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ABSTRACT 

 

 

 

Isolation and Identification of the Siderophore “Vicibactin” Produced by Rhizobium 

leguminosarum ATCC 14479 

by 

William Wright 

 

Siderophores are small, iron chelating molecules produced by many bacteria to help meet 

the iron requirements of the cell.  Multiple metabolic functions require iron as it serves as 

a cofactor in many enzymes and cellular processes.  However, in the presence of oxygen 

and at physiologic pH, iron forms insoluble ferric complexes that cause the nutrient to be 

unavailable to bacterial cells.  Siderophores alleviate this limitation by chelating the ferric 

iron, rendering it soluble and available for uptake.  One group of microorganisms known 

for their ability to produce siderophores is the rhizobia.  These bacteria are characterized 

both by their formation of symbiotic relationships with leguminous plants and their 

ability to fix atmospheric nitrogen.  Rhizobium leguminosarum ATCC 14479, which 

infects the red clover Trifolium pratense, was found to produce a trihydroxamate 

siderophore.  Purification and chemical characterization identified this siderophore as 

Vicibactin that has been found to be produced by other rhizobial strains. 
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CHAPTER 1 

INTRODUCTION 

Iron, Its Availability and Uses 

With the exception of a few species belonging to the Borrelia, Lactobacillus and 

Streptococcus genera, all organisms require iron (Storey et al. 2006).  Physiologically 

iron acts as the catalytic center for a number of enzymes, particularly those involved in 

reduction-oxidation reactions such as the cytochromes used during cellular respiration as 

well as catalase and superoxide dismutase both of which are responsible for neutralizing 

toxic oxygen radicals in organisms inhabiting aerobic environments (Egli 2003).  Iron has 

also been found acting as the terminal electron acceptor in a number of anaerobic and 

facultative bacteria, being reduced from ferric (Fe
3+

) iron to its ferrous (Fe
2+

) state.  

Conversely, some specialist bacteria such as Acidithiobacillus ferrooxidans (previously 

Thiobacillus ferrooxidans) have been found to use ferrous iron as a source of energy by 

oxidizing it to ferric iron (Chi et al. 2007).   

Iron is the fourth most abundant element in the earth‟s crust and the second most 

common metal following oxygen, silicon, and aluminum respectively.  Despite its 

relative abundance and metabolic value to most organisms, it can be a difficult nutrient to 

obtain.  This is because when it is found in aerobic conditions and at neutral or 

physiologic pH, iron is oxidized to its ferric state and easily forms insoluble 

oxyhydroxides and other complexes that render it unavailable for metabolic use.  In fact, 

the amount of available ferric iron in an external environment has been calculated at 

roughly 10
-18

 M.  This limitation can be a serious threat to bacteria, most of which must 

maintain an internal iron concentration of around 10
-6

 M to survive.  The situation 
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becomes more dire for pathogenic bacteria as mammalian hosts have iron sequestering 

mechanisms that lower the available iron concentration to 10
-24

 M (Raymond et al. 2003).  

Therefore, the acquisition of iron is a major concern for most living organisms.  Many 

microorganisms have been found to react to iron limitation by secreting iron-complexing 

organic compounds that have a high affinity for iron.  These molecules, known as 

siderophores, are responsible for scavenging any ferric iron that may be present in the 

surrounding environment for use by the cell. 

 

Regulation of Iron Uptake Mechanisms 

Uptake of iron is a tightly regulated system because iron, in both ferrous and 

ferric forms, can act catalytically to generate hydroxyl radicals (Guerinot 1994).  Called 

the “Fenton Reaction”, ferrous iron reacts with H2O2 (a normal metabolite in aerobic 

organisms) to form hydroxyl radicals.  These radicals are potent oxidizing agents that can 

damage critical molecules found in living cells such as sugars, amino acids, 

phospholipids, DNA bases, and organic acids (Das et al. 2007).  Many bacteria such as 

Escherichia coli control this problem by iron-regulating siderophore production using a 

repressor that is termed the „Fur‟ (ferric uptake regulator) repressor (Hunt et al. 1994).  

This repressor is considered a key regulator for the expression of genes involved in iron 

transport and has been characterized in many Gram-negative and recently Gram-positive 

bacteria (Loprasert et al. 1999).  There are over 90 genes that Fur acts as a transcriptional 

repressor for and many of these are involved in the biosynthesis and uptake of 

siderophores (Wexler et al. 2003).   



13 

 

In high iron environments, ferrous iron is abundant within the cell.  Repression of 

iron uptake occurs when iron binds to inactive Fur proteins to form a complex that acts as 

the active transcription repressor (i.e. iron acts as a co-repressor).  The repressor then 

binds to a conserved region of DNA near a promoter sequence known as the “Fur box”, 

which blocks transcription of the gene.  Fur has also been found to be an important global 

regulator.  Aside from siderophore biosynthesis and uptake, fur regulates expression of 

virulence factor genes, oxidative stress protective genes, and pH stress genes (Loprasert 

et al. 1999).  In bacteria with multiple siderophore systems additional regulation methods 

control the expression of genes for each system independently.  Many bacteria use 

alternative sigma factors or activators for additional regulation (Meneely 2007).   

 

Siderophores 

In general, siderophores are low molecular weight compounds that can chelate 

ferric iron from many insoluble compounds in the environment.  Ranging in size from 

500 – 1500 daltons, they are synthesized by many microbes when growing under low 

iron conditions.  

Siderophores can be divided into three main classes depending on the chemical 

nature of the functional group or groups used for Fe(III) coordination.  These classes are 

the catecholates (sensu stricto, catecholates and phenolates; better termed as 

“aryl caps”), hydroxamates and the (α-hydroxy-)carboxylates (Miethke and Marahiel 

2007). A fourth group, designated as “Mixed type”, is comprised of those siderophore 

that use a combination of any of the above types to chelate iron.  Examples of each 

siderophore class with the iron binding functional groups highlighted are shown in Figure 
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1.  Fungi, bacteria, and plants are all known to have representatives capable of producing 

siderophores.   

The hydroxamate family of siderophores is in some respects the classical variety 

of siderophore as ferrichrome was the first member of the series to be recognized as an 

iron transporting natural product from microbial sources (Neilands 1984).  As stated 

above, the hydroxamate family is characterized by the use of one or more hydroxamic 

acid groups derived from amines such as lysine or ornithine to bind ferric iron (Patel and 

Walsh 2001).  Several of these siderophores including exochelin, aerobactin, rhizobactin 

1021, schizokinen, and alcaligin use two hydroxamate groups to bind iron.  These are 

known as dihydroxamate siderophores and are noted to be produced by both gram-

positive (ex: exochelin) and gram-negative (ex: alcaligin) bacteria.  They are also 

produced by both opportunistic pathogens of mammalian hosts (ex: aerobactin) and soil-

dwelling plant symbionts (rhizobactin 1021 and schizokinen) (Crosa et al. 2004).   

The catecholate, or catechol type, siderophores are the second most common 

siderophore class aside from the fact that they have thus far only been found to be 

produced by bacteria (Dave et al. 2006).  They have been found to contain either a mono- 

or dihydroxybenzoic acid residue that is used to chelate ferric iron and is derived from 

dihydroxybenzoic acid (Fischbach and Walsh 2006).  The best studied example of a 

catechol type siderophore is enterobactin, sometimes called enterochelin, produced by E. 

coli (O‟Brien and Gibson 1970).   

The carboxylate family of siderophores is comprised of those that rely solely on 

the oxygen donor atoms of hydroxyl and carboxyl functional groups as donor groups to 

bind ferric iron (Drechsel et al. 1995).  Since the discovery in 1985 of rhizobactin DM4 
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as the first representative of the carboxylate class of siderophores, they have since been 

found to be the only siderophores to be produced across all three domains; Bacteria, 

Archaea, and Eukarya (Dave et al. 2006).  Examples of other siderophores belonging to 

this group include staphyloferrin A and B from Staphylococci, vibrioferrin from Vibrio 

parahaemolyticus, fungal rhizoferrin from the Mucorale fungi, and bacterial rhizoferrin 

produced by Ralstonia pickettii. 

 
Figure 1: Examples of each siderophore class.  Note that the phenolate type siderophore is a sub-category 

of the catecholate family (Miethke and Marahiel 2007). 
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The binding strength of siderophores varies depending on the specific molecule in 

question but in general those belonging to the carboxylate group are weaker iron 

chelators than the hydroxamates that in turn tend to be weaker than the catecholates.  In 

fact, the complex formation constants (Kf) of siderophores range up to Kf = 10
52

 for 

enterobactin (ideal tricatecholate siderophore); 10
30

 for trihydroxamates; 10
23

 for mixed 

dihydroxamate/carboxylates (aerobactin); and 10
21

 for pure carboxylates (rhizoferrin) 

(Drechsel and Jung 1988).   Typically, a lower Kf indicates that a particular siderophore 

is a relatively weaker iron chelator than one with a higher Kf.   However, the above 

values assume that the ligand is fully deprotonated.  Depending upon pH of the 

environment, this is not always the case.  Because protonation of the donor atoms is a 

competitive reaction to metal chelation, the pKa values of the donor groups have to be 

considered when evaluating the siderophores in effectiveness of iron complexation.  

Catecholate siderophores have pKa values from 6.5 to 8 for the dissociation of the first 

hydrogen and about 11.5 for the second hydrogen from the catecholic hydroxyl groups.  

Hydroxamates show pKa values from 8 to 9. The pKa values of carboxylates range from 

3.5 to 5 making them efficient siderophores under lower-pH conditions at which 

catecholates and hydroxamates are still fully protonated (Miethke and Marahiel 2007).  

 

Uptake of Ferric-Siderophore Complexes 

 

Siderophores are produced and secreted by bacteria into the surrounding 

environment in order to make insoluble ferric iron polymers available for metabolic use 

by the cell.  After the secreted apo-siderophore (iron-free siderophore) encounters and 

binds iron, the ferric-siderophore complex must be selectively transported back into the 

bacterium.  Because concentrations of free iron inside the cell are much higher than the 
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concentration of available iron outside the cell, it is not possible to transport ferric iron 

into the cell through simple diffusion.  Therefore, transport of the ferric-siderophore 

complex requires a specific, high-affinity, outer membrane receptor protein (OMRP) 

(Clement et al. 2004).  Examples of these outer membrane receptors include the ferric 

enterobactin transporter, FepA, the ferrichrome transporter, FhuA, the transport protein 

for ferric dicitrate, FecA, and the ferric pyoverdine transporter, FpvA (Storey 2005).  

Once binding and passage through the outer membrane receptor has occurred, a common 

mode of transport across the periplasm, through the inner membrane, and into the 

cytoplasm is seen.   

The model in Figure 2 below illustrates the route of complex transport currently 

believed to be used by Gram-negative bacteria.  First, the ferric-siderophore complex 

binds to a specific outer membrane receptor.  Once bound, the receptor is energized by a 

TonB complex and induced to transport the siderophore into the periplasm by the 

removal of a “plug” region within the receptor (Chakraborty et al. 2003, Raymond et al. 

2003).  In the example below, iron-bound ferrichrome is transported across the outer 

membrane via the protein FhuA.  Next, a periplasmic binding protein binds to the 

siderophore complex and shuttles it to an ATP dependent ABC-type transporter found on 

the cell‟s inner membrane.  The ABC-type transporter then undergoes ATP hydrolysis 

that allows transport of the complex into the cell‟s cytoplasm (Raymond et al. 2003).   
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Figure 2.  The ferric-siderophore uptake system of the 

hydroxamate siderophore, Ferrichrome.  FhuA= specific 

outer membrane receptor for ferric-siderophore complex, 

FhuD = periplasmic binding protein, FhuB/C = ABC type 

transporter  (Pawelek et al. 2006) 
 

 Figure 3.  Crystallized structure of FhuA.  

The N-terminal “lock” region (solid gray 

ribbon) of these transporters is folded 

into the protein‟s β-barrel (solid blue 

ribbon). (adapted from Kim et al. 2007) 

 

 

The Rhizobia 

 

The rhizobia are an ecologically important paraphyletic grouping of soil bacteria 

generally classified based on their ability to infect and nodulate the roots of leguminous 

plants.  Currently, the rhizobia are made up of 76 species found within 13 genera.  Most 

of these bacterial species are in the Rhizobiacae family and are in either the Rhizobium, 

Mesorhizobium, Ensifer (formally Sinorhizobium), or Bradyrhizobium genera (Weir 

2009).  While each strain, species, genera, or family differs in which legumes they are 

capable of nodulating, they each form symbiotic relationships with the plant whose roots 

they have infected.  Further details on this symbiotic relationship are covered later.  

Shared characteristics of the group include that they are all aerobic, gram-negative bacilli.  

They are motile in their free-living form and do not form endospores.  The morphology 

of most rhizobia also includes an exopolysaccharide layer that is believed to assist in 

attachment to host plant root hairs.  The optimal temperature for growth of these bacteria 
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is 25 – 30 °C and the favored carbon source is mannitol (Bergerson 1961).  The rhizobia 

have also been found to have extremely large genomes.  At approximately eight 

megabase pairs in length, rhizobial genomes are almost double that of E. coli and can 

differ by as much as 50% between two species (Johnston 2004).   Many of these genes 

were indicated to be involved in the scavenging of nutrients upon genome sequencing of 

R. leguminosarum biovar viciae 3841 (Young et al. 2006).  This provides the rhizobia 

with a competitive advantage by allowing them access to a wide range of nutrients for 

use in a wide range of metabolic functions. 

 

Rhizobial Iron Regulation 

Generally, each of the rhizobial species is capable of producing at least one 

siderophore.  However, it is also true that in some genera such as Bradyrhizobium 

siderophore production is much less widespread.  Examples of some rhizobial 

siderophores are the trihydroxamate vicibactin that was first isolated from R. 

leguminosarum (Dilworth et al. 1998); schizokinen and rhizobactin 1021, 

dihydroxamates isolated from R. leguminosarum (Storey et al. 2006) and Sinorhizobium 

meliloti (Persmark et al. 1993) respectively; and a carboxylate called rhizobactin found in 

S. meliloti (Smith et al. 1985).  Like other organisms, iron uptake must be strictly 

regulated to avoid the toxic effects of the Fenton reaction as discussed earlier.  However, 

whereas Fur is the major global regulator of iron in E. coli, Pseudomonas aeruginosa and 

Bacillus subtilis, its role in Rhizobium is either diminished, has an alternative function, or 

is absent altogether (Small et al. 2009).  Instead, most rhizobia seem to use a protein that 

bears no similarity to Fur called RirA to control many of the iron regulated operons in R. 
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leguminosarum and S. meliloti (Todd et al. 2002; Viguier et al. 2005).  Further, B. 

japonicum, has been found to use yet a third regulator deemed Irr (Hamza et al. 1998).  

Irr is unlike both Fur and RirA who negatively regulate (repress) the transcription of 

genes associated with ferric iron uptake when iron concentrations are high.  Instead, Irr 

has been found to positively regulate these systems when under low iron conditions 

(Small et al. 2009).  Irr has also been shown to be an iron-controlled transcriptional 

repressor of hemB in B. japonicum, which is involved in the synthesis of heme (Hamza et 

al. 1998).  It can be clearly seen from this that there is no one model that can describe the 

regulation of iron uptake in all rhizobia (Johnston 2004). 

 

Rhizobial Symbiosis and the Role of Iron 

The symbiosis that rhizobia initiate with their respective host plant stems from the 

fact that all members of the rhizobia belong to a group of organisms termed diazotrophs, 

or organisms capable of fixing atmospheric nitrogen gas into a more biologically usable 

form such as ammonia.  The bacteria infect and nodulate (Figure 4) the roots of the host 

plants via the root hairs and differentiate into bacteroids.  Bacteroids are comprised of the 

intracellular forms of rhizobia with the functional nitrogen-fixing unit of the plant nodule 

(Nadler et al. 1990).  It is in this form that the bacterial cells begin to fix inert nitrogen 

through the use of the nitrogenase enzyme complex of which iron is a major component 

(Loh and Stacey 2003).  In return for supplying the host plant with a nitrogen source, the 

bacteria receive energy in the form of simple sugars, some nutrients, and a more stable, 

less competitive living environment.  It has been estimated that this family alone is 
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accountable for the production of over 2x10
13

 grams of fixed nitrogen per year 

(Falkowski 1997).   

The nitrogenase enzyme complex is a heterodimer consisting of iron-containing 

nitrogenase reductase and nitrogenase, which contains an iron-molybdenum cofactor 

where nitrogen reduction occurs (Johnston 2004).  Previous research indicates that this 

enzyme complex accounts for 10 - 12% of the total protein weight of a bacteroid (Verma 

and Long 1983).  Interestingly, although rhizobia are aerobic and therefore require 

oxygen for survival, the nitrogenase enzyme is oxygen labile and must be contained in an 

anaerobic environment within the aerobic cell.  For this reason, leguminous plants 

produce a protein called leghemoglobin.   Leghemoglobin is used in the root nodules to 

supply the rhizobial bacteroids with oxygen but also keeps free oxygen bound so that it is 

unable to interfere with the operation of the nitrogenase complex.  Similar to hemoglobin 

found in blood, leghemoglobin contains iron and accounts for approximately 30% of the 

total soluble protein in the nodule (Verma and Long 1983).  The reddish color seen in 

some nodules is due to an accumulation of leghemoglobin, which in turn is given its red 

color by the large amount of iron present in the protein (Hammond 2008).  

 
Figure 4:  Infection nodules formed by R. leguminosarum on clover roots. 
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Present Work 

 

Rhizobium leguminosarum ATCC 14479 was obtained from the American Type 

Cell Culture and was investigated for the production of siderophore.  First, it was 

determined that this strain produces a hydroxamate type siderophore under iron deficient 

conditions.  Media and growth conditions were standardized for the production of this 

siderophore that was then purified using both manual column chromatography and high 

performance liquid chromatography (HPLC).  Multiple chemical analyses were then 

performed on the purified compound to determine the chemical nature of the siderophore.  

Results indicate that the siderophore being produced by this strain is vicibactin, which is 

commonly produced by other rhizobial strains.  
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CHAPTER 2 

MATERIALS AND METHODS 

Bacterial Strain and Growth Conditions 

 

Bacterial Strain 

 

The bacterial strain used in this study was Rhizobium leguminosarum ATCC 

14479 and was obtained from the American Type Culture Collection.  It was isolated at 

Arlington Farms, VA and is most effective on the red clover, Trifolium praetense.  

Synonyms for this strain include USDA 2046, DSM 6040, and Rhizobium trifolii 

Dangeard 1926 (Ramı´rez-Bahena et al. 2008). 

Congo Red Agar 

The culture was maintained on a modified Mannitol Yeast Agar supplemented 

with Congo Red dye (Jadhav and Desai 1996).  Bacteria belonging to the rhizobia are 

commonly grown on this agar because they typically do not absorb the dye as readily as 

other microorganisms which allows for the easy recognition of the presence of most 

contaminants (Kneen and Larue 1983).  Figure 5 shows the difference in dye absorption 

exhibited by rhizobial (left) versus non-rhizobial (right) bacteria.  The media contained 

(w/v): 1% mannitol, 0.05% K2HPO4, 0.02% MgSO4*7H2O, 0.01% NaCl, 0.1% yeast 

extract, and 3% Bacto-agar. The pH was adjusted to 6.8 using 6 M NaOH after which 1 

ml of a 1% Congo red dye solution was added to the medium prior autoclaving 

(Hammond 2008).  Colonies of R. leguminosarum ATCC 14479 developed on plates 

after 4 - 5 days incubation at 30°C. 
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Figure 5:  Rhizobial (left) and non-rhizobial (right) organisms grown on congo red agar.  The rhizobia 

absorb the red dye much less readily than do non-rhizobial microbes. 

 
MMW Minimal Media 

As only iron-limiting conditions induce siderophore production, a defined 

minimal media had to be used.  The defined media of Manhart and Wong (1979) was 

found to be successful in growing the strain and was modified by substituting dextrose in 

place of both arabinose and mannitol as the carbon source; glutamate in place of KNO3 as 

a nitrogen source (Streeter 1985); and FeCl3 * 6H2O was omitted from the vitamin 

solution as the presence of iron would repress the strain‟s need for siderophore 

production. 

The media was termed modified Manhart and Wong media, “MMW” and had the 

following composition (w/v): 0.0764% K2HPO4, 0.1% KH2PO4, 0.15% Glutamate, 

0.018% MgSO4, 0.013% CaSO4*2H2O, and 0.6% Dextrose.  Prior to being autoclaved, 

pH was adjusted to 6.8 using 6 M NaOH.  After autoclaving, the media was cooled to 

room temperature and 1mL of filter sterilized, concentrated vitamin solution was added 

per liter of basal media.  R. leguminosarum ATCC 14479 was found to be resistant to 

penicillin, allowing the addition of this antibiotic to media to reduce risk of 
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contamination by other microorganisms.  Filter sterilized 100 mg/mL aqueous solution of 

penicillin was added to the cooled media to a final concentration of 50μg/mL.  Total 

media composition can be seen below on Table 1.  In addition to the use of a minimal 

media, all glassware used for either media storage or for culture growth were treated with 

concentrated HNO3 for a minimum of 1 hour in order to minimize the amount of 

contaminant iron.  All glassware was then thoroughly rinsed with ddH2O. 

Table 1: MMW Media Composition 

 

MMW Basal Media 

Component g/L 

K2HPO4 0.764 

KH2PO4 1.0 

Glutamate 1.5 

MgSO4 0.18 

CaSO4*2H2O 0.13 

Dextrose 6.0 

 
Basal media was autoclaved and allowed to cool 

to room temperature before the addition of 1mL 

concentrated vitamin/trace metal solution and 

500μL of 100mg/mL penicillin per 1L media. 

 

 

Concentrated Vitamin and Trace 

Metal Solution (1000x) 

Component 

mg per 

100 mL 

ddH2O 

H3BO3 145 

CuSO4*5H2O 4.37 

MnCl2*4H2O 4.3 

ZnSO4*7H2O 108 

Na2MoO4*2H2O 250 

CoCl2*6H2O 10 

Na2EDTA*2H2O 550 

Riboflavin 10 

ρ-aminobenzoic Acid 10 

Nicotinic Acid 10 

Biotin 12 

Thiamine HCl 40 

Pyridoxine HCl 10 

Calcium Panthenate 50 

Inositol 50 

Vitamin B12 10 
 

 
Preparation of Inoculum (Seed Culture) 

Seed cultures were prepared from fresh, isolated colonies grown on congo red 

agar plates.  R. leguminosarum ATCC 14479 was grown in MMW broth on a rotary 

shaker until it reached mid log phase (approx. 72 hours) and was then used as inoculum.  
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Detection of Siderophore Production 

 

Chrome Azurol Sulfonate  (CAS) Assay  

A universal chemical assay for the general detection of siderophores was used to 

first determine if R. leguminosarum ATCC 14479 produced a siderophore.  The CAS 

assay (Schwyn and Neilands 1987) is based on all siderophores‟ strong ability to chelate 

ferric iron.  The agar contains Chrome Azurol S (CAS) dye that, when bound to ferric 

iron, is blue in color.  A color change from blue to yellow/orange occurs when iron is 

stripped from the CAS dye.  R. leguminosarum ATCC 14479 was grown in iron-free, 

MMW media for 96 hours at 30°C on a rotary shaker.  Supernatant was collected by 

centrifugation of culture at 14,000 rpm for 30 min.  A #2 cork borer was used to cut wells 

into a CAS plate into which 65 μL of each culture supernatant was pipetted.  Sterile 

media was added to a well to act as a negative control.  The plate was then incubated at 

room temperature overnight.  Siderophore production was indicated by the formation of 

an orange halo around a well.  Size and color intensity of these halos is directly related to 

the amount of siderophore produced and its relative chelating strength. 

 

Atkin‟s Assay for Detection of Hydroxamate-Type Siderophores  

Once siderophore production was determined via the CAS assay, additional 

colorimetric tests were used to determine the class of the siderophore(s).  Hydroxamate-

type siderophores can be detected through the use of the iron-perchlorate assay (Atkin et 

al. 1970).  Culture supernatants were collected as previously described and 0.5 ml 

supernatant added to 2.5 ml of a solution containing 5 mM Fe(ClO4)3 in 0.1 M HClO4.  

Once the supernatant is added, the reaction is allowed to incubate at room temperature for 
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approximately 5 minutes.  A positive result causes a wine color to form.  The intensity of 

the resultant wine color varies based on the amount of siderophore present in the sample.  

Absorbance is measured at 480 nm and is compared against a colorless blank that is made 

up of uninoculated media mixed with reagent.   

 

Arnow‟s Assay for Detection of Catechol-Type Siderophores  

The second colorimetric assay used to determine siderophore type was the 

Arnow‟s assay (Arnow 1937)) that detects the presence of catecholate functional groups 

by producing a yellow colored solution.  The procedure for this assay is performed by 

adding each of the reagents in the following sequence: 1 ml culture supernatant, 1 mL 0.5 

M HCl, 1 mL nitrite-molybdate reagent (prepared by dissolving 10 g sodium nitrite and 

10 g sodium molybdate in 100 ml ddH2O), and 1 mL 1 M NaOH.  This mixture is then 

allowed to incubate for 5 minutes at room temperature.  Finally, absorbance at 500 nm is 

measured and again compared with the absorbance of an uninoculated blank.  The blank 

remained colorless after addition of reagents. 

 

Siderophore Detection Using Thin Layer Chromatography (TLC)  

Normal phase TLC was used to detect the presence of siderophore in concentrated 

fraction samples (see later sections).  Concentrated fractions were spotted one inch from 

the bottom of 10 x 20 or 5 x 10 silica gel plates and allowed to dry.  The plates were then 

placed in a sealed glass chamber containing a n-butanol:acetic acid:dH2O (12:3:5) 

solvent and allowed to run until the solvent front came within approximately one inch of 

the top of the plate.  These plates were then dried and developed by being sprayed with 
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0.1 M FeCl3 in 0.1 N HCl and again allowed to dry (Storey 2005).  As the solvent moves 

up the gel plate, it separates molecules based on that molecule‟s polarity.  Using this 

system, polar compounds have a stronger binding potential with the silica gel than with 

the solvent.  This causes more polar compounds to not move as high up the plate as less 

polar molecules (Boyer 2000).  After being sprayed with the developing solution, 

hydroxamate-type siderophores appear as wine colored spots where as catechol-type 

siderophores result in a dark gray spot. 

 

 

Optimization of Siderophore Production 

 

Optimization of Incubation Time 

Siderophore production is influenced by the stage of the growth phase of the 

culture being tested.  Two methods were used to evaluate the incubation time needed by 

R. leguminosarum ATCC 14479 to reach maximum siderophore production.  Initially, 

cultures were grown in 50 mL volumes of MMWpen50 and analyzed via a CAS assay.  A 

sample (1 mL) was removed from the culture every 24 hours for 5 days and the 

supernatant collected by centrifugation at 13,000 rpm for 30 minutes.  These samples 

were kept at 4 °C until all samples were collected and the CAS assay was conducted as 

previously described.  Plates were incubated at room temperature for 24 hours after 

which each halo‟s diameter was measured.  After identification of the siderophore, the 

effect of incubation time on siderophore production was re-evaluated using the Atkin‟s 

method as previously described.  For this method, one liter of MMWpen50 in a 2.8 L 

fernbach flask was inoculated with 10 mL of seed culture.  Starting at 24 hours and every 

12 hours thereafter, a 1 mL aliquot was removed and growth measured at OD600 nm.  
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Culture supernatant was collected by centrifugation at 13,000 rpm for 30 minutes and 

evaluated via the Atkin‟s assay at 450 nm, the published absorbance maximum for the 

identified siderophore. 

 

Optimization of Iron Concentration  

Siderophores are only produced by a cell under iron deficient conditions.  

However; it has been noted that a small concentration of iron is required for siderophore 

production.  Further, while precautions are taken to eliminate iron from all glassware, it is 

still present as a manufacturing contaminant in several media components which was 

calculated to be at a concentration of 0.270 μM.  To analyze the effect of various iron 

concentrations on siderophore production, cultures were grown in 50 mLs of MMW 

media supplemented with iron.  Filter sterilized iron solution was added to each culture 

flask to reach the following μM concentrations:  0 (no added iron), 0.25, 0.5, 0.75, 1.0, 

2.0, 5.0, 10.0, 20.0, 100.0.  Another culture flask was brought to an iron concentration of 

-0.270 μM (absolute zero) by supplementing the media with 0.2 mM 2‟2-dypyridyl which 

chelates ferrous iron and effectively renders it unavailable for cellular use.  Cultures were 

incubated at 30°C for 100 hours after which supernatant was collected by centrifugation 

at 14,000 rpms for 30 minutes.  Optical density at OD600 of both culture and supernatant 

was taken to measure growth and the remaining turbidity due to dissolved 

exopolysaccharide respectively.  Siderophore production was measured via the Atkin‟s 

assay; however, the procedure had to be modified to include an ethanol precipitation step 

to remove exopolysaccharide.  It was found that altering the media composition affected 

the amount of exopolysaccharide produced by the organism.  The varying concentrations 
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of exopolysaccharide in the cultures caused erroneous assay results mainly in the form of 

false positives.  In these cases, 100% ethanol was added to the media supernatant at a 

ratio of 2:1 and centrifuged at 13,200 rpm for 10 min to pellet the precipitated 

polysaccharide.  This second supernatant can then be used in the Atkin‟s assay as 

described above and the OD450 results multiplied by 3 to correct for dilution. 

 

Siderophore Purification 

Batch Cultures 

Large volumes of initial culture are needed to obtain enough of the  purified 

siderophore for chemical characterization.  To meet this requirement, 3 L of MMWpen50 

media was inoculated with a 10 mL seed inoculum per liter.  These cultures were grown 

for 96 hours at 30 °C on a rotary shaker operating at 200 rpm.  Culture supernatant was 

obtained by centrifugation at 14,000 rpm for 30 minutes and collected into acid treated 

bottles.  The relatively high centrifugation speed was needed to remove as much of the 

exopolysaccharide produced by this strain as possible. 

 

Amberlite XAD-2 Column Chromatography  

To begin the purification process, a 5 x 30 cm column packed with Amberlite 

XAD-2 that binds cyclic compounds was used.  The column was prepared by suspending 

approximately 160g of XAD-2 in ddH2O and letting it soak overnight at room 

temperature in order for the beads to fully absorb the water.  After soaking, the prepared 

beads were packed into the column to a height of 8 cm, cleaned with three bed volumes 

(1 bed volume = ~160mLs) of methanol, and equilibrated with four bed volumes of 
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ddH2O.  In order to make siderophores less soluble in water, collected supernatant was 

acidified to pH 2.0 using 6M HCl.  Each liter of acidified supernatant was then passed 

through the prepared column and all flow-through was collected.  Due to the viscosity of 

the supernatants and to reduce clogging of the column, washing and elution of the 

column was performed after each liter of acidified supernatant was run.  After each liter 

of supernatant was run and flow-through collected, the column was washed with two bed 

volumes of ddH2O and collected in a separate bottle.  Elution of the column was 

performed by passing approximately 400 mL of methanol through the column.  This 

elution was collected in approximately eight 50 mL fractions.  Following elution, the 

column was washed with four more bed volumes of methanol and re-equilibrated with 

four bed volumes of ddH2O to ready the column for the next liter of supernatant.  The 

flow-through from each of these two steps was also collected separately.  All collected 

fractions, washes, and re-equilibration flow-through were then tested for the presence of 

siderophore using the CAS assay.  Fractions that tested positive were combined and 

collected in a fresh, acid treated bottle.  After collection of all siderophore containing 

fractions, they were concentrated using a Labconco CentriVap Centrifugal Concentrator.  

Collected fractions were separated into 30 mL aliquots and placed into 50 mL tubes.  

These were placed into the concentrator and evaporated under vacuum at 40 °C.  The 

concentrated, dry pellet was resuspended in 5 mLs of methanol and centrifuged at 8500 

rpm to remove precipitates that formed due to concentration.  This supernatant was then 

loaded on a Sephadex LH-20 column for separation.  
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Sephadex LH-20 Column Chromatography  

Further purification was accomplished by running the concentrated XAD-2 

fractions through a Sephadex LH-20 column that separates compounds according to their 

hydrophobicity as well as by molecular weight.  This column was prepared by 

suspending 25 g of LH-20 material in methanol and deaerating via gentle shaking for 

roughly 20 minutes.  Following this treatment, the material was packed into a 1.5 x 50 cm 

column to a depth of 45 cm.  It was then equilibrated with three bed volumes (1 bed 

volume = ~80mLs) of methanol and loaded with the concentrated sample.  The column 

was run using methanol as the mobile phase.  A total of 55 fractions were collected in 

250 drop aliquots using a Bio-Rad Model 2110 fraction collector.  These were then tested 

for the presence of siderophore using TLC as previously described and the concentrated 

XAD-2 sample as the positive control.  Fractions (approximately 10mLs) found to 

contain siderophore were combined into 15mL tubes and evaporated at 40°C in the 

centrifugal concentrator until dry.  The sample was then stored at –20°C until needed for 

further purification. 

 

High Pressure Liquid Chromatography (HPLC)  

Final purification of the concentrated siderophore samples was accomplished 

using a BioRad Biologic Duoflow HPLC system.  A Waters 7.8 mm x 300 mm Novapak 

HR C18 hydrophobic column was used as the stationary phase.  Filtered, deaerated ddH2O 

and filtered 100% methanol were used as the mobile phases.  The dried LH-20 purified 

samples were redissolved in 10 mLs ddH2O and syringe-filtered into a 15 ml tube using a 

0.45 μm filter.  The UV detector on the HPLC system was set to 280 nm and the column 
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was equilibrated with three bed volumes ddH20 before use.  Approximately 2 mL of 

sample was injected onto the column in three consecutive 0.7 mL injections.  Several 

preliminary runs were conducted to establish the methanol gradient at which the 

siderophore eluted from the column.  Multiple programs were fashioned and refined to 

best separate the siderophore from impurities contained within the sample.  A 

chromatogram was created at the conclusion of each program.   Fractions showing peaks 

on the chromatograms were then tested for the presence of siderophore using TLC.  All 

fractions testing positive for siderophore were combined and concentrated for further 

analysis. 

Chemical Characterization of Purified Siderophore 

Following collection of the purified siderophore sample, various chemical 

analyses were conducted to chemically characterize the siderophore and to determine its 

structure.  

 

Spectral Scan Analysis  

Purified siderophore samples were subjected to a spectral scan (300 - 700 nm) to 

determine whether the siderophore samples were dihydroxamate or trihydroxamate (Jalal 

and van der Helm 1991).  Samples were prepared according to the Atkin‟s method, 

except that only 30 μL (rather than 0.5 mL) of concentrated siderophore sample was used 

(Storey 2005).  An appropriate amount of ddH2O was added to bring the sample volume 

to 0.5 ml.  At pH 2.0, ferric trihydroxamate siderophores show an absorbance maxima 

centered in the 420-440 nm range, whereas ferric mono- and dihydroxamates absorb 

maximally in the 500-520 nm range (Jalal and van der Helm 1991). 
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Electrospray Mass Spectroscopy  

Samples were analyzed by electrospray mass spectrometry using a Waters LCT-

TOF (orthogonal acceleration time-of-flight mass spectrometer) equipped with a 

Hamilton syringe pump and Hewlett Packard HPLC-UV-VIS system.  Both ferriated 

(iron-complexed) and deferriated (non-complexed) forms of the dried siderophore 

samples were provided for analyses to determine both the molecular weight and structure 

of the compounds.   

Each sample was first dissolved in methanol and 5 μL injected onto a Hewlett 

Packard Hypersil column (4.6 x 100mm, ODS, PN 7991800-554) column.  Solvent A 

was prepared by adding 30 mL of acetonitrile to an aqueous solution of 2.5 mM 

ammonium acetate.  Solvent B was acetonitrile.  0.1 mL/min of 25 mM ammonium 

acetate in methanol was added post column between the diode array detector and the 

mass spectrometer source.  Samples of the iron-complexes were dissolved in methanol 

then diluted to the appropriate concentration in 50/50 methanol/water for infusion.  The 

samples were infused at a rate of 9 μL/min into the electrospray source and the data 

obtained in both positive and negative ion modes at sample cone voltages of 25, 75, and 

150.  The electrospray voltage was reduced below 3000 volts to get approximately 300 - 

500 counts/sec for the metal ion complex of interest.   

Accurate mass data for the compounds were obtained by infusing methanol 

solutions of the iron-free materials at 25 volts.  Higher voltages (75 and 150 volts) were 

used to induce fragmentation of the molecules in order to gain sub-structural information.  

Approximately 10 – 30 μL of the solutions was dissolved in 4.5 mM ammonium acetate 

in 50/50 acetonitrile/water.  Polypropylene glycol was added to use as the mass calibrant.  
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When the ionized samples are injected, the ions within are separated according to their 

mass per charge ratio (m/z).  The ions then progress through a detector that calculates 

molecular weights of the ions/fragments present based on the trajectory and time-of-flight 

of each ion.  A total of 10 measurements of 10 - 20 scans per determination were 

acquired and the results averaged for each sample.   

The Waters MassLynx Elemental Composition Program was used to determine 

possible molecular formulae based on the ES/MS data.  Standard deviation of the 

accurate mass measurements was approximately 2 ppm.  In order not to exclude search 

candidates by employing too narrow of mass tolerance a search tolerance of 10 ppm was 

employed.  Reasonable elements and the range of each element were chosen that are 

consistent for known classes of siderophores.  The theoretical isotopic pattern (generated 

using the MassLynx Isotopic modeling Program) of the proposed formula from the 

Elemental Composition Program was compared to the observed pattern for further 

confirmation.  

 

Nuclear Magnetic Resonance (NMR) Spectroscopy  

 The purified siderophore samples were also examined by 1H 1D NMR.  The 

dried samples were dissolved in 1 mL of methanol-d4 for this analysis.  The NMR 

spectra were collected in a 5-mm OD NMR tube on a JEOL Eclipse 600 MHz NMR 

spectrometer operating at ambient probe temperature.  Final proton 1D NMR spectra 

were obtained by averaging 256 spectra using a pulse delay of 15 seconds.  The residual 

proton resonance in methanol-d4 was used as the 1H chemical shift standard at 3.31 ppm 

(pentet). 
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Deuterium Exchange Analysis 

Deuterium exchange analyses were conducted to further confirm the proposed 

structures.  All three purified, deferriated siderophore samples were analyzed to 

determine the number of exchangeable protons on each of the compounds.  Exchangeable 

protons are any hydrogen atoms bonded to either nitrogen or oxygen.  For this analysis, 

these protons are exchanged with deuterium.  Deuterium, or “heavy hydrogen”, is 

composed of a hydrogen atom plus a neutron and has an atomic weight of 2 atomic mass 

unit (amu).  Because hydrogen only has an atom mass of 1 amu, a molecule‟s MW 

increases by 1 for each instance in which a deuterium atom replaces an exchangeable 

proton.  The number of exchangeable protons can be determined by comparing molecular 

weights for a given molecule both before and after the assay.  This information can then 

provide insight into the structure of the examined molecule (Hemling et al. 1994, Lam 

and Ramanathan 2002).  The samples were prepared by dissolving 4-8 μL of the 

sample/methanol solution described previously into 1 mL of 50:50 acetontrile-

d3:deuterium oxide containing 5 μL of acetic acid-d4.  The samples were then analyzed 

with the LCT-MS using both positive and negative electrospray ionization via infusion.   

 

Amino Acid Analysis Using TLC  

Purified siderophore samples were examined for their amino acid content to help 

confirm siderophore identity.  The pure siderophore samples were acid hydrolyzed by 

combining them with an equal volume of 6 M HCl followed by autoclaving at 121°C for 

6 hours.  As vicibactin is composed of three ornithine residues, a standard was prepared 

by dissolving 1 mg of ornithine into 1mL ddH2O.  A volume of 3 μL of each hydrolyzed 
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sample and ornithine standard were spotted onto 20x20 TLC plates and run using a 

solvent system composed of acetonitrile: 0.1 M ammonium acetate (60:40).  These plates 

were allowed to run until the solvent front reached approximately one inch from the top 

of plate.  To color the amino acid spots, the plate was dried and developed by being 

sprayed with 0.5% (w/v) ninhydrin in ethanol followed by incubation at 55°C for 15 

minutes (Storey et al. 2006).   
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CHAPTER 3 

RESULTS  

Initial Detection of Siderophore Production 

The CAS assay was used for initial determination of siderophore production in 

Rhizobium leguminosarum ATCC 14479.  Although characterization of siderophore class 

is not possible through this method, relative abundance and strength of the siderophore 

can be ascertained by the size of the halo and its color intensity respectively.  Figure 6 

shows that R. leguminosarum ATCC 14479 does produce a siderophore. 

 

 
Figure 6:  CAS assay for determination of 

siderophore production.  Agar plate contains two 

bored wells.  Blank well (left) shows no halo while 

the sample well (right) is surrounded by a 

yellow/orange halo indicating the presence of 

siderophore. 

 

 

 

 

Initial Characterization of Siderophore 

Once siderophore production was observed via the CAS assay, siderophore type 

was ascertained using the Atkin‟s and Arnow‟s assays.  Culture supernatant was tested 

using both methods.  Figure 7 shows the results of these tests.  The Arnow‟s assay 

repeatedly tested negative for the presence of catechols.  The Atkin‟s assay consistently 

tested positive, indicating that Rhizobium leguminosarum ATCC 14479 produces a 

hydroxamate type siderophore. 
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Figure 7:  Results of the Atkin‟s and Arnow‟s Assays: 

blank (B), sample (S).  The positive Atkin‟s result 

indicates a hydroxamate type siderophore. 

 

Optimization of Siderophore Production 

 

Optimization of Incubation Time 

The CAS assay was initially used to determine the length of incubation time 

required for the maximum amount of siderophore production.  The organism was grown 

in 50mL of MMWpen50.  A 1 mL sample of culture supernatant was collected every 24 

hours for 5 days and kept at 4°C.  Once all samples were collected, approximately 65 μL 

of each were transferred into wells cut into the CAS agar.  The diameter of each 

siderophore halo was measured.  These results can be seen in Table 2 and indicated that 

approximately 96 hours of incubation resulted in the greatest siderophore production. 

 

Table 2:  Effect of incubation time on CAS halo diameter   

Incubation 

Time (hrs) 

Halo Diameter 

(cm) 

24 0 

48 1.5 

72 1.8 

96 2.0 

120 1.8 
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Once the siderophore was chemically identified, this experiment was repeated 

using the Atkin‟s assay to obtain more accurate data (Figure 8).  Siderophore production 

was measured at 450 nm as this was the experimentally determined maximum absorbance 

(published max absorbance 445nm).  Bacterial growth was also measured at OD600.  

These results corresponded with the CAS assay results, indicating that maximum 

siderophore production did occur at approximately 96 hours incubation. 
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Figure 8:  Growth and siderophore production over time of Rhizobium leguminosarum ATCC 

14479. 

 

Optimization of Iron Concentration  

Siderophores are secondary metabolites, only being produced by cells when iron 

availability is limited and being down regulated when iron is in abundance.  However; it 

has also been observed that small amounts of iron are actually required for siderophore 

production.  Therefore, it was important to characterize the effect of iron concentration in 

the medium on siderophore production.  R. leguminosarum ATCC 14479 was grown in 

MMWpen50 supplemented with various concentrations of ferric iron added as FeCl3 



41 

 

solution.  The strain was also grown in media supplemented with 0.2mM 2‟2 dipyridyl to 

completely remove any iron that was present as a contaminant within the medium 

components (calculated at ~0.27μM).  Figure 9 illustrates the results of this experiment 

and the classic biphasic relationship between iron concentration and siderophore 

production.  The data (Table 3) were collected by performing the Atkin‟s assay on 96 

hour culture supernatant, culture supernatant diluted with ddH2O (1:2 ratio) and culture 

supernatant diluted with ethanol (1:2 ratio) to precipitate remaining bacterial 

polysaccharide.  Both maximum growth and siderophore production were attained by 

supplementing 0.25 μM ferric iron to the medium (Figure 9).  Higher iron concentrations 

led to a decrease in siderophore production.  Bacterial growth, and consequently 

siderophore production, was negligible in the 2‟2 dipyridyl supplemented medium.  This 

is presumably due to the complete lack of iron, which would inhibit cellular metabolism 

and viability. 

Table 3:  Results of the effect of supplemented iron concentration on culture growth and siderophore 

production. The Atkin‟s assay was used on three different treatment samples:  culture supernatant (S), 1:2 

diluted culture supernatant in ddH20 (DS), and 1:2 diluted culture supernatant in ethanol (EpS). 

  Optical Density at 

600nm (OD600) 
Atkin's Assay Absorbance at 450nm 

(OD450) 
Dilution 

Correction 

(OD450 x 3) 

Flask 

# 

Fe 

Conc. 

(μM) 

Culture Supernatant 
Supernatant 

(S) 

Diluted 

Supernatant 

(DS) 

EtOH ppt. 

Supernatant 

(EpS) 

DS 

 x 3 

EpS  

x 3 

1 -0.27 0.083 0.001 0.005 0.001 0 0.003 0 

2 0 1.452 0.096 0.083 0.030 0.015 0.090 0.045 

3 0.25 1.811 0.156 0.142 0.050 0.030 0.150 0.090 

4 0.50 1.796 0.099 0.093 0.027 0.015 0.081 0.045 

5 0.75 1.783 0.090 0.079 0.023 0.004 0.069 0.012 

6 1.0 1.743 0.184 0.061 0.027 0 0.081 0 

7 2.0 1.758 0.158 0.050 0.018 0 0.054 0 

8 5.0 1.748 0.207 0.055 0.016 0 0.048 0 

9 10 1.798 0.207 0.063 0.021 0 0.063 0 

10 20 1.732 0.262 0.089 0.032 0 0.096 0 

11 100 1.782 0.151 0.060 0.016 0 0.048 0 
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Figure 9:  Effect of supplemented iron concentration on siderophore production.  Absorbance is greater in 

the supernatant and diluted supernatant samples due to the presence of polysaccharide.  True siderophore 

absorbance is better represented by the EtOH treated sample.  Peak production for R. leguminosarum 

ATCC 14479 in all three samples is at 0.25 μM of supplemented FeCl3. 

 

Siderophore Purification 

 

Amberlite XAD-2 Column Chromatography  

R. leguminosarum ATCC 14479 was grown for 96-100 hours in 1L batch cultures 

of MMWpen50 in order to generate large amounts of siderophore.  Three liters of cultures 

were grown and the culture supernatant was acidified to pH 2 prior to initial purification 

via Sephadex XAD-2 column chromatography.  Fractions were collected in 50mL 

aliquots and each was tested for its siderophore content using CAS plates.  In addition to 

testing eluted fractions, all flow through collected from column washes and equilibrations 

was also tested to ensure that all siderophore had been bound to the column material.  

The CAS halos (Figure 10) indicated that majority of siderophore eluted in fractions 4 - 

7, although there appeared to be a small amount eluted in fraction eight as well.  

Maximum siderophore elution occurred in fractions five and six. 
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Figure 10: Amberlite XAD-2 fractions collected 

and tested using CAS asay.  Yellow halos 

correspond to those fractions that contain 

siderophore.  Fractions 1-9 numbered as shown.  

F: flow through, W1: ddH2O wash, W2: 

methanol wash, Eq: ddH2O equilibration, B: 

sterile ddH2O blank 

 

Sephadex LH-20 Column Chromatography  

All XAD-2 fractions testing positive for siderophore content on CAS plates were 

combined, dried, and resuspended in 5 mL methanol.  This was then centrifuged at 

8500rpm for 30 min to remove precipitates.  This concentrated sample was then further 

purified using Sephadex LH-20 column chromatography.  A total of 55 fractions were 

collected in 250 drop aliquots.  Each of these was tested for siderophore content via 

normal phase TLC.  It was noticed at this point that there appeared to be two spots 

develop showing retention factors of 0.46 and 0.69 as can be seen in Figure 11.  These 

spots developed in both the positive control (concentrated XAD-2 sample) and the LH-20 

fractions 13 - 20.  These spots were indicative of one of two possibilities; either each is a 

separate siderophore or one could be a degradation product of the siderophore that still 

retains the ability to chelate iron.  Due to the gradual “smearing” that occurred between 

fractions 16 - 18, it was decided to combine fractions 13 - 19 rather than save them 

separately.  These fractions were combined, dried, and resuspended in 10mL ddH2O for 

final purification through HPLC. 
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Figure 11:  TLC results for Fractions 10 - 26 post Sephadex LH-20 column. “+” control arrows indicate 

that at least two iron-binding compounds were present in sample both before and after passing through the 

column. 

 

 

High Pressure Liquid Chromatography (HPLC)  

 

HPLC was used as the final purification step of the siderophore sample using 

distilled water as solvent A and methanol as solvent B.  The siderophore positive LH-20 

samples were loaded onto a Waters C18 hydrophobic HPLC column.   Multiple programs 

and trials were run and continually refined in order to obtain good separation of peaks.  

TLC was used to test peak positive HPLC fractions after each trial was run.  Previously, 

TLC had revealed the presence of two potential siderophores from the LH-20 samples.  

The TLC analysis now presented three potential siderophores as indicated by the 

presence of three distinct, wine colored spots eluting in differing fractions.  These were 

labeled A, B, and C with each eluting into fractions 23, 28-29, and 35-36 respectively.  

Figure 12 shows the TLC plate from the initial HPLC run indicating three potential 
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siderophores.  The HPLC program was continually refined and run for each of the three 

molecules until isolated peaks were obtained for each.  After isolation of the three 

molecules was attained, each was dried via evaporation and the pure compounds 

weighed.  Figure 13 shows the final HPLC chromatograms, dry weights, and the 

methanol concentrations at which each pure compound eluted for molecules A, B, and C. 

 
Figure 12:  TLC plate showing three siderophore-like compounds revealed by HPLC of the LH-20 sample.  

Siderophore “A” is the least hydrophobic and “C” the most hydrophobic. 
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Siderophore “A” 

 

Eluted at: 35% MetOH 

Dry weight: 18.4 mg 

 

 

 

Siderophore “B” 

 

Eluted at: 42% MetOH 

Dry weight: 23.2 mg 

 

 

 

Siderophore “C” 

 

Eluted at: 48% MetOH 

Dry weight: 26.4 mg 

 

Figure 13:  Final HPLC chromatograms generated for each of the three potential siderophores.  Isolated 

peaks indicate that compound is pure.  

 

  
Chemical Characterization of Purified Siderophores 

 

 

Spectral Scan Analysis  

 

Spectral absorbance analyses were used to determine the type of hydroxamate 

siderophore represented by each of the purified molecules.  In general, maximum 

absorbance ranges of mono- and dihydroxamate siderophores are 500 – 520 nm, whereas 

trihydroxamate siderophores do so at 420 - 440 (Jalal and van der Helm 1991).  All three 

absorbance maxima occur between the generally accepted ranges for hydroxamates 

(Figure 14).  However, the maxima for both siderophores “B” and “C” (465 nm and 450 

nm respectively) fall nearer to the trihydroxamate range, whereas the absorbance 

maximum for siderophore “A” (475 nm) is closer to that of dihydroxamates. 
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Figure 14:  Spectral scans (300 – 600 nm) results of siderophores “A” (left), “B” (middle), and “C” (right).  

Mono- and Di-hydroxamate class siderophores absorb maximally at 500 – 520 nm.  Tri-hydroxamate class 

siderophores absorb maximally at 420 – 440 nm (Jalal and van der Helm 1991). 

 

 

Electrospray Mass Spectroscopy  

 

To further chemically characterize the siderophore produced by R. 

leguminosarum ATCC 14479, six different samples were subject to mass spectroscopy. 

These samples consisted of one each of compounds A, B, and C in a deferriated form as 

well as one each of compounds A, B, and C in a ferriated form.  Analyses of both the 

ferric- and apo-molecules allowed for comparisons between the spectra generated for 

each of the two forms.  The lack of iron in the non-ferriated forms causes a difference of 

53 [Fe
3+

 - 3H] in their molecular weights as compared to the ferric-complexes.  

Additionally, samples were ionized in both positive ion (protons added) and negative ion 

(protons removed) modes.   

Figure 15 shows the accurate mass spectra generated at 25 volts for Siderophore 

C using the iron-free sample.  In negative ion mode, the major peak was seen at 773.4 

m/z.  In positive ion mode, the major peak was seen at 775.3 m/z.  This indicates that 

iron-free siderophore C has a total molecular weight of 774 because the mass of a proton, 

1, must be subtracted from the positive ion mode results and added to the results from the 

negative ion mode analysis.   Figure 16 shows the results obtained from analysis of the 
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iron-bound siderophore C sample in positive ion mode.  The peak observed at 828 m/z 

corresponds to the molecular weight of siderophore C plus that of iron minus the three 

displaced hydrogen atoms plus the hydrogen atom added in positive ion mode [774 + 56 

– 3 + 1].  The major peak seen at 850 m/z is the ferric chelate plus a sodium atom adduct 

[Na – H] that can be a common occurrence in this type of analysis.  Table 4 summarizes 

the calculated accurate mass results for all six submitted samples. The ES/MS spectra 

generated for compounds “A” and “B” can be seen in Appendix figures 29 - 34. 

 
Figure 15: 25v ES/MS spectra for iron-free siderophore “C” in both negative (top) and positive ion 

(bottom) modes.  The marked major peaks indicate the molecular weight of the compound +/- one proton. 
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Figure 16:  25 v ES/MS spectra for iron-bound siderophore “C” in positive ion mode.  The marked major 

peaks indicate the molecular weight of the ferric-compound both with and without a sodium (Na) adduct. 

 
Table 4:  Calculated molecular weights for siderophores “A”, “B”, and “C” in both ferriated and de-

ferriated forms 

Compound 

Sample 

Calculated Molecular Weight 

Iron-free Iron-bound 

A 492 545 

B 750 803 

C 774 828 

 

In addition to determining the nominal molecular weight of the compounds, 

ES/MS was also used to determine molecular formulae from accurate mass 

determinations and substructural information from in-source collisionally induced 

dissociation (CID) spectra (Rozman et al. 1995).  At higher cone voltages in the Waters 

electrospray source, molecular fragmentation is noted that can be used to determine 

substructural information for the compounds.  Normally the nominal molecular weight is 
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determined at approximately 25 volts and substructural information is obtained in the 

range of 75 - 150 volts.  The spectra at these higher voltages are noted in Figures 17 and 

18. 

 
Figure 17: 75 v ES/MS fragmentation spectra for iron-free siderophore “C” in both negative (top) and 

positive ion (bottom) modes.   

 

 
Figure 18: 150 v ES/MS fragmentation spectra for iron-free siderophore “C” in both negative (top) and 

positive ion (bottom) modes.   
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Using all the ES/MS data, an elemental composition report was generated. The 

molecular formula foe each compound was determined using the Waters Elemetnal 

Composition Program.  The program limits the search by many user specified parameters 

including double bond equivalents, m/z error, odd or even electron species, and elements 

and their range.  The error was estimated to be approximately 2 ppm (n=10, one standard 

deviation) (Figure 19).  Normally the error specified for the search is at least three times 

the standard deviation.  However, a window of 10 ppm was employed to insure that no 

reasonable candidate was excluded from the search.  The elements searched and the 

ranges of their values were selected from known classes of siderophores.  The theoretical 

isotopic pattern (generated using MassLynx Isotope Modeling Program) was visually 

compared to the observed pattern for further confirmation of structure.  The boxed items 

in Figure 19 indicate the compositions whose theoretical isotope patterns best matched 

those seen produced by siderophores “A”, “B”, and “C” respectively (Appendix figures 

35-36).   
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Figure 19: Elemental composition report indicating 

possible chemical formulae for “A”, “B”, and “C”.  

Results are based on the accurate mass and 

fragmentation data obtained from mass 

spectroscopy.  The boxed items are consistent for 

the trihydroxamate siderophore vicibactin (C) and 

two degradation products (A and B) 

 

These results, along with the fragmentation data, also allowed structures to be 

proposed for each of the siderophore samples analyzed.  Figure 20 shows these proposed 

structures.  The molecular weight and composition results for siderophore “C” were both 

consistent for vicibactin (C33H55N6O15), a trihydroxamate siderophore commonly 

produced by R. leguminosarum bv. viciae.  This is also supported by our spectral scan 

analysis which showed siderophore “C” to maximally absorb light at 450 nm.  Dilworth, 

et al. (1998) found the vicibactin absorbance maximum to be 445 nm.  Due to the 

similarity in fragmentation results for all three compounds, it was concluded that they 

each shared a similar structure.  For this reason, it was decided that siderophores “A” and 

“B” were likely degradation products of  “C” as the purification process can often times 

lead to the breakdown of a molecule.  Each of these products appears to be a de-
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acetylated and “ring-open” structure in which the cyclic nature of the vicibactin has been 

compromised.  In siderophore “B”, a single ester-bond linkage has been hydrolyzed.  In 

siderophore “A”, two ester-bonds have been hydrolyzed resulting in the loss of 

approximately one-third of the intact siderophore. 

 

 
Figure 20:  Proposed structures for siderophores “A”, “B”, and “C”.  The formula and structure of 

siderophore “C” match that of the trihydroxamate siderophore, vicibactin. 

   

Nuclear Magnetic Resonance (NMR) Spectroscopy 

 

NMR was used to confirm the molecular structures proposed by the ES/MS data.   

The proton NMR resonances for each of the three compounds were compared to the 

known data for vicibactin (Dilworth et al. 1998).  The chemical shifts and multiplicities 

for siderophore “C” correspond extremely well with those shown in the literature (Table 

5).  The NMR spectra for “A” and “B” (Figures 23 and 22 respectively) are both similar 

to that of “C” (Figure 21).   This indicates that they each share very similar structures to 

that of vicibactin consistent with our proposed structures. 
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Table 5:  Proton NMR data for siderophore “C” and vicibactin.  Literature values and position assignments 

taken from Dilworth et al. 1998.  (Multiplicity values: s = singlet;  

d = doublet; dd = doublet of doublets; m = multiplet) 

Carbon 
Position 

Bond 
Type 

Literature Values for 
Vicibactin 

Experimental Values 
for compound “C” 

1
H, PPM Multiplicity 

1
H, PPM Multiplicity 

2 α-CH 4.29 dd 4.3 dd 

3 β-CH2 
1.60 m 1.6 m 

1.79 m 1.8 m 

4 γ-CH2 1.68 m 1.7 m 

5 δ-CH2 
3.55 m 3.5 m 

3.64 m 3.6 m 

7 α-CH2 
2.69 dd 2.7 dd 

2.86 dd 2.8 dd 

8 β-CH 5.38 m 5.4 m 

9 γ-CH3 1.32 d 1.3 d 

12 CH3 1.99 s 2.0 s 

 

 

 
Figure 21:  Proton NMR spectrum for purified siderophore “C”.  Numbers in parentheses correspond  

to the numbering assignments for carbon atoms as given in Dilworth et al. 1998. 
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Figure 22: Proton NMR spectrum for purified siderophore “B”.   

 

 
Figure 23:  Proton NMR spectrum for purified siderophore “A” 
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Deuterium Exchange Analysis 

 

Deuterium exchange was conducted on each of the pure iron-free samples to 

determine if the proposed ring-open structures were feasible.  Samples were dissolved in 

a 50:50 acetonitrile-d3:deuterium oxide solution and analyzed via mass spectroscopy in 

both positive and negative ionization modes.  This allowed a count of the number of 

exchangeable protons (any hydrogen atoms bound to either O or N).  Deuterium, or 

“heavy hydrogen”, is composed of a hydrogen atom plus one neutron bringing its total 

mass to roughly 2 amu.  Deuterium increases the mass of a given molecule by 1u for each 

instance that it is exchanged with hydrogen.  Figures 24 - 26 show the chromatograms 

generated for each of the samples.  The product for “C” showed six exchangeable protons 

in both positive and negative modes.  Siderophores “A” and “B” have seven and nine 

exchangeable protons respectively.    This is consistent with both of the proposed ring-

opened and de-acetylated compound structures.  These results are summarized in Table 6.   

 

Table 6: Deuterium exchange results showing the number of exchangeable  

hydrogen atoms bound to either an oxygen or nitrogen atom.  

 

Compound MW 
Calculated MW after 

Deuterium Exchange 

# Exchangeable 

Protons 

A 492 499 7 

B 750 759 9 

C 774 780 6 
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Figure 24: Deuterium exchange results for siderophore “A” in both positive ion (top) and negative 

 ion (bottom) modes.    

 

 
Figure 25: Deuterium exchange results for siderophore “B” in both positive ion (top) and negative  

ion (bottom) modes.    
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Figure 26: Deuterium exchange results for siderophore “C” in both positive ion (top) and negative 

ion (bottom) modes.    
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Amino Acid Analysis Using TLC  

 

     To further characterize the proposed structures 

and identify the molecules, acid hydrolyzed 

samples of each compound were analyzed for their 

amino acid content.  These samples were run on a 

TLC plate and developed with a ninhydrin reagent.  

These were compared against an ornithine standard 

because vicibactin is composed of three residues 

each of hydroxybutanoic acid and the amino acid 

ornithine (Dilworth et al. 1998).  All three samples 

showed only a single, strong spot at an Rf value of 

0.78, very near the Rf value, 0.74, of pure 

ornithine (Figure 27).  The formation and Rf value 

of the single spot for each compound indicated that 

all three purified molecules contained only 

ornithine residues as an amino acid. 

 

 
Figure 27: Amino acid analysis using TLC 

shows that each hydrolyzed sample 

contained only the amino acid ornithine 

(O). 
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CHAPTER 4 

DISCUSSION 

Iron is a requirement for the synthesis of many bacterial compounds and is an 

essential nutrient for growth.  Many bacteria, both gram-negative and gram-positive, have 

been found to produce siderophores in response to iron deprivation.  Siderophore 

production is particularly abundant within the rhizobial group of bacteria.  Most species 

within this group have been found to produce at least one type of siderophore with 

rhizobactin (Smith et al. 1985), rhizobactin 1021 (Persmark et al. 1993), and vicibactin 

(Dilworth et al. 1998) being the most common.   

Rhizobial microorganisms are of economic and social interest due to their 

agricultural importance.  The symbiosis between the bacteria and its host plant is 

exhibited by the formation of root nodules.  Within the nodules the bacteria fix 

atmospheric nitrogen into biologically useful compounds that are shared with the host.  

Proper formation of these nodules is dependent upon sufficient iron acquisition by the 

bacteria (O‟Hara et al. 1988).  Additionally, due to the competition for iron, siderophore 

production has been identified as one an important mechanism for the suppression of 

phytopathogens (Arora et al. 2001). 

The objective of this project was to determine whether Rhizobium leguminosarum 

ATCC 14479 produced a siderophore and, if so, to characterize and identify siderophores 

from this previously uncharacterized strain.  The CAS assay showed evidence that this 

strain did produce a siderophore while under iron-deprived conditions.  The presumed 

siderophore was determined to be in the hydroxamate family of siderophores as 



61 

 

evidenced by the formation of a wine red color using the iron-perchloate assay (Atkin et 

al. 1970).   

Growth conditions were then optimized to achieve maximum siderophore production. 

Initially, optimized conditions included only media composition and incubation time.  

The defined minimal media of Manhart and Wong (1979) was modified and used to grow 

this strain.  Although it is known that members of the rhizobia group prefer mannitol 

(Murray and Smith, 1957), both mannitol and arabinose were replaced with dextrose as the 

carbon source.  Also, glutamate was used in place of KNO3 as a nitrogen source (Streeter 

1985).  Many rhizobia are known to grow relatively slowly as compared to other bacteria 

and it was found that an incubation time of 96 hours was necessary to reach maximum 

siderophore production.  Like many secondary metabolites, onset of siderophore 

production normally occurs in the mid-log phase of growth.  R. leguminosarum ATCC 

14479 begins producing siderophore approximately 36 hours after inoculation and 

reaches siderophore production peak at 96 to 100 hours.   

For the isolation of siderophore, culture growth was carried out in a zero iron 

concentration media.  Following characterization of siderophore, iron concentration was 

optimized because production of these molecules is regulated by iron availablity 

(Lankford 1973).   As seen in other rhizobia, R. leguminosarum ATCC 14479 

demonstrated a biphasic relationship of iron concentration on siderophore production.  

When iron was completely removed from the media, no siderophore was produced.  

Siderophore production improved when supplemented with low levels of iron but 

decreased and was eventually completely repressed as the iron concentration increased.  

It was found that this strain produces maximally when the media is supplemented with 

0.25 μM FeCl3.  Our data indicated that this concentration of iron supplement resulted in 
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a doubling of siderophore production.  Siderophore production then decreased as this 

concentration is exceeded until being completely repressed at 1.0 μM.  This is in good 

accord with the findings of Carson et al. (2000) in which they found that siderophore 

production was repressed in other rhizobia within a range of 1-5 μM concentration. 

 Large batch cultures of Rhizobium leguminosarum ATCC 14479 were grown in 

order to produce sufficient quantities of siderophore to isolate and characterize.  Initial 

purification involved passing acidified culture supernatant through a XAD-2 column.  

Siderophore positive elutions from the XAD column were then concentrated and passed 

through a Sephadex LH-20 hydrophobic column.  Final purification of our compounds 

was conducted using HPLC with a C18 hydrophobic column.   

 Multiple spots appeared on the TLC plates when purified sample was loaded onto 

them.  This occurred once following elution of the LH-20 column and then again 

following the initial HPLC trials, creating a total of three distinct TLC spots.  Although 

multiple spot formations could indicate the presence of multiple siderophores, it is also 

possible for siderophores to degrade during the purification process but still retain their 

ability to chelate ferric iron.  Therefore, the compounds represented by these spots were 

purified separately and labeled as siderophores “A”, “B”, and “C” in order of increasing 

hydrophobicity.  Spectral scans (300 - 700 nm) were conducted on each of these 

molecules to determine whether they were mono/di- or tri-hydroxamate type siderophores 

(Jalal and van der Helm 1991).  Absorbance results were somewhat inconclusive as all 

three molecules had different absorbance maxima that fell outside of the expected ranges.  

However, it was our belief that siderophore “C” was most likely a tri-hydroxamate as its 
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absorbance maximum did fall very near the expected upper range of that group of 

siderophores. 

 Electrospray Mass Spectroscopy (ES/MS) was performed on all three of the 

purified compounds to elucidate their molecular weights and structures.  Based on the 

results of this analysis it was proposed that “C” was the trihydroxamate siderophore, 

vicibactin.  It also indicated that “A” and “B” were degradation products of the intact 

siderophore.  This was then confirmed by NMR, deuterium exchange, and amino acid 

analysis.  Whether these degradation products are a result of the purification process or if 

they are produced inside the cell and released into the culture medium is unknown. 

 Vicibactin is a cyclic trihydroxamate siderophore made up of three residues each 

of D-3-hydroxybutyric acid and N
2
-acetyl-N

5
-hydroxy-D-ornithine bonded by alternating 

amide and ester bonds (Dilworth et al. 1998).  Originally discovered being excreted by 

Rhizobium leguminosarum biovar viciae, which nodulates peas, lentils, and vetches, it 

has since been implicated to be the siderophore most often produced by all siderophore 

positive strains of Rhizobium leguminosarum (Carson et al. 1994; 2000).  Its structure is 

very similar to other bacterial (desferrioxamines) and fungal (fusarinines) trihydroxamate 

siderophores (Figure 28).  In fact, bacterial vicibactin is structurally identical to fungal 

neurosporin, isolated from Neurospora crassa (Eng-Wilmot et al. 1983), although the 

biosynthesis strategies appear to have evolved separately (Heemstra et al. 2009).    
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Figure 28: (A) Similar trimeric hydroxamate 

siderophores from bacteria (vicibactin and 

desferrioxamine E) and fungi (fusarinine C). 

(B) Structure of ferric-vicibactin chelate.  This 

structure is identical to that of ferric-neurosporin.  

(Heemstra et al. 2009) 
 

 Biosynthesis of vicibactin in Rhizobium leguminosarum biovar viciae was found 

to be controlled by a cluster of eight genes, vbsGSO, vbsADL, vbsC, and vbsP (Carter et 

al. 2002).  They proposed a metabolic biosynthesis pathway citing the gene product of 

vbsS as the single NRPS (non-ribosomal peptide synthase) module protein acting as the 

primary siderophore catalyst.  NRPSs are multi-part enzymes, similar to an assembly 

line, that produce sequence specific peptide products without an RNA template.  Instead, 

the order of specialized NRPS domains dictates the order that the monomeric amino acids 

are linked (Crosa and Walsh 2002).  Uptake of the ferric-vicibactin chelate has been 

identified to be mediated by homologues of the E. coli fhu operon, fhuACDB.  In E.coli, 

FhuA is the outer-membrane receptor protein, FhuB is a cytoplasmic membrane protein, 

FhuC is an ATPase, and FhuD is the periplasmic transport protein (Stevens et al. 1999).  

In R. leguminosarum bv. viciae, fhuCDB are in one operon adjacent to an inactive fhuA 

pseudogene containing many stop codons (Stevens et al. 1999).  Yeoman et al. (2000) 
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located a fully functional unlinked fhuA gene that is unlinked to the rhizobial fhuCDB 

operon.  Mutations in this version of fhuA resulted in impaired iron uptake and large CAS 

halo phenotypes, indicating overproduction of siderophore due to an inability to 

internalize the ferric-vicibactin.  

To date, only one study (Carson et al, 2000) has linked vicibactin production with 

clover infecting strains of R. leguminosarum.  Further research for this project includes 

identification and comparison of R. leguminosarum ATCC 14479 vicibactin biosynthesis 

and transport mechanisms with those of other Rhizobium species.  Due to its identical 

structure, it would also be of interest to compare these mechanisms to those of 

Neurospora‟s siderophore, neurosporin.   
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APPENDIX 

Additional Figures 

 
Figure 29: 25 v ES/MS spectra for iron-free siderophore “A” in both negative (top) and positive ion 

(bottom) modes.  The marked major peaks indicate the molecular weight of the compound +/- one proton. 

 

 
Figure 30:  25 v ES/MS spectra for iron-bound siderophore “A” in positive ion mode.  The marked major 

peaks indicate the molecular weight of the ferric-compound both with and without a sodium (Na) adduct. 
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Figure 31: 75 v ES/MS fragmentation spectra for iron-free siderophore “A” in both negative (top) and 

positive ion (bottom) modes.   

 

 
Figure 32: 25 v ES/MS spectra for iron-free siderophore “B” in both negative (top) and positive ion 

(bottom) modes.  The marked major peaks indicate the molecular weight of the compound +/- one proton. 

 

 
Figure 33:  25 v ES/MS spectra for iron-bound siderophore “B” in positive ion mode.  The marked major 

peaks indicate the molecular weight of the ferric-compound both with and without a sodium (Na) adduct. 
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Figure 34: 75 v ES/MS fragmentation spectra for iron-free siderophore “B” in both negative (top) and 

positive ion (bottom) modes.   

 

 
Figure 35:  Experimentally determined carbon isotope ratios for compound “C”.  
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Figure 36: Theoretical carbon isotope ratios for C33H55N6O15, the chemical formula proposed for compound 

“C” by the Waters Elemental Composition report. 
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