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ABSTRACT 

Studies on the Preparation, Immobilization, and Luminescence Properties of Zinc Oxide (ZnO) 

Quantum Dots 

by 

Yasemin Hakat 

Quantum dots are a part of very important our technological future because of their intriguing 

and useful properties.  These properties are different in character from those of the corresponding 

bulk material.  Quantum dots are inorganic artificial semiconductor nanocrystal whose electrons 

influence their physical and chemical properties.  Zinc oxide quantum dots were synthesized 

through an ethanol based precipitation via colloidal synthesis method at various pH values.  

Various emission colors were obtained because the excited quantum dots of various sizes emitted 

specific wavelengths of light.  The emission spectra indicated that the pH dependent quantum 

dots were successfully synthesized.  Zinc oxide quantum dots were also encapsulated and the 

luminescence properties examined.  The quantum dots that were immobilized in polyisoprene 

(PI) through chemiluminescence (CL) analyses were found to be stable and were capable of 

continuing their luminescence properties with extended uses and long- term storage.  Linear 

calibration curves were acquired for concentration of 8.75 x 10-5 M H2O2 in TCPO-CL. 
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CHAPTER 1 

INTRODUCTION 

Nanotechnology is the study of matter at atomic and molecular scale and generally deals 

with structures size between 1 to100 nm in at least one dimension by the quantum mechanical 

effect.  At such small size scales, quantum mechanical effects give rise to novel materials behavior 

compared to their corresponding bulk materials (1).  Nanotechnology has an enormous scientific 

and practical future in many emerging fields.  Materials on the nano scale often exhibit very 

different physical, chemical, and biological properties than their normal size counterparts. 

In recent years, a tremendous amount of research effort has been made towards synthesis, 

properties, manipulation, and characterization of the nano scale materials.  It is receiving increasing 

attention of research laboratories, fabrication, and manufacturing plants that are developing novel 

nano sized materials in many possible applications such as medicine (drug development), security, 

communication, transportation, energy, electronics, biomaterials, engineering, manufacturing, 

energy production, information, and others. 

History of Nanoparticles 

The concept of nanotechnology was first introduced by the well-known physicist Richard 

Feynman (2).  Feynman described the ability to manipulate individual atoms or molecules with 

new experimental techniques, instrumentation, and process to modify matter and visualized them 

with the atomic precision could be extremely advantageous.  The bulk materials have constant 

physical properties regardless of their size, and working with them was very challenging.  Thus, 

Feynman had a great interest in working materials on the nano scale with size dependent 

properties.  Later, an engineer named Eric Drexler studied these concepts of nanotechnology in 
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greater depth (3).  All these research efforts led to the discovery of fullerenes (4), semiconductor 

nanocrystal (5), and other nanoparticles (6-11). 

Fullerenes 

The chemical and physical properties of fullerenes have been a great topic in the field of 

nano scale research and development.  The investigation of nanoparticles began with the 

discovery of fullerenes, any molecule composed of carbon atoms that is neither graphite nor 

diamond.  In the 1980s, fullerenes were discovered by Richard Smalley and Robert Curl, Jr. of 

Rice University in Houston, Texas (4) and Harold Kroto of Sussex University in the United 

Kingdom (12).  Unlike diamond or graphite, fullerenes consist of 60, 70, or even more carbon 

atoms.  Fullerenes actually can occur naturally (13).  Now many techniques are available 

synthesizing them in greater amount.  Fullerenes are used in biological and medical applications 

(4, 14).  For instance, they can be used as antioxidants while react with free radicals that cause to 

damage normal cells.  Major pharmaceutical companies are exploring the use of fullerenes in 

controlling the neurological damage of such diseases as Alzheimer's disease (14). 

Semiconductor Nanoparticles 

Nanoparticles are particles with diameters of 100 nm or smaller (15).  Materials on the 

nano scale and semiconductor nanoparticles are of great interest because of their size dependent 

optical, catalytic, and electrical properties (16).  The differences in property between the 

nanoparticles and bulk materials have stimulated many scientists to investigate their size 

dependent properties.  Nanoparticles are a bridge between atomic or molecular structure and bulk 

materials.  They are aggregates of multiple atoms or molecules so they have a larger size than an 

individual atom or molecule.  Due to the small size of particles, they have a large surface area to 
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volume ratio.  With the decreasing particle size, bulk properties are lost, electronic states 

becomes discrete, and the surface of the atoms becomes larger (17). 

The properties of semiconductor nanocrystals depend on the particle size as well as 

shapes, structure, and surface state of the nanoparticles (18).  When a particle gets very small, it 

exhibits quantum mechanical behavior.  This is typically because nanoparticles have greater 

surface areas which cause them to be more reactive to certain other molecules.  Larger surface 

area of the nanoparticles causes a lot of interactions between the mixed materials. 

Nanoparticles' unique optical and electronic properties are due to the quantum 

confinement effect.  Quantum confinement is the change of optical and electronic properties 

when the material sample has size 10 nanometers or less.  The origin of quantum confinement is 

called zero dimensional nanocrystallites such as that in the quantum dots.  As the size of the 

nanostructure decreases, the band gap size increases.  The surface of the material becomes more 

significant because properties of nano scaled materials change as their size approaches the nano 

scale.  The bulk material surface is insignificant in relation to the number of atoms in the bulk of 

the material.  Suspension of nanoparticles is possible when the interaction of the particle surface 

with the solvent is strong enough to overcome density differences. 

Nanoparticles are synthesized for desired applications.  These applications are based 

upon the dispersion medium that contains the nanoparticles, the dispersion state, and the 

miscellaneous surface modifications involved (15).  To improve stability, nanoparticles are either 

immobilized or undergo surface modification.  With today’s technology and sophisticated 

instrumentations, characterization and manipulation of nanomaterials are possible such as 

instruments transmission electron microscopy (TEM), scanning-electron microscopy (SEM), 
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scanning-probe microscopy (SPM), fourier-transform infrared spectroscopy (FTIR), nuclear 

magnetic resonance (NMR), ultraviolet-visible spectroscopy (UV-Vis). 

Examples of Nanoparticles 

As more research was conducted, different types of semiconductor nanoparticles were 

discovered.  Here are some of these nanoparticles. 

Gold nanoparticles have been synthesized and used in the diagnosis of genetic diseases 

and mutations (8).  Because of their uniqueness in optical and electronic properties, gold 

nanoparticles are being investigated as carriers for drugs (19) and can be used to target tumors in 

vivo (20).  The application and properties of colloidal gold nanoparticles depend on the shape of 

the nanoparticles.  Rod like particles have both transverse and longitudinal absorption peak, and 

anisotropy of the shape affects their self-assembly (21). 

Recent research has also introduced silver nanoparticles into the medical field.  Silver 

nanoparticles have been synthesized and used in fighting against bacteria, viruses, and fungi (7).  

Improved silver nanoparticles have been developed to prevent infections.  They destroy specific 

enzymes and suffocate the bacteria, virus, and fungi so that they do not infect surrounding 

tissues.  They have been added to surfaces of stainless surgical steel blades and needles for faster 

wound healing in medical applications (7).  Methods for synthesizing silver nanoparticles 

include thermal decomposition (22), laser ablation (23), microwave irradiation (24), and sono-

chemical synthesis (25). 

Zinc oxide nanoparticles are versatile semiconductor inorganic materials.  Zinc oxide 

nanoparticle has attracted attention because of commercial demand for optoelectronic devices.  It 

is oxidized material that belongs to the quartzite structure.  It has higher absorption efficiency at 
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the small particle sizes.  This semiconductor has several favorable properties, including good 

transparency, high electron mobility, wide band-gap, and strong room-temperature luminescence 

(26).  ZnO nanoparticles allow extensive applications in many fields ranging from bio-imaging 

to optoelectronics. 

Toxicology of Nanoparticles 

In general, there a great deal of ongoing research on the toxicology of nanoparticles.  The 

novel properties of nanoparticles mean they could find uses in a variety of applications as diverse 

as solar power to treatment of cancers.  A recent study at the effects of ZnO nanoparticles on 

human immune cells has found varying levels of susceptibility to cytotoxicity (27).  Fear over 

the potential dangers of nanoparticles had led to increasing calls for their tests and regulations.  

In past number of years several studies had indicated that exposure to specific nanomaterials can 

lead to adverse effects in humans and animals (28).  Researchers working with nanoparticle 

toxicology had identified molecular mechanisms that may cause dangerous reaction when some 

nanoparticles come into contact with living cells.  It was shown that some nanoparticles could 

give rise to reactive forms of oxygen that damage living cells.  At the low concentrations of these 

molecules, cells can defend themselves by producing antioxidants.  As concentrations of these 

reactive forms increase, however, cells become inflamed or eventually die.  Because there is no 

authority to regulate nanotechnology based on the products, there are many products that could 

possibly be dangerous to humans. 

Quantum Dots 

Quantum dots are a part of our very important technological future because they possess 

intriguing and useful properties.  These properties are different in character from those of the 

corresponding bulk material.  Quantum dots are inorganic semiconductor nanocrystals whose 
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electrons highly influence their physical and chemical properties (29).  They are synthesized 

from II-VI small band gap semiconductors (30-32).  Although they are composed of hundreds 

and even thousands of atoms, they behave like a single atom (33, 34).  The quantum dots have 

the ability to emit light when an electron absorbs radiation from an external energy source such 

as heat, electricity, or light.  Subsequently, the electron jumps to an excited state in the 

conduction band leaving a positive charged hole in the ground state orbital.  They have tunable 

band gaps that allow for the wavelength of the light they release to be by controlled changing the 

particle size.  In addition, their surface is composed of non-polar coordinating ligand, thus 

quantum dots can be attached to a variety of molecules.  This allows the quantum dots to be 

dispersed or dissolved in many solvents. 

Generally, the smaller the size of the nanoparticles the larger the band gap, hence the 

greater the difference is in the energy between the highest valence band and the lowest 

conduction band becomes (35).  Therefore, more energy is needed to excite the smaller quantum 

dot, so more energy is released when the electron returns to its ground state.  Traditional 

semiconductors have optical and electronic limitations that are difficult to overcome.  Also, their 

emission frequencies cannot be easily manipulated because the band gap energies are not easily 

changed.  Regular semiconductor dye has an absorption spectrum that is narrow, not bell shaped, 

and cannot easily be tuned.  Organic dye has a luminescence that has a broad spectral width that 

limits effectiveness to a small number of colors.  The band gap of quantum dots changes with 

their size by the addition or subtraction of just a few atoms.  The most apparent property is the 

emission of photons under the excitation radiation that is visible to the naked human eye as light.  

The wavelength of photons emitted depends not on the material from which the quantum dot is 

made but the size of the particles. 
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Properties of Quantum Dot 

Size Properties.  Quantum dots have a high surface area per unit volume; therefore, small 

quantum dots are not very stable.  They have a tendency to grow (5).  Because the band gap of 

the quantum dots is easily changed with their size, the band gap energy also affects the size of 

quantum dots.  Band gaps are spaces in between energy levels and the forbidden zones for 

electrons.  The same material of quantum dots, but with different sizes, can emit different colors 

of light due to quantum confinement effect.  The band gap energy that determines the energy of 

the fluorescent light is inversely proportional to the size of the quantum dot.  Larger quantum 

dots have more energy levels so they are also closely spaced in which the electron hole pair can 

be trapped.  The electron hole pairs in larger dots live longer causing larger dots to show a longer 

lifetime.  As a result, when the electron returns to its ground state, longer wavelengths of light 

are emitted (35). 

Reducing the size of regular semiconductor materials to nanometer scale changes its 

physical properties in a fundamental way.  For instance, their sizes produce optical effects (26).  

Smaller quantum dots emit shorter wavelengths, toward the blue end of the visible spectrum, 

while larger quantum dots emit longer wavelengths of light, toward the red end of the visible 

spectrum (36, 37).  In addition, free quantum dots can be bound to molecules that can influence 

magnetic behavior, sintering, and melting temperatures of the materials. 

Surface Properties.  The unusual and often unexpected properties of nanoparticles are 

largely due to the large surface area of the semiconductor material.  Size and shape 

monodispersity is very important to carefully reveal the dependence of the material’s properties 

on size or shape and therefore requires synthetic routes to prepare monodispersed nanocrystals 

(38).  At elevated temperatures, the high surface area to volume ratio of quantum dots contributes 
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a huge driving force for diffusion.  Nanoparticles have been found to show some extra properties 

to change day to day products.  Quantum dots enhance catalytic activity due to their large surface 

area per unit volume.  Examples of strategies used to make quantum dots more biocompatible 

include coating with a silica layer (39) and encapsulating the hydrophobic quantum dots in lipid 

micelles (40).  Recently, encapsulation of quantum dots into polymer colloids is widely used 

techniques because it is robust, facile, and inexpensive. 

Applications of Quantum Dots 

To ability to tune the size of quantum dots offers great advantageous in many 

applications.  For example, larger quantum dots have a larger spectral shift towards red 

compared to smaller quantum dots.  The new generations of quantum dots have far reaching 

potential for the study of intracellular processes at the single molecule level, high resolution 

cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and 

diagnostic (35). 

Biological Applications.  The most successful application of quantum dots is use as 

biological tags that involve modification the quantum dot surface specifically for imaging 

biological targets.  In modern biological analysis, quantum dots are replacing organic dyes.  

However, with each passing year, more demands are required of these dyes, and the traditional 

dyes are often unable to meet the expectations (41).  Researchers have studied and compared the 

optical properties of quantum dots to the organic dyes.  Quantum dots have being found to be 

superior to traditional organic dyes on several counts.  Similar to quantum dots, organic dyes 

absorb radiation to excite an electron and emit energy when the electron returns to its ground 

state.  One of the most obvious properties of the quantum dots are its brightness. 
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Photobleaching can occur with most organic dyes after they have been exposed to light 

for long period of time.  It has been estimated that quantum dots are 20 times brighter and 100 

times more stable than traditional fluorescent reporters (41).  The color produced by the quantum 

dots last for weeks or longer, which provides more time for observation and characterizations 

(42, 43).  Finally, organic dyes fluoresce at distinct laser excitation wavelengths, and one color is 

observed at a time.  On the other hand, quantum dots emit light of different wavelengths when 

excited. 

Medical Applications.  Quantum dots are used in cancer research (33).  Nanotechnology 

is opening up new opportunities in implantable delivery systems, which are often preferable to 

the use of inject able drugs.  The side effects and drug consumption can be reduced significantly 

by depositing the active agent or higher dose that is needed at the specific site.  This highly 

selective approach reduces cost and more importantly human suffering.  Targeted or personalized 

medicine reduces drug consumption and treatment expenses resulting in an overall benefit by 

reducing the costs to the public health system.  Researchers have conjugated quantum dots to 

antibodies to recognize cancer cell (33).  Their small size combines with infinite variations of 

function allow them to interact with tumor cells in complex ways. 

Technological Applications.  One of the fastest moving and most exciting aspects of 

nanotechnology is the use of quantum dots in technology.  Quantum computation is one of the 

most promising candidates for use in solid state quantum dot technology (35).  Flow of electrons 

through the quantum dot can be controlled and precise measurements can be made.  They are 

incorporated in more efficient integrated circuit chips and smaller, more powerful transistors for 

computers (44, 45).  With quantum dots, information storage is brought down to the molecular 

level.  Because there is no current of electrons required for transmitting the signal, problem of 
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removing heat in traditional semiconductors is avoided.  Furthermore, the information processing 

by quantum dots occur at discrete states of single electrons.  This allows the possibility of 

constructing ultrahigh density memory devices.  Because of their tiny size, nanoparticles are 

inherently poised to aid in the production of high performance delicate electronics; they may 

provide not only materials with a high rate of conductivity but also sleeker parts for small 

consumer electronics like cell phones (46).  Nanoparticles electronics can create digital displays 

that are brighter in color, electricity-efficient, and less expensive to produce.  In addition, 

nanoparticles could provide improved wear and tear resistance for almost any mechanical device 

(46). 
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CHAPTER 2 

PROPERTIES OF ZnO QUANTUM DOTS AND LUMINESCENCE TECHNIQUES 

ZnO Quantum Dots 

Research on the zinc oxide (ZnO) quantum dots is expanding tremendously due to their 

numerous attractive properties.  As mentioned in the previous chapter, the properties of ZnO 

quantum dots are sensitive not only to the dimensions but also to the shape and other related 

complexities such as the surface effects and size variation.  The properties of ZnO quantum dots 

contain crucial information regarding of many parameters that is essential to better understanding 

the quantum dots devices and applications. 

Zinc and oxygen belong to the 12th and 16th group of the periodic table.  ZnO is known 

as II-VI binary semiconductor compound.  It has a high direct band gap of 3.37 eV and a large 

excitonic binding energy of 60 meV compared to other wide band material that allows electron 

transition even at room temperature (47).  In addition, ZnO nanoparticles have an excellent UV 

absorption efficiency (48).  Some other positive attributes include the long-term non-negative 

environmentally impact, bio-compatibility, non-toxicity, and low cost.  For instance, ZnO 

nanocrystals usually are suitable for in vivo bio imaging because of non-toxicity effects. 

The Zn based quantum dots provide physical blocks from harmful UVA and UVB rays 

(6).  It is protecting the DNA or skin from photo damage by exposure to ultraviolet radiation.  

Applications making use of this property include UV-protective coatings for wood furniture and 

textiles and polymer-composite products to prevent degradation against harmful UV rays (48). 

ZnO quantum dots are nearly insoluble in water and appear as a white crystalline powder.  

This powder is widely used as an additive in many materials.  Commercially most ZnO 

nanocrystal is produced by the colloidal synthesis method.  The vast majority of these 
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commercial applications use ZnO in its polycrystalline (powder) form, which is currently 

produced at a level of 100,000 tons per year (49).  When kept in the dark, the quantum dots 

remain stable for days and even months (50). 

A variety of chemical and physical methods are used to synthesize the ZnO quantum 

dots.  Despite the development process of many nanoparticles, chemically pure, crystalline, and 

nano sized ZnO quantum dots can be easily synthesized.  ZnO nanoparticle is almost 500 times 

larger than that of bulk ZnO (51).  Therefore, applications of ZnO quantum dots can be improved 

simply by changing the particle size. 

Synthetic Procedures of Quantum Dots 

In order to take advantage of the quantum dots, knowledge of how quantum dot synthesis 

and growth can be controlled is required.  The most popular synthetic procedures are vapor 

deposition, molecular self-assembly, mechanical size reduction, and colloidal synthesis (13).  

The method chosen for the synthesis of quantum dots is very important because the properties of 

the quantum dots change with different synthetic methods.  For instance, a colloidal crystal is an 

ordered array of particles with diameters ranging from tens of nanometers to micrometers (52). 

Colloidal Synthesis 

 The colloidal semiconductor nanoparticles are produced from precursor compounds. 

Colloidal synthesis is the most popular and most efficient method to produce quantum dots (50). 

This method of synthesis is based on three component systems that include the organic 

surfactants, solvents, and precursors.  Precursors are chemically transformed into monomers by 

applying heat to them.  Once the monomers reach a high enough super-saturation level, the 

nanocrystal growth starts with a nucleation process (35).  During the nanocrystal growth process, 

pH is one of the critical factors in determining optimal (optoelectronic) conditions. Colloidal 
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synthesis is simple and can be used to synthesize large quantities of high quality nanoparticles at 

minimal cost (53- 55).  Quantum dots size and shape are controlled easily as a result of growth.  

The smaller particles grow faster than larger ones resulting in focusing of the size distribution to 

yield nearly mono-disperse particles (35). 

Vapor Deposition Synthesis 

Vapor deposition synthetic method describes a variety of methods to deposit thin film by 

the condensation of a vaporized form of the material onto various surfaces (56).  This method is 

used to produce high purity metallic or metal-oxide nanocrystals and often used in the 

semiconductor industry.  The main advantage of this method is the low contamination level.  

Particle size is controlled by the variation of some the parameters such as pH, temperature, 

concentration, evaporation rate, and environment effect.  The vapor deposition method is mainly 

used for coating and immobilizing quantum dots (56).  The coating method involves purely 

physical processes such as high temperature vacuum evaporation or plasma sputter bombardment 

(56). 

Molecular Self-Assembly Synthesis 

In nanotechnology, molecular-self-assembly is a process in which quantum dots are 

synthesized from molecules without influence from an outside source.  Molecular self-assembly 

is the “spontaneous” association of molecules under equilibrium conditions into stable, 

structurally well-defined aggregates joined by non-covalent bonds (57).  Using this process, 

desired final structure is synthesized in the shape and functional groups of the molecules.  

Biological systems use this technique to assemble various molecules.  The main advantage of 

this method is to construct nanostructure materials that eventually degrade back into individual 

molecules.  Size and shape of nanoparticles can be controlled easily with this method. 
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Molecular self-assembly synthesis method produces a new class of semiconductor 

product at molecular level.  Highly toxic surfactants are used during the process giving rise to 

environmental concern.  The application of this method is quite simple, versatile, and provides 

scientists with new opportunities in the study nanoparticles.  Chemical reactions construct atoms 

to assemble into larger structures will have an important role in the technology of the future. 

Luminescence Techniques 

Luminescence is emission of light by molecules or atoms.  During the luminescence 

process, energy source excites an electron from atom or molecule of lower energy state into a 

higher excited energy state.  When the electron returns to the ground energy state in the form of 

light is emitted.  Fluorescence and chemiluminescence are the most common, powerful, and 

widely used luminescent techniques in the analytical chemistry.  The widespread applications are 

due the significant advantages of selectivity and sensitivity of the luminescence techniques. 

Fluorescence is the emission of light by a substance that absorbs external radiation 

sources such as heat, electricity, or light.  Fluorescence technique is simple, sensitive, and 

selective.  This technique also has a wide linear dynamic range that is advantageous quantitative 

analyses. 

Chemiluminescence is the emission of light by release of energy from a chemical 

reaction instead of an external radiation source.  Molecule loses excitation energy by emitting the 

light that can be in the ultraviolet, visible, or infrared regions.  However, those emitting visible 

light are the most common (58).  In order to obtain the highest sensitivity; chemiluminescent 

reactions must be as efficient as possible in generating photons of light.  The attractiveness of 

this technique in nanotechnology as an analytical tool is the simplicity of detection method. 
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Principle of Fluorescence 

Fluorescence spectroscopy is one of most popular analytical techniques for the 

characterizing of quantum dots in the wider linear dynamic range.  The best method to 

understand the luminescence process is via a Jablonski diagram shown below in Figure 1 (59). 

 

 

Figure 1. A Jablonski diagram for a fluorophore molecule adapted from (59) 

The electronic ground state of a fluorescent molecule is represented by the horizontal 

lines, which are labeled in S0, and is usually in the singlet state.  The horizontal lines far above 

the ground state represent the second electronic singlet state (S2), the first electronic singlet state 

(S1), and the first electronic triplet state (T1), respectively.  The Jablonski diagram describes the 
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absorption and the emission of light by how the electrons in a fluorescent molecule are excited 

from lower ground state to higher excited states. 

Fluorescent molecule usually exists in the ground state at room temperature.  When it 

absorbs energy of a giving wavelength, an electron of the molecule is promoted to a higher 

excited state, whether S1 or S2.  This takes place rapidly within 10-15 s.  Stability of the electron 

in the excited state decreases due to excess of energy.  This excess energy is dissipated via 

several pathways as the electron returns to ground state.  The most common way to release this 

excess energy is simply by increasing the molecular vibrations.  The vibrational relaxation takes 

place as energy is released by collisions with surrounding solvent molecules. 

Radiative transition occurs between two states of fluorescent molecule.  The first process 

is the absorption followed by the emission of light.  Radiative deactivation of the electronically 

excited state occurs as an electronic transition between the electronic states other than the ground 

singlet.  Once a molecule reaches the lowest vibrational level of the lowest electronic state, it can 

do several things, one of which is to return to the ground state by emission of a photon.  This 

process is known as fluorescence.  The average lifetime of fluorescence is 10-10 to 10-5 s.  In most 

cases, the emitted light has a longer wavelength lower energy than the absorbed radiation. 

Triplet state is in lower electronic energy than the excited singlet states.  When the 

electron relaxes to its ground vibrational state (S0) from the triplet state, the emission of radiation 

is known as phosphorescence (59).  The frequencies of exciting and emitted light are dependent 

upon the particular molecules or atoms. 

Radiationless transition is a process that occurs between two states of fluorescent 

molecule without emission of photon.  The excited molecules relax from the lowest vibrational 

level of a higher electronic state (S2) to a higher vibrational level of a lower electronic state (S1), 
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via a process of internal conversion (IC).  Potential energies of the two excited states remain 

equal, thus no energy is lost as the crossover occurs.  Molecular spin state for internal conversion 

remains the same.  In contrast, the spin of an excited electron be reversed, leaving the molecule 

in an excited triplet state; this process known as intersystem crossing and it competes with 

fluorescence (59).  The intersystem crossing (ISC) is less probable because it involves a change 

spin state.  In addition, the intersystem crossing is a forbidden transition due to quantum 

mechanical reasons. 

Triplet state is in lower electronic energy than the excited singlet states.  When the 

electron relaxes to its ground vibrational state (S0) from the triplet state, the emission of radiation 

is known as phosphorescence (59). 

Principle of Chemiluminescence 

Chemiluminescence takes place by the generation of light when energy from a chemical 

reaction between the reagent and the analyte generates specie in the excited state.  The intensity 

of light emission depends on the rate of the chemical reaction (58).  Luminol chemiluminescence 

and peroxyoxalate chemilumunescence are most common chemiluminescence techniques that 

are applied in analytical chemistry applications.  Luminol is widely used as a chemiluminescent 

reagent when combined with an oxidizing agent.  Luminol chemiluminescence reaction is 

illustrated in the following equations: 

A    +    B    →    C*    +    D        [1] 

 C*    →    C    +    hv         [2] 
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where A is a luminol reactant and B is an oxidant.  C and D represent the products, and C* 

represents an excited specie of product C.  The energy of emitted light is of frequency υ, and h is 

the Planck constant. 

The bis(2,4,6-trichlorophenyl) oxalate (TCPO) chemiluminescence can also occur when 

an electronically excited species transfers its energy to another species that luminesces and  is 

shown by the following equations. 

A    +    B    →    C*    +    F        [3] 

C*    +    F    →    F*    +    C        [4] 

F*    →    F    +    hv         [5] 

where F is the fluorophore that the accepts transferred energy from the excited species C* (60). 

Chemiluminescence reactions consist of a chemical reaction and luminescence process.  

Therefore, the number of reactions that result in significant chemiluminescence emission is 

comparatively small.  In order for a chemiluminescent reaction to occur, the most important 

requirement is that there must be sufficient energy available for the formation of an excited state.  

The second requirement is that the excited state must be capable of losing this energy by the 

emission of visible photon or transferring its energy to another molecule that is luminescent.  As 

a result, products of chemiluminescence reactions generally include one specie that is highly 

fluorescent.  The intensity of chemiluminescence is based upon the chemiluminescence 

efficiency and number of reacting molecule, which is shown by the following equations: 

ICL=φCL (d[C]/dt         [6] 

ICL=φEX φEM (d[C]/dt)         [7] 
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where ICL represents the intensity of radiant (photons per unit time), φCL is the 

chemiluminescence quantum yield (photons per reacting molecule), (d[C] / dt) stand for the rate 

of the chemical reaction, and φEX and φEM are the excitation and emission quantum yields.  The 

chemiluminescence intensity decreases as the reagent is consumed over time (59). 

Chemiluminescence measurement requirements are quite simple.  First thing is to bring 

all reactants and then measure the intensity of the light emission.  Instrumentation requires only a 

single light detector such as a photomultiplier tube (PMT) and a reaction vessel.  The 

instrumentation does not require an external excitation source.  Therefore, chemiluminescence 

measurements or detections are not limited by excitation light scattering.  Reagents and solvents 

used for this process must be of the highest purity.  Chemiluminescence takes place is popular 

many among spectroscopic techniques because of its high selectivity and sensitivity.  The 

detection limits are dependent upon reagent purity and lie between parts per billion and parts per 

million ranges (59). 

Peroxyoxalate Chemiluminescence 

Rauhut and co-workers synthesized and characterized the chemiluminescent properties of 

peroxyoxalates (59).  The initial excited state does not emit light, instead it produces the highly 

energetic intermediate compounds.  The reaction between other oxalates, including oxalic 

anhydrides and substituted phenyloxalates, and hydrogen peroxide were also researched (61, 62).  

The mechanism for the peroxyoxalate chemiluminescence reactions are shown in Figure 2 below 

(60). 
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Figure 2. Chemical mechanisms of peroxyoxalate chemiluminescence reaction. 

According to the given reactions above, in the presence of peroxyoxalates, of which 

bis(2,4,6-trichlorophenyl)oxalate (TCPO) used as a reagent and reacting with the oxidant 

(H2O2) to produce 1,4-dioxetanedione  intermediate.  This intermediate provides the chemical 

energy required for the excitation process.  The fluorophore emits light as the excited species 

returns to its ground vibrational state (60). 
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Peroxyoxalate chemiluminescence is simple and inexpensive process with a high degree 

of selectivity compared to other chemiluminescence analytical methods.  This type of 

chemiluminescence method also has fast analysis times and good sensitivity.  In addition, 

peroxyoxalate chemiluminescence can be applied to various types of analysis because different 

fluorophores can be used (63, 64).  Peroxyoxalate chemiluminescence has been used in 

analyzing immobilized amino aromatics as fluorophores (65).  It has also been used to analyze 

glucose in urine (64).  Peroxyoxalate chemiluminescence detection offers several advantages in 

chemiluminescent analyses.  First of all, the TCPO peroxyoxalates can be synthesized quite 

easily (58). 

Motivations 

Based on the information and discussion presented in Chapter I and Chapter II, ZnO 

quantum dots can be synthesized via a colloidal synthesis method by adjustment of the pH of the 

precipitation solution.  It is a simple procedure, and large quantities of high-quality quantum dots 

can be produced at minimal cost (53- 55).  This procedure is now an effective way of 

synthesizing ZnO quantum dots.  Also, ZnO quantum dots with various emission colors can be 

tuned through this colloidal synthesis method.  In addition, fluorescent ZnO quantum dots can be 

encapsulated using an emulsification/solvent evaporation method to overcome the difficulty that 

is water solubility. 

In this research project, an attempt was made to try the repeated synthetic method to 

obtain the ZnO quantum dots (QDs) needed for immobilization and use as a fluorophore in 

chemiluminescence (CL) analysis.  We carried out experiments to investigate the following: 
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 Investigate the synthesis of ZnO QDs through an ethanol-based precipitation method 

at the various pH values. 

 Investigate the procedures to immobilize the ZnO QDs into PI polymer by 

emulsification/solvent evaporation. 

 Investigate the optimum concentrations of imidazole and TCPO for CL 

measurements of the PI immobilized QDs. 

 Investigate the figures of merit of the proposed procedure, the precision, linear 

dynamic range and stability of the PI immobilized QDs. 

 Investigate the luminescence properties of PI-QDs nanocomposite particles via 

fluorescence and chemiluminescence. 
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CHAPTER 3 

EXPERIMENTAL PROCEDURE 

In order to validate the applicability of the proposed research of the ZnO quantum dots, a 

number of experiments were performed to determine the accuracy, linearity, and precision of the 

luminescence signal.  In this chapter, the experimental procedures to synthesize, immobilize, and 

establish the validity of the fluorescence and chemiluminescence properties of ZnO quantum 

dots are indicated. 

The ZnO quantum dots were synthesized by using an ethanol based precipitation method 

via adjustment of the concentration of LiOH (66).  The flourescent quantum dots were 

encapsulated into polyisoprene particles through an emulsification/solvent evaporation method 

(67). 

Reagents Used 

ACS certified commercial sources reagents were used.  No additional purification 

procedures were required. 

1. Cyclohexane, 95 % ethanol, 30 % hydrogen peroxide, lithium hydroxide, sodium 

hydroxide, benzene, lauric acid, and chloroform purchased from Fisher Scientific 

(Pittsburgh, PA). 

2. Zinc acetate purchased from Mallinckrodt Baker (Phillipsburg, NJ). 

3. 99 % Lauric acid, acetonitrile, and 90 % 1- octadecene purchased from Acros Organic 

Company (Morris Plains, New Jersey). 

4. 99 % Imidazole, 98 % oxalyl chloride, 99 % triethylamine, and polyisoprene purchased 

from Aldrich Chemical Company (Milwaukee, WI). 
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5. 98 % 2, 4, 6 - Trichlorophenol purchased from Alfa Aesar Company (Pittsburgh, PA). 

6. Deionized water acquired from US Filter Company (Pittsburgh, PA) 

Preparation of Stock Solutions 

Zinc Oxide Precursor Solution 

Approximately 26 mg of ZnO nanoparticles and 2.0 mL of absolute ethanol were placed 

in a 25-mL flask.  The solution was stored at room temperature. 

Imidazole Solution 

Imidazole solution (100 mg/mL) was prepared by dissolving 5.0 g of imidazole in 50 mL 

of deionized water.  The solution was kept in the refrigerator. 

Hyrogen Peroxide Solution 

The hydrogen peroxide (1.75 x 10-1 M) was prepared by diluting 1 mL of 30 % H2O2
 in a 

50-mL volumetric flask with deinozed water.  Then, the solution was kept in the refrigerator. 

Synthesis of ZnO Quantum Dots 

ZnO quantum dots were synthesized by following the procedures described by Tang et al. 

(58).  Approximately 44 mg of zinc acetate was dissolved in 20 mL of absolute ethanol.  Stirring 

at room temperature, the mixture was dissolved completely.  In addition, 36 mg of LiOH was 

dissolved in 20 mL of absolute ethanol.  The acetate/ethanol solution and the LiOH/ethanol 

solution were mixed together.  The pH value of the mixed solution was measured to be 12.  The 

solution mixture became cloudy, indicating the ZnO nanoparticles were formed after 2 hours of 

reaction.  The pH values of the solutions were tuned to 6, 8, and 10 when 5.5, 10, and 14 mg of 

LiOH were added, respectively.  To remove the un-reacted precursors at the different pH levels, 
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the synthesized ZnO quantum dots were washed three times with absolute ethanol.  Finally, the 

purified ZnO nanoparticles were dispersed in absolute ethanol in the dark.  Quantum dots of 

different sizes were produced as solutions of different colors were obtained, as reported in the 

literature (66). 

Preparation of Working Solutions 

Preparation of Quantum Dots for Obtaining an Emission Spectrum 

Exactly 75-µL aliquots of quantum dot solution were diluted in 5-mL volumetric flasks 

with absolute ethanol.  These samples were ready for the fluorescent measurements. 

Preparation of Quantum Dot Solutions for Linearity Studies 

Exactly 75, 125, 200, 325, and 410 µL solutions of quantum dot solution were diluted in 

5-mL volumetric flasks with absolute ethanol.  These samples were ready for fluorescent 

measurements. 

Preparation of Quantum Dot Solutions for Immobilization Studies 

The fluorescent quantum dot-polymer nanocomposite formation was diluted with 2.0 mL 

of absolute ethanol.  These solutions were ready for fluorescent measurements. 

Bis(2,4,6-trichlorophenyl) Oxalate Solution (TCPO) 

The TCPO solution (7.5 mg/mL) was prepared by dissolving 0.60 g solid of TCPO in 80 

mL of acetonitrile and sonicated for about 1 hour. 
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Preparation of Hydrogen Peroxide Solutions for Linearity Studies 

In different 10-mL volumetric flaks, the calibration solutions were prepared by diluting 

suitable volumes of 1.0 x 10-1 M H2O2.  An 8.75 x 10-3 M H2O2 solution was prepared by 

diluting 5.0 mL of 1.75 x 10-1 M H2O2 with deinonized water.  In addition, 4.38 x 10-3 M, 8.75 x 

10-4 M, 4.38 x 10-4 M, 1.75 x 10-4 M, and 8.75 x 10-5 M H2O2 solutions were also prepared by 

diluting, respectively, 2.5 mL, 0.5 mL, 250 µL, 100 µL, and 50 µL of 1.75 x 10-2 M in with 

deionized water. 

Procedure for Immobilization of Quantum Dots 

The ZnO quantum dots were immobilized by following the similar procedures described 

by Yin et al. (67).  Approximately 18 mg of ZnO quantum dots were added to 4.0 mL of 1-

octadecene to make a quantum dot solution.  At the same time, 15 mg of polyisoprene (PI) was 

dissolved in 40 mL of chloroform to form a polymer solution.  Then, the quantum dot solution 

was added to the polymer solution.  In addition, in a separate flask, 15 mg of lauric acid and 4.5 

mg of NaOH were dissolved in 40 mL of water to produce an aqueous surfactant solution.  The 

quantum dot/polymer solution was added to the aqueous surfactant solution.  ZnO quantum dots 

were microencapsulated in polyisoprene particles through emulsification/solvent evaporation. 

Synthesis of TCPO 

TCPO was synthesized by following the procedure described by Mohan and Turro (60).  

Approximately 25 mL of triethylamine was placed to a 50-mL flask.  The triethylamine was 

distilled.  After the distillation, it was cooled to 10oC.  At the same time, 300 mL of benzene was 

dried using 5.0 g of magnesium sulfate.  Approximately 20 g of 2,4,6-tricholorophenol was 

dissolved in 250 mL of the dried benzene and the solution was cooled to 10oC.  Then 15 mL of 
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the distilled triethylamine was added to the mixture.  When all was ready, 5.0 mL of oxalyl 

chloride was added to the mixture drop-wise in a dark room and solid TCPO was produced.  The 

precipitate was filtered and washed three times with benzene and petroleum ether to remove the 

imparities.  The TCPO crystals produced were dried and later stored in amber glass bottle.  

Produced crystals of TCPO were placed in an amber glass bottle.  During synthesis, light was 

minimized to avoid photo-oxidation of the compounds. 

Optimization and Studies 

Optimization of Imidazole 

Exactly 45, 50, 55, 65, and 70 µL of imidazole solution and 4.0 mL of the TCPO solution 

were mixed in separate test tubes.  Approximately 26 mg of immobilized quantum dots were 

added to each of the test tubes.  Then, exactly 100 µL of 8.75 x 10-3 M H2O2
 was added to each 

of the test tubes and the intensity of chemiluminescent produced measured. 

Reproducibility Studies 

Exactly 55 µL of imidazole solution and 4.0 mL of the TCPO solution were mixed in 

different test tubes.  A single polyisoprene with immobilized quantum dot nanocomposite was 

added to the test tube.  Then, exactly 100 µL of 8.75 x 10-3 M H2O2
   was added to the each of the 

test tubes.  These samples were ready for chemiluminescent measurements. 

Linearity Study Using One Polyisoprene Immobilized Quantum Dot 

Exactly 55 µL of imidazole solutions and 4.0 mL of TCPO were mixed in different test 

tubes.  A single polyisoprene immobilized quantum dot was added to the test tube one at a time 

for measurement.  Exactly 100 µL of following H2O2 solutions was added to each of different 
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test tubes after the immobilized quantum dot was added for chemiluminescent measurements: 

8.75 x 10-3 M, 4.38 x 10-3 M, 8.75 x 10-4 M, 4.38 x 10-4 M, 1.75 x 10-4 M, and 8.75 x 10-5 M. 

Linearity Study Using Multiple Polyisoprene Immobilized Quantum Dot Nanocomposites 

Exactly 55 µL of imidazole solution and 4.0 mL of TCPO were mixed in different test 

tubes.  Two polyisoprenes immobilized quantum dot nanocomposites were added to each of the 

test tube when chemiluminescent measurement was ready to be made.  Then, exactly 100 µL of 

following H2O2 was added to each of different test tubes: 8.75 x 10-3 M, 4.38 x 10-3 M, 8.75 x 10-

4 M, 5.38 x 10-4 M, and 1.75 x 10-4 M after the addition of the immobilized quantum dot 

nanocomposites. 

Instrumentation 

Fluorescence Spectrophotometer 

The Perkin-Elmer 650-10s Fluorescence Spectrophotometer was used to measure the 

intensity of fluorescence from samples.  In this instrument, radiation source was a 150 W xenon 

arc lamp.  Samples were placed in a quartz cuvette and the excitation and emission slits were set 

at 2 nm, and the sensitivity was set at 1.  A schematic diagram of the instrumentation is shown in 

Figure 3. 

Chemiluminescence Detector  

The instrumentation assembled together to measure the chemiluminescent signals in the 

laboratory is shown in Figure 4.  The Hamamatsu R928 photomultiplier tube (PMT) was used as 

a detector to provide very low dark currents leading to excellent signal to noise for the low 

intensity chemiluminescence.  In addition, the American Instrument Company microphotomer 
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(Silver Spring, MD) was used to monitor the signals.  These signals were recorded on the Model 

680 Hewlett-Packard recorder.  In order to achieve the highest levels of sensitivity, the slit was 

opened to its maximum width and the percent full scale was set on 1.  The samples were placed 

into a transparent glass cuvette suitable for light measurements.  The light was measured through 

a flat surface in order to minimize edge effects.  A schematic diagram of the detector is shown in 

Figure 4. 

 

 

 

  

 
 

    

 

 

 

Figure 3. Schematic diagram of the fluorescence spectrophotometer 
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Figure 4. Schematic diagrams for the chemiluminescent detector 
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CHAPTER 4 

RESULTS AND DISCUSSION 

In this chapter, the results of various experiments were presented and discussed based 

upon the intensity of fluorescence and chemiluminescence obtained.  The purpose of these 

experiments was to determine the optimum amount of many reagents used to produce a strong 

luminescence signal.  The results were used to confirm that the synthesis and immobilization of 

the ZnO quantum dots in a polymeric material is possible and has been done successfully. 

Fluorescence Studies of the ZnO Quantum Dot (QD) Solutions 

pH-Based QD Synthesis 

The suggested method for synthesizing the ZnO quantum dots was a pH-based synthesis 

repeated previously (66).  According to this method, quantum dots of various sizes could be 

synthesized by controlling the pH of the reacting solution and the QD solution would emit light 

ranging from the yellow to the red end of the visible spectrum.  The size of the quantum dots was 

controlled by modifying the concentration of LiOH added to control the pH value of the 

synthetic mixture.  At pH 12, ZnO nanoparticles were formed faster and in larger number than 

those at low pH values.  The particles size of the ZnO quantum dots tended to be smaller with an 

increasing pH value.  For example, ZnO nanoparticles prepared at pH 12 exhibited near blue 

emissions under 309 nm excitations.  The emission colors were tuned to green, yellow, and light 

red by adjusting the pH to 10, 8, or 6, respectively. 

Effect of QD Size on the Emission of Light 

The ZnO nanoparticles precipitated at various pH values emit different wavelength of 

light in absolute ethanol under ultraviolet excitation.  The color of the quantum dot solutions 
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visually ranged from yellow to red for those prepared at pH 12, 10, 8, 6, respectively.  The 

results are shown in Table 1. 

Table 1. Color of the ZnO QD Solutions Synthesized at Various pH Values and When Exposed 
to Ultraviolet Light 

 

pH Values 

 

Color (Visually to the Eyes) 

 

Color (Under Ultraviolet Light) 

12 Yellow Blue 

10 Orange Dark Green 

8 Dark Orange Yellow 

6 Red Light Red 

 

The prepared quantum dots were suspended in absolute ethanol, and solutions of various 

colors were obtained due to differences in their particle size.  The larger the quantum dot, the 

larger the emission wavelength.  The emitted wavelength becomes shorter or more towards the 

blue when the quantum dots shrink in size (36).  The real size of the synthesized quantum dots 

could be measured by using a scanning electron microscope (SEM) or a transmission electron 

microscope (TEM). 

Emission Spectra of QD 

The fluorescence spectra were acquired for the solutions of quantum dot synthesized at 

pH 10.  Fluorescence spectra were obtained with the fixed excitation wavelength of 325 nm by 

scanning the emission wavelengths from 430 to 550 nm.  The fluorescence intensity was 

measured for emission monochromator setting from 430 nm to 550 nm at 10 nm interval.  The 
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maximum emission wavelength occurs at about 495 nm.  A plot of such a fluorescence emission 

spectrum for quantum dots synthesized at pH 10 is shown in Figure 5. 

 

Figure 5. Plot of the fluorescence spectrum of QD synthesized at pH 10 ranging from 430 nm to 
550 nm at 10 nm intervals.  The excitation wavelength was set at 325 nm.  The 
fluorescence intensity is given in arbitrary units. 

 

This procedure was repeated with all the solutions of the ZnO quantum dots prepared at pH 

12, 8, and 6 values.  The spectra obtained from these solutions were all similar to that in Figure 

5.  The wavelengths of maximum fluorescence intensity for the solutions of quantum dots were 

obtained and the results are shown in Table 2. 
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Table 2. Maximum Emission Wavelengths for Synthesized Quantum Dots at Different pH Value 

 

pH Values 

 

 

Maximum Emission Wavelength 

 

12 456 

10 495 

8 570 

6 592 

 

For the larger quantum dots, the maximum fluorescence intensity was found at longer 

wavelength as predicted.  For instance, when the pH value was increased from 6 to 12, the 

maximum intensity of fluorescence shifted from 592 to 456 nm. 

Linearity Studies of Fluorescence Signal with Various Concentration of QD 

Various concentrations of ZnO quantum dots solutions were prepared and the 

fluorescence signals were measured on the Perkin-Elmer 650-10s fluorescence 

spectrophotometer.  Different solutions of the quantum dots synthesized at pH 12 were prepared 

for fluorescence measurements to see if the intensity is linear with concentrations.  The results 

are shown in Table 3. 
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Table 3. Measurement of ZnO Quantum Dot Solution Fluorescence Prepared at pH 12 for 
Linearity Study with an Excitation and Emission Wavelengths 309 nm and 456 nm, 
Respectively.  The Quantum Dots were Dissolved in Absolute Ethanol in 5-mL 
Volumetric Flasks. 

 

Volume of QD Solutions (µL) 

 

 

Fluorescence Intensity 

 

0.0 0.0 

75 1.9 

125 3.1 

200 5.5 

325 8.7 

410 11.2 

 

These results were used to plot a calibration curve.  The linear plot is obtained for the QD 

solution synthesized at pH 12 is shown in Figure 6.  From the plot, the fluorescence intensity of 

the selected quantum dots was shown to be proportional to its concentration.  The plot indicated 

good linearity with a regression coefficient of 0.999.  This experiment was repeated with the 

quantum dots of various sizes synthesized at pH 10, 8, and 6.  All the results obtained in the 

same concentration range were linear. 
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Figure 6. Plot of the fluorescence intensity of ZnO QD solutions synthesized at pH 12 dissolved 
in absolute ethanol in 5-mL volumetric flasks.  The excitation and emission 
wavelengths were 309 nm and 456 nm, respectively. 

Polyisoprene (PI) Immobilization of QDs by Emulsification/Solvent Evaporation Procedure 

The surface of QD is highly hydrophobic as synthesized (67).  Recently, the 

encapsulation of quantum dots into polymer colloids has seen growing interest as a route to 

improve photostability and for development of colorimetric optical bar codes for biological 

sensing (67).  ZnO quantum dots were encapsulated in the core of the polyisoprene (PI) particles 

during emulsification/solvent evaporation (67).  The PI was chosen because it is soluble in many 

of the same solvents as the QDs, nontoxic, and is biocompatible (67).  For these studies, the 

immobilized quantum dots prepared at pH 6 were tried. 

The quantum dot solutions to have the QD particle to be incorporated into the PI polymer 

were stirred for 2 hours and the solution decanted from the mixture.  The decanted solutions 

were stored in the dark and their fluorescence measured later.  The spectrum of the immobilized 

QD synthesized at pH 6 shown in Figure 7. 
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Figure 7. Plot of the fluorescence spectrum of PI polymer immobilized QD synthesized at pH 6.  
The excitation wavelength was set at 356 nm, and the emission wavelength ranged 
from 470 nm to 580 nm. 

After carefully observing the immobilized product, it seems that the quantum dots were 

immobilized into PI only to a small extent.  The PI was easily cross-linked during the 

encapsulation process to enhance water stability of the QD (67).  The PI QD/nanocomposite 

formed a stable suspension in water that exhibits stable fluorescence for months.  A small 

fraction of the quantum dots in the solution was immobilized on the PI possibly due to polarity 

differences.  The PI immobilized QD/nanocomposite did not change significantly the 

fluorescence intensity compared to the non-immobilized ZnO QD solutions. 

More QDs bind to the surface of the PI with higher concentration of PI.  This led to 

higher luminescence intensity as shown in Table 4.  In addition, as the concentration of PI 

dissolved in chloroform was increased, both the particle size and size polydispersity increased 

due to the increase in solution viscosity (67).  Therefore, the size of quantum dot can be modified 

by adjusting the concentration of PI. 
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Table 4. Measurements of the PI Immobilized ZnO QDs Fluorescence Intensities at pH 6 with 
Varying PI Concentrations.  Excitation and Emission Wavelengths Were 356 nm and 
590 nm, Respectively. 

 

Signal Intensity 

(0.28 g of PI) 

 

Signal Intensity 

(0.15 g of PI) 

0.068 0.044 

0.070 0.052 

0.074 0.048 

0.075 0.050 

 

Another procedure to immobilize the QD was also tried.  This method is a slight 

modification of the procedure used before.  The ZnO QD/polymer nanocomposite was prepared 

by using only dissolved PI in chloroform without the addition of lauric acid and NaOH.  The 

fluorescence intensity of the immobilized QD was lower than that obtained by previous method.  

The fluorescent spectrum obtained from the immobilized QD was narrower and not as broad as 

shown in Figure 8.  It seems that by submerging the quantum dot solution in PI aggregation and 

size distribution of QD modified when they were adsorbed onto the only PI.  Another 

observation is that not only is the fluorescence spectrum not as broad, the peak maximum is also 

shifted slightly from 590 nm to 485 nm compared to the non-immobilized QD solution. 
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Figure 8. Plot of the fluorescence spectrum of immobilized QD nanocomposite is in only PI 
polymer at pH 6.  The excitation wavelength was set 356 nm, and the emission 
wavelength ranged from 430 nm to 530 nm. 

 

TCPO-CL Studies of PI Immobilized QD 

Peroxyoxalate chemiluminescence (CL) takes place when an electronically excited 

species transfers energy to a fluorophore that luminesces.  In the presence of an imidazole 

catalyst, the TCPO reacts with hydrogen peroxide faster to yield more intense 

chemiluminescence. 

Chemiluminescence has become widely applied in analysis for several reasons.  It is 

extremely sensitive and selective.  In addition, the simplicity of the instrumentation is a major 

advantage as chemiluminescence techniques require only a photomultiplier tube (PMT) and a 

reaction vessel.  The excitation energy comes from the reaction between the analyte and the 

reagent, thus no radiation source is required and this also avoids the problem with scattered or 

stray radiation.  Because the detection limits are dependent upon reagent purity, the detection 

limits lie between the part-per-billion and the part-per-million range (59). 
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Quantum dots were immobilized in polyisoprenes (PI) polymer by the first method (67).  

The immobilized quantum dots were studied to validate their feasibility as a reusable and useful 

fluorophore in TCPO-CL analysis.  Immobilized PI- QDs were obtained using the pH 12 

synthesized quantum dot solutions.  The PI encapsulated quantum dots were used in TCPO-CL 

studies: optimization of imidazole, reproducibility studies, and linearity studies. 

Optimization of Concentration of Imidazole Catalyst Solution 

The reaction between TCPO and hydrogen peroxide can be catalyzed by bases such as 

imidazole.  A flow injection system was used to measure CL from the peroxyoxalate reaction.  

The optimum concentration of imidazole used to obtain the highest CL signal was studied.  

Approximately 26 mg of the immobilized quantum dot/nanocomposite and 4.0 mL of TCPO 

solution (7.5 mg/mL), and different concentrations of imidazole were placed in different test 

tubes.  And then, exactly 100 µL of 8.75 x 10-3 M H2O2 was added to each of the test tubes.  The 

instrumentation assembled in the laboratory was used to determine the CL intensities, which are 

tabulated in Table 5.  These results are also plotted in Figure 9. 

Table 5. Results of the Optimization of Imidazole for TCPO-Hydrogen Peroxide CL Reactions 

 

Volume of Stock Imidazole Added (µL) 

 

 

CL Signal Intensity 

 

45 0.013 

50 0.028 

55 0.048 

65 0.024 

70 0.018 
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Figure 9. Plot of the results of the optimization of imidazole concentration for the TCPO (7.5 
mg/mL)-hydrogen peroxide (8.75 x 10-3 M) reaction.  The concentration of the stock 
imidazole solution was 100 mg/mL.  The CL intensity is giving in arbitrary units. 

 

CL intensity was found to continue to increase until it reaches a maximum and then 

decreasing after that.  The highest CL intensity was obtained when 55 µL of the stock imidazole 

solution of concentration 100 mg/mL was added to the 5-mL volumetric flask.  The CL intensity 

decreased when the volume of imidazole used was greater than 55 µL.  According to these 

results, 55 µL of the 100 mg/mL stock imidazole solution was used in all of the subsequent 

TCPO-CL reactions. 

Optimization of the Concentration of TCPO 

The optimum amount of the TCPO to produce the highest possible signal with a given 

flow rate was determined in this experiment.  The amount of imidazole used was 55 µL (1.75 

mg/mL) and 8.75 x 10-3 M H2O2 was kept constant while the concentration of TCPO used was 
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varied.  The results of the experiment are shown in Table 6 and a plot of the data acquired shown 

in Figure 10. 

Table 6. Results of Optimization of TCPO for PI Polymer Immobilized QDs CL Reaction at pH 
12 

 

Amount of TCPO (mg) 

 

CL Signal Intensity 

 

100 0.022 

200 0.037 

300 0.043 

400 0.048 

500 0.050 

600 0.050 

 

The results showed that CL intensity increased with an increase in the TCPO concentration.  

The CL intensity reached a plateau and did not increase much beyond the TCPO concentration 

of 7.5 mg/mL.  From this experiment, it was determined that 7.5 mg/mL of TCPO solution was 

the optimum concentration of TCPO was adequate. 
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Figure 10. Plot of the results of the optimization of TCPO experiment for the TCPO (7.5 
mg/mL)-hydrogen peroxide (8.75 x 10-3 M) reaction.  The concentration of stock 
TCPO solution was 100 mg/mL.  The CL intensity is given in arbitrary units. 

Reproducibility Studies 

To be useful for routine analysis, an analytical method must be reproducible with high 

precision.  Two different experiments were conducted to establish the reproducibility of 

chemiluminescence method.  In the first experiment, five different 8.75 x 10-3 M H2O2 solutions 

were prepared in separate 10-mL volumetric flasks.  The CL intensity was measured from the PI 

immobilized QDs by reacting 4.0 mL of TCPO and 55 µL of stock imidazole with the varying 

hydrogen peroxide solutions.  In this experiment, the same single PI immobilized quantum dots 

were used.  Triplicate CL measurements of each hydrogen peroxide concentration were acquired, 

and then the mean and RSD for each solution were calculated.  The results of the experiment are 

shown in Table 7. 
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Table 7. Results of reproducibility study on five different 8.75 x 10-4 M hydrogen peroxide 
solutions under identical condition of imidazole and TCPO 

 
Trial 

 
1 2 3 4 5 

CL Intensity 1 
 

0.0050 0.0052 0.0048 0.0047 0.0048 

CL Intensity 2 
 

0.0048 0.0048 0.0046 0.0048 0.0051 

CL Intensity 3 
 

0.0047 0.0047 0.0048 0.0051 0.0048 

Mean 
 

0.0048 0.0049 0.0048 0.0049 0.0049 

RSD (%) 
 

3.16 5.39 0.0047 4.27 3.53 

Total Mean 

 
0.0048 

 

RSD (%) 3.75 
 

Precision of the data obtained for the five different hydrogen peroxide solutions are all 

less than an RSD of 10 %.  The mean of the total 15 CL measurements was 0.0048, with an RSD 

of 3.75 %.  The outcomes showed that the precision of the analytical method was acceptable.  

The CL intensity from the different hydrogen peroxide concentration solutions was precise with 

the RSD value of less than 10 %.  In addition, it exhibited that the PI immobilized quantum dots 

could be used many times without a substantial change in CL intensity. 

The second part of experiment used only one 8.75 x 10-4 M hydrogen peroxide solution 

with CL of one immobilized QD measured over a period of time.  Exactly 4.0 mL of TCPO and 

55 µL of imidazole reacted with 100 µL of the hydrogen peroxide solution.  This investigation 

was carried out many times over several weeks using the same single PI immobilized quantum 

dots.  For this experiment, hydrogen peroxide solutions of the equal concentrations were freshly 



  56 
 

prepared.  The experiment was performed to check the stability of the PI immobilized quantum 

dots.  The results of this experiment are shown in Table 8. 

Table 8. Results of Reproducibility Study of Using a Single PI immobilized QD.  Fixed volumes 
of TCPO (7.5 mg/mL) and Imidazole (100 mg/mL) reacted with 1.0 mL of 8.75 x 10-4 
M Hydrogen Peroxide Solution. 

Trial 1 2 3 4 5 6

CL  0.0047 0.0045 0.0040 0.0036 0.0035 0.0033 

Trial  7 8 9 10 11 12 

CL  0.0031 0.0028 0.0021 0.0020 0.0017 0.00014 

Mean 0.0031 

RSD (%) 12.37 

 

Based on the data obtained, the mean was 0.0031, with an RSD of 12.37 % over.  It was 

concluded that the same immobilized quantum dots could be used for analysis at least 29 times 

over 9 weeks and still gave good results.  This demonstrated that the PI immobilized QD 

remained stable and persisted to luminesce over several months at a time.  The CL intensity 

decreased slightly as more analysis was done.  Eventually after 29 uses and 9 weeks, the CL 

intensity became weak and undetectable.  These results are plotted in Figure 11. 
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Figure 11. Plot of the results of the CL PI immobilized QD at pH 12 within several months. 
TCPO (7.5 mg/mL)-hydrogen peroxide (8.75x10-3 M) reaction.  The concentration of 
stock TCPO solution was 100 mg/mL. 

Linearity Studies of CL Intensity with H2O2 Concentration Using PI Immobilized QD 

One PI Immobilized QD.  Linearity studies were performed by reacting TCPO with 

different concentrations of hydrogen peroxide to yield CL using a single PI immobilized 

quantum dots prepared previously.  Triplicate hydrogen peroxide solutions of a given 

concentrations were prepared individually.  For triplicate solutions, duplicate CL values were 

acquired.  Approximately 0.26 g of one piece of immobilized quantum dot/polymer 

nanocomposite was used in this particular experiment.  The results of the experiment are shown 

in Table 9. 
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Table 9. Results of linearity studies of CL intensity with hydrogen peroxide using a single PI 
immobilized QD  

H2O2 (M) 8.75 x 10-3 4.38 x 10-3 8.75 x 10-4 4.38 x 10-4 1.75 x 10-4 

CL Intensity 1 0.0520 0.0240 0.0050 0.0024 0.00096 

 0.0480 0.0230 0.0048 0.0023 0.00070 

CL Intensity 2 0.0470 0.0240 0.0047 0.0022 0.00080 

 0.0480 0.0230 0.0052 0.0022 0.00086 

CL Intensity 3 0.0500 0.0240 0.0048 0.0023 0.00070 

 0.0450 0.0230 0.0047 0.0024 0.00065 

Mean 0.04835 0.0235 0.00485 0.0023 0.00077 

RSD (%) 5.34 2.45 4.28 4.35 16.19 

           

The RSD (%) and mean values were determined because the CL intensity was measured multiple 

times.  The hydrogen peroxide concentrations with the corresponding the mean CL intensities are 

plotted in Figure 12. 

 

Figure 12. Plot for mean duplicate CL measurements on each individually prepared triplicate 
hydrogen peroxide solution using 4.0 mL of TCPO, 55 µL of imidazole, and a single 
PI immobilized QD. 
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At lower concentrations of hydrogen peroxide, more fluctuations were observed in the 

CL intensities.  It is demonstrated with the RSD values obtained.  The RSD value for the lowest 

concentration of hydrogen peroxide, 1.75 x 10-4 M, was 16.19 % while at the same time all the 

other concentration of H2O2 was less than 5.36 %.  The useful linearity limit was from 8.75 x 10-

4 M to 4.38 x 10-4 M H2O2 solution.  The linearity curve is displayed in Figure 13. 

 

Figure 13. Plot of linearity curve of the average CL measurements on each separately 
synthesized hydrogen peroxide solution using 4.0 mL of TCPO, 55 µL of imidazole, 
and a single PI immobilized QD. 

 

Multiple PI Immobilized QD Pieces.  The goal of this experiment was to investigate if a 

better CL intensity could be measured with multiple PI immobilized quantum dot pieces used 

together in CL measurement.  CL intensity was measured for different concentration of H2O2 

added to a fixed amount of TCPO and imidazole mixture.  Approximately 0.42 g of multiple 

polyisoprene immobilized quantum dot pieces instead of one single large piece were used.  The 

CL values for each hydrogen peroxide solution were acquired in triplicates.  The outcomes of the 



  60 
 

experiments are shown in Table 10.  The hydrogen peroxide concentrations with equivalent 

mean CL values are plotted in Figure 14. 

Table 10. Results of linearity studies of CL intensity with various concentrations of hydrogen 
peroxide using multiple PI immobilized QD 

H2O2 (M) 8.75 x 10-3 4.38 x 10-3 8.75 x 10-4 4.38 x 10-4 1.75 x 10-4 

CL Intensity 1 0.0640 0.0290 0.0057 0.0027 0.00098 

CL Intensity 2 0.0630 0.0270 0.0058 0.0025 0.00086 

CL Intensity 3 0.0600 0.0280 0.0053 0.0024 0.00084 

Mean 0.0623 0.0280 0.0055 0.0025 0.00089 

RSD (%) 3.33 3.57 4.81 6.03 8.47 

 

 

Figure 14. Plot of the mean triplicate CL measurements on each hydrogen peroxide solution 
using 4.0 mL of TCPO, 55 µL of imidazole, and multiple PI immobilized QD 

 

 

In general, the CL intensities of the multiple polyisoprenes immobilized quantum dots 

pieces were linear similar to the results obtained when a single piece of polyisoprene 
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immobilized quantum dots was used.  However, the CL intensity at the same hydrogen peroxide 

concentration seems to be somewhat lower even though more pieces were used.  In addition, the 

lowest concentration of hydrogen peroxide solution gave higher RSD for the CL intensities 

measured.  The workable dynamic linear range was from 4.38 x 10-4 M to 1.75 x 10-4 M, as 

shown in Figure 15.  The using multiple PI immobilized QD does not increase the CL intensity 

much and may actually hurts the results.  The outcomes of the experiments are shown in Table 

11. 

Table 11. Results of linearity studies of CL intensity with multiple PI immobilized QD pieces 

H2O2 (M) 8.75 x 10-3 4.38 x 10-3 8.75 x 10-4 4.38 x 10-4 1.75 x 10-4 

CL Intensity 1 0.0650 0.0310 0.0058 0.0025 0.00098 

CL Intensity 2 0.0590 0.0280 0.0057 0.0027 0.00078 

CL Intensity 3 0.0630 0.0270 0.0052 0.0031 0.00081 

Mean 0.0623 0.0287 0.0056 0.0028 0.00086 

RSD (%) 4.9012 7.2616 5.7746 11.0424 12.59042 
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Figure 15. Plot of the linearity curve of the mean CL values on the each hydrogen peroxide 
solution using 4.0 mL of TCPO, 55µL of imidazole, and multiple PI immobilized 
QD. The linearity range is from 4.38 x 10-3 M to 1.75 x 10-4 M hydrogen peroxide 
solution. 
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CHAPTER 5 

CONCLUSION 

The synthesis of ZnO quantum dots has been carried out and their luminescence 

properties studied successfully.  The usefulness of the polyisoprene immobilized ZnO quantum 

dots as a reusable was established and multiple uses were accomplished. 

The proposed process for synthesizing ZnO quantum dots proved to be adequate.  The 

pH-based synthesis of quantum dots was successfully and the emitted QD light ranging from the 

blue to red.  The smaller quantum dots emitted shorter wavelength of light, while the larger 

quantum dots emitted longer wavelengths.  The size of the quantum dots was controlled by pH-

adjustment of the LiOH solutions.  Good yield was obtained. 

The fluorescence properties of quantum dots were examined with various experiments.  

The maximum fluorescence intensity was achieved at longer emission wavelengths for larger 

quantum dots and vice-verse for the smaller quantum dots as predicted.  The fluorescence 

intensity of the quantum dot solution was found to be linear with the concentration of the QD 

solutions. 

The immobilization of quantum dots into biocompatible polyisoprene (PI) particle using 

an emulsification/solvent evaporation method was successful.  Adequate amount of the ZnO 

quantum dots were encapsulated into the PI surface because the surface chemistry of both is 

alike.  Emusification/solvent evaporation results in the quantum dots immobilized into the 

polyisoprene particle core without chemical modification of the quantum dots.  The 

polyisoprene/quantum dot nanocomposite is stable and exhibited stable fluorescence for about 

three months. 
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The PI encapsulated QD provided reproducible CL data with satisfactory precision and 

linear dynamic range.  It can luminesce over several weeks at a time when kept in a dark room.  

After the immobilized quantum dot was used multiple times and for extended periods of time, its 

capability to luminesce start to decrease only slowly.  Thus the PI immobilized QD proved to be 

a reusable and stable fluorophore. 

It was predicted that the chemiluminescence intensity would increase as the number of 

individual pieces of the PI immobilized quantum dots used in CL was in use and exposed to the 

TCPO-hydrogen peroxide were better.  The data acquired however showed that the CL intensity 

obtained a single piece of PI immobilized quantum dots was used. 

The exact size of the quantum dots could be measured using a scanning electron 

microscope (SEM) or a transmission electron microscopy (TEM). In addition, more research 

regarding the encapsulation on surfaces of various particles could be conducted.  The PI 

immobilized QDs used for CL measurements. 
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