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ABSTRACT
The discussion following Bem’s (2011) psi research highlights that applications of the Bayes factor in
psychological research are not without problems. The first problem is the omission to translate sub-
jective prior knowledge into subjective prior distributions. In the words of Savage (1961): “they make
the Bayesian omelet without breaking the Bayesian egg.” The second problem occurs if the Bayesian
egg is not broken: the omission to choose default prior distributions such that the ensuing inferences
arewell calibrated. The third problem is the adherence to inadequate rules for the interpretation of the
size of the Bayes factor. The current paper will elaborate these problems and show how to avoid them
using thebasic hypotheses and statisticalmodel used in the first experiment described in Bem (2011). It
will be argued that a thorough investigation of these problems in the context of more encompassing
hypotheses and statistical models is called for if Bayesian psychologists want to add a well-founded
Bayes factor to the tool kit of psychological researchers.

Introduction

In the behavioral and social sciences often a null-
hypothesis is compared to an alternative hypothesis to test
a theory or expectation. An example that will be used
throughout the current paper is based on a continuous
response yi that is recorded for i = 1, . . . ,N persons and
which is assumed to be normally distributed with mean
μ and variance σ 2. The corresponding null and alter-
native hypotheses are H0 : μ = 0 and H1 : μ �= 0. There
are two main approaches for the comparison of null and
alternative hypotheses. The first approach originates from
the frequentist tradition with respect to statistical infer-
ence in which null-hypotheses are evaluated using a well-
chosen test-statistic and the corresponding probability of
exceedance also known as the p value. Usually the evalu-
ation of H0 : μ = 0 and H1 : μ �= 0 is based on the one-
sample t test, which leads to a rejection ofH0 if the corre-
sponding p value is smaller than a prespecified alpha level
(the error of the first kind) of .05.

In the last decade this approach has increasingly been
criticized and a second approach originating from the
Bayesian tradition with respect to statistical inference
has been studied (see for example, Trafimow, 2003, and
Wagenmakers, 2007). In the Bayesian approach, the eval-
uation of H0 and H1 is based on the Bayes factor BF01
where the subscripts indicate that H0 is compared to H1
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(see Kass and Raftery, 1995, for a comprehensive intro-
duction). The Bayes factor quantifies the evidence in the
data for the hypotheses under investigation (note that
there is no relation with the factors from factor analy-
sis). If BF01 = 1, the data equally support H0 and H1. If
BF01 = 10, the support in the data is 10 times larger for
H0 than forH1. According to guidelines presented by Kass
and Raftery (1995) based on Jeffreys (1961) a Bayes fac-
tor in the range 1–3 constitutes anecdotal evidence in
favor ofH0, 3–20 constitutes positive evidence and 20–150
strong evidence. Similar rules hold for evidence in favor of
H1: ranges of 1/3–1, 1/20–1/3, and 1/150–1/20 constitute
anecdotal, positive, and strong evidence, respectively.

Rouder, Speckman, Sun, Morey, and Iverson (2009)
present an easy-to-compute Bayes factor that is a Bayesian
alternative for the one-sample t test. Two ingredients are
needed for the computation of the Bayes factor: the den-
sity of the data and prior distributions for the parame-
ters. The density of the data is also used in the frequentist
approach to statistical inference. However, the prior dis-
tribution is unique to the Bayesian approach. The density
of the data is

f (y|δ, σ 2) =
N∏
i=1

N (yi | σδ, σ 2), (1)
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in which the parameters are the effect size δ = μ/σ

and the residual variance σ 2. In H0, δ = 0 and σ 2 is
unknown, therefore only the prior distribution of σ 2 has
to be specified. In line with recommendations from Jef-
freys (1961); Rouder et al. (2009) use h(σ 2) = 1/σ 2. In
H1 both δ and σ 2 are unknown, again in line with rec-
ommendations from Jeffreys (1961), Rouder et al. (2009)
use the prior distribution hC(δ, σ 2) = Cauchy(0, τ )1/σ 2

leading to the Jeffreys, Zellner and Siow (JZS) Bayes fac-
tor or hN (δ, σ 2) = N (0, τ )1/σ 2 leading to the scaled-
information Bayes factor. Note that τ denotes the scale or
standard deviation of the prior distribution. There are no
arguments in favor of or against either Bayes factor, any
preference is subjective. This is not a major issue because
the size of both Bayes factors is usually comparable.

In the current paper the scaled-information Bayes fac-
tor

BF01 =
(
1 + t2

N−1

)−N/2

(1 + Nτ 2)−1/2
(
1 + t2

(1+Nτ 2)(N−1)

)−N/2 , (2)

will be used because it is easily computed using the t value
resulting from the one-sample t test t, the sample size N,
and the prior scale τ . According to, for example, Kass and
Raftery (1995), the prior distribution for parameters like
σ 2 that are unrestricted in both hypotheses hardly influ-
ences the resulting Bayes factor. As can be seen, h(σ 2) is
not involved in the computation of Equation (2). How-
ever, the prior distribution of parameters like δ that are
restricted in one of the hypotheses does have an influ-
ence on the resulting Bayes factor. As can be seen in Equa-
tion (2) the scaled-information Bayes factor does indeed
depend on the prior scale τ . The implications of this
dependence will be illustrated below and elaborated and
discussed in the next section. However, in order to be able
to do so, first of all the first experiment from Bem (2011)
will be introduced.

Use of the Bayes factor for the evaluation of H0 and
H1 is not undisputed. Trafimow (2003) appreciates the
Bayesian way of quantifying evidence for the hypotheses
of interest, but doubts that it is practically useful because
it is unclear how τ should be chosen (note that Trafi-
mow, 2003, has more elaborate considerations; here only
the one relevant for the content of the current paper is
highlighted). This issue reappears when Bayesian psy-
chologists discuss the psi experiments presented in Bem
(2011). One aspect of psi is precognitive detection, that is,
according to Bem (2011), the prediction of a future event
that cannot be anticipated through any known inferential
process. The first experiment used by Bem (2011) to
investigate psi is based on the notion that it would be
evolutionarily advantageous for organisms to be able to

preemptively detect erotic stimuli. In a 20-minute com-
puter session participants in the experiment were shown
images of two curtains, with only one of them having
a picture behind it. The participants were then asked
to click on the curtain which they thought concealed
the picture. The pictures behind the curtains consisted
of 12 (for 40 participants) or 18 (for 60 participants)
erotic pictures that were randomly mixed with 24 or 18
other pictures, rendering a total of 36 pictures for each
participant. The percentage of correctly identified erotic
pictures was defined as the erotic hit rate. To keep the
original notation of the formulas appearing in the current
paper, for each person we subtract .50 from the erotic
hit rate to obtain the scores yi. Note that this implies that
yi = 0 corresponds to an erotic hit rate of .50.

According to Bem, “Themain hypothesis was that par-
ticipants would be able to identify the position of the hid-
den erotic picture significantly more often than chance.”
Although this is a directional hypothesis Bem (2011) used
H0 : μ = 0 and H1 : μ �= 0. Later in the current paper it
will be shown how Bayes factors can be used to evalu-
ate subjective prior distributions that account for the one-
sided nature of Bem’s main hypothesis. The first exper-
iment described in Bem (2011) with N = 100 rendered
an erotic hit rate of .531, that is, μ̂ = .031, with a vari-
ance of .015 rendering t = .031/(

√
.015/

√
100) = 2.51,

a corresponding p value of .01, and an observed effect size
δ̂ = .25.

Wagenmakers, Wetzels, Borsboom, and van der Maas
(2011) provide a thorough evaluation of the methodol-
ogy used by Bem (2011). One of their points is an argu-
ment in favor of the Bayes factor over the use of p values
to evaluate the hypotheses of interest. Following Wagen-
makers et al. (2011) using Equation (2) with τ = 1 ren-
dered BF10 = 2.10, which is smaller than 3 and there-
fore, according to the rules presented by Kass and Raftery
(1995), constitutes only anecdotal evidence in favor ofH1
(note the reversal in the indices of the Bayes factor). Bem,
Utts, and Wesley (2011) criticized the prior distribution
that was used by Wagenmakers et al. (2011) and com-
puted the Bayes factor with τ = .5 obtaining BF10 = 3.79,
which is positive evidence in favor of H1. As was already
foreseen by Trafimow (2003), it is not at all clear how to
specify τ . This is important because “The scale of τ = 1
[or τ = .5] is arbitrary while it clearly has an impact on
posterior results” (Robert, Chopin, & Rousseau, 2009).

Using the first experiment from Bem (2011) as an
example, the current paper will provide a commentary
and evaluation of the manner in which the Bayes factor
is currently used in psychological research as exemplified
inWagenmakers et al. (2011) and Bem et al. (2011). Three
problems with the application of the Bayes factor in psy-
chological research will be highlighted. As will be argued
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in the current paper, Bayesian psychologists will have to
provide solutions to these problems if they want to add a
well-founded Bayes factor to the tool kit of psychological
researchers.

First of all, Bayesian psychologists want to “make the
Bayesian omelet without breaking the Bayesian egg” (Sav-
age, 1961), that is, Bayesian psychologists want to evalu-
ate subjective opinions with respect to psi (compute Bayes
factors for the hypotheses of interest), but do not specify
subjective prior distributions. A subjective prior distribu-
tion is obtained if a researcher specifies for each value of δ
how likely it is expected to be and summarizes the result
in a distribution. This is not often done because it is rather
difficult. It is easier to assume that the prior distribution
is normal (thereby sacrificing a part of the subjectivity)
and to specify only the mean and the variance of this dis-
tribution. However, this is not what Wagenmakers et al.
(2011) and Bem et al. (2011) do. They fix the mean of the
prior distribution at zero, independent of the application
at hand. Thismeans that their prior distribution is default,
that is, a choice that is expected to work in a wide variety
of applications and circumstances. It will be shown later in
the current paper how subjective prior distributions could
be specified and evaluated for the hypotheses entertained
by Bem (2011).

Secondly, when pursuing a default (the mean of the
prior distribution for δ is fixed at zero) instead of subjec-
tive mode of Bayesian inference Bayesian psychologists
choose the variance of the prior distribution such that
one of the hypotheses under consideration is favored. This
lack of calibration originates in the work of Jeffreys (1961)
and continues in Liang, Paulo, Molina, Clyde, and Berger
(2008). Both publications inspired the work of Rouder,
Speckman, Sun, Morey, and Iverson (2009) who intro-
duced the Bayes factor used byWagenmakers et al. (2011)
and Bem et al. (2011) to psychological researchers. Later
in the current paper it will be elaborated what is meant
by well calibrated and how well-calibrated prior distribu-
tions can be obtained for the hypotheses entertained by
Bem (2011).

Thirdly, there are no generally accepted and well-
founded rules for the interpretation of the size of the Bayes
factor. Bayesian psychologists tend to adhere to rules for
the interpretation of the size of the Bayes factor proposed
by Jeffreys (1961) or Kass and Raftery (1995). As will be
shown in the current paper, the least that can be said is
that these rules do not apply to the hypotheses evaluated
by Wagenmakers et al. (2011) and Bem et al. (2011). It is
therefore very likely that these rules are also inadequate
for other hypotheses that are evaluated by means of the
Bayes factor. In the current paper it will be elaborated how
frequency calculations can be used to provide an interpre-
tation of the size of the Bayes factor.

Given the increasing amount of attention for the Bayes
factor as a tool for the evaluation of hypotheses in psy-
chological research in the last 3 years, it is very important
to stress that high-quality inferences are only obtained if
these three problems are addressed. If this is not acknowl-
edged, Bayesian approaches will be introduced into the
literature; that may very well not be an improvement over
the currently heavily criticized p value based approaches
(see, for example, Wagenmakers, 2007). Using the first
experiment described in Bem (2011), the options that can
be used to improve upon the current state of affairs will
be illustrated. Exploration, implementation, and evalua-
tion of these options delimits a new research terrain that
Bayesian psychologists have to explore if they want to
add well-founded methods to the tool kit of psycholog-
ical researchers.

The current paper is structured as follows. In the next
section it will be shown how well-calibrated prior distri-
butions can be chosen for the formulation of the hypothe-
ses used by Bem et al. (2011) and Wagenmakers et al.
(2011). Subsequently it will be shown how well-founded
rules for the interpretation of the size of the Bayes factor
can be derived. Thereafter it will be shown that the cali-
bration issue can be avoided if subjective prior distribu-
tions are chosen for the hypotheses of interest. The paper
concludes with an elaboration of the title “Why Bayesians
psychologists should change the way they use the Bayes
factor.”

Calibrated prior knowledge

In this section it will be elaborated how τ can be chosen
such that the prior distribution is well calibrated, that is,
results in a well calibrated Bayes factor, that is, a Bayes
factor which is unbiased with respect to the hypotheses
under investigation. Wagenmakers et al. (2011) use hC(δ)

with τ = 1. This choice is suggested by Jeffreys (1961)
and according to Rouder et al.’ is (2009) usually a reason-
able choice. Two arguments are provided for this choice.
First of all, this prior favors smaller effect sizes, which,
as Rouder et al. (2009) argue, is in agreement with the
effect sizes usually observed in psychological research.
Secondly, the amount of information in the prior corre-
sponds to the amount of information rendered by one
observation. The latter was the motivation for the name
unit information prior (see also Liang et al., 2008) if hN (δ)

is specified using τ = 1. Where the first argument is rea-
sonable if a subjective prior is specified, it loses its appeal
if a default prior with a fixed mean of zero is used. Fur-
thermore, neither is it explained why it is desirable to
use a prior with an information content equivalent to the
amount of information in one person nor is it explained
which situations are covered by “usually.” Bemet al. (2011)
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present a variation on the first argument of Rouder et al.
(2009). They claim that effect sizes in psychology usually
fall in the range .2 < δ < .3 and that this is adequately
represented by hC(δ)with τ = .5. However, why this rep-
resentation is adequate is not elaborated and rules for the
translation of other ranges into a value of τ are not given.
It would, for example, have been interesting to see which
range of effect sizes corresponds to the choice τ = 1.

As will be elaborated in this section, ad hoc choices of
τ are not a good idea because they may very well result in
an ill-calibrated Bayes facor. It has to be noted that Rouder
et al. (2009) and Wagenmakers et al. (2011) either in the
publications referred to in the current paper or in other
publications, also note that the choice τ = 1 is to some
degree arbitrary and that other values could/should be
considered. However, concrete criteria and hand holds for
the choice of τ are lacking. As will now be elaborated, this
can be remedied using calibrated prior distributions.

An important property of default Bayes factors based
on default priors should be that they are well calibrated.
Different definitions of well calibrated are possible. In the
current paper we will use two definitions:

Definition 1: The Bayes factor for the comparison of H0
andH1 is well-calibrated if τ is chosen such that P(BF01 >

1 | H0 : δ = 0) = P(BF01 < 1 | H1 : δ = ES), where ES
denotes an effect size that is strictly unequal to zero.

In words Definition 1 states that the Bayes factor is well
calibrated if the probability that H0 is supported (BF01 >

1) if H0 is true is equal to the probability that H1 is sup-
ported (BF01 < 1) if H1 is true. Note that in Definition
1 equality of both probabilities is required for a specific
value of the effect size ES. How to deal with the fact that
ES is unknown will be elaborated below. Note also that
equality of both probabilities implies that the Bayes factor
is unbiased with respect to H0 and H1. Note furthermore
that 1 − P(BF01 > 1 | H0 : δ = 0) and P(BF01 < 1 | H1 :
δ = ES) are unconditional error probabilities that corre-
spond to the error of the first kind and the power, respec-
tively. Note finally that values of BF01 in the range [0,1]
favor H0 and in the range [1,∞] favor H1. Definition 1
could also have been formulated in terms of the logBF01,
which is symmetric around 0: BF01 is well calibrated
if τ is chosen such that P(logBF01 > 0 | H0 : δ = 0) =
P(logBF01 < 0 | H1 : δ = ES). However, because Bayes
factors are usually not presented on the log scale, we will
adhere to Definition 1.

Inspired by null-hypothesis significance testing one
could also use Definition 2.

Definition 2: The Bayes factor for the comparison of
H0 and H1 is well calibrated if τ is chosen such that

Figure . Probability of correctly preferring H0 and H1 as a func-
tion of τ for N = 100 based on the scaled information Bayes
factor. Note that the optimal τ value according to Definition
 can be found at the crossing of the line labeled P(BF01 >

1|δ = 0) with the power curves P(BF01 < 1|δ = ES) for ES ∈
{.20, .25, .30, .35, .40}. Vertical lines havebeen inserted in thefig-
ure at τ = .125, τ = .225, and τ = .90, to highlight crossings for
effect sizes of ., ., and ., respectively. The vertical line at the
right also marks the optimal τ value according to Definition .

1 − P(BF01 > 1 | H0 : δ = 0) = .05, that is, if P(BF01 >

1 | H0 : δ = 0) = .95.

Still other definitions are conceivable. However, in the
current paper it suffices to work with Definitions 1 and
2 to show that the choice of τ is crucially important to
obtain well-calibrated default Bayes factors.

Figure 1 presents the information that will be used to
support our argument in favor of calibrated prior distri-
butions and against choices like τ = .5 and τ = 1.0.How-
ever, first of all we will elaborate how the 1minus the Type
I error rates P(BF01 > 1 | H0 : δ = 0) and power curves
P(BF01 < 1 | H1 : δ = ES) that are displayed in Figure 1
are computed. The following procedure was used:

� Step 1. A sample of 100,000 data matrices with N =
100 was obtained from a population in which H0 is
true. This corresponds to 100,000 t values sampled
from a t distribution with 99 degrees of freedom and
non-centrality parameter 0. Note that N = 100 cor-
responds to the sample size used by Bem (2011) and
that a t distribution with 99 degrees of freedom is
almost a standard normal distribution.

� Step 2. The scaled information Bayes factor Equation
(2) (Rouder et al. 2009) is a function of the t value,
the sample size N, and τ . For each sampled t value
and τ values .05, .10, . . ., 1.0, the Bayes factor was
computed.

� Step 3. For each τ value 1 minus the Type I error
rate P(BF01 > 1 | δ = 0) was estimated using the
proportion of t values for which BF01 > 1 and dis-
played in Figure 1. A similar approach was used
to compute power curves P(BF01 < 1 | δ = ES), for
ES ∈ {.20, .25, .30, .35, .40}. The difference was that
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Figure . Probability of correctly preferring H0 and H1 as a func-
tion of τ for N = 36 based on the scaled information Bayes
factor. Note that the optimal τ value according to Definition
 can be found at the crossing of the line labeled P(BF01 >

1|δ = 0) with the power curves P(BF01 < 1|δ = ES) for ES ∈
{.20, .25, .30, .35, .40, .50, .60}. Vertical lines have been inserted
in the figure at τ = .33, and τ = 1.0, to highlight crossings for
effect sizes of . and ., respectively. The vertical line at the right
also marks the optimal τ value according to Definition .

100,000 t values were sampled from a t distribu-
tions with 99 degrees of freedom and non-centrality
parameter

√
N × ES, respectively.

As can be seen in Figure 1, the requirement formulated
in Definition 1 is for each effect size achieved at a different
value of τ . For example, for δ = .20 the optimum is τ =
.125 and for δ = .40 the optimum is τ = .90. The require-
ment formulated in Definition 2 is achieved for τ = .90.
Figure 2 presents the same information as Figure 1 for
N = 36. Definition 1 requires a τ value smaller than .10
for δ = .20 and τ = .33 for δ = .40. The requirement for-
mulated in Definition 2 is achieved for τ = 1. As can be
seen comparing Figures 1 and 2, the optimal value of τ

depends on the sample size. Because the sample size is
known after the data are collected, figures that are tailored
to the data set at hand can always be created. From hereon
we will limit ourselves to Figure 1, which is tailored to the
N = 100 in the first experiment of Bem (2011).

Choosing τ according to Definition 2 is straightfor-
ward because only the Type I error rates have to be con-
sidered. Choosing τ according to Definition 1 involves
both 1 minus the Type I error rate and the power curves
and is complicated because the effect size is unknown.
Wagenmakers et al. (2011) use the default value τ = 1.0.
As can be seen in Figure 1 this choice favors H0, which
is almost never incorrectly rejected and leads (especially
for smaller effect sizes) to many incorrect rejections of
H1. Especially in the context of the experiments of Bem
(2011) where, if any, small effects are expected, τ = 1.0 is
a choice that leads to an ill-calibrated Bayes factor. Bem
et al. (2011) use the default value τ = .5. This choice is
optimal if δ = .325. However, Bem et al. (2011) state that
inmost psychological research δ ranges from .2 to .3. That

(prior) knowledge should have translated into the use of
τ = .225, which according to Definition 1 is the optimal
choice for δ = .25.

For the hypotheses at hand H0 : δ = 0 and H1 : δ �= 0
there are basically three options to use Figure 1 to choose
a value of τ in accordance with Definition 1:

The subjective option
Use prior knowledge to create a range of relevant effect
sizes for the application at hand (like Bem et al., 2011,
did) and choose τ accordingly. Note that use of this
option implies that the Bayes factor is no longer default.
Researchers have to provide subjective input. Note also
that in the previous paragraph we used a very simple
approach to choose the optimal value of τ for a range of
effect sizes: choose the optimal value of τ for the mid-
point of the range. Better founded options based on inte-
gration over a prior distribution for the effect sizes are
conceivable. However, these are beyond the scope of the
current paper. We want to provide a research agenda for
Bayesian psychologists who want to improve the use of
the Bayes factor, not execute this agenda. Furthermore, if
researchers are able to specify a prior distribution for the
effect sizes, a default Bayes factor is no longer needed. As
will be illustrated later in the current paper, researchers
can then evaluate the hypotheses of interest using a non-
default, that is, a subjective Bayes factor.

The rational option
Looking at Figure 1 it can be seen that for effect sizes larger
than .30 the choice of τ is relatively unimportant because
the probabilities of a correct decision are (with the excep-
tion of very small τ values) larger than .80 both under
H0 and H1. However, for effect sizes smaller than .30 the
choice of τ is important because for increasing values of τ
the probability of a correct decision ifH1 is true decreases
rapidly. This implies that τ should be chosen such that the
Bayes factor is well-calibrated for smaller effect sizes, say,
effect sizes in the range .20 to .30. This can be achieved,
for example, by using τ = .225, which according to Def-
inition 1 is the optimum for an effect size of .25. What
is given in this paragraph is only a sketch of the rational
option based on reasonable but also partly ad hoc choices
like “probabilities of a correct decision larger than .80 are
sufficient” and “smaller effect sizes range from .20 to .30.”
Providing less ad hoc choices is an issue that should be
added to the research agenda of Bayesian psychologists.

Using the data
Data based approaches to determine τ have been devel-
oped (see, Mulder, Hoijtink, and de Leeuw, 2012, and the
references therein for an overview). Themain idea under-
lying these approaches is to use a small amount of the data
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to determine τ and the remaining data to compute BF01.
Whether these approaches can be implemented such that
the resulting Bayes factors are calibrated according toDef-
inition 1 is a topic that should be added to the research
agenda of Bayesian psychologists.

Using τ = 1.0 Wagenmakers et al. (2011) obtained
BF10 = 2.10 (note that due to a reversal in the indices of
theBayes factor this denotes support in favor ofH1).Using
τ = .50 Bem et al. (2011) obtained BF10 = 3.79. Using
Definition 1, according to the subjective and the rational
approach the optimal value for τ = .225 which renders
BF10 = 5.27. Using Definition 2 and thus τ = .90 renders
BF10 = 2.33.

As can be seen, both the definition of well-calibrated
and the choice of τ make a difference in the amount of
support for H1 and is therefore important. According to
the rules of Kass and Raftery (1995) (but see the next sec-
tion in which these rules are criticized) 2.10 and 2.33 are
notworth a barementioning, 3.79 constitutes positive evi-
dence, and 5.27 is well beyond the demarcation value of
3.0 for positive evidence in favor of psi (but do not for-
get to read the epilogue to the current paper). Conse-
quently, the choice of well-calibrated prior distributions
if the goal is to compare hypotheses by means of a default
Bayes factor (also beyond the context of the rather simple
hypotheses that are considered in the current paper) is an
issue that should be placed high on the research agenda of
Bayesian psychologists.

Interpreting the size of the Bayes factor

In the previous section it was shown that relatively ad hoc
choices of τ will lead to ill-calibrated Bayes factors. Fur-
thermore, possible routes to a choice of τ such that well-
calibrated Bayes factors are obtained were discussed and
illustrated. In this section it will be shown that rules for the
interpretation of the size of the Bayes factor proposed by
Jeffreys (1961) and modified by Kass and Raftery (1995)
are also ad hoc. The rules were that BF01 values in the
range 1–3 and 1/3–1 are considered “anecdotal evidence,”
in the range 3–20 and 1/20–1/3 “positive evidence,” and
in the range 20–150 and 1/150–1/20 “strong evidence.”
Using the running example, it will be shown that there
is no generally applicable foundation for these rules. An
alternative is the use of conditional probabilities, that is,
the probability of a correct decision given the value of the
Bayes factor computed for the data set at hand.

In Figure 3 two conditional probabilities are presented.
If BF01 is smaller than 1.0, the evidence in the data is in
favor of H1. The corresponding conditional probability is
P(H1|BF01, δ = ES), that is, the probability of correctly
choosing H1 if the Bayes factor is smaller than 1.0 and
δ = ES. Note that, aswill be shown in Figure 3, the smaller

Figure . Conditional probabilities of preferring H0 and H1 given
the observed size of the scaled information Bayes factor for
N = 100 and τ = .225. The left hand side of the figure displays
P(H1|BF01, δ = ES) for ES ∈ {.20, .25, .30} the right hand side
of the figure displays P(H0|BF01, δ = ES) for ES ∈ {.20, .25, .30}.
Vertical lines have been added to highlight the conditional proba-
bilities at BF01 = .3 and BF01 = 2.3.

BF01 the larger this conditional probability. It is displayed
in the left-hand panel of Figure 3. If BF01 is larger than 1.0,
the evidence in the data is in favor ofH0. The correspond-
ing conditional probability is P(H0|BF01, δ = ES), that is,
the probability of correctly choosing H0 if the Bayes fac-
tor is larger than 1.0 and δ = ES. Note that, as will be
shown in Figure 3, the larger BF01 the larger this condi-
tional probability. It is displayed in the right-hand panel
of Figure 3. Before discussing Figure 3, it will now be elab-
orated how this figure was constructed:

� Step 1a. Sample 1,000,000 data matrices with N =
100 from a population in which H0 is true. This
corresponds to 1,000,000 t values sampled from a t
distribution with 99 degrees of freedom and non-
centrality parameter 0, that is, almost a standard nor-
mal distribution.

� Step 1b. Sample 1,000,000 data matrices with N =
100 from populations in which H1 is true and δ’s
of .20, .25, and .30, respectively. This corresponds
to 1,000,000 t values sampled from each of three t
distributions with 99 degrees of freedom and non-
centrality parameters 2.0, 2.5, and 3.0, respectively.

� Step 2. Compute the scaled information Bayes fac-
tor Equation (2) based on hN (δ) = N (0, .225) using
each of the 4,000,000 t values. Note that τ =
.225 was obtained using the subjective and rational
approaches discussed in the previous section.

� Step 3. Collect the resulting 4,000,000 Bayes factor
values in the following bins: 0–.2, .2–.4, . . ., 2.6–2.8.
What is displayed on the x-axis in Figure 3 are the
centers of each bin, that is, .3, .5, . . ., 2.7.

� Step 4. For the first five bins (corresponding to Bayes
factors smaller than 1.0) compute the proportion of
Bayes factors in favor of H1, that is, the conditional
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probability P(H1 | BF01, δ = ES) for each value of
ES. If, for example, a Bayes factor in the bin with
center .5 is observed, this is the probability that
this Bayes factor corresponds to a data set sampled
from H1 with δ = ES. Display these proportions in
Figure 3. Similarly, for the last eight bins (corre-
sponding to Bayes factors larger than 1.0) compute
P(H0 | BF01, δ = ES) for each value of ES and dis-
play the corresponding proportions in Figure 3.

Figure 3 can be used to judge the evidence implied by a
certain range of Bayes factor values. Suppose, for example,
the Bayes factor computed using the observed data has a
value falling in the bin with center .3. Then, as can be seen
in Figure 3, irrespective of the effect size (.20, .25, and .30),
the conditional probability of correctly concluding that
the data originated from H1 is about 85%. Without hesi-
tation this can be called “strong evidence” because in only
15% of the cases the preference forH1 is incorrect. Apply-
ing the rules presented in Kass and Raftery (1995), the
conclusion would be that .3 is smaller than 1/3 but larger
than 1/20, that is, positive evidence in favor ofH1. Clearly
the label “positive evidence” is not in agreement with con-
ditional error probabilities of 85%. To give another exam-
ple, suppose the Bayes factor falls in the bin with center
2.3. For ES = .25 the conditional probability of correctly
concluding that the data originated fromH0 is about 90%.
For ES = .20 and ES = .30 the conditional probabilities
are somewhat smaller and higher, respectively. Applying
the rules presented in Kass and Raftery (1995), the con-
clusion would be that 2.3 is smaller than 3 and therefore
constitutes anecdotal evidence in favor of H0. Clearly the
label “anecdotal evidence” is not in agreement with condi-
tional error probabilities of around 90%. The conclusion
must be that labels for different sizes of the Bayes factor are
misleading. A labeling in terms of the conditional proba-
bilities P(H1 | BF01, δ = ES) and P(H0 | BF01, δ = ES) is
much less ambiguous.

Like for Figure 1 the interpretation of Figure 3 is com-
plicated by the fact the effect size is unknown. Here too
this can in principle be handled using subjective, ratio-
nal, and data-based approaches. Which of these options
is to be preferred (also beyond the context of the simple
hypotheses that are used to illustrate the current paper)
requires further evaluation. This constitutes another item
for the research agenda of Bayesian psychologists.

The interested reader is referred to Wetzels, Matzke,
Lee, Rouder, Iverson, and Wagenmakers (2011) who use
effect sizes observed in empirical research instead of fre-
quency calculations to critically reflect on benchmarks
for the interpretation of p values and Bayes factors. Their
work too shows that attaching verbal labels to ill-founded
benchmarks is asking for trouble. We will end our
criticism of fixed benchmarks and arbitrary labels using

a quote from Rosnow and Rosenthal (1989) who address
the label “significant” which is attached to p values smaller
than the benchmark “.05”: “Surely God loves the .06 as
much as the .05.” A much better approach is to use infor-
mation as displayed in Figure 3 to evaluate the size of a
Bayes factor. It allows very clear statements like “if BF01 =
.19 (like it is for the Bem data using τ = .225) it is in
the bin with center .1 which implies that the conditional
probability that the data originated from H1 is about .95”
(see Figure 3). This implies that the size of the Bayes fac-
tor does not constitute “positive” evidence in favor of H1
(as would be concluded using the rules from Kass and
Raftery, 1995), but a conditional probability of .95 that psi
exists (but do not forget to read the epilogue to the current
paper).

Subjective prior knowledge

Rouder et al. (2009), Wagenmakers et al. (2011), and Bem
(2011) use default Bayes factors based on a prior distribu-
tion for δ with amean fixed at zero and τ = .5 or τ = 1.0.
There is no objection against the use of default Bayes fac-
tors if τ is chosen such that the resulting Bayes factors
are well calibrated. However, if a researcher has subjec-
tive opinions these could be translated in subjective prior
distributions thereby “baking a Bayesian omelette after
breaking the Bayesian egg.”

Bem et al. (2011) use aCauchy(0, .5) prior distribution
for δ to reflect their belief that effect sizes in psychologi-
cal research are usually in the range .2–.3. However, this
prior places equal amounts of mass at positive and neg-
ative effect sizes, that is, it reflects the prior believe that
the erotic hit rate is either larger or smaller than .5. This is
not in agreement with Bem’s theory that states that erotic
pictures improve the performance of the participants in
his experiment, that is, the erotic hit rate should be larger
than .5.

A translation of Bem’s ideas into prior distributions for
δ and σ 2 underH0 and H1 could be as follows. If psi does
not exist, each of i = 1, . . . , 100 participants has a prob-
ability of .5 to guess correctly behind which curtain the
erotic picture is hidden. This implies that h(δ) has a den-
sity of 1.0 at δ = 0 and 0.0 elsewhere. Participants have
to evaluate 12 or 18 pairs of curtains. Assuming that the
probability of choosing the correct curtain is about .5, the
variance of the erotic hit rates will be about .5

1−.5/15 =
.017 (note that 15 is the average of the 12 or 18 pairs
of curtains presented to the participants in the experi-
ment). Based on this result a convenient choice for the
prior distribution of σ 2 could be h(σ 2) = U [.012, .022]
(U denotes a uniform distribution). If psi does exist and
based on an expected effect size range of .2–.3, h(δ) =
N (.25, .000625) and h(σ 2) = U [.012, .022] can be used.
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Note that .000625 is obtained as the prior variance if it is
assumed that a range of .2–.3 implies a standard deviation
of .025 (.25 ± 2 × .025 renders the interval .2–.3).

Using a Bayes factor the support in the data for both
hypotheses can be quantified:

BFno psi,psi

=
∫

f (y | δ = 0, σ 2)U [σ 2|.012, .022]dσ 2
∫ ∫

f (y | δ, σ 2)N (δ | .25, .000625)U [σ 2|.012, .022]dδdσ 2

≈ 1/100000
∑100000

m=1 f (yi | δ = 0, σ 2
m)

1/100000
∑100000

m=1 f (yi | δm, σ 2
m)

, (3)

where δm and σ 2
m for m = 1, . . . , 100000 are numbers

sampled from the prior distributions of δ and σ 2, respec-
tively.

We do not have the data from Bem (2011). How-
ever, in Bem’s (2011) first example yi is distributed with
a mean of .031 (corresponding to an erotic hit rate of
.531) and a variance of .015. UsingN = 100 normally dis-
tributed numbers with this mean and variance we com-
puted BFno psi, psi to be .12, that is, the support in the data
is 8.33 times larger for Hpsi than for Hnopsi. According to
the Kass and Raftery (1995) rules, this constitutes positive
evidence in favor of psi (but see the epilogue to the current
paper).

Calibration is not an issue if subjective prior distri-
butions are used. However, the interpretation of the size
of the Bayes factor still is an issue. This issue could
be addressed using a modification of the procedure
described in the previous section. Another issue is of
course: how to arrive at sensible subjective prior distri-
butions. The interested reader referred to O’Hagan, Buck,
Daneshkhah, Eiser, Garthwaithe, Jenkinson, Oakley, and
Rakow (2006) for a book about the elicitation and formal-
ization of subjective prior knowledge and Hoijtink (2012)
for a book about the specification and evaluation of sub-
jective hypotheses (in the book these are called informa-
tive hypotheses).

Resume: Bayesian psychologists should change
the way they use the Bayes factor

Bayesian psychologists should change the way they use
the Bayes factor, or, as a reviewer formulated it, Bayesian
psychologists should use the Bayes factor in the right way.
As was illustrated in the previous section, one option is to
bake a Bayesian omelette (computing Bayes factors for the
hypotheses of interest) by breaking the Bayesian egg (for-
mulating subjective prior distributions) because then cal-
ibration of prior distributions is not an issue. What is an
issue is the formulation of subjective prior distributions
such that the hypotheses of interest are adequately rep-
resented. This topic requires further study and research
by Bayesian psychologists. A good point of departure is

given by the books by O’Hagan et al. (2006) about the
subjective specification of prior distributions and Hoi-
jtink (2012) about the specification and evaluation of sub-
jective hypotheses. What remains important, also if the
Bayesian egg is broken, is the interpretation of the size of
the Bayes factor. What should be reported after hypothe-
ses are evaluated are not only the prior distributions used
and the Bayes factor, but also information like is displayed
in Figure 3 that can be used to interpret the strength of
evidence represented by the size of the Bayes factors that
are obtained.

Another option is to use default hypotheses like
the traditional null and alternative hypotheses that are
omnipresent in psychological research. However, as elab-
orated in the current paper, then it is necessary to usewell-
calibrated prior distributions leading to well-calibrated
Bayes factors. An evaluation of default hypotheses using
the Bayes factor should lead to a report containing four
items:

(1) A definition of well-calibrated inference should be
given. There may be more than one alternative for
the definition ofwell-calibrated used in the current
paper, especially in the context of statisticalmodels
that containmany instead of a single target param-
eter.

(2) Information as displayed in Figures 1 and 2 that is
used to obtain well-calibrated prior distributions.

(3) The strength of evidence quantified using infor-
mation like in Figure 3.

(4) The Bayes factors obtained from an empirical data
set evaluated in the light of the information con-
tained in the first three items.

The development of a well-founded approach for
Bayesian hypothesis evaluation is far from completed.
For each new application a four-step report as described
in the previous paragraph will have to be constructed.
This opens up a new research area for Bayesian psy-
chologist that will continue to exist until well-founded
agreed-upon generally applicable approaches have been
developed. Only if this research area is properly explored,
Bayesian psychologists will be able to add a valuable new
approach to the toolkit of research psychologists.

Epilogue

In the current paper four Bayes factors comparing “psi”
and “no psi” hypotheses were computed. It started with
Bayes factors of 3.79 and 2.10 in favor of psi. It con-
tinued with a Bayes factor of 5.27 based on calibrated
prior distributions and ended with a Bayes factor of 8.33
based on subjective prior distributions. These values con-
stitute evidence in favor of “psi.” However, these results
should not be taken as support for the existence of psi.
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There are other aspects of the analyses executed by Bem
(2011) that have been criticized. The interested reader is
referred to Wagenmakers et al. (2011) and Rouder and
Morey (2011) who discuss the implications of evaluating
many instead of one experiment using the Bayes factor,
and, above all, Ritchie, Wiseman, and French (2012) who
were not able to replicate the results presented in Bem
(2011).

References

Bem, D. J. (2011). Feeling the future: Experimental evidence for
anomalous retroactive influences on cognition and affect.
Journal of Personality and Social Psychology, 100, 407–425.
doi: 10.1037/a0021524

Bem, D. J., Utts, J., & Wesley, J. O. (2011). Must psychol-
ogists change the way they analyze their data? Journal
of Personality and Social Psychology, 101, 716–719. doi:
10.1037/a0024777

Hoijtink,H. (2012). InformativeHypotheses: Theory andPractice
for Behavioral and Social Scientists. Boca Raton, FL: Chap-
man and Hall/CRC.

Jeffreys, H. (1961). Theory of Probability (3rd ed.). Oxford:
Oxford University.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal
of the American Statistical Association, 90, 773–795. doi:
10.1080/01621459.1995.10476572

Liang, F., Paulo, R., Molina, G., Clyde, M., & Berger, J. (2008).
Mixtures of g priors for Bayesian variable selection. Journal
of the American Statistical Association, 103, 410–423. doi:
10.1198/016214507000001337

Mulder, J., Hoijtink, H., & de Leeuw, C. (2012). BIEMS, a For-
tran90 program for calculating Bayes factors for inequality
and equality constrained models. Journal of Statistical Soft-
ware, 46, 2. doi: 10.18637/jss.v046.i02

O’Hagan, A. (1995). Fractional Bayes factors formodel compar-
isons (with discussion). Journal of the Royal Statistical Soci-
ety, Series B, 57, 99–138.

O’Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garth-
waithe, P. H., Jenkinson, D. J. , Oakley, J. E., & Rakow, T.

(2006). Uncertain Judgements. Eliciting Experts’ Probabili-
ties. Chichester: Wiley.

Ritchie, S. J., Wiseman, R., & French, C. C. (2012). Failing
the future: Three unsuccessful attempts to replicate Bem’s
‘retroactive facilitation of recall’ effect. Plos One, 7. doi:
10.1371/journal.pone.0033423

Robert, C. P., Chopin, N., & Rousseau, J. (2009). Harold Jef-
freys’s theory of probability revisited. Statistical Science, 2,
141–172. doi: 10.1214/09-STS284

Rosnow, R., & Rosenthal, R. (1989). Statistical procedures and
the justification of knowledge in psychological science.
American Psychologist, 44, 1276–1284. doi: 10.1037/0003-
066X.44.10.1276

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson,
G. (2009). Bayesian t tests for accepting and rejecting the
null hypothesis. Psychonomic Bulletin and Review, 16, 225–
237. doi: 103758/PBR.16.2.225

Rouder, J. N., & Morey, R. D. (2011). A Bayes factor meta-
analysis of Bem’s ESP claim. Psychonomic Bulletin and
Review, 18, 682–698. doi: 10.3758/s13423-011-0088-7

Savage, L. J. (1961). The foundations of statistical inference
reconsidered. In J. Neyman, (Ed.), Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Proba-
bility, Volume 1: Contributions to the Theory of Statistics, pp.
575–586. BerkeleyCA: University of California.

Trafimow, D. (2003). Hypothesis testing and theory evaluation
at the boundaries: Surprising insights from Bayes’s theo-
rem. Psychological Review, 3, 526–535. doi: 10.1037/0033-
295X.110.3.526

Wagenmakers, E. J. (2007). A practical solution to the pervasive
problems of p values. Psychonomic Bulletin and Review, 14,
779–804. doi: 10.3758/bf03194105

Wagenmakers, E. J.,Wetzels, R., Borsboom, D., &Van derMaas,
H. L. (2011). Why psychologists must change the way they
analyze their data: The case of psi. [Commentary on Bem
(2011)]. Journal of Personality and Social Psychology, 100,
426–432. doi: 10.1037/a0022790

Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iver-
son, G. J., & (2011). Statistical evidence in experimen-
tal psychology: An empirical comparison using 855 t
tests. Perspectives on Psychological Science, 6, 291–298. doi:
10.1177/1745691611406923


	Abstract
	References

