinetic energy of the real system and the average kinetic energy of the reference system.

$$
\begin{equation*}
\Delta \bar{V}_{e e}[\rho]=\bar{V}_{e e}[\rho]-\frac{1}{2} \iint \frac{\rho\left(r_{1}\right) \rho\left(r_{2}\right)}{r_{12}} d r_{1} d r_{2} \tag{2-100}
\end{equation*}
$$

The second term on the right is the classical mechanics expression for interelectronic repulsion energy for electrons smeared out as a continuous charge distribution with density ρ. Combining Equations 2-99, 2-100 and 2-92
$E_{v}\left[\rho_{0}\right]=\int \rho(r) v(r) d \tau+\bar{T}_{s}[\rho]+\Delta \bar{T}[\rho]+\frac{1}{2} \iint \frac{\rho\left(r_{1}\right) \rho\left(r_{2}\right)}{r_{12}} d r_{1} d r_{2}+\Delta \bar{V}_{e e}[\rho]$

The unknowns in the equation are ΔT and $\Delta V_{e e}$, the summation of which is defined as exchangecorrelation energy functional given as

$$
\begin{equation*}
E_{x c}[\rho]=\Delta \bar{T}[\rho]+\Delta \bar{V}_{e e}[\rho] \tag{2-102}
\end{equation*}
$$

The expression for ground state energy transforms as

$$
E_{v}\left[\rho_{0}\right]=\int \rho(r) v(r) d \tau+\bar{T}_{s}[\rho]+\frac{1}{2} \iint \frac{\rho\left(r_{1}\right) \rho\left(r_{2}\right)}{r_{12}} d r_{1} d r_{2}+E_{x c}[\rho]
$$

$E_{v}\left[\rho_{0}\right]=-\sum_{\alpha} Z_{\alpha} \int \frac{\rho\left(r_{1}\right)}{r_{1 \alpha}} d r_{1}-\frac{1}{2} \sum_{i=1}^{n}\left\langle\theta_{i}^{K S}(1)\right| \nabla_{1}^{2}\left|\theta_{i}^{K S}(1)\right\rangle+\frac{1}{2} \iint \frac{\rho\left(r_{1}\right) \rho\left(r_{2}\right)}{r_{12}} d r_{1} d r_{2}+E_{x c}[\rho]$

The first three terms in the above equation can be evaluated from a known value of the electron density. The main step in a KS-DFT calculation is a good approximation of the exchangecorrelation energy functional.

In defining the reference system, it was assumed that the fictitious system had the same electron density as the real system. The Slater-Condon rules [101, 102] give the electron probability density for an n-particle system having anti-symmetrized wave function as

$$
\begin{equation*}
\rho_{0}=\rho_{s}=\sum_{i=1}^{n}\left|\theta_{i}^{K S}\right|^{2} \tag{2-105}
\end{equation*}
$$

where $\theta^{K S}$ is the spatial part of the anti-symmetric wave function. The Hohenberg-Kohn variational theorem states that the true ground state energy term can be found by varying ρ so as to minimize the ground state energy functional $E_{v}[\rho]$. Alternatively $\theta^{K S}$ (spatial part of the KohnSham orbitals) can be varied to determine the ground state electron probability density, the relation given by (2-106). The Kohn-Sham orbitals that minimize (2-104) satisfy the equation

$$
\begin{equation*}
\left[-\frac{1}{2} \nabla_{1}^{2}-\sum_{\alpha} \frac{Z_{\alpha}}{r_{12}}+\int \frac{\rho\left(r_{2}\right)}{r_{12}} d r_{2}+v_{x c}(1)\right] \theta_{i}^{K S}(1)=\varepsilon_{i}^{K S} \theta_{i}^{K S} \tag{1}
\end{equation*}
$$

where $v_{x c}$ (exchange-correlation potential) is defined as the functional derivative of the exchangecorrelation potential

$$
\begin{equation*}
v_{x c}(r)=\frac{\delta E_{x c}[\rho(r)]}{\delta \rho(r)} \tag{2-107}
\end{equation*}
$$

Solvation

Gas-phase calculations assume that there is no interaction between the various molecules. Hence the studies involve stationary-state quantum mechanics of isolated molecules. However, most biochemical and laboratory studies occur in solution where the interaction between the molecule of interest and the solvent is not negligible. Simulation in solvents can be broken down into two categories: (1) simulation of the bulk solvent and (2) solvation effect.

Modeling of bulk liquids involves computing properties that are not defined for individual molecules such as viscosity, diffusion rates, etc. One of the effective ways of simulating bulk solvent is by carrying out Monte Carlo simulations that gives the time-averaged structure, including the orientation of the solvent near a surface.[103] Explicit solvent simulations include insertion of all the solvent molecules explicitly and then running a molecular dynamics or Monte Carlo simulation. This yields an ensemble average of the property of interest. The explicit calculations employ periodic boundary conditions to account for long-range interactions. The disadvantage with the explicit calculations is that they are computationally expensive and consume enormous amount of computer time. A possible solution can be to simulate the solute quantum mechanically and the solvent with molecular dynamics. In order to reduce the computation time, calculations may be performed over a smaller number of solvent molecules, each starting with a different geometry. The resulting configuration can then be averaged out to give an ensemble average. Other solutions to the explicit simulation may be to use the more common continuum methods.

Consider the scenario where a polar solute is placed in a polar solvent. There will be a definite reorientation of the solvent molecules depending on the charge distribution on the solute. In addition, the inherent dipole of the solute will induce a dipole moment in nearby solvent molecules that adds on to the permanent dipole moment. As a result, the solvent is polarized in regions adjacent to the solute molecule. An electric field termed as the reaction field is generated as a result of this solvent polarization. As a result of the reaction field, the solute molecular wave function is perturbed and presents a different picture compared to its gas phase wave function.

Due to the induced dipole moment by the solvent's reaction field, the solute molecule will possess a larger dipole moment in the solvent than in the gas phase. Similarly the molecular wave function and other molecular properties differ significantly from the gas-phase calculations. In continuum methods, the solvent is modeled as a continuous dielectric that encapsulates a cavity containing the solute of interest. The continuous dielectric is characterized by the relative permittivity or the dielectric constant of the particular solvent at the temperature and pressure of the solution. In a quantum-mechanical treatment of the solute the electronic wave function of the solute is allowed to change as the transition from gas phase to solution phase is made. The motive is to achieve self-consistency between the charge distribution of the solute and the reaction field of the solvent. Calculations that employ self-consistency are termed as self-consistent-reaction-field (SCRF) models.

Poisson Equation

The Poisson equation relates the electrostatic potential as a function of the dielectric constant and the charge density.[104] The equation is valid for scenarios where the surrounding dielectric medium responds linearly to the embedding of the charge, and is given as:

$$
\begin{equation*}
\nabla^{2} \phi(r)=-\frac{4 \pi \rho(r)}{\varepsilon} \tag{2-108}
\end{equation*}
$$

where $\varphi(r)$ is the electrostatic potential, $\rho(r)$ is the arbitrary charge density, and ε is the dielectric constant of the medium. The continuum models describe the solvent explicitly and the solute implicitly. The charge distribution of the solute is placed within a cavity that perturbs the otherwise homogenous dielectric medium. This approximation creates two distinct regions, an interior and exterior region with respect to the cavity. The Poisson equation may then be written as

$$
\begin{equation*}
\nabla \varepsilon(r) . \nabla \phi(r)=-4 \pi \rho(r) \tag{2-109}
\end{equation*}
$$

In the presence of electrolytes the Poisson equation is modified as the Poisson-Boltzmann equation, $[105,106]$ given as

$$
\begin{equation*}
\nabla \varepsilon(r) \cdot \nabla \phi(r)-\varepsilon(r) \cdot \lambda(r) \kappa^{2} \frac{k_{B} T}{q} \sinh \left[\frac{q \phi(r)}{k_{B} T}\right]=-4 \pi \rho(r) \tag{2-110}
\end{equation*}
$$

where q is the charge on the electrolyte ions, λ is a switching function depending on the accessibility of electrolyte, κ^{2} is the Debye-Hückel parameter given as

$$
\begin{equation*}
\kappa^{2}=\frac{8 \pi q^{2} I}{\varepsilon k_{B} T} \tag{2-111}
\end{equation*}
$$

where I is the ionic strength of the electrolyte solution. For given ideal cavity shapes such as spheres or cylinders, the Poisson-Boltzmann equation has analytical solutions.

Self-Consistent-Reaction-Field (SCRF) Models

Born-Kirkwood-Onsager SCRF Method. Also known as the dipole-in-a-sphere model, it approximates the molecular charge distribution as an electric dipole with electric dipole moment μ located at the cavity center.[107, 108] Onsager derived an expression for the electric field produced by the polarization of the solvent as [109]

$$
\begin{equation*}
E_{R}=\frac{2\left(\varepsilon_{r}-1\right)}{\left(2 \varepsilon_{r}+1\right) a^{3}} \mu \tag{2-112}
\end{equation*}
$$

where ε_{r} is the dielectric constant of the solvent and a is the radius of the sphere modeling the molecular cavity. The derivation is as follows: consider a conducting sphere of charge q, the
charge is uniformly distributed on the surface of the sphere and the charge density at any point is given as

$$
\begin{equation*}
\rho(s)=\frac{q}{4 \pi a^{2}} \tag{2-113}
\end{equation*}
$$

where s is the surface point.

The work required to create the charge distribution in the cavity is given as

$$
\begin{equation*}
G=-\frac{1}{2} \int \rho(r) \phi(r) d r \tag{2-114}
\end{equation*}
$$

where ρ is the charge density and φ is the electrostatic potential. The electrostatic potential on the surface of the conducting sphere is obtained by calculating from the exterior and is given as

$$
\begin{equation*}
\phi(r)=-\frac{q}{\varepsilon|r|} \tag{2-115}
\end{equation*}
$$

where q is a point charge and ε is the dielectric constant of the exterior. Taking the radius of the conducting sphere to be r, (2-114) becomes

$$
\begin{equation*}
G=-\frac{1}{2} \int\left(\frac{q}{4 \pi a^{2}}\right)\left(-\frac{q}{\varepsilon|a|}\right) d a=\frac{q^{2}}{2 \varepsilon a} \tag{2-116}
\end{equation*}
$$

The polarization energy is the difference in the work required in the gas phase and the condensed phase, we have

$$
\begin{equation*}
G_{P}=-\frac{1}{2}\left(1-\frac{1}{\varepsilon}\right) \frac{q^{2}}{a} \tag{2-117}
\end{equation*}
$$

which is the Born equation for a monatomic ion. If the conducting sphere is replaced by an electric dipole (which is defined as the vector from the electric charges $+Q$ to $-Q$ separated by a distance b, with magnitude $Q b$), the equation can then be written as

$$
\begin{equation*}
G_{P}=-\frac{1}{2}\left(\frac{2(\varepsilon-1)}{(2 \varepsilon+1)}\right) \frac{\mu^{2}}{a^{3}} \tag{2-118}
\end{equation*}
$$

The potential energy of interaction between the dipole moment μ and the reaction field E_{R} is given as

$$
\begin{equation*}
V=-\hat{\mu} \cdot E_{R} \tag{2-119}
\end{equation*}
$$

and the corresponding operator in atomic units is given as

$$
\begin{equation*}
\hat{V}=-\hat{\mu} \cdot E_{R} \tag{2-120}
\end{equation*}
$$

where the dipole moment operator is defined as

$$
\begin{equation*}
\hat{\mu}=-\sum_{i} r_{i}+\sum_{\alpha} Z_{\alpha} R_{\alpha} \tag{2-121}
\end{equation*}
$$

The procedure involves an initial guess for the electron probability density $\rho^{(0)}(r)$ for the isolated molecule using an ab intio technique such as HF or DFT. The electric dipole moment of the molecule is then calculated in vacuum as

$$
\begin{equation*}
\mu^{(0)}=-\int \rho^{(0)}(r) r d r+\sum_{\alpha} Z_{\alpha} R_{\alpha} \tag{2-122}
\end{equation*}
$$

The calculated value for $\mu^{(0)}$ is then used in (2-112) to give an initial value for $E^{(0)}{ }_{R}$ of the reaction field. Using the value for $E^{(0)}{ }_{R}, V_{\text {int }}$ is calculated as

$$
\begin{equation*}
\hat{V}_{\mathrm{int}}{ }^{(0)}=-\hat{\mu} \cdot E^{(0)}{ }_{R} \tag{2-123}
\end{equation*}
$$

using $V_{\text {int }}$ the equations are solved to give an improved $\rho^{(1)}$. This process is carried out until selfconsistency is achieved. The calculated value for $V_{\text {int }}$ is included in the Hamiltonian to obtain the electronic energy $U^{(f)}$, which is given as

$$
\begin{equation*}
U^{(f)}=\left\langle\psi^{(f)}\right| \hat{H}_{M}+\hat{V}_{\mathrm{int}}\left|\psi^{(f)}\right\rangle \tag{2-124}
\end{equation*}
$$

where $\varphi^{(f)}$ is the final electronic wave function resulting from self-consistency. $U^{(f)}$ should be corrected for another term which results from the polarization of the solvent due to the solute. This is given as

$$
\begin{equation*}
E_{p o l}=-\frac{1}{2}\left\langle\psi^{(f)}\right| \hat{V}_{\mathrm{int}}\left|\psi^{(f)}\right\rangle \tag{2-125}
\end{equation*}
$$

Gibbs Energy of Solvation

The free energy of solvation $\Delta G_{s}{ }^{0}$ is the most important property describing the interaction of the solute and the solvent. Also known as the free energy of transfer, it refers to the free energy change when a molecule leaves the gas-phase and enters the condensed phase. According to Ben-Naim's definition of a solvation process, the embedding of a solute into a
given solvent can be defined as the process in which a particle of the solute is transferred from a fixed position in the gas phase into a fixed position in solution at constant temperature, pressure, and solvent composition.[110] Hence the Gibbs free energy of solvation is the reversible work needed to incorporate the solute, M , in solvent S . The free energy expression may then be given as

$$
\begin{equation*}
\Delta G_{\text {solv }}=W(M / S)+R T \ln \left[\frac{\left(q_{\text {rot }} q_{v i b}\right)_{\text {gas }}}{\left(q_{\text {rot }} q_{v i b}\right)_{\text {sol }}}\right] \tag{2-126}
\end{equation*}
$$

where $W(M / S)$ is the coupling work of the solute in the solvent and, $q_{r o t}, q_{v i b}$ denote the rational and vibrational partition functions of the solute. There is however a difference in the momentum partition functions Λ_{M} that gives rise to a term defined as 'liberation free-energy' that has to be added to the free energy of solvation.

$$
\begin{equation*}
\Delta G_{l i b}=-R T \ln \left[\frac{\Lambda_{M, g a s}}{\Lambda_{M, s o l}}\right] \tag{2-127}
\end{equation*}
$$

Because the Gibbs free energy is a thermodynamic quantity, the standard states should be specified. For most calculations it is 1 M in both the gas and condensed phases.

The free energy of solvation may be broken down into several components: (1) electrostatic contribution, (2) cavitation contribution, (3) dispersion contribution, (4) repulsion contribution, and (5) thermal contribution. In other words

$$
\begin{equation*}
\Delta G_{s}=\Delta G_{s, e l}+\Delta G_{s, c a v}+\Delta G_{s, d i s}+\Delta G_{s, r e p}+\Delta G_{s, m m} \tag{2-128}
\end{equation*}
$$

Experimentally only the total free energy of solvation is measured, and the measurement of coupling between the different terms is difficult. Though the computational cost restricts the
calculation of the coupling terms, the most important contribution of the solvent reorganization effect arises from the cavitation and electrostatic terms. This gets magnified in the case of polar solvents.

Electrostatic contribution. The electrostatic contribution arises from the solute-solvent electrostatic interaction. The quantum mechanical treatment of the solute embedded in a continuum is given by the Schrödinger equation as

$$
\begin{equation*}
\left[\hat{H}^{0}{ }_{M}(q, Q)+\frac{1}{2} \hat{V}_{e l e c}\left(q, Q, \rho_{M}, \varepsilon\right)\right] \varphi(q, Q)=U(Q) \varphi(q, Q) \tag{2-129}
\end{equation*}
$$

where $V_{\text {ele }}$ characterizes the electrostatic response of the solvent as a function of the dielectric constant ε, charge distribution of the solute ρ_{M}, and $U(Q)$ is the sum total of the electronic energy of the solute and the electrostatic contribution to the free energy of solvation. The work spent in polarizing the solvent accounts for half the solute-solvent interaction energy and hence a factor of $1 / 2$ is introduced into the expression.

$$
\begin{align*}
& \Delta G_{s, e l}^{0}=\left(U^{(f)}+E_{p o l}\right)-U^{(0)}=U^{(f)}-\frac{1}{2}\left\langle\varphi^{(f)}\right| \hat{V}_{\mathrm{int}}\left|\varphi^{(f)}\right\rangle-U^{(0)} \\
& \Delta G_{s, e l}^{0}=\left\langle\varphi^{(f)}\right| \hat{H}^{(0)} M+\frac{1}{2} \hat{V}_{\mathrm{int}}\left|\varphi^{(f)}\right\rangle-\left\langle\varphi^{(0)}\right| \hat{H}^{(0)}\left|\varphi^{(0)}\right\rangle \tag{2-131}
\end{align*}
$$

Cavitation contribution. The cavitation contribution is the work required to create a cavity of appropriate volume and shape in the solvent that is occupied with solute molecules. Several methods are available for the calculation of the cavitation free energy depending on
solute properties such as its shape and size and on solvent properties such as surface tension, isothermal compressibility, number density, or the molecular radius.[111] A common theory employed is the scaled-particle-theory formulated by Pierotti for the calculation of cavitation free energy.[112] The free energy term is calculated from the radii of the solute and the solvent molecules, the number density of the solvent molecules, and the temperature and pressure. In this theory the molecules are assumed to be hard spheres and the free energy is expanded in powers of the radius of the sphere.

$$
\begin{equation*}
\Delta G_{c a v}=K_{0}+K_{1} R_{M S}+K_{2} R_{M S}^{2}+K_{3} R_{M S}^{3} \tag{2-132}
\end{equation*}
$$

where $R_{M S}$ is the sum of the radii of the solvent and the solute, and the coefficients K contain terms such as R_{S}, the molecular radius, n_{S} the number density of the solvent, pressure P, and temperature T.

$$
\begin{gather*}
K_{0}=R T\left[-\ln (1-y)+\frac{9}{2}\left(\frac{y}{1-y}\right)^{2}\right]-\frac{4 \pi R_{S}^{3} P}{3} \tag{2-133}\\
K_{1}=-\frac{3 R T}{R_{S}}\left[\frac{y}{1-y}+3\left(\frac{y}{1-y}\right)^{2}\right]+4 \pi R_{S}^{2} P \tag{2-134}\\
K_{2}=\frac{3 R T}{R_{S}}\left[\frac{y}{1-y}+\frac{3}{2}\left(\frac{y}{1-y}\right)^{2}\right]-4 \pi R_{S} P \tag{2-135}\\
K_{3}=\frac{4 \pi P}{3} \tag{2-136}
\end{gather*}
$$

where $y=4 \pi R_{S}{ }^{3} n_{S} / 3$. For models employing a nonspherical cavity, the scaled-particle theory was modified by Claverie to give the Pierotti-Claverie formula.[112] The free energy of cavitation for each atom was weighted by a factor proportional to the solvent-exposed surface of that atom.[112]

$$
\begin{equation*}
\Delta G_{c a v}=\sum_{i} \frac{S_{i}}{4 \pi R_{i}^{2}} \Delta G_{c a v}\left(R_{i}\right) \tag{2-137}
\end{equation*}
$$

Dispersion-repulsion contribution. The majority of the interactions that hold liquids together are the dispersion forces. This holds true even for solvent containing polar molecules. When a solute is inserted into a cavity, it will experience strong dispersion forces from the solvent molecules. These dispersion attractions between the solute and solvent are accounted for in the dispersion contribution term. Also it is dispersion alone that accounts for free energy transfer of a solute inserted into a solvent when neither of them have permanent electric dipole moments. The repulsion contribution also termed as the exchange-repulsion contribution arises from quantum-mechanical repulsions between the solute and the solvent. The average dispersion-repulsion contribution for a solute M surrounded by solvent S is given as

$$
\begin{equation*}
\left\langle U_{d i s-r e p}\right\rangle=n_{S} \sum_{s \in S} N_{S} \sum_{m \in M} \int U_{m s}\left(r_{m s}\right) g_{m s}\left(r_{m s}\right) d r_{m s}^{3} \tag{2-138}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{m s}=\sum_{k} \alpha_{m s, k} r_{m s}^{-k} \tag{2-139}
\end{equation*}
$$

where N_{S} is the number of fragments of type s in the solvent molecule, n_{s} is the density of the solvent molecules, and $g_{m s}$ is the correlation function between fragments m and s.

Molecular Motion. The thermal or molecular motion contribution is given by:

$$
\begin{equation*}
\Delta G_{m m}=-R T \ln \left(\frac{q_{M, s o l}}{q_{M, g a s}}\right) \tag{2-140}
\end{equation*}
$$

where $q_{M, \text { sol }}$ and $q_{M, \text { gas }}$ are the partition functions of the solute M in the solution and gas phases. The contribution arises from the difference in molecular motions on going from gas to condensed phase. The molecular partition function in the free energy expression is a product of the translational, rotational, vibrational, and electronic partition functions.

Classic Continuum-Solvent Methods

Solvent Accessible Surface Area (SASA). The primary assumption that is made in SASA is that the maximum interaction of the solvent is in the area close to the solute molecule. These interactions are taken into account by the determination of surface area for each atom or a group of atoms surrounding the solvent molecule. The free energy of solvation associated with the nonelectrostatic solvation of any atom will be proportional to the solvent exposed surface area. The free energy expression is given as

$$
\begin{equation*}
\Delta G_{S}=\sum_{i} A_{i} \sigma_{i} \tag{2-141}
\end{equation*}
$$

where A_{i} is the surface area and σ_{i} the atomic surface tension or atomic solvation parameter associated with the particular atom or group of atoms. By surface tension we mean the quantity that relates to energy per unit area rather than surface tension that is a macroscopic quantity. This method does not elucidate the various contributions of the free energy if solvation. In the simplest approach towards the construction of SASA, the solvent molecules are approximated as
spheres of certain radii. The SASA is then generated by the center of the solvent sphere overlapping on to the surface of the solute characterized by its Van der Waals radius. This is equivalent to having a SASA as the sum of the solvent radius plus the Van der Waals radius.

Generalized Born model. For arbitrary cavity shapes, numerical methods have to be employed to solve the Poisson equation. Alternatively the polarization free energy may be solved using an approximation to the Poisson equation, which is the Generalized Born approach, given as

$$
\begin{equation*}
G_{P}=-\frac{1}{2}\left(1-\frac{1}{\varepsilon}\right) \sum_{m, m}^{a t o m s} q_{m} q_{m} \cdot \gamma_{m m} . \tag{2-142}
\end{equation*}
$$

where m, m cover all the atoms, each having a charge q, and γ is an effective Coulomb integral given as

$$
\begin{equation*}
\gamma_{m m^{\prime}}=\left(r_{m m^{\prime}}^{2}+\alpha_{m} \alpha_{m} \cdot \exp \left(-\frac{r_{m m^{\prime}}^{2}}{d_{m m^{\prime}} \alpha_{m} \alpha_{m}^{\prime}}\right)\right)^{-1 / 2} \tag{2-143}
\end{equation*}
$$

where $r_{m m}$ is the interatomic distance, α_{m} is the effective Born radius of atom m. The procedure involves fixing of the atomic radii for defining the cavity. The effective Born radius is then computed using certain techniques, after which the effective Coulomb integral is evaluated. The atomic charges are assigned and Equation 2-142 is solved to yield the polarization free energy.

Polarized-Continuum Model (PCM). The model proposed by Miertus, Scrocco, and Tomasi uses a molecular cavity more practical than a spherical or ellipsoidal shape.[113] Instead of having a charge distribution in the cavity, each atomic nuclei of the solute M is now encapsulated within a sphere of radius 1.2 times the Van der Waals radius of the atom. The volume occupied by these overlapping spheres is taken as the cavity size. An apparent surface
charge (ASC) develops on the surface of the molecular cavity. This is generated by the surface charge density (charge per unit surface area) that varies from region to region on the cavity. The electrostatic potential generated by the ASC is equal to the potential generated by the polarized dielectric continuum. The model relies on calculating the ASC that approximates the solvent's polarization with respect to the solute's charge distribution. The ASC is approximated by tessellating the solute cavity into a number of surface elements and an apparent charge Q_{j} placed at a distance r_{j} in the $j^{\text {th }}$ region. The electrostatic potential due to the polarization of the dielectric in atomic units is given by:

$$
\begin{equation*}
\phi_{\sigma}(r)=\sum_{j} \frac{Q_{j}}{\left|r-r_{j}\right|} \tag{2-144}
\end{equation*}
$$

where the apparent charges are:

$$
\begin{equation*}
Q_{j}=\left[\frac{\left(\varepsilon_{r}-1\right)}{4 \pi \varepsilon_{r}}\right] A_{j} \nabla \phi_{i n}\left(r_{j}\right) \cdot n_{j} \tag{2-145}
\end{equation*}
$$

where A_{j} is the area of the $j^{t h}$ region, $\nabla \phi_{i n}\left(r_{j}\right)$ is the rate of change of electrostatic potential within the cavity, and n_{j} is the unit vector perpendicular to the cavity surface at r_{j}. The electrostatic potential within the cavity is:

$$
\begin{equation*}
\phi_{i n}=\phi_{M, i n}+\phi_{\sigma, i n} \tag{2-146}
\end{equation*}
$$

where $\phi_{M, i n}$ is the charge distribution of the solute and $\phi_{\sigma, i n}$ is the contribution from the polarized solvent. The apparent charges are found by an iterative process where $\phi_{\text {in }}$ is approximated as $\phi_{M, i n}$ by neglecting $\phi_{\sigma, i n}$. The first step involves calculating $\rho^{(0)}$ from the wave function, which is then used to evaluate $\phi^{(0)}{ }_{M}$. The value obtained for the electrostatic potential
is then used to evaluate Q_{j} of the ASC using Equation 2-145. The electrostatic potential $\phi_{\sigma}(r)$ is then calculated using Equation 2-144. The new potential $\phi_{i n}=\phi_{M, i n}+\phi_{\sigma, i n}$ is then calculated from the $\phi_{\sigma}(r)$ obtained from the earlier step. The improved $\phi_{i n}$ is then used to calculate the improved charges Q_{j}. This process continues until self-consistency is achieved. The final apparent charges are then used to calculate the additional term in the Hamiltonian given as

$$
\begin{equation*}
\hat{V}^{(0)} \text { int }=-\sum_{i} \phi_{\sigma}^{(\text {final })}\left(r_{i}\right)+\sum_{\alpha} Z_{\alpha} \phi_{\sigma}^{(\text {final })}\left(r_{\alpha}\right) \tag{2-147}
\end{equation*}
$$

Conductor-like Solvation Model (COSMO). This model resembles PCM in that it uses practical solute-molecule cavities and employs surface charges on the cavity surface surrounded by the solvent medium.[114-116] The major difference being that the solvent medium is now an electrical conductor rather than a dielectric. The practical advantage results from the simplification of the electrostatic problem, facilitating the calculation of analytical gradients. Because in COSMO the solute charge distribution is surrounded by a conductor rather than a dielectric, the conductor-polarization free energy is scaled by a factor of $2(\varepsilon-1) /(2 \varepsilon+1)$. The simplified approach makes the calculation of apparent charges computationally faster. COSMO has also been extended to model real solvents in what is termed as COSMO-RS (real solvent) method. In this model both the solvent and the solute are initially described by means of COSMO calculations. The solute is described by the screening charge density on the cavity surface.

Atomic Units

Theoretical calculations employ a system of units called atomic units to simplify the equations. This system was developed by setting many fundamental constants equal to 1 . The greatest advantage is the reduction of computer time required to perform computations. The other advantage is that any changes in measured values of standard physical constants do not affect the theoretical calculations. The natural unit of mass is the mass of the electron, the unit of
charge is the magnitude of the charge of an electron or a proton. The natural unit of angular momentum on an atomic or molecular scale is \hbar. The natural unit of length is the Bohr radius defined as

$$
\begin{equation*}
a_{0}=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m_{e} e^{2}}=5.2918 \times 10^{-11} \mathrm{~m} \tag{2-148}
\end{equation*}
$$

The natural unit of energy is called the Hartree and is denoted by E_{h}.

$$
\begin{equation*}
E_{h}=\frac{m_{e} e^{4}}{16 \pi \varepsilon_{0}{ }^{2} \hbar^{2}}=27.211 \mathrm{eV}=4.3597 \times 10^{-18} \mathrm{~J} \tag{2-149}
\end{equation*}
$$

The use of atomic units simplifies the equations used in atomic and molecular calculations. The Hamiltonian for a helium atom is written as

$$
\begin{equation*}
\hat{H}=-\frac{\hbar^{2}}{2 m_{e}} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 m_{e}} \nabla_{2}^{2}-\frac{2 e^{2}}{4 \pi \varepsilon_{0} r_{1}}-\frac{2 e^{2}}{4 \pi \varepsilon_{0} r_{2}}+\frac{e^{2}}{4 \pi \varepsilon_{0} r_{12}} \tag{2-150}
\end{equation*}
$$

simplifies, in atomic units, to

$$
\begin{equation*}
\hat{H}=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{2}{r_{1}}-\frac{2}{r_{2}}+\frac{1}{r_{12}} \tag{2-151}
\end{equation*}
$$

Basis Sets

In order to obtain accurate molecular SCF wave functions, the spatial orbitals should be expanded as a linear combination of one-electron basis functions χ_{s} :

$$
\begin{equation*}
\varphi_{i}=\sum_{s=1}^{b} c_{s i} \chi_{s} \tag{2-152}
\end{equation*}
$$

The need for an efficient basis set is essential for success of the calculation. In other words, the basis set can be described as a set of atomic functions used to construct molecular orbitals. One of the early basis sets employed in the computational studies of polyatomic molecules consisted of the Slater type atomic orbitals abbreviated as STOs

$$
\begin{equation*}
S_{n l m}(r, \theta, \phi)=\frac{(2 \xi)^{n+1 / 2}}{[(2 n)!]^{1 / 2}} r^{n-1} e^{-\xi r} Y_{l}^{m}(\theta, \phi) \tag{2-153}
\end{equation*}
$$

where ξ (zeta) is the orbital exponent. Hence each χ_{s} is a STO basis function and we have LCSTO MOs (Linear combinations of Slater type orbitals-molecular orbitals). For diatomic molecules the basis function are constructed by assigning a few atomic orbitals on one atom and the rest are centered on the other atom. However for polyatomic molecules, the STOs are centered on each atom. As we move to polyatomic molecules we need to deal with multi-center integrals. This creates some difficulties, as the evaluation of multi-center integrals is time consuming. However if we use Gaussian functions instead of Slater orbitals, the multicenter integrals are easy to evaluate. Boys proposed the use of Gaussian-type functions (GTFs) in 1950, [117] and a Cartesian Gaussian centered on atom a is defined as

$$
\begin{equation*}
g_{i j k}=N x_{a}{ }^{i} y_{a}^{j} z_{a}^{k} e^{-\alpha r_{a}^{2}} \tag{2-154}
\end{equation*}
$$

where i, j, k are nonnegative integers and α is the orbital exponent. The normalization constant is given as

$$
\begin{equation*}
N=\left(\frac{2 \alpha}{\pi}\right)^{3 / 4}\left[\frac{(8 \alpha)^{i+j+k} i!j!k!}{(2 i)!(2 j)!(2 k)!}\right]^{1 / 2} \tag{2-155}
\end{equation*}
$$

We can have different GTFs depending on the sum of the nonnegative integers. When the sum
$i+j+k=0$, the GTF is known as a s-type Gaussian, when $i+j+k=1$, we have a p-type Gaussian, and when $i+j+k=2$, we have a d-type Gaussian. Any s atomic orbital is represented by a linear combination of Gaussians having the form $\exp \left(-\alpha r_{b}{ }^{2}\right)$ with different orbital exponents. Any atomic p_{x} orbital is given by a linear combination of Gaussians of the form $x_{b} \exp \left(-\alpha r_{b}^{2}\right)$. The Gaussian orbital describes the Slater orbital reasonable well for values of $\mathrm{r}>$ a_{0}; however we have a poor approximation for $\mathrm{r}<\mathrm{a}_{0}$. Hence we need to have a linear combination of Gaussian functions to curve fit Slater orbitals.

A basis set consisting of one STO for each inner-shell and valence-shell of each atom is called the minimal (or minimum) basis set. For example, for $\mathrm{C}_{2} \mathrm{H}_{4}$ a minimal basis set consists of $1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}_{\mathrm{x}}, 2 \mathrm{p}_{\mathrm{y}}$, and $2 \mathrm{p}_{\mathrm{z}}$ atomic orbitals on each carbon and a 1 s STO on each hydrogen; hence they are 5 STOs on each carbon and one each on H , for a total of 14 basis functions. There are two distinct sets of s-type STOs and one set of p-type STO on the two carbon atoms and one s type STO for the four hydrogen atoms.

Describing an atomic orbital with a finite number of Gaussian functions introduces several inadequacies in the calculations. The major limitations are as follows: because all the orbitals in a STO-NG (where N is the number of Gaussian functions describing the Slater orbital) basis set have the same orbital exponent, they have the same size. This cannot be a true picture as orbitals are diffused to different extents depending on the type of bonding. Hence different molecules have different orbital exponents. The other limitation lies in the fact that the STO-NG basis sets cannot predict anisotropic charge distributions. Depending on the directional nature of the bonding, electron densities diffuse to a different extent along the bonds. This leads to anisotropic distribution of the electron density that cannot be predicted by the STO-NG basis set as all the orbitals having the same angular momentum have the same radial dependence.

Variable functions were introduced into basis sets that could adjust the shape of the atomic orbital. Hence the size of the atomic orbital can now be optimized as part of the HartreeFock calculation. Each atomic orbital is now expressed as a linear combination of two Slatertype orbitals with different orbital exponents. For example, the 1s orbital can be written as

$$
\begin{equation*}
\varphi_{1 s}(r)=\varphi_{1 s}^{S T O}\left(r, \xi_{1}\right)+d \varphi_{1 s}^{S T O}\left(r, \xi_{2}\right) \tag{2-156}
\end{equation*}
$$

The two Slater orbitals represent two different size 2 s orbitals. Using a linear combination of these orbitals with different orbital exponents, a new atomic orbital can be constructed by varying the constant d. The linear combination retains the desired symmetry of the original atomic orbital. Basis sets generated from a linear combination of two Slater orbitals with different exponents are called double-zeta (DZ) basis sets. A triple-zeta (TZ) basis set is generated by a linear combination of three STOs with different orbital exponents.

A split-valence (SV) basis set uses only one minimal basis set for the inner shell (core) atomic orbital but uses two (or more) for each valence atomic orbital. Hence a SV basis set is double zeta (or triple zeta) for the valence AOs and is minimal for the core AO. Split-valence sets are designated valence double zeta (DVZ), valence triple zeta (VTZ) depending on the number of STOs used for the valence AO.

In order to facilitate the evaluation of the secular determinant the split-valence basis sets are expressed in terms of Gaussian functions.

$$
\begin{equation*}
\chi_{r}=\sum_{u} d_{u r} g_{u} \tag{2-157}
\end{equation*}
$$

where g_{u} ' s are the normalized Cartesian Gaussians given by Equation 2-154 and are called primitive Gaussians. The term $d_{u r}$ corresponds to contracted coefficients that are held constant during a calculation. In Equation 2-157, χ_{r} is called a contracted Gaussian-type function (CGTF). Hence each of the two Slater orbitals in Equation 2-156 are expressed as a linear combination of Gaussian functions. The notation used to express the number of Gaussian functions is N-MPG, where N is the number of Gaussian functions employed for the core orbitals; hyphen indicates the use of split-valence basis set; M and P are used to describe the number of Gaussians used for the orbitals with different orbital exponents. By convention M corresponds to the number of

Gaussian functions used to express the smaller Slater orbital and P corresponds to the larger Slater orbital. G simply indicates the usage of Gaussian functions.

During the formation of molecules, the atomic orbitals distort upon overlap and there is a shift in their charge centers. This affect is termed as polarization and one should account for this phenomenon in the basis set. To account for the polarization effects a correction to the basis set is made by adding a STO whose l quantum numbers are greater than the maximum l of the valence shell of the ground state atom. Such basis sets are termed polarized (P) basis sets. For example, the double-zeta plus polarization set ($\mathrm{DZ}+\mathrm{P}$ or DZP) adds to the valence double zeta a set of five $3 d$ functions to each second row atoms and a set of three $2 p$ functions on each hydrogen atom. This is also indicated by an asterix *, for example $6-31 \mathrm{G}^{*}$ that indicates the addition of $3 d$ orbitals to the $2 p$ orbitals of the atoms of the second row elements. A double asterix $\left(6-31 \mathrm{G}^{* *}\right)$ indicates the application of polarization to the hydrogen atoms by the addition of $2 p$ orbitals. The $3-21 \mathrm{G}^{*}$ is an exception in that the d functions are added only to $2^{\text {nd }}$ row elements.

One or two plus signs can also be added such as $6-31+\mathrm{G}^{*}$ or $6-31++\mathrm{G}^{*}$. A plus sign is added to indicate the addition of diffuse functions; a single plus sign indicates that diffuse functions have been added to atoms other than hydrogen. A second plus sign indicates the addition of diffuse functions to all atoms. The diffuse functions are primitives with small orbital exponents that describe the shape of the wave function for orbitals far away from nucleus. The other applications of diffuse functions involve the description of basis sets for anions. They are also used for simulating long range interactions such as Van der Waals interactions. Basis sets employing diffuse functions are known as augmented basis sets.

An extension of the VDZ notation is the aug-cc-pVDZ, where 'aug' indicates that this is an augmented basis set implying the addition of diffuse functions. Electron correlation has also been accounted for and hence the term 'cc'. The term ' p ' denotes the inclusion of polarization functions in the basis sets. These basis sets are commonly employed for high-accuracy electron correlation calculations.

CHAPTER 3

RESULTS AND DISCUSSION

Computational Details

Geometry optimization and single point energy calculations were performed using NWChem 5.1 from the Molecular Sciences Laboratory Software Group of Pacific Northwest National Laboratory.[118, 119] The Extensible Computational Chemistry Environment (Eccé) software, version 4.5.1, was used to manage the calculations and pictorial representations. All calculations were performed at the DFT level of theory, [99] employing the 6-31G* basis set [120] and the B3LYP hybrid exchange correlation functional.[121]

The calculations were performed on a eight node Fedora Core 4 Linux base computer cluster consisting of a HP DL 145 G2 master node (dual AMD Opteron 246'S 3GB RAM, 160 SATA HDD) and a file server node (DL 145, dual Opteron 242’S, 2GB RAM~1TB U230 SCSI/SATA RAID 5 drives array). The nodes were connected using a dual switched gigabit Ethernet network.

Solvent effects were calculated using the Conductor-like Solvation Model (COSMO).[114-116]

Input Files

The structure of the input file directs the launching of the job in NWChem. Before the calculation begins NWChem reads through the input file (see Tables 3 and 4) to search for startup directives that indicate the type of job, the memory usage, identifying the directories for storing the output, etc. The start-up directives include commands like START, SCRATCH_DIR, MEMORY, ECHO, etc. After the file has been reviewed for start-up directives, the file is re-read until the TASK directive is reached. The TASK directive issues a command for the commencement of the calculation at the requested level of theory.

Table 3. NWChem input file of DMPO

```
scratch_dir /scr/sai
permanent_dir /home/sai/nw_work/Spin-traps/DMPO-RDFT-6-31G
Title "DMPO-RDFT-6-31G"
Start DMPO-RDFT-6-31G
echo
charge 0
geometry autosym units angstrom
    C 1.28314 3.28424 -0.954581
    H 0.432444 3.94761 -1.06987
    C 2.41265 3.20858 -1.91389
    C 3.32595 2.13385 -1.31176
    C 2.60248 1.65216 -0.0259173
    N 1.39962 2.46809 0.0344717
    O 0.479779 2.36835 0.998348
    H 3.47620 1.31041 -2.04467
    H 4.32465 2.57269 -1.09056
    H 2.04048 2.90662 -2.91631
    H 2.93135 4.18894 -1.97053
    C 2.21523 0.167214 -0.128128
    H 3.12368 -0.467967 -0.204572
    H 1.63660 -0.145941 0.767828
    H 1.58539 -0.00325839 -1.02801
    C 3.46462 1.89861 1.22354
    H 4.46045 2.29812 0.934816
    H 2.96936 2.63256 1.89526
    H 3.61142 0.953023 1.78795

Table 3 (continued)
end
ecce_print /home/sai/nw_work/Spin-traps/DMPO-RDFT-6-31G/ecce.out
basis "ao basis" cartesian print
H library "6-31G*"
O library "6-31G*"
C library "6-31G*"
N library "6-31G*"
END
dft
mult 1
xC b3lyp
iterations 200
mulliken
end
driver
gmax 0.00045
grms 0.0003
xmax 5e-05
xrms 0.0012
maxiter 100
end
task dft optimize

Table 4. NWChem input file of DMPO solvation using COSMO model
```

scratch_dir /scr/sai
permanent_dir /home/sai/nw_work/Spin-traps/DMPO-RDFT-COSMO-1
Title "DMPO-RDFT-COSMO-1"
Start DMPO-RDFT-COSMO-1
echo
charge 0
geometry autosym units angstrom

C	0.953659	1.38186	-0.0671880

 H 1.91000 1.88732 -0.104842
 C -0.388225 1.97269 0.222300
 C -1.35421 0.809028 -0.122296
 C -0.497766 -0.473188 -0.0642258
 N 0.917990 0.0830835 -0.221829
 O 1.87675 -0.717911 -0.424313
 H -2.20933 0.758502 0.558069
 H -1.74597 0.944766 -1.13579
 H -0.473095 2.27806 1.27659
 H -0.593526 2.86897 -0.375373
 C -0.541071 -1.17791 1.29744
 H -1.50555 -1.67898 1.43267
 H 0.256264 -1.92464 1.35176
 H -0.405255 -0.465539 2.11908
 C -0.753954 -1.45370 -1.20570
 H -0.694454 -0.949616 -2.17635
 H -0.00857352 -2.25246 -1.18748
    ```

Table 4 (continued)
```

H -1.75289 -1.89173 -1.10465
end
ecce_print /home/sai/nw_work/Spin-traps/DMPO-RDFT-COSMO-
1/ecce.out
basis "ao basis" cartesian print
H library "6-31G*"
O library "6-31G*"
C library "6-31G*"
N library "6-31G*"
END
dft
mult 1
xC b3lyp
iterations 200
mulliken
end
driver
gmax 0.00045
grms 0.0003
xmax 5e-05
xrms 0.0012
maxiter 100
end
cosmo
end
task dft optimize

```

Examining the different lines in Tables 3 and 4, TITLE directive is used to specify the job title. The start-up directive ECHO is a way of printing the input file in the output of the calculation. The CHARGE directive defines the total charge of the system. The GEOMETRY directive defines the geometry in default units which is in Cartesian coordinates in Angstrøms. The basis sets are defined for the atoms in the molecule, after which the level of theory is mentioned. For example, the above input file performs the calculation at DFT level of theory, employing the \(6-31 G^{*}\) basis set and the B3LYP hybrid exchange correlation functional. The input file ends with a TASK directive that issues a command for geometry optimization of the molecule under consideration. Solvation studies using COMSO are done by incorporating the key word 'COSMO' in the input file and the default value of the dielectric constant is equated to 78.4D.

\section*{Discussion of Results}

The spin traps under investigation are the cyclic type DMPO and linear type PBN nitrones. To improve the selectivity of the spin traps, details of the reaction mechanism must be properly understood so that the relevant structure property relationships may be elucidated. In vivo studies require a good understanding of the mechanism in an aqueous environment. Prior work [122], involving calculations of these spin traps in gas phase does not match the experimental data (see Table 5).

Table 5. Dipole moments of DMPO-type and the PBN-type Spin Traps at the DFT/B3LYP/6\(31 G^{*} /\) COSMO level.
\begin{tabular}{|c|c|c|}
\hline Compounds & \begin{tabular}{c} 
Calculated dipole moment \\
(D)
\end{tabular} & Literature values [123] \\
\hline DMPO & 5.34 & 3.72 \\
\hline PBN & 4.20 & \(\mathrm{n} / \mathrm{a}\) \\
\hline DMPO-OH & 3.57 & 2.5 \\
\hline PBN-OH & 4.48 & \(\mathrm{n} / \mathrm{a}\) \\
\hline
\end{tabular}

The difference indicates that there are significant changes in structure and energy of the spin traps in solution. To model these systems more accurately, computational solution models are needed. Existing continuum solvation models like COSMO (Conductor like Solvation Model) [114-116] that treat the solvent as a uniform dielectric, describe only the physics of solvation and fail to account for chemical effects like hydrogen bonding. The COSMO model incorporates the molecule in a cavity of approximately 1.2 times the Van der Waals radius. The disadvantage with standard COSMO is that the spin trap and the water molecule surrounding it are encapsulated in separate cavities. This model is unable to account for short range interactions like hydrogen bonding as the cavities are separated by a uniform dielectric.

Accurate local chemistry is vital because of the importance to molecular geometry of both intra and intermolecular hydrogen bonding. These hydrogen bonding interactions are crucial in stabilizing the spin trap and its radical adduct in solution. The properties in the gas phase do not match with those in the condensed phase as a result of the chemical interactions with the solvent. The alternative is to use a full quantum mechanical approach that explicitly includes the solvent molecules in the calculation. The adequate description of the long range, predominately physics, effects on a solvated molecule may require dozens or even hundreds of solvent molecules. Because the calculation time scales with the number of electrons to the fourth power \(\left(\mathrm{N}^{4}\right)\), these calculations are often infeasible, requiring access to computer superclusters with thousands of processors.

Practical solutions lie in the development of hybrid models. The hybrid models consist of surrounding the molecule of interest (radical, spin trap, or adduct) with a limited number of solvent molecules to account for the short range chemical effects and use continuum models such as COSMO to account for the long range physics. This hybrid model should accurately reflect the biological environment at a reasonable computational cost. One of the first questions that must be answered is just how many water molecules must be included in the hybrid model.

\section*{DMPO Solvation Studies}

Intermolecular hydrogen bonding plays a significant role in the stabilization of DMPO (see Figure 2). The hybrid model consists of surrounding the spin trap with discrete water molecules (see Figure 3). The idea behind the hybrid model is to approximate the number of water molecules surrounding the spin trap, in order to describe the chemical properties.


Figure 2. DMPO spin trap.


Figure 3. DMPO spin trap surrounded by water molecules (a representation of the hybrid model).

As indicated by Figure 4, the single point energy starts to level off after a limited number, indicating that the effects due to the water molecules are saturated. As a result, further addition of water molecules will only result in cluster formation with the existing water molecules without inducing additional significant changes in the DMPO.[124]


Figure 4. Plot of the difference in the single point energy of DMPO as a function of the number of water molecules in the hybrid model.

As a result, additional water molecules will only increase the computational complexity without providing further changes in the properties of the spin trap. This greatly simplifies the work, as we can obtain a true picture while saving time and also by reducing the complexity of the problem. The effects of intermolecular hydrogen bonding are evident in Table 6.

Table 6. Geometry changes (trends in bond lengths and bond and bond angles) in DMPO.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline System & \(6 \mathrm{~N}-1 \mathrm{C}\) & \(6 \mathrm{~N}-5 \mathrm{C}\) & \(7 \mathrm{O}-6 \mathrm{~N}\) & \begin{tabular}{c}
\(1 \mathrm{C}-3 \mathrm{C}-\) \\
10 H
\end{tabular} & \begin{tabular}{c}
\(6 \mathrm{~N}-5 \mathrm{C}-\) \\
12 C
\end{tabular} & \(1 \mathrm{C}-6 \mathrm{~N}-5 \mathrm{C}\) & \begin{tabular}{c}
\(1 \mathrm{C}-6 \mathrm{~N}-\) \\
7 O
\end{tabular} & \begin{tabular}{c}
\(5 \mathrm{C}-12 \mathrm{C}-\) \\
13 H
\end{tabular} & \(5 \mathrm{C}-12 \mathrm{C}-14 \mathrm{H}\) \\
\hline DMPO & 1.30844 & 1.52926 & 1.26563 & 111.37 & 106.54 & 111.97 & 128.79 & 110.16 & 109.71 \\
\hline DMPO + 1 water molecule & 1.30396 & 1.52988 & 1.2767 & 111.15 & 107.62 & 112.26 & 126.88 & 109.16 & 110.91 \\
\hline DMPO + 2 water molecules & 1.30774 & 1.52918 & 1.26815 & 110.8 & 106.46 & 111.73 & 128.94 & 110.14 & 109.74 \\
\hline DMPO + 3 water molecules & 1.29971 & 1.52522 & 1.29403 & 110.68 & 108.11 & 113.12 & 126.38 & 111.97 & 108.83 \\
\hline DMPO + 10 water molecules & 1.29181 & 1.52207 & 1.31574 & 109.01 & 107.11 & 113.5 & 126.65 & 108.83 & 110.12 \\
\hline DMPO + 17 water molecules & 1.29093 & 1.51623 & 1.31776 & 108.2 & 108.34 & 114.52 & 125.87 & 108.97 & 111.49 \\
\hline
\end{tabular}
*All the bond lengths are in Angstrøms ( \(\AA\) ) and the bond angles in degrees \(\left({ }^{\circ}\right)\).

As indicated in Table 6, intermolecular hydrogen bonding with the oxygen atom (7O) of the nitroxide group has led to an elongation of the \(\mathrm{N}-\mathrm{O}\) bond \((7 \mathrm{O}-6 \mathrm{~N})\). Another evidence of strong hydrogen bonding interaction is the increase in the \(6 \mathrm{~N}-5 \mathrm{C}-12 \mathrm{C}\) bond angle. The presence of water molecules around the \(\mathrm{N}-\mathrm{O}\) bond increases the stearic interaction with the methyl substituent on the 5 C resulting in an increase in \(6 \mathrm{~N}-5 \mathrm{C}-12 \mathrm{C}\) bond angle. The same reasoning can be given for the trends in \(1 \mathrm{C}-6 \mathrm{~N}-5 \mathrm{C}\) bond angle, \(7 \mathrm{O}-6 \mathrm{~N}-5 \mathrm{C}-12 \mathrm{C}\) and the \(7 \mathrm{O}-6 \mathrm{~N}-5 \mathrm{C}-16 \mathrm{C}\) torsion angles (see Table 7).

Table 7. Trends in torsion angles in DMPO.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline System & \(1-6-5-12\) & \(1-6-5-16\) & \(3-4-5-6\) & \(4-5-12-14\) & \(6-5-4-8\) & \(6-5-12-14\) & \(7-6-5-12\) & \(7-6-5-16\) \\
\hline DMPO & -106.0225 & 134.1624 & -20.48112 & -166.47325 & -143.22754 & -55.01548 & 71.45362 & -48.36145 \\
\hline \begin{tabular}{c} 
DMPO + 3 water \\
molecules
\end{tabular} & -103.0388 & 135.3609 & -22.38403 & -178.47139 & -145.24109 & -55.15206 & 74.78137 & -46.819 \\
\hline \begin{tabular}{c} 
DMPO + 17 water \\
molecules
\end{tabular} & -114.4504 & 124.8427 & -9.28145 & -179.86733 & -130.46899 & -67.89855 & 62.87527 & -57.83164 \\
\hline
\end{tabular}
*All the bond angles are in degrees \(\left({ }^{\circ}\right)\).

As indicated by the changes in bond lengths, bond angles, and torsion angles, there are significant geometry changes in the presence of water molecules arising from strong hydrogen bonding and other interactions. The hydrogen bonding in the DMPO hybrid model is as follows (see Table 8)

Table 8. Hydrogen bond lengths in DMPO hybrid model.
\begin{tabular}{|c|c|c|}
\hline System & Intermolecular H-bonding & \begin{tabular}{c} 
Intramolecular H-bonding(with other \\
water molecules)
\end{tabular} \\
\hline DMPO & n/a & n/a \\
\hline DMPO +1 & 1.84 & 1.798 \\
\hline DMPO +2 & 1.755 & 1.806 \\
\hline DMPO +3 & 1.785 & 1.798 \\
\hline DMPO +10 & 1.686 & 1.971 \\
\hline & 1.803 & \\
\hline DMPO +17 & 1.778 & 1.901
\end{tabular}
*All the bond lengths are in Angstrøms ( \(\AA\) ).

Changes in the local geometry are also reflected in the change in dipole moments for the DMPO spin trap (see Table 9).

Table 9. Trends in dipole moments for the DMPO spin trap.
\begin{tabular}{|c|c|}
\hline System & Dipole moments (D) \\
\hline DMPO & 3.721 \\
\hline DMPO +1 water molecule & 3.862 \\
\hline DMPO +2 water molecules & 3.737 \\
\hline DMPO +3 water molecules & 3.963 \\
\hline DMPO +10 water molecules & 4.038 \\
\hline DMPO +17 water molecules & 4.084 \\
\hline
\end{tabular}

\section*{PBN Solvation Studies}

Unlike the spin traps, the adducts are capable of forming intramolecular as well as intermolecular hydrogen bonds. For PBN-OH, the cis-adduct is stabilized by the strong intramolecular hydrogen bonding between the N-O and the O-H functional groups (see Figure 5). The trans adduct is stabilized by the intermolecular hydrogen bonds with water, which as expected significantly changes the dipole moment and other properties (see Figure 6). The transconformation is not found using the COSMO model, as the spin trap is surrounded by a uniform dielectric incapable of forming the needed hydrogen bonds.


Figure 5. PBN-OH adduct in the cis conformation with respect to the nitroxide group.


Figure 6. PBN-OH adduct in the trans conformation with respect to the nitroxide group.

As indicated in Table 10, there are distinct changes in properties like dipole moment as the geometry of the adduct changes from cis to trans.

Table 10. Calculated single point energies and dipole moments for the hydroxyl radical, spin trap and two adduct conformers at the B3LYP/6-31G* level.
\begin{tabular}{|c|c|c|}
\hline Molecule & Molecular energy / \(\mathrm{E}_{\mathrm{h}}{ }^{*}\) & Dipole moment (D) \\
\hline OH & -75.686 & 1.773 \\
\hline PBN & -558.125 & 3.036 \\
\hline PBN-OH (cis) & -633.930 & 3.053 \\
\hline PBN-OH (trans) & -633.920 & 1.809 \\
\hline
\end{tabular}
*All the energies are in hartrees and 1 hartree is \(2625.500 \mathrm{~kJ} / \mathrm{mol}\).


Figure 7. Plot of the difference in single point energies of the \(\mathrm{PBN}-\mathrm{OH}\) cis-adduct as a function of the number of water molecules.

As may be seen in Figure 7, the energy difference starts to level off after the addition of \(9-10\) water molecules. The presence of additional water molecules will have an insignificant effect on the geometry of the molecule thereby simplifying the problem at hand. The hybrid model for the PBN-OH adduct involves surrounding the adduct with discrete water molecules as in Figures 8 and 9. The effect of intramolecular and intermolecular interactions is evident in Table 11.


Figure 8. PBN-OH cis adduct surrounded by water molecules.


Figure 9. PBN-OH trans adduct surrounded by water molecules.

Table 11. Geometry changes (trends in bond lengths and bond angles) in PBN-OH cis adduct.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline System & \(290-12 \mathrm{C}\) & \begin{tabular}{c}
\(30 \mathrm{H}-\) \\
290
\end{tabular} & \begin{tabular}{c}
\(7 \mathrm{C}-\) \\
\(12 \mathrm{C}-\) \\
13 N
\end{tabular} & \begin{tabular}{c}
\(13 \mathrm{~N}-\) \\
\(12 \mathrm{C}-28 \mathrm{H}\)
\end{tabular} & \begin{tabular}{c}
\(28 \mathrm{H}-\) \\
\(12 \mathrm{C}-29 \mathrm{O}\)
\end{tabular} & \begin{tabular}{c}
\(12 \mathrm{C}-\) \\
\(13 \mathrm{~N}-15 \mathrm{C}\)
\end{tabular} & \begin{tabular}{c}
\(13 \mathrm{~N}-16 \mathrm{C}-13 \mathrm{C}-15 \mathrm{C}-\) \\
24 C
\end{tabular} & \begin{tabular}{c}
\(16 \mathrm{C}-15 \mathrm{C}-\) \\
24 C
\end{tabular} & \begin{tabular}{c}
\(12 \mathrm{C}-29 \mathrm{O}-\) \\
30 H
\end{tabular} \\
\hline PBN-OH & 1.39892 & 0.98045 & 110.46 & 108.13 & 107.65 & 123.69 & 109.77 & 108.02 & 111.08 & 104.03 \\
\hline PBN-OH + 1 water molecule & 1.41683 & 0.98214 & 112.29 & 108.45 & 106.53 & 126.86 & 110.31 & 106.82 & 110.9 & 103.52 \\
\hline PBN-OH + 4 water molecules & 1.41123 & 0.98471 & 112.88 & 106.04 & 104.77 & 126.03 & 111.06 & 106.71 & 109.91 & 110.49 \\
\hline PBN-OH + 8 water molecules & 1.41684 & 1.02347 & 112.83 & 106.69 & 105.62 & 126.22 & 111.24 & 106.76 & 109.88 & 113.02 \\
\hline
\end{tabular}
*All the bond lengths are in Angstrøms \((\AA)\) and the bond angles in degrees \(\left({ }^{\circ}\right)\).

As seen in Table 11, there is an elongation of the 200-12C bond as the intramolecular hydrogen bonding gets stronger. There is also a considerable change in the \(12 \mathrm{C}-29 \mathrm{O}-30 \mathrm{H}\) bond angle as the hydrogen atom \((30 \mathrm{H})\) on the hydroxyl radical is involved in strong intermolecular hydrogen bond interactions with the water molecules surrounding it. The effect of intermolecular hydrogen bond interactions can also be seen in the variation of \(7 \mathrm{C}-12 \mathrm{C}-13 \mathrm{~N}-14 \mathrm{O}\) torsion angle given in Table 12. As more water molecules cluster around the nitroxide functionality it results in a steric interaction with the tert-butyl group on the atom adjacent to the nitrogen atom. This observation is reflected in an increase in the 7C-12C-13N-15C torsion angle from - \(101.58996^{\circ}\) to \(-81.8889^{\circ}\). As is evident in Table 13, the adduct is initially stabilized by intramolecular hydrogen bonds, however as the number of water molecules are increased from 0 to 8 the intermolecular hydrogen bonds start playing a dominant role over the intramolecular hydrogen bonds. This is reflected in an increase in the \(14 \mathrm{O}-13 \mathrm{~N}-12 \mathrm{C}-29 \mathrm{O}\) torsion angle. The trend in \(28 \mathrm{H}-12 \mathrm{C}-29 \mathrm{O}-30 \mathrm{H}\) torsion angle also reflects the strength of the intermolecular hydrogen bond interactions.

Table 12. Trends in torsion angles for the PBN-OH cis adduct.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline System & \begin{tabular}{c}
\(5-7-12-\) \\
29
\end{tabular} & \begin{tabular}{c}
\(7-12-13-\) \\
14
\end{tabular} & \(7-12-13-15\) & \begin{tabular}{c}
\(12-13-15-\) \\
20
\end{tabular} & \begin{tabular}{c}
\(13-12-29-\) \\
30
\end{tabular} & \begin{tabular}{c}
\(14-13-12-\) \\
28
\end{tabular} & \begin{tabular}{c}
\(14-13-12-\) \\
29
\end{tabular} & \begin{tabular}{c}
\(14-13-15-\) \\
20
\end{tabular} & \begin{tabular}{c}
\(28-12-29-\) \\
30
\end{tabular} \\
\hline PBN-OH & 75.24932 & 96.55436 & -101.58996 & 161.12872 & 29.805 & -143.73417 & -27.31288 & -37.66055 & 146.53528 \\
\hline PBN-OH + 1 water molecule & 74.32034 & 84.42158 & -91.12573 & 112.83136 & 35.92951 & -153.74493 & -39.36371 & -62.57459 & 151.60487 \\
\hline PBN-OH + 4 water molecules & 78.32146 & 75.70435 & -101.4521 & 117.38281 & 70.07795 & -164.9281 & -51.89831 & -59.82544 & 176.08349 \\
\hline PBN-OH + 8 water molecules & 64.91069 & 78.09934 & -95.55464 & 112.81694 & 57.45741 & -162.70852 & -49.08169 & -60.79361 & 171.78023 \\
\hline PBN-OH + 11 water molecules & 62.2839 & 78.27381 & -81.8889 & 95.9016 & 61.91076 & -161.6407 & -47.0934 & -63.88429 & 177.0782 \\
\hline
\end{tabular}
*All the bond lengths are in Angstrøms ( \(\AA\) ) and the bond angles in degrees \(\left({ }^{\circ}\right)\).

Table 13. Hydrogen bond lengths in PBN-OH cis adduct.
\begin{tabular}{|c|c|c|c|}
\hline System & Intramolecular Hbonding & Intermolecular Hbonding & Type \\
\hline PBN-OH & 1.939 & & \\
\hline PBN-OH + 1 water molecule & 1.976 & 1.946 & \\
\hline \multirow{3}{*}{PBN-OH +4 water molecules} & 2.634 & 1.895 & \[
\begin{gathered}
\hline(\mathrm{N}- \\
\left.\mathrm{O} \ldots \mathrm{H}_{2} \mathrm{O}\right)
\end{gathered}
\] \\
\hline & & 1.731 & \[
\begin{gathered}
(\mathrm{H}- \\
\left.\mathrm{O} \ldots \mathrm{H}_{2} \mathrm{O}\right)
\end{gathered}
\] \\
\hline & & 1.863 & \[
\begin{gathered}
(\mathrm{O}- \\
\left.\mathrm{H} . . . \mathrm{OH}_{2}\right)
\end{gathered}
\] \\
\hline \multirow{3}{*}{PBN-OH +11 water molecules} & 2.432 & 1.739 & \[
\begin{gathered}
(\mathrm{O}- \\
\left.\mathrm{H} . . \mathrm{OH}_{2}\right)
\end{gathered}
\] \\
\hline & & 1.979 & ( \(\left.\mathrm{H}-\mathrm{O} \ldots . \mathrm{H}_{2} 0\right)\) \\
\hline & & 2.029 & \[
\begin{gathered}
\hline(\mathrm{N}- \\
\left.\mathrm{O} \ldots \mathrm{H}_{2} \mathrm{O}\right)
\end{gathered}
\] \\
\hline
\end{tabular}
*All the bond lengths are in Angstrøms ( \(\AA\) ).

As is evident from Table 13, as the number of water molecules increase the intermolecular hydrogen bonds become stronger than the intramolecular hydrogen bonds, and are the stabilizing forces for the cis adduct. The notable geometry changes in the trans adduct are given in Table 14. As seen in Table 15, the trans adduct is stabilized by extensive intermolecular hydrogen bonding. The geometry changes in going from the cis to trans configuration are given in Table 16.

Table 14. Geometry changes (trends in bond angles) in PBN-OH trans adduct.
\begin{tabular}{|c|c|c|c|}
\hline System & \(13 \mathrm{~N}-12 \mathrm{C}-29 \mathrm{O}\) & \(12 \mathrm{C}-13 \mathrm{~N}-14 \mathrm{O}\) & \(17 \mathrm{H}-16 \mathrm{C}-19 \mathrm{H}\) \\
\hline PBN-OH & 110.94 & 115.44 & 109.1 \\
\hline PBN-OH + 2 water molecules & 113.2 & 113.2 & 107.94 \\
\hline PBN-OH + 8 water molecules & 110.94 & 115.44 & 109.1 \\
\hline
\end{tabular}
*All the bond angles in degrees \(\left({ }^{\circ}\right)\).

Table 15. Hydrogen bond lengths in PBN-OH trans adduct.
\begin{tabular}{|c|c|c|c|}
\hline System & Intramolecular H-bonding & Intermolecular H-bonding & Type \\
\hline PBN-OH & 2.255 & & \((\mathrm{~N}-\mathrm{O} \ldots \mathrm{H}-\mathrm{C})\) \\
\hline \multirow{2}{*}{ PBN-OH + 2 water molecules } & 2.588 & 1.827 & \(\left(\mathrm{O}-\mathrm{H} \ldots \mathrm{OH}_{2}\right)\) \\
\cline { 2 - 4 } & & 1.937 & \(\left(\mathrm{~N}-\mathrm{O} \ldots \mathrm{H}_{2} \mathrm{O}\right)\) \\
\hline \multirow{3}{*}{ PBN-OH + 8 water molecules } & & 1.666 & \(\left(\mathrm{O}-\mathrm{H} \ldots \mathrm{OH}_{2}\right)\) \\
\cline { 2 - 4 } & 2.766 & 1.839 & \(\left(\mathrm{H}-\mathrm{O} \ldots \mathrm{H}_{2} \mathrm{O}\right)\) \\
\hline & & 1.834 & \(\left(\mathrm{~N}-\mathrm{O} \ldots \mathrm{H}_{2} \mathrm{O}\right)\) \\
\cline { 2 - 4 } & & 1.923 & \(\left(\mathrm{~N}-\mathrm{O} \ldots \mathrm{H}_{2} \mathrm{O}\right)\) \\
\hline
\end{tabular}
*All the bond lengths are in Angstrøms ( \(\AA\) ).

Table 16. Torsion angle comparison between cis and trans PBN-OH adducts.
\begin{tabular}{|c|c|c|}
\hline Torsion angle & PBN-OH cis & PBN-OH trans \\
\hline \(5-7-12-28\) & -165.03912 & 68.12331 \\
\hline \(5-7-12-29\) & 75.24392 & -170.73522 \\
\hline \(7-12-13-14\) & -96.55436 & 127.31184 \\
\hline \(7-12-29-30\) & 17.60245 & -165.72241 \\
\hline \(8-7-12-28\) & -102.1091 & -108.04876 \\
\hline \(8-7-12-29\) & -143.73417 & 13.09271 \\
\hline \(14-13-12-28\) & -27.31288 & -107.42836 \\
\hline \(14-13-12-29\) & 136.12151 & 167.92049 \\
\hline \(15-13-12-28\) & \(15-13-12-29\) & \(28-12-29-30\) \\
\hline
\end{tabular}
*All the bond angles in degrees \(\left({ }^{\circ}\right)\).

As is indicated in Table 16, there are huge changes in going from cis to trans configuration, most notable being that of \(14 \mathrm{O}-13 \mathrm{~N}-12 \mathrm{C}-290\) torsion angle. The other marked changes that reflect the difference in geometries are the \(140-13 \mathrm{~N}-12 \mathrm{C}-28 \mathrm{H}, 15 \mathrm{C}-13 \mathrm{~N}-12 \mathrm{C}-28 \mathrm{H}\) torsion angles. Changes in the local geometry are also reflected in the change in dipole moments for the adduct (see Table 17).

Table 17. Trends in dipole moment for the PBN-OH cis adduct.
\begin{tabular}{|c|c|}
\hline System & Dipole moments (D) \\
\hline PBN-OH & 3.053 \\
\hline PBN-OH +1 water molecule & 3.157 \\
\hline PBN-OH +4 water molecules & 2.412 \\
\hline PBN-OH +8 water molecules & 2.475 \\
\hline
\end{tabular}

\section*{PBN-Me Adduct}

It is known that C-centered radicals are trapped efficiently by PBN type nitrones. It was shown that addition of methyl radical was thermodynamically and kinetically more favored than proton abstraction from the PBN spin trap.[125] Hybrid models were tested on the PBN-Me adduct (see Figures 10,11 and 12) and the optimum number of water molecules were found.


Figure 10. PBN-Me cis adduct.


Figure 11. PBN-Me cis adduct surrounded by water molecules.


Figure 12. Plot of the difference in single point energies of the PBN-Me adduct as a function of the number of water molecules.

As may be seen in Figure 12, the energy difference starts to level off after the addition of 14-15 water molecules. The geometry changes in the PBN-Me adduct are given in Table 18.

Table 18. Geometry changes (trends in bond angles) in PBN-Me adduct.
\begin{tabular}{|c|c|c|c|}
\hline System & \(12 \mathrm{C}-13 \mathrm{~N}-14 \mathrm{O}\) & \(14 \mathrm{O}-13 \mathrm{~N}-15 \mathrm{C}\) & \(13 \mathrm{~N}-15 \mathrm{C}-24 \mathrm{C}\) \\
\hline PBN-Me & 117.78 & 119.83 & 108.89 \\
\hline PBN-Me + 1 water molecule & 116.39 & 119.65 & 109.13 \\
\hline PBN-Me + 3 water molecules & 116.3 & 119.55 & 109.71 \\
\hline PBN-Me + 7 water molecules & 117.09 & 120.2 & 108.53 \\
\hline PBN-Me + 11 water molecules & 118.27 & 118.75 & 108.56 \\
\hline PBN-Me + 15 water molecules & 118.1 & 117.27 & 107.69 \\
\hline
\end{tabular}
*All the bond angles in degrees \(\left({ }^{\circ}\right)\).

As seen in Table 18, the geometry changes in PBN-Me adduct are not as drastic as in the case of PBN-OH adduct due to the lack of electronegative atoms capable of forming hydrogen bonds. This evidence is another clear indication of the significant role played by hydrogen bonds. The only major changes in the torsion angles are those of \(5 \mathrm{C}-7 \mathrm{C}-12 \mathrm{C}-13 \mathrm{~N}\) and \(5 \mathrm{C}-7 \mathrm{C}-12 \mathrm{C}-28 \mathrm{H}\) (see Table 19). The variation in the former is due to stearic hindrance between the methyl radical and the water molecules coordinating to the oxygen atom of the nitroxide functionality. The hydrogen bond lengths in the PBN-Me adduct are shown in Table 20.

Table 19. Trends in torsion angles for the PBN-Me adduct.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline System & \(5-7-12-13\) & \(5-7-12-28\) & \(7-12-13-14\) & \(7-12-13-15\) & \(14-13-12-29\) & \(14-13-15-20\) \\
\hline PBN-Me & -43.5935 & -160.65614 & 82.79394 & -102.24427 & -42.14396 & 13.78235 \\
\hline PBN-Me + 1 water molecule & -59.2868 & -176.78823 & 67.45257 & -100.47551 & -57.97173 & 17.11221 \\
\hline PBN-Me + 3 water molecules & -59.0834 & -175.84482 & 66.40486 & -100.55583 & -58.8308 & 20.591 \\
\hline PBN-Me + 7 water molecules & -45.712 & -163.1211 & 86.19289 & -106.41098 & -38.81324 & 20.50226 \\
\hline PBN-Me + 11 water molecules & -48.4851 & -164.83694 & 94.01939 & -99.09039 & -31.64201 & 22.96879 \\
\hline PBN + Me + 19 water molecules & -18.776 & -135.6101 & 91.81832 & -99.32507 & -33.69921 & 38.21685 \\
\hline
\end{tabular}
*All the bond angles in degrees \(\left({ }^{\circ}\right)\).

Table 20. Hydrogen bond lengths in PBN-Me cis adduct.
\begin{tabular}{|c|c|c|c|}
\hline System & \begin{tabular}{c} 
Intramolecular H- \\
bonding
\end{tabular} & \begin{tabular}{c} 
Intermolecular H- \\
bonding
\end{tabular} & \begin{tabular}{c} 
Type
\end{tabular} \\
\hline PBN-Me & 2.535 & n/a & \begin{tabular}{c}
\((\mathrm{N}-\mathrm{O} \ldots \mathrm{H}-\) \\
\(\left.\mathrm{CH}_{2}\right)\)
\end{tabular} \\
\hline PBN-Me + 1 water molecule & 2.571 & 1.953 & \(\left(\mathrm{~N}-\mathrm{O} \ldots \mathrm{H}_{2} \mathrm{O}\right)\) \\
\hline PBN-Me + 3 water molecules & 2.566 & 1.939 & \(\left(\mathrm{~N}-\mathrm{O} \ldots \mathrm{H}_{2} \mathrm{O}\right)\)
\end{tabular}
*All the bond lengths are in Angstrøms ( \(\AA\) ).

As seen in Table 20, the PBN-Me adduct is stabilized predominantly by intermolecular hydrogen bonding. Changes in the local geometry are also reflected in the change in dipole moments for the adduct (see Table 21).

Table 21. Trends in dipole moment for PBN-Me adduct.
\begin{tabular}{|c|c|}
\hline System & Dipole moments (D) \\
\hline PBN-Me & 2.642 \\
\hline PBN-Me +1 water molecule & 2.572 \\
\hline PBN-Me +3 water molecules & 2.577 \\
\hline PBN-Me +7 water molecules & 2.693 \\
\hline PBN-Me +11 water molecules & 2.646 \\
\hline PBN-Me +19 water molecules & 2.706 \\
\hline
\end{tabular}

PPN Solvation Studies

The presence of electronegative atoms in the PPN spin trap allows for extensive hydrogen bonding interactions (see Figure 13).


Figure 13. PPN spin trap.

The results of incorporating PPN in the hybrid model (see Figures 14 and 15) are as follows


Figure 14. PPN spin trap surrounded by water molecules.


Figure 15. Plot of the difference in single point energies of PPN as a function of the number of water molecules.

The same trend is observed as expected in that the single point energy levels off after 12 water molecules (see Figure 15). The geometry changes in the PPN spin trap when surrounded by water molecules is given in Tables 22 and 23. The hydrogen bond lengths in the PPN spin trap are given in Table 24.

Table 22. Geometry changes (trends in bond lengths and bond angles) in PPN spin trap.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline System & \(140-13 \mathrm{~N}\) & \(25 \mathrm{O}-24 \mathrm{P}\) & \(4 \mathrm{H}-3 \mathrm{C}-5 \mathrm{C}\) & \(5 \mathrm{C}-11 \mathrm{C}-12 \mathrm{H}\) & \begin{tabular}{c}
\(13 \mathrm{~N}-15 \mathrm{C}-\) \\
24 P
\end{tabular} & \begin{tabular}{c}
\(15 \mathrm{C}-24 \mathrm{P}-\) \\
25 O
\end{tabular} & \begin{tabular}{c}
\(15 \mathrm{C}-24 \mathrm{P}-\) \\
26 O
\end{tabular} & \begin{tabular}{c}
\(25 \mathrm{O}-24 \mathrm{P}-\) \\
26 C
\end{tabular} \\
\hline PPN & 1.28007 & 1.48998 & 118.87 & 117.98 & 107.44 & 114.84 & 99.59 & 116.87 \\
\hline PPN + 1 water molecule & 1.29322 & 1.49127 & 118.97 & 117.93 & 110.04 & 115.17 & 98.69 & 116.68 \\
\hline PPN + 3 water molecules & 1.29668 & 1.5019 & 119.01 & 116.66 & 105.52 & 112.85 & 99.91 & 115.56 \\
\hline PPN + 7 water molecules & 1.31263 & 1.49568 & 120.18 & 116.91 & 102.88 & 114.18 & 99.19 & 114.86 \\
\hline PPN + 11 water molecules & 1.31281 & 1.50585 & 120.6 & 116.13 & 103.7 & 113.81 & 99.72 & 113.37 \\
\hline PPN + 15 water molecules & 1.31394 & 1.52334 & 120.41 & 116.93 & 105.65 & 119.55 & 97.31 & 112.56 \\
\hline
\end{tabular}
*All the bond lengths are in Angstrøms \((\AA)\) and the bond angles in degrees \(\left({ }^{\circ}\right)\).

Table 23. Trends in torsion angles for the PPN spin trap.
\begin{tabular}{|c|c|c|c|c|c|}
\hline System & \(3-5-11-13\) & \(11-13-15-16\) & \(11-13-15-24\) & \(13-15-24-25\) & \(14-13-15-24\) \\
\hline PPN & -3.14198 & 177.50027 & 62.55547 & -62.95405 & -117.89763 \\
\hline PPN + 1 water molecule & -2.71396 & 172.25014 & 52.1821 & -56.06231 & -132.2844 \\
\hline PPN + 3 water molecules & -7.25038 & 150.7226 & 88.6996 & -63.69195 & -88.16699 \\
\hline PPN + 7 water molecules & -14.7763 & 119.17489 & 122.03015 & -43.25273 & -56.63881 \\
\hline PPN + 11 water molecules & 1.91084 & 103.13058 & 139.09963 & -45.68774 & -44.57424 \\
\hline PPN + 15 water molecules & -23.2346 & 81.49892 & 161.64064 & -53.60714 & -19.30663 \\
\hline
\end{tabular}
*All the bond angles in degrees \(\left({ }^{\circ}\right)\).

Table 24. Hydrogen bond lengths in PPN spin trap.
\begin{tabular}{|c|c|c|}
\hline System & Intramolecular H -bonding & Type \\
\hline \multirow{2}{*}{PPN} & 2.18 & (N-O...H-Benzene) \\
\hline & 2.935 & ( \(\mathrm{P}=\mathrm{O} \ldots . . \mathrm{H}-\mathrm{C}-\mathrm{NO}\) ) \\
\hline PPN +1 water molecule & 1.837 & ( \(\mathrm{N}-\mathrm{O} \ldots . \mathrm{H}_{2} \mathrm{O}\) ) \\
\hline \multirow{3}{*}{PPN + 3 water molecules} & 1.868 & ( \(\mathrm{N}-\mathrm{O} \ldots . \mathrm{H}_{2} \mathrm{O}\) ) \\
\hline & 2.168 & \multirow{2}{*}{\(\left(\mathrm{P}=\mathrm{O} \ldots \mathrm{H}_{2} \mathrm{O}\right)\)} \\
\hline & 1.894 & \\
\hline \multirow{4}{*}{PPN +7 water molecules} & 1.851 & \multirow{2}{*}{(N-O...H2O)} \\
\hline & 1.81 & \\
\hline & 1.795 & ( \(\mathrm{P}=\mathrm{O} \ldots . \mathrm{H}_{2} \mathrm{O}\) ) \\
\hline & 1.984 & \(\left(\mathrm{OH}_{2} \ldots \mathrm{OEt}\right)\) \\
\hline \multirow{4}{*}{PPN +11 water molecules} & 1.883 & \multirow{2}{*}{( \(\mathrm{N}-\mathrm{O} . . . \mathrm{H} 2 \mathrm{O}\) )} \\
\hline & 1.823 & \\
\hline & 1.727 & \multirow{2}{*}{\(\left(\mathrm{P}=\mathrm{O} \ldots \mathrm{H}_{2} \mathrm{O}\right)\)} \\
\hline & 1.887 & \\
\hline \multirow{2}{*}{PPN +15 water molecules} & 1.579 & ( \(\mathrm{N}-\mathrm{O} \ldots . \mathrm{H}_{2} \mathrm{O}\) ) \\
\hline & 1.381 & \(\left(\mathrm{P}=\mathrm{O} \ldots \mathrm{H}_{2} \mathrm{O}\right)\) \\
\hline
\end{tabular}
*All the bond lengths are in Angstrøms ( \(\AA\) ).

The trends in PPN are more drastic due to the presence of additional electronegative atoms in the form of the phosphorus atom and the 3 additional oxygen atoms that are capable of forming hydrogen bonds. As indicated in the Tables 22, 23, and 24, we have additional hydrogen bonding with the oxygen atom of the \(\mathrm{P}=\mathrm{O}\) functionality resulting in an increase in the \(15 \mathrm{C}-24 \mathrm{P}-\) 25 O bond angle. The same reasoning can be attributed for an increase in the \(11 \mathrm{C}-13 \mathrm{~N}-15 \mathrm{C}-24 \mathrm{P}\) torsion angle from \(62.55547^{\circ}\) to \(161.64064^{\circ}\). Another interesting observation is that of the water molecule coordinating simultaneously with the \(\mathrm{N}-\mathrm{O}\) and \(\mathrm{P}=\mathrm{O}\) functionality reflected in a major decrease in the \(14 \mathrm{O}-13 \mathrm{~N}-15 \mathrm{C}-24 \mathrm{P}\) torsion angle from \(-117.89763^{\circ}\) to \(-19.30663^{\circ}\). As is indicated in Table 24, the hydrogen bonds get stronger with an increase in the number of water molecules surrounding the spin trap. The dipole moment changes are given as follows (see Table 25)

Table 25. Trends in dipole moment for PPN spin trap.
\begin{tabular}{|c|c|}
\hline System & Dipole Moments (D) \\
\hline PPN & 2.084 \\
\hline PPN +1 water molecule & 2.932 \\
\hline PPN +7 water molecules & 2.935 \\
\hline \(\mathrm{PPN}+11\) water molecules & 2.904 \\
\hline \(\mathrm{PPN}+15\) water molecules & 3.865 \\
\hline
\end{tabular}

\section*{Aprotic solvent studies}

A similar theory was applied to aprotic solvents to confirm the dominant role played by polar protic solvents like water in stabilizing the spin traps (see Figure 16).


Figure 16. PBN spin trap surrounded by acetonitrile molecules.

As indicated in Table 26 there is no stabilization by acetonitrile (dipole moment: \(4.5 \pm\) 0.1 D [126]) which further consolidates the role of polar protic solvents like water in stabilizing the spin traps.

Table 26. Molecular energies of PBN in acetonitrile.
\begin{tabular}{|c|c|}
\hline System & Molecular Energy/ \(\mathrm{E}_{\mathrm{h}}\) \\
\hline PBN +1 water molecule & -634.58 \\
\hline PBN +1 acetonitrile molecules & -558.125 \\
\hline PBN +2 acetonitrile molecules & -558.122 \\
\hline
\end{tabular}

\section*{Conclusion}

As indicated by the data, polar protic solvents like water play an important role in the stabilization of spin traps. The studies from hybrid model indicate that there is a limited number of water molecules that influence the properties of the spin trap, and that there is a negligible effect upon further addition of water molecules. The intermolecular hydrogen bonding between the solvent and the PBN-OH spin trap adduct is responsible for two distinct adduct conformers. This has a profound effect on the dipole moment as compared to the calculated value in the gas phase. Hydrogen bonding interactions are dominant forces in the phosphorylated analogue of PBN, thereby supporting the role of hydrogen bonds in stabilizing the spin trap and the adduct. The dipole moment as calculated by the hybrid model of DMPO is 4.08 as compared to the literature value of 3.72 and COSMO value of 5.34 (see Table 5).[124, 127, 128]

\section*{CHAPTER 4}

\section*{FUTURE WORK}

Spin traps provide offer a broad scope for research. The synthesis of phosphorylated analogues of various nitrones has widened the applicability of spin traps in biological systems. Computational studies on the phosphorylated analogues of spin traps is however very limited. In view of this, the following ideas can be considered for future research.
1. Comparative DFT study of the spin trapping of hydroxy, methyl, hydroperoxyl, mercapto radicals by various phosphorylated PBN analogues, notably PPN, 4-OHPPN, 4-PyOPN.[129]
2. Comparison of the radical trapping ability of phosphorylated analogues vs. S-PBN and NXY059.


S-PBN


NXY-059

S-PBN and NXY-059 also trap carbon and oxygen-centered radicals effectively and their spin trapping efficiency should be compared with the phosphorylated analogues of PBN. [130,131]
3. DFT study of spin trapping of phenyl, carbon dioxide, carbonate radical species by phosphorylated PBN analogues.

There are some newly discovered spin traps that are reported in literature that are suitable candidates for theoretical investigation.
1. Computational investigation of the spin trapping capabilities of new class of spin trap 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine hydrochloride (TEMPONE-H), given the fact that the sensitivity of TEMPONE-H in the detection of peroxynitrite and superoxide radicals was about 10-fold higher than DMPO.[132]

2. Computational investigation of a new class of fluorinated nitrones, for e.g. FDMPO. [133-135]

5. Application of the hybrid solvation models to the above mentioned exotic spin traps.

\section*{REFERENCES}
1. Lai, C.; Piette, L. H. Biochem. Biophys. Res. Commun. 1977, 78, 51-59.
2. Bilenko, M. V. Ischemia and Reperfusion of Various Organs; Nova Science Pub. Inc.: Huntington, New York, 2001.
3. Roberfroid, M.; Calderon, P. B. Free Radicals and Oxidation Phenomena in Biological Systems; Mercel Dekker: New York, 1995.
4. Halliwell, B.; Gutteridge, J. M. C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, 1999.
5. Bilenko, M. V. Ischemic and Reperfusion of Various Organs: Injury, Mechanisms, Methods of Prevention and Treatment; Nova Science Pub. Inc.: Huntington, New York, 2001.
6. Fenton, H. J. H. J. Chem. Soc. 1894, 65, 899.
7. Dixon, W. T.; Norman, R. O. C. J. Chem. Soc. 1963, 3119.
8. Jefcoate, C. R. E.; Lindsay-Smith, J. R.; Norman, R. O. C. J. Chem. Soc. (B) 1969, 1013.
9. Ogata, Y.; Furuta, K. The Chemistry of Peroxides, Wiley: New York, 1983.
10. Saito, I.; Takayama, M.; Matsuura, T.; Matsugo, S.; Kawanishi, S. J. Am. Chem. Soc. 1990, 112, 883.
11. Dixon, W. T.; Norman, R. O. C. J. Chem. Soc. 1963, 3119.
12. Walling, C. Acc. Chem. Res. 1975, 8, 125.
13. Hayon, E.; Ibata, T.; Lichtin, N. N.; Simic, M. J. Am. Chem. Soc. 1970, 92, 3898.
14. Walling, C.; El-Taliawi, G. M. J. Am. Chem. Soc. 1973, 95, 848.
15. Walling, C.; El-Taliawi, G. M.; Johnson, R. A. J. Am. Chem. Soc. 1974, 96, 133.
16. Nofre, C.; Le Roux, Y.; Gondot, L.; Cier, A. Bull. Soc. Chim. Fr. 1964, 2451.
17. Janzen, E. G.; Blackburn, B. J. J. Am. Chem. Soc. 1968, 90, 5909-5910.
18. Swartz, H. M. Bull. Magn. Reson. 1986, 8, 172-175.
19. Pou, S.; Pou, W. S.; Bredt, D. S.; Snyder, S. H.; Rosen, G. M. J. Biol. Chem. 1992, 267, 24173-24176.
20. Harbour, J. R.; Bolton, J. R. Biochem. Biophys. Res. Commun. 1975, 64, 803-807.
21. Rosen, G. M.; Britigan, B. E.; Cohen, M. S.; Ellington, S. P.; Barber, M. J. Biochim. Biophys. Acta. 1988, 969, 236-241.
22. Iwamura, M.; Inamoto, N. Bull. Chem. Soc. Jap., 1967, 40, 702-703.
23. Iwamura, M.; Inamoto, N. Bull. Chem. Soc. Jap., 1970, 43, 856-860.
24. Janzen, E. G.; Blackburn, B. J. J. Am. Chem. Soc. 1969, 91, 4481-4490.
25. Janzen, E. G.; Gerlock, J. L. Nature 1969, 222, 867-868.
26. Lagercrantz, C.; Forchult, S. Nature 1968, 218, 1247-1248.
27. Lagercrantz, C.; Torssell, K. Acta Chem. Scand. 1968, 22, 1935-1941.
28. Chalfont, G. R.; Perkins, M. J.; Horsfield, A. J. Am. Chem. Soc. 1968, 90, 7141-7142.
29. Leaver, I. H.; Ramsey, G. C. Tetrahedron 1969, 25, 5669-5675.
30. Terabe, S.; Konaka, R. J. Am. Chem. Soc. 1969, 91, 5665-5657.
31. Janzen, E. G. Acc. Chem. Res. 1981, 4, 31.
32. Cheng, J. D.; Shine, H. J. J. Org. Chem. 1974, 39, 336.
33. Janzen, E. G.; Liu, P. J. Magn. Reson. 1973, 9, 510.
34. Wargon, J. A.; Williams, F. J. Chem. Soc., Chem. Commun. 1975, 947.
35. Tordo, P.; Boyer, M.; Friedmann, A.; Santero, O.; Pujol, L. J. Phys. Chem. 1978, 82, 1742.
36. Gowenlock, B. G.; McCullough, K. J.; Manson, R. B. J. Am. Chem. Soc. Perkin Trans. (II). 1988, 701-703.
37. Mackor, A.; Wajer, Th. A. J. W.; de Boer, Th. J. Tetrahedron Lett. 1966, 2115-2123.
38. Wajer, Th. A. J. W.; Mackor, A.; de Boer, Th. J.; Van Voorst, J. D. W. Tetrahedron. 1967, 23, 4021-4026.
39. Kalyanaraman, B.; Perez-Reyes, E.; Mason, R. P.; Tetrahedron Lett. 1979, 4809-4812.
40. Fischer, V.; Mason, R. P. Chem. Biol. Interact. 1986, 57, 129-142.
41. Maender, O. W.; Janzen, E. G. J. Org. Chem. 1969, 34, 4072-4082.
42. Hata, Y.; Watanabe, T. K.; Hirata, M.; Chem-Biol. Interact. 1987, 63, 171-184.
43. Becker, A. R.; Sternson, L. A. Proct. Natl. Acad. Sci. 1981, 78, 2003-2007.
44. Hampton, M. J.; Floyd, R. A.; Janzen, R. A.; Shetty, R. V. Mutation Res. 1981, 91, 279-283.
45. Sies, H.; Mehlhorn, R. Arch. Biochem. Biophys. 1986. 251, 393-396.
46. Martinie-Humbrouck, J.; Rassat, A. Tetrahedron. 1974, 30, 433-436.
47. Castellano, A. L.; Griller, D.; Ingold, K. U. Can. J. Chem. 1982, 60, 1501-1503.
48. Bullock, A. T.; Gavin, D. L.; Ingram, M. D. J. Chem. Soc. Chem. Commun. 1980, 327-328.
49. Bowman, D. F.; Gillan, D. L.; Ingold, K. U. J. Am. Chem. Soc. 1970, 93, 6555-6561.
50. Bowman, D. F.; Brokenshire, J. L.; Gillan, D. L.; Ingold, K. U. J. Am. Chem. Soc. 1970, 93, 6551-6555.
51. Bowman, D. F.; Gillan, D. L.; Ingold, K. U. J. Am. Chem. Soc. 1970, 93, 902-908.
52. Janzen, E. G.; Zhang, Y. K.; Arimura, M. Chem. Lett. 1993, 497-500.
53. Kalyanaraman, B.; Mottley, C.; Mason, R. P. J. Biol. Chem. 1983, 258, 3855-3858.
54. Rosen, G. M.; Rauckman, E. J. Mol. Pharmacol. 1980, 17, 233-238.
55. Janzen, E. G.; Krygsman, P. H.; Lindsay, D. A.; Haire, D. L. J. Am. Chem. Soc. 1990, 112, 8279-8284.
56. Sang, H.; Janzen, E. G.; Lewis, B. H. J. Org. Chem. 1996, 61, 2358-2363.
57. Harbour, J. R.; Chow, V.; Bolton, J. R. Can. J. Chem. 1974, 52, 3549-3553.
58. Finkelstein, E.; Rosen, G. M.; Rauckman, E. J.; Paxton, J. Mol. Pharmacol. 1979, 16, 676.
59. Kalyanaraman, B.; Perez-Reyes, E.; Mason, R. P. Biochem. Biophys. Acta. 1980, 630, 119.
60. Finkelstein, E.; Rosen, G. M.; Rauckman, E. J.; Paxton, J. Mol. Pharmacol. 1980, 102, 4994.
61. Finkelstein, E.; Rosen, G. M.; Rauckman, E. J. Mol. Pharmacol. 1982, 21, 676-685.
62. Janzen, E. G.; Zhang, Y. K.; Arimura, M. J. Org. Chem. 1995, 60, 5434-5440.
63. Janzen, E. G.; Hinton, R. D.; Kotake, Y. Tetrahedron Lett. 1992, 33, 1257-1260.
64. Janzen, E. G.; Kotake, Y.; Hinton, R. D. Free. Rad. Biol. Med. 1992, 12, 169-173.
65. Janzen, E. G. Free Rad. Biol. 1980, 4,115-151.
66. Tordo, P.; Boyer, M.; Vila. F.; Pujol, L. Phosphorus Sulfur, 1977, 3, 43-45.
67. Tordo, P.; Boyer, M.; Vila. F.; Cerri, V. Phosphorus Sulfur, 1977, 3, 373-376.
68. Tordo, P.; Boyer, M.; Friedmann, A.; Santero, O.; Pujol, L. J. Phys. Chem. 1978, 82, 1742.
69. Kaena, J. F.; Van Nice, F. L. Physiol. Chem. Phys. Med. NMR, 1984, 16, 477-480.
70. Finkelstein, E.; Rosen, G. M.; Rauckman, E.; Paxton. J. Mol. Pharmacol. 1979, 16, 676-685.
71. Zeghdaoui, A.; Tuccio, B.; Finet, J. P.; Cerri, V.; Tordo, P. J. Chem. Soc. Perkin Trans. 2.

1995, 12, 2087-2089.
72. Tuccio, B.; Zeghdaoui, A.; Finet, J. P.; Cerri, V.; Tordo, P. Res. Chem. Intermed. 1996, 22, 393-404.
73. Liu, Y.P.; Wang, L. F.; Zhou, N.; Ji, Y. Q.; Liu, Y.; Liu, K. J.; Tian, Q. J. Org. Chem. 2006, 71, 7753-7762.
74. Jones, R. C. F.; Matin, J. N. Chem. Heterocycl. Compd. 2002, 59, 1-81.
75. Janzen, E. G.; Haire, D. L. Adv. Free. Radical Chem. 1990, 1, 253-295.
76. Swartz, H. M. Bull. Magn. Reson. 1986, 8, 172-175.
77. Naik, N.; Brasalu, R. Tetrahedron. 1998, 54, 667-696.
78. Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001, 101, 3661-3688.
79. Berliner, L. J. In Spectroscopy in Biochemistry; Bell, J. E., Ed.; CRC: Boca Raton, Fla, 1981;

Vol. 2, pp 1-56.
80. Misik, V.; Reisz, P. Ultrason. Sonochem. 1996, 3, S173.
81. Stolze, K.; Udilova, N.; Nohl, H. Free Radical Biol. Med. 2000, 29, 1005.
82. Zhang, L.-Y.; Stone, K.; Pryor, W. A. Free Radical Biol. Med. 1995, 19, 161.
83. Ma, Z.; Zhao, B.; Yuan, Z. Anal. Chim. Acta. 1999, 389, 213.
84. Sankarapandi, S.; Zweier, J. J. Biol. Chem. 1999, 274, 34576.
85. Zweier, J. L.; Kuppusamy, P.; Lutty, G. A. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 1404.
86. Schrodinger, E. Ann. Phys. 1926, 79, 361-376.
87. Schrodinger, E. Ann. Phys. 1926, 79, 489-527.
88. Schrodinger, E. Ann. Phys. 1926, 80, 437-490.
89. Schrodinger, E. Ann. Phys. 1926, 81, 109-139.
90. Born, M. Zeitschrift für Physik. 1926, 37, 863-867.
91. Heisenberg, W. Zeitschrift für Physik. 1927, 43, 172-198.
92. Pauli, W. Zeit. Phys. 1925, 31, 765.
93. Born, M.; Oppenheimer, R. Annalen der Physik. 1927, 84, 457-484.
94. Hartree, D. R. Proc. Cambridge. Philos. 1928, 24, 89.
95. Fock, V. A. Z. Phys. 1930, 61, 126.
96. Fock, V. A. Z. Phys. 1930, 62, 795.
97. Slater, J. C. Phys. Rev. 1930, 36, 57.
98. Roothaan, C. C. J. Rev. Mod. Phys. 1951, 23, 69-89.
99. Hohenberg, P.; Kohn. W. Phys. Rev. 1964, 136, B864.
100. Kohn, W.; Sham, L. J. Phys. Revs. 1965, 140, 1133.
101. Slater, J. C. Phys. Rev. 1929, 34, 1293-1322.
102. Condon, E. U. Phys. Rev. 1930, 36, 1121-1133.
103. Jorgensen, W. L. Encycl. Comput. Chem. 1998, 4, 2826.
104. Poisson, S. D. Nouveau Bulletin des Sciences par la Societé Philomathique de Paris. 1813, 3, 388-392.
105. Guoy, G. L. de Phys. 1910, 9, 457.
106. Chapman, D. L. Philos. Mag. 1913, 25, 475.
107. Born, M. Z. Phys. 1925, 1, 45.
108. Kirkwood, J. G. J. Chem. Phys. 1934, 2, 351.
109. Onsager, L. J. Am. Chem. Soc. 1936, 58, 1486.
110. Ben-Naim, A. Solvation Thermodynamics, Plenum, New York, 1987.
111. Tunon, I., Silla, J. L., Chem. Phys. Lett., 1993, 203, 289.
112. Claverie, P. Intermolecular Interactions: From Dynamics to Biomolecules, ed. Pullman, B., Wiley, Chichester, 1978.
113. Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117.
114. Klamt, A.; Schüürmann. J. Chem. Soc. Perkin Trans 2. 1993, 2, 799-805.
115. Klamt, A. J. Phys. Chem. 1995, 99, 2224-2235.
116. Klamt, A.; Jonas, Volker.; Bürger, T.; Lohrenz, J. C. W. J. Phys. Chem. A. 1998, 102, 50745085.
117. Boys, S. F. Proc. R. Soc. London Ser A. 1950, 200, 542.
118. E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, D. Wang, E. Apra, T. L. Windus, J. Hammond, P. Nichols, S. Hirata, M. T. Hackler, Y. Zhao, P.-D. Fan, R. J. Harrison, M. Dupuis, D. M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, Q. Wu, T. Van Voorhis, A. A. Auer, M. Nooijen, E. Brown, G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao, R. Kendall, J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang, "NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.1" (2007), Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA.
119. "High Performance Computational Chemistry: An Overview of NWChem a Distributed Parallel Application," Kendall, R.A.; Apra, E.; Bernholdt, D.E.; Bylaska, E.J.; Dupuis, M.; Fann, G.I.; Harrison, R.J.; Ju, J.; Nichols, J.A.; Nieplocha, J.; Straatsma, T.P.; Windus, T.L.; Wong, A.T.; Computer Phys. Comm. 2000, 128, 260-283.
120. Gordon, M. S.; Binkley, S. J.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc. 1982, 104, 2797-2803.
121. Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377.
122. Tande, Jacob F. A Computational Study of Spin Traps, East Tennessee State University, 2007, Master's Thesis.
123. Villamena, F.; Hadad, C. M.; Zweier, J. L. J. Am. Chem. Soc. 2004, 126, 1816-1829.
124. Konda, Sai Sriharsha; Kirkby, Scott J. Computational Investigation of Spin Traps Using Hybrid Solvation Models. Abstracts, \(60^{\text {th }}\) Southeast Regional Meeting of the American Chemical Society, Nashville, TN, United States, November 12-15 (2008), SERM-115, American Chemical Society, Washington, D.C.
125. Boyd, S. L.; Boyd, R. J. J. Phys. Chem. 2001, 105, 7096-7105.
126. Ohba, T.; Ikawa, S. Mol. Phys. 1991, 73, 985.
127. Sriharsha Konda, Sai; Kirkby, Scott J. Computational Investigation of Spin Traps Using Hybrid Solvation Models. Abstracts of Papers, 237th ACS National Meeting, Salt Lake City, UT, United States, March 22-26 (2009), COMP-077, American Chemical Society, Washington, D. C.
128. Sai Sriharsha Konda, Scott, J. Kirkby, Computational Investigation of Spin Traps Using Hybrid Solvation Models. Abstracts, Appalachian Student Research Forum, East Tennessee

State University, Johnson City, TN, United States, April 09 (2009), 88.
129. Villamena, F.; Hadad, C. M.; Zweier, J. L. J. Phys. Chem. 2005, 109, 1662-1674.
130. Maples, K. R.; Ma, F.; Zhang, Y. K. Free Rad. Res. 2000, 34, 417-426.
131. Williams, H. E.; Claybourn, M.; Green, R. Free Rad. Res. 2007, 41, 1047-1052.
132. Khramtsov, V. V.; Reznikov, V. A.; Berliner, L. J.; Litkin, A. K.; Grigor'ev, I. A.; Clanton, T. L. Free Rad. Biol. Med. 2001, 30, 1099-1107.
133. Selinsky, B. S.; Levy, L. A.; Motten, A. G.; London, R. E. J. Magn. Reson. 1989, 81, 57-67.
134. Janzen, E. G.; Zhang, Y. K.; Arimura, M. J. Org. Chem. 1995, 60, 5434-5440.
135. Zhao, C. X.; He, H. Y. J. Flourine Chem. 1995, 72, 215-223.

\section*{APPENDICES}

\section*{APPENDIX A: Single Point Energy Tables}

Table 27. Difference in single point energies of DMPO when surrounded by water molecules.
\begin{tabular}{|c|c|}
\hline Molecule & Energy difference (kcal/mol) \\
\hline DMPO & 0 \\
\hline DMPO + 1 water molecule & 0.589 \\
\hline DMPO + 2 water molecules & 0.719 \\
\hline DMPO + 3 water molecules & 0.766 \\
\hline DMPO + 10 water molecules & 2.008 \\
\hline DMPO + 17 water molecules & 2.736 \\
\hline
\end{tabular}

Table 28. Difference in single point energies of PBN cis-adduct when surrounded by water molecules.
\begin{tabular}{|c|c|}
\hline Molecule & Energy difference (kcal/mol) \\
\hline PBN adduct & 0 \\
\hline PBN adduct +1 water molecule & 0.0251 \\
\hline PBN adduct +4 water molecules & 2.4906 \\
\hline PBN adduct +8 water molecules & 3.9213 \\
\hline
\end{tabular}

Table 29. Difference in single point energies of PBN-Me adduct when surrounded by water molecules.
\begin{tabular}{|c|c|}
\hline Molecule & Energy Difference (kcal/mol) \\
\hline PBN- Me & 0 \\
\hline PBN- Me +1 water molecules & 0.5141 \\
\hline PBN-Me +3 water molecules & 0.6154 \\
\hline PBN- Me +7 water molecules & 0.6456 \\
\hline PBN \(-\mathrm{Me}+11\) water molecules & 0.9453 \\
\hline PBN-Me +15 water molecules & 0.9900 \\
\hline
\end{tabular}

Table 30. Difference in single point energies of PPN when surrounded by water molecules.
\begin{tabular}{|c|c|}
\hline Molecule & Energy Difference (kcal/mol) \\
\hline PPN & 0 \\
\hline PPN +1 water molecule & 1.744 \\
\hline PPN +3 water molecules & 1.752 \\
\hline PPN +7 water molecules & 3.005 \\
\hline PPN +11 water molecules & 4.006 \\
\hline
\end{tabular}

\section*{APPENDIX B: Structural Details of DMPO}
1. Input file for DMPO geometry optimization.
```

scratch_dir /scr/sai
permanent_dir /home/sai/nw_work/Spin-traps/DMPO-RDFT-6-31G
Title "DMPO-RDFT-6-31G"
Start DMPO-RDFT-6-31G
echo

```
charge 0
geometry autosym units angstrom
    \(\begin{array}{llll}C & 1.28314 & 3.28424 & -0.954581\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 0.432444 & 3.94761 & -1.06987\end{array}\)
    \(\begin{array}{llll}C & 2.41265 & 3.20858 & -1.91389\end{array}\)
    \(\begin{array}{llll}C & 3.32595 & 2.13385 & -1.31176\end{array}\)
    \(\begin{array}{llll}C & 2.60248 & 1.65216 & -0.0259173\end{array}\)
    \(\begin{array}{llll}\mathrm{N} & 1.39962 \quad 2.46809 & 0.0344717\end{array}\)
    \(\begin{array}{llll}0 & 0.479779 & 2.36835 & 0.998348\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 3.47620 \quad 1.31041 & -2.04467\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 4.32465 \quad 2.57269 & -1.09056\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 2.04048 \quad 2.90662 & -2.91631\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 2.93135 & 4.18894 & -1.97053\end{array}\)
    \(\begin{array}{llll}C & 2.21523 & 0.167214 & -0.128128\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 3.12368 & -0.467967 & -0.204572\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 1.63660 & -0.145941 & 0.767828\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 1.58539 & -0.00325839 & -1.02801\end{array}\)
    C
    3.46462
    \(1.89861 \quad 1.22354\)
    H 4.46045
    2.29812
    0.934816
```

 H 2.96936 2.63256 1.89526
 H 3.61142 0.953023 1.78795
 end
ecce_print /home/sai/nw_work/Spin-traps/DMPO-RDFT-6-31G/ecce.out
basis "ao basis" cartesian print
H library "6-31G*"
O library "6-31G*"
C library "6-31G*"
N library "6-31G*"
END
dft
mult 1
XC b3lyp
iterations 200
mulliken
end
driver
gmax 0.00045
grms 0.0003
xmax 5e-05
xrms 0.0012
maxiter 100
end
task dft optimize

```

\section*{APPENDIX C: Structural Details of PBN/PBN-OH}
1. Input file for PBN geometry optimization.
```

scratch_dir /scr/sai
permanent_dir /home/sai/nw_work/Spin-traps/PBN/PBN
Title "PBN"
Start PBN
echo
charge 0

```
geometry autosym units angstrom
    \(\begin{array}{llll}C & 0.126771 & 0.0561804 & 0.00160139\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -0.788961 & -0.522775 & 0.0125691\end{array}\)
    \(\begin{array}{llll}C & 0.0634188 & 1.46461 & -0.0247405\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -0.897060 & 1.96924 & -0.0163045\end{array}\)
    \(\begin{array}{llll}C & 1.25046 & 2.22662 & -0.0729991\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 1.15577 & 3.30158 & -0.135154\end{array}\)
    \(\begin{array}{llll}C & 2.52679 & 1.59392 & -0.0430856\end{array}\)
    \(\begin{array}{llll}C & 2.57708 & 0.164760 & -0.0144289\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 3.52903 & -0.358724 & 0.000294584\end{array}\)
    \(\begin{array}{llll}C & 1.38177 & -0.597964 & -0.000628249\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 1.41955 & -1.68247 & 0.00721104\end{array}\)
    \(\begin{array}{llll}C & 3.80226 & 2.38372 & -0.0187180\end{array}\)
    \(\begin{array}{llll}\mathrm{N} & 3.84261 & 3.66579 & 0.223547\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 4.72796 & 1.81461 & -0.0143679\end{array}\)
    \(0 \quad 2.97353 \quad 4.12058 \quad 1.11105\)
    \(\begin{array}{llll}C & 5.06514 & 4.46671 & 0.0614132\end{array}\)
    \(\begin{array}{llll}C & 5.83372 & 4.13714 & -1.24476\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 5.22864 \quad 4.40692 & -2.13771\end{array}\)
    H \(\quad 6.77482\)
    \(4.72733-1.28704\)
\begin{tabular}{llll}
H & 6.11384 & 3.06733 & -1.31312 \\
C & 4.72603 & 5.97956 & 0.0162774 \\
H & 4.12664 & 6.22756 & -0.887103 \\
H & 4.15445 & 6.30012 & 0.913648 \\
H & 5.65885 & 6.58395 & -0.0152634 \\
C & 5.96335 & 4.20705 & 1.28498 \\
H & 5.41455 & 4.47915 & 2.21531 \\
H & 6.22819 & 3.12968 & 1.34796 \\
H & 6.89354 & 4.80649 & 1.23798
\end{tabular}
end
ecce_print /home/sai/nw_work/Spin-traps/PBN/PBN/ecce.out
basis "ao basis" cartesian print
H library "6-31G*"
O library "6-31G*"
C library "6-31G*"
N library "6-31G*"
END
dft
mult 1
XC b3lyp
iterations 200
mulliken
end
driver
default
maxiter 100
end
task dft optimize
2. Input file for PBN-OH cis adduct geometry optimization.
scratch_dir /scr/sai
permanent_dir /home/sai/nw_work/Spin-traps/PBN/PBN-adduct Title "PBN-adduct"

Start PBN-adduct
echo
charge 0
geometry autosym units angstrom
\begin{tabular}{llcc} 
C & -0.00710432 & -3.67877 & \multicolumn{1}{c}{-0.780622} \\
H & -0.139851 & -4.64104 & -1.25786 \\
C & -0.907584 & -3.25822 & 0.220842 \\
H & -1.73159 & -3.89753 & 0.509858 \\
C & -0.737371 & -2.00202 & 0.842864 \\
H & -1.44379 & -1.69197 & 1.60252 \\
C & 0.345150 & -1.15780 & 0.474190 \\
C & 1.23812 & -1.58702 & -0.542899 \\
H & 2.06245 & -0.958076 & -0.853320 \\
C & 1.06377 & -2.84350 & -1.16346 \\
H & 1.75061 & -3.16531 & -1.93549 \\
C & 0.517148 & 0.205410 & 1.10852 \\
N & -0.373438 & 1.17405 & 0.453540 \\
O & -1.69138 & 0.954079 & 0.533009 \\
C & 0.130310 & 2.40014 & -0.211233 \\
C & 1.09082 & 2.02416 & -1.35758 \\
H & 0.600351 & 1.30612 & -2.04941 \\
H & 1.38498 & 2.92667 & -1.93596 \\
H & 2.02233 & 1.56082 & -0.973474
\end{tabular}
```

 C -1.04241 3.20942 -0.811268
 H -1.59272 2.60078 -1.56110
 H -1.75440 3.51720 -0.0151658
 H -0.673632 4.12886 -1.31582
 C 0.857764 3.29147 0.815120
 H 0.183545 3.52302 1.66759
 H 1.76501 2.79378 1.21538
 H 1.17694 4.24816 0.347602
 H 1.57833 0.520479 0.999076
 O 0.211444 0.154623 2.47830
 H 0.959994 -0.323404 2.92292
 end
ecce_print /home/sai/nw_work/Spin-traps/PBN/PBN-adduct/ecce.out
basis "ao basis" cartesian print
H library "6-31G*"
O library "6-31G*"
C library "6-31G*"
N library "6-31G*"
END
dft
mult 2
XC b3lyp
iterations 200
mulliken
end
driver
default
maxiter 100
end
task dft optimize

```

\section*{APPENDIX D: Structural Details of PBN-Me}
4. Input file for PBN-Me adduct geometry optimization.
```

scratch_dir /scr/sai
permanent_dir /home/sai/nw_work/PBN-Me/PBN-Me-adduct
Title "PBN-Me-adduct"
Start PBN-Me-adduct
echo

```
charge 0
geometry autosym units angstrom
    \(\begin{array}{llll}C & -0.840052 & -3.65708 & 0.543024\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -1.18299 & -4.59947 & 0.951999\end{array}\)
    \(\begin{array}{llll}C & 0.179195 & -2.93589 & 1.19918\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 0.619988 & -3.32660 & 2.10801\end{array}\)
    \(\begin{array}{llll}C & 0.633629 & -1.70993 & 0.665143\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 1.42828 \quad-1.18417 & 1.17610\end{array}\)
    \(\begin{array}{llll}C & 0.0573581 & -1.18308 & -0.523562\end{array}\)
    \(\begin{array}{llll}C & -0.958935 & -1.92605 & -1.18095\end{array}\)
    \(\begin{array}{llll}\text { H } & -1.39725 & -1.55909 & -2.09950\end{array}\)
    \(\begin{array}{llll}C & -1.40728 & -3.15449 & -0.647510\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -2.18008 & -3.71708 & -1.15526\end{array}\)
    \(\begin{array}{llll}C & 0.552347 & 0.116882 & -1.12638\end{array}\)
    \(\begin{array}{llll}\mathrm{N} & 0.690601 & 1.15507 & -0.0852553\end{array}\)
    \(\begin{array}{llll}0 & 1.85155 & 1.23858 & 0.576968\end{array}\)
    \(\begin{array}{llll}C & -0.314842 & 2.22729 & 0.105444\end{array}\)
    \(\begin{array}{llll}C & -1.75211 & 1.66288 & 0.0236993\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -1.86871 & 0.801747 & 0.715881\end{array}\)
\begin{tabular}{|c|c|c|c|}
\hline H & -2.49540 & 2.44123 & 0.301650 \\
\hline H & -2.00645 & 1.32847 & -1.00237 \\
\hline C & -0.140256 & 2.86791 & 1.49998 \\
\hline H & -0.237936 & 2.09556 & 2.29364 \\
\hline H & 0.857608 & 3.34735 & 1.59679 \\
\hline H & -0.910685 & 3.64883 & 1.67560 \\
\hline C & -0.112626 & 3.30887 & -0.970261 \\
\hline H & 0.919752 & 3.71794 & -0.913503 \\
\hline H & -0.264915 & 2.89007 & -1.98721 \\
\hline H & -0.829900 & 4.14574 & -0.826601 \\
\hline H & -0.169881 & 0.460249 & -1.89581 \\
\hline C & 1.87244 & -0.109314 & -1.87364 \\
\hline H & 1.71445 & -0.836404 & -2.70017 \\
\hline H & 2.23076 & 0.847257 & -2.31067 \\
\hline H & 2.65332 & -0.509591 & -1.19351 \\
\hline \multicolumn{4}{|l|}{end} \\
\hline \multicolumn{4}{|l|}{ecce_print /home/sai/nw_work/PBN-Me/PBN-Me-adduct/ecce.out} \\
\hline \multicolumn{4}{|l|}{basis "ao basis" cartesian print} \\
\hline & brary "6-31 & & \\
\hline \multicolumn{4}{|l|}{END} \\
\hline \multicolumn{4}{|l|}{dft} \\
\hline & & & \\
\hline & 31 yp & & \\
\hline & ations 200 & & \\
\hline & iken & & \\
\hline end & & & \\
\hline
\end{tabular}
```

driver
default
maxiter 100
end

```
task dft optimize


\section*{APPENDIX E: Structural Details of PPN}
5. Input file for PPN geometry optimization.
```

scratch_dir /scr/sai
permanent_dir /home/sai/nw_work/PPN/PPN-1
Title "PPN-1"
Start PPN-1
echo

```
charge 0
geometry autosym units angstrom
    \(\begin{array}{llll}C & -0.510622 \quad 4.91974 & 0.0457371\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -1.38133 & 5.56905 & 0.00295667\end{array}\)
    \(\begin{array}{llll}C & -0.644633 & 3.57864 & -0.309462\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -1.59668 \quad 3.17768 & -0.627059\end{array}\)
    \(\begin{array}{llll}C & 0.475368 & 2.71981 & -0.262773\end{array}\)
    \(\begin{array}{llll}C & 1.71643 & 3.25582 & 0.149696\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 2.58687 & 2.60527 & 0.191703\end{array}\)
    \(\begin{array}{llll}C & 1.83749 & 4.59373 & 0.504486\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 2.80168 \quad 4.98302 \quad 0.820451\end{array}\)
    \(\begin{array}{llll}C & 0.721229 & 5.43432 & 0.453954\end{array}\)
    \(\begin{array}{llll}C & 0.464854 & 1.31268 & -0.612689\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 1.39430 & 0.764815 & -0.539608\end{array}\)
    \(\begin{array}{llll}\mathrm{N} & -0.583711 & 0.597203 & -0.970792\end{array}\)
    \(\begin{array}{llll}0 & -1.77877 & 1.04820 & -1.05450\end{array}\)
    \(\begin{array}{llll}C & -0.394448 & -0.888034 & -1.33189\end{array}\)
    \(\begin{array}{llll}C & -1.75008 & -1.45309 & -1.76610\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -2.11764 & -0.905124 & -2.63679\end{array}\)
\begin{tabular}{|c|c|c|c|}
\hline H & -1.62245 & -2.50631 & -2.02705 \\
\hline H & -2.49331 & -1.36795 & -0.973669 \\
\hline C & 0.638863 & -1.01346 & -2.46494 \\
\hline H & 0.314255 & -0.412738 & -3.32134 \\
\hline H & 1.63573 & -0.685819 & -2.16183 \\
\hline H & 0.710343 & -2.05872 & -2.77936 \\
\hline P & 0.234640 & -1.75832 & 0.192919 \\
\hline 0 & 1.56511 & -1.29239 & 0.675421 \\
\hline 0 & 0.136337 & -3.28638 & -0.310261 \\
\hline 0 & -0.949416 & -1.68657 & 1.28846 \\
\hline C & 0.602787 & -4.36648 & 0.544478 \\
\hline H & 0.418840 & -4.10590 & 1.59219 \\
\hline H & -0.0362563 & -5.21681 & 0.291813 \\
\hline C & 2.06963 & -4.67288 & 0.292285 \\
\hline H & 2.69144 & -3.81102 & 0.549117 \\
\hline H & 2.38026 & -5.52816 & 0.904085 \\
\hline H & 2.23449 & -4.92517 & -0.760350 \\
\hline C & -0.935152 & -0.736568 & 2.39391 \\
\hline H & -0.00576799 & -0.161726 & 2.36250 \\
\hline H & -0.933009 & -1.34039 & 3.30700 \\
\hline C & -2.16362 & 0.152785 & 2.31650 \\
\hline H & -3.07817 & -0.446010 & 2.38231 \\
\hline H & -2.15647 & 0.861920 & 3.15277 \\
\hline H & -2.18486 & 0.714426 & 1.37740 \\
\hline H & 0.813193 & 6.48128 & 0.730637 \\
\hline
\end{tabular}
end
ecce_print /home/sai/nw_work/PPN/PPN-1/ecce.out
basis "ao basis" cartesian print
H library "6-31G*"
O library "6-31G*"
```

 C library "6-31G*"
 N library "6-31G*"
 P library "6-31G*"
 END
dft
mult 1
XC b3lyp
iterations 200
mulliken
end
driver
default
maxiter 100
end
task dft optimize

```

\section*{APPENDIX F: COSMO Files}

\section*{6. Input file for COSMO calculation of DMPO.}
```

scratch_dir /scr/sai
permanent_dir /home/sai/nw_work/Spin-traps/DMPO-RDFT-COSMO-1
Title "DMPO-RDFT-COSMO-1"
Start DMPO-RDFT-COSMO-1
echo

```
charge 0
geometry autosym units angstrom
\begin{tabular}{llll}
\(C \quad 0.953659\) & 1.38186 & -0.0671880
\end{tabular}
    \(\begin{array}{llll}\mathrm{H} & 1.91000 & 1.88732 & -0.104842\end{array}\)
    \(\begin{array}{llll}C & -0.388225 & 1.97269 & 0.222300\end{array}\)
    \(\begin{array}{llll}C & -1.35421 & 0.809028 & -0.122296\end{array}\)
    \(\begin{array}{llll}C & -0.497766 & -0.473188 & -0.0642258\end{array}\)
    \(\begin{array}{llll}\mathrm{N} & 0.917990 & 0.0830835 & -0.221829\end{array}\)
    \(0 \quad 1.87675 \quad-0.717911 \quad-0.424313\)
    \(\begin{array}{llll}\mathrm{H} & -2.20933 & 0.758502 & 0.558069\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -1.74597 & 0.944766 & -1.13579\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -0.473095 & 2.27806 & 1.27659\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -0.593526 & 2.86897 & -0.375373\end{array}\)
    \(\begin{array}{llll}C & -0.541071 & -1.17791 & 1.29744\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -1.50555 & -1.67898 & 1.43267\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 0.256264 & -1.92464 & 1.35176\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -0.405255 & -0.465539 & 2.11908\end{array}\)
    \(\begin{array}{clll}C & -0.753954 & -1.45370 & -1.20570\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -0.694454 & -0.949616 & -2.17635\end{array}\)
```

 H
 H -1.75289 -1.89173 -1.10465
 end
ecce_print /home/sai/nw_work/Spin-traps/DMPO-RDFT-COSMO-
1/ecce.out
basis "ao basis" cartesian print
H library "6-31G*"
O library "6-31G*"
C library "6-31G*"
N library "6-31G*"
END
dft
mult 1
XC b3lyp
iterations 200
mulliken
end
driver
gmax 0.00045
grms 0.0003
xmax 5e-05
xrms 0.0012
maxiter 100
end
cosmo
end
task dft optimize

```
2. Input file for the COSMO calculation of PBN-OH cis adduct.
```

scratch_dir /scr/sai
permanent_dir /home/sai/nw_work/Spin-traps/PBN/cosmo-PBN-adduct
Title "cosmo-PBN-adduct"
Start cosmo-PBN-adduct
echo

```
charge 0
geometry autosym units angstrom
    \(\begin{array}{llll}C & -0.937782 & -3.56333 & 0.172604\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -1.22287 & -4.54147 & 0.536839\end{array}\)
    \(\begin{array}{llll}C & -0.0436775 & -2.76727 & 0.917640\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 0.358746 & -3.13779 & 1.85064\end{array}\)
    \(\begin{array}{llll}C & 0.339594 & -1.49560 & 0.439197\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & 1.05183 & -0.924379 & 1.01542\end{array}\)
    \(\begin{array}{llll}C & -0.194742 & -0.991989 & -0.779041\end{array}\)
    \(\begin{array}{llll}C & -1.08990 & -1.80761 & -1.52146\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -1.49832 & -1.45985 & -2.46175\end{array}\)
    \(\begin{array}{llll}C & -1.45729 & -3.08571 & -1.04844\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -2.13785 & -3.69905 & -1.62446\end{array}\)
    \(\begin{array}{llll}C & 0.234484 & 0.349891 & -1.34572\end{array}\)
    \(\begin{array}{llll}\mathrm{N} & 0.307579 & 1.38814 & -0.299451\end{array}\)
    \(\begin{array}{llll}0 & 1.42847 & 1.47072 & 0.426653\end{array}\)
    \(\begin{array}{llll}C & -0.748449 & 2.41432 & -0.122837\end{array}\)
    \(\begin{array}{llll}C & -2.12293 & 1.73618 & 0.0470555\end{array}\)
    \(\begin{array}{llll}\mathrm{H} & -2.41353 & 1.16600 & -0.860834\end{array}\)
\begin{tabular}{|c|c|c|c|}
\hline H & -2.91374 & 2.49478 & 0.230887 \\
\hline H & -2.09940 & 1.03925 & 0.911420 \\
\hline C & -0.470401 & 3.25784 & 1.14360 \\
\hline H & -0.410789 & 2.60357 & 2.04056 \\
\hline H & 0.490950 & 3.80534 & 1.04733 \\
\hline H & -1.27611 & 4.00591 & 1.31033 \\
\hline C & -0.775975 & 3.36101 & -1.33976 \\
\hline H & 0.227905 & 3.80858 & -1.50426 \\
\hline H & -1.07925 & 2.82792 & -2.26325 \\
\hline H & -1.50401 & 4.18507 & -1.17858 \\
\hline H & -0.507926 & 0.654186 & -2.11029 \\
\hline 0 & 1.46530 & 0.235272 & -2.01332 \\
\hline H & 2.12515 & -0.125702 & -1.36629 \\
\hline end & & & \\
\hline \multicolumn{4}{|l|}{ecce_print /home/sai/nw_work/Spin-traps/PBN/cosmo-PBNadduct/ecce.out} \\
\hline \multicolumn{4}{|l|}{basis "ao basis" cartesian print} \\
\hline \multicolumn{4}{|c|}{H library "6-31G*"} \\
\hline \multicolumn{4}{|c|}{O library "6-31G*"} \\
\hline \multicolumn{4}{|c|}{C library "6-31G*"} \\
\hline \multicolumn{4}{|c|}{N library "6-31G*"} \\
\hline \multicolumn{4}{|l|}{END} \\
\hline \multicolumn{4}{|l|}{dft} \\
\hline \multicolumn{4}{|c|}{mult 2} \\
\hline \multicolumn{4}{|c|}{XC b3lyp} \\
\hline \multicolumn{4}{|c|}{iterations 200} \\
\hline \multicolumn{4}{|c|}{mulliken} \\
\hline \multicolumn{4}{|l|}{end} \\
\hline
\end{tabular}
driver
default
maxiter 100
end
cosmo
end
task dft optimize

\section*{APPENDIX G: OUTPUT COORDINATES FOR THE OPTIMIZED SPIN TRAPS}

\section*{1. Output coordinates for DMPO spin trap.}
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Tag & Charge & X & Y & Z \\
\hline 1 & C & 6.0000 & 0.95365936 & 1.38186194 & -0.06718796 \\
\hline 2 & H & 1.0000 & 1.90999970 & 1.88732081 & -0.10484168 \\
\hline 3 & C & 6.0000 & -0.38822459 & 1.97269217 & 0.22230038 \\
\hline 4 & C & 6.0000 & -1.35421453 & 0.80902805 & -0.12229574 \\
\hline 5 & C & 6.0000 & -0.49776626 & -0.47318794 & -0.06422578 \\
\hline 6 & N & 7.0000 & 0.91799001 & 0.08308349 & -0.22182910 \\
\hline 7 & \(\bigcirc\) & 8.0000 & 1.87675051 & -0.71791104 & -0.42431271 \\
\hline 8 & H & 1.0000 & -2.20932856 & 0.75850200 & 0.55806931 \\
\hline 9 & H & 1.0000 & -1.74597294 & 0.94476572 & -1.13578866 \\
\hline 10 & H & 1.0000 & -0.47309466 & 2.27805678 & 1.27658895 \\
\hline 11 & H & 1.0000 & -0.59352551 & 2.86896753 & -0.37537327 \\
\hline 12 & C & 6.0000 & -0.54107145 & -1.17790792 & 1.29744107 \\
\hline 13 & H & 1.0000 & -1.50554849 & -1.67898178 & 1.43266995 \\
\hline 14 & H & 1.0000 & 0.25626418 & -1.92464447 & 1.35175516 \\
\hline 15 & H & 1.0000 & -0.40525514 & -0.46553878 & 2.11907755 \\
\hline 16 & C & 6.0000 & -0.75395367 & -1.45370333 & -1.20570287 \\
\hline 17 & H & 1.0000 & -0.69445429 & -0.94961637 & -2.17635422 \\
\hline 18 & H & 1.0000 & -0.00857352 & -2.25245998 & -1.18748091 \\
\hline 19 & H & 1.0000 & -1.75288662 & -1.89172588 & -1.10465159 \\
\hline
\end{tabular}

\section*{2. Output coordinates for PBN spin trap.}

Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.)

\begin{tabular}{rrrrr}
8 C & 6.0000 & 1.14218645 & -2.21336953 & -0.63077173 \\
9 H & 1.0000 & 2.06027463 & -1.81871110 & -1.06110796 \\
10 C & 6.0000 & 0.94450987 & -3.58792431 & -0.57873665 \\
11 H & 1.0000 & 1.70682765 & -4.25807257 & -0.96722289 \\
12 C & 6.0000 & 0.47931803 & 0.09961502 & -0.23885635 \\
13 N & 7.0000 & -0.27415688 & 1.10332685 & 0.16032853 \\
14 H & 1.0000 & 1.42274647 & 0.36702568 & -0.68961015 \\
15 O & 8.0000 & -1.42010564 & 0.97210216 & 0.71352592 \\
16 C & 6.0000 & 0.16415989 & 2.56295616 & -0.00504023 \\
17 C & 6.0000 & 1.53719247 & 2.71135961 & -0.66814368 \\
18 H & 1.0000 & 1.55526655 & 2.29893898 & -1.68250868 \\
19 H & 1.0000 & 1.76613944 & 3.77933834 & -0.74570466 \\
20 H & 1.0000 & 2.33539279 & 2.24806069 & -0.07857561 \\
21 C & 6.0000 & -0.91805596 & 3.23342892 & -0.86562302 \\
22 H & 1.0000 & -0.92152484 & 2.81876420 & -1.88003902 \\
23 H & 1.0000 & -1.90150575 & 3.07464567 & -0.42026271 \\
24 H & 1.0000 & -0.72237762 & 4.30861360 & -0.93451764 \\
25 C & 6.0000 & 0.18937619 & 3.15883713 & 1.41110810 \\
26 H & 1.0000 & -0.77281621 & 3.00028746 & 1.90077675 \\
27 H & 1.0000 & 0.97263254 & 2.68974652 & 2.01727729 \\
28 H & 1.0000 & 0.39402834 & 4.23318041 & 1.35669789
\end{tabular}

\section*{3. Output coordinates for \(\mathrm{PBN}-\mathrm{OH}\) cis adduct.}

Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Tag & Charge & X & Y & Z \\
\hline 1 & C & 6.0000 & -0.82524173 & -3.66469945 & 0.54659216 \\
\hline 2 & H & 1.0000 & -1.15572915 & -4.61332694 & 0.96120519 \\
\hline 3 & C & 6.0000 & 0.16997882 & -2.92560033 & 1.19258774 \\
\hline 4 & H & 1.0000 & 0.61471769 & -3.29906400 & 2.11130556 \\
\hline 5 & C & 6.0000 & 0.59486253 & -1.70770219 & 0.66469660 \\
\hline 6 & H & 1.0000 & 1.36291289 & -1.13006764 & 1.17116584 \\
\hline 7 & C & 6.0000 & 0.02728643 & -1.21436035 & -0.51793904 \\
\hline 8 & C & 6.0000 & -0.96771550 & -1.95805004 & -1.15856218 \\
\hline 9 & H & 1.0000 & -1.40911983 & -1.58362317 & -2.07999181 \\
\hline 10 & C & 6.0000 & -1.39399271 & -3.17868832 & -0.63069182 \\
\hline 11 & H & 1.0000 & -2.16852412 & -3.74707055 & -1.13884801 \\
\hline 12 & C & 6.0000 & 0.51980375 & 0.08629827 & -1.14359921 \\
\hline 13 & N & 7.0000 & 0.65874158 & 1.15040169 & -0.09833122 \\
\hline 14 & 0 & 8.0000 & 1.84649013 & 1.29706541 & 0.37415110 \\
\hline
\end{tabular}
\begin{tabular}{lrrrr}
15 C & 6.0000 & -0.34007948 & 2.24359800 & 0.11041746 \\
16 C & 6.0000 & -1.76421117 & 1.67369427 & 0.00558939 \\
17 H & 1.0000 & -1.91831366 & 0.85855842 & 0.71908291 \\
18 H & 1.0000 & -2.48204636 & 2.46882519 & 0.23266660 \\
19 H & 1.0000 & -1.99783393 & 1.30292003 & -0.99727837 \\
20 C & 6.0000 & -0.11375805 & 2.81861425 & 1.51613686 \\
21 H & 1.0000 & -0.26716730 & 2.04899788 & 2.27963984 \\
22 H & 1.0000 & 0.90012856 & 3.20761332 & 1.62216781 \\
23 H & 1.0000 & -0.82705445 & 3.63019520 & 1.69402411 \\
24 C & 6.0000 & -0.09507866 & 3.32476932 & -0.96152771 \\
25 H & 1.0000 & 0.93009403 & 3.70038123 & -0.88985358 \\
26 H & 1.0000 & -0.24745133 & 2.92842900 & -1.97169560 \\
27 H & 1.0000 & -0.78599453 & 4.16330508 & -0.81940385 \\
28 H & 1.0000 & -0.20659766 & 0.43099653 & -1.88596347 \\
29 O & 8.0000 & 1.75128233 & -0.05949774 & -1.79104365 \\
30 H & 1.0000 & 2.41010872 & 0.17755634 & -1.10472617
\end{tabular}

\section*{4. Output coordinates for \(\mathrm{PBN}-\mathrm{OH}\) trans adduct.}

Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.)

\begin{tabular}{llrrrr}
20 C & 6.0000 & -1.82076532 & -2.39114854 & 0.64756651 \\
21 H & 1.0000 & -2.48981466 & -1.52522082 & 0.59576467 \\
22 H & 1.0000 & -2.03543921 & -3.04539441 & -0.19983906 \\
23 H & 1.0000 & -2.02940904 & -2.93103824 & 1.57749198 \\
24 C & 6.0000 & 0.58054046 & -3.16949755 & 0.71097400 \\
25 H & 1.0000 & 0.43481216 & -3.81045250 & -0.16332238 \\
26 H & 1.0000 & 1.62931837 & -2.85843697 & 0.75534285 \\
27 H & 1.0000 & 0.35952215 & -3.75152244 & 1.61255650 \\
28 H & 1.0000 & 0.85842971 & -0.14500399 & -2.05150289 \\
29 & 8.0000 & 2.12286860 & -0.43549187 & -0.43470637 \\
30 & 1.0000 & 2.49275631 & -1.17040323 & -0.94910570
\end{tabular}

\section*{5. Output coordinates for PBN-Me cis adduct.}

Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.)

\begin{tabular}{rrrrr}
25 H & 1.0000 & 0.69898547 & 3.68029469 & -0.79322629 \\
26 H & 1.0000 & -0.01457794 & 2.62526206 & -2.03163017 \\
27 H & 1.0000 & -0.99462226 & 3.89214047 & -1.28356497 \\
28 H & 1.0000 & 0.38585024 & 0.44691427 & -1.63623249 \\
29 C & 6.0000 & 2.36079438 & 0.14349203 & -0.84531184 \\
30 H & 1.0000 & 2.64082070 & -0.61663909 & -1.58131257 \\
31 H & 1.0000 & 2.72418751 & 1.11852614 & -1.18748403 \\
32 H & 1.0000 & 2.84208071 & -0.08965537 & 0.10626920
\end{tabular}

\section*{6. Output coordinates for PPN spin trap.}

Output coordinates in angstroms (scale by 1.889725989 to convert to a.u.)

\begin{tabular}{lrrrr}
27 O & 8.0000 & 1.35447077 & 1.71632802 & 0.86083866 \\
28 C & 6.0000 & -0.34444869 & 4.40284763 & 0.65948136 \\
29 H & 1.0000 & 0.17838061 & 4.14654318 & 1.58706416 \\
30 H & 1.0000 & 0.17710169 & 5.24748406 & 0.20138545 \\
31 C & 6.0000 & -1.80964592 & 4.71785632 & 0.91068779 \\
32 H & 1.0000 & -2.31352653 & 3.86156290 & 1.36705518 \\
33 H & 1.0000 & -1.89355869 & 5.57842021 & 1.58500833 \\
34 H & 1.0000 & -2.31624420 & 4.96574842 & -0.02778668 \\
35 C & 6.0000 & 1.70647999 & 0.77222238 & 1.91407871 \\
36 H & 1.0000 & 0.81750841 & 0.20343755 & 2.19940088 \\
37 H & 1.0000 & 2.01251262 & 1.38077816 & 2.77102480 \\
38 C & 6.0000 & 2.83433506 & -0.12571046 & 1.43684829 \\
39 H & 1.0000 & 3.72090911 & 0.46734593 & 1.18876762 \\
40 H & 1.0000 & 3.10404040 & -0.83034370 & 2.23246638 \\
41 H & 1.0000 & 2.53778220 & -0.69245494 & 0.54878516 \\
42 H & 1.0000 & -0.53216547 & -6.44208580 & 0.98316479
\end{tabular}

\title{
VITA \\ SAI SRIHARSHA MANOJ KONDA
}
\(\left.\begin{array}{ll}\text { Personal Data: } & \begin{array}{l}\text { Date of Birth: April 04, 1985 } \\
\text { Place of Birth: Eluru, India } \\
\text { Marital Status: Single }\end{array} \\
\text { Education: } & \begin{array}{l}\text { Public Schools, Visakhapatnam, India } \\
\text { B. Sc. Chemistry (Hons.), Sri Sathya Sai University, Prasanthi } \\
\text { Nilayam, India 2005 }\end{array} \\
\text { M. Sc. Chemistry, Sri Sathya Sai University, Prasanthi } \\
\text { Nilayam, India 2007 }\end{array}\right\}\)\begin{tabular}{l} 
M. S. Chemistry, East Tennessee State University, \\
Johnson City, Tennessee 2009
\end{tabular}```

