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ABSTRACT
In this article,we show that theunderlyingdimensions obtainedwhen factor analyzing cross-sectional
data actually form amix of within-person state dimensions and between-person trait dimensions. We
propose a factor analytical model that distinguishes between four independent sources of variance:
common trait, unique trait, common state, and unique state. We show that by testing whether there
is weak factorial invariance across the trait and state factor structures, we can tackle the fundamental
question first raised by Cattell; that is, are within-person state dimensions qualitatively the same as
between-person trait dimensions? Furthermore, we discuss how this model is related to other trait-
state factor models, and we illustrate its use with two empirical data sets. We end by discussing the
implications for cross-sectional factor analysis and suggest potential future developments.

The Great Wave off Kanagawa is a wood-block print by
the Japanese artist Hokusai picturing a massive cresting
wave that is towering over three fishing boats, with a
snowcapped Mount Fuji in the background. Due to the
perspective that is taken, the wave looks much larger
and more impressive than the mountain, even though
Mount Fuji is the highest peak of Japan. Cattell may
have been thinking of an image like this when he used
the analogy of a photograph to expose a fundamen-
tal problem associated with cross-sectional research: He
pointed out that—just as we cannot tell the difference
between amountain and awave in a frozen snapshot—it is
impossible to determine to what extent individual differ-
ences observed at a single occasion are due to enduring,
trait-like differences between people, and to what extent
they reflect transient, state-like fluctuations within people
(Cattell, 1978).

In the context of factor analysis, this implies that the
common factors (i.e., underlying dimensions) that are
obtained from cross-sectional data are partly determined
by the between-person covariance structure and partly
by the within-person covariance structure. As a result,
these factors may not be very meaningful with respect
to either of these structures (Cattell, 1967). Put differ-
ently, the results from cross-sectional factor analysis may
very well form an “uninterpretable blend” of the rela-
tionships that exist at the between-person level and the
within-person level (cf. Raudenbush&Bryk, 2002).While
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Utrecht, The Netherlands.

the danger of mixing within- and between-cluster factor
structures has been recognized in the context of multi-
level factor analysis when individuals are nested in groups
(Muthén, 1994), it has received surprisingly little atten-
tion in the context of cross-sectional research, as well as
in the context of repeated measures designs (with occa-
sions nested in persons).

In this article, we propose a longitudinal structural
equation modeling (SEM) approach that allows us to
investigate potential differences between the between-
person, trait-like factor structure on the one hand and the
within-person, state-like factor structure on the other. In
many ways, the model we propose only forms a minor
extension of existing factor models; for example, it does
not account for some common features of longitudi-
nal data, such as trends or cycles over time, autoregres-
sive relationships, or individual differences in within-
person factor structures. However, the unique strength
of our model is that it exposes the fundamental and
often implicit assumption underlying cross-sectional fac-
tor analysis and many longitudinal factor models, that
the within-person and the between-person factor struc-
tures are the same. Moreover, the model offers a way to
test this assumption using as few as two measurement
occasions.

The remainder of this article is organized as fol-
lows. We begin by discussing how trait-like and state-like
sources of variance are contributing to our observations,
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how a particular longitudinal factor model can be used to
separate them, and how this model can be used to inves-
tigate whether the underlying trait-like dimensions that
describe enduring differences between individuals coin-
cide with underlying within-person dimensions on which
individuals tend to differ from themselves over time. In
addition, we discuss how some of the model’s restric-
tions across time can be relaxed (and tested). In the sec-
ond section, we discuss the connection with other mod-
eling approaches, including multilevel factor analysis and
trait-state modeling using SEM. This is followed by two
empirical applications that illustrate some of the unique
strengths of this approach.We end by discussing themost
important findings in our article and some future direc-
tions that need to be explored.

Investigating whether trait and state dimensions
coincide

We begin by distinguishing between four sources of vari-
ance that are likely to contribute to our data: two time-
invariant and thus trait-like sources and two time-varying
and thus state-like sources.1 Then we show how these four
sources affect our cross-sectional factor analysis and how
weak factorial invariance across the trait and state factors
plays a key role in this context. Subsequently, we present a
longitudinal factor model that can be used to separate the
four independent sources of variance and allows us to for-
mally investigate whether the underlying between-person
dimensions coincide with the underlying within-person
dimensions. We end by relaxing some of the assumptions
across time that are present in the initial trait-state model
we propose.

Distinguishing between four sources of variance

When we have a score on variable j at occasion t for per-
son i, yjti, we can think of this score as consisting of two
parts: a trait part that remains stable across time, and a
state part that is the temporal deviation from this trait
score. Extending this to m variables, and gathering these
in anm-variate vector yti, we may write

yti = μi + δti, (1)

 Throughout, we use rather simplistic definitions of trait and state. Trait is a
stable, time-invariant feature, for example, an individual’s mean over time,
whereas state is something that varies over time, for example, the individual’s
temporal deviation from this mean. Note that others have used different def-
initions in the context of SEMmodels (e.g., Steyer, Mayer, Geiser, & Cole, ).
Note also that we do not consider the option of trait change here, which is of
course an important phenomenon in longitudinal research, especially if we
take a life-span perspective.

where μi is an m-variate vector that contains the intrain-
dividual means for person i on the observed variables,
which we refer to as the trait scores of the individual,
and δti is an m-variate vector that contains the tempo-
ral deviations from the intraindividual means for indi-
vidual i at occasion t, which we refer to as the person’s
state scores.

Cattell (1967) proposed that by factor analyzing the
trait scores across individuals—an approach he termed
the averaged R-technique—we can obtain the p underly-
ing trait dimensions; that is,

μi = c + �ξi + ui, (2)

where (a) c is an m-variate vector with the grand means;
(b) ξi is a p-variate vector with common traits for individ-
ual i, representing an individual’s stable position on the
underlying trait dimensions; (c) � is an m × p matrix
with factor loadings relating the m trait scores μi to the
p common traits ξi; and (d) ui is an m-variate vector
that contains the part of the trait scores that could not
be accounted for by the common traits and are there-
fore referred to as unique traits. These unique traits are
assumed to be multivariate normally distributed with
means of zero and an m × m covariance matrix �. The
common traits are assumed to be multivariate normally
distributed, with means of zero and a p × p covariance
matrix �.

The state-part δti from Equation (1) can be factor
analyzed in a number of ways. When enough timepoints
are available per person, an individual factor analysis
can be performed—referred to as Cattell’s P-technique
analysis, and its extension called dynamical factor analy-
sis (Molenaar, 1985)—to obtain truly idiographic results
(e.g., Cattell, 1967; Hamaker, Dolan, & Molenaar, 2005).
When there are not enough timepoints to do individual
factor analysis (especially when the number of timepoints
is smaller than the number of variables per wave), we
can pool these within-person centered data and factor
analyze them simultaneously in what has been called a
pooled P-technique analysis (Cattell, 1967); that is,

δti = Kζti + vti, (3)

where (a) ζti is a q-variate vector with q common states
for person i at occasion t representing the individual’s
temporal position on the underlying state dimensions;
(b) K is anm × qmatrix with factor loadings relating the
m state scores δti to q common states ζti; and (c) vti is an
m-variate vector that contains the part of the state scores
that cannot be accounted for by the underlying com-
mon states and are thus referred to as the unique states.
These residuals are assumed to be multivariate normally
distributed, with means of zero and m × m covariance
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matrix A. The common states are also assumed to be
multivariate normally distributed, with means of zero
and q × q covariance matrix �.

Through the preceding reasoning, we have now dis-
tinguished between four independent sources of variance
(which have been previously identified by others as well;
cf. Dumenci & Windle, 1996; Marsh & Grayson, 1994),
that is, (a) a lasting general source that is invariant over
time and variables, which we refer to as the common trait
ξ ; (b) a lasting-specific source that is measured by only
one variable and is invariant over time, which we refer
to as the unique trait u; (c) a temporary-general source
that is measured by multiple variables and varies over
time, which we refer to as the common state ζ ; and (d)
a temporary-specific source that is measured by only one
variable and that varies over time, which we refer to as
the unique state v.

Implications for cross-sectional factor analysis

To see how these four sources of variance contribute to
regular cross-sectional factor analysis, we begin by plug-
ging Equations (2) and (3) into Equation (1), which results
in

yti = c + �ξi + ui + Kζti + vti. (4)

Equation (4) reveals something interesting: When we
have weak factorial invariance across the two factor struc-
tures (i.e., � = K), the model can be expressed as

yti = c + �
(
ξi + ζti

) + ui + vti

= c + �ηti + εti, (5)

where the latent variables ηti are sums of the common
traits ξi and common states ζti. Furthermore, the residuals
εti consist of both unique traits ui, which can also be inter-
preted as systematic error, and unique states vti, which can
also be interpreted as random measurement error. Hence,
when we factor analyze cross-sectional data that are gen-
erated by the model in Equation (5) (with � = K), the
factor solution we obtain adequately represents both the
between-person factor structure and the within-person
factor structure, as the two are identical. The variance
on the common factors ηti will be a sum of the trait-like
variance of ξi and the state-like variance of ζti, and the
unique variance will be a sum of the variance of system-
atic error ui and of the variance of measurement error
vti.

By contrast, however, when there is no weak fac-
torial invariance across the common traits and com-
mon states (i.e., � �= K), the model does not simplify
to the expression in Equation (5). As a result, factor
analyzing cross-sectional data that were generated by

the model in Equation (4) results in a factor-loading
matrix that forms a blend of � and K , such that the
cross-sectionally obtained factors may more closely rep-
resent either between-person or within-person factors,
depending on the relative contribution of the com-
mon traits and common states to the total covariance
structure.

It is important to realize that it is impossible to deter-
mine whether weak factorial invariance holds across the
trait and state structures (i.e., whether data were gen-
erated by Equation [4] or Equation [5]) if we only have
cross-sectional data. As Cattell (1978) already pointed out
with his analogy of a photograph, it is simply impossible
to distinguish between lasting and temporal individual
differences on the basis of a singlemeasurement occasion.
Thus far, the literature focusing on how to tackle this issue
has predominantly suggested using intensive longitudi-
nal data, which are then analyzed separately for each
person such that the idiographic factor solution could
be compared to the cross-sectional factor structure (cf.,
Zevon & Tellegen, 1982).2 Although this approach allows
individual differences to be maximal, the disadvantage is
that it requires a lot of data per person. In the following,
we present a longitudinal factor model that requires a
minimum of two waves of data and allows us to separate
the trait-factor structure from the (average) state-factor
structure. In addition, we can use this model to investi-
gate whether weak factorial invariance holds across the
trait and state factors (as in Equation [5]): If it does, the
underlying trait dimensions coincide with the underlying
state dimensions, such that both the enduring differences
between individuals (i.e., ξi) and temporal fluctuations
within individuals (i.e., ζti) can be situated on identi-
cal underlying dimensions. In this case, cross-sectional
factor analysis adequately recovers such dimensions.
However, when weak factorial invariance does not hold,
this implies that the factor structures do not coincide
and stable between-person differences are situated on
qualitatively different dimensions than within-person
fluctuations.

The common and unique trait-statemodel

The model presented in Equation (4) can be interpreted
as a factor model for occasion t (with t = 1, 2, …,
T). When applying this approach in practice, we can
express it as an SEM model for all T occasions simulta-
neously. To this end, we make use of the stacked vector

 Cattell () already pointed out that this was not a clear comparison of state
and trait factors because the cross-sectional factor structure is partly deter-
mined by the state variance present in the data.
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yi = [y′
1i y′

2i . . . y′
Ti]

′, such that3

⎡
⎢⎢⎣
y1i
y2i
. . .

yTi

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c
c

. . .

c

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

� I K 0 . . . 0
� I 0 K . . . 0
. . .

� I 0 0 . . . K

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ξi
ui
ζ1i
ζ2i
. . .

ζTi

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

v1i
v2i
. . .

vTi

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

�ξi + ui + K ζ1i + v1i

�ξi + ui + K ζ2i + v2i

. . .

�ξi + ui + K ζTi + vTi

⎤
⎥⎥⎥⎦, (6)

where I is an m × m identity matrix and 0 is an m × q
zeromatrix. In this representation, we have p+m+ q×T
latent variables in the vector η (that is, p common traits,m
unique traits, and for each of the T occasions, q common
states). For now, it is assumed the factor-loading matrices
for the common traits (i.e., �), and for the common states
(i.e.,K) are invariant over time; we will relax this assump-
tion in the following subsection. The covariancematrix of
η can be specified as a diagonal block matrix; that is,

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

0(m×p) �

0(q×p) 0(q×m) �

0(q×p) 0(q×m) 0(m×m) �

. . .

0(q×p) 0(q×m) 0(m×m) 0(m×m) . . . �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where the subscripts for the zero matrices indicate their
dimensionality. Note that� and�were defined as covari-
ance matrices associated with the trait model (see Equa-
tion [2]) and � was defined as a covariance matrix asso-
ciated with the state model (see Equation [3]). Finally,
the covariance matrix of the residuals in Equation (6) is
denoted as �, and it is the diagonal block matrix

� =

⎡
⎢⎢⎢⎣

A
0(m×m) A

. . .

0(m×m) 0(m×m) . . . A

⎤
⎥⎥⎥⎦, (8)

where A was defined as a covariance matrix associated
with the state model (see Equation [3]). We refer to the
model in Equations (6)–(8) as the common and unique
trait-state (CUTS) model to emphasize that it separates
between four sources of variance. In the upper left panel
of Figure 1, an example of the CUTS model is given, with

 We are making use of the well-known measurement equation y = τ +
�η + ε from the LISREL model here (with η ∼ N(0, �) and ε ∼ N(0,�));
alternatively, one could use the RAM notation.

four indicators, three measurement occasions, and one
common trait and one common state (per occasion).

The CUTS model can be used to investigate whether
the trait dimensions coincide with the state dimensions,
through constraining the factor loadings; that is, � = K .
Since the resulting model is nested under the model in
which this constraint is not imposed, we can simply per-
form a chi-square difference test: If the null hypothe-
sis of no difference between models is not rejected, the
researcher may conclude that weak factorial invariance
holds across the trait- and state-factor structures.4

Relaxing (and testing) the constraints over time in
the CUTSmodel

In the CUTS model presented in the preceding, all the
parameters are constrained to be invariant over time. As
a result, changes over time in yti are solely accounted for
by changes in the common states ζti and the unique states
vti. However, such strict stationarity constraints may not
be realistic in practice, and we could actually investigate
whether they hold. To this end, we propose to relax these
constraints in the CUTS model, thus allowing for the
means, the factor loadings, the variances, and covariance
to vary over time. In this case, Equation (6) becomes

⎡
⎢⎢⎣
y1i
y2i
. . .

yTi

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c1
c2
. . .

cT

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎣

�1 I K1 0 . . . 0
�2 R2 0 K2 . . . 0
. . .

�T RT 0 0 . . . KT

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

ξi
ui
ζ1i
ζ2i
. . .

ζTi

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

v1i
v2i
. . .

vTi

⎤
⎥⎥⎦, (9)

where Rt is a diagonalm×mmatrix with the factor load-
ings for the unique traits at occasion t on its diagonal. Fur-
thermore, the blocks � in Equation (7) will now carry a
time index, as will the blocks A in Equation (8).

It should be noted that when there are only two waves
of data, the factor loadings of common traits and the
common states can be allowed to vary over time (i.e., �t
and Kt ), but the factor loadings of the unique traits (i.e.,

 Weak factorial invariance is one of the first steps in investigating measure-
ment invariance when applied to multiple group analysis or longitudinal
factor analysis (cf. Meredith, ). Subsequent steps typically consist of
constraining the intercepts across groups or timepoints (resulting in strong
factorial invariance) and constraining the residual variances across groups or
timepoints (resulting in strict factorial invariance). In the current setting, how-
ever, the factor model for the state part by definition has a mean vector of
zero, while the trait part has a mean vector containing the grand means c.
Hence, the concept of strong factorial invariance does not make sense here.
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Figure . Four models for decomposing observed variances into trait and state components. Panel A contains the common and unique
trait-state (CUTS) model presented in the current paper; panel B contains the latent state-trait (LST) model with correlatedmethod factors
as discussed by Geiser and Lockhart (), with indicator  as the reference indicator; panel C contains the higher-order method (HOM)
model that includes the common trait as a second-order factor that links the method factors (i.e., the higher-order item model by Marsh
and Grayson, ); panel D contains the higher-order occasion (HOO) model, which includes the common trait as a second-order factor
that links the occasion factors (i.e., the higher-order time model by Marsh and Grayson, ).

Rt) cannot. The reason for this is that when there are
only two waves, these unique traits have only two indica-
tors each, such that additional constraints are needed to
ensure the model is identified (i.e., Rt = I). When three
or more waves are available, the factor loadings for the
unique traits no longer have to be constrained over time,
as there will be three or more indicators for each of these
factors.

In practice, we propose to start with this least restricted
version of the CUTSmodel, followed by amodel in which
the factor loadings are constrained over time (i.e., weak
factorial invariance across time for the common traits
and the common states as in Equation [6]); if this con-
straint is tenable, we may proceed with constraining
the factor loadings across the trait- and the state-factor
structures (i.e., weak factorial invariance across traits and
states through � = K). Finally, additional time-invariant
constraints on the (co-)variances of the residuals (in �)
and the latent variables (in �) as initially included in
Equations (7) and (8) can be of interest, because—if these
hold—the contribution of the four distinct sources of
variance to our observations is invariant over time. How-
ever, these constraints are not crucial when the interest is
in whether the underlying dimensions coincide (i.e., they
are only of interest when we want to know whether the

reliabilities of the indicators are invariant across trait and
state structures); therefore, we do not emphasize these
latter constraints here.

Connection with other longitudinal factor
models

The CUTS model presented here can be thought of as a
missing link between three different strands of literature.
First, the work by Cattell and his followers on isolating
the within-person factor structure and how to distill
the between-person factor structure forms an impor-
tant source of inspiration for the work presented here
(Borsboom, Mellenbergh, & Van Heerden, 2003; Cattell,
1967; Hamaker, Nesselroade, & Molenaar, 2007; Kievit,
Frankenhuis, Waldorp, & Borsboom, 2013; Molenaar,
2004; Molenaar, Huizenga, & Nesselroade, 2003; Voelkle,
Brose, Schmiedek, & Lindenberger, 2014). Many of the
contributions in this area have focused on the idiographic
nature of within-person factor structures, thus requiring
a single-subject approach based on a large number of
repeatedmeasures. In some of these articles, there has also
been a focus on the theoretical and sometimes also empir-
ical comparison between within-person factor structures
and the cross-sectional factor structure. However, most
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of these contributions have overlooked the fact that the
cross-sectional factor structure is a weighted sum of the
within-person factor structure and the between-person
factor structure. The integrated trait-state (ITS) model
proposed by Hamaker et al. (2007) actually considers this
between-person trait factor model and combines it with
individual latent first-order vector autoregressive models
(to allow for a purely idiographic factor structure as well
as relationships between common states over time). The
advantage of the CUTS model proposed here is that it
does not require extensive time series data per person;
however, this comes at the cost of not being able to model
truly idiographic factor structures.

Second, the strictly stationary CUTSmodel can also be
represented as a multilevel factor model using the within-
person state-factor model given in Equation (3) as the
Level 1 equation, while the between-person trait-factor
model given in Equation (2) is used as the Level 2 equa-
tion. A detailed comparison between the CUTS model
conceived of as a multilevel factor model and the longi-
tudinal factor model approach presented in Equations (6)
to (8) is included in the online supportingmaterial for the
current article: It shows that these two approaches lead to
the exact same parameter estimates and can thus be con-
sidered equivalent, even though the data are organized in
different ways.

Third, there are numerous longitudinal factor model-
ing approaches in SEM that have been proposed to sepa-
rate trait-like and state-like sources of variance inmultiple
indicator models. In the following, we will focus on two
issues in particular in this context: (a) the diverse ways
in which other multiple indicator longitudinal trait-state
models have separated lasting-specific variance from the
other sources of variance and (b) the effect of including
the lasting-general factor as a second-order factor in the
model, rather than as a first-order factor.5

Modeling lasting-specific variance: Unique traits
versus othermethod factors

In the CUTSmodel presented in the preceding, wemodel
lasting-specific variance as the unique traits, which are not
allowed to be correlated with each other or the common
trait (see also panel A in Figure 1). The rationale for this
is that it represents variance that is specific to a particular
indicator, whereas the common trait represents all lasting
variance that the indicators share.

 Note that the diverse strands of literature that we pull from use different
terminology. Since we aim to use terminology in a consistent manner
throughout this article, our language necessarily deviates at times from the
way others have used the terms trait versus state, common versus unique, and
occasion andmethod in the literature.

There are a number of other ways in which one can
account for variance that is particular to a specific indica-
tor. Geiser and Lockhart (2012) discussed and compared
several approaches, indicating that the uncorrelated fac-
tors approach such as we discussed in the preceding is
most popular in the literature. However, they criticized
this approach on both substantial and practical grounds.
Substantially, they indicate that the uncorrelated factors
are not compatible with the latent state-trait (LST) theory,
which makes the interpretation of these factors problem-
atic in their opinion.6 Practically, they showed through
simulations that the model often results in inadmissable
solutions, convergence problems, or a nonsignificant vari-
ance of one of these uncorrelated factors. Hence, although
the model with uncorrelated factors is theoretically identi-
fied, it is often empirically unidentified, meaning that there
is not enough information in the data to obtain a unique
and acceptable solution. Clearly, this hampers the appli-
cation of this model in practice, as we will also see in our
empirical illustrations. We revisit the issue of identifica-
tion in the Discussion section.

An alternative approach, which has been advocated in
the LST literature, is to allow the method factors, which
capture what is specific to a particular indicator, to be cor-
related to each other (Eid, Schneider, & Schwenkmezger,
1999). However, this model is only theoretically identified
if one of the method factors is omitted, such that Geiser
and Lockhart (2012) referred to this as the M − 1 cor-
related methods approach. An example of this model is
included in panel B of Figure 1. Two issues associatedwith
this approach are worth noting here.

First, the use of a reference indicator and the inclusion
of the correlations between the method factors implies
that variance is redistributed across the different trait-like
factors in this model. As a result, the general trait factor
can no longer be interpreted as capturing all that the indi-
cators have in common, as some of what the nonreference
indicators have in common is now captured by the corre-
lations between the method factors. Hence, it is not pos-
sible for this model to exclusively link particular model
aspects to the four separate sources we distinguished (see
also Marsh & Grayson, 1994).

 The reason for this, as explained byGeiser and Lockhart (), is that LST the-
ory (which is heavily based on classical test theory) is concerned with a ran-
dom experiment in which individuals and situations (i.e., occasions) are sam-
pled. Subsequently, all latent variables are defined in terms of expectations
that are conditional on person or on the person × occasion interaction, or
they are functions of these expectations. Uncorrelatedmethod factors (which
we refer to as unique traits here) cannot be defined in this way and are there-
fore not compatible with LST theory (see Geiser and Lockhart [] for a
more detailed discussion). It would be interesting to see, however, whether
extending the random experiment in LST theory with the random sampling
of variables (i.e., items) would overcome this limitation. The notion that we
are also sampling variables is congruent with Cattell’s data box (which con-
sists of threedimensions: individuals, timepoints, andvariables) andhasbeen
used in classical test theory (e.g., Lord, ).
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Table . Common and unique trait-state (CUTS) model compared
to four versions of the correlated-method (CM) model, which uses
one indicator as the reference indicator through omitting the
method-specific factor for that indicator (denoted as minus M to
M). The left part contains the chi-square test for themodels with-
out any constraints; the right part contains the results for models
with factor loadings to be invariant over time (i.e., for the common
trait or general trait factor, the common states or occasion factors,
and the unique traits or method factors).

Nonconstrained Time-invariant
factor loadings factor loadings

χ  df p χ  df p

CUTS model .  . .  .
CMminus M model .  . .  .
CMminus M model .  . .  .
CMminus M model .  . .  .
CMminus M model .  . .  .

Second, the results of this M − 1 correlated methods
approach depend on the choice of reference indicator:
Specifically, models based on a different reference indica-
tor are not statistically equivalent unless the factor load-
ings are constrained to be equal over time. To illustrate
this, we simulate data based on a strictly stationary CUTS
model with four indicators, three waves, and 500 cases.
First, we fit the CUTS model, as well as all the four ver-
sions of the M − 1 correlated methods models (using
the first indicator as the reference indicator, then the sec-
ond, and so on), without constraints on the factor loadings
over time. The results for the chi-square test are included
in Table 1, showing that none of these models are sta-
tistically equivalent. Subsequently, we impose weak fac-
torial invariance across time in all five of these models;
the results are presented in the right part of Table 1. It is
clear that when the factor loadings are constrained to be
invariant over time, the choice of the reference indicator
no longer matters; however, theM− 1 correlated method
model still provides a different solution than the CUTS
model in this case.

Higher-order trait-statemodels

Many multiple-indicator trait-state models include the
general lasting factor (i.e., the common trait factor) as a
second-order factor. We highlight two possibilities here.
First, we consider a higher-order methods (HOM) model
(also referred to as the higher-order item model, see
Marsh&Grayson, 1994), which is graphically represented
in panel C of Figure 1. In this model, the common trait is
included as a second-order factor that connects the first-
order method factors. The residuals of these method fac-
tors can be considered to represent the unique traits, as
these are the components that do not vary over time and

that are specific to a particular indicator. Second, we con-
sider a higher-order occasion (HOO)model (also referred
to as the higher-order time model by Marsh & Grayson,
1994), which is represented in panel D of Figure 1. In
this model, the common trait is included as a second-
order factor connecting the first-order occasion factors;
the residuals of these occasion factors can be considered
to represent the common states, as they capture what the
indicators have in common at a particular occasion, but
not with indicators at other occasions.

We are particularly interested in the circumstances
under which the higher-order models and the first-order
CUTS model are statistically equivalent. Yung, Thissen,
and McLeod (1999) have shown that second-order mod-
els are nested under first-ordermodels that contain a gen-
eral factor such as our common traits. To illustrate this,
we make use of the same simulated data set that we used
before (i.e., four indicators, three waves, and 500 cases)
and compare the chi-square and df of the diverse mod-
els. Specifically, we consider two versions of the CUTS
model: one in which there are no constraints imposed
across the factor loadings of the common trait and com-
mon state (referred to as the free CUTS model) and one in
which these factor loadings are constrained to be identi-
cal, implying we have weak factorial invariance across the
common trait and common state (referred to as theWFTS
CUTS model). In addition, we consider the HOM model
and theHOOmodel. For all fourmodels, we consider two
versions: the first one in which there are no constraints
imposed on the factor loadings across time and the sec-
ond one in which the factor loadings are constrained to
be invariant over time.7

The results presented in Table 2 show that (a) theHOM
model with time-invariant factor loadings is equivalent
to the CUTS model with time-invariant factor loadings
(i.e., both models have a χ2 of 49.15 with df = 52) and
(b) the HOO model with time-invariant factor loadings
is equivalent to the CUTS model with time-invariant fac-
tor loadings andweak factorial invariance across the com-
mon trait and common state (i.e., both models have a
χ2 of 50.33 with df = 55). Furthermore, the results show
that when we compare the models without constraints
across time, the free CUTS model is the least restric-
tive, whereas the WFTS CUTS model (with weak facto-
rial invariance across common trait and common state,
but not across time, such that �t = Kt ) is actually the
most restrictive model. Without going into the details, we
point out that it is also possible to impose certain propor-
tionality constraints on the factor loadings of the CUTS

 Note that for the free CUTS model, this constraint implies we have �t = �,
Rt = I, andKt = K ; for the WFTS CUTS model, we start with the constraint
�t = Kt , and the additional constraint of weak factorial invariance across
time implies we get � = K .
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Table . Comparison between fourmodelswithout andwithweak
factorial invariance over time using simulated data based on four
indicators measured at three occasions. Two versions of the com-
mon and unique trait-state (CUTS) model are included: without
weak factorial invariance across the common trait and common
state factors (free CUTS model) and with weak factorial invariance
across the common trait and common state factors (WFTS CUTS
model). Theother twomodels are thehigher-order occasion (HOO)
model and the higher-ordermethod (HOM)model. The left part of
the table contains results formodelswithout constraints over time;
the right part contains the results when weak factorial invariance
over time is imposed.

No constraints Time-invariant

χ  df p χ  df p

free CUTS model .  . .  .
WFTS CUTS model .  . .  .
HOOmodel .  . .  .
HOMmodel .  . .  .

model with time-varying factor loadings, such that this
model becomes equivalent to the HOO or HOM model
with time-varying factor loadings, implying that the lat-
ter two are special cases of the former.

These comparisons lead to an interesting observation:
If the within-person and the between-person factor struc-
tures differ, using a HOOmodel will result in factor load-
ings that are a weightedmix of these two factor structures.
This means that the problem we identified before with
respect to cross-sectional research actually also arises in
the context of longitudinal trait-state models if the within-
person covariance structure is not properly separated
from the between-person covariance structure.

Empirical applications

We consider two empirical applications to illustrate the
use of the CUTS model. In the first application we have
four waves of data in two groups, and we illustrate how
the hypotheses of weak factorial invariance over time and
weak factorial invariance across the common trait struc-
ture and common state structure can be investigated. The
second application is based on two waves of data, and the
central questions are whether the underlying factor struc-
ture is characterized by one or two factors and whether
this is different for the trait-like and the state-like parts of
the model.

Depression in adolescents

Dumenci andWindle (1996) studied the degree of stabil-
ity in adolescents’ depression through applying the HOO
model to four waves of CES-D data from adolescents.
Specifically, they had data for 372 males and 433 females,
which they analyzed separately. The indicators they used

were the four subscales of the CES-D, that is, Depressed
Affect (DA),Positive Affect (PA), Somatic Complaints (SC),
and Interpersonal (I). In their models, they distinguished
between a common trait factor, a common state factor per
occasion, uncorrelatedmethod factors (i.e., unique traits),
and residuals (i.e., unique states). However, the common
trait was included as a second-order factor that connected
the occasion factors, which implies it was (implicitly)
assumed that the common trait and common state dimen-
sions coincide.

By contrast, we begin with the CUTS model that is
characterized by (a) one common trait that directly influ-
ences all four indicators at all four measurement occa-
sions; (b) four unique traits that directly influence the
same indicator at different occasions; (c) one common
state per occasion (i.e., four in total), which directly influ-
ences the indicators within the same occasion; and (d) a
unique state for each indicator at each occasion (note that
a graphical representation of this model would be like the
upper-left panel of Figure 1, with one more wave added).
Even though this model is theoretically identified (as we
established analytically using the approach described in
Bekker, Merckens, & Wansbeek, 1993),8 it did not con-
verge for eithermales or females, which implies themodel
is empirically unidentified. Therefore, we omitted the
unique traits for DA in both groups, as these resulted
in nonsignificant negative variance estimates. As a result,
Model 1 contains one common trait, four common states,
three unique traits, and sixteen unique states (see the
online supporting material for a detailed representation
of the models used here for males). The model fit for both
males and females is reported in Table 3.

In Model 2, we constrained all factor loadings across
time (i.e., �t = � for the common traits; Rt = I for the
unique traits; and Kt = K for the common states). The
chi-square difference test comparing Model 2 to Model
1 was not significant for males, indicating that we can
assume weak factorial invariance across time for this
group (which, as we have seen in the previous section, is
actually equivalent to a HOM model with time-invariant
factor loadings). However, for females, the chi-square dif-
ference test was significant, which implies that weak fac-
torial invariance over time is not tenable in this group.

 To determine whether a model is theoretically identified, one can use the
approachproposedbyBekker et al. (). In a first step, the covariancematrix
of the model is determined in terms of the unknown parameters based on
the LISREL model � = ���′ + �. Subsequently, all unique elements of
this matrix are placed in a vector, and a second vector is created with all the
unknown parameters. Then, the derivative of the first vector toward the ele-
ments of the second is taken; this results in the Jacobian matrix. Finally, the
null space of this matrix is considered. If it is empty, the model is identified;
if it is not empty, the model is not identified (cf. Bekker et al., ). We per-
formed this procedure using Maple (version .), which is a symbolic (and
numeric) computing environment.
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Table . Fit measures for the common and unique trait-state (CUTS) model in a sample of males and a sample of females observed at four
waves with the CES-D (from Dumenci & Windle, ). �t contains the factor loadings by which the indicators at occasion t load on the
common trait;Kt contains the factor loadings by which the indicators at occasion t load on the common state of occasion t.

Model description χ  df p �χ  �df p RMSEA CFI SRMR AIC BIC

Males
Model : CUTS model .  . . . .  
Model : Model  with�t = � andKt = K .  <. .  . . . .  
Model : Model  with � = K .  <. .  <. . . .  

Females
Model : CUTS model .  . <. . . .  
Model : Model  �t = � andKt = K .  <. .  <. . . .  
Model : Model  with �t = Kt .  <. .  <. . . .  

Note. RMSEA= rootmean squared error of approximation; CFI= comparative fit index; SRMR= standardized rootmean squared residual; AIC=Akaike information
criterion; BIC= Bayesian information criterion.

Model 3 is based on imposing weak factorial invari-
ance constraints across the common trait and common
states. For males, we add this constraint to Model 2 (i.e.,
we have weak factorial invariance across time and across
common trait and common states). To show how to pro-
ceed when factor loadings are not invariant over time,
as was the case for the sample of women, we added the
constraint across trait and state loadings to Model 1 for
this group (i.e., we had �t = Kt for each t). In both cases,
the chi-square difference test was significant, indicating
that identical factor loadings across common trait and
common states cannot be assumed. Hence, the underly-
ing latent depression dimension on which individuals dif-
fer from each other structurally over time is not the same
dimension as the underlying latent depression dimen-
sion on which individuals differ from themselves over
time.

For males, these results imply that the common trait
depression cannot be included as a second-order factor
connecting the depression factors at the different occa-
sions (i.e., the HOO model, which was originally used by
Dumenci and Windle [1996], does not hold). However,
it could be included as a second-order factor connecting
the method factors (i.e., the HOMmodel does hold). For
females, we can further investigate whether the common
trait depression can be included as a second-order factor
connecting the occasion factors (i.e., the HOO model),
even though there is no weak factorial invariance over
time. This model is slightly less restrictive than the model
in which we constrain the factor loadings to be identical
across the common trait and common states, which we
discussed in the preceding. However, this time-varying
HOO model also fitted significantly worse than the first
model (i.e., the chi-square difference test was 136.27 −
106.09 = 30.18, df = 88 − 76 = 12, p < .01). The factor
loadings for the best-fitting models for males and females
are given in Table 4.

In summary, we can conclude that for both males
and females, the trait depression cannot be included as
a second-order factor that connects the occasion factors.

This implies that the way the common trait depression
influences the observations is qualitatively different from
the way the common states influence the observations,
both for males and for females. It also implies that a fac-
tor structure that is obtained with cross-sectional factor
analysis or a longitudinal higher-order factor model (like
the HOOmodel) represents neither the trait nor the state
factor structure.

Togetherness in elderly

Tiikkainen, Heikkinen, and Leskinen (2004) investigated
the way that elderly people experience various aspects of
their social life. To this end, they obtained data from 111
participants who were 80 years old at the first wave and

Table . Factor loadings for males and females in the CES-D data
of Dumenci and Windle () based on the common and unique
trait-state (CUTS) model with weak factorial over time for males
and time-varying factor loadings for females.

Group Variable γ̂ (SE) κ̂ (SE)

Males DA . — . —
PA . (.) . (.)
SO . (.) . (.)
IN . (.) . (.)

Females DA . — . —
PA . (.) . (.)
SO . (.) . (.)
IN . (.) . (.)
DA . (.) . —
PA . (.) . (.)
SO . (.) . (.)
IN . (.) . (.)
DA . (.) . —
PA . (.) . (.)
SO . (.) . (.)
IN . (.) . (.)
DA . (.) . —
PA . (.) . (.)
SO . (.) . (.)
IN . (.) . (.)

Note. γ̂ = the estimated factor loading by which the indicator loads on the
common trait; κ̂ = the factor loading by which the indicator loads on the
common state; SE = the standard error of the estimate; DA = Depressed
Affect; PA = Positive Affect (reversely coded); SO = Somatic Complaints; IN =
Interpersonal.
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85 years old at the second wave. They used the Social Pro-
vision Scale, which results in six scores (i.e., Attachment,
Reliable alliance, Guidance, Social integration, Opportu-
nity of nurturance, and Reassurance of worth).

The researchers had two main research questions.
First, they wanted to know whether these six scores mea-
sure a single underlying construct, Togetherness, or two
separate constructs, Emotional Togetherness (withAttach-
ment, Reliable alliance, and Guidance as its indicators)
and Social Togetherness (with Social integration, Opportu-
nity of nurturance, and Reassurance of worth as its indi-
cators). To tackle this question, they analyzed their data
cross-sectionally (i.e., for each occasion separately) and
concluded that at both occasions a two-factor model pro-
vided a better fit than a one-factor model. Second, they
wanted to determine whether the experience of together-
ness was stable over time. To address this question, they
used longitudinal factor models with autoregressive rela-
tionships between the common factors at the subsequent
timepoints and concluded that there was a substantial
amount of stable variance across time.

The approach taken by Tiikkainen et al. (2004) is less
than ideal in several ways. Most important, they did
not decompose the total variance into stable, trait-like
between-person variation and temporal, state-likewithin-
person variation, and as a result it is not clear whether
the two-factor solution they found represents both the
between-person and the within-person factor models, or
predominantly one of them. We specify a series of mod-
els that allow us to investigate whether the dimensions
underlying these structures actually coincide, specifically
focussing on the questionwhether togetherness should be
perceived of as one or two (correlated) dimensions at the
within-person and the between-person levels.

We began with a model in which we have two com-
mon traits (which are allowed to correlate), and at each
occasion two common states (which are allowed to corre-
late within the same occasion but not across occasions).
Furthermore, instead of including six unique traits (i.e.,
one for each indicator), we included these components as
covariations between the unique parts of the indicators.
This approach is identical to including unique trait factors
when only two waves of data are available. Although this
model is theoretically identified (as we established ana-
lytically, using Bekker et al., 1993), it did not converge,
implying it is not empirically identified. After fixing the
factor loading for the first common trait to the first vari-
able at the second occasion to 1 in addition to the usual
identification constraints, the model did converge (note
that this additional constraint is part of the constraints
that are imposed when testing whether the factor load-
ings are invariant over time). We refer to this model as
Model 1, and the fit measures are included in Table 5 (see

the online supporting material for a detailed presentation
of the models used in this application).

Because all covariances between the unique parts of
the indicators (representing the presence of unique traits)
were not significantly different from zero, we omitted
them in Model 2. The chi-square difference test indicates
that this did not lead to a significant decrease in fit (see
Table 5), and therefore we conclude that in this data set
there was no unique trait variance. A graphical represen-
tation of this model is given in the upper half of Figure 2.
In Model 3, we constrained all the factor loadings over
time (i.e., �t = � and Kt = K); the chi-square difference
test (compared to Model 2) was not significant, implying
that time-invariant factor loadings are tenable.

Model 4 is based on constraining the factor loadings
across the common traits and common states, imply-
ing weak factorial invariance across the two common
traits and two common state factors. The chi-square dif-
ference test for this model (in comparison to Model
3) was significant, implying that weak factorial invari-
ance across the trait and state structures does not hold.
Hence, within-person changes in togetherness occur on
qualitatively different dimensions from the dimensions
on which stable between-person differences in togeth-
erness are located. This also implies that cross-sectional
analyses result in some mix of the within-person and
between-person factor structures, while it is unclear to
what extent it represents either. Specifically, it is not clear
whether the two-factor structure obtained by Tiikkainen
et al. (2004) actually represents both the within-person
and the between-person factor structure, or primarily one
of them.

To further investigate this matter, we specified a model
with only one common trait, while keeping the two-factor
model for the common states. We refer to this model,
which is represented in the lower part of Figure 2, as
Model 5. The chi-square difference for this model (in
comparison toModel 3), was not significant, such that we
can conclude that the trait part is characterized by only
one underlying dimension. Subsequently, we replaced the
two common states per occasion by a single common state
per occasion inModel 6. The chi-square difference test for
this model (in comparison to Model 5) was significant,
indicating that the common state structure was actually
characterized by two underlying dimensions rather than
one.

In summary, the current approach has shown that
the within-person fluctuations occur on two underly-
ing dimensions (i.e., Emotional Togetherness and Social
Togetherness), whereas the between-person differences
are located on a single underlying dimension (i.e., Togeth-
erness).Hence, it seems that the cross-sectional two-factor
solution found earlier by Tiikkainen et al. (2004) was
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Table . Fit measures for six versions of the common and unique trait-state (CUTS) model, applied to the togetherness ratings from
Tiikkainen et al. (). �t contains the factor loadings by which the indicators at occasion t load on the common traits; Kt contains
the factor loadings by which the indicators at occasion t load on the common states of occasion t.

Model description χ  df p �χ  �df p RMSEA CFI SRMR AIC BIC

Model : CUTS model with two common traits and two common states .  <. . . . , ,
Model : Model  without unique traits .  <. .  . . . . , ,
Model : Model  with with�t = � andKt = K .  <. .  . . . . , ,
Model : Model  with � = K .  <. .  . . . . , ,
Model : Model  with a single common trait .  <. .  . . . . , ,
Model : Model  with a single common state per occasion .  <. .  . . . . , ,

Note. RMSEA= rootmean squared error of approximation; CFI= comparative fit index; SRMR= standardized rootmean squared residual; AIC=Akaike information
criterion; BIC= Bayesian information criterion.

dominated by the within-person state structure. The fac-
tor loadings for the final model are presented in Table 6.

Discussion

Factor analysis as developed by Spearman (1904) was
originally intended to extract a general underlying trait
(i.e., intelligence) from a set of correlated tests, allowing
the separate indicators to have residuals that contain both
systematic and random measurement error. In line with

this tradition, it is often assumed that the common factors
that are obtained with cross-sectional analysis represent
trait-like underlying dimensions, while the measurement
errors can contain both time-invariant and time-varying
components. However, as has become clear in this article,
this is not correct when there are common states that
contribute to the observed variance, as these sources will
also affect the factor structure. Furthermore, those who
have been concerned about the idiographic nature of
within-person factor structures have often (implicitly)

Figure . Two longitudinal factor models for the two-wave, six-indicator data from Tiikkainen et al. () to separate the common traits
ξ , common states ζ , and unique states (i.e., measurement error) v from each other. There was no evidence for unique traits (i.e., systematic
error) u in these data. The topmodel is based on assuming a two-factor structure for both the common traits and the common states; the
bottom model consists of a one-factor model for the between-person part combined with a two-factor structure for the within-person
part.
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Table . Factor loadings and proportions of explained variance for
the one-common-trait two-common-states version of the com-
mon and unique trait-state (CUTS) model selected for the togeth-
erness data measured by Tiikkainen et al. ().

T trait ET state ST state
Variable γ̂ (SE) κ̂(SE) κ(SE)

ATT .(—) .(—) —
REL .(.) .(.) —
GUI .(.) .(.) —
REA .(.) — .(—)
SOC .(.) — .(.)
OPN .(.) — .(.)

Note. T = the common trait Togetherness; ET = the common state Emotional
Togetherness; ST= the common state Social Togetherness; γ̂ = the estimated
factor loading by which the indicator loads on the common trait; κ̂ = the
factor loading by which the indicator loads on the common state; SE= stan-
dard error of the estimate; ATT = Attachment; REL = Reliable alliance; GUI
= Guidance; REA = Reassurance of worth; SOC = Social integration; OPN =
Opportunity of nurturance.

assumed that the common factors obtained with cross-
sectional analysis reflect an average (across individuals)
of underlying within-person dimensions (cf. Borsboom
et al., 2003; Molenaar et al., 2003; Voelkle et al., 2014;
Zevon & Tellegen, 1982). This is equally untrue, however,
because when there are common traits that contribute to
the observed variance, the cross-sectional factor struc-
ture will also represent this trait factor structure to some
extent (cf. Cattell, 1967).

In the current article, we presented a longitudinal
factor analytical approach that can be used to separate
the (average) within-person factor structure from the
between-person factor structure, and we explained how
testing for weak factorial invariance across these two
factor structures is of key interest in this context; if it
holds, this implies that (a) these two kinds of underlying
dimensions coincide such that the enduring individual
difference can be situated on the same underlying dimen-
sions as the transient within-person fluctuations over
time; (b) cross-sectionally obtained factors adequately
represent both trait-like and state-like dimensions in the
data; and (c) the general trait factor can be included as a
second-order factor that relates the first-order state fac-
tors as is customary in many longitudinal factor models
(i.e., the HOOmodel). In all our empirical samples, weak
factorial invariance across the trait and state structures
was proved to be absent, such that these structures should
not be merged as is done in cross-sectional research
or certain popular longitudinal models. This illustrates
the need for more scrutiny when investigating factor
structures.

Wewant to raise three concerns herewith respect to the
current approach. First, although our analytical checks
based on Bekker et al. (1993) showed that the initial
models in our empirical applications are theoretically

identified, they both led to improper solutions that are
illustrative of empirical unidentification. The problems of
empirical underidentification of models with M uncor-
related unique trait factors were already noted in a
simulation study by Geiser and Lockhart (2012); they
indicated that most problems disappeared when sample
size was 300 or larger. However, for the first application,
we had samples sizes of 372 and 433 individuals, but this
still resulted in negative variance estimates for one of
the unique traits in both groups. Clearly, such empiri-
cal underidentification is likely to hamper the practical
application of the CUTS model presented here. It implies
that researchers should carefully check the results for
signs of empirical underidentification and, if necessary,
decide what could be considered reasonable restrictions
to identify the model. Note that Geiser and Lockhart
(2012) also indicated that the convergence problems
and improper solutions were most common when the
variance of the unique traits was either relatively small
or large; one could argue that having to fix the variance
of a unique trait to zero to obtain a proper solution is an
acceptable sacrifice if this variance is actually small in
comparison to the other sources of variance in the model.
The fact that in the first application it was the same unique
trait in both groups that led to a nonsignificant negative
variance estmate may imply that indeed the variance
for this factor is very small. Future research could focus
on whether nonconvergence and improper solutions
point the user to the “right” variance (i.e., a variance
that in the data-generating model is indeed relatively
small).

Second, in the current article, we limited ourselves to
a rather restrictive dichotomy, that is, traits versus states.
However, when considering longitudinal data, often there
is some form of development or decline present as well,
which is sometimes referred to as trait change or simply
as change (Nesselroade, 1991). There have been several
hybrid approaches based on combining trait-state models
with latent growth curve modeling (Geiser et al., 2015;
Tisak & Tisak, 2000). In such extensions, the common
trait can be interpeted as the (common) random inter-
cept, while trait change is modeled through the inclusion
of a (common) random slope. However, there may also
be other ways to conceptualize trait changes, which are
not necessarily concerned with (individual differences in)
smooth developmental trajectories over time. For exam-
ple, if the number of common traits and/or common
states may change over time as a result of differentiation,
this could also be considered a form of trait change.
Hence, while including trait change into our models is
a logical next step, the way in which we account for this
source of variability is not straightforward and should
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be based on theory as well as the research questions at
hand. Another way in which themodel could be extended
is by the inclusion of autoregressive relationships over
time between the common states (and potentially also
between the unique states) in order to account for poten-
tial carryover between subsequent observations at the
within-person level (e.g., Cole, Martin, & Steiger, 2005;
Hamaker et al., 2005; Hamaker et al., 2007).

Third, although the current framework allows us to
address the question of whether the within-person fac-
tor structure coincides with the between-person factor
structure, there may be a more fundamental question
we need to ask: Are individuals actually characterized
by the same within-person factor structure? This ques-
tion has received considerable attention from Cattell
(1978) and others, specifically through factor analyz-
ing large numbers of repeated measurements per person
using P-technique analysis, multivariate time series anal-
ysis Hamaker et al. (2005), or dynamic factor analysis
(Molenaar, 1985). Subsequently, through comparing this
idiographicwithin-person factor structure across individ-
uals, one can begin to answer the question whether there
is a general within-person structure or whether there are
important differences between individuals (cf. Hamaker
et al., 2005; Lebo & Nesselroade, 1978; Nesselroade &
Molenaar, 1999). If we are simultaneously interested in the
trait factor structure and the idiosyncracies in the state
factor structure, we may consider the integrated trait-
state model proposed by Hamaker et al. (2007), but this
requires a large number of repeated measurements from
a large number of individuals.

In conclusion, while the point we are making here
is closely related to what has been known for decades
already in multilevel regression analysis (cf., Curran &
Bauer, 2011; Enders & Tofighi, 2007; Raudenbush & Bryk,
2002; Snijders & Bosker, 2012; Wang & Maxwell, 2015),
and to a lesser extent in the context of multilevel fac-
tor analysis for multiple groups (e.g., Hox & Maas, 2001;
Muthén, 1994), for some reason it has not been recog-
nized well in the broader context of factor analysis or in
the more specific context of longitudinal factor analysis.
We hope that the explicit comparison of Equations (4) and
(5) convincingly exposes the problem that is both fun-
damental and ubiquitous; that is, cross-sectional factor
analysis may be of very limited value because it fails to
disentangle within-person from between-person sources
of variance. The ramification of this is that, in general,
cross-sectional factor analysis will be influenced by both
the trait factor structure and the state factor structure,
and unless we systematically investigate whether these
two structures coincide and/or to what degree they con-
tribute to our data, it is impossible to determine the value

and substantive meaning of results obtained with cross-
sectional factor analysis.
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