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ABSTRACT 
 
 

Reverse-Phase HPLC Determination of Cholesterol in Food Items. 
 
 

By 
 

Essaka David Christian 
 

 

Cholesterol is a fat-like molecule found among lipids in animal (including human) 

tissues.  It is needed for maintaining good health.  However, health issues have been 

raised because of the strong correlation between high levels of cholesterol in the body 

and cardiovascular disease.  An HPLC method for quantitative determination of 

cholesterol in foods is presented.  This involves a C-18 stationary phase using a 70:30 

methanol: 2-propanol mobile phase with an UV detector set at 212 nm.  The method 

showed linearity in the range 5.0 to 100.0 μg/mL and also good reproducibility with 

relative standard deviation of 4.22%, 2.71%, 4.8%, and 3.7% for the different samples 

analyzed.  The mean recovery of the butter sample was 106.5%.  The samples under 

investigation were common food items such as butter, lard, and two different types of 

cheese. 
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CHAPTER 1 

INTRODUCTION 

Some Facts about Cholesterol

 Cholesterol is a soft, waxy substance found among the lipids or fats in the  

bloodstream and in all cell membranes.  It is a non-saponifiable lipid essential in  

maintaining good health, as it is used to form cell membranes, several hormones, vitamin  

D, and bile acids needed to digest the fats present in our foods (1).  Cholesterol is the  

major sterol in the human body and belongs to the class of molecules called steroids,  

which are derivatives of the perhydrocyclopentanophenanthrene ring system (2).  Its  

chemical structure is shown in Figure 1. 

 
 
  
 

                        HO

 3

  17

5
6  

    
 

Figure 1. Structure of Cholesterol (C27H46O). 
Note:  The double bond is between carbons 5 and 6, and the 
hydroxyl group is bonded to carbon 3 of the ring nucleus. 

 
 Sterols are steroids that contain a hydroxyl group at C3 and an aliphatic  

chain of at least eight carbon atoms attached to C17.  Hence, cholesterol has an eight- 

carbon atom hydrocarbon chain that is numbered 20-27 as a continuation of the steroid  

nucleus.  Some of the cholesterol present in humans is esterified; that is, the hydroxyl  

group that projects from C3 is attached to a fatty acid residue with an ester linkage, as  

shown in Figure 2 (2) . 
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Figure 2. Structure of Cholesteryl Ester. 

 

Cholesterol is synthesized in many types of tissue but particularly in  

the liver and intestinal walls.  It is formed from squalene via lanosterol (3, 4). Cholesterol  

can thus be produced by most cells in the body.  Foods that are derived from animal  

products are rich in cholesterol.  These include eggs, dairy products such as butter,  

cheese, and cream, as well as most meats.  Some of the cholesterol contained in these  

animal products is in the form of cholesteryl esters, so the ordinary diet contains a  

mixture of cholesterol and cholesteryl esters (2).  Products that are not of animal origin  

such as vegetables, fruits, and grains do not contain cholesterol. 

Cholesterol and other fats cannot dissolve in blood.  They have to be transported 

to and from the cells by special carriers called lipoproteins, which are essentially a 

combination of lipids and proteins.  These are of several kinds, but the ones to focus 

on are low-density lipoproteins (LDL) and high-density lipoproteins (HDL) (1).  

Because it contains both hydrophobic and hydrophilic groups, cholesterol serves to help  

solubilize the nonpolar material that must be transported by the lower density  

lipoproteins.  In addition to serving as a structural component, cholesterol also is one of  

the lipids that are actually transported by the plasma lipoproteins, predominantly in the  

form of cholesteryl esters (2).  The most important concept to understanding plasma  

cholesterol transport is that cholesterol does not exist free in the solution.  Together with  

the plasma phospholipids and triglycerides, the other hydrophobic fats, cholesterol enters  

and leaves the plasma bound to specific proteins, and it is only with these solubilizing  
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lipoproteins that lipids are transported through the bloodstream (5).  Table 1 shows the 

guidelines developed by the National Cholesterol Education Program (NCEP) of the 

National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) and the 

U.S. Department of Health and Human Services (6). 

 

Table 1. Serum Cholesterol and Triglycerides Levels (mg/dL) and risk of heart 

diseases. 

 

Total Cholesterol 

Less than 200 Desirable 
200-239 Borderline high risk 

240 and above High risk 

LDL Cholesterol 

Less than 100 Optimal 
100-129 Near optimal/above optimal 
130-159 Borderline high risk 
160-189 High risk 

190 and above Very high risk 

HDL Cholesterol 

Above 60-90 Desirable 
35-40 High risk 

Less than 35 Very high risk 

Triglycerides 

Less than 100 Normal 
100-149 Borderline high risk 

200-399 or above 400 Very high risk 
    

 

 

 Low-density lipoproteins (LDL) are the major cholesterol carriers in the blood.  

They transport and supply cholesterol to different parts of the body.  They are also 

referred to as “bad” cholesterol because if too much LDL cholesterol circulates in the 

blood, it can slowly build-up in the arteries feeding the heart and brain.  This can 

subsequently lead to formation of plaque, a thick, hard deposit that can clog those 
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arteries, resulting in atherosclerosis.  The LDL cholesterol level should be less than 160 

mg/dL (or 100 mg/dL for someone already having heart disease) (1).  

 High-density lipoproteins (HDL), on the other hand, also known as “good”  

cholesterol, are believed by medical experts to carry cholesterol away from the tissues  

and back to the liver, its main source of origin in the body, where it is then metabolized  

and passed out of the body.  It is also believed that HDL removes excess cholesterol from  

plaques and thus slows their growth, helping to reduce the risk of heart attack or stroke.   

So a high HDL level is a good sign of a healthy body; but a low HDL cholesterol level  

(less than 40 mg/dL for men and less than 50 mg/dL for women) also indicates a greater  

risk (1).   

 

Biosynthesis of Cholesterol  

 Konrad Bloch and associates were the first, in the early 1940s, to reveal that all 

the carbon atoms of cholesterol are derived from acetate.  This finding subsequently led 

to further investigations and elucidation of the enzymatic complexities of cholesterol 

biosynthesis (7). 

 Cholesterol is formed from squalene, a C30 hydrocarbon intermediate, via  

lanosterol, the first sterol to be formed.  This synthesis can be viewed as a four-stage  

process, starting from the two-carbon acetate group of the Acetyl-CoA (acetyl-coenzyme 

A): the first stage is the synthesis of mevalonate from acetate, followed by mevalonate 

conversion to two activated isoprenes in a second stage.  In the third stage, six activated 

isoprenes units condense to form squalene, which finally converts to the four-ring steroid 

nucleus (4). 

 Two reactions leading to the production of mevalonate from three acetates are  

involved in the first stage.  In the first reaction, catalyzed by hydroxymethylglutaryl-CoA  

synthase, 3-hydroxy-3-methylglutaryl-CoA is synthesized by condensation of acetyl-CoA  

and acetoacetyl-CoA; then follows a reduction step catalyzed by hydroxymethylglutaryl- 

CoA reductase that produces mevalonate (7).  This is used for the synthesis of two key  

isoprenoid precursors of cholesterol; the first two reactions at this second stage are  

phosphorylations requiring ATP (adenosine triphosphate), followed by a decarboxylation  

by the enzyme phosphomevalonate decarboxylase to furnish the isoprenoid derivative 3- 

 13



isopentenyl pyrophosphate.  The enzyme isopentenyl pyrophosphate isomerase then  

interconverts 3-isopentenyl pyrophosphate and 3,3-dimethylallyl pyrophosphate in an  

isomerization reaction.  Those two derivatives subsequently condense in the third stage  

to form geranyl pyrophosphate, a C10  intermediate that is then transferred to isopentenyl 

pyrophosphate to synthesize farnesyl pyrophosphate, a C15 intermediate.  Two farnesyl 

pyrophosphates then condense to produce squalene in a two-step mechanism: the first 

step yields an asymmetric C30 condensation product that is then reduced and rearranged 

by squalene synthase, nicotinamide adenine dinucleotide phosphate (NADPH) as co-

enzyme, to yield the symmetrical squalene molecule. Squalene is subsequently converted 

into a tetracyclic steroidal configuration in two reactions: squalene 2,3-epoxide is 

obtained from the first reaction; it then undergoes cyclization (in a concerted movement 

of electrons as well as migration of two methyl groups) to yield lanosterol.   Cholesterol 

is finally synthesized from its direct precursors 7-dehydrocholesterol and desmosterol 

which both come from lanosterol (7).   

 

Metabolism of Cholesterol

 The liver is the major site of cholesterol synthesis in the body.  Other tissues like  

the intestine, the skin, or the nervous tissues also produce it.  An adult can synthesize  

approximately 800 mg of cholesterol every day.  In addition, an individual’s diet also 

provides substantial amounts of cholesterol (7).  Because there are two “independent” 

sources for cholesterol, the internal levels of the sterol must be controlled in order to 

avoid reaching levels giving rise to health issues.  Cholesterol synthesis is actually 

regulated by the dietary cholesterol intake, the caloric intake, certain hormones, and bile 

acids: that is referred to as “feedback inhibitory” effect (9).  Michael Brown and Joseph 

Goldstein elucidated the mechanism whereby cholesterol regulates its own biosynthesis 

by inhibiting the synthesis of the reductase that converts 3-hydroxy-3-methylglutaryl 

CoA to mevalonate (7).  

 Cholesterol is needed in all growing animal tissues for membrane synthesis.  In  

addition, a key metabolic function of cholesterol is to serve as the precursor of the  

following five classes of steroid hormones: progestagens, glucocorticoids,  

mineralocorticoids, androgens (male hormones), and estrogens (female hormones) (7).  
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Bile salts constitute the major breakdown products of cholesterol; they are polar  

derivatives of cholesterol synthesized in the liver, stored and concentrated in the  

gallbladder, and then released in the small intestine.  They solubilize dietary lipids, hence  

promoting their hydrolysis by lipases and facilitating their absorption (8).  About 80%   

of the body’s cholesterol is converted by the liver into various bile acids, of which  

the major ones present in humans are cholic, chenodeoxycholic, deoxycholic, and  

lithocholic acids.  These then conjugate with glycine or taurine to produce bile  

salts.  Glycocholate, for example, which is the main bile salt, is produced by 

condensation of cholate and glycine (7).  

 Continuous conversion of cholesterol into bile acids in the liver prevents the body  

from becoming overloaded with cholesterol, as its excessive accumulation in the tissues  

is harmful.  In normal humans, excess cholesterol is excreted in the feces either in the 

form of neutral sterols or after conversion to bile acids (9). 

 

Cholesterol and Health Issues 

 Cholesterol plays an essential role in the normal functioning of many animals  

including humans, serving in the build-up of the structure of many membranes and as  

a precursor of steroid hormones and bile acids.  However, our diet does not require any  

cholesterol intake, because all cells can synthesize it from simple precursors.  Moreover,  

high levels of cholesterol in the blood and the occurrence of cardiovascular diseases have  

been strongly correlated.  This is the main reason why nowadays in the media more  

emphasis is put on the drawbacks of cholesterol, as opposed to its benefits (4). 

 The transport of cholesterol and other triglyceride fats from their sources of origin  

(mainly the liver), to the different parts of the body where they are needed is achieved by 

very low-density lipoproteins (VLDL), intermediate-density lipoproteins (IDL) and low- 

density lipoproteins (LDL).  This deposition of fats in various places in the body is  

responsible for the narrowing and hardening of the lumen of a blood vessel. 

Atherosclerosis, resulting in an obstruction of blood vessels, is a condition linked to  

high levels of LDL-bound cholesterol leading to heart attacks when coronary arteries  

become totally blocked.  When atherosclerosis affects blood vessels supplying the brain,  

this results in cerebral vascular disease, eventually leading to a stroke. 
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High-density lipoproteins (HDL) on the other hand, have a negative correlation  

with arterial diseases; that is, high levels of HDL are a sign of good health.  This is  

because HDL transport cholesterol and other fats from the body back to the liver  

where it is recycled.  

 Several factors can affect the cholesterol levels in the human body.  The first  

factor that we can easily have control over is diet.  Foods rich in cholesterol, saturated  

fats, and trans-fats raise the blood cholesterol levels.  Hence, reducing the intake of  

saturated fats and cholesterol in the diet will have the effect of lowering the blood  

cholesterol levels.  Being overweight is also linked with high cholesterol levels.  Losing  

weight can help lower LDL and total cholesterol levels, as well as raising HDL levels.   

Exercising on a regular basis not only helps in losing weight but also tends to raise the  

HDL levels and thus lowers the chances of developing a heart disease (6).  

Some other factors cannot be corrected because they are inherent to each 

individual, but they should still be acknowledged in order to have a better feel of the  

measures to be taken.  One of them is age and gender.  Cholesterol levels rise as one  

gets older.  After the age of menopause, women’s LDL levels tend to rise even more.   

Also, heredity determines to some extent the amount of cholesterol one naturally 

produces (6). 

 It is equally possible to remedy high blood cholesterol level, the objective  

being to reduce LDL levels so as to minimize the risk of developing heart diseases or  

having a heart attack.  The Expert Panel on Population Strategies for Blood Cholesterol  

Reduction released a report in 1990 (10), emphasizing expansion of awareness of high  

blood cholesterol as a cause of heart disease through mass media channels.  Interventions  

at the population level include diet, exercise, and weight control; these constitute what is 

called therapeutic lifestyle changes.  Another alternative to reducing high blood 

cholesterol level is drug therapy. 

 Lipid-lowering therapy is known to be successful in reducing morbidity and  

mortality in patients with coronary artery disease, even though the effect is more  

pronounced in high-risk patients with greater risk of coronary artery disease (CAD) than  

that of low-risk patients.  The recommendation from the Adult Treatment Panel III of the  

US National Cholesterol Education Program (NCEP) (10) is that patients with CAD,  
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diabetes, or global risk of CAD above 20% over 10 years and LDL cholesterol (LDL-C)  

levels above 130 mg/dL, should receive drug therapy with a goal of reducing LDL-C  

levels to less than 100 mg/dL.  Statins, or 3-hydroxy-3-methylglutaryl-coenzyme A  

reductase inhibitors, are the most effective and well-tolerated lipid-lowering agents (11).  

Five of them are approved by the US Food and Drug Administration for general use:  

atorvastatin, achieving up to 55% LDL-C reduction, pravastatin, fluvastatin, lovastatin,  

and simvastatin.  Table 2 shows the amounts of statins required to achieve 30-40 %   

reduction of LDL-C levels (12).  

 

Table 2. Doses of currently available statins and corresponding LDL-C reductions. 

 

Drug Dose, mg/dL LDL reduction, % 

Atorvastatin 10 39 
Lovastatin 40 31 
Pravastatin 40 34 
Simvastatin 20-40 35-41 
Fluvastatin 40-80 25-35 

 
 
Bile acid sequestrants are another drug therapy with moderate effectiveness and  

gastrointestinal side effects.  Niacin, the oldest lipid-lowering drug, is still used mainly  

because it produces 10 to 15% increase of the HDL-C, as well as good reduction of  

triglycerides.  Also, plant stanols that are given as dietary supplements help in decreasing 

LDL-C in modestly hypercholesterolemic patients (11).  Combination therapy is also 

worth mentioning.  Recent findings show that the use of statins with the addition of a 

second agent such as a bile sequestrant (nicotinic acid, or ezetimibe, a new cholesterol-

absorption inhibitor) further reduced LDL-C in some patients (12).  

 

Summary 

 Heart disease is the number one killer of women and men in the United States of  

America (6).  The reason why there is so much attention on cholesterol is the strong  

correlation between coronary heart disease and high blood cholesterol levels.  Because of  
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its unique nature as a lipid and a steroid, cholesterol is a substance vital for the normal 

and healthy functioning of the body.  The problem resides in the presence of excessive 

cholesterol in the blood, especially in the low-density form, as this brings about 

conditions like hypertension, coronary artery disease, or stroke, when atherosclerotic  

plaques form in arteries and occlude blood vessels.  High blood cholesterol does not  

present any symptoms, so there is no other way to be aware of a potential risk for 

developing heart disease than to take a blood test or have a lipoprotein profile.   

So the need for developing methods allowing fast, precise, and reliable 

measurements of the amount of cholesterol present in the blood and in foods is obvious.  

The design and evaluation of one such method is the purpose of this research project. 
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CHAPTER 2 

METHODS OF CHOLESTEROL ANALYSIS  

 With all the publicity that has been going on about cholesterol, publicity justified  

by the strong connection between high blood cholesterol levels and cardiovascular 

diseases, it is clear that the determination the amount of cholesterol in blood or in foods 

has become a necessity.  Many studies have thus been carried out over the years on this 

topic, each one trying to achieve a simple, economical, and reliable method of cholesterol 

determination. 

 The breakthrough in determination of cholesterol dates back to the late nineteenth  

century with the development of a practical color reaction first described by Salkowski 

(13).  It was modified by the Nobel Prize winner Windaus (13), who also discovered that 

digitonin quantitatively precipitates cholesterol and does so relatively easily.  The 

gravimetric method developed by Windaus was the first reference procedure for the  

determination of cholesterol. 

 Because of the efforts invested by the scientific community in designing suitable  

methods of cholesterol analysis, various methods have been developed over the years.  It 

is useful to categorize these methods according to their applications in order to discuss 

them thoroughly.  The literature classifies cholesterol methods into two main groups: 

direct reactions and extraction methods, which are further subdivided into partial 

purification of cholesterol with organic solvents and complete isolation of cholesterol 

(13).  In direct reaction methods, reagents are added to the samples without any pre-

treatment so that there is no phase separation.  On the other hand, extraction methods, as 

the name implies, involves extraction of the cholesterol from the samples into a suitable 

solvent followed by a color reaction after the purification.  Some of the different methods 

used to analyze cholesterol are grouped and reviewed according to the analytical 

techniques used. 

 

Spectrophotometric Methods

 Spectrophotometry refers to the measurement of absorption and emission of light  

by materials.  This section reviews some of those methods involving an optical  

end-point reaction. 
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 Liebermann and Burchard were the pioneers in the colorimetric methods of  

cholesterol determination, which they established in 1885 (14).  The basic procedures 

later used by others were more or less modified versions of their methodology.  Three 

compounds, acetic anhydride, glacial acetic acid, and sulfuric acid, are required for the 

preparation of Liebermann-Burchard (L-B) reagent (14).  In 1969, Edward Kim and 

Morris Goldberg (15) prepared and used a single stable L-B reagent for serum cholesterol 

assay.  In the process, they first cooled acetic anhydride and concentrated sulfuric acid in 

ice water.  To a 500-mL amber glass bottle, they added 220 mL of cold acetic anhydride 

and 200 mL of glacial acetic acid (room temperature).  After mixing by inversion, 30 mL 

of cold concentrated acid sulfuric acid was added.  The reagent was then ready for usage 

or storage (for at least six months) at 4°C in the dark (15).  In the procedure, the 

cholesterol standard was prepared by dissolving 100 mg cholesterol in 50 mL glacial 

acetic acid; 6.0 mL of L-B reagent was pipetted into 19 × 105 mm cuvets labeled “U”, 

“S”, and “B” for unknown, standard, and blank respectively.  To “U” and “S” cuvets, 0.1 

mL of unknown serum and 0.1 mL of cholesterol standard were respectively added then 

mixed using a vortex mixer.  All cuvets were then incubated at 37°C for 18 minutes, after 

that the tubes were read at 625 nm at regular intervals over 10 minutes against an L-B 

reagent blank set to 100% transmittance.  The concentration of the unknown was 

calculated using the standard photometric formula  

 

Cu = Cs × Au/As     [1] 

 

The above study gave a standard deviation value of ± 5.7, which was deemed acceptable 

(15). 

In 1934, Rudolf Schoenheimer and Warren M. Sperry published a paper (16) on  

the determination of free and total cholesterol in blood and other biological material.  

Amounts of cholesterol ranging between 0.02 and 0.15 mg could be determined.  The  

procedure involved precipitation of cholesterol with digitonin, and then a color reaction 

was applied to the precipitate.  A modified L-B reaction was employed, which allowed  

direct comparison of the color given by digitonin with that of cholesterol in the  

range 610-620 nm using a sensitive photometer.  The calculation of the amount of  
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cholesterol was based on the results of a long series of determinations on known amounts  

of cholesterol in which it was shown that the specific extinction coefficient is constant  

over the range studied (16).  In terms of accuracy, this method gave values very close to  

those found in the Windaus procedure. 

 Enzymatic methods have also been extensively investigated.  Charles C. Allain  

and co-workers, proposed in 1974 a method preferable to older ones because of its 

specificity, dynamic range, and simplicity (17).  No prior treatment of the sample was 

required.  Cholesterol esters are hydrolyzed to free cholesterol by cholesterol ester 

hydrolase. The free cholesterol produced is oxidized to cholest-4-en-3-one by cholesterol 

oxidase with the production of hydrogen peroxide.  The hydrogen peroxide thus 

generated is measured by the oxidative coupling of 4-aminoantipyrine and phenol in the 

presence of peroxidase to yield a chromogen with maximum absorption at 500 nm.  The 

method yielded a coefficient of variation of 0.5% for a cholesterol concentration with a 

mean value of 384.4 mg/dl and a standard deviation of 1.91%; also a coefficient of 

variation of 1.0% for a cholesterol concentration with a mean value of 46.9 mg/dL and a 

standard deviation of 0.48% (17). 

 The first and second methods above are direct and extraction methods  

respectively, both non-enzymatic methods, whereas the third is another direct enzymatic  

method.  Extraction methods generally present the disadvantage of being time- 

consuming, and require considerable manipulative skills and care in the process; also, the  

L-B color is known to fade on exposure to light.  On the other hand, direct methods suffer  

from the presence of interfering chromogens, hemoglobin, and bilirubin.  Another  

shortcoming is the depression of the final color produced in cases where standards in  

organic solvents are being used because of water in the serum (18).  

 

Mass Spectrometric Method 
 An isotope dilution/ mass spectrometric (ID/MS) method for total serum  

cholesterol was developed independently at the Karolinska Institutet (KI) and the  

National Bureau of Standards (NBS), now National Institute of Standards and 

Technology (NIST).  The compatibility of both studies was then assessed in a study 

published in 1982 (19).  In the KI procedure, cholesterol-d4 and purified unlabeled 
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cholesterol served as labeled internal standard and primary standard respectively. 

Calibration curves were made from the averages of two single independent molecular-ion 

ratio measurements on the unlabeled and the labeled cholesterols separately and on four 

such standard mixtures.  Aliquots of the same solution of labeled cholesterol were used 

for the serum sample analyses.  After saponification using alcoholic potassium hydroxide 

and extraction, ratios of the molecular-ions at m/z 390 and 386 from the two forms of 

cholesterol were independently measured twice by gas Chromatography-mass 

spectrometry (GC-MS) (19).  

 On the other hand, the NBS method involved the use of cholesterol-d7.  After  

saponification, the extracted cholesterol was converted into the trimethylsilyl ether  

derivative by overnight reaction with 0.5 mL of 6/4/3 by volume of  

pyridine/hexamethyldisilazane/trimethylchlorosilane.  Combined GC-MS with selected  

ion monitoring at m/z 465 and 458 was used.  Each observed ratio for a sample is  

converted into a cholesterol-d7 to –d0 weight ratio by a linear interpolation between the  

ratios observed for two standard mixtures.  GC-MS showed that lathosterol interfered in  

the method at the KI.  The NBS results were found to be more precise; but the mean  

values for the second series of analysis by the KI method lied within ± 1.3% of the NBS  

values so that they could be used as laboratory reference method values.  Still, the  

ID/MS analyses required rigorous sampling and were time-consuming (19). 

 

Electrophoresis Method

 The interest in electrophoretic analysis of cholesterol resides in the fact that it  

allows fractions of cholesterol, namely HDL, LDL, VLDL, and also lipoprotein(a)  

[Lp(a)], to be quantified, as they play an important role in assessing an individual’s risk  

of cardiovascular disease.  Lp(a) was described in 1963 (20) as a genetic variant of LDL 

and has been established as an independent predictor of coronary artery disease, stroke, 

and retinal occlusion.  The study by Nauck and co-workers (20) described the rather 

difficult separation of Lp(a) from the other cholesterol fractions, overcoming the 

requirement for preparative ultracentrifugation by using agarose gels in which Lp(a) and 

VLDL are resolved electrophoretically.  Cholesterol and triglycerides were determined 

enzymatically; VLDL, LDL, and HDL were isolated by sequential ultracentrifugation at 
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less than 1.006 kg/L for VLDL, between 1.019 and 1.063 kg/L for LDL, and between 

1.063 and 1.21 kg/L for HDL.  Lp(a) was then prepared from the regenerate fluid of a 

dextran sulfate-based LDL aphaeresis system by sequential centrifugation and gel 

filtration.  Lipoprotein separation followed according to the Lipid Research Clinics 

Program’s protocol (20).  Agarose gel lipoprotein electrophoresis and staining was then 

performed with a rapid electrophoresis system (REP).  The new agarose gel contains a 

buffer with divalent cations and urea, which allows the separation of VLDL and Lp(a).  

The gel also contains 10.72 g of sodium barbital, 0.28 g of EDTA, 0.40 g of NaN3, 5.0 g 

of guanidine-HCl, 850 mmol of urea, and 15 mmol of MgCl2 per liter, with pH adjusted 

to 8.60.  To this mixture, 50.0 g/L sucrose, 10 g/L agarose, and 15 g/L albumin were 

added.  Electrophoresis was carried out at 250 volts for 40 minutes, and cholesterol was 

enzymatically stained by cholesterol dehydrogenase and nitroblue tetrazolium chloride as 

dye.  The gels were scanned densitometrically at 570 nm with the densitometer of the 

REP system.  Lp(a) was determined with a polyclonal antibody on a Behring 

nephelometer.  This method had excellent agreement with most published immunological 

methods; the total CVs for LDL-C and HDL-C were < 9.5% throughout, the CVs for 

VLDL-C and Lp(a)-C were between 7.8% and 23.3% and between 6.8% and 17.7% 

respectively (20).  

 

Separation Techniques

 A technique coupling gas chromatography and mass spectrometry has been  

mentioned earlier (page 21) in this chapter.  In this section, gas and liquid 

chromatography are the focus of interest.  Because of the awareness that high intake of 

cholesterol in foods is an unfavorable factor in raising plasma cholesterol, it is important 

to develop methods to assess cholesterol content in various foods.  The study by D. J. 

Fletouris and co-workers (21) in 1998 presented a rapid and reliable method for the 

determination of cholesterol in dairy products by direct saponification and using a 

capillary column gas chromatography (GC) system equipped with a flame ionization 

detector (FID).  A 0.2 g sample was weighed into a tube to which 5 mL of methanolic 

KOH was added.  After being vortexed for 15 seconds, the lower half of the tube was 

immersed for 15 minutes in an 80°C bath while vortexing every 5 minutes.  After cooling 
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the tube with tap water, 1 mL of water and 5 mL of hexane were added, and the contents 

vortexed vigorously for 1 minute then centrifuged for another minute.  An aliquot of the 

top layer was then transferred into the autosampler vial for GC analysis.  Injecting 1 μL 

from standard solutions and plotting the recorded peak area against the corresponding 

mass of analyte injected yields the calibration curve.  The concentration of the cholesterol 

in the samples is then obtained by using the equation  

     

     C = M × V × 2.5    [2] 

 

where M is the computed mass (in nanograms) of the analyte in the injected extract, and  

V is the volume dilution factor, if any.  The accuracy of the method was assessed by a  

standard addition procedure.  The linearity was acceptable, with an estimate of 98.6% 

overall recovery.  The overall precision was found to be 1.4% (21). 

 Liquid chromatographic methods have been researched as well, with the use of  

high performance liquid chromatography (HPLC) either with a normal phase or a reverse  

phase.  The article by Michael D. Greenspan and co-workers (22) mentioned a  

combination of a normal phase chromatographic system with spectral detection using a  

diode array detector in the separation and identification of cholesteryl esters, 

triglycerides, ubiquinone, α- tocopherol, dolichol, cholesterol, 7-dehydrocholesterol, and  

retinol. Standard curves were prepared by chromatographing known amounts of triolein,  

cholesterol, 7-dehydrocholesterol, and retinol.  Ultraviolet spectra from 190 to 370 nm  

were taken every 0.2 second in the analysis of samples.  The lipids were first extracted  

from a dog liver, then the final residue was dissolved in 0.5 ml of chloroform and added  

to a washed Bond Elut column.  The lipids were eluted with 5 mL of diethyl ether.  An  

aliquot of the lipid extract was injected onto the cyanopropyl column and the lipids were  

eluted isocratically with 0.1% isopropanol in heptane at 1 mL/minute at ambient  

temperature.  This technique is advantageous in that it allows integration of two close  

chromatographic fractions as various wavelengths can be scanned.  However, there is no  

mention of the possibility of reliably quantitating those lipids (22).  

 Another interesting study is the simultaneous liquid chromatography  

determination of cholesterol, phytosterols, and tocopherols in foods by H. E. Indyk in  
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1990 (23).  It describes a quality-control sample preparation scheme to overcome the 

disadvantages of conventional saponification strategies.  The HPLC system is coupled in 

series to a variable-wavelength detector, a fluorescent detector, and a dual-pen chart 

recorder.  The column is a 5-μm C18, and the mobile phase could be either hexane-

isopropyl alcohol (99.9 : 0.1, v/v) or 100% methanol.  Serial detection was done  

by UV (210-214 nm) and fluorescence measurements (λex = 295 nm; λem = 330 nm).  In  

the procedure, 0.025 mg/mL of cholesterol and phytosterol working standards were  

prepared in hexane, 2 μg/mL for α-tocopherol and 0.02 mg/mL for squalene.  For the  

sample, a few grams (from 0.1 to5.0 g depending on the food type) were accurately  

weighed into a test tube.  Ten milliliters of ethanol was added to each sample followed by  

agitation.  Then 2 mL of KOH solution were added and the stoppered tubes were  

incubated for 8 minutes at 70°C.  After cooling, 20.0 mL of hexane-diisopropyl ether  

(3+1) was added and the tubes were shaken for 5 minutes.  Water (30 mL) was then  

added, and the tubes re-stoppered, inverted 10 times, and centrifuged at 1000 rev. min-1  

for 10 minutes.  For cholesterol determination, 20 μL of the top layer was directly  

injected.  When tocopherols were also required, 10.0 mL of the top layer was evaporated  

to dryness, the residue was dissolved in 1 mL of either hexane or ethanol, and 20 to 50  

μL of the solution was injected (23).  

 Though the last method gave estimated values that agreed with literatures values  

and had the advantages of being rapid and simple, as well as selective and sensitive  

towards tocopherols, the better efficiency of the gas chromatographic systems  

compared to this method was acknowledged.  With the ever-increasing need for  

determining cholesterol content in various foods, the possibility of HPLC procedures  

with speed, simplicity, efficiency, and reliability is worth pursuing. 
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CHAPTER 3 

METHODOLOGY OF HPLC  

With the continuous improvement of its technical capabilities, high performance  

liquid chromatography (HPLC) has become one of the most widely used analytical tools  

today.  HPLC involves the separation, identification, and determination of the different  

components present in a mixture.  This process starts with the injection of the sample  

through an injection port; the sample is then transported in the system by a mobile phase  

to the column, where interactions between the different components of the mixture and  

the stationary phase take place.  Separation then occurs because different components  

will have different kinds of interactions (migration rates inside the column) resulting in 

different elution times of each component.  Comparison of the elution times obtained for 

each component with that of the standard components alone allows for identification of a 

given component, and quantitation can be achieved with the aid of a calibration curve 

obtained from injecting different amounts of the standards.  This chapter gives a glimpse 

of all the parameters that have to be taken into account in order to achieve the best results 

in an analysis. 

 

Types of Chromatography

 The use of a stationary phase and a mobile phase has been applied  to a number of  

various chromatographic methods, which can thus be divided into column 

chromatography and planar chromatography.  In column chromatography, the stationary  

phase is held in a narrow tube and the mobile phase is forced through it by pressure or  

gravity, whereas in planar chromatography, the stationary phase is supported on a flat  

plate, and the mobile phase moves through it by capillary action or gravity (24).  Also,  

chromatographic methods are categorized depending on whether the mobile phase is a 

gas, a liquid, or a supercritical fluid.  Clearly, HPLC falls into the column liquid  

chromatography classification.  Table 3 shows the characteristics of some of the 

chromatographic techniques. 
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Table 3. Gas and Liquid Chromatographic Techniques. 

 

General 
Classification Specific Method Stationary Phase Equilibrium Involved 

      
  Liquid adsorbed  Partition between gas 
  

Gas liquid 
on a solid and liquid 

Gas        
Chromatography Gas-bonded phase Organic species Partition between 
mobile phase: gas   bonded to a  liquid and bonded 

    solid surface surface 
        

  Gas-solid Solid Adsorption 
        

        
  Liquid-liquid Liquid adsorbed Partition between 
  or partition on solid immiscible liquids 

Liquid       
Chromatography Liquid-bonded Organic species Partition between 

mobile phase: liquid phase bonded to a liquid and bonded 
    solid surface surface 
        
  Liquid-solid Solid Adsorption 
  or adsorption     

 

  

Furthermore, HPLC could be denoted as normal-phase, or reversed-phase,  

according to the type of interactions taking place between the stationary phase and the  

solutes or components in mixtures.  Ion-exchange and gel permeation are the other types  

of interaction in liquid chromatography, but they will not be treated here. 

 

Normal and Reversed-Phase Chromatography 

In normal-phase chromatography, the stationary phase is more polar than the  

mobile phase.  The stationary phases are usually made up of inorganic polymers with  

large surface areas, like hydrated silicon-oxide (silica gel), or aluminum-oxide polymers 

(alumina) (25).  In this type of system, the least polar component of a mixture is eluted 
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first, and increasing the polarity of the mobile phase decreases the elution time of that 

component (24).  The term reversed-phase in chromatography comes from the fact that 

the polarities of the mobile and stationary phases are interchanged as compared with  

the normal-phase system; that is, the mobile phase is now polar whereas the stationary  

phase is nonpolar.  One type of stationary phase used in reversed-phase chromatography  

is composed of organic polymers beads; but the most commonly used are nonpolar  

groups bonded onto silica, such as methyl –CH3, octyl –C8H17, and octadecyl –C18H37  

(25).  Here, the most polar component of a mixture will elute first, and increasing the  

polarity of the mobile phase will increase the elution time of that component (24). 

Reversed-phase HPLC accounts for more than 70% of the liquid chromatography  

assays today (25).  The essential elements constituting the HPLC system are the solvent  

reservoir where the eluent (mobile phase) is stored.  This eluent will transport the  

analytes to the stationary phase.  A pump, usually a reciprocating pump, is used to ensure  

the flow of the eluent and solute through the system.  Then there is an injection port  

through which the sample is introduced into the system with a syringe.  The heart of the  

system is a column that houses the stationary phase, this is where interactions and thus 

separation occur.  After elution, the analytes pass through a detector, the device that 

supplies an output signal related to the amount or rate of change of the amount of sample 

injected; finally a recorder translates the detector’s signal into chromatograms.  An 

illustration of a typical HPLC system is given in page 39. 

Separation of components in a mixture occurs in the column, according to the  

molecular differences of the species involved such as their charges, size, mass, polarities,  

boiling point, chirality, redox potential, acidity constants, and affinity for complexation.  

 A dynamic equilibrium exists between the analytes in the mobile phase and in the  

stationary phase.  Upon changing the conditions of the HPLC experiment (for example  

changing the mobile phase composition or the pH), that equilibrium is going to shift in  

one direction or the opposite, because of interactions of analytes with the mobile phase  

relative to the interactions with the stationary phase.  Different analytes will thus elute  

from the column with different retention times, giving rise to separate peaks in the 

chromatogram.  Several factors help in obtaining the best separation during an analysis.  

The most important factor is the composition of the mobile phase, as the polarity of the 
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stationary phase cannot be changed.  Some examples of mobile phase compositions 

include aqueous solutions containing various concentrations of other solvents such as 

methanol, acetonitrile, or tetrahydrofuran (24). 

 

Detectors Used in HPLC 

The detector is the most complex and expensive piece of equipment in the HPLC  

instrument.  Several types of detectors are in use and available commercially.  Some of 

these detectors are ultraviolet-visible absorption, refractive index, fluorescence, heat of 

adsorption, electrical conductivity, and flame ionization (26).  The performance criteria 

such as sensitivity, detection limit, linearity, repeatability, peak shape and spreading, ease 

of operation and maintenance, as well as applicability, are to be considered in the choice 

of any kind of detector. 

 

UV-Visible Absorption Detector.  This type of detector is one of the most widely 

used as it presents the best compromise of all the mentioned performance criteria.  It 

involves absorption of electromagnetic radiation by molecules because of the presence of 

chromophores such as hydroxyl –OH, carboxyl –COOH, carbonyl –CO, aromatic 

(benzene ring), or other types of chromophores on the molecules.  The ultraviolet-visible 

range comprises wavelengths between 190 and 600 nm.  Molecules are exposed to light 

coming from a mercury (Hg) or deuterium lamp (in the UV region) or a tungsten halogen 

source (visible region), and absorption is measured through the transmitted radiation.  

Monochromators associated with a continuous broad spectrum light source are often 

used, thus providing a selection of wavelengths and extended applicability: ultraviolet-

visible detectors can be used in analysis of proteins, enzymes, and amino and nucleic 

acids.  The sample concentration in the flow cell is linked to the fraction of light absorbed 

according to Beer’s law (26): 

 

     A = log (Io/I) = ε b C    [3] 

 

with A the absorbance, Io the incident light intensity, I the transmitted light, ε the molar  

absorptivity, b the cell path, and C the molar concentration of the sample. Photomultiplier  
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tubes and photodiode arrays are the most common transducers for measuring absorbance. 

 

Differential Refractive Index Detectors.  Refractive index detectors depend on 

light bending properties of liquids and involve changes in light path as the index of 

refraction of the eluent changes in the presence of solutes.  This type of detector is more 

universal in the sense that any solute present produces a response (25).  In the differential 

design, light from a pulsed light-emitting diode passes through the cell windows and the 

sample, is reflected from a mirror, and again passes through the sample and then the 

window back to a detector.  Different angles of refraction cause changes in the amount of 

light that falls on a photocell.  Two photodiodes are used here.  The first receives light 

from the cell with the flowing eluent, while the second receives light from the reference-

filled cell.  So the detector’s response is the amplified difference in light falling on both 

photocells (25). The major shortcomings for this type of detector are the required 

temperature control of the cells as well as the impossibility to use gradients (change of 

mobile phase composition with time). 

 

Flame Ionization Detectors (FID).  These detectors have been developed for gas  

chromatography but can also be used in liquid chromatography.  Different designs of  

FID can achieve the separation of the sample from the solvent in the effluent stream then  

vaporize or decompose the sample and detect it by that sensitive detector (26). 

 

Optimizing Parameters 

 The aim of the HPLC experiment is to achieve the best separation possible of the 

components in a mixture so that each component present produces a well-defined peak  

or signal with a specific retention time different from others.  A good resolution yields  

sharp narrow peaks in the resulting chromatogram.  The choice of the mobile phase is the  

most critical factor in the separation using reversed-phase HPLC.  The mobile phase  

chosen should be able to dissolve the sample, have a low viscosity, be compatible with 

the detector, be pure, and be commercially available at a reasonable price (26).  Besides 

the mobile phase, some other factors mentioned in the next few sections affect the 

separation process of molecules.   
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Resolution.  The resolution in HPLC refers to the degree of separation achieved in 

an analysis.  The resolution between two peaks is given by the equation (26): 

 

    R = 2 [tR2 – tR1] / (w2+w1)    [4] 

 

where tR2 and tR1 are retention times of retained components, w1 and w2 are their  

respective peak widths in units of time.  The resolution depends on the narrowness of the  

peaks and the distance between the peak maxima; these in turn have to do with the choice  

of the stationary phase, the mobile phase, temperature, pH, and length of column.  

 

Column Efficiency.  The column plays an essential role in achieving a good 

separation, as the column efficiency determines the peak width.  The column efficiency is 

expressed as follows: 

 

    H = L / N      [5] 

 

where L is the length of the column (in millimeters); N is the number of theoretical  

plates, which is determined by factors in the column construction such as the quality of  

the material used in packing the column and how well the packing is achieved.  The  

column efficiency, H, also called the height equivalent to a theoretical plate (HETP),  

further depends on parameters such as flow rate, particle size, and column diameter.  An  

efficient column produces narrow peaks and thus keeps peak zones from spreading.   

Three main sources for zone spreading have been identified: multiple paths traveled by  

solutes, molecular diffusion, and mass transfer.  The first is because of the flow velocity 

varying inside the column and can be minimized by ensuring homogeneous packing of  

uniformly sized particles in intermediate diameter columns (1-6 mm i.d.) (26).  For the  

second source, the more time the solute spends in the column the more molecular  

diffusion and thus zone spreading occurs.  Operating at a higher flow rate can help  

minimize this problem.   Mass transfer zone spreading on the other hand comes from the  

dynamic nonequilibrium between the analyte in the mobile phase and the analyte in the  

stationary phase.  This is reduced by the use of thin stationary films in columns (26). 
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Selectivity Factor.  This is also called separation factor.  The selectivity factor for 

two peaks is given by the equation: 

 

    α = t’R2 / t’R1 =  K2 / K1    [6] 

 

where t’R1 and t’R2 are the adjusted retention times of component 1 and 2 respectively, K1  

and K2 are distribution coefficients of components 1 and 2, respectively.  The distribution  

coefficient is the ratio of the concentration of analyte in the stationary phase over the  

concentration of the analyte in the mobile phase. 

 One single equation summarizes the important factors required to produce a  

good separation of a mixture: 

 

    R = ¼ N1/2 [(α-1)/ α] [k’/ (k’+1)]   [7] 

 

where the first term N refers to the column efficiency as defined earlier.  The second  

term, (α-1)/ α defines the separation factor.  The last term, k’/(k’+1) defines the  

retention factor, which for any ith component is given by 

 

    k’i = t’Ri / tM      [8] 

where t’Ri is the adjusted retention time of the i component, and tM is the time taken by  

the mobile phase to pass through the column and reach the detector.  The N value should  

be as high as possible to achieve the best separation.  One way to do this is by slowing  

down the flow rate.  But, this has the inconvenience of lengthening the analysis time and  

favoring molecular diffusion.  One could also use a longer column, provided that the back  

pressure does not go too high and still allows stable analysis conditions.  The separation  

factor α, could also be acted upon, in order to improve separation.  The improvement is  

done by increasing the value of α, either by a change in the stationary phase or the  

mobile phase.  Varying the retention factor is definitely the easiest thing to do and,  

therefore, the one to start with.  An increase of k’ value will improve separation, as the  

solute will be retained longer in the column.  Typical k’ values range from 1 to 5.   
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Another efficient method to achieve good separation is simply by changing the  

composition of the mobile phase, or change the pH, or the temperature.   

 

Proposed Research  

 Chapter 1 pointed out the importance of developing methods in the determination 

of the analyte of interest, cholesterol, in foods in general, to help minimize the 

unnecessary daily intake of products with high content in cholesterol and thus reduce the 

risks of heart diseases.  The second chapter reviewed some of the methods that have been 

developed by scientists to achieve that goal.  The merits and disadvantages of the reputed 

methods have also been discussed. 

 The literature mentions a great number of methods that simply show that  

attaining a satisfactory method for analysis is still needed.  However, some methods  

have proven very reliable like the use of Liebermann-Burchard reagent.  Different factors  

are to be taken into account when developing a new analytical method: the ease or  

simplicity with which the procedure is carried out, the cost of the materials and reagents  

to be used, as well as their availability.  Environmental concerns or the “greenness”  

should also be addressed in the process.  Moreover, the reproducibility, accuracy,  

precision, and applicability of the method have to be thoroughly assessed in order to  

validate the method.  

The present chapter presented the technique to be used in our attempt to develop  

and evaluate a new method for the determination of cholesterol in foods.  In light of the  

discussion above, this project will strive to fulfill the following objectives: 

1. To establish optimal reversed-phase HPLC conditions for determination and  

quantitation of cholesterol in various food samples 

2. To develop a simple method in the preparation of samples  

3. To establish the figures of merits for this HPLC method: linear dynamic range,  

reproducibility, recovery, and accuracy. 

4. To evaluate the applicability of our technique by using various food samples. 
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CHAPTER 4 

EXPERIMENTAL PROCEDURES, RESULTS, AND DISCUSSION 

Experimental Procedures 

 This chapter describes the experimental procedures involved in the proposed 

method of cholesterol analysis.  These procedures mention the reagents that are used, 

their source and preparation, the source and preparation of the standards, and sample 

solutions that are used throughout the analysis.  The instrumentation parameters upon 

which the analysis is based are also evaluated. 

 Most of the reagents come from the same source; they are used in the preparation  

of the standards upon which the proposed method is based as well as the samples on  

which the analysis is carried out.  More details are given in later sections on the mixture  

of those reagents to yield the mobile phase composition to be used throughout. 

 The standards solutions to be prepared are those upon which this cholesterol  

analysis method relies; a detailed presentation of their preparation is provided in this  

chapter.  An analysis of various samples is the key to the evaluation of our method, as the  

reproducibility and recovery studies are carried out on those samples, the preparation of  

those samples is going to be emphasized. 

 The conditions for the HPLC experiment used in the project are also given in this 

chapter.  A full description of the HPLC system is provided in the following pages as 

well as the optimized parameters yielding the best results, such as the composition of the 

mobile phase, the flow rate, the wavelength of the UV-VIS detector.  The ultimate goal is 

to attain a method offering good precision, accuracy, and applicability. 

 

Reagents

 The following reagents are all ACS certified. 

1. Deionized Water, produced with one of US Filter Company devices, 

(Pittsburgh, PA). 

2. Methanol (HPLC grade), obtained from Fisher Scientific (Fairlawn, NJ).  It is                                

one of the components of the mobile phase, and is also used as solvent in the  

preparation of a solution of potassium hydroxide. 

3. 2-Propanol (HPLC grade) also from Fisher Scientific, serves as the other  
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component of the mobile phase used in this research project.  It is also used as  

the solvent for all dilutions of samples before analysis in the HPLC system. 

4. Hexane (HPLC grade), from Fisher Scientific, is the extraction reagent to be  

used in the procedure. 

5. Potassium Hydroxide crystals used to prepare a methanolic potassium      

hydroxide solution.    

6. Cholesterol 96% pure, from Fisher Scientific, used in the preparation of our    

standard solutions. 

7. Sweet Cream and Salted Butter was obtained from a local Kroger store in 

Johnson City, TN. 

8. Armour Lard (lard and hydrogenated lard) is distributed by ConAgra Foods  

and found in a local Kroger store as well (Johnson City, TN). 

9. Swiss and Kraft Singles (American Pasteurized Prepared Cheeses Product)  

cheese also obtained from a Kroger store in Johnson City, TN. 

 

Stock Solutions and Reagents Preparations

 The following reagents and stock solutions were prepared: 

1. Cholesterol stock solution (1.00 mg/mL): 0.0251 grams of 96% pure  

cholesterol was weighed and placed in a 25-mL volumetric flask and 

dissolved with 2-propanol after 5 to 10 minutes of sonication. 

2. Cholesterol working solution (10 μg/mL): 100 μL of stock cholesterol  

solution was pipetted into a 10-mL volumetric flask and diluted to the mark  

with 2-propanol. 

3. Mobile phase: 500 mL of methanol and 500 mL of 2-propanol were placed in  

2 separate containers; they were both degassed by passing helium gas through  

them for 15 to 30 minutes before use. 

 

Standard Solutions for Calibration Curve and Linearity Studies 

 A series of six standards solutions were prepared for the linearity study: 50, 75,  

100, 200, 500, and 1000 μL of the stock cholesterol solution were pipetted into six  

separate 10-mL volumetric flasks; 2-propanol was then added up to the mark.  These  
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dilutions resulted in 5.0, 7.5, 10.0, 20.0, 50.0, and 100.0 μg/mL solutions, respectively. 

 

Preparation of saponification solution 

 A 0.5 M methanolic potassium hydroxide (KOH) solution is prepared by  

dissolving 5.6 g of KOH in methanol and diluting to 200 mL with methanol.  This  

solution is prepared fresh weekly. 

 

Preparation of Commercial Samples for Analysis 

 The sweet cream and salted butter together with the lard samples are those upon  

which our analysis method was established.  The cheese samples (Swiss and Kraft 

Singles) also served to evaluate the applicability of the method. 

 Saponification of the different samples was required in order to isolate our  

compound of interest, cholesterol, from the other lipids present in the commercial  

samples. This saponification process was a slight modification of the procedure used by  

Fletouris and co-workers (21).  It was carried out as follows: 

• About 0.8 g of each sample (butter, lard, cheese) was accurately weighed out into  

different sample tubes, to which 20.0 mL of 0.5 M methanolic KOH were added 

• The tubes were tightly closed and immersed in a 75°C water bath for 45 minutes. 

• After heating, the tubes were cooled with tap water, and then 2.0 mL of water  

followed by 10.0 mL of hexane were added. 

• The resulting mixtures were first sonicated then vigorously shaken manually for a  

couple of minutes; upon standing, the different phases separated and one could 

take out the upper phase that contained cholesterol for dilution and analysis. 

 

Solutions for the Reproducibility Studies 

 Prior to dilution, the upper phase withdrawn from the above procedure was gently  

heated at temperatures around 60-65°C for 10 minutes to evaporate the hexane after the  

extraction. Hence, out of 10.0 mL of hexane added for extraction only about 5.0 mL of  

solution was left after evaporation.  Specifically, 4.0 mL of solution was left from 

evaporating the butter sample solution; 400 μL aliquots were then pipetted into 8 

different 5-mL volumetric flasks and diluted to the mark with 2-propanol, ready for 
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analysis in the HPLC system.  As for the lard, some white precipitate formed upon 

heating to evaporate the hexane, so after the evaporation process, the 5.2 mL of solution 

left was carefully centrifuged before any aliquot was withdrawn.  Eight aliquots of 500 

μL were then pipetted into separate 5.0 mL volumetric flasks and diluted to the mark with 

2-propanol. 

 

Solutions for the Recovery Study 

 The butter sample was used to evaluate the accuracy of our analysis.  About 0.799 

g of butter sample was saponified according to the steps mentioned earlier in this chapter.  

After hexane evaporation, 6.6 mL of solution was left.  Nine aliquots of 500 μL each 

were pipetted into separate 5.0 mL volumetric flasks.  The first 3 samples were diluted to 

the mark with 2-propanol, whereas 100 μL of standard stock cholesterol solution was 

added into the next 3 flasks, and similarly 200 μL of standard stock cholesterol solution 

was added into the last 3 flasks.  These were also diluted to the mark with 2-propanol. 

 

Preparation of Commercial Samples for Application Study 

 Swiss and Kraft Singles cheese samples were also included to evaluate the 

applicability of this method.  About 0.793 g and 0.798 g of Swiss cheese and Kraft 

Singles cheese were saponified following the procedures mentioned in page 37.  After 

evaporation of the hexane, 4.8 mL of the Swiss cheese sample solution was left; 500 μL 

aliquots were pipetted into 3 separate 5.0 mL volumetric flasks and diluted to the mark 

with 2-propanol, ready for the HPLC analysis.  Similarly, 5.8 mL of the Kraft cheese 

sample was left after evaporation process, and 500 μL aliquots from this solution were 

transferred into 3 separate 5.0 mL volumetric flasks as for the Swiss cheese sample, ready 

for analysis. 

 

Instrumentation

 Cholesterol analysis in our research project is based on the popular technique of  

reversed-phase high performance liquid chromatography (RP-HPLC), a versatile method  

for separation and analysis of samples from diverse sources.  The specific system being  

used here is a combination of Waters HPLC System and Perkin-Elmer chromatography  
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pump.  A simple representation of the instrumental set-up is displayed in Figure 3. 

 The HPLC system comprises a reservoir for the mobile phase; our method makes  

use of two of such containers: one for the methanol and the other for the 2-propanol.  A  

Perkin-Elmer Series 410 pump is used because the original Waters 501 reciprocating 

pump that is normally connected to the instrument broke down.  The injector is a Model 

7725 Rheodyne injector with a 20 μL sample loop.  Our column is a Betasil 150 mm × 

4.6 mm with reversed-phase C-18 packing.  For detection, a Model 484 Tunable UV 

absorbance detector is used.   A Model 745B data module records and processes the data. 

 
 

      
 

 

Mobile Phase 
Reservoir 

High pressure 
liquid pump 

Pump 
Programmer 

Injector Column 
 

Detector 
Recorder and 
Data station 

 
 

Figure 3. Schematic Diagram of the HPLC Instrumentation. 

 

Experimental Conditions for HPLC Analysis 

 The analysis is carried out at a constant flow rate of 1.0 mL/ min all throughout,  

with an average pressure of about 2100 psi.    Prior to injection of any sample into the  

system, the mobile phase is pumped through the column for at least 30 minutes in order  

to warm up the instrument and achieve equilibration of the column.  The mobile phase is  

a mixture of methanol and 2-propanol in a ratio of 70:30 (methanol: 2-propanol).  The  

pH of the mixture is between 8.0 and 8.5.  It is useful to deaerate the mobile phase to 

avoid the presence of air bubbles.  As two containers for each component of the mobile 
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phase are used, the pump programmer is set in such a way as to pump both solvents at

desired proportion.  The different components in our samples are detected by a variable 

wavelength UV detector set at 212 nm, and the data station displays the recorded data in 

the form of chromatograms at a chart speed of 1.0 cm/min.  This setting is changed to 0.5

cm/min later in the experiment. 

 

 the 

 

Data Analysis 

 Every sample, from the standards to the commercial samples, was analyzed and  

icate in the HPLC system.  The resulting peak areas were saved and 

rd 

 

 

Results and Discussions

injected in tripl

processed in MicrosoftR Office Excel 2003 software for WindowsR XP.  Means of the 

peak areas for each sample were calculated.  Standard deviations and relative standa

deviations for them were all calculated using Excel.  A plot of the calibration curves 

showing average peak areas as a function of cholesterol concentration was obtained from

the standard solutions prepared. The calculated mean values from the various samples

were then substituted into the regression line equations obtained in order to get the 

cholesterol content. 

 

 

The results obtained from our analysis method are presented.  Results from the 

reproducibility, recovery, and ap ented, and the quality of these 

results  

plicability studies are pres

is discussed and evaluated by comparison with other studies mentioned earlier in

Chapter 2.  It is worth mentioning that this research project started with the use of the 

Waters HPLC equipment, but the Model 501 pump used then failed, while still 

investigating our HPLC conditions; that pump has been replaced by the Perkin-Elmer 

Series 410 pump mentioned in an earlier section of this chapter. 

 

Optimization of the Wavelength of Detection 

 holesterol possesses a polar secondary hydroxyl head group at the C3 position in  

akes it suitable for absorption of  

 

C

the non-polar hydrocarbon chain.  This chromophore m

light, a molecular property that is used for its detection.  In order to determine the best  

wavelength of detection, a UV-Vis spectrum of two standard cholesterol solutions at two 
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different concentrations was taken; the spectrum showed a maximum absorption at 208 

nm.  The standard solutions were then analyzed in the HPLC at those wavelengths, and 

also in the range 210 to 216 nm.  A slightly higher absorption peak was observed for the

wavelength 212 nm as compared with the other wavelengths.  This wavelength was then

chosen as the optimum one and used throughout the entire analysis.  Two similar studies 

in the literature used the same range of wavelengths.  One of them was a study by Indyk 

H. E. (23), who made use of series detection by UV (210-214 nm) and fluorescent 

measurements.  The other study is by W. Jeffrey Hurst and co-workers (27), who used 

direct detection at 205 nm.  

 

 

 

haseOptimization of the Mobile P  

One of the objectives of this project was to develop a method that would be as  

iendly as possible.  This aspect was considered in the  

s.  

t, 

 cha e the composition or ratio of the mixture  

whenev

0:30,  

d to  

 

 

economical and environmentally fr

choice of the mobile phase components: methanol and 2-propanol.  The most widely  

used mobile phases in reverse phase HPLC are various mixtures of water and methanol,  

which make them very attractive when considering their cost and environment concern

Water is readily available at virtually no cost besides the initial cost to acquire the device 

producing it.  A mixture of water with methanol would do little harm to the environment.  

Even though methanol is a listed pollutant, its use is still widely accepted because of its 

polarity as compared to other solvents.  However, cholesterol is not soluble in water; so 

water was not used as one of the components of the mobile phase, and an organic solven

2-propanol, was used instead.    

Two separate reservoirs were used for the storage of methanol and 2-propanol;  

this allowed for the possibility to ng

er needed.  This control was particularly useful during the preliminary or  

exploratory studies.  Various ratios of methanol to 2-propanol were tried; 60:40, 7

80:20, 90:10, and even a 70:20:10 methanol: 2-propanol: water.  The latter was trie

make the mobile phase a little aqueous so as to prevent the materials in our column from  

being washed away with a too dry mobile phase.  That attempt did not work because the 

resulting mixture would just disturb the equilibrium between the analyte in the mobile  

phase and the analyte in the stationary phase, yielding unstable and inconsistent  
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chromatograms.  The 60:40 mobile phase produced a good resolution of the analyte’s 

peak with a retention time of around 5.84 minutes with an average back pressure of 2400 

 and 

d 

hexane

ethod: 

be  

ing on the samples, on the fluctuations in the flow of 

the mob C 

amic Range

psi.  The 70:30 mobile phase produced a satisfactory separation of the analyte with a 

retention time of 7.66 minutes and an average back pressure of 2100 psi.  The last set of 

conditions was better than the precedent 60:40 conditions because the low pressure 

ensured stable conditions during the entire analysis.  With more methanol in the mixture 

(80:20 and 90:10 mobile phase ratios), the retention time would increase as expected

the analysis time would be longer, which was not desirable.  The 70:30 methanol: 2-

propanol seemed to be the best composition for our method and was thus adopted.   

Both studies mentioned earlier by H. E. Indyk (23) and by W. Jeffrey Hurst an

co-workers (27) used either 100% methanol or (0.1 + 99.9, v/v) isopropyl alcohol-

.  Their methods resulted in a very long analysis time (around 30 minutes) (23) 

and a lower efficiency in resolution (27) respectively, as compared to the present m

the analysis is done in less than 10 minutes and there are no peaks overlapping or 

interferences on cholesterol signal. 

The retention time of cholesterol from the proposed method is observed to 

between 7.2 and 7.7 minutes depend

ile phase, but also on how closely the injection buttons are pressed on the HPL

instrument: the injection on the data station has to be pressed at the same time as the 

sample is injected in the loop.  The system was set to obtain each chromatogram in 9 

minutes.   

 

Linear Dyn  

The analyte of interest, the cholesterol molecule, was barely detectable at 

 μg/mL.  For this reason, all the other standard solutions had to 

be prep iquots 

concentrations below 10

ared directly from the stock standard (1.00 mg/mL) cholesterol solution (al

of 50, 75, 100, 200, 500, and 1000 μL all diluted to the mark in separate 10-mL 

volumetric flasks with 2-propanol).   
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Figure 4 shows the chromatograms obtained from the same standard cholesterol 

solution

) 

 at different mobile phase ratios.  

(A

 
(B) 

 
 

       
 

(C) 

 
 

Figure 4. Chromatograms of the 20.0 μg/mL Cholesterol Standard Solution 
with Methanol: 2-Propanol 60:40 (A), 70:30 (B), and 90:10 (C).  

 Note:  The flow rate is the same throughout, 1.00 mL/min.   
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concen ations ranging

nd 

ns. 

A linear dynamic range was established for cholesterol standard solutions of  

a ge tr  from 10.0 to 100 μg/mL.  A calibration curve within this r n

was obtained for all subsequent studies carried out such as reproducibility, recovery, a

applications studies. 

Figure 5 shows chromatograms of the cholesterol standard solutions at three 

different concentratio

 
 
Figure 5. Chromatograms of Cholesterol Standard Solutions with Varying 

Concentrations. 
Note:  The mobile phase is methanol: 2-propanol 70:30 flowing at 

 
100 μg/mL for C).  

Four different concen

study: 1 , 20, 50, and 

t

ed in 

 
1.00 mL/min.  Concentrations increase from 10 μg/mL for A), 20
μg/mL for B), to 

 
trations of standard solutions were used in this dynamic range 

100 μg/mL.  Each solution was injected into the HPLC system in 0

riplicate; the average peak areas for each concentration were plotted against the 

concentration range.  The regression line was observed to follow the equation Y = 

4854.3X + 10705 with a correlation coefficient of 0.9959.  The results are display

Table 4.   
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Table 4. Average Peak Areas of Cholesterol Standard Solutions for Reproducibility 

      

 

Choles mL) Average Peak Area Relative Standard Deviation

Study of the Butter Samples. 
Note: The mobile phase was 70:30 methanol: 2-propanol, at a flow rate       
of 1.0 mL/min, and the detection wavelength set at 212 nm.  Each reported 
area was the average of triplicate injections, and each relative standard 
deviation was obtained within each concentration of standard solution.         
 

   
terol C nc. (μg/o

 
 

10 49050 11.90 % 
 

  

 
20 124875 20.90 % 
 

  

 
50 244441 3.98 % 
 

  

 
100 498227 0.52 % 

 

  

 

The observed large values of the relative standard deviation  for the first and  

 

ith  

ttribute 

  

ent  

 

second cholesterol standards solutions can be explained as resulting from a statistical 

analysis of four values (four peak areas)  instead of three like the last two samples.   

Indeed, when the 10 and 20 μg/mL solutions were injected, they yielded peak areas w

some inconsistencies in the areas of the peaks.  So, an extra injection was carried out in 

order to minimize the effect of these irregularities on the entire analysis.  As this 

experiment was the first to be done before any other on the same day, one could a

these observed irregularities to the non-equilibrium still existing in the column, even after

the instrument has been running for half an hour.  The overall correlation coefficient  

value of 0.9959 did confirm that the obtained calibration curve was linear.  In subsequ

analysis, however, more time was allowed for the column to equilibrate before any  

analysis was started, and such large variations were avoided.  The plot of the data 

obtained is shown in Figure 6. 
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Figure 6. Calibration Curve Using 10, 20, 50, and 100 μg/mL Cholesterol 

Standards. 
Note:  The line follows the equation Y = 4854.3X + 10705 with a 
correlation coefficient value of 0.9959. 

 
Reproducibility Studies 

 
 After working with standard solutions of cholesterol to establish the dynamic  

range of the analysis, the proposed method should be assessed by using real samples.   

The next step of our project would then be to check whether the method is at all 

reproducible.  The butter and lard samples obtained from local stores in Johnson City, TN  

were thus chosen to carry out the reproducibility study. 

 As mentioned earlier, a calibration curve was obtained for every study, in order to  

determine by extrapolation the amount of cholesterol present in the samples.  From the  

amount of cholesterol written on the label of each sample, it was possible to estimate the 

expected amount to be found.  That estimate was just to ensure that the dynamic range 

studied would be wide enough to include the amounts of cholesterol present in the 

samples to be analyzed, or, in other words, to make sure that the amount of cholesterol in 

the samples studied would fall within the limits of our calibration curve, and that was 

found to be the case. 
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Reproducibility Study Using the Proposed Method on the Butter Sample 

 The butter samples were analyzed on the same day and right after the dynamic  

range study was done so that there was no need to obtain an extra calibration curve for  

the reproducibility study of butter.  Eight butter samples were prepared according to the  

procedures outlined earlier in this chapter.  Each sample was injected in triplicates for a  

total of 24 injections.  The mean of peak areas from each sample was obtained; those  

means were plugged into the regression line equation of the calibration curve in order  

to get the corresponding cholesterol concentrations in μg/mL.  Once these concentrations  

were found, further calculations were performed to get the actual amounts of cholesterol 

in each sample per gram of butter so as to match the units (mg/g) on the label of the 

butter package.  These calculations were required in order to make a direct comparison 

between the values obtained from our method and the values reported by the Food 

companies on their products.  The regression line equation used was Y = 4854.3X + 

10705.  And the calculations to get the mg/g of butter were performed as follows: 

• The concentration of cholesterol in μg/mL was multiplied by 5.0 mL, which was  

the final dilution volume before injection.  This operation would give the amount  

of cholesterol in μg. 

• The amount obtained above is then divided by the volume pipetted into the 5.0- 

mL volumetric flask: in this case, 400 μL or 0.40 mL. 

• The result from the above is multiplied by the volume of solution left after  

evaporation of hexane, 4.0 mL in this case. 

• The resulting number is the quantity of cholesterol present in the initial amount of  

butter weighed, so it was divided by the mass of butter to obtain the desired  

cholesterol quantity per gram of butter. 

  Figure 7 shows the appearance of the butter samples chromatograms.  
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Figure 7. Chromatogram of a Sweet Cream and Salted Butter Sample. 

Note:  The mobile phase was methanol: 2-propanol, flowing at 1.0 
mL/min with a detection wavelength set at 212 nm.  The analyte’s 
peak (cholesterol) is centered at 7.41 minutes. 

 
The results obtained are presented on Table 5.  An evaluation of our method was 

then possible by comparing the average amount of cholesterol found from our data 

analysis to the amount reported by the manufacturing company on the label of their 

product.   
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Table 5. Results of the Reproducibility Study of the Sweet Cream and Salted Butter     
  Samples. 

Note:  The mobile phase was 70:30 methanol: 2-propanol, at the flow rate 
of 1.0 mL/min.  The concentrations of cholesterol are expressed in mg/g of      
butter. 
    

 
Sample 

 
Cholesterol Concentration (mg/g of butter) 

 
1 

 
1.07 

 
2 

 
1.2 

 
3 

 
1.1 

 
4 

 
1.09 

 
5 

 
1.09 

 
6 

 
1.04 

 
7 

 
1.11 

 
8 

 
1.11 

 
Mean 

 
1.10 

 
Relative Standard Deviation 

 
4.22 % 

 
Amount of Cholesterol Reported on Label 

 
2.14 

 
  
 The label on the butter package reported 30 mg of cholesterol per serving, with 

one serving being equal to 14 grams of butter; this makes an amount of 30 mg/ 14 g or 

2.14 mg of cholesterol per gram of butter.  Thus, the percent difference between the 

determined value and the reported value could be calculated to be about [(2.14 – 

1.1)/2.14] × 100 = 48.6%.  The latter number suggested either an unsatisfactory level of 

efficiency in the proposed method or some inaccuracy in the reported amount of 

cholesterol found on the label.  It should be noted that almost all commercial butter from 
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different brands and companies have identical labeled amounts of cholesterol on their 

packages. 

 

Reproducibility Study Using the Proposed Method on the Lard Sample 

 The lard samples were analyzed on a different day from the butter.  A new  

calibration curve with good linearity (correlation coefficient of 0.9986) had to be 

established for this set of experiments to be meaningful.  This was achieved using the 

following cholesterol standard solutions: 5.0, 7.5, 10.0, and 20.0 μg/mL.  Again, each of 

the standards was injected in triplicates; the means of the peak areas were plotted against 

the concentration, the regression line was obtained together with the correlation 

coefficient to be used in getting the cholesterol concentration in the lard.  All 

experimental procedures and data analysis were just the same as those used with the 

butter sample.  The data for the calibration curve are presented in Table 6.  It is notable 

that the overall relative standard deviations of the triplicate injections are now lower than 

the ones shown in table 5. 

 

Table 6. Average Peak Areas of Cholesterol Standard Solutions for the 
Reproducibility Study of the Lard Samples. 
Note: The mobile phase was 70:30 methanol: 2-propanol, at a flow rate                 
of 1.0 mL/min, and the detection wavelength set at 212 nm.  Each reported 
area was the average of triplicate injections, and each relative standard 
deviation was obtained within each concentration of standard solution. 
 

 
Cholesterol Conc. (μg/mL) 

 

 
Average Peak Area 

 
Relative Standard Deviation

 
5.0 

 

 
24709 

 
9.45 % 

 
7.5 

 

 
34318 

 
2.65 % 

 
10.0 

 

 
48906 

 
1.07 % 

 
20.0 

 

 
95479 

 
1.74 % 
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The regression line was found to be Y = 4767.8X + 195.6, with a correlation  

coefficient of 0.9986 showing the linearity of the calibration.  This line is plotted in 

Figure 8. 
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Figure 8. Calibration Curve using 5.0, 7.5, 10.0, and 20.0 μg/mL Cholesterol 
Standards. 
Note: The mobile phase was 70:30 methanol: 2-propanol, at a flow 
rate of 1.0 mL/min, and the detection wavelength set at 212 nm.  
The regression line equation was Y = 4767.8X + 195.6, with a 
correlation coefficient of 0.9986. 

 
 From this line equation, the cholesterol concentrations in μg/mL were found in  

the eight different lard samples injected in triplicates.  The calculations as outlined 

previously were also performed for the lard to obtain the actual amount of cholesterol in 

mg/g of lard, except that the volumes here were slightly different from those used with 

the butter.  Indeed, after evaporation of hexane here, 5.2 mL of solution were left.  Three 

aliquots of 500 μL each were the diluted to 5.0 mL with 2-propanol.  The data obtained 

are presented in Table 7. 

 The low values of the relative standard deviations show that the method has good 

precision as observed values agree with each other.  The present procedure determined an 

average amount of 0.45 mg of cholesterol per gram of lard in the sample analyzed.  The 

amount reported on the label of the lard package is 10 mg per serving size, with one 

serving being equal to 13 g of lard; so the reported value is about 10 mg/13g of lard or 
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0.77 mg of cholesterol per gram of lard.  Comparing our value with the label’s reveals a 

percent difference of [(0.77 – 0.45)/0.77] × 100= 41.56 %. 

 

Table 7. Results of the Reproducibility Study of the Lard Samples. 
Note:  The mobile phase was 70:30 methanol: 2-propanol, at the flow rate 
of 1.0 mL/min.  The concentrations of cholesterol are expressed in mg/g of 
lard. 

 
 

Sample 
 

Cholesterol Concentration (mg/g of lard) 
 
1 

 
0.48 

 
2 

 
0.45 

 
3 

 
0.44 

 
4 

 
0.45 

 
5 

 
0.46 

 
6 

 
0.45 

 
7 

 
0.44 

 
8 

 
0.45 

 
Mean 

 
0.45 

 
Relative Standard Deviation 

 
2.71 % 

 
Amount of Cholesterol Reported on Label 

 
0.77 
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A chromatogram of the lard sample peak at retention time 7.42 min is shown in 

Figure 9. 

 
  

Figure 9.  Chromatogram of a Lard Sample. 
Note:  The mobile phase is 70:30 methanol: 2-propanol, flowing at 
a rate of 1.0 mL/min, with the detection wavelength set at 212 nm.  
The peak of interest is centered at 7.42 minutes. 
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Recovery Study 

 Another step forward in the evaluation of our method of analysis was the  

assessment of its accuracy by carrying out the recovery study.  This study was done on a 

different day, and a new calibration curve with correlation coefficient of 0.9998 was 

required in order to determine the concentration of cholesterol found.  The following 

concentrations of standard solutions were used for the calibration curve: 7.5, 10.0, 20.0, 

50.0, and 80.0 μg/mL. The data obtained are summarized in Table 8, and the calibration 

curve is plotted in Figure 10.   

 
Table 8. Average Peak Areas of Standard Cholesterol Solutions for the Recovery 

Study. 
Note: The mobile phase was 70:30 methanol: 2-propanol, at a flow rate                 
of 1.0 mL/min, and the detection wavelength set at 212 nm.  Each reported 
area was the average of triplicate injections, and each relative standard 
deviation was obtained within each concentration of standard solution. 

 

 
Cholesterol Conc. (μg/mL) 

 
Average Area Peaks 

 
Relative Standard Deviation 

 
7.5 

 
33454 

 
3.43 % 

 
10.0 

 
46242 

 
7.47 % 

 
20.0 

 
98089 

 
2.50 % 

 
50.0 

 
237462 

 
1.15 % 

 
80.0 

 
386629 

 
1.50 % 

 

 Consistency and precision in the measurements were still observed, as statistically 

proven by the low relative standard deviation numbers. 

The butter was used for this study again.  Nine aliquots of butter sample were 

prepared as described earlier.  The first three aliquots did not have any added cholesterol 

from the standard stock solution, whereas the next three had 100 μL of the 1.00 mg/mL 

cholesterol standard added, and the last three had 200 μL of the same standard added.  

Each sample was injected in triplicates.  The addition of 100 μL from the 1.00 mg/mL 
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stock cholesterol standard was synonymous to adding 100 μg, before the final dilution to 

5.0 mL with 2-propanol.  So 100 μg and 200 μg were respectively added.   
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Figure 10. Calibration Curve using 7.5, 10.0, 20.0, 50.0 and 80.0 μg/mL 

Cholesterol Standards. 
Note: The mobile phase was 70:30 methanol: 2-propanol, at a flow 
rate of 1.0 mL/min, and the detection wavelength set at 212 nm.  
The regression line equation was Y = 4841.5X - 1816, with a 
correlation coefficient of 0.9998. 

  

The amounts of cholesterol added in the butter samples were calculated as 

follows: 100 μL × 1.0 mg/mL = 100 μg.  This was then diluted to 5.0 mL with 2-propanol 

in volumetric flasks ready for the HPLC analysis.  After this dilution, the added 

concentration of cholesterol would be 100 μg / 5.0 mL = 20.0 μg/mL.  Likewise, the 

added concentration of cholesterol in the second set of butter samples would be twice as 

much, that is 40.0 μg/mL.  Figure 11 shows the chromatograms from the butter sample 

with 100 μL standard added and the one with 200 μL standard added.   
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Figure 11. Chromatograms of Sweet Cream and Salted Butter Samples with 

Added Cholesterol Standard Solutions. 
A) Sample + 100 μL standard added.  B)  Sample + 200 μL 
standard added.    
Note:  The mobile phase is 70:30 methanol: 2-propanol, flowing at 
a rate of 1.0 mL/min, with the detection wavelength set at 212 nm. 
The peaks of interest are centered at 7.34 and 7.36 minutes 
respectively. 

  
The data obtained for this study are presented in Table 9.  The average peak areas 

were obtained within each concentration, and the relative standard deviations were also 

calculated.  The percent recovery is given by the following equation: 

% Recovery = [Mean peak area of (analyte + standard added) – Mean peak area of  

Analyte] / Mean peak area of standard added to the analyte  [9] 
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Table 9. Recovery Study Results for the Analysis of Butter Samples. 
Note: The mobile phase was 70:30 methanol: 2-propanol, at a flow rate                 
of 1.0 mL/min, and the detection wavelength set at 212 nm.  The average 
retention time of the analyte’s peak was 7.35 minutes. 

 
 

Samples 
μg of Standard stock 

cholesterol solution added 
 

% Recovery (RSD %) 
1 100 102.1 (1.05 %) 
2 200 111.0 (0.53 %) 

 
 The percent recovery yielded values that are acceptable, and the conclusion is that 

the proposed method is reliably accurate.  Indeed, ideal values for the percent recovery 

should be around 100 %, meaning that the matrix in which the analyte is present has no 

or negligible effect on its absorptive properties, thus allowing the analyte to be effectively 

determined without much interference.  Moreover, the low relative standard deviation 

within each sample suggests a good deal of consistency and precision of the method.  

Having enough confidence in the accuracy of this method, the next step in its 

establishment is the application study. 

 

Application of the Proposed HPLC Method to Other Commercial Samples 

 At this point, the precision, the consistency, and the accuracy of the proposed 

method have been investigated and all proved to be acceptable based on relative standard 

deviations below 5% and a mean percent recovery of 106.5%.  The objective of the next 

set of experiments is to establish the possibility of applying this same method to other 

types of samples and to get reliable results as well.  Two different types of cheese are 

chosen for this purpose: Swiss cheese and Kraft Singles cheese. 

 Swiss and Kraft Singles cheeses were prepared as mentioned before.  Three 

samples of each type of cheese were ready for the analysis, and triplicate injections were 

made.  Another calibration curve was required here, as this experiment was done separate 

from all the others.  Standard cholesterol solutions with concentrations 5.0, 7.5, 10.0, and 

20.0 μg/mL were used to establish the linear dynamic range.  Each one was injected in 

triplicates.  A plot of the data obtained is shown in Figure 12.  The  

regression line was found to follow the equation: Y = 4782.7X – 893.97, and displayed a  

correlation coefficient of 0.9900. 
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Figure 12. Calibration Curve Using 5.0, 7.5, 10.0, and 20.0 μg/mL 
Cholesterol Standards.  
Note: The mobile phase was 70:30 methanol: 2-propanol, 
at a flow rate of 1.0 mL/min, and the detection wavelength 
set at 212 nm.  The regression line equation was Y = 
4782.7X – 893.97, with a correlation coefficient of 0.9900. 
 

  The data obtained from the chromatograms (average peak areas) were used to 

determine the cholesterol concentrations in μg/mL with the help of the regression line 

equation; these concentrations were then converted back to the amount of cholesterol 

present in each sample per serving size, conversions achieved by the calculations steps 

outlined as done for the butter and the lard samples.  All three Swiss Cheese samples 

were analyzed (with each one being injected in triplicate); but only 2 of the 3 Kraft 

Singles Cheese were analyzed because the HPLC was running out of paper and mobile 

phase.  However, the data were considered useful.  The chromatograms obtained from the 

Swiss and the Kraft Singles Cheese are shown respectively in Figure 13. 
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Figure 13. Chromatograms of Swiss Cheese and Kraft Singles Cheese 
Samples. 
A) Swiss Cheese. B) Kraft Singles Cheese.    
Note:  The mobile phase is 70:30 methanol: 2-propanol, flowing at 
a rate of 1.0 mL/min, with the detection wavelength set at 212 nm.  
The peaks of interest are centered at 7.31 and 7.26 minutes for 
Swiss and Kraft cheeses respectively. 

 
Means and relative standard deviations were calculated.  The resulting data are 

presented in Table 10.  The overall average of cholesterol concentration was determined, 

and a direct comparison with the amounts of cholesterol reported by the food 

manufacturers is also possible. 

 58



Table 10. Amount of Cholesterol Determined in Cheese Samples.  
Note: The mobile phase was 70:30 methanol: 2-propanol, at a flow rate of 
1.0 mL/min, and the detection wavelength set at 212 nm.  The retention 
time of the analyte peaks were 7.31 and 7.26 minutes.  Cholesterol 
amounts are expressed in mg/g of cheese. 

 
 

Sample 
Amount of Cholesterol 

Determined (mg/g) 
(R.S.D) 

Amount of Cholesterol 
Reported on the Label 

(mg/g) 
 

Swiss Cheese 
 

 
0.59 (4.8%) 

 
0.92 

 
Kraft Singles 

 

 
0.61 (3.68%) 

 
0.95 

 
 
 As one can appreciate, the low relative standard deviations obtained for the  

samples above show how good, or at least acceptable, precision and consistency 

in the proposed method of analysis are.  It is also noticeable that the amounts of 

cholesterol reported in both types of cheese are just as close together as are the amounts 

determined by our method.  However, there is a difference of about 36% between the 

reported amounts and those determined.  This observation brings back the question on the 

efficiency of this method in determining cholesterol relative to the accuracy of the 

amounts reported on the labels by the manufacturers.  As mentioned before, the labels for 

most manufacturers on their dairy products give almost identical values.   

 One way to investigate whether the present method is indeed giving reliable 

results is to carry out an independent established method for determination of cholesterol 

and compare the results obtained from it with the results of the proposed HPLC method.  

The Liebermann-Burchard reaction is one such method that has proven reliable and 

precise since the nineteenth century (15).   

 

Modified Liebermann-Burchard Method    

 To determine the effectiveness of the proposed HPLC procedure, the method 

using modified Liebermann-Burchard (L-B) reagent was performed.  The L-B reaction 

was the color reaction used to evaluate the total cholesterol contained in each butter 

sample.  It is a complex reagent in 22:20:3 acetic anhydride, glacial acetic acid, and 
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concentrated sulfuric acid medium.  Variables such as the concentration of the reagents, 

the duration of the reaction, its temperature, the wavelength at which the color is 

measured, and the form in which the cholesterol is present either (esterified or free 

cholesterol) affect the reaction and must, therefore, be controlled while the reaction is 

taking place .    

 The standard cholesterol solutions for constructing the calibration curve were 

prepared from cholesterol working solution (1.00 mg/mL) made in methylene chloride.  

The standard solutions were prepared with 50 μL, 75 μL, 100 μL, 150 μL, and 200 μL 

from the standard cholesterol pipetted into five respective 10-mL volumetric flasks.  In 

each reaction vial sufficient amount of methylene chloride was added to make the total 

volume to be 2.00 mL.  Five milliliters of L-B reagent were then added, and the mixture 

was incubated for 45 minutes in the water bath at 37 – 40 0C for the blue-green color 

production.  As a result, each vial contained a total volume of 7.0 mL, making the 

concentrations 7.14, 10.71, 14.28, 21.43, 28.57 µg/mL respectively.  Absorbances were 

measured using the spectrophotometer at 620 nm and the data obtained are tabulated in 

Table 11 on the next page.  The results showed a linear calibration curve following the 

equation Y = 0.0056X -0.0078 with a correlation coefficient of 0.9886.  The butter 

samples were prepared the same way as they were for the HPLC analysis (weighing, 

saponification, extraction of cholesterol with hexane, then evaporation of hexane), in the 

procedures outlined in page 46.  Approximately 0.804 g of butter was weighed.  After 

evaporation of hexane, 6.5 mL of solution was left, from which 2 aliquots of 500 μL each 

were pipetted into separate vials, diluted to 2.00 mL with methylene chloride, before the 

addition of 5.00 mL of L-B reagent followed by 45 minutes incubation at 37-40 0C.  The 

absorbance was read in triplicates for each sample, and the relative standard deviation 

was calculated.  The amount of cholesterol found is given in Table 11 on the next page, 

with the standard deviation of the butter samples written in parentheses.  Figure 14 shows 

the calibration curve used in determining cholesterol concentration in the butter samples. 
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Table 11. Cholesterol analysis using the Modified Liebermann-Burchard Reagent. 
 

Sample Cholesterol Concentration (μg/mL) Absorbance (AU) 

Standard 1 7.14 0.033 

Standard 2 10.71 0.051 

Standard 3 14.28 0.070 

Standard 4 21.43 0.122 

Standard 5 28.57 0.149 

Butter sample 1 11.57 (0.46 % RSD) 0.057 

Butter sample 2 11.21 (0.24 % RSD) 0.055 
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Figure 14. Plot of Absorbance (AU) vs. Cholesterol Concentration (μg/mL) for the 
modified Liebermann-Burchard method.    

 Note: The regression line follows the equation Y = 0.0057X – 0.0078 with 
a correlation coefficient of 0.9886. 
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The modified Liebermann-Burchard reagent employed in this experiment has 

been extensively used over the years as a reference method for the determination of 

cholesterol in serum.  Cholesterol amount in μg/mL was found from the calibration curve 

shown in the previous page.  This concentration was then converted into mg/g of butter 

using the calculations steps outlined in page 46.  The obtained results gave an average 

cholesterol amount of 1.29 mg/g of butter.  In light of the present numbers, it could be 

concluded that while the proposed method needed to be refined in order to avoid any loss 

of cholesterol in the sample preparation, it provided results that were reliable enough for 

the analysis to be valid.  Moreover, the HPLC method and the L-B method appeared to 

give results closer in agreement with each other better than with the labeled amount. 

The local stores from which the samples were bought did not have any detail 

concerning the analytical method used to get the amount on their labels because these are 

given by their suppliers and are based on the general recognition by the United States 

Department of Agriculture (USDA) that butter contains 31 mg of cholesterol per serving 

(36).  Our butter sample displayed 30 mg of cholesterol for a 14 g serving size.  The 

above mentioned generalization of labels should account for the observed discrepancy 

between the amount of cholesterol detected with the proposed method and the amount 

shown on the labels. 
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CHAPTER 5 

CONCLUSIONS 

 The proposed HPLC method for determination of cholesterol in food items has 

been thoroughly investigated and evaluated.  This chapter gives a brief account of the 

various steps involved in the process, with a summary and significance of the results 

obtained.  Some ideas about how to improve the present method are also suggested for 

future investigations. 

 First, a set of optimal conditions for the HPLC analysis was required.  The mobile 

phase was a combination of methanol and 2-propanol in the ratio 70 to 30, flowing at the 

constant rate of 1.00 mL/min throughout.  This ratio allowed the completion of a sample 

analysis in nine minutes, relatively shorter analysis time as compared to other methods 

found in the literature.  The cholesterol molecule had an average retention time of 7.4 

minutes throughout the entire analysis, with very slight variations depending on the 

samples handled.  The pressure also remained constant with an average of 2100 psi for 

every analysis.  The detection wavelength was set at 212 nm, as that particular 

wavelength produced the highest absorbance signals, allowing efficient detection of the 

analyte even at the lower concentration ends.  The choice of this set of conditions 

essentially resulted from a couple of desired goals in our method: the stability of the 

measurements when working at 2100 psi as compared to 2400 psi as discussed in 

previous chapter (page 41), and a short time of analysis.  The time of analysis was not too 

fast and allowed good resolution of peaks; it was not too slow either, and, as a result, a 

stable and fast set of HPLC conditions was established for the analysis.  Concerning the 

environmental considerations, methanol is commonly used in HPLC methods of analysis 

because it does little harm to the environment.  Methanol and 2-propanol are also 

reasonably affordable. 

 Second, a procedure for the preparation of samples was investigated.  At the very 

early stages of this project, enzymatic reactions were carried out in the various samples to 

hydrolyze the cholesteryl esters present to free cholesterol.  This method of preparation of 

samples was soon abandoned as the cholesteryl esterase, the enzyme used for the 

hydrolysis reaction, introduced interferences and did not increase the amount of free 

cholesterol detected.  The hydrolysis method by saponification of the various samples 
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was then tried and proved to be the better alternative.  A totally innovative method for 

preparing the samples was not achieved in this work; instead, a slight modification of the 

sample preparation procedure from the work by D. J. Fletouris and co-workers (21) was 

used.  The modification consisted of altering the amounts of substances used for the 

purpose of our analysis: larger samples size, larger volumes of reagents used, and longer 

saponification process.  However, this method remained as simple as the original one, 

involving not more than 3 main steps: the weighing of samples and saponification, the 

hexane evaporation process, and the HPLC analysis (as opposed to gas chromatography 

analysis used in the reference mentioned above).  At this point, we had established a 

simple and rapid set of conditions for the analysis by the proposed method. 

 Next, the linearity of the study was evaluated.  The method showed a fairly wide 

dynamic range from 5.0 to 100.0 μg/mL of the standard cholesterol solution, consistent 

range in which the samples could be analyzed with the certainty to reliably account for 

the amount of cholesterol present.  All subsequent calibration curves were established 

within that range.  The reproducibility studies would then tell us how satisfactory the 

method was. The butter and lard samples were used for these reproducibility studies.  

They were satisfactory in terms of consistency and precision: 4.22% and 2.71% relative 

standard deviations were found for the butter and lard respectively, and mean cholesterol 

amounts of 1.10 mg/g of butter and 0.45 mg/g of lard.  However, these amounts were less 

than the amounts reported on the labels by the respective manufacturing companies. 

 The accuracy of the method was evaluated through the recovery study.  This study 

was done in order to investigate the effect of the medium (mostly hexane) in which the 

analyte was found on its separation and absorptive properties.  No major or interfering 

effect was found as confirmed by the percent recovery of 102.1% and 111.02% 

respectively, for both samples with 100 μL and 200 μL of standard added.  The low 

relative standard deviations found within each sample type (samples with 100 μL of 

added standard and samples with 200 μL of standard added) also further confirmed the 

consistency and precision of this study.  The accuracy was then deemed reliable with 

respect to the figures obtained.   

The proposed method would not be useful if it could not be applied to samples 

other than those used to establish it.  So the last step in this project was to apply this 
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method in determination of cholesterol contents of different samples.  Two different 

types of cheese were chosen for this purpose: Swiss and Kraft Singles cheeses.  A good 

deal of precision was achieved within each sample type, with relative standard deviations 

of 4.8% and 3.68% for the Swiss and Kraft Singles cheese respectively.  The amounts of 

cholesterol determined were 0.59 mg/g of Swiss cheese and 0.61 mg/g of Kraft Singles 

cheese.  Once again, there was a discrepancy between the amounts of cholesterol 

determined by the present method and the amounts reported on the labels of those 

samples by their respective manufacturers. 

 The discrepancy observed between the amounts of cholesterol found in the 

various samples by this method of analysis and the amounts reported on the labels of 

each sample could be explained as follows: some loss of cholesterol might have occurred 

in the procedures used in preparing the samples.  Indeed, because of the small sizes of the 

samples used, any slight loss of samples during their measurements and transfers into 

reacting flasks would make an appreciable percentage difference in the final amount of 

cholesterol detected.  Moreover, the saponification process might not have reached 

completion because of slight fluctuations in the temperature of the water bath.  However, 

these errors are inherent to every analysis and should contribute only partly to the 

unexpected discrepancy.  To really resolve this discrepancy issue, one needs to use 

greater number of samples.  The determinations of cholesterol in this project were done 

on portions of the butter or lard in the same package product, or on different parts of the 

same piece of cheese, rather than using different packages of samples.  Another method is 

to combine a large amount of sample and make a bigger volume of the dissolved sample 

to have an “averaging” effect.  Then smaller aliquots of it are used for analysis.  One 

could also find another saponification procedure and compare the results from it with the 

current ones.     

 A modified Liebermann-Burchard method, which is a reference method in the 

determination of cholesterol, was used to compare the amount of cholesterol found with 

that obtained via the HPLC method.  The agreement of these values with a 16% 

difference showed that the proposed method was indeed reliable. 

 The present method presents the advantages of simplicity, because of the small 

number of steps involved and rapidity as the time for the HPLC analysis is less than 9 
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minutes once the samples are ready, as compared to 20-30 minutes with the method by H. 

E. Indyk (23) for example.  The use of a mixture of methanol: 2-propanol is another 

advantage in the sense that those two solvents are preferred to some others like 

tetrahydrofuran or acetonitrile which are also less polar, thus not suitable for our purpose. 

 For future investigations, and because of the simplicity of this method as 

compared to the International Dairy Federation method (21) for example, the steps to 

work on are obvious to identify: first, the procedures involved in weighing the samples 

could be improved to avoid any sample loss.  Second, the saponification process 

conditions could be made more vigorous and allowed to go beyond the 45 minutes that 

the present method used.  It would also be interesting to investigate the effect of the pH 

of the mobile phase in the analysis.  Cholesterol is not easily ionizable, so the effect of 

the pH should not be much; but achieving a control of the pH of the mobile phase might 

help to obtain an even faster analysis than what is achieved now.  Any future work on this 

project would essentially be in the refining of the method. 

 In light of the results and discussions mentioned in Chapter 4, the proposed 

reversed-phase HPLC method of determination of cholesterol in foods was established.  

This method was proven rapid enough for a reliable HPLC analysis as well as being 

reproducible, precise, and accurate as attested by the satisfactory figures of merits 

mentioned above (pages 61-62).  Its possible application to other sample types might be 

generalized to quantitative determination of cholesterol in diverse food samples. 

However, the recovery of the total cholesterol present in the samples must be efficient 

enough (which was not the case in this work) to ensure that the amount present is indeed 

completely accounted for. 
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