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ABSTRACT
Multilevel multiple membership models account for situations where lower level units are nested
withinmultiple higher level units from the same classification. Not accounting correctly for suchmulti-
ple membership structures leads to biased results. The use of a multiple membership model requires
selection of weights reflecting the hypothesized contribution of each level two unit and their rela-
tionship to the level one outcome. The Deviance Information Criterion (DIC) has been proposed to
identify such weights. For the case of logistic regression, this study assesses, through simulation, the
model identification rates of theDIC todetect the correctmultiplemembershipweights, and theprop-
erties of model variance estimators for different weight specifications across a range of scenarios. The
study is motivated by analyzing interviewer effects across waves in a longitudinal study. Interview-
ers can substantially influence the behavior of sample survey respondents, including their decision to
participate in the survey. In the case of a longitudinal survey several interviewers may contact sam-
ple members to participate across different waves. Multilevel multiple membership models are suit-
able to account for the inclusion of higher-level random effects for interviewers at various waves, and
to assess, for example, the relative importance of previous and current wave interviewers on current
wave nonresponse. To illustrate the application, multiple membership models are applied to the UK
Family and Children Survey to identify interviewer effects in a longitudinal study. The paper takes a
critical view on the substantive interpretation of the model weights and provides practical guidance
to statistical modelers. The main recommendation is that it is best to specify the weights in a mul-
tiple membership model by exploring different weight specifications based on the DIC, rather than
prespecifying the weights.

Introduction

In interviewer-administered surveys interviewers can
substantially influence the behavior of respondents,
including their response to the survey participation
request, and that is the case in both cross-sectional (Blom,
De Leeuw, & Hox, 2010; Durrant & D’Arrigo, 2014;
Durrant & Steele, 2009; Durrant, Groves, Staetsky, &
Steele, 2010, West & Blom, 2017) and longitudinal sur-
veys (Brunton-Smith, Sturgis, & Leckie, 2017; Campan-
elli & O’Muircheartaigh, 1999; Haunberger, 2010; Lynn,
Kaminska, & Goldstein, 2013; Pickery & Loosveldt, 2002;
Pickery, Loosveldt, & Carton, 2001; Vassallo, Durrant,
& Smith, 2017; Vassallo, Durrant, Smith, & Goldstein,
2015).
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Interviewers influence respondents by introducing
the survey concept, engaging the respondent, addressing
any queries, and ultimately gaining response (Groves &
Couper, 1998; Hox & De Leeuw, 2002). The resulting
interviewer variability introduces non-zero correla-
tions (or clustering) in the responses among sample
units worked on by the same interviewer. These within-
interviewer correlations, however, reduce effective sample
sizes, similar to cluster sampling. West & Blom (2017)
report that an average interviewer workload of 35 respon-
dents and a within-interviewer correlation of only 0.03
would double the estimated variance of a mean, or what is
effectively the same halve the sample size, which stresses
the importance of understanding interviewer-level
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characteristics and other factors that introduce this
type of variability in different survey outcomes. A bet-
ter understanding of such interviewer influences and
behaviours is therefore important in helping to reduce
nonresponse in surveys before or during data collection
and also for improving response propensity models.
Interviewer effects may be complicated for longitudinal
surveys. Across the waves of a longitudinal survey more
than one interviewer may contact sample members to
participate in a survey. A modeling problem particular
to this kind of data pertains the influence of several inter-
viewers (i.e. the inclusion of higher level random effects
for interviewers) across various waves, whilst a substan-
tive problem is, for example, the assessment of the relative
importance of previous and current wave interviewers
on current wave nonresponse (attrition) (Lynn et al.,
2013; Pickery et al., 2001; Vassallo et al., 2015). If all the
distinct interviewers from both the current and previous
waves associated with a case influence the current wave
response decision, failing to account for the multiple
membership structure will lead to an underestimation
of the between interviewer variance (Goldstein, 2011a)
with significant biasing effects on parameter estimates in
response propensity models (Chung & Beretvas, 2012).

One approach to correctly handle this data structure is
to use multiple membership (MM) models (Lynn et al.,
2013). Multiple membership models account for situa-
tions where lower level units are nested within multi-
ple higher level units from the same classification. Not
accounting correctly for suchmultiplemembership struc-
tures would lead to biased results. For example, ignoring
the structure and assigning each lower level unit to just
one of their higher level units and then fitting the near-
est equivalent hierarchicalmodel tomultiplemembership
data will lead to misattributing response variation to the
included levels (Moerbeek, 2004; Tranmer & Steel, 2001;
van den Noortgate, Opdenakker, & Onghena, 2005; van
Landeghem, De Fraine, & van Damme, 2005). This may
lead us to draw misleading conclusions about the rela-
tive importance of different sources of influence on the
response variable. Vassallo et al. (2015) compare cross-
sectional andmultiple membership models in accounting
for different interviewers across waves using data from the
Family and Children Study. Multiple membership mod-
els allow the effect of all distinct interviewers associated
with a case to be incorporated in the model by attributing
a weight to each interviewer effect. These weights repre-
sent each interviewer’s relative effect and have been used
to interpret the influence of interviewers on, for example,
nonresponse. The choice ofweights can either be based on
theory, when a strong theoretical basis exists, or an empir-
ical assessment using the Deviance Information Criterion

(DIC), as proposed inGoldstein (2011a) and advocated in
Lynn et al. (2013).

Although themultiplemembershipmethods are in this
paper applied to the exploration of interviewer effects on
nonresponse, the same MM structure and the question
of how best to choose the model weights may arise in
many other behavioral sciences settings. For example, a
study may wish to explore the influence of a pupil’s sec-
ondary school on the pupil’s probability to go on to fur-
ther education. Pupils who have attended more than one
school during their secondary years of schooling have a
MMstructure, and the relative effect of the final andprevi-
ous school can be assessed usingMMmodels. The results
from this study would have implications for league tables
and funding. Other applications may include: studies of
multiple neighborhood effects on the propensity to seek
traditional birth assistants in sub-Saharan Africa, where
neighborhood effects have a multiple membership struc-
ture, in that both the actual neighbourhood one resides
in, but also adjacent neighborhoods may influence’s one’s
views regarding health care decisions; studies on the influ-
ence of religious group affiliation on the likelihood of
undertaking volunteeringwork; receipt of unemployment
benefitswith changing householdmembership in longitu-
dinal studies; and veterinary studies considering the influ-
ence of flockmemberships on disease contagion.Multiple
membership models have been employed in the analysis
of the impact of area of residence on individual health
outcomes (Chandola, Clarke, Wiggins, & Bartley, 2005),
the impact of teachers’ input on student educational out-
come (Fielding, 2002) and the impact of chickens’ mem-
bership formations on the spread of salmonella (Rasbash
& Browne, 2001).

An important question inmultiple membershipmodel
applications concerns themodel specifications. The prop-
erties of parameter estimators can be sensitive to such
model specifications, particularly to the omission or
misspecification of the higher-level structure (Chung &
Beretvas, 2012; Luo & Kwok, 2009; Meyers & Beretvas,
2006; Tranmer & Steel, 2001). When a strong theoreti-
cal basis for the model structure is lacking, model selec-
tion has to be solely based on an empirical assessment
method. Consequently, the consistency with which the
model selection method identifies the ‘true’ model, the
resulting properties of the estimators and the feasibility
of a substantive interpretation of the chosen model need
to be investigated.

The DIC is a Bayesian model selection tool which
takes into consideration both the goodness-of-fit and the
complexity of the model. It is particularly appropriate
for models including hierarchical parameters estimated
using Markov Chain Monte Carlo (MCMC) methods
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(Spiegelhalter, Best, Carlin, & van der Linde, 2002). Some
authors have analyzed the performance of theDIC for dif-
ferent model types and subject areas (Berg, Meyer, & Yu.,
2004; Kizilkaya &Tempelman, 2003;Ward, 2008;Wilberg
& Bence, 2008; Zhu & Carlin, 2000), also via means of
simulation studies. These studies generally show that the
DIC measure performs well in detecting the true model
or similar models which adequately represent the data.
However, there is very limited literature which explores
the estimator properties and power of a significance test
for MM models. Browne, Goldstein, and Rasbash (2001)
investigate the properties of model estimators for MM
models using a simple simulated education data example.
The authors find that when using MCMC estimation
with diffuse priors the mean point estimate from the
posterior distribution has very low bias, and the interval
estimates based on the percentiles of the chains for the
posterior distribution have coverage very close to the
nominal 95% value. The authors only consider a case for
true MM weights of 0.5 and 0.5, and specify the model
weights to be the correct weights. The estimator proper-
ties in the case of incorrectly specified model weights are
not considered. Although literature in this area is very
scarce, Wolff Smith and Beretvas (2014) investigate the
choice of weights in multiple membership models with a
continuous dependent variable. They compared parame-
ter estimates and residual estimates resulting from use of
different weight patterns using a real dataset and a small-
scale simulation study. Several conditions were manip-
ulated in this study, including the mobility rate (percent
of students that changed schools), intra-class correlation
coefficient, number of schools and number of students
per school. They found that the choice of weights does not
greatly impact parameter estimates. Some studies using
MM models with real data to investigate substantive
questions make some reference to the robustness of the
parameter estimates across different weight specifications
(Fielding, 2002; Goldstein, 2011b). These studies do not
give any detail as to the weighting profiles considered and
the estimates obtained. Consequently, the reported stabil-
ity across weighting profiles probably reflects considered
weighting profiles which are close to the correct weights.
As the model weights specified deviate from the correct
weights, and the sum of the square of thesemodel weights
deviates from this measure for the correct weights, the
estimated variance would be expected to be biased and
confidence intervals to have poor coverage properties.

This paper assesses, through simulation studies, the
model identification rates of the DIC to detect the correct
MM weights for a two-wave design and a binary out-
come, and the properties of model variance estimators for
MM models with different weight specifications across a
range of scenarios. These two assessments have not been

undertaken in previous literature. The correct model
identification rates of the DIC are assessed in terms of the
percentage of times the models with the correct weights
correspond to the lowest DIC value. The properties of
the variance estimator considered include the percentage
relative bias, the confidence interval coverage, the power
of the Wald test and the 95% credible interval estimates
for the random effects parameter. The properties of the
MM models are investigated when weights are chosen a
priori and alternatively when chosen on the basis of the
DIC. The different scenarios considered vary in terms of
the true MM weights, the different profiles of interviewer
change and the proportions of cases experiencing inter-
view change. These profile types aim to represent different
plausible interviewer allocations, with the intention of
covering the main possible interviewer work allocations.
They reflect the various possible scenarios that induce
interviewer change in surveys. Different total sample sizes
and number of interviewers (groups) are also considered.

Rather than mathematical theoretical derivations, this
paper uses simulation studies. Previous methodological
research shows that even for perfectly nested two-level
hierarchical models, any power formulae are approximate
(Snijders, 2005). To derive theoretical formulae for the
various properties for cross-classified and multiple mem-
bership logistic models has proved impossible. Instead,
simulation studies offer a general procedure for estimat-
ing power and other estimator properties in complex
designs. The only disadvantage is that a great number of
simulations are required to cover a variety of possible fac-
tor values, and this is very time consuming. Other studies
have also used simulation studies to investigate the impact
of various factors on the properties of estimator for per-
fectly nested hierarchical models (Moineddin, Matheson,
& Glazier, 2007; Paccagnella, 2011; Rodriguez & Gold-
man, 1995; andTheall et al., 2011); cross-classifiedmodels
(Browne & Golalizadeh, 2009) and multiple membership
models (Browne et al., 2001; Chung & Beretvas, 2012).
Throughout the simulation study, the example of inter-
viewer effects in a longitudinal survey serves as a running
example.

After the simulations, an application from survey
methodology is discussed, implementing multiple mem-
bership models with different weight specifications in
waves 7 and 8 of the UK Family and Children Survey
to investigate the relative importance of previous and
current interviewers on current wave nonresponse in a
longitudinal survey. Whilst the resulting practical sur-
vey design implications are not the main focus of this
paper, our applied work will lead to improved response
propensity models for longitudinal surveys. Such models
can then be used for either nonresponse adjustment in
survey estimates (e.g. Skinner & D’Arrigo, 2011) and/or
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for the improvement of survey management processes,
such as adaptive and responsive survey designs (Groves &
Heeringa, 2006; Durrant, Maslovskaya, & Smith, 2015).

The implications of the work in this paper are wide
ranging. The simulation results on the percentage of cases
with multiple memberships required for adequate esti-
mates of the higher-level variance and the probability
of the DIC measure identifying the correct weights for
various data structures highlight any inference problems
arising for MM models. The performance of the DIC in
choosing between competing MM model weights indi-
cateswhether the substantive interpretation of theweights
based on theDIC can be emphasized. This study also indi-
cates underwhich scenarios choosingweights based on an
empirical assessmentmethod compared to relying on pre-
determinedweights yields better estimator properties and
power of the Wald test. In particular, this paper provides
practical guidance to users applying MMmodels in their
work. The research may also inform the design of studies
with MM structures.

Methodology

Themultiplemembershipmodel

Let yi jp jc denote the dependent binary variable of interest
for individual i nested within the two higher level multi-
plemembership units jp and jc. For the example of survey
response in longitudinal surveys, this indicates whether
individual i, interviewed by interviewers jp in the previ-
ous wave and jc in the current wave, responded to the
survey request at the current wave. The probability of an
individual experiencing the event of interest, here survey
response, is denoted pi jp jc = Pr(yi jp jc = 1). Modeling this
probability the logistic multiple membership multilevel
model can be written as (Goldstein, 2011a):

logit
(
pi jp jc

) = β0 + βT
1Xi j + wi jpu jp

+wi jcu jc, wi jp + wi jc = 1, (1)

where β0 represents the overall intercept in the linear
relationship between the log-odds of y and the predictor
variables included in the model Xi j, where j represents
jp jc. The vector β1 contains the parameter coefficients for
each explanatory variable in the model. The interviewer-
specific residuals, ujp and ujc , for both the current and
previous wave interviewers, come from one distribution
N(0, σ 2

u). Cases experiencing interviewer change have a
weighted average effect of the previous and current wave
interviewer effects. The terms wi jp and wi jc represent the
respective weights for the interviewers at the previous and
current wave. While cases allocated to the same inter-
viewer across both waves are given a weight of 1 for wi jp

and a weight of 0 for wi jc , cases experiencing an inter-
viewer change have two non-zero weights summing to
1. In the case of the weights wi jc being set to 0 for all i
themultiple membershipmodel would reduce to a simple
2-level model. It should be noted that in multiple mem-
bership multilevel models the weights are fixed quantities
that need to be specified in advance and are not estimated
by themodel (Goldstein, 2011a). For the particular exam-
ple of investigating nonresponse influences at the current
wave it should be noted that in survey practice additional
types of (unit-) nonresponse exist that occur at all pre-
vious waves (including at wave 1). In the example above,
however, the nonrespondents frompreviouswaves are not
considered part of the analysis sample, i.e. attrition effects
between wave 1 and wave p are not taken into account. If
a researcher wanted to analyse the impact of interviewer
effects on total drop-out (i.e. the changes in the sample
between wave 1 and the current wave), these selection
effects would need to be considered.

The simulation study

The simulation design is as follows. First the data generat-
ing process is described. Then, the MM multilevel logis-
tic regression model fitted to the simulated data is pre-
sented. Next, various simulation scenarios and the design
factor values are considered. The formulae used to calcu-
late the properties of the estimator, and the correct model
identification rates of the DIC from these stored quanti-
ties are presented. All parameter specifications in the sim-
ulation study, where possible, are based on data from the
UKFamily andChildren Survey, to ensure as realistic esti-
mates and scenarios as possible in the design of the study.

Data generating procedure

Since the study focuses on the properties of the esti-
mator for the interviewer random parameter only, an
empty model without covariates is sufficient. The regres-
sion coefficient for the overall intercept β0 is determined
from the overall probability of the outcome variable for
the mean interviewer membership, π , as:

β0 = loge
π

1 − π
. (2)

Then an interviewer random effect is generated from
a normal distribution of mean 0 and variance σ 2

u for each
interviewer included in the analysis. If, for example, the
previous wave includes 100 distinct interviewers and the
current wave includes another 20 distinct interviewers
not present in the previous wave, a total of 120 inter-
viewer effects are generated. The true MM weights Wi jp
and Wi jc are specified. Cases with no interviewer change

G. B. DURRANT ET AL.598



will be allocated (1, 0) weights, whilst cases with inter-
viewer changes are allocated two non-zero weights (Wi j)
which sum to 1.Wi j, equivalent toWi jp jc , refers to the pair
of true MM weights for cases experiencing interviewer
change. These non-zero weights are maintained constant
across all cases experiencing interviewer change.Different
true weight profiles Wi j are considered, one giving equal
weights, Wi j = (0.5, 0.5), and the others giving unequal
weights Wi j = (0.9, 0.1) and Wi j = (0.7, 0.3). The log-
odds of each case, ηi j, are computed by adding the overall
intercept value to the weighted average of the simulated
random effects:

ηi j = β0 + Wi jpujp + Wi jcujc . (3)

These values are then converted to probabilities:

pi j = exp
(
ηi j

)

1 + exp
(
ηi j

) . (4)

Values of the dependent variable yi j for each case, are
generated from a Bernoulli distribution with probabil-
ity pi j. For each scenario 1000 simulations are generated
using R Version 2.11.1. (It should be noted that the condi-
tioning on prior wave response is not of relevance for the
design of the simulation study.)

Simulationmodel

The following model is fitted to each simulated dataset:

logit
(
pi jp jc

) = β0 + wi jpujp + wi jcujc, (5)
wi jp + wi jc = 1. (6)

For each scenario nine weight profiles are specified,
and consequently nine models are fitted using each sim-
ulated dataset. Each model will include different model
weights for the cases experiencing interviewer change,
wi j. These weight profiles vary by 0.1, from weights of
(0.9, 0.1) to (0.1, 0.9). (The choice of weight profiles are
motivated by a research question in survey methods, if
the earlier or the later interviewer in a longitudinal study
ismore important in gaining response from samplemem-
bers. Findings in the literature that range from identifying
the first interviewer in the first two waves of a longitudi-
nal study having the largest influence (Pickery et al., 2001)
to identifying the later interviewer to be more important
(Lynn et al., 2013)). For one of these nine weight profiles
the model weights wi j are the correct weights, equal to
the true MM weights Wi j (the weights used to generate
the data), while the other eight models will have incorrect
wi j, with varying degrees of misspecification. These nine
weight profiles represent the different possible predefined
weights. After all 9 models are fitted, the model with the

lowest DIC is chosen. This is repeated for all 1000 simu-
lations for each scenario. The 1000 models (from a total
of 9000 models) with the lowest DIC will include differ-
ent weighting profiles. Their one common criterion is that
they provide the best fit (determined by theDIC value) for
each particular simulated dataset.

STATA Version 12 calling MLwiN Version 2.25
through the ‘runmlwin’ command (Leckie & Charlton,
2011) is used to fit themodels to the simulated data.Mod-
els are fitted using the MCMC estimation method with
the default priors (these are diffuse/uninformative priors),
a burn-in length of 5,000 and 100,000 iterations. (Differ-
ent burn-in lengths were explored to identify the appro-
priate length of discarded iterations to avoid undue influ-
ence from the starting values (Gelman et al., 2013). The
Brooks-Draper and Raftery-Lewis diagnostics (Browne,
2017) were checked to determine how long the chain
must be run for accurate point estimates and 95% credible
intervals.) The second order penalized quasi-likelihood
(PQL) estimates provide initial values for parameters.
Multiplemembershipmodels inMLwiN require the spec-
ification of the weights by the user. For each model run
the Brooks-Draper diagnostic, and the lower and upper
bound of the Raftery-Lewis diagnostic were obtained and
saved. For each scenario the percentage of times the val-
ues obtained for the Brooks-Draper and the Lower and
Upper Bound of the Raftery-Lewis diagnostics are less
than the iteration length specified, indicating the percent-
age of times convergence was reached were calculated.
(All other settings of the Brooks-Draper and the Raftery-
Lewis diagnostics use the MLwiN default settings, fur-
ther details are provided in the Appendix.) For all cases
the percentage of times full convergence was reached was
always at least 90%, which was considered acceptable.
(It should be noted that convergence here is assessed
within a comprehensive simulation study and a trade-off
between computing time and the percentage of cases that
have converged need to be set. Setting the cut-off value
even higher would have resulted in significant longer
computing time and consideration of fewer scenarios.)

Simulation scenarios and factors

A wide range of different scenarios, motivated by design
choices and realistic survey design settings from survey
practice, are considered and include the following fac-
tors: the overall sample size n, the number of interviewers
at the previous and current waves nIp and nIc, and by
consequence the number of cases per interviewer, the
percentage of cases with interviewer change (percentage
change), the interviewer change profile type, the inter-
viewer variance σ 2

u , the overall probability of the outcome
variable π , and the true MM weights Wi jp and Wi jc . The
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Table . Change profile type characteristics covering various possible interviewer work allocations (illustrated for the case
n= ; for all scenarios  interviewers with  cases per interviewer were used in the previous wave; for type A and B the percentage
change indicates the proportion of cases of each previous wave interviewer which are allocated to a different interviewer in the current
wave; for Type C, D, E and F scenarios the percentage change refers to the proportion of interviewers who drop out of the survey and have
all their cases allocated to other interviewers).

Type Short Description Current wave: pool of interviewers and case load
Percentage change

considered

A same pool of interviewers for both waves but each interviewer
loses a specific amount of cases (% change) from previous
wave

 previous interviewers (same pool of
interviewers as previous wave) (total: 
interviewers)

New allocation: %, %,
%, %, %

 cases per interviewer
B new pool of interviewers at current wave to whom cases with

interviewer change are allocated randomly
 previous interviewers and  new
interviewers (total:  interviewers)

New allocation: %, %

 cases per interviewer
C interviewer drop-out and cases of interviewers who drop out at

previous wave are distributed randomly among all other
interviewers present in the previous wave

 previous interviewers (total:  interviewers)
 cases per interviewer

Drop-out and new
allocation: %

D interviewer drop-out and newly recruited interviewers are
allocated the changed cases randomly in the current wave

 previous interviewers and  new
interviewers (total  interviewers)

Drop-out and new
allocation: %

 cases per interviewer
E interviewer drop-out and intact caseload of a dropped

interviewer is allocated randomly to another (existing)
interviewer

 previous interviewers (total:  interviewers)
 cases per interviewer

Drop-out and new
allocation: %

F interviewer drop-out and intact caseload of a dropped
interviewer is allocated randomly to a new interviewer

 previous interviewers and  new
interviewers (total:  interviewers)

Drop-out and new
allocation: %

 cases per interviewer

following factor values will be considered typical values
and maintained constant across the majority of scenar-
ios: n = 5760, nIp= 240, 24 cases per interviewer at the
previous wave, σ 2

u = 0.3, π = 0.8. All values were chosen
based on estimated parameters using the longitudinal
Family and Children Study (further details on the data see
Vassallo et al., 2015) so to reflect realistic settings. (The
estimated random interviewer effect of 0.3 from the data
reflects a significant interviewer effect, with 8%of the total
variation due to interviewers (calculated using the thresh-
old model definition) (Goldstein, 2011a)). While main-
taining these values, the other factor values will be altered
to assess the effect of different percentage change, change
profiles and Wi j on the properties of the estimator, test
statistic and DIC for realistic general household survey
scenarios.

Six change profile types (A-F) are considered here
and their main characteristics are outlined in Table 1.
These profile types aim to represent different plausible,
yet extreme, interviewer allocations, with the intention
of covering the main possible interviewer work alloca-
tions. They reflect the various possible scenarios that
induce interviewer change in surveys. (This may range
from for example no interviewer change to interviewer
change occurred since a previous interviewer dropped
out of the workforce and hence the interviewer workload
was reallocated to other interviewers). For all scenarios
the caseload for all interviewers in the previous wave is
24 cases. In Type A and Type B scenarios the percentage
change refers to the proportion of cases of each previous

wave interviewer which are allocated to a different inter-
viewer in the current wave. The Type A scenarios include
the same pool of interviewers for both waves. At each
wave the same interviewers are present, with the same
workload, but each interviewer loses a specific amount of
cases (represented by the percentage change factor) from
the previous wave. These are allocated randomly to differ-
ent interviewers in the current wave. The Type B scenar-
ios include a new pool of interviewers at the current wave
to whom cases with interviewer change are allocated ran-
domly. Each interviewer in the previouswave has a partic-
ular percentage of cases removed. The new pool of inter-
viewers each have a caseload equal to the number of cases
removed from each previous wave interviewer. For Type
A scenarios the following percentage changes are consid-
ered: 8%, 21%, 33%, 50% and 92%, while for Type B sce-
narios the 8% and 50% changes are considered.

In Type C, D, E and F scenarios the percentage change
refers to the proportion of interviewers who drop out of
the survey and have all their cases allocated to other inter-
viewers. The other interviewers maintain all their cases
across both waves. Since it is interviewers that are being
dropped the total caseload (24 cases times the number
of dropped interviewers) must be equally divisible by the
remaining interviewers or the newly recruited interview-
ers. Consequently, for these scenario types only the 50%
change scenario will be considered.

In Type C scenarios the cases of the interviewers who
drop out of the survey in the current wave are distributed
randomly among all the other interviewers present in the
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previous wave. Consequently, the retained interviewers
will double their case load in the current wave. On the
other hand, in Type D scenarios newly recruited inter-
viewers are allocated these changed cases randomly in
the current wave. In this case all interviewers have a
caseload equivalent to the previous wave caseload, since
the retained interviewers are supplemented by a group
of new interviewers matching in number the group of
dropped interviewers.

For scenarios E and F the intact caseload of a dropped
interviewer is allocated randomly to another interviewer.
In Type E scenarios the remaining interviewers from the
previous interviewers take on this extra workload, whilst
for Type F scenarios new interviewers are introduced
to take on the added workload. Table 1 indicates the
total number of caseloads per interviewer (Column titled:
Current wave: pool of interviewers and caseload). When
interpreting the results we need to bear in mind that the
level 2 units in the current wave vary amongst some pro-
files as outlined in Table 1. (Here in the simulation we
have varied caseloads for a group of interviewers at a time
rather than, what is strictly speaking the case in survey
practice, allowed for different case loads for each inter-
viewer. However, this will not affect the principal results
of the simulation. It should also be noted that multilevel
models naturally take account of different cluster sizes per
higher grouping variable.)

Properties of the variance estimator and correct
model identification rates for the DIC

The properties of the variance estimator considered
include the percentage relative bias, the confidence inter-
val coverage (from both the 95% Wald confidence inter-
vals and 95% credible interval estimates), and the power
of the Wald test. The correct model identification rates
for the DIC are calculated as follows. For each scenario,
1000 simulated datasets are generated. For each of these
1000 datasets 9 models are fitted, each specifying differ-
ent pre-defined wi j. For each simulation run, out of these
nine models the model corresponding to the lowest DIC
is selected. From a total of 9000 models run for each sce-
nario the 1000 selectedmodels will have different wi j. The
distribution of the wi j for these chosen models is investi-
gated. The proportion of times themodel with the correct
model weights (wi j = Wi j) is selected represents the cor-
rect model identification rate of the DIC measure. A less
strict measure quantifies the percentage of times the cor-
rect model weights or the adjacent model weights (e.g. for
Wi j = (0.5, 0.5) adjacent weights would be wi j = (0.4, 0.6)
and wi j= (0.6, 0.4)) are selected.

The accuracy of a parameter estimator can be assessed
by calculating the percentage relative bias, given by

the formula

1
1000

1000∑

i=1

θ̂i − θ

θ
× 100,

where θ̂i is the parameter estimate, θ is the true parameter
value and i is the simulation number.

The confidence interval coverage rate (see, for exam-
ple,Maas&Hox, 2005) is calculated as the number of sim-
ulations for which the true parameter value lies within the
95% Wald confidence interval. The coverage rate is com-
pared with the nominal 95% rate. The results from the
95% credible confidence interval from the MCMC chains
are provided in the appendix. The power of a test indi-
cates the probability that the null hypothesis is correctly
rejected. Here theWald test is used to test the null hypoth-
esis, specifying the true parameter value to be zero. The
proportion of datasets for which the null hypothesis is
retained is subtracted from 1 to obtain the power of the
test. These properties are estimated ten times – nine of
which correspond to themodels with prespecifiedwi j and
the other corresponding to the model with wi j based on
the DIC. For each scenario, the values of these measures
for model with the correct weight profile (when wi jc and
wi jp correspond to Wi jc and Wi jp ) are compared to the
models with the other eight incorrect models with pre-
specified wij as well as the model with weights based on
the DIC.

Results of the simulation study

Given the wealth of results, based on the wide range of
factors and scenarios considered, this section presents key
results only and outlines general trends in the properties
of the estimator, the power of theWald test and the correct
model identification rates of the DIC measure. Full mod-
eling results are provided in an Online Appendix, with
some commentary, for the interested reader. As a base-
line, the properties for the model specifying the correct
weights, that is wij =Wij, are highlighted in all tables. The
tables illustrate how misspecification of weights compare
to the true weights within change profiles.

Percentage relative bias of the level 2 variance
estimator

The percentage relative bias of the variance estimator is
evaluated for different simulation factor values. Negligi-
ble or low relative percentage bias (of less than 4%) is
observed for models specifying the correct model weights
wij (highlighted) across the different scenarios considered,
in agreement with the result in Browne et al. (2001). As
expected, models specifying incorrect wij are subject to
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Table . Relative Percentage Bias (for Type A, with sample size n = , number of interviewers in the previous wave nIp = ,
interviewer variance σ 2

u= ., overall probability of the outcome variable π= ., true weightWi j= (., .) scenarios with varying per-
centage change in the proportion of cases of each previous wave interviewer which are allocated to a different interviewer in the current
wave).

Interviewer Change

wi j % % % % %

., . − . − . − . − . − .
., . − . − . − . − . − .
., . − . − . − . − . − .
., . . . − . − . − .
., . . . . . − .
., . . . − . − . − .
., . − . − . − . − . − .
., . − . − . − . − . − .
., . − . − . − . − . − .
DIC based . . . . − .

bias. Table 2 shows that model weight misspecifications
have greater negative consequences for the percentage rel-
ative bias of the variance estimator for scenarios with a
higher proportion of interviewer change (proportion of
cases with multiple memberships).

Table 3 shows that generally, for the Wi j = (0.5,
0.5) scenarios, symmetry in the distribution of the abso-
lute values of the biases around the wi j = (0.5, 0.5)
model can be observed, with the lowest bias obtained for
the model specifying the correct model weights [wi j=
(0.5, 0.5)]. These results are expected since models with
wi j = (0.9, 0.1) and models with wi j = (0.1, 0.9) have the
same degree ofmisspecification.However, some skewness

is observed for change profile types with unequal num-
bers of interviewers and unequal workloads across the
twowaves (Type B, C andE scenarios). On the other hand,
Table 3 shows that for Wij = (0.9, 0.1) scenarios includ-
ing a larger number of cases with multiple memberships
(50% change) the bias is positive, increases in effect size,
then decreases and turns negative with greater misspeci-
fication in the model weights. The point at which the bias
turns negative varies by change profile type. Although low
biases are observed where the positive bias turns nega-
tive, the average DIC consistently shows higher values as
the discrepancy between the wij and theWij increases (see
Online Appendix).

Table . Relative Percentage Bias (for sample size n = , number of interviewers in the previous wave nIp= , % change,
interviewer variance σ 2

u = ., overall probability of the outcome variableπ = . with varying trueweightsWi j and Change Type Profile).

Wi j = 0.5 0.5

wi j Type A Type B Type C Type D Type E Type F

., . − . − . − . − . − . − .
., . − . − . − . − . − . − .
., . − . − . − . − . − . − .
., . − . − . − . − . . − .
., . . − . . . . − .
., . − . . − . − . − . − .
., . − . − . − . − . − . − .
., . − . − . − . − . − . − .
., . − . − . − . − . − . − .
DIC based . − . − . − . − . − .

Wi j = 0.9 0.1

wi j Type A Type B Type C Type D Type E Type F

., . . . . . . .
., . . . . . . .
., . . . . . . .
., . . . . . . .
., . − . . . . . .
., . − . . − . . − . .
., . − . . − . − . − . .
., . − . − . − . − . − . .
., . − . − . − . − . − . .
DIC based . . . . . .
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Table . CI coverage (for sample size n= , number of interviewers in the previouswavenIp = , % change, interviewer variance
σ 2
u= ., overall probability of the outcome variable π = . with varying true weightsWi j and Change Type Profile).

Wi j = 0.5 0.5

wi j Type A Type B Type C Type D Type E Type F

., . . . . . . .
., . . . . . . .
., . . . . . . .
., . . . . . . .
., . . . . . . .
., . . . . . . .
., . . . . . . .
., . . . . . . .
., . . . . . . .
DIC based . . . . . .

Wi j = 0.9 0.1

wi j Type A Type B Type C Type D Type E Type F

., . . . . . . .
., . . . . . . .
., . . . . . . .
., . . . . . . .
., . . . . . . .
., . . . . . . .
., . . . . . . .
., . . . . . . .
., . . . . . . .
DIC based . . . . . .

For some scenarios with Wij = (0.9, 0.1) and a low
percentage of multiple memberships or a very restrictive
change profile, symmetry in the biases [usually notice-
able only for Wij = (0.5, 0.5) since the degree of mis-
specification is symmetrical around wij = (0.5, 0.5)]
is observed across the different models with different
weights (Table 3). For these scenarios there seems to be
insufficient information for the total variance to be cor-
rectly apportioned across the twowaves. No effect of halv-
ing the total sample size on the bias is noticeable for the
sample sizes considered (n = 5760 and n = 2880).

A lot of variation in bias across different change profile
types can be observed for the models including the most
incorrect wi j (Table 3). However, the bias of the estimator
across the different change profile types is relatively stable
for the models including the correct and neighboring wi j.

Importantly, a low relative percentage bias is obtained
when the wi j choice is based on the DIC. Basing the selec-
tion of the weights on the DIC avoids the possibility of
huge biases in the interviewer variance if weights are con-
siderably misspecified. Moreover, for equally distributed
true MM weights [Wi j = (0.5, 0.5)], for all change profile
types except Type F, specifying the correct weights does
not offer a major improvement in terms of the estimator
bias compared to choosing the weights on the basis of
the DIC (Table 3). In contrast, substantially higher biases
are obtained for the models including weights based
on the DIC compared to the models including the true
predefined weights profile for Wi j = (0.9, 0.1). However,

the absolute value for the random effect estimator bias
never exceeds 10% for the DIC-based weights models, in
contrast with biases that exceed 60% for models with pre-
definedmisspecifiedweights for the scenarios considered.

Although not the main focus of the study, we also
consider the effect of different weight specifications on
the bias of the regression coefficient. We find that across
all scenarios considered, the relative percentage bias was
throughout very small and never more than 3%, which
was the case under severe misspecification of the multiple
membership weights (i.e. when the weights are (0.1, 0.9)
but the true set of weights are the opposite extreme (0.9,
0.1)). This indicates that the effects of setting the weights
on level-one parameter estimates are very small. This is
in line with results in the (scarce) literature in this area,
which found that there are no substantial effects on level-
one variables even if the multiple membership structure
is ignored (Chung & Beretvas, 2012).

Coverage of the confidence interval for the level 2
variance

The results presented here are based on the 95% Wald
confidence interval. The 95% credible confidence interval
from the MCMC chains are provided in the Appendix.
(The two measures show similar values and the same
trends across factors.) Models specifying the correct
weights obtain confidence interval coverage rates close
to the nominal 95% rate, with the lowest rate obtained
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for the scenarios considered being higher than 90%,
confirming the result presented by Browne et al. (2001)
for their simulated example. Consequently, the confi-
dence interval coverage rates for the models with the
correct or neighboring weights do not vary by simulation
factor. Extremely low coverage rates (even below 5%)
are obtained for models with very badly misspecified
weights. The lowest confidence interval coverage rates
are observed for scenarios with a high percentage of cases
with multiple memberships.

There is some indication that for models with prespec-
ified weights for scenarios with 50% change the confi-
dence interval coverage is higher for n = 2880 scenarios
compared to n = 5760 scenarios for misspecified mod-
els and slightly lower for models with correct wi j. For the
8% change scenarios no trend can be identified, indicat-
ing that the effect of n is only noticeable for data with a
high percentage of multiple memberships.

Table 4 shows that, as expected, Wi j = (0.5, 0.5) sce-
narios show symmetry in the confidence interval cov-
erage around the (0.5, 0.5) weights model. Some skew-
ness (similarly to the skewness observed for the bias of
the estimator) is observed for change profile types with
unequal numbers of interviewers and unequal workloads
across the two waves (Types B, C and E). Interestingly,
the average DIC value across the different models with
different prespecified wi j shows perfect symmetry for all
change profiles types (see Online Appendix). In the case
of Wi j = (0.9, 0.1) scenarios the coverage rates remain
relatively high and stable or only decrease slightly when
specifying the next couple of weight schemes in compar-
ison to the correct weights. However, for the most erro-
neously specified weights [wi j = (0.1, 0.9), wi j = (0.2,
0.8) and wi j = (0.3, 0.7)] much lower coverage rates are
observed.

The coverage rates observed for the models with the
most incorrect weights vary across different change pro-
file types and between each Wij factor value (Table 4).
For the unequally distributed Wij scenarios [Wi j = (0.9,
0.1)] the change profile types including a higher number
of total interviewers (480 interviewers for Type B, and 360
interviewers forD and F) obtain better coverage rates than
the change profile types with a total of 240 distinct inter-
viewers (Type A, C and E) for the models with incorrect
weights.

The models specifying the correct weights do not offer
a substantial improvement on the confidence interval cov-
erage of the estimator over models with weights based
on the DIC. The only exception to this trend is the sce-
nario with change profile Type F with Wi j= (0.5, 0.5),
where the model including weights based on the DIC has
a confidence interval coverage 87.8% compared to 92.7%

for the model with wi j = (0.5, 0.5) (Table 4). However,
for this scenario coverage rates fall to 73% for models
including incorrect prespecifiedweights. Therefore, in the
case of the confidence interval coverage, relying on the
DIC to select the model weights is the best strategy to
avoid low coverage rates when the true multiple member-
ship weights are unknown. Given that the simulations are
based on 1000 replicates, the error rate of the estimated
coverage rates is at most ± 3 percentage points.

Power of theWald test for the level 2 variance

The power of theWald test is equal to 1 in most scenarios
across all wi j specifications, and therefore less influenced
by factor changes in comparison to other properties.
Some exceptions are observed for very badly misspecified
wi j, especially for scenarios with high percentage changes
(proportion of cases being associated withmultiple mem-
berships) and small total sample sizes n. As expected, the
scenarios with n= 2880 (considered for Type A and Type
B change profiles) show some lower values for the power
of the Wald test in comparison to equivalent scenarios
with n = 5760. The effect of n is only noticeable for high
percentage change values and different Wij for different
change profile type scenarios. It is important to note that
the models including weights based on the DIC always
obtain optimal power values (greater than 0.95).

Correctmodel identification rates for the DIC
measure

This section explores the rates at which the DIC chooses
the model with the correct multiple membership weights
wi j (correct model identification rates). Figure 1 shows
the frequency distribution of the wi j specified for the 1000
models (out of the 9000 models of each scenario) corre-
sponding to the lowest DIC. Table 5 shows the propor-
tion of these 1000 models that have the correct wi j and
the proportion which have the correct or adjacent wi j for
different scenarios.

DIC performs better for scenarios with a greater per-
centage of cases with multiple memberships. In Figure 1
it can be noticed that for Type A, wi j = (0.5, 0.5) scenar-
ios with varying degrees of percentage change with typ-
ical values for the other factors, the DIC performs better
for scenarios with a greater proportion of cases experienc-
ing change. This is contrary to the results obtained for the
properties of the variance estimator and the test statistic,
reviewed above, which showed that worse estimator prop-
erties and power of the Wald test are obtained for scenar-
ios with a greater percentage of cases experiencing inter-
viewer change.
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Figure . Frequency Distribution of the Model Weights for the DIC-based Weights Models (for Type A, with sample size
n= , number of interviewers in the previouswavenIp = , interviewer varianceσ 2

u = ., overall probability of the outcome variable
π= ., trueweightWi j = (., .) scenarioswith varyingpercentage change in the proportion of cases of eachpreviouswave interviewer
which are allocated to a different interviewer in the current wave).

For both Type A and Type B scenarios, halving
the total sample size, and by consequence the number
of interviewers, while maintaining the same multiple
membership proportions, results in drastic reductions
in the ability of the DIC to lead to the correct choice of
weights wi j for the Wi j= (0.5, 0.5) scenarios (the correct
weights are always most closely associated with the lowest
model DIC). However, the effect of the sample size n on
the correct model identification rates of the DIC measure
varies by change profile type and by Wi j.

As can be observed in Table 5 the correct model
identification rates of the DIC vary by true weights Wi j,
showing better results for unequally distributed weights
data, noticeable to a greater extent for scenarios with

Table . Correct Model Identification Rates of the DIC
(showing the proportion of the  models that have the correct
weights and the proportion which have the correct or adjacent
weights for different scenarios) (for sample size n= , number
of interviewers in previouswaven= , %change, interviewer
variance σ 2

u = ., overall probability of the outcome variable
π = ., scenarios with varying profile change type and true
weightWi j).

Change Profile Proportion with Proportion with Correct
Wi j Type Correct Weights or Adjacent Weights

., . A . .
B . .
C . .
D . .
E . .
F . .

., . A . .
B . .
C . .
D . .
E . .
F . .

a low percentage of cases with multiple memberships.
This higher DIC correct model identification rate for the
Wi j= (0.9, 0.1) scenarios may be due to the boundary
effect of this weighting scheme which only has one
possible adjacent weighting scheme, Wi j= (0.8, 0.2),
since Wi j= (1, 0) is not being considered as this simply
represents a 2-level model. It is expected that the DIC
performs better for situations where one interviewer is
dominant compared to situations where the current and
previous wave interviewers have equal influence since
the former situation is closer to a purely hierarchical
structure. For situations with one dominant interviewer
the negative influence of a lack of interviewer change on
the DIC’s ability to identify the correct weights is less than
for situations with two interviewers of equal influence.

Table 5 compares the correct model identification rates
of the DIC for different change profile type scenarios with
typical values for the other factors. The change profile
types that do not include new interviewers in the current
wave (Type A, C and E) fair better than the other change
profile types. This result is more consistent for Wi j =
(0.9, 0.1) scenarios. Therefore, to the extent that new
interviewers are introduced at the current wave to take
on the workload for change cases, the DIC will be less
useful as a method of detecting the correct weights. This
result can be explained in terms of the greater amount
of information available on each interviewer to identify
interviewer effects when the same set of interviewers is
maintained across both waves.

The DIC does not offer a very precise measure for
choosing the exact correct model weights. However,
the results are more encouraging when both the cor-
rect weights and the neighboring weights are considered
acceptable.
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Application of multiple membershipmodels to
the analysis of interviewer effects

To demonstrate the use of multiple membership models
using different weighting schemes and the DIC as an
assessment criteria in a practical application setting the
modelling approach is now applied to the analysis of inter-
viewer effects on nonresponse in a longitudinal study.
Interviewers have a crucial role in gaining response from
sample members (Durrant & Steele, 2009; Durrant et al.,
2010; Haunberger, 2010; Pickery et al., 2001). To analyse
such interviewer effects a multilevel modelling approach
has been advocated (Hox, 1994; O’Muircheartaigh &
Campanelli, 1999). However, the analysis of interviewer
effects can be greatly complicated for longitudinal stud-
ies. For example, it is unknown how interviewers affect
nonresponse behavior in a longitudinal study across
waves. Whilst some sample cases keep the same inter-
viewer across time, some will experience a change in
interviewers.

A key research question, which is discussed in this
application, is if the interviewer from a previous wave
or the current interviewer has the larger effect on non-
response. A range of multilevel multiple membership
models are applied, which explore the different weights
allocated to each interviewer. One study exists, which
found that the first interviewer in the first two waves of
a longitudinal study has the largest influence (Pickery
et al., 2001). However, this study applied a cross-classified
multilevel model, a method that does not naturally
lend itself to this type of application. In particular, the
model makes an independence assumption and does not
account for the fact that some interviewers remain the
same across waves. (For a detailed comparison of the use
of cross-classified and multiple membership models to
longitudinal studies see Vassallo et al., 2015). The study
also did not analyse interviewer effects on nonresponse at
a later stage of a longitudinal study. In the application here
we propose the use of a multiple membership model with
varying weight specifications to disentangle the differ-
ential influence of two consecutive wave interviewers on
nonresponse.

We use data from wave 7 and wave 8 of the UK Family
and Children Survey, which collects information on the
health and socio-economic status of householdswith chil-
dren in theUK. An advantage of these data is that detailed
information on interviewers is available and linked to the
two congruent waves of the survey, which can be used to
explain the interviewer effect. The information on inter-
viewers is obtained via administrative data on interview-
ers recorded by the National Centre for Social Research
(NatCen) and via a separate survey of interviewers also
carried out by NatCen (for further information about the

data see Lyon et al., 2007; Vassallo et al., 2015). The main
outcome of interest is whether or not a person responded
towave 8, conditioning on response to wave 7. This allows
detailed information on both the respondents and the
nonrespondents to wave 8 to be obtained from the pre-
vious wave. The final analysis sample includes 5932 cases
pertaining to 307 wave 7 interviewers, and 275 wave 8
interviewers. About 68.3% of cases changed their inter-
viewer between waves 7 and 8, such that 73.1% of wave
8 interviewers had cases associated with different inter-
viewers across the two waves. (Further detail about the
data and the survey design is presented in Vassallo et al.,
2015).

Application ofmultiplemembershipmodels with
different weight specifications

The multiple membership model given in equation (1) is
applied to wave 7 and 8 of the study, with the response
indicator (1 for nonresponse and 0 for response at wave
8) as the dependent variable. First, we explore the mul-
tilevel random structure (as is usually done in multi-
level modelling not yet including covariates (Goldstein,
2011a), i.e. we estimate an unconditional multilevel mul-
tiplemembershipmodel). Themodels are estimated using
MCMC in MLwiN with default priors (these are dif-
fuse/uninformative priors), a burn-in length of 5,000 and
500,000 iterations. Again, different burn-in lengths were
explored to identify the appropriate length of discarded
iterations to avoid undue influence from the starting val-
ues (Gelman et al., 2013).

Table 6 shows the DIC, and estimates of the random
(and fixed) effects for a range of multiple membership
models under the different weight specifications for wave

in the Appendix (Table A14) (with an explanation on
these diagnostics at the beginning of the Appendix). For
model 7 with weight specification (0.9, 0.1) the Raftery-
Lewis diagnostics for the variance is (33717; 14127) and
the Brooks-Draper diagnostic is 30641, indicating con-
vergence. Models that allocate a relatively equal weight
between the two interviewers seem to perform somewhat
worse. Of the multiple membership models, the smallest
DIC is obtained for the model that allocates the largest
weight to the most recent interviewer (wave 8; weight
specification (0.9; 0.1). Table 6 also shows the change in
the DIC in comparison to this model. It should be noted
that the differences in the DIC between models are rel-
atively modest. For our data analyzing interviewer effects
on nonresponse at a later stage of a longitudinal survey the
analysis therefore provides some indication that the most
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Table . DIC and estimates of random and fixed effects for various multiple membership models analyzing wave 7 and
wave 8 interviewer effects on nonresponse using different weight specifications (The models are ordered according to the
size of the DIC).

Model Type of Model Wave  Weights Wave  Weights Coefficient (S.E.) Variance (S. E.)
§

DIC DIC Change
∗

 MM . . − . (.) . (.)
∗∗

. .
 MM . . − . (.) . (.)

∗∗
. .

 MM . . − . (.) . (.)
∗∗

. .
 MM . . − . (.) . (.)

∗∗
. .

 MM . . − . (.) . (.)
∗∗

. .
 MM . . − . (.) . (.)

∗∗
. .

 MM . . − . (.) . (.)
∗∗

. —

∗records the DIC change in comparison to Model .
§the asterix ∗∗refers to the Wald test.

recent interviewer seems to have the highest influence on
nonresponse.We found that the wave 8 interviewer is sig-
nificant and accounts for about 8% of the total variance.
Exploring different multiple membership model settings
we observe that different weight specifications only very
slightly affect the fixed effects parameter estimates (see
Table 6) and none of the changes are significant. This is in
line with our earlier findings and the literature in this area
that has found no substantive effects on level-one covari-
ates even if the multiple membership structure is ignored
(Chung & Beretvas, 2012).

Once an appropriate random multiple membership
model structure specification is identified, it is the aim
in a multilevel model to explain (part of) the significant
random variance structure, here in this application the
interviewer effect, by including (groups of) explanatory
variables. Variables can also be included as controls. Our
application makes use of unusually rich auxiliary infor-
mation which allows the investigation of the influence of
information on interviewer socio-demographic charac-
teristics, work history, personality traits and job attitude.
The model further controls for a range of survey design
and participation history variables, as well as individ-
ual and household level characteristics. We found in this
application that certain interviewer characteristics have a
higher association with nonresponse. This is the case, for
example, for less experienced interviewers, and/or cases
that experience an interviewer change after controlling for
household effects. Interviewer personality traits did not
explain much of the interviewer variance. A full interpre-
tation of a similar multiple membership model investi-
gating the influence of the various explanatory variables
from a substantive perspective has been described in the
paper by Vassallo et al. (2015). We also compared param-
eter estimates across models with covariates under differ-
ent weight specifications and found no substantive differ-
ences, as we may expect given our earlier findings and the
results in the literature in this area (Chung & Beretvas,
2012).

Conclusions and guidance for modeling practice

This paper investigates the properties of the variance
estimator and the test statistic for multiple membership
models when the true multiple membership weights are
unknown, as would be the case in a real life situation,
and how such properties change depending on the model
selection method chosen. Different multiple membership
models with various weight specifications are considered.
The models include possible prespecified weights, and
models based on the weights identified as giving the best
fit by the DIC. Also, the correct model identification rates
of the DIC in identifying the true multiple membership
weights is examined. As themodel weights specified devi-
ate from the correct weights, and the sum of the square
of these model weights deviates from this measure for the
correct weights, the estimated variancewould be expected
to be biased and confidence intervals to have poor cover-
age properties. An application is provided, where a range
of multiple membership models with different weight
specifications are fitted to data from the UK Family and
Children Survey to investigate the effects of interviewers
on nonresponse in a longitudinal study. Research in this
area is scarce. We are aware of Wolff Smith and Beretvas
(2014) who analyzed the continuous case using a small-
scale simulation study and found that under the condi-
tions examined in their study, choice of weight pattern
did not greatly impact relative parameter bias nor level
two residuals’ ranks. This paper here aims to contribute
to this gap in the literature. A particular focus is on guid-
ance to modelling practitioners, that can be derived from
the results found.

The key results are as follows. As expected, the results
show optimal properties formodels specifying the correct
model weights. The properties of the variance estimator
and the test statistic generally do not vary across different
factor values for themodels including the correct weights.
In comparison, models with misspecified weights obtain
less than optimal, and at times alarmingly bad results.
Specifically, the results indicate that for most scenarios,
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models specifying equal weights (0.5, 0.5) for data with
extreme unequal true weights obtain higher biases and
lower coverage rates than the correctly specified models.
DIC-based weights models obtain good results overall,
sometimes reaching values equivalent to the models that
include the correct weights. The different factors interact
with each other in a complex way influencing the prop-
erties of the estimator and test statistic, and the correct
model identification rates of the DIC. We have also seen
that the equal weights (0.5, 0.5) setting does not perform
well in our application, where there is a higherweight allo-
cated to the later interviewer. It is hence important to care-
fully consider the weight specification in amultiple mem-
bership model using a DIC-based sensitivity analysis (see
also Chung & Beretvas, 2012).

No effect of halving the total sample size on the bias
is noticeable for the sample sizes considered, which are
typical for the type of social surveys considered here. The
use of very small sample sizes for multilevel models, of
say less than 200 and hence small group sizes, is generally
not recommended (Maas & Hox, 2005; Moineddin et al.,
2007; Paccagnella, 2011). Although not the main focus
of this study, effects of different weight specifications on
regression parameter estimates are found to be only slight.
The simulation found at most a relative bias of 3%, and
this only under severe misspecification of weights. In the
application, effects on parameter estimates are all negligi-
ble. This is in linewith previous research that found ignor-
ing multiple membership structures in multilevel mod-
els to lead to no substantial effects on level-one parame-
ters (although severe effects on other level parameters and
variances have been found) (Chung & Beretvas, 2012; see
also Moerbeek, 2004).

Here in this study we have used typical scenarios and
realistic parameter choices that are common in social
survey settings and the findings will hence be applicable
to similar settings. However, as in all simulation studies,
the results are in general applicable to the factor values
chosen and the scenarios considered. The results may not
be extrapolated to very different survey design conditions
with any certainty. Though some general trends can be
observed, this study highlights the need for consider-
ing each particular application (with its particular data
structure) on an individual basis to inform decisions on
inference. It should also be noted, that our application
considers the effects on the last two waves of the FACS
data, but the application of multiple membership models
to more general scenarios is straightforward. Whilst it is
in principle possible in MLwiN to set weights for each
sample unit, this does not seem practical (or even feasi-
ble) for the application of interviewer effects, since the
weights need to be specified in advance. Other applica-
tions, such as school effects on pupils in different schools,

may allow for such specifications if detailed information
on the schools and school changes are available.

The results suggest that before deciding on themethod
to choose theweights the characteristics of the data should
be noted. For example, for the case when the data include
a low percentage ofmultiplememberships all ninemodels
with the different pre-specifiedweights demonstrate good
properties of the estimator and test statistic for all scenar-
ios considered in this study. Therefore, to the extent that
the researcher is only interested in the variance estimate,
any reasonable weighting scheme can be applied when
only a low percentage of cases are associated with more
than one higher-level unit. What constitutes a low per-
centage will change depending on the other factor values,
such as the sample size and the interviewer change profile.

In general, however, the findings show that choosing
weights based on the DIC criterion, despite possibly lead-
ing to multiple membership weights that may not closely
reflect the true weights, results in good estimator proper-
ties and power of theWald test. When the multiple mem-
bership weights cannot be predetermined on a strong the-
oretical basis, it may be best to always choose weights
based on the DIC. This stimulation study has shown that
whilst the DIC does not offer a very precise measure for
choosing the exact correct model weights, for most sce-
narios the weights chosen are either the correct weights or
acceptable neighboring weights. Consequently, one needs
to be careful when interpreting the substantive meaning
of themodel weights as the frequency with which the DIC
is able to detect the correct model weights can be low.
Rather than speaking of exact proportions for the higher-
level influences it may be best to refer more loosely to
the extent of variance apportionment between the higher-
level groups (in our application groups of interviewers).

In the application considered, choosing the model
with the lowest DIC value, led to the conclusion that
the current wave interviewer has the largest influence
on nonresponse. These findings indicate that for the
later stages of a longitudinal survey the current wave
interviewer seems to have the greatest impact on current
wave nonresponse. They are in contrast with earlier
findings by Pickery and Loosveldt (2002) who report that
the first interviewer has the greatest influence. However,
they investigated interviewer effects at the beginning of a
longitudinal study, analyzing wave 1 and 2 interviewers,
and used a cross-classified multilevel model, and hence
their result should be noted with caution. Furthermore,
the substantive findings confirm that interviewer expe-
rience, grade and continuity are significant predictors of
nonresponse, highlighting for example the importance
of retaining experienced interviewers within the agency,
whereas interviewer personality traits are not important
predictors of wave nonresponse. The findings from the
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applied work will lead to improved response propensity
models for longitudinal surveys. Suchmodels can be used
for the improvement of survey management processes,
such as adaptive and responsive survey designs (Groves
& Heeringa, 2006; Durrant et al., 2015), before, during
and after data collection and for nonresponse adjustment
in survey estimates (e.g. Skinner & D’Arrigo, 2011).
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