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ABSTRACT
The latentMarkov (LM)model is a popularmethod for identifying distinct unobserved states and tran-
sitions between these states over time in longitudinally observed responses. The bootstrap likelihood-
ratio (BLR) test yields the most rigorous test for determining the number of latent states, yet little is
knownabout power analysis for this test. Power couldbe computed as theproportionof thebootstrap
p values (PBP) for which the null hypothesis is rejected. This requires performing the full bootstrap
procedure for a large number of samples generated from themodel under the alternative hypothesis,
which is computationally infeasible inmost situations. This article presents a computationally feasible
shortcut method for power computation for the BLR test. The shortcut method involves the following
simple steps: (1) obtaining the parameters of the model under the null hypothesis, (2) constructing
the empirical distributions of the likelihood ratio under the null and alternative hypotheses via Monte
Carlo simulations, and (3) using these empirical distributions to compute the power. We evaluate the
performance of the shortcut method by comparing it to the PBP method and, moreover, show how
the shortcut method can be used for sample-size determination.

In recent years, the latentMarkov (LM)model has proven
useful to identify distinct underlying states and the tran-
sitions over time between these states in longitudinally
observed responses. In LM models, as in latent class
models, or more generally in finite mixture models, the
observed responses are governed by a set of discrete
underlying categories, which are named states, classes,
or mixture components. Moreover, the LM model allows
transitions between these states from one timepoint to
another; that is, the state membership of respondents can
change during the period of observation. The LM model
finds its application, for example, in educational sciences
to study how the interests of students in certain subjects
changes over time (Vermunt, Langeheine, & Bockenholt,
1999) and in medical sciences to study the change in
health behavior of patients suffering from certain diseases
(Bartolucci, Farcomeni & Pennoni, 2010). Various exam-
ples of applications in social, behavioral, and health sci-
ences are presented in the textbooks by Bartolucci et al.
(2013) and Collins and Lanza (2010).

In most research situations, including those just men-
tioned, the number of states is unknown and must be
inferred from the data itself. The bootstrap likelihood-
ratio (BLR) test, proposed by McLachlan (1987) and
extended by Feng and McCulloch (1996) and Nylund,
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Asparouhov and Muthén (2007), is often used to test
hypotheses about the number of mixture components.
These previous studies focused on p value computation
rather than on power computation for the BLR test, which
is the topic of the current study.

Power computation is straightforward if, under certain
regularity conditions, the theoretical distributions of the
test statistic under the null and the alternative hypothe-
sis are known. This is not the case for the BLR test in LM
models. The power of a statistical test can be computed
as the proportion of the p values smaller than the chosen
alpha.When using the BLR statistic to test for the number
of states in LMmodels, such a power calculation becomes
computationally expensive because it requires perform-
ing the bootstrap p value computation for multiple sets of
data. As explained in detail in the following, it requires
generatingM data sets from the model under the alterna-
tive hypothesis, and for each data set, estimating themod-
els under the null and alternative hypotheses to obtain the
LR value. Whether the null hypothesis will be rejected for
a particular generated data set is determined by comput-
ing the bootstrap p value, which in turn requires (a) gen-
erating B data sets from the model estimates under the
null hypothesis and (b) estimating the models under the
null and alternative hypotheses using these B data sets.
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Hereafter, we refer to this computationally demand-
ing procedure, which involves calculating the power as
the proportion of the bootstrap p value for which the
model under the null hypothesis is rejected, as the PBP
method.

Because using the PBPmethod is infeasible inmost sit-
uations, we propose an alternative method that we refer
to as the shortcut method. Computing the power using
the shortcut method involves constructing the empirical
distributions of the LR under both the null and alterna-
tive hypotheses. We show how the asymptotic values of
the parameters of the model under the null hypothesis
can be obtained from a certain large data set, and these
parameters will in turn be used in the process to obtain
the distribution of the LR statistic under the null hypoth-
esis. As explained in detail in the following, the distribu-
tion of the LR under the null hypothesis is used to obtain
the critical value, given a predetermined level of signifi-
cance. Given this critical value, we compute the power by
simulating the distribution of the LR under the alterna-
tive hypothesis. Using numerical experiments, we exam-
ine the data requirements (e.g., the sample size, the num-
ber of timepoints, and the number of response variables)
that yield reasonable levels of power for given population
characteristics.

The remaining part of the article is organized as fol-
lows. We first describe the LMmodel and the BLR test for
determining the number of states.We then provide power
computation methods for the BLR test and discuss how
these methods can be applied to determine the required
sample size. We also present numerical experiments that
illustrate the proposed methods of power and sample
size computation. The article ends with a discussion and
conclusions.

The LMmodels

Let Yt = (Yt1,Yt2,Yt3, . . .YtP) for t = 1, 2, 3,…, T be the
P-dimensional response variable of interest at timepoint t.
Denoting the latent variable at timepoint t byXt, in an LM
model the relationships among the latent and observed
response variables at the different timepoints can be
represented using the simple path diagram shown in
Figure 1.

An LM model is a probabilistic model defining the
relationships between the time-specific latent variables
Xt (e.g., between X1, X2, and X3) and the relationships
between the latent variables Xt and the time-specific vec-
tors of observed responses Yt (e.g., X1 with Y1). In the
basic LMmodel, the latent variables are assumed to follow
a first-orderMarkov process (i.e., the state membership at
t + 1 depends only on the state occupied at timepoint t),

Figure . Simple path diagram.

and the response variables are assumed to be locally inde-
pendent given the latent states. From these assumptions,
we define the S-state LMmodel as amixture density of the
form

p(yi, �) =
S∑

x1=1

S∑
x2=1

S∑
x3=1

. . .

S∑
xT=1

p(x1)

×
T∏
t=2

P(xt |xt−1)

P∏
j=1

p(yt ji|xt ),

where yi denotes the vector of responses for subject i over
all the timepoints, ytji the response of subject i to the jth
variable measured at timepoint t, xt a particular latent
state at timepoint t, and � the vector of model parame-
ters (Vermunt et al., 1999; Bartolucci et al., 2013).

The LM model has three sets of parameters:
1. The initial state probabilities (or proportions) p(X1

= s) = π s satisfying
∑S

s=1 πs = 1. That is, the
probability of being in state s at the first timepoint;

2. The transition probabilities p(Xt = s|Xt−1 = r) =
π t
s|r satisfying

∑S
s=1 π t

s|r = 1. These transition
probabilities indicate the probabilities of remain-
ing in a state or switching to another state, con-
ditional on the state membership at the previous
timepoint. All transition probabilities are conve-
niently collected in a transition matrix in which
the entry in row r and column s represents the
probability of a transition from state r at timepoint
(t − 1) to state s at timepoint t;

3. The state-specific parameters of the density
function p(ytji|xt), which govern the associa-
tion between the latent states and the observed
response variables. The choice of the specific
density form for p(ytji|xt), which depends on the
scale type of the response variable, determines the
state-specific parameters for this density function.
With continuous responses, one may, for example,
define the state-specific density to be a normal dis-
tribution, for which the parameters are the mean
μt

j|s and the variance σ 2t
j|s (Schmittmann, Dolan,

van der Maas & Neale, 2005). With dichotomous
and nominal responses, the multinomial dis-
tribution is assumed, for which the parameters
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become the conditional response probabilities
p(yt ji|xt = s) = θ t

j|s (Collins & Wugalter, 1992;
Vermunt, Tran, & Magidson, 2008). The state-
specific parameters and the transition probabilities
may vary across time, hence the subscript t, but
are assumed to be time-homogeneous during the
remainder of this article.

Given a sample of size n, the parameters are typically
estimated by maximizing the log-likelihood function:

l(�) =
n∑

i=1

log p(yi, �). (1)

The search for the values of � that maximize the
log-likelihood function in Equation (1) can be carried
out with the expectation-maximization (EM) algorithm
(Dempster, Laird, & Rubin, 1977;McLachlan&Krishnan,
2007), which alternates between computing the expected
complete data log-likelihood function (E step) and updat-
ing the unknown parameters of interest by maximizing
this function (M step). For LM models, a special version
of the EMalgorithmwith a computationallymore efficient
implementation of the E stepmay be used. This algorithm
is referred to as the Baum-Welch or forward-backward
algorithm (Bartolucci et al., 2010; Baum, Petrie, Soules,
& Weiss 1970; Vermunt et al., 2008).

As already discussed, identifying the number of latent
states is a common goal in LM modeling and typically
the first step in the analysis. Testing hypotheses about
the number of states involves estimating LMmodels with
increasing numbers of states and checking whether the
model fit is significantly improved by adding one or more
states. More formally, the hypotheses about the number
of states may be specified as H0: S = r versus H1: S = s,
where r < s. Usually, the r and s-state models differ by
one state. For example, the test for H1: 3-state LM model
against H0: 2-state LM model. However, in principle, the
comparison can also be between the 3-state and the 1-state
LM model. In this article, we restrict ourselves to the sit-
uation in which r = s − 1.

The LR statistic for this type of test is defined as

LR = 2(l(�̂s) − l(�̂r)), (2)

where l(·) is the log-likelihood function and �̂s and �̂r
are the maximum likelihood estimates under the alter-
native and null hypothesis, respectively. In the standard
case, under certain regularity conditions, it is generally
assumed that the LR statistic in Equation (2) follows a cen-
tral chi-square distribution under the null hypothesis and
a noncentral chi-square distribution under the alternative
hypothesis (Steiger, Shapiro, & Browne, 1985). In such a
case, one may use the (theoretical) chi-square distribu-
tionwith the appropriate number of degrees of freedom to

compute the p value of the LR test given a predetermined
level of significance α or the power of the LR test given
the population characteristics ofH1 model. These asymp-
totic distributions however do not apply when using the
LR statistic for testing the number of latent states (Aitkin,
Anderson, & Hinde, 1981). One reason is that the H0
model with S− 1 states is obtained from theH1 model by
restricting the initial probability for state S and the tran-
sition probabilities toward state S to 0. This violates the
regularity condition that restriction should not be on the
boundary of the parameter space. In addition, when state
S is assumed to have a zero probability of occurrence, the
parameters for this state are unidentified, which yields a
violation of the regularity condition that all parameters in
the H0 should be identifiable.

One may however apply the method of parametric
bootstrapping to construct the empirical distribution of
the LR and subsequently use the contructed empirical dis-
tribution for p value computation. Due to advances in
computing facilities, this can be applied readily. Using
parametric bootstrapping, the empirical distribution of
the LR statistic under the null hypothesis is constructed
by generating B independent (bootstrap) samples accord-
ing to a parametric (probability) model P(y, �̂r), where
�̂r itself is an estimate based on a sample of size n (Feng &
McCulloch, 1996; McLachlan, 1987; Nylund et al., 2007).
Denoting the bootstrap samples by yb (for b = 1, 2, 3,…
B), Equation (2) becomes

BLRb = 2
(
l
(
�̂b

s

)
− l

(
�̂b

r

))
, (3)

where BLRb denotes the BLR, computed for (bootstrap)
sample yb.

So sampling B data sets from the r-state LM model
defined by P(y, �̂r) and computing the BLR statistic as
shown in Equation (3) for each of these data sets yields the
BLR distribution under the null hypothesis. This distribu-
tion is then employed in the bootstrap p value computa-
tion. In short, the bootstrap p value computation proceeds
as follows:

Step 1. Treating the ML parameter estimates as if they
were the “true” parameter values for the r-state
LM model, generate B independent (boot-
strap) samples from the r-state LM model.

Step 2. Compute the BLRb values as shown in Equa-
tion (3), which requires us to fit the r- and s-
state models using the bootstrap samples gen-
erated in Step 1.

Step 3. Compute the bootstrap p value as p =
1
B

∑B
b=1 I(BLRb > LR), where I(·) is the

indicator function, which takes on the value
1 if the argument BLRb > LR holds and 0
otherwise. The decision concerning whether
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the r-state LM model should be retained or
rejected in favor of the s-state model is then
determined by comparing this p value with
the predetermined significance level α.

Power analysis for the BLR test

Statistical power analyses are often performed to (a)
determine the post hoc power of a study (i.e., given a cer-
tain sample size, number of timepoints, and number of
response variables) and (b) a priori determine the sample
size (or other design factors such as the number of time-
points or the number of response variables) required to
achieve a certain power level. In both cases, we assume
that the population parameters are known (in a priori
analyses a range of expected parameter values may be
used) and other factors such as the number of indicator
variables and the number of classes are fixed. In what fol-
lows, we first show how the bootstrapping procedure dis-
cussed previously can be used for power computation and
subsequently present the computationally more efficient
shortcut method for power and sample-size computation
in LM models.

Power computation

In this subsection, we present two alternative methods for
computing the power of the BLR test. The first option,
the PBP method, involves computing the power as the
proportion of the bootstrap p values (PBP) for which H0
is rejected. More specifically, the PBP method for power
computation involves the following steps:

Step 1. GenerateM independent samples, each of size
n, from the parametric model P(y, �s), where
�s is the given parameter values under H1.

Step 2. For each samplem (m = 1, 2, 3,…,M) in Step
1, compute the likelihood ratio LRm as shown
in Equation (2).

Step 3. Obtain the bootstrap p value of each samplem
as pm = 1

B
∑B

b=1 I(BLRbm > LRm), where LRm
is the LR of samplem from theH1 population;
BLRbm is the corresponding BLR for bootstrap
sample b; and I(·) is the indicator function as
defined in the preceding.

Step 4. The actual power associated with a sample of
size n is computed as the proportion of the H1
data sets in which H0 is rejected. That is,

PBP = 1
M

M∑
m=1

I(pm < α), (4)

where the indicator function I(·) and α are as
defined in the preceding.

As mentioned previously, such a method of power
computation is computationally expensive and requires
a considerable amount of computer memory. For exam-
ple, setting M = 500 and B = 99 requires us to generate
and analyzeM(B + 1) = 50,000 data sets. In addition, to
achieve a good approximation to the sampling distribu-
tion, which, if not well approximated, could affect the p
value (and subsequently the power), bothM and B should
be large enough.

For LM models, for which model fitting requires iter-
ative procedures, power computation by using the PBP
method is computationally too intensive in practice. We
propose a computationally more efficient method, which
we call the shortcut method. It works very much as the
standard power computation (see for example, Brown,
Lovato, & Russell, 1999), with the difference that we con-
struct the distributions under H0 and H1 by Monte Carlo
simulation. In Figure 2, these two distributions are indi-
cated with curve H0 andH1, respectively. As explained in
the following, the distribution under H0 is used to obtain
the critical value (CV), and the distribution under H1 is
used to compute the power given the CV.

First, the H0 “population” parameters needed to com-
pute the CV should be obtained. This can be achieved by
creating an exemplary data set, which is a data file with all
possible response patterns and the relative frequencies of
the response patterns underH1 as weights (O’Brien, 1986;
Self, Mauritsen, & Ohara, 1992). Because in LM models
with more than a few indicators and/or timepoints the
number of possible response pattern is very large, this
method cannot always be applied. Therefore, as an alter-
native, using the parameter values of the H1 model, we

Figure . Distributions of LR under the null and alternative
hypotheses.
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generate a large data set (e.g., 10,000 observations), which
is assumed to represent the hypothetical H1 population.
Estimating theH0model (i.e., the r-state LMmodel) using
this large data set yields the pseudo parameter values for
the r-statemodel. TheseH0 parameters are then employed
to construct the distribution of the LR under the null
hypothesis. That is, given the estimated parameters of the
H0 model, generate K data sets (each of size n), and for
each of these data sets, compute the LR as shown in Equa-
tion (2). Next, order the LR values in such a way that LR[1]
� LR[2] � LR[3] ≤ · · · ≤ LR[K]. Given the nominal level α,
compute the CV as

CV(1−α) = {LRk : p(LR > LR[k]|H0) = α}. (5)

Similarly, the distribution of the LR under the alter-
native hypothesis is constructed using M samples of the
H1 model. That is, given the parameters of the H1 model,
we generateM independent samples from the s-state LM
model and for each of these samples, compute the LR as
shown in Equation (2). For sufficiently largeM, the distri-
bution of the LR under the alternative hypothesis approx-
imates the H1 curve in Figure 2. The power is then com-
puted as the probability that the LR value belongs to the
shaded region of Figure 2. That is,

power= p(LR>CV(1−α)|H1)=
∑M

m=1 I(LRm>CV(1−α))

M
,

(6)
where I(·) is the indicator function, indicating whether
the LR value (based on the b sample of theH1 population)
exceeds the CV1−α value.

So both the PBP and the shortcut methods require M
samples given H1 and the calculation of the LR for each
of these samples (i.e., steps 1 and 2 of the PBP power cal-
culation). The saving in computation time of the short-
cut method lies in the omission of the full bootstrap
for each of the M samples from the H1 model. Rather,
the LRs given H1 are now evaluated against the approxi-
mated distribution of LRs givenH0. Therefore, compared
to the PBP-based power computation, the number of data
sets to be generated and analyzed is much smaller when
using the shortcut method. For example, forM= 500 and
K = 500, we analyzeM + K = 1,000 data sets. To further
explain the computational time gain, let the time required
to calculate the PBP-based power by analyzingM(B + 1)
data sets be ω. The time required to compute the power
by the shortcutmethod—which requires analyzingM+K
data sets—can be shown to be ( 1

B+1 + K
M+ B

M
)ω. For large

M, and under the setting with B = K = M, this com-
putational time may simplify to ( 2

M )ω. In other words,
the shortcut method is M/2 times faster than the PBP
method.

The shortcut method of power computation pre-
sented in the preceding can easily be implemented using
statistical software for LM analysis as outlined in the
following.

1. Obtain the H0 population parameters: Given the
parameters of the H1 model, generate a large
dataset (e.g., 10,000 observations) from the H1
population. For this purpose, any software that
allows generating a sample from an LM model
with fixed parameter values can be used. For the
numerical studies shown in the following, we used
the syntax module of the Latent GOLD 5.0 pro-
gram (Vermunt & Magidson, 2013). Using this
large data set, then estimate the parameters of the
H0 model.

2. Compute the CV: Given the estimated parameters
of the H0 model, generate K data sets (each of size
n) and for each of these data sets, compute the LR
as shown in Equation (2). Note that this requires
estimating both the r- and the s-state models. For
a sufficiently large K, the LR distribution approxi-
mates the population distribution of the LR under
the null hypothesis (i.e., theH0 curve in Figure 2).
We use this distribution to compute the CV of the
LR test as shown in Equation (5).

3. Compute the power: Given the parameters of the
H1 model, obtain the empirical distribution of the
LR. That is, generate M data sets from H1 model,
and using these data sets, compute the LR as shown
in (2). Given the CV and the empirical distribution
of the LR under H1, compute the power as shown
in Equation (6).

Sample-size computation

In this section, we show how the procedure described in
the preceding for power computation using the shortcut
method can be applied for sample-size determination. For
samplesize determination, step 1 of the power compu-
tation procedure (discussed under power computation)
remains the same. The last two steps are however repeated
for different trial sample sizes. More specifically, suppose
the investigator wishes to achieve a certain prespecified
power level (say, power = .8 or larger) while avoiding
the sample size becoming unnecessarily large. Then, the
LR power computation is performed as outlined in steps
2 and 3, starting with a certain sample size n1. In the
following we provide power curves that can be used as a
guidance to locate this starting sample size. If the power
obtained based on these n1 observations is lower than .8,
repeat step 2 and 3 by choosing n2 larger than n1. If the
chosen n1 results in larger power instead (and we want
to optimize the sample size), choose n2 smaller than n1
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and repeat steps 2 and 3. In this way, the power compu-
tation procedure is repeated for different trial samples of
varying sizes, and from these trial samples, the one that
best approximates the desired power level is used as the
sample size for the study concerned. In our numerical
study, we repeated this power computation procedure
for different sample sizes, which resulted in a series of
power values. By plotting these power values against the
corresponding sample size, we obtain a power curve from
which one can easily determine the minimum sample
size that satisfies the power requirements, for example,
that the power should be larger than .8.

When designing a longitudinal study, it is also of inter-
est to determine the number of timepoints required to
achieve a certain power level. For a fixed sample size, a
fixed number of response variables, and a priori speci-
fiedH1 parameter values, the procedures discussed in the
preceding for sample-size determination can be applied
to the number of timepoints determination as well. More
specifically, in steps 2 and 3 of the power computation
procedures, the number of timepoints T should be varied
instead of the sample size n.

Numerical study

Anumerical study was conducted to (a) illustrate the pro-
posed power and sample-size computation methods and
(b) investigate whether the shortcut method and the PBP
method give similar results. This numerical study has an
additional benefit for applied researchers using the LM
model: Given the population characteristics, the result-
ing BLR power tables and the power curves shown in the
following may help to make an informed decision about
the data requirements in testing the number of states
for the LM model. More specifically, the results of this
numerical study may be used as a guidance by applied
researchers to locate the initial trial sample size when
computing the required sample size to achieve a desired
power level, as discussed in the preceding.

Numerical study setup

The power of the BLR test for the number of states in LM
models depends on several design factors and population
characteristics. See, for example, Gudicha, Schmittmann
and Vermunt (2016), who studied factors affecting the
power in LMmodels. The design factors include the sam-
ple size, the number of timepoints, and the number of
response variables. The number of latent states and the
variousmodel parameter values (i.e., parameter values for
the initial state proportions, for the state transition proba-
bilities, and for the state-specific densities) define the pop-
ulation characteristics (Collins &Wugalter, 1992).

In this numerical study, we varied both the design fac-
tors and the population characteristics. The design factors
varied were the sample size (n = 300, 500, or 700), the
number of timepoints (T = 3 or 5), and the number of
response variables (P = 6 or 10). The population charac-
teristics under the alternative hypothesis (i.e, the s-state
LM model for S = 3 or 4) were specified to meet vary-
ing levels of (a) initial state proportions (balanced,moder-
ately imbalanced, highly imbalanced), (b) stability of state
membership (stable, moderately stable, unstable), and (c)
state-response associations (weak, moderate, strong) as
follows.

In line with Dias (2006), the initial state proportions
were specified using πs = δs−1∑S

h=1 δh−1 . We set the values of δ
to 1, 2, and 3, which correspond to balanced, moderately
imbalanced, highly imbalanced initial state proportions,
respectively. For the transition matrix, we used the speci-
fication suggested by Bacci, Pandolfi, and Pennoni (2014),
which under the assumption of time homogeneity gives
πs|r = ρ|s−r|

∑S
h=1 ρ|h−r| . Setting the values of ρ to ρ = .1, .15, and

.3 yields what we referred to above as stable, moderately
stable, and unstable state membership. In this numer-
ical study, we restricted ourselves to the situation that
the response variables of interest are binary and that the
state specific conditional response probabilities are time-
homogeneous. For S = 3, we set the state-specific condi-
tional response probabilities to high for state 1 (θ j|1 = .75,
.8, and .85 for all the response variables), low for state 3
(θ j|3 = 1− .75, 1− .8, and 1− .85 for all the response vari-
ables), and medium for state 2 (θ j|2 = .58, .65, and .7 for
all the response variables). These three settings of the con-
ditional response probabilities result in what we referred
to in Table 1 as weak, medium, and strong state-response
variables association, respectively. For S = 4, we used the
same setting of conditional response probabilities as for
S = 3, but now defined the conditional response proba-
bilities of the remaining state as high (= θ j|1) for half of
the response variables and low (= θ j|s) for the other half.

The design factors and population characteristics were
fully crossed, resulting in 3 (sample size) × 2 (number
of timepoints) × 2 (number of response variables)×

Table . Distribution of conditional response probabilities across
states.

S=  S= 
State-responses
association levels s=  s=  s=  s=  s=  s=  s= 

Weak . . . . . . or. .
Moderate . . . . . . or . .
Strong . . . . . . or. .

Note. Weak= low conditional probabilities for all the response variables; mod-
erate = medium conditional probabilities for all the response variables;
strong= high conditional probabilities for all the response variables.
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Table . Power of the BLR test for H: S=  versus H: S= : The case of equal initial state size (δ = ) and six indicator variables (P= ).

State-responses associations

Weak Moderate Strong

Index of state transition Index of state transition Index of state transition

Sample size Method ρ = . ρ = . ρ = . ρ = . ρ = . ρ = . ρ = . ρ = . ρ = .

T=   shortcut . . . . . . . . .
PBP . . . . . . . . .

 shortcut . . . . . . . . .
PBP . . . . . . . . .

 shortcut . . . . . . . . .
PBP . . . . . . . . .

T=   shortcut . . . . . . . . .
PBP . . . . . . . . .

 shortcut . . . . . .  . .
PBP . . . . . .  . .

 shortcut . . .  . .   .
PBP . . .  . .   .

Note. T = number of timepoints; P = number of response variables, δ = initial state proportion index; ρ = state transition probability index; PBP = proportion
bootstrap p value rejected. Weak= low conditional probabilities for all the response variables; moderate=medium conditional probabilities for all the response
variables; and strong= high conditional probabilities for all the response variables.

2 (number of states) × 3 (initial state proportions) ×
3 (transition probability matrices) × 3 (state-response
variables association levels) = 572 simulation conditions.
For each simulation condition, a large data set (of 10,000
observations) was generated according to the H1 model,
and theH0 parameters were estimated using this data set.
Next, for each simulation condition, K = 1,000 samples
were generated according to the H0 parameters, and the
CV was computed, assuming α = .05. Given a specified
sample size, number of timepoints, and the parame-
ter values under the alternative hypothesis, the power
was then computed according to M = 1000 samples
generated according to the H1 model as discussed in
the preceding. To minimize the problem of local max-
ima, we use multiple random start sets for parameter

estimation in combination with specifying the true
population parameter value as the starting value.

Results

The results obtained from the numerical study for power
computation by the shortcut and PBPmethods are shown
in Tables 2–5. As can be seen from these tables, the power
values of the two methods are in general comparable.
Although the power values obtained by the shortcut
method seem to be slightly larger, overall differences do
not lead to different conclusions regarding the hypotheses
about the number of states. The most important added
value of the shortcut method is, however, that it is M

2
times faster than the PBP method, where M refers to the

Table . Power of the BLR test for H: S=  versus H: S= : The case of imbalanced initial state size (δ =  or ) with six indicator variables
(P= ) and three timepoints (T= ).

State-responses associations

Weak Moderate Strong

Index of state transition Index of state transition Index of state transition

Sample size Method ρ = . ρ = . ρ = . ρ = . ρ = . ρ = . ρ = . ρ = . ρ = .

δ =   shortcut . . . . . . . . .
PBP . . . . . . . . .

 shortcut . . . . . . . . .
PBP . . . . . . . . .

 shortcut . . . . . . . . .
PBP . . . . . . . . .

δ =   shortcut . . . . . . . . .
PBP . . . . . . . . .

 shortcut . . . . . . . . .
PBP . . . . . . . . .

 shortcut . . . . . . . . .
PBP . . . . . . . . .

Note. T= number of timepoints; P= number of response variables; δ = initial state proportion index; ρ = state transition probability index; and PBP= proportion
bootstrap p value rejected. Weak= low conditional probabilities for all the response variables; moderate=medium conditional probabilities for all the response
variables; strong= high conditional probabilities for all the response variables.
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Table . Power of the BLR test for H: S=  versus H: S= : The case of equal initial state size (δ = ) and three timepoints (T= ).

State-responses associations

Weak Moderate Strong

Index of state transition Index of state transition Index of state transition

Sample size Method ρ = . ρ = . ρ = . ρ = . ρ = . ρ = . ρ = . ρ = . ρ = .

P=   shortcut . . . . . . . . .
PBP . . . . . . . . .

 shortcut . . . . . . . . .
PBP . . . . . . . . .

 shortcut . . . . . . . . .
PBP . . . . . . . . .

P=   shortcut . . . . . . . . .
PBP . . . . . . . . .

 shortcut . . . . . .   .
PBP . . . . . .   .

 shortcut . . . . . .   
PBP . . .   .   .

Note. T = number of timepoints; P = number of response variables; δ = initial state proportion index; ρ = state transition probability index; PBP = proportion
bootstrap p value rejected. Weak= low conditional probabilities for all the response variables; moderate=medium conditional probabilities for all the response
variables; strong= high conditional probabilities for all the response variables.

number of Monte Carlo and bootstrap samples for the
shortcut and the PBP methods, respectively.

If we now turn to the power values for various com-
binations of data and population characteristics, we see
in Table 2 that the power of the BLR test increases with
sample size and the number of timepoints. Comparison
of the effect of sample size and the number of timepoints
shows that holding the other factors constant, increas-
ing the number of timepoints has a larger effect on the
power than increasing the sample size. Keeping the other
design factors constant, the power of the BLR test in gen-
eral increases with strongermeasurement conditions (i.e.,
weak tomoderate to strong state-response variable associ-
ations) and with more stable state memberships (smaller
transition probabilities).

While in Table 2 we reported the results for equal ini-
tial state proportions, in Table 3, we report the results
for unequal initial state proportions. As can be seen, the
BLR power drops when the initial state size is imbalanced.
Themore imbalanced the initial state sizes the smaller the
power. Table 4 shows the effect of the number of indica-
tor variables on the power of the BLR test: Power gen-
erally increases when the number of indicator variables
increases. Comparing the results in Table 2 with those in
Table 5, holding the other factors constant, the power of
the BLR test to reject H0: S = 2 in favor of H1: S = 3 is in
general larger than for H0: S = 3 against H1: S = 4.

In summary, the results reported in Tables 2–5 show
that in the weak measurement condition, the power of
the BLR test is in general very low, indicating that very

Table . The power of the BLR test for testing H: S=  versus H: S= : The case of equal initial state size and six indicator variables.

State-responses associations

Weak Moderate Strong

Index of state transition Index of state transition Index of state transition

Number of timepoints Sample size ρ = . ρ = . ρ = . ρ = . ρ = . ρ = . ρ = . ρ = . ρ = .

T=   shortcut . . . . . . . . .
PBP . . . . . . . . .

 shortcut . . . . . . . . .
PBP . . . . . . . . .

 shortcut . . . . . . . . .
PBP . . . . . . . . .

T=   shortcut . . . . . . . . .
PBP . . . . . . . . .

 shortcut . . . . . . . . .
PBP . . . . . . . . .

 shortcut . . . . . .   .
PBP . . . . . .   .

Note. T = number of timepoints; δ = initial state proportion index; ρ = state transition probability index; PBP = proportion bootstrap p value rejected. Weak =
low conditional probabilities for all the response variables; moderate=medium conditional probabilities for all the response variables; strong= high conditional
probabilities for all the response variables.



MULTIVARIATE BEHAVIORAL RESEARCH 657

Figure . Power by sample size for a -state LM population model with varying levels of measurement parameters, equal initial state
proportions, six response variables, and three timepoints.

Figure . Power by sample size for a -state LM population model with varying levels of transition parameters, equal initial state propor-
tions, six response variables, and three timepoints.

large sample sizes may be required to achieve an accept-
able power level in these conditions. Although the qual-
ity of state-response association plays a dominant role,
the power computed for the weak measurement condi-
tion improved substantially by increasing the number of
response variables or timepoints. In addition, situations
in which the state membership is unstable (e.g., ρ = .3 or
larger) need special care, since the power is low in such
situations.

Figures 3 and 4 present a power curve (as a function of
sample size) for different settings of the parameter values
of the 3-state LMpopulationmodel with equal initial state
proportions, six response variables, and three timepoints.
Figure 3 shows that when the state-response associations
are weak, to achieve a power of .8 or larger, we may
require a sample of 1,000 or more when state member-
ship is stable, and a sample of 2,000 or more when state

membership is unstable. We can also see from the same
figure that when the state-response associations are rather
strong, the required sample sizes may drop to less than
500 and 700, respectively, for stable and unstable state
membership conditions. As can be seen from Figure 4, to
achieve a power level of .8 when the state memberships
are moderately stable, sample sizes of at least 1,200, 850,
and 500, may be required in the weak, medium, and
strong measurement conditions, respectively.

Discussion and conclusion

This study addressed methods of power analysis for the
BLR when testing hypotheses on the number of states in
LM models. Two alternative methods of power compu-
tation were discussed: the proportion of significant boot-
strap p values (PBP) and the shortcut method. Using the
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PBP method, power is computed by first generating a
number of independent data sets under the alternative
hypothesis and then, for each of these data sets, comput-
ing the p value by applying a parametric bootstrap pro-
cedure (McLachlan, 1987). The PBP method is computa-
tionally very demanding as it requires performing the full
bootstrap for each of M samples from the H1 model. We
proposed solving this computational problem using the
shortcut method. The shortcut method works very much
as a standard power computation, with the difference that
instead of relying on the theoretical distributions (a cen-
tral chi-square under the null hypothesis and a noncentral
chi-square under the alternative hypothesis), the distribu-
tions under H0 and H1 are constructed by Monte Carlo
simulation.

A numerical study was conducted to (a) illustrate the
proposed power analysis methods and (b) compare the
power obtained by the shortcut and the PBP methods.
As expected, the power of the BLR test in the LM mod-
els increased with sample size. Likewise, power increased
with more timepoints and more response variables. In
addition to these design factors, the power of the BLR test
was shown to depend on the following population charac-
teristics: the initial state proportions, the state transition
probabilities, and the state-response associations. Hold-
ing the other design factors constant, power was larger
with more balanced initial state proportions, more stable
state memberships, and stronger state-response associa-
tions. Contrary to this, when initial state proportions are
highly imbalanced, state membership is unstable, and the
state-response association is weak, the power of the BLR
test is low.

The overall power is strongly dependent on the
power at the individual timepoints. More specifically,
the stronger the time-specific measurement models, the
larger the power. But the reverse is also true; that is, the
overall power also affects the class separation and thus
the power at a specific timepoint. The latter effect is
stronger when timepoints are more strongly related
(when transitions are less likely). In the most extreme
case in which all transition probabilities are equal to 0,
the time-specific and overall power values are exactly the
same.

For the simulation conditions that we have consid-
ered in this study, the sample size required to achieve a
power level of .8 or larger ranged from a few hundred
to thousands of cases. In addition, the required sample
size depended on other design factors and population
characteristics, which are highly interdependent. In
general, the more timepoints, the more response vari-
ables, the more balanced the initial state proportions,
the more stable the state memberships, and the stronger
the state-response associations, the smaller the sample

size needed to achieve a certain power level. Because of
mutual dependencies among the LM model parameters,
and since the required sample size is also influenced
by the number of timepoints, response variables, and
state-indicator variable associations, a sample size of 300
or 500 will often not suffice in LM analysis. Therefore,
we strongly suggest applied researchers perform a power
analysis for their specific research situation instead of
relying on certain rules of thumb about the sample
size. The same applies to questions about the minimum
number of timepoints and/or response variables.

Both the shortcut and PBP methods discussed in this
article make use of parameter estimates obtained by
maximizing the log-likelihood function. In LM models,
as in other mixture models, the log-likelihood function
can have multiple maxima, meaning that the estimates
found do not always correspond to the global maximum
of the log-likelihood function. This may have an effect on
the computed power (or sample size). In this article, we
dealt with this problem of local maxima by usingmultiple
sets of random starting values for the parameters, in
addition to a set of start values corresponding to the
known population parameter values.

The p values, p = 6 and p = 10, were chosen to illus-
trate how the power of the BLR test can be affected by
the number of response variables in the typical latent
Markov analysis applications (with not very small number
of indicators and not very large number of timepoints). In
other application types of latentMarkovmodels, the num-
ber of response variables can be smaller than this (some-
times just one), which will typically be compensated by
a much larger number of timepoints. Our power compu-
tation method can be applied without any modification
in those situations as well to determine the required sam-
ple size and/or number of timepoints. A limitation of our
numerical study is that it does not give much information
on the power of such studies.

The procedure we proposed can also be used when
there is missing data, either by design or by some known
missing at random (MAR) mechanism. In our numerical
study, we did not pay attention to the possible effect of
missing data on the power since that would be a study on
its own. However, without any modification, our method
can be used to compute (and thus compare) the power
or the required sample size under different MAR missing
data scenarios.

Limitations to the current numerical experiments
need to be acknowledged. First, in this study, we assumed
time homogeneity for both state transition and con-
ditional response probabilities. Future research should
assess the power of the BLR test if this assumption is
relaxed. Second, the conditional response probabilities
of the binary response variables were set to equal values,
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and for simplicity, we considered a specific structure
of the transition matrix: πs|r = ρ|s−r|

∑S
h=1 ρh−r . However, in

practice the conditional response probabilities may differ
across response variables; the response variables may
be nominal with more than two categories, continuous
or of mixed type; and the structure of the transition
matrix can be completely unconstrained, or, for example,
symmetric or triangular (Bartolucci, 2006). Third, this
article focused on power and sample-size computation.
A further study with more focus on determining the
required number of measurement occasions is suggested.
Power analysis for the number of timepoints depends not
only on the state transition probabilities, but also on the
time scale and on whether the dynamics of the system
are stationary. Fourth, in our study, we illustrated the
proposed power computation methods considering tests
for 3-state against 2-state LM models and 4-state against
3-state LM models. In practice, one may encounter tests
for larger numbers of states.

It can be concluded that more intensive simulations
that address these different scenarios concerning the
H1 population model may be needed to establish more
knowledge and guidelines about the power and sample
size requirements of the BLR test for the number of states
in LM models. What is clear is one should not rely on
certain rules of thumb about the required sample size,
number of timepoints, or number of indicator variables,
but instead perform a power analysis tailored to the spe-
cific situation of interest. The proposed shortcut method
makes this computationally feasible.
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