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ABSTRACT
To date, there is a lack of satisfactory inferential techniques for the analysis of multivariate data in
factorial designs, when only minimal assumptions on the data can be made. Presently available
methods are limited to very particular study designs or assume either multivariate normality or equal
covariance matrices across groups, or they do not allow for an assessment of the interaction effects
across within-subjects and between-subjects variables. We propose and methodologically validate
a parametric bootstrap approach that does not suffer from any of the above limitations, and thus
provides a rather general and comprehensive methodological route to inference for multivariate and
repeated measures data. As an example application, we consider data from two different Alzheimer’s
disease (AD) examination modalities that may be used for precise and early diagnosis, namely,
single-photon emission computed tomography (SPECT) and electroencephalogram (EEG). These
data violate the assumptions of classical multivariate methods, and indeed classical methods would
not have yielded the same conclusions with regards to some of the factors involved.

1. Introduction

Almost all interesting data sets are multivariate, that is,
they involve more than one variable. Researchers are typ-
ically interested in investigating relations, associations,
and dependencies between different variables. This is
done using several descriptive and inferential techniques.
In a more narrow sense, in this manuscript, the term
multivariate analysis is understood as statistical inference
with several response variables. However, the methodol-
ogy described in this manuscript also allows for including
several explanatory variables or factors into the model.
And the novel tools presented here may also be used in
an exploratory fashion, for a descriptive data analysis.

The goal of this manuscript is to provide an approach
to inference for means of multivariate data in factorial
designs, which does not have to rely on rather limiting
assumptions. Traditional analyses of multivariate data
such as, for example, those deriving from electroen-
cephalogram (EEG) or single-photon emission computed
tomography (SPECT) measurements have often been
carried out using essentially univariate techniques (e.g.,
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Moretti, 2015). In such analyses, multivariate responses
are either aggregated into one univariate outcome, or
separate analyses are performed for different response
variables, ideally at least with some adjustment for
multiplicity. It is generally a good strategy to perform
supplemental marginal analyses, in addition to applying
multivariate methods (see also Section 3.3). However, the
exclusive use of univariate techniques has in large part
been driven by the fact that appropriate inference meth-
ods to analyze multivariate data have not existed. Indeed,
classical multivariate analysis of variance (MANOVA)
techniques (Bartlett, 1939; Dempster, 1958, 1960;
Hotelling, 1947, 1951; Lawley, 1938; Nanda, 1950; Pillai,
1955;Wilks, 1946) assumemultivariate normal responses
with equal covariance matrices across groups, and they
are known to perform poorly when covariance matrices
do in fact differ and the design is unbalanced (Koni-
etschke, Bathke, Harrar, & Pauly, 2015; Vallejo & Ato,
2012). Unbalancedness and heteroscedasticity are how-
ever common real data features that one needs to properly
address for valid analyses. For example, in an Alzheimer
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data set considered for illustration in this manuscript,
empirical variances for different patient groups showed
almost 50-fold differences (13.84 vs. 0.28 for variable 6
between AD and SCC, see supplement Table 1).

Only very recently, procedures have been developed
that do not suffer from the severe restrictions of clas-
sical MANOVA, while at the same time allowing for
a factorial design structure of the explanatory vari-
ables (Konietschke et al., 2015, see also Pauly, Brunner,
& Konietschke, 2015). The present article pursues this
resampling-based approach further, in order to develop
validated inference methods for a more generalized anal-
ysis of not only multivariate, but also repeated measures
data. Particularly, we consider the possibility that effects
on the response variables may depend on the group lev-
els or other explanatory variables or covariates. In con-
trast, MANOVA-type methods are typically used to show
that groups differ in their effect on a full set of response
variables, but these effects are not differentiated any fur-
ther. However, it is realistic to assume that, for example,
two patient groups differ with regard to some responses,
while other groups may differ with respect to other
response variables. These considerations bear similarities
to repeated measures inference, and indeed this aspect of
the present manuscript can also be regarded as proposing
a new method for the analysis of repeated measures data.
Thereby, the underlying model is even rather general:
without normality assumption, and without the assump-
tion of covariancematrix equality. Themethods proposed
in this paper have been implemented in the R-package
MANOVA.RM (Friedrich, Konietschke, & Pauly, 2016).

Additionally, we identified situations in which mul-
tivariate inference should be supplemented by marginal
(univariate) methods. In other words, while in most situ-
ations, it is advantageous to perform a truly multivariate
analysis on multivariate data, there are also cases where
marginal analyses add important pieces of information.

Finally, in case of significant effects when using all
response variables and all (within-subjects) factors, it is
of interest to go a few steps further and find out which
variables and which factor levels are responsible for the
significance. In order to accomplish this goal, we make
consequent use of the closed testing approach. While
closed testing is not new per se (see Marcus, Peritz, &
Gabriel, 1976), its usefulness for a powerful analysis of
multivariate data has not been widely appreciated yet and
may deserve more attention.

The new inferential methods proposed in this paper
have the potential to be used widely, beyond the neu-
rological applications shown here, since the need for
developing and using appropriate multivariate inference
methods has already been recognized and articulated
across a number of fields of research. For example, in
the context of traumatic brain injuries (TBI), where the

outcome after TBI is per definitionem multidimensional,
including neuro-physical disabilities and disturbances
in mental functioning, the IMPACT recommendations
(Maas et al., 2010) “see a need to explore the feasibility
of developing a multidimensional approach to outcome
assessment and classification.” Bagiella et al. (2010)
describe the problem that “no single measure could
capture the multidimensional nature of the outcome,”
and Margulies and Hicks (2009) point out that important
deficits could not be identified using univariate functional
assessment scales. In other contexts, similar arguments
have been made (Vester, 2014). For example, Whitehead,
Branson, and Todd (2010) state a “growing interest,
especially for trials in stroke, in combining multiple end-
points,” while Huang et al. (2009) say that “Parkinson’s
disease (PD) impairments are multidimensional, making
it difficult to choose a single primary outcome.”

Upon reviewing the literature on inference methods
for multivariate data, there are very few approaches
which do not assume at least one of either multivariate
normality or covariance matrix equality across groups (or
even both). Among these are the permutation-based non-
parametric combination methods discussed, for example,
in Pesarin and Salmaso (2010) or Pesarin and Salmaso
(2012) (see also Anderson, 2001), and the fully nonpara-
metric rank-based tests presented in Bathke and Harrar
(2008), Bathke, Harrar, and Madden (2008), Harrar and
Bathke (2008a, b), and Liu, Bathke, and Harrar (2011),
and implemented in the R package npmv (Burchett &
Ellis, 2015; Ellis, Burchett, Harrar, & Bathke, 2017). How-
ever, these methods are currently limited to the one-way
layout, or to some particular factorial design situations
(Hahn & Salmaso, 2015, Bathke & Harrar, 2016). Thus,
they are not applicable to data from complex factorial
designs, such as the AD data described in detail below.
Also, methodologically, the articles mentioned are not
directly comparable to our approach, as the hypotheses
tested are formulated using the distribution functions, or
exchangeability of the observation vectors is postulated.
In contrast, the methods presented in this article test
hypotheses that are formulated using contrasts in terms
of mean vectors, and they do not assume exchangeability.

Other procedures based on testing mean vectors,
but derived under the assumption of multivariate nor-
mality, have been presented for different (one- and
two-way) designs, by Nel and Van der Merwe (1986),
Krishnamoorthy and Yu (2004, 2012), Belloni and Didier
(2008), Girón and Castillo (2010), Krishnamoorthy and
Lu (2010), Zhang (2011, 2012, 2013), Xu, Yang, Abula,
and Qin (2013), Zhang and Liu (2013), and Kawasaki and
Seo (2015).

Without the normality assumption, but requiring
homogenous covariance matrices, Van Aelst andWillems
(2011) have derived robust one-way MANOVA tests,
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which are implemented in the R package FRB (Van Aelst
& Willems, 2013).

Apart from Konietschke et al. (2015), the only other
mean-based inference method using a multivariate fac-
torial model without normality or equal covariance
matrix assumption is that of Harrar and Bathke (2012).
However, due to its design limitations, it cannot provide
inferential answers to the research questions formulated
above regarding the Alzheimer data.

1.1. Alzheimer’s disease data example

The demographic development in most Western coun-
tries comes along with a rapidly growing incidence of
dementia (Barnes & Yaffe, 2011; Prince et al., 2013).
Several strategies are being developed to face this chal-
lenge, among them early diagnosis, early treatment,
and, consequently, prevention of a dementing course
(Bateman, 2015). For an accurate and early diagnosis,
several examination modalities have been evaluated.
For example, SPECT is a well examined and established
tool to differentiate Alzheimer’s disease (AD) from other
forms, such as frontotemporal dementia and dementia
with Lewy bodies (Yeo, Lim, Khan, & Pal, 2013). While
SPECT is considered to be a cheap diagnostic tool,
the costs for an EEG are even lower. The EEG has the
additional advantages of being highly available, free of
radiation hazards, and noninvasive. It also appears to have
considerable diagnostic utility in early-onset dementia
(Micanovic & Pal, 2014) via extraction of biomarkers
(Vecchio et al., 2013).

Despite its promise, biomarker research faces some
basic problems. A typical EEG-based biomarker extrac-
tion yields several markers obtained from different
electrode positions (typically from 21 to 256 channels),
possibly being split into different frequency bands (for an
example, see Figure 1). Similarly, quantitative analysis of

Figure . Topographical maps of EEG activity in μV in frequency
ranges of interest in a patient sample with AD.

SPECT data requires the evaluation of perfusion values
from many possible brain regions of interest.

In this article, we consider data from 160 patients
who were diagnosed with either AD, mild cognitive
impairment (MCI), or subjective cognitive complaints
without clinically significant deficits (SCC). The data will
be described in more detail in Section 3. Some research
questions to be investigated are as follows. Do early forms
of AD, namely, subjective cognitive complaints without
clinically significant deficits (SCC) and mild cognitive
impairment (MCI), differ with regard to average EEG or
SPECT feature intensities? Are the differences more pro-
nounced for certain age and sex cohorts? If so, between
which of the cognitive impairment stages can the greatest
differences be identified? Finally, the structure within the
EEG features may exhibit a particular pattern. There may
be differences across the regions, modalities, and types
of extracted biomarkers (so-called features), or across
the spectral distributions. Furthermore, these within-
subjects factors may interact with the between-subjects
factors disease status, sex, or age.

2. Model

In mathematical terms, multivariate response vectors
may be modeled as follows:

Xir = μi + εir, i = 1, . . . , d, r = 1, . . . , ni, N =
d∑
i=1

ni,(1)

where the index i (taking values between 1 and d) rep-
resents the treatment group, sample, or, in a factorial
design, the treatment combination, while r (between 1
and ni) denotes the experimental unit or subject on which
p-variate observations are being obtained. In order to
derive asymptotic results and establish large-sample
validity (for large sample sizes ni) of the proposed meth-
ods, the following technical regularity assumptions are
necessary:

A. The error terms εi1, . . . , εini are independent
and identically distributed p-dimensional ran-
dom vectors with E(εi1) = 0, Cov(εi1) = �i > 0,
and finite fourth moment of their norm, that is,
E(‖εi1‖4) < ∞, for i = 1, . . . , d; and

B. The different sample sizes ni grow at the same rate,
that is, ni/N → κi > 0, i = 1, . . . , d as N → ∞.

Note that neither normality of the errors nor equality
of their variance-covariance matrices �i is assumed.
The distributions of the error vectors εir may even differ
across the groups, as long as their fourth moments are
finite. The latter is indeed a mild technical assumption
that is needed for the theoretical methodology devel-
opment. In practice, most data consist of values that
are contained between a finite smallest possible value
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and a finite largest possible value, so that the technical
assumption is quasi always met. However, regarding the
small- to moderate-sample performance of the method, it
may indeed matter whether data distributions are rather
leptokurtic. Several inference procedures then require
larger sample sizes in order to perform validly. The sim-
ulation results presented in the supplementary materials
indicate that the methods proposed here are rather robust
in this regard. Also, in simulations by Konietschke et al.
(2015, Figure 1), leptokurtic distributions had a larger
effect on the power of classical tests without resampling
than on tests involving parametric or nonparametric
bootstrap.

The vectors from model (1) are aggregated
into X = (X′

11, . . . ,X′
ir, . . . ,X′

dnd )
′ (length p · N),

μ = (μ′
1, . . . , μ

′
i, . . . , μ

′
d )

′ (length p · d), and ε =
(ε′

11, . . . , εir, . . . , ε
′
dnd )

′ (length p · N), respectively,
where μi = (μ

(1)
i , . . . , μ

(p)
i )′, i = 1, . . . , d.

2.1. Multivariate hypotheses on between-subjects
factors and their interactions

At first sight, the notation introduced above suggests
that only a one-way layout is being considered, where
the factor levels are indexed by i = 1, . . . , d. However,
by splitting up the index i into different sub-indices, fac-
torial structures are introduced within the components
of μ or X. For a complete three-way MANOVA, for
example, using the three between-subjects factors age,
sex, and diagnosis, as suggested by the Alzheimer data
set, the index i is split up into three indices i = 1, . . . , a,
j = 1, . . . , b, and k = 1, . . . , c, each corresponding
to one of the factors A (sex), B (diagnosis), and C
(age group) involved in the study. Then, for example,
μ = (μ′

111, . . . , μ
′
abc)

′, where the entries μi jk are lexico-
graphically ordered, and d = abc. In classical MANOVA
notation, these treatment mean vectors are then decom-
posed as μi jk = αi + β j + γk + (αβ)i j + (αγ )ik +
(βγ ) jk + (αβγ )i jk, with the terms on the right-hand side
of the equation symbol satisfying some identifiability
constraints.

In matrix notation, hypotheses for each of the different
main, simple, and interaction effects can be formulated
using an appropriately chosen contrast matrix T. Denote
the m-dimensional identity matrix by Im, the m × m-
matrix of ones by Jm, and the so-called centeringmatrix by
Pm = Im − 1

m Jm. The hypothesis of no main effect A has
the interpretation that for each level i = 1, . . . , a of the
factor A, the mean response is the same, when averaged
over the levels of all other factors. Mathematically, this
can be formulated as H0(A) : {μ1·· = · · · = μa··}, where
μi·· = 1

bc
∑b

j=1
∑c

k=1 μi jk, i = 1, . . . , a, or in classical

notation as α1 = · · · = αa = 0. Written in Kronecker
product notation, this is equivalent to {(Pa ⊗ 1

bJb ⊗
1
c Jc ⊗ Ip)μ = 0}, Thus, it corresponds to the choice T =
Pa ⊗ 1

bJb ⊗ 1
c Jc ⊗ Ip. The Kronecker product notation

has a fewmethodological advantages. For one, theoretical
properties of test statistics for the hypotheses being con-
sidered essentially boil down to the mathematical proper-
ties of the matrices T that are defining these hypotheses.
Second, the notation can be directly translated into a sta-
tistical programming language, making implementation
and simulation straightforward. And, the beauty of the
simple Kronecker product notation structure becomes
apparent when considering other possible hypotheses.
For example, the hypotheses of nomain effect B andC are
given by H0(B) : {μ·1· = · · · = μ·b·}⇔ β1 = · · · = βb =
0⇔ {( 1a Ja ⊗ Pb ⊗ 1

c Jc ⊗ Ip)μ = 0}, and H0(C) : {μ··1 =
· · · = μ··c}⇔ γ1 = · · · = γ c = 0⇔ {( 1a Ja ⊗ 1

bJb ⊗ Pc ⊗
Ip)μ = 0}, respectively, with the averages μ· j· and μ··k
defined accordingly. While main effects are defined by
Kronecker products involving exactly one P-matrix (cen-
tering matrix), two-way interactions are specified using
two centering matrices, three-way interactions involve
three, and so forth. The hypothesis of, for example, no
interaction effect between factors A and B can be written
as H0(AB) : {(Pa ⊗ Pb ⊗ 1

c Jc ⊗ Ip)μ = 0}, equivalent to
(αβ)11 = · · · = (αβ)ab = 0 in classical notation. Other
interaction effects are defined analogously by using the
centering matrix P for those factors whose effect (main or
interaction) is of interest, and using the averaging matrix
J for all other factors. Formultivariate hypotheses, the last
component is always the p-dimensional identity matrix,
as multivariate hypotheses consider all response variables
(endpoints) simultaneously.

2.2. Hypotheses involvingwithin-subjects factors

There are situations where the response variables are
commensurate in the sense that comparisons between
them are meaningful, for example, measurements on the
same subject at different time points or body locations.
In that case, formulating and testing hypotheses involv-
ing such comparisons may be of interest, in particular
when the response vector is structured by one or more
within-subjects factors.

The simplest such hypothesis would be that of no
averaged, or marginal treatment effect, where averaging
is over the means of all p response variables. This can
be accomplished by replacing the identity matrix Ip
at the last component of the Kronecker product with
the averaging matrix Jp of the same dimension. There
is a major difference in interpretation between such a
hypothesis formulation, and the multivariate hypotheses
introduced in Section 2.1 Namely, multivariate equality
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of two treatments assumes that the treatment means
agree in each response variable, while themarginal effects
considered here only assume equality of the treatments
when averaging across the responses.

By splitting up the index s = 1, . . . , p that identifies
the response variables, the formulation of many more
hypotheses, particularly ones involving within-subjects
factors, is facilitated. In the Alzheimer data, different EEG
values on each subject may be considered commensurate,
especially after standardizing each of the response vari-
ables. Also, they are structured by the two factors brain
region (here: temporal, frontal, and central) and feature
(here: brain rate and complexity). Denote region by the
index r = 1, . . . , pr and feature by s = 1, . . . , ps. Then,
each of the six possible combinations is uniquely defined
by the index pair (r, s), suggesting a natural way to split
up the index labeling the responses. Apparent similarity
to repeated measures analysis is not coincidental, as
indeed the multivariate model (1) presented in this paper
can also be interpreted as a repeated measures model if
the response variables are commensurate. Even a rather
general repeated measures model: without normality
assumption, and without the assumption of covariance
matrix equality.

For simplicity, assume in the following that, in addi-
tion to the two within-subjects factors brain region
and feature, there is only one between-subjects fac-
tor present, whose levels are i = 1, . . . , a (e.g., diag-
nosis). The mean vector μi = (μ

(1)
i , . . . , μ

(p)
i )′ then

becomes μi = (μ
(11)
i , . . . , μ

(pr ps)
i )′, i = 1, . . . , a, where

the entries are again lexicographically ordered.
With these definitions, it is possible to formulate the

corresponding null hypotheses as follows. The order
of matrices in the Kronecker product needs to corre-
spond exactly to the way the entries in the vector μ

are sorted. By convention, the between-subjects factors
are listed first, followed by the within-subjects factors.
The final matrix Ip used in the previous section needs
to be replaced by appropriate choices, corresponding
to the within-subjects factors. In the data set consid-
ered, these are the two factors brain region and feature.
Therefore, the role of Ip is taken by a Kronecker product
of two matrices whose dimensions are the respective
numbers of levels of these two factors. For example, the
hypothesis of no main effect of brain region is written
as H0(R) : {( 1a Ja ⊗ Ppr ⊗ 1

ps
Jps )μ = 0}. The presence

of exactly one P-matrix indicates that a main effect
is under investigation. Its dimension is pr, that is, the
number of regions. The hypothesis of no two-way inter-
action between diagnosis and brain region requires two
P-matrices, at the places corresponding to the between-
subjects factor diagnosis, and the first within-subjects
factor brain region: H0(AR) : {(Pa ⊗ Ppr ⊗ 1

ps
Jps )μ = 0}.

2.3. Test statistics

As seen in the preceding two subsections, all relevant
hypotheses can be written as H0 : Tμ = 0, with appro-
priate choices of T. The corresponding Wald-type test
statistic (WTS) is defined as

QN (T) =N · X′
·T(TV̂NT)+TX· , (2)

where X· = (X′
1·, . . . ,X

′
d·)

′, Xi· = 1
ni

∑ni
r=1 Xir, and

V̂N = diag
(N
ni

�̂i : 1 ≤ i ≤ d
)
,

�̂i = 1
ni − 1

ni∑
r=1

(Xir − Xi·)(Xir − Xi·)′. (3)

Here, (·)+ denotes the Moore–Penrose generalized
inverse. The generalized inverse needs to be used in lieu
of the regular matrix inverse since the latter may not
exist, which would make the WTS QN invalid. Koni-
etschke et al. (2015) have shown that, under the technical
assumptions mentioned above in Section 2, and under
H0 : Tμ = 0, QN (T) has asymptotically, as N → ∞, a
central χ2-distribution with degrees of freedom equal to
the rank of T. However, they only considered matrices T
where the final component is the identity matrix Ip (see
sec. 4 of Konietschke et al., 2015). This leads to the multi-
variate hypotheses discussed above in Section 2.1 A closer
examination of their method of proof reveals that the
established asymptotic results remain correct even when
Ip is replaced by other projection matrices, such as those
mentioned in Section 2.2 Even the mathematical theory
for the asymptotic model-based bootstrap, often referred
to as parametric bootstrap, can be transferred to the more
general situation without having to impose any addi-
tional assumptions. This opens the door to investigating
main and interaction effects of within-subjects factors, as
well as marginal effects, thus providing a comprehensive
toolbox for the analysis of multivariate and repeated
measures data with minimal assumptions—neither equal
covariance matrices nor multivariate normality of the
data are needed for the proposed methods.

2.4. Bootstrap

The idea behind the parametric bootstrap approach
originates from an application of the multivariate cen-
tral limit theorem. In particular, for any i = 1, . . . , d,√
ni(Xi· − μi) is asymptotically normal with mean zero

and covariance matrix �i. Thus, for approximation pur-
poses, the original iid observation vectors, Xi1, . . . ,Xini ,
can be replaced in the resample by iid parametric
bootstrap vectors generated from the estimated limit
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Table . Number of observations for the different factor level
combinations.

Sex Age AD MCI SCC �

M <70    
M ≥70    
F <70    
F ≥70    
�    

Table . Multivariate analysis of EEG data. Factors age (≥70),
diagnosis (AD, MCI, SCC), and sex. WTS is the Wald-type statistic
approximated by a χ 2-distribution, PBS denotes the asymptotic
model-based “parametric”bootstrap.

Test WTS PBS
statistic df p-value p-value

sex .  . .
age .  . .
sex*age .  . .
sex .  . .
diagnosis .  <. .
sex*diagnosis .  . .
diagnosis .  <. .
age .  . .
diagnosis*age .  . .

distribution. That is, they are replaced by

X∗
i1, . . . ,X

∗
ini

iid∼ N(0, �̂i)

for each i = 1, . . . , d. Recalculating the Wald-type test
statistic in (2) with the variables X∗

i1, . . . ,X∗
ini yields

Q∗
N (T), the parametric bootstrap version of the WTS.

The conditional (1 − α)-quantiles from its distribution,
say c∗(α), are then used as critical values, resulting in the
bootstrap test ϕ∗

N = I{QN (T) > c∗(α)}.
Konietschke et al. (2015) provided simulation results

for different multivariate one- and two-factorial designs.
The setting in the present article differs somewhat due
to the more complex structure, involving within-subjects
factors. In order to investigate whether the bootstrap
approach also provides satisfactory approximations to
the sampling distribution in this design, we have con-
ducted an extensive simulation study. The results, which
support the validity of the proposed method for a wide
range of design configurations, can be found in the
supplementary material to this paper (see supplement

Tables 2 and 3). In particular, we have followed Allignol
et al. (2011) and performed so-called “empirical simula-
tions” which are particularly adapted to the current data
set and may be seen as a case-sensitive justification for
the proposed method. Simulations under alternative (see
supplement Figure 1) indicate that the powers of both
resampling methods, the proposed parametric bootstrap,
as well as the nonparametric bootstrap, are very similar.
However, in unbalanced designs, the nonparametric
bootstrap test shows a quite liberal behavior under null
hypothesis. Therefore, inference based on the parametric
bootstrap is generally recommended.

3. Data analysis example

We demonstrate the practical usefulness of the proposed
multivariate parametric bootstrap method by investi-
gating questions formulated in a neurological study on
cognitive impairments. That is, we examine whether
mean differences in EEG- or SPECT-features between
SCC, MCI, and AD patients can be discovered using the
new inferential method (and comparing with the results
from existing methods), when the features are considered
as multivariate responses. The data set is described in
detail in the supplementary materials.

3.1. Design

The three between-subjects factors considered in the
data example were sex (men vs. women), diagnosis (AD
vs. MCI vs. SCC), and age (<70 vs. ≥70 years). Addi-
tionally, we chose the following within-subjects factors
structuring the response vectors. For EEG data, we con-
sidered the three selected brain regions, as well as feature
(brain rate or complexity). For SPECT data, brain region
(with six levels) was used as within-subjects factor.

We did not considermodality—that is, EEG vs. SPECT
values—as another within-subjects factor because these
variables are not commensurate, and despite standardiza-
tion, the method of data acquisition is very different, so
that the assessed brain regions cannot even be matched.

Table . Multivariate analysis of EEG data using classical methods. Factors age (≥70), diagnosis (AD, MCI, SCC), and sex. PBS denotes the
p-value from the parametric bootstrap of the WTS.

Df Pillai Approx F num Df den Df Pr(>F) PBS p-value

sex  . .   . .
age  . .   . .
sex*age  . .   . .
sex  . .   . .
diagnosis  . .   . .
sex*diagnosis  . .   . .
diagnosis  . .   . .
age  . .   . .
age*diagnosis  . .   . .
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Due to the rather small number of patients in some
factor level combinations (e.g., only two male patients
aged under 70 were diagnosed with AD, see Table 1), we
did not consider a layout including all three between-
subjects factors, but instead restricted our analyses to
layouts with one or two between-subjects factors, as well
as one (SPECT) or two (EEG) within-subjects factors.

When using any two of the between-subjects factors,
the minimal sample sizes per factor level combination
were 28 (age and sex), 11 (age and diagnosis), and 12
(diagnosis and sex), see Table 1. Our simulation studies
given in supplement Appendix B indicate that these
sample sizes are sufficient to ensure reasonable perfor-
mance of the proposed parametric bootstrap procedure.
Additionally, one-way layouts have been used as basis
for post hoc multiple comparison tests regarding the
interesting effects. Here, the minimum cell sample sizes
were 78 (age), 36 (diagnosis), and 59 (sex).

For comparison, we present both the results of the
classical analysis using the Wald-type statistic with a
χ2-approximation, as well as the parametric bootstrap
approach described in Section 2.4 with 10,000 boot-
strap runs. These analyses were performed using a
completely multivariate approach (see also Konietschke
et al., 2015) that has been implemented in the R-package
MANOVA.RM, see supplement Appendix C for details.
All analyses were supplemented by a repeated measures
analysis, which allows for the formulation of within-
subjects effects when the different responses can be
considered commensurate. In the EEG case, the six
responses were considered sub-structured by feature (two
levels) and region (three levels), whereas in the SPECT
case, they were simply considered as six levels of the
unstructured factor brain region. An important difference
between multivariate and repeated measures or marginal
approaches is that in the former case, possible effects
of the between-subjects factors are considered in each
response variable individually, whereas in the latter cases,
they are averaged across some or all of the response
variables (see also Section 2.2). Both contribute different
pieces of information, as demonstrated below.

In general, the p-values provided in the tables are
without correction for multiple testing, unless noted
specifically. Note, that here and throughout we will regard
results as significant if the p-value is smaller than 5%.

Since the focus of the manuscript is not on the specific
data, but rather on the methodology, we will not provide
a comprehensive data analysis in full detail here. Instead,
we will highlight those aspects that we found noteworthy
from amethodological point of view. Several more details
regarding the analysis of the EEG and SPECT data can be
found in the supplement.

3.2. Comparison to classical methods

Simulation results show that the newly proposed method
performs rather reliably even in realistic small to moder-
ate sample size scenarios where the traditional MANOVA
fails to meet the nominal Type I error rate. Specifically,
in our simulations, the proposed parametric bootstrap-
based inference procedure always yielded simulated levels
of below 7% at nominal 5%-level, while Wilks’ Lambda
resulted in simulated levels above 20% in several situa-
tions (see Tables 2 and 3 in the supplementary materials).

In order to exemplarily compare our results to stan-
dard analyses, we additionally considered the following
two situations using the Alzheimer data example.

First, we have performed a multivariate inferential
analysis of the EEG response data. Here, the newly pro-
posedmethodwas used, as well as the classicalMANOVA
tests which would serve as arguably the most likely alter-
native tool that statistics practitioners would resort to.

As described above, only two of the three between-
subjects factors were used in each analysis, due to the very
small group sizes that would occur if all three between-
subjects factors were used simultaneously. The results of
the three different multivariate two-way analyses using
the new method are shown in Table 2. When interpreting
the results, one should keep in mind that using the two
factors age and sex, the sample sizes per group (ni ≥ 28)
were substantially larger than in the other two possible
layouts (ni ≥ 11 or 12, respectively, see Table 1 for details).

For a comparison with classical inference methods,
the results for Pillai’s trace are displayed in Table 3. The
other MANOVA methods implemented in R (Wilks’ �,
the Hotelling-Lawley trace, and Roy’s largest root) led to
similar results in almost all situations. In particular, as
the factors age and sex consisted of only two groups, all
four classical methods were equivalent to Hotelling’s T 2

in these cases. In the table, the p-value of the newmethod
is also included as “PBS p-value” for direct comparison.
In the model including sex and diagnosis, all classical
methods reported a significant effect of sex, which was
not supported by the bootstrap p-value. Roy’s largest root
even resulted in a significant interaction effect in this case
(results not shown).

When checking the assumptions of the classical
MANOVA procedures, we found that the data were non-
normally distributed (based on a multivariate Shapiro–
Wilk test, p-value < 0.0001). Furthermore, adjusted
quantile plots (using the function aq.plot from the
packagemvoutlier) suggested several outliers in the data.
Due to the nonnormally distributed data, we could not
use Box’ M-test to check for homoscedasticity of the
covariance matrices, but univariate Levene tests applied
to the different response variables suggested variance
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Table . Three-way layout for SPECT data. Between-subjects fac-
tors sex and age. Within-subjects factor brain region. WTS is
the Wald-type statistic approximated by a χ 2-distribution, PBS
denotes the asymptotic model-based “parametric”bootstrap.

Test WTS PBS
statistic df p-value p-value

sex .  . .
age .  . .
region .  <. <.
sex*age .  . .
sex*region .  . .
age*region .  . .
sex*age*region .  . .

heterogeneity. That is, all complexity values led to sig-
nificant results (p-values between < 0.0001 and 0.004)
regarding variance heterogeneity. These analyses strongly
indicated that the assumptions of classical MANOVA
methods, namely, multivariate normality and covariance
homogeneity, were violated in the AD data exam-
ple, thus resulting in possibly misleading conclusions
(inflated Type I error) when using standard MANOVA
methods.

As a second illustration, we analyzed the SPECT data
with regard to the factors sex, age, and brain region.
Results from the new method are displayed in Table 4,
while those from classical repeated measures ANOVA
are shown in Table 5. In contrast to the new parametric
bootstrap procedure, the classical ANOVA F-Test did not
discover significant interactions between sex and region,
nor between age and region.

The Shapiro–Wilk test for normality rejected the null
hypothesis with p-value< 0.0001. Furthermore, based on
a Levene test (p-value = 0.0445), we also found evidence
against the assumption of equal variances in the groups.
Thus, the assumptions of a classical ANOVA were vio-
lated, and the results based on the ANOVA F-Test might
not have sufficient power to detect effects present in the
data.

These examples were chosen to illustrate that the
use of classical methods could lead to inflated Type I
errors, but also to low power, when their assumptions
are violated. We think that the method proposed in the
present manuscript features some desirable robustness
properties, with regard to these assumptions.

Table . Multivariate analysis of SPECT data. Factors age (≥70),
diagnosis (AD, MCI, SCC), and sex. WTS is the Wald-type statistic
approximated by a χ 2-distribution, PBS denotes the asymptotic
model-based “parametric”bootstrap.

Test WTS PBS
statistic df p-value p-value

sex .  . .
age .  . .
sex*age .  . .
sex .  . .
diagnosis .  <. <.
sex*diagnosis .  . .
diagnosis .  <. .
age .  . .
diagnosis*age .  . .

However, we would also like to caution from an
overoptimistic or naïve use of the new methods, as
illustrated in the next two examples.

3.3. Multivariate vs. marginal or repeatedmeasures
analysis?

For SPECT, we chose six relevant response variables in
order to have a fair comparison with the EEG analysis,
which also used a six-dimensional response. Results from
multivariate two-way inference are shown in Table 6.
Here, the multivariate effects were significant for each of
the between-subjects factors diagnosis, age, and sex, but
for none of their pairwise interactions.

Contrary to the EEG analysis, the six variables con-
sidered here are not structured factorially. Instead, in a
repeated measures type analysis, we may simply regard
them as levels of a within-subjects factor brain region.
Together with using two of the three between-subjects
factors age, sex, and diagnosis at a time, we obtain differ-
ent three-way layouts. The results for the layout involving
sex and diagnosis, as well as brain region, are shown in
Table 7. Those for the other two configurations can be
found in the supplement Tables 12 and 13, respectively.

A comparison of multivariate and marginal SPECT
analyses with regard to the factor sex, which is discovered
as significant in the multivariate analysis (p = 0.0455),
but rather nonsignificant in the repeated measures anal-
ysis (p = 0.9231), reveals an important advantage of

Table . Three-way layout for SPECT data. Between-subjects factors sex and age. Within-subjects factor brain region. PBS denotes the
asymptotic model-based “parametric”bootstrap, for comparison.

Df Sum Sq Mean Sq F value Pr(>F) PBS p-value

sex  . . . . .
age  . . . . .
region  . . . . <.
sex*age  . . . . .
sex*region  . . . . .
age*region  . . . . .
sex*age*region  . . . . .
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Table . Three-way layout for SPECT data. Between-subjects fac-
tors sex and diagnosis. Within-subjects factor brain region. WTS
is the Wald-type statistic approximated by a χ 2-distribution, PBS
denotes the asymptotic model-based “parametric”bootstrap.

Test WTS PBS
statistic df p-value p-value

sex .  . .
diagnosis .  <. <.
region .  <. <.
sex*diagnosis .  . .
sex*region .  . .
diagnosis*region .  . .
sex*diagnosis*region .  . .

the truly multivariate approach. In the marginal and
repeated measures analyses, effects are averaged across
the response variables, whereas the multivariate analysis
considers effect contributions of each of the responses
individually, while taking their correlation into account
by construction of the test statistic.

In this case, the effects of the individual SPECT
response variables were in part small and would not lead
to significance using classical variable-wise univariate
approaches (supplement Tables 15 and 16).However, each
response added information, and only the multivariate
analysis was able to take advantage of this information.
In this case, it did not make sense to average across the
SPECT responses, as this led to the masking of some of
the available information (see Tables 6 and 7, as well as
supplement Tables 12 and 13).

The SPECTanalyses demonstrate that considering sev-
eral variables in a truly multivariate fashion together may
provide more information than many individual univari-
ate analyses. Note that it is not necessary for the method
that the effect directions match for the different variables.

Regarding the EEG data, the results of multivariate
two-way analyses were shown in Table 2. In the cor-
responding repeated measures analyses incorporating
between- and within-subjects factors (as described in
Section 2.2), the resulting designs are each four-way lay-
outs using within-subjects factors brain region (frontal,
central, temporal) and feature (brain rate, complexity), as
well as two of the between-subjects factors age, diagnosis,
and sex. Results using the two between-subjects factors
diagnosis and sex are shown in Table 8. Those for the other
two choices of between-subjects factor pairs (diagnosis
and age, sex and age) are given in supplement Tables 6
and 7.

When comparing the results from Tables 2 (multivari-
ate analysis) and 8 (marginal and repeatedmeasures anal-
ysis), one notices their agreement on the significance of
diagnosis, and on the lack of an interaction effect between
diagnosis and sex. However, there was also a notable dif-
ference in the form of a significant (p = 0.0048) marginal
effect of sex, while the multivariate effect of sex was not

Table . Marginal effects/repeated measures analysis. Four-way
layouts for EEG data. Between-subjects factors sex and diagno-
sis (AD, MCI, SCC). Within-subjects factors brain region (frontal,
central, temporal) and feature (brain rate, complexity). WTS
stands for the classical Wald-type statistic approximated by a
χ 2-distribution, whereas PBS denotes the asymptotic model-
based “parametric”bootstrap procedure.

Test WTS PBS
Effect statistic df p-value p-value

sex .  . .
diagnosis .  <. <.
feature .  . .
region .  . .
sex*diagnosis .  . .
sex*feature .  . .
sex*region .  . .
diagnosis*feature .  . .
diagnosis*region .  . .
feature*region .  . .
sex*diagnosis*feature .  . .
sex*diagnosis*region .  . .
sex*feature*region .  . .
diagnosis*feature*region .  . .
sex*diagnosis*feature*region .  . .

significant (p = 0.1132). This may happen when data are
analyzed asmultivariate p-dimensional, but the responses
are highly correlated, so that a lower-dimensional set of
q < p variables carries all the relevant information. In
our case, empirical absolute correlations between the
EEG variables ranged from 0.9266 to 0.9991 for men, and
between 0.8894 and 0.9987 for women. This contradicts
the implicit assumption of a multivariate approach that
each variable contributes useful information, reflected
by the degrees of freedom, which equaled six for the
multivariate test, while there was only one degree of
freedom in the marginal analysis of the effect of sex. We
emphasize this point here as a caveat regarding a naïve
use of multivariate inference methods in general. They
may suffer when the “relevant” response space has smaller
dimension than p. Investigating the correlation structure
between responses is always advisable, and an additional
marginal analysis may be useful, where appropriate.

So, when trying to decide between multivariate or
marginal/repeated measures analysis—one may consider
doing both and looking carefully at the findings.

3.4. Summarizing the general findings from the data
set

The results shown here and in the supplement indicate the
following. EEG features differed on average between SCC
and MCI, and between SCC and AD. The two assessed
EEG features seemed to be robust against normal aging
effects, and consistent with each other. Temporal and
frontal regions may play a relevant role in aging. SPECT
perfusion values differed between AD and the other
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patient groups, so that EEG and SPECT perfectly com-
plemented one another. In most regions, perfusion was
affected by age, which might reflect normal aging pro-
cesses. We did not find any interaction effects between
age, sex, and diagnosis, using EEG or SPECT data.

There were significant effects of sex in this clinical
sample. Generally, healthy women have shown a higher
amplitude than healthy men in the resting EEG (Wada,
Takizawa, Jiang, & Yamaguchi, 1994), and higher coher-
ence values, especially for interhemispheric connections
in the delta, theta, and beta range (Wada et al., 1996).
Our findings also suggest that altered brain patterns in
the demented population should be examined in detail
for sex differences.

Main findings of the data analysis have confirmed
the conjectured effects that early-onset dementia has
on EEG, and there were no interactions of diagnosis
with any of the demographic between-subjects factors
age and sex. EEG is a cheap diagnostic and noninvasive
tool. Its diagnostic utility appears to remain stable across
different age and sex cohorts, although as a limitation to
this conclusion, it should be mentioned that the study
population consisted of mostly elderly people, about half
of them 70 years and older.

4. Discussion

Until recently, no valid methodology had been developed
for the inferential analysis of multivariate data from
factorial designs, unless equal covariance matrices across
groups, or multivariate normality could be assumed.
For realistic data applications, typically neither of these
assumptions is reasonable, as was also apparent for the
EEG and SPECT data considered. Here, an analysis based
on classical MANOVA or repeated measures ANOVA
techniques produced p-values that were most likely too
small (corresponding to a Type I error inflation), but also
p-values that were most likely too large (corresponding
to low power). The assumptions of covariance matrix
homoscedasticity andmultivariate normality were clearly
violated, which may have drastic effects on the classical
tests.

The methodology pursued here is based on an asymp-
totic model-based “parametric” bootstrap approach with
rather general asymptotic validity and good finite sample
performance (see Konietschke et al., 2015). In addition to
demonstrating the usefulness of this approach in real data
analysis, and the possible insights to be gained, we have
extended themethodology by enabling inference not only
for between-subjects factors, as is common for multivari-
ate inference, but also for within-subjects factors and the
interactions of all factors involved. This corresponds to
a repeated measures approach or profile analysis. Where
such an analysis is applicable, it substantially extends

the scope of the possible inferential techniques. In the
example data, such an extension was sensible due to
the commensurate nature of the responses within the
respective groups of EEG and SPECT variables. Resulting
marginal effects analyses were less influenced by multi-
collinearity of the responses than amultivariate approach,
and thus they may provide useful additional information.

We hope to have demonstrated the potential of novel
resampling-based multivariate and marginal or repeated
measures methods for factorial designs when data do not
follow classical assumptions.

Supplementary Materials

In a supplementary file, we describe the discussed data
example in detail, and provide simulation results for a
design adopted from the discussed data example. More-
over, additional tables with empirical covariance matrices
and several results tables from data analyses with different
design configurations are included. In addition, the R
code for the evaluation of the data set is presented, along
with some more details on data extraction.
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