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ABSTRACT
Small-sample inference with clustered data has received increased attention recently in the method-
ological literature, with several simulation studies being presented on the small-sample behavior of
manymethods. However, nearly all previous studies focus on a single class of methods (e.g., onlymul-
tilevel models, only corrections to sandwich estimators), and the differential performance of various
methods that can be implemented to accommodate clustered data with very few clusters is largely
unknown, potentially due to the rigid disciplinary preferences. Furthermore, a majority of these stud-
ies focus on scenarioswith 15 ormore clusters and feature unrealistically simple data-generationmod-
els with very few predictors. This article, motivated by an applied educational psychology cluster ran-
domized trial, presents a simulation study that simultaneously addresses the extreme small sample
and differential performance (estimation bias, Type I error rates, and relative power) of 12 methods
to account for clustered data with a model that features a more realistic number of predictors. The
motivating data are then modeled with each method, and results are compared. Results show that
generalized estimating equations perform poorly; the choice of Bayesian prior distributions affects
performance; and fixed effectmodels performquitewell. Limitations and implications for applications
are also discussed.

Clustered data with few clusters are quite common in
behavioral sciences due to practical concerns such as
financial limitations, the use of extant data sets, or dif-
ficulties in recruiting large numbers of participants. For
example, it is expensive to recruit many higher-level units
such as schools or hospitals to participate in a research
study; secondary data sets may include survey informa-
tion based on a limited population; and certain popula-
tions may simply be sparsely distributed and not large,
making it challenging to gather a large sample (e.g.,
schools specifically for deaf students in the United States).

Over the past decade, several simulation studies
have addressed the small-sample properties of a vari-
ety of methods for clustered data including both multi-
level models (MLMs; e.g., Bell, Morgan, Schoenberger,
Kromrey, & Ferron, 2014; Browne & Draper, 2006;
Hox, van de Schoot, & Matthijsse, 2012; Maas & Hox,
2004; 2005) and so-called design-based methods1 such
as generalized estimating equations (GEE) or cluster-
robust errors (Angrist & Pischke, 2008; Cameron, Gel-
bach, & Miller, 2011; Emrich & Piedmonte, 1992; Gun-
solley, Gerschell, & Chinchilli, 1995; Lu et al., 2007;
Morel, Bokossa, & Neerchal, 2003; Pan & Wall, 2002;
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Referring to these methods collectively as “design-based methods” is not a technical classification and is used to colloquially distinguish between models that
account for clustering with and without random effects. These methods may also be generally referred to collectively as Taylor series linearization or as population-
averaged models.

Westgate, 2013). Very broadly, these studies generally
show that models with about 20 to 40 clusters exhibit
desirable properties (e.g., consistency) and that certain
small-sample corrections such as the Kenward-Roger cor-
rection (Kenward &Roger, 1997; 2009) forMLMs and the
Mancl-DeRouen (Mancl &DeRouen, 2001), Kauermann-
Carroll (Kauermann & Carroll, 2001), Morel-Bokossa-
Neerchal (Morel et al., 2003), and Fay-Graubard (Fay &
Graubard, 2001) corrections for GEE were able to main-
tain desirable statistical properties with as few as 10 to 20
clusters. Other studies have advocated for Bayesianmeth-
ods when the number of clusters is small (e.g., Baldwin
& Fellingham, 2013; Browne & Draper, 2006; Hox et al.,
2012; Stegmueller, 2013; van de Schoot, Broere, Perryck,
Zondervan-Zwijnenburg, & van Loey, 2015), particularly
for estimates of the variance components (which likeli-
hood methods often have difficulty estimating with few
clusters; Ferron et al., 2009), and Gelman (2006) showed
that the intercept variance can be estimated without bias
with as few as three clusters if the prior distribution is
carefully considered.

Despite the increasing amount of research that has
been carried out in this area, two aspects have still been
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largely unaddressed. First, the small-sample performance
of these methods has not been simultaneously investi-
gated and compared because there are very strong disci-
plinary preferences regarding the method by which clus-
tering is accounted for. For example, Bauer and Sterba
(2011) noted that 94% of psychology studies account for
clustering with MLMs whereas Peterson (2009) found
that only 3% of studies in economics account for clus-
tering with MLMs. As a result, few studies compare
methods from different classes of methods (e.g., MLMs
vs. GEE). Studies have compared smaller, select sub-
sets of methods such as the Kenward-Roger correction
with MLMs with the Morel-Bokossa-Neerchal correction
with GEE (McNeish & Harring, 2015); the Kauermann-
Carroll, Mancl-DeRouen, and Morel-Bokossa-Neerchal
corrections (Lu et al., 2007); Bayesian Markov chain
Monte Carlo (MCMC) with Kenward-Roger (Baldwin
& Fellingham, 2013); and MCMC with maximum like-
lihood (ML) and restricted ML for MLMs (Browne &
Draper, 2006). However, studies have yet to concurrently
compare MLMs, GEE, Bayesian methods, and fixed effect
models (FEMs) that are common in econometrics for
accommodating clustered data (e.g., Allison, 2005; Peter-
son, 2009). In addition, many previous studies have inves-
tigated statistical properties of the estimates such as coeffi-
cient bias and confidence interval coverage (which largely
assesses the appropriateness of standard error estimates),
but far fewer have examined the power across methods.
Even though power will be limited due to the limited
number of clusters, substantive researchers could benefit
from knowing which types of methods yield greater rel-
ative power to maximize their chances of detecting non-
null effects.

Second, few studies (see Ferron et al., 2009, or van
de Schoot et al., 2015, for exceptions) are informative
for what researchers should do in the common scenario
of possessing data that have very few clusters (less than
about 15). This analytic scenario is especially common in
research conducted within schools (e.g., education, devel-
opmental psychology) because it can be quite difficult and
expensive to recruit even 10 schools or classrooms to par-
ticipate in a study, and each cluster often has a fairly large
number of units (e.g., roughly 30 students in primary
school classrooms), which consume financial resources
very quickly. To date, there is very little consensus on
the best way to approach this type of analytic situation.
As evidence, an exchange on the JISC Multilevel Listserv
from August 2013 featured many prominent statisticians
and researchmethodologists whowere unable to reach an
agreement or provide an illuminating citation for themost
advantageous method to model data with only 8 clusters.

To outline the remainder of this article, wewill describe
a motivating applied example from a study funded

by a grant from the Institute for Educational Sciences
that featured clustered data coming from only 12 class-
rooms. We proceed by briefly overviewing 12 different
methods for handling clustered data that span multiple
disciplines. A simulation study is then provided to sys-
tematically compare these competing methods with few
clusters and continuous outcomes. Of particular interest
will be the regression coefficient estimates (for all models)
and variance component estimates (for the select models
where this information is included). Recommendations
are then provided and the results discussed.

Motivating example

The motivation behind this article arose from a cluster
randomized trial in educational psychology that, despite
having a moderate number of students, had a very small
number of clusters. The data are from an Institute of
Educational Sciences Development Grant2 that investi-
gated the efficacy of a Reading Buddies intervention to
assess whether a researcher-designed treatment applied
at the classroom level affected students’ reading vocab-
ulary compared to students in a control group who did
not receive the treatment. The example data that we will
expound upon are used to address only one of several
research questions posed within this project and included
203 kindergarten students clustered within 12 classrooms
in a semiurban,mid-Atlantic school district. The outcome
measure was students’ posttest vocabulary scores (asmea-
sured by the Peabody Picture Vocabulary Test Growth
Scale Value, PPVT-GSV;M= 121.56, SD= 21.07), which
were predicted by treatment group status, English lan-
guage learner (ELL) status, PPVT-GSV pretest score, and
relevant interactions thereof. Inference on the regression
coefficients was the primary interest, so a variety of meth-
ods were available to model these data.3 These data
are of particular interest because the inferential decision
for multiple predictors is borderline significant as judged
by a p value less than .05 or a Bayesian credible inter-
val including 0, and the choice of method to model the
data could greatly alter the interpretation of the effects,
especially considering that the project was a development
grant whose aim was to decide whether the interven-
tion should be scaled up (requiring a significant time and
financial investment). Furthermore, as alluded to previ-
ously, there are no extant studies that compare the various
small-samplemethods to one another in a way that would

 The research reported here was supported by the Institute of Education Sci-
ences, U.S. Department of Education,through Grant RA to the Uni-
versity of Maryland. The opinions expressed are those of the authors and do
not represent views of the Institute or the U.S. Department of Education.

 If cluster-specific inferences or partitioning of the error variance in the
individual- and classroom-level components had been the primary interest,
MLMswould have been the only appropriatemodeling choice for these data.
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be informative to discern which method’s estimates and
resulting inferences are the most trustworthy.

Although some studies that werementioned in the pre-
vious section include simulation conditions for the 12
clusters obtained in this data set, methods are scarcely
compared directly to one another, and many data-
generation models in these studies are rather simple and
feature a single continuous variable at each level. It has
been noted in previous small-sample research that model
complexity increases sample size demands (e.g., McNeish
& Stapleton, 2014). As a result for this particular analysis,
despite the growing literature on accommodating small-
sample clustered data, few studieswere informative for the
best practice to model these data. In addition, because the
outcome was continuous and cluster-specific estimates
are not desired, total effects as estimated by MLMs, GEE,
or FEMs are equally interpretable, but no studies outside
of a technical report by Schochet (2015) have attempted to
systematically compare these varying frameworks in the
context of few clusters.

We will first review the competing methods to account
for clustering because somemethods are essentially invis-
ible in some literatures despite being very common in oth-
ers.Wewill then present results froma simulation study to
explore which methods minimize estimation bias, Type I
error rate, and power concerns with few clusters. We con-
clude by analyzing thesemotivating data with the 12 com-
peting methods to show how estimates compare across
methods.

Overview of competingmethods

Multilevel models

To account for clustering, MLMs directly model the clus-
tering with random coefficients. Regression coefficients
in an MLM consist of two possible types of effects: a
fixed effect and a random effect. Fixed effects represent
the relation between a predictor and the outcome regard-
less of the cluster affiliation of the observation, similar to
coefficients in a standard single-level regression model.
For each cluster, a cluster-specific random effect may be
included (but is not required for all coefficients). A ran-
dom effect captures how much the relation between the
predictor and the outcome differs from the fixed effect
estimate within a particular cluster.

Notationally, the model can be written as

y j = X jβ + Z ju j + ε j, (1)

where y j is an mj × 1 vector of responses for cluster
j; mj is the number of units within cluster j; X j is an
mj × p design matrix for the predictors in cluster j (at

either level in this notation); p is the number of predic-
tors (which includes the intercept); β is a p × 1 vector
of fixed regression coefficients; Z j is an mj × q design
matrix for the random effects of cluster j; q is the num-
ber of random effects (p ≥ q); u j is a q × 1 vector of
random effects for cluster j; E(u j) = 0, andCov(u j) = G,
where G is q × q, and ε j is an mj × 1 vector of residuals
of the observations in cluster j where E(ε j) = 0,Cov(ε j)

is mj × mj and it is often assumed that Cov(ε j) = R j =
(σ 2I) for cross-sectionally clustered data, and u j and ε j
are independent (Cov [u j, ε j] = 0). The following sub-
sections will discuss the basics of estimating these models
with likelihood methods and Bayesian MCMC.

Likelihood estimation

The default estimation for MLMs with continuous out-
comes in most software routines (SAS Proc Mixed, the
lme4 R package, HLM 7) is restricted maximum likeli-
hood (REML), which is known to exhibit better finite
sample properties compared to traditional maximum
likelihood, especially for estimates of the elements of the
G matrix (e.g., Browne & Draper, 2006; Cheung, 2013;
McNeish & Stapleton, 2014). Rather than estimate all
parameters simultaneously as in traditional maximum
likelihood, the variance components and fixed effects are
estimated in different phases. At a basic level, first the
residuals from OLS are obtained (ignoring possible vari-
ance components), which by definition are independent
of the fixed effects and have a mean of 0. Then maximum
likelihood is applied to theseOLS residuals to estimate the
variance components. Once the variance components are
estimated, these estimates are used in a generalized least
squares estimator for the fixed effects. Estimation iterates
between the variance components and the fixed effects
until convergence is reached. More specifically, the log-
likelihood function for the variance components housed
in the G and R matrices can be written up to a constant
as

lREML
j (G,R j) = −1

2
log

∣∣V j
∣∣ − 1

2
log

∣∣X j
TV j

−1X j
∣∣

−1
2
(y j−X jβ̂GLS)

TV j
−1(y j−X jβ̂GLS),

(2)

where V j is the model-based variance of the out-
come for cluster j such that V j = Var(y j) = Z jGZT

j +
R j, and β̂GLS is the generalized least squares estimator
of the fixed effects, β̂GLS = (XTV−1X)−1XTV−1y. The
improved finite sample performance comes from the
inclusion of the 1

2 log |X j
TV j

−1X j| term that accounts for
the degrees of freedom lost in estimating β, which is not
included in the traditional log-likelihood formula, which
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is formulated up to a constant for the jth cluster as

lML
j (G,R j) = −1

2
log

∣∣V j
∣∣ − 1

2

(
y j−X jβ̂GLS

)T
V j

−1

×
(
y j−X jβ̂GLS

)
. (3)

Stata’s mixed procedure, MLwiN, and Mplus use tra-
ditional maximum likelihood as the default estimation
method although Stata’s mixed procedure can implement
REML via an optional command.

Asymptotically, β can be shown to be distributed
MVN(β̂,VarMLM(β̂)) where VarMLM(β̂) = �MLM =
−( ∂ l2

∂β∂βT )−1 = {∑J
j=1 (XT

j
V̂−1

j X
j
)}−1 for l either lML or

lREML depending on the estimation scheme (Fitzmaurice,
Laird, & Ware, 2004 p. 92; Raudenbush & Bryk, 2002, p.
59) because, by definition, the variance components are
independent of the regression coefficients when normal-
ity is upheld (i.e., E( ∂ l2

∂β∂φ
) = 0, where φ = Vec(G,R)T ;

Jacqmin-Gadda, Sibillot, Proust, & Thiébaut, 2008).

Kenward-Roger correction

Although multiple small-sample corrections exist (e.g.,
Manor & Zucker, 2004; Skene & Kenward, 2010a, 2010b;
Zucker, Liberman, & Manor, 2000), the Kenward-Roger
(Kenward & Roger, 1997, 2009) is the most widely imple-
mented and most accessible in mainstream software
such as SAS or Stata (new in Stata 14 released in April
2015), and several studies have explored the properties
of the Kenward-Roger correction (e.g., Bell et al., 2014;
Ferron et al., 2009; Kowalchuk, Keselman, Algina, &
Wolfinger, 2004; McNeish & Stapleton, 2014; Spilke,
Piepho, & Hu, 2005; Vallejo & Livacic-Rojas, 2005). The
Kenward-Roger correction is rather complex mathemati-
cally, so we will conceptually describe it for the remainder
of this section.

In general with a small number of clusters, there are
two concerns with respect to the quality of model esti-
mates: (1) �̂MLM is susceptible to downward bias with a
small number of clusters, and (2) the denominator degree
of freedom approximations for inferential tests of regres-
sion coefficients can have a large effect on resultant p val-
ues. The effect of (1) is that standard errors will be too
small, which will inflate the Type I error rate of infer-
ential tests. Kenward and Roger (1997) noted that the
small-sample bias is attributable to two sources: (a) �̂MLM
is a biased estimator with a small number of clusters,
and (b) does not take into the account that there is vari-
ability in the estimates that are used to compute �̂MLM .
The former had been addressed by Kackar and Harville
(1984), who had used a Taylor series expansion around φ.
Kenward and Roger (1997) incorporated and expanded
upon Kackar and Harville’s approximation, also through

Taylor series expansions. Thus, the first step in the
Kenward-Roger correction is to eliminate bias from
�̂MLM .

With (2), denominator degrees of freedom for regres-
sion coefficients in MLMs are often a contentious issue
because the denominator degrees of freedom can only be
exactly calculated under a handful of situations (i.e., com-
pletely balanced data with simple structures for G and R;
Schaalje, McBride, & Fellingham, 2002). For example, in
SAS Proc Mixed or Stata mixed, users have the option
of approximating degrees of freedom with five different
methods, none of which are appropriate across all scenar-
ios.With a large number of clusters, this issue is not neces-
sarily vital because univariate inferential tests are asymp-
totically χ2

1 distributed. However, with few clusters where
F or t tests are used, even small differences in the denomi-
nator degrees of freedom can have a noticeable effect on p
values. Thus, the second step of the Kenward-Roger cor-
rection provides a better denominator degree of freedom
approximation through an augmented Satterthwaite-type
procedure.

MCMC estimation

MCMC estimation has generally been considered advan-
tageous with smaller samples because it does not rely on
asymptotic sample sizes to produce unbiased estimates; it
does not give inadmissible estimates (e.g., negative vari-
ances); and it does not require adjustments or correc-
tions to the likelihood for diminished sample sizes (e.g.,
Hox et al., 2012). Briefly,MCMC treats parameters as ran-
dom variables rather than fixed quantities as in frequen-
tist methods. As a result, parameters in an MCMC analy-
sis have posterior distributions rather than a single point
estimate as in frequentist analyses (although the posterior
distribution is frequently summarized with a measure of
central tendency to obtain the analog of a point estimate).
This posterior distribution is the combination of the like-
lihood (the same as used in frequentist analyses) and a
prior distribution that is user specified before themodel is
run. For further expository details onMCMC estimation,
readers are referred to Kruschke, Aguinis, and Joo (2012),
van de Schoot et al. (2014), or Zyphur, Oswald, and Rupp
(2015).

Despite the potential advantages of MCMC, one must
carefully consider prior distributions with small samples,
particularly for the variance components, because prior
distributions have an increased effect on posterior distri-
butions when sample sizes are smaller. Typical choices for
uninformative priors for variance components include a
uniform prior with a fairly large range for the standard
deviation (Gelman, Carlin, Stern, & Rubin, 2003) or an
inverse gamma prior with small positive hyperparameters
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on the variance (Daniels, 1999). However, Gelman (2006)
showed that these choices can actually be more informa-
tive than intended when the data have few clusters. Gel-
man found that uniform priors tend to overestimate the
variance components and inverse gamma priors tend to
underestimate the variance components. Gelman (2006)
suggested using a half-t or half-Cauchy distribution (a
Cauchy distribution is equivalent to a t distribution with
1 degree of freedom)4 for the variance components with
few clusters. Using an applied example, he showed desir-
able performance using a half-Cauchy distribution with
only three clusters. To date, although analytical arguments
for half-t and half-Cauchy have beenmade (e.g., Polson &
Scott, 2012), the performance (both absolute and relative
to other priors) of these recommendations has not been
systematically assessed.

Generalized estimating equations

Rather than explicitly modeling the clustering mecha-
nism as is done with MLMs, GEE essentially view the
model as a single-level model and apply statistical correc-
tions (typically based on the so-called sandwich estima-
tor; Huber, 1967; White, 1980) to produce standard error
estimates (and parameter estimates as well in some cases,
such as with binary outcomes) that account for the fact
that data were clustered (Liang & Zeger, 1986; Zeger &
Liang, 1986). The advantage of GEE is that the specifica-
tion of the random effects and their covariance structure
does not have to be explicitlymodeled,meaning that there
are far fewer assumptions required compared to MLMs
(Zeger, Liang, & Albert, 1988).

To explicate the mathematical details, GEE is an algo-
rithmic method to estimate generalized linear mod-
els that potentially violate the normality and/or inde-
pendence assumption. Briefly, generalized linear models
relate E( y j|X j) = μ j to a linear predictor X jβ through a
link function g (·) (McCullagh & Nelder, 1989; McCul-
loch & Searle, 2001). In behavioral sciences, common
link functions are the identity function for normally dis-
tributed outcomes, g (μ j) =μ j; the logit link for binary
outcomes, g(μ j) =log( μ j/(1 − μ j)); or the log link for
count outcomes, g(μ j) = log(μ j). The variance of y j is
then specified as Var(y j) = ν(μ j)ϕ, where ϕ is a possibly
unknown scale parameter (ϕ = 1 for binary and Poisson
responses), and ν(μ j) is a known variance function [ν(μ j)

 The probability density function of the t distribution is
�(

ν+1
2 )

√
νπ�(

ν
2 )

(1 + x2
ν

)
− ν+1

2 , where ν is the degrees of freedom and x is a

random variable. When ν = 1, the pdf reduces to
�(

1
2 )

√
π�(

1
2 )

(1 + x2)−
1
2 =

1
π(1+x2 )

, which is the probability density function of the standard Cauchy
distribution.

= Imj×mj for normally distributed outcomes, μ j(1 − μ j)

for binary outcomes, and μ j for Poisson distributed out-
comes].

Liang and Zeger (1986) defined generalized esti-
mating equations for the regression coefficients
β̂ such that

∑J
j=1 D j

TV j
−1S j = 0 whereD j = X j

TA j =
∂μ j

∂β
; V j = ϕ̂A j

1/2K j(α)A j
1/2 for ϕ̂ a scale parameter

estimated by ϕ̂ = 1
N−p

∑J
j=1

∑mj
i=1 ei j

2; S j = y j − μ j(β)

for y j an mj× 1 vector of outcomes for the jth clus-
ter and μ j(β) based up the regression coefficients;
A j = Diag[(Var(μ j1), . . . ,Var(μ jmj )]; and K j is
an mj × mj working correlation matrix comprising
unknown parameters α that estimate the correlation of
observations within clusters rather than it being explicitly
modeled. The structure ofK j is specified by the researcher
a priori, but its elements are updated algorithmically. For
cross-sectionally clustered data, an exchangeable struc-
ture is typically suitable 5 whereCorr(Yi j,Ykj) = { 1 i = k

α i �= k ,
meaning that an arbitrary within-cluster observation has
equal correlation with all other observations within
the same cluster. The value of α with an exchange-
able working structure is conceptually similar to the
traditional intraclass correlation (ICC) as calculated
with MLMs in an unconditional model (Wu, Crespi, &
Wong, 2012).

GEE iteratively updates the parameters in the working
structure, α. First, β̂ is estimated assuming indepen-
dence. Then, K j(α) is estimated from the errors of
the model that assume independence. The estimation
of K j(α) depends on the working structure specified
by the researcher. For an exchangeable structure that
is typical with cross-sectional clustering (Horton &
Lipsitz, 1999), α̂ = 1

ϕ̂(N∗−p)
∑J

j=1
∑

i<k ei jeik where N
∗ =

0.5
∑J

j=1 mj(mj − 1). Once a value(s) for α̂ is obtained,
then V j can be calculated by V j = ϕ̂A j

1/2K j(α)A j
1/2;

β̂ can then be updated once V j is estimated such that
β̂r+1 = β̂r + (

∑J
j=1 D j

TV j
−1D j)

−1(
∑J

j=1 D j
TV j

−1S j)

where r is the index for the iteration. When r = 1, β̂r
houses the coefficient estimates under the independence
assumption.

Once the iterative process has successfully con-
verged, VarGEE(β̂) is calculated using a sand-
wich estimator based upon the naïve estimator,
Var(β̂)= �̂ =(

∑J
j=1 D j

TV j
−1D j)

−1(e.g., McCallugh &
Nelder, 1989). The naïve estimator “sandwiches”
a quantity that takes the clustering into account.
In GEE, the middle term is formulated by

 Ballinger () states that “(when) there is no logical ordering for observa-
tionswithin a cluster (suchaswhendata are clusteredwithin subject orwithin
an organizational unit but not necessarily collected over time), an exchange-
able correlation structure should be used” (p. ).



500 D. MCNEISH AND L. M. STAPLETON

Figure . Conceptual flowchart of GEE algorithm.
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where the matrices have the following dimensions:
D j is mj × p; V j is mj × mj; and S j is mj × 1.

We realize that the GEE algorithm and the associ-
ated technical details may be rather opaque for some
readers. To help assuage the technicality of this pre-
sentation, Figure 1 shows a conceptual flowchart of the
GEE algorithm. As a reminder, GEE avoids the com-
plexity of modeling with random effects and, in essence,
treats the random effects as a nuisance and does not
attempt to estimate them. The resulting output of a GEE
model looks nearly identical to a single-levelmodel except
that the GEE algorithm described earlier in this sec-
tion adjusts estimates (coefficients, standard errors) for
clustering. For a comprehensive treatment on differences
between GEE and MLMs (the intricacies of which can
be nuanced and are thus outside the scope of this arti-
cle), readers are referred to either Gardiner, Luo, and
Roman (2009) or McNeish, Stapleton, and Silverman
(in press).

Small-sample GEE corrections

Similar to MLMs, the sandwich estimator for �̂GEE that
accounts for clustering in Equation (4) is consistent
asymptotically; however, it is not unbiasedwhen the num-
ber of clusters falls below about 40 (e.g., Mancl & DeR-
ouen, 2001; Pan & Wall, 2002). Two classes of small-
sample corrected sandwich estimator have been proposed
in the literature: residual-based corrections and design-
based corrections. Residual-based corrections account for

small-sample bias by adding a matrix (or two depend-
ing on the correction) to the innermost part of middle
term in the sandwich estimators (adjacent to the resid-
ual matrix, hence the term residual-based correction).
Thesematrices inflate the standard error estimates, which
are known to be downwardly biased with few clusters.
Residual-based corrections rewrite the sandwich estima-
tor from Equation (4) such that

�̂RBC =
⎛
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. (5)

Note that two matrices have been added in Equa-
tion (5) compared to Equation (4): F j and ω j where
ω j is p× p and F j is mj × mj. For the classic sandwich
estimator,F j andω j are identitymatrices and are thus not
included in Equation (4). However, to correct for small-
sample bias, various corrections have proposed different
values for F j and ω j.

Table 1 summarizes the values of F j and ω j used in
these approximations.

The Morel-Bokossa-Neerchal correction (Morel
et al., 2003) is the primary design-based small-sample
correction employed in applied studies. Design-based

Table . Residual-based small-sample corrections to the sandwich
estimator.

Correction ωj F j

No Correction I I
Fay-Graubard Diag{(1 − min{c, [Q] j j})−1/2}I I
Kauermann-Carroll I (I − HT

j )
−1/2

Mancl-DeRouen I (I − HT
j )

−1

Note: H j = D j�̂DT
j V

−1
j ; Q = DT

j V
−1
j D j�̂ , 0 ≤ c ≤ 1 where c is an upper

bound for the correction, and diagonal values of ωj cannot exceed . By
default, SAS uses a value of c = 3/4.
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corrections have the same desired result as residual-
based corrections; however, design-based corrections
take a different form and include additional additive
terms to the classical sandwich estimator rather than
appending matrices to the middle term. Specifically, the
Morel-Bokossa-Neerchal correction is calculated by
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where δ = { p
(J−p) if J > (d + 1)p
1/d if J ≤ (d + 1)p for p equal to the num-

ber of predictors in the model; J is equal to the
number of clusters; d is a user-selected constant; and
φ = max(r, p−1tr((

∑J
j=1 D

T
j V j

−1D j)
−1(

∑J
j=1 D

T
j V j

−1

S jSTj V j
−1D j))). Common values for d and r that are

also the SAS and geesmv R package defaults are 2 and 1,
respectively.

Fixed effectsmodel

With FEMs (a.k.a. dummy variable regression), cluster
affiliation indicators (0/1 indicator variables, one for each
cluster in the data) are included in the model as pre-
dictor variables with the goal being to account for the
nested structure of the data without estimating the ran-
dom effects, particularly when assumptions inherent with
random effects are untenable or estimation may be com-
putationally complex (Allison, 2005; Galbraith, Daniel,
& Vissel, 2010). When indicators that represent cluster
membership are added as predictors, the intercept is often
removed from the model such that the cluster affiliation
variables then represent the intercept value for each spe-
cific cluster, similar to how each cluster receives a cluster-
specific intercept estimate inMLMs.UnlikeMLMs, FEMs
do not estimate random effects and thus require far fewer
assumptions, which may be advantageous. With few clus-
ters, FEMs also hold the added advantage that the cluster
affiliation variables account for all heterogeneity at Level
2, allying concerns about omitted variable bias at Level 2
that may occur if one has more potential predictors than
degrees of freedom (as may occur with MLMs with very
few clusters). Bias from omitted variables at Level 1 is still
a concern, however.

Notationally, assuming the intercept term has been
suppressed, the model can be written as

y j = X jβ + α jCj + r j, (7)

where y j is anmj × 1 vector of responses for the jth clus-
ter;X j is amj × p designmatrix of substantive predictors

(there is no intercept); β is a p × 1 vector of substantive
regression coefficients; α j is the cluster affiliation variable
estimate for clusterCj; and r j is the residual that is tradi-
tionally assumed to be distributedMVN(0, σ 2I).

A limitation of FEMs is that effects of Level 2 predic-
tors6 cannot be estimated directly in the model although
inclusion of Level 1 predictors or interactions between
Level 2 and Level 1 predictors do not pose any prob-
lems in estimation (Allison, 2005; Gardiner et al., 2009;
Murnane & Willet, 2010). Level 2 predictors and the
cluster affiliation predictors will be perfectly collinear,
meaning that both cannot be estimated simultaneously
(Murnane & Willet, 2010). Instead, the effects of both
measured and unmeasured variables at the cluster level
are accounted for within the individual cluster affiliation
coefficients (Allison, 2005;Murnane&Willet, 2010). This
does present problems if a substantively relevant predic-
tor is included at Level 2 (a common example would be a
treatment effect in a cluster randomized trial as presented
in themotivating example) because it toowill be absorbed
into the cluster affiliation coefficient estimates. However,
if one assumes homogeneous slopes of Level 1 predic-
tors across clusters (the equivalent of only a random effect
for the intercept in an MLM), the treatment effect can be
recovered using linear contrasts of the cluster affiliation
variable coefficients. That is, one can inferentially test the
treatment effect by taking a weighted average of the clus-
ter affiliation estimates for the treatment group and com-
paring it to a weighted average of the cluster affiliation
variable coefficient estimates for the control group. Math-
ematically, this can be expressed by calculating Lβ where
L is a 1 × p vector designating which effects to include,
and β are the least squares coefficient estimates calculated
by (XTX)−1(XTy), whose naïve standard error is calcu-
lated by

√
L(XTX)

−1LTσ 2, (8)

where σ 2 is the residual variance for the conditional
model. However, as discussed in the next section, this
naïve estimator will be inappropriately small when data
are clustered.

Standard errors for Level 2 predictors

Although the effects for binary Level 2 predictors can
be estimated through linear combinations of the cluster
affiliation estimates under certain assumptions, the stan-
dard error estimates from Equation (8) will be too small

 As a clarification, with FEM there is only a single level in themodel, so the pre-
dictor does not enter themodel at Level  as is conventional in MLMs. Rather,
our terminology here indicates that the variable was collected at the second
level. It may be helpful to conceptually label Level  predictors in FEMs as
“cluster-level predictors.”
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according to software computations (e.g., an ESTIMATE
statement in SAS). As shown is Equation (8), the stan-
dard error estimates of a linear combination of coefficients
is a function of the variance at the lowest level, σ 2. In
FEMs, σ 2 is not the total variance because the cluster affil-
iation dummies have accounted for the variance at Level
2. That is, whereas anMLMwill consider variation at both
Level 1 and Level 2 when calculating standard errors (i.e.,
V = ZGZT + R), FEMs do not model the Level 2 vari-
ance and therefore have no such mechanism to partition
the variance. Software, however, will not recognize that
the variation attributable to the cluster affiliation dummy
variables is akin to Level 2 variance in MLMs. The Level
2 variance in MLMs is unexplained variance, meaning
that it contributes to the standard error calculations, but
this variation is considered explained variance in an FEM.
Therefore, σ 2 is analogous to Level 1 variance in MLMs,
which will necessarily make standard error estimates too
small because the calculation is only based upon a fraction
of the appropriate variance. No recommendations could
be found in the literature to rectify this issue.

In an attempt to remedy this issue, we propose that
standard error estimates output by software for effects
estimated with linear combinations of regression coeffi-
cients be multiplied by the DEFT, which is the square
root of the unconditional design effect. In survey statis-
tics, DEFT is a quantity that measures the degree to which
the standard error of the mean is inflated due to the use of
cluster sampling as compared to that for data from a sim-
ple random sample. For example, a DEFT of 2 means that
the standard error will be twice as large in a model that
accounts for clustering than in a comparable model that
ignores clustering. The DEFT is calculated as

DEFT =
√
1 + (m − 1) × ICC, (9)

where m is the average cluster size and ICC is the
intraclass correlation calculated from the unconditional
model.7 If the ICC is 0 (i.e., data are not meaningfully
clustered), then DEFT = 1 and the Level 1 residual vari-
ance is equal to the total residual variance. To correct the

 An anonymous reviewer raised a valid point thatmany computational formu-
las for the ICC use variance components from MLMs that make the assump-
tions that clusters are randomly sampled, an assumption not present in FEMs.
In this article, FEMs are largely presented as a competingmethod toMLMs for
data with few clusters, so this issue may not be overly problematic because
the assumption would be met if MLMs were considered from the start. In
addition, prior to widely accessible software for modeling clustered data,
multiplying single-level, fixed effect model (without cluster-affiliation dum-
mies) standard errors by theDEFTwas a commonly recommendedmethod to
approximately account for clustering (e.g., Hahs-Vaughn, ; Huang, ;
Thomas & Heck, ; Thomas, Heck, & Bauer, ) and the DEFT contin-
ues to be routinely used in inference from complex survey data (e.g., Lohr,
). None of these prior studies have noted any issues with the additional
assumption of the ICC that clusters are randomly selected despite the fact
that the FEM does not make this assumption.

standard error estimates for quantities not explicitly out-
put by the model (e.g., a Level 2 treatment effect), the
standard error estimates output by the software program
(which only account for Level 1 variance) will be multi-
plied by the DEFT to account for the residual variance
present at Level 2 that is accounted for by the cluster affil-
iation variables.

Readers familiar with DEFT may note that it is a uni-
variate measure rather than a global measure for the
model (like the ICC). The cluster affiliation predictors
are the fixed effect equivalent of random intercepts in
an MLM—each cluster receives its own unique estimate.
Under the assumption of homogeneous slopes, all of the
Level 2 variation is contained within the cluster affiliation
predictors, which are essentially cluster-specific intercept
(fixed effect) estimates. Thus, the unconditional DEFT
under homogeneity of slopes is capturing how much
the intercept standard errors would increase with clus-
ter sampling versus simple random sampling. Because
the cluster-affiliation variables (which can be thought
of as cluster-specific intercepts) are the only coefficients
included in the linear combination for calculating the
treatment effect, the degree of underestimation can be
directly quantified by the unconditional DEFT. Should
homogeneity of slopes not be a tenable assumption, the
DEFT correction method will fail.

Differences betweenmethods to accommodate
clustered data

AlthoughMLMs, GEE, and FEMs are all able to yield esti-
mates that allow for appropriate and trustworthy infer-
ences to be made with nonindependent data, there are
some research questions and research scenarios in which
one model may or may not give pertinent information.

Specifically, if researchers are interested in cluster-
specific information, then MLMs are the only model-
ing framework that is appropriate. Examples of cluster-
specific information include partitioning the variance
between levels, prediction or inference for specific clus-
ters in the data, or examining contextual effects for spe-
cific clusters. Cluster-specific questions can similarly be
addressed with FEMs; however, the inferences are only
appropriate to the clusters in the data because clusters are
specified as fixed effects. In MLMs, clusters are assumed
to be a random sample of the broader population of
clusters,8 and thus inferences are generalizable to the

 The assumption that clusters are randomly sampled can be especially impor-
tant when the data have few clusters because processes that are intended to
be randommay not be with small samples. Otherwise, the broad generaliza-
tion of the results to clusters not included in the data may not be warranted
(similar to FEMs).
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Table . Summary of different information reported by MLMs, GEE, and FEMs.

MLM GEE FEM

Covariance accounted by Fully modeled with random effects Working structure and
cluster-robust estimator

Cluster affiliation dummy variables

SE Calculation Information Cluster-robust sandwich estimator Closed form with OLS
Cluster-Specific inference Yes and is generalizable to

population
No Yes but is restricted to clusters in

the data
Partitions variance between levels Yes No No
Number of clusters Problematic with<  if

uncorrected
Problematic with<  if

uncorrected
Not consistent asymptotically

Note. MLM=multilevel model; GEE= generalized estimating equations; FEM= fixed effect model; OLS= ordinary least squares.

broader population rather than the finite sample of clus-
ters as in FEMs. Consuming degrees of freedom is also
an omnipresent concern with FEMs, and some of the
aforementioned scenarios may require several additional
parameters to be included in the model, which would
make FEMs far less efficient thanMLMs. GEE is strictly a
population-average method and cannot make any infer-
ences about specific clusters or partition the variance
between levels. Contextual effects can be modeled with
GEE (Begg & Parides, 2003; Berkhof & Kampen, 2004);
however, the interpretation can only be made marginally.
Table 2 provides a summary of the differences between
MLM, GEE, and FEM.

These differences are quite meaningful with dis-
crete outcomes and result in different interpretations of
coefficients. That is, the inclusion of random effects
fundamentally changes the interpretation of the regres-
sion coefficients in MLMs from a population-averaged
interpretation inherent with single-level methods (a
population-averaged interpretation is defined as follows:
for a one-unit change in X, Y is predicted to change by β

units, holding all other predictors constant) to a subject-
specific interpretation (for a one-unit change in X, Y is
predicted to change by β units, holding all other predic-
tors constant and the random effect values constant). How-
ever, when the outcome is continuous, the interpretation
between MLMs, GEE, and FEMs is identical9 because
the random effects that are uniquely implemented with
MLMs can be integrated out of the likelihood, meaning
that the likelihood function is averaging over the random
effects distribution, which yields the familiar population-
averaged coefficient interpretation. Therefore, with con-
tinuous outcomes, there is much more flexibility regard-
ing how one chooses to account for clustering because the
interpretation acrossmethods is the same.However, read-
ers should note that this flexibility does not extend to dis-
crete outcomes.

 Because FEMs incorporate all observed and unobserved variability at Level 
into the model, Level  coefficients may be conditional on different informa-
tion compared to an MLM or GEE model if relevant Level  predictors are not
measured or not included in the model. If all relevant Level  predictors are
included in themodel, then the Level  coefficients between FEMs,MLMs, and
GEE will be the same.

Simulation study

Simulation design

To evaluate the performance of methods for modeling
clustered data with few clusters, our simulation featured
four conditions for the number of clusters (4, 8, 10, 14)
and two conditions for the number of units within each
cluster, which was set to be unbalanced according to what
is commonly seen in practice (between 7 and 14 units
per cluster; between 17 and 34 units per cluster). Keeping
with the motivating example, the data-generation model
consists of a continuous outcome variable (e.g., posttest
scores) as a function of a binary variable with 50:50
prevalence at Level 2 (reminiscent of a treatment group
assigned at Level 2), a continuous variable at Level 1 (X1i j,
reminiscent of a pretest score), a binary Level 1 variable
with 50:50 prevalence (reminiscent of biological sex), and
a binary Level 1 variable with 25:75 prevalence (reminis-
cent of English language learner status). In Raudenbush
and Bryk (2002) notation,10 the generation model with
hypothetical predictor variables can be formulated as

Posttesti j = β0 j + β1 jPretesti j + β2 jSexi j
+β3 jELLi j + ri j

β0 j = γ00 + γ01Treatment j + u0 j
β1 j = γ10 + γ11Treatment j
β2 j = γ20 + γ21Treatment j
β3 j = γ30 + γ31Treatment j
u0 j ∼ N(0, g00), ri j ∼ N(0, σ 2), (10)

where j is an index for the cluster (j = 1, .2, …, J), and i
is an index for an observation within a cluster (i = 1, 2,
…,mj). The data-generationmodel only included Level 2
variation through the intercept (u0 j) because data with so
few clusters would be unlikely to be able to support mod-
els of much greater complexity, and we did not wish to
generate data from a model that would not be realistic to

 Although the matrix form was presented earlier to facilitate discussion and
estimation of models, we switch to Raudenbush and Bryk notation hereafter
because Raudenbush and Bryk notation is better suited for discussing spe-
cific models because it more easily allows for readers to see which effects are
located at which levels.
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Table . Cohen’s d population effect sizes for predictors in the
data-generation model.

Parameter Hypothetical effect d

γ00 Intercept .
γ01 Treatment .
γ10 Pretest .
γ11 Pretest× Treatment .
γ20 Sex − .
γ21 Sex× Treatment .
γ30 ELL − .
γ31 ELL× Treatment − .

fit under the circumstances of interest or that may have
been fraught with convergence issues even if properly
specified. We attempted to make the number of predic-
tors realistic in terms of the quantity and level placement,
in contrast to previous small-sample studies, which typ-
ically include a single continuous predictor at each level.
We set the variance of the intercept random effect (g00)
to 1.625 and the residual variance (σ 2) to 3.00 across all
conditions, resulting of an ICC of 0.20 in accordance with
common ICC values in educational psychology research
(the area of application motiving the study) seen in prac-
tice (Hedges & Hedberg, 2007).11 Population values for
regression coefficients were based on eta squared and then
converted to Cohen’s d as outlined in Fritz, Morris, and
Richler (2012) and are presented in Table 3 for ease of
interpretation. We chose approximate values based on
what the predictors were intended to represent and chose
to represent a range of different effect sizes.

The generated data were then fit with the 12 possible
methods reviewed previously; Table 4 lists these meth-
ods, hyperparameters for prior distributions (if appli-
cable), associated SAS procedures, and additional soft-
ware frequently used by behavioral scientists that is capa-
ble of implementing each method (note that for more
basic methods such as an MLM with ML or MCMC
with an inverse gamma prior, the software listed may
not be exhaustive). All data were generated with Proc
IML in SAS 9.3 and subsequently analyzed with Proc
Mixed, Proc MCMC (which uses Metropolis-Hastings),
Proc GLM, and Proc Glimmix. Annotated SAS code for
running each of these 12 models is provided in Appendix
B. Although Proc Genmod or the newly released Proc
GEE is typically used to fit GEE models with quasi-
likelihood methods in SAS, Proc Glimmix is the only

 Readersmay note that using the traditional formula for the ICC,where ICC =
g00/g00+σ 2 , will not yield a value of . with the specified values. However,
the ICC is based on an unconditional model such that the variance explained
by the predictors is lumped in the error terms. After considering the variance
explainedby thepredictors, the specified values for the variance components
yield an ICC of ..

SAS procedure that contains the small sample correc-
tions as preprogrammed procedures that are of inter-
est in this study. Therefore, the covariance parameters
in the GEE models are estimated with restricted maxi-
mum likelihood rather than the more common method
of moments as outlined in Liang and Zeger (1986). For
more detail on this difference, readers may consult Exam-
ple 38.12 in the SAS 9.2 User’s Guide (SAS Institute Inc.,
2008).

Because stationarity is an important issue to consider
with MCMC, we ran test replications using a different
number of burn-in iterations, recorded iterations, and
thinning to determine the optimal number to use across
the simulation conditions. Using 10,000 burn-in itera-
tions, 50,000 recorded iterations, and thinning by 50 was
found to provide nonsignificant Geweke’s tests for all
parameters and autocorrelations with magnitude below
0.10 for all lags beyond lag 2. From findings in previous
studies by Browne andDraper (2006) andGelman (2006),
the posterior distribution of the inverse gamma prior
and half-Cauchy conditions will be summarized with the
median, and the posterior distribution of the uniform dis-
tribution will be summarized by the mode. GEE used an
exchangeable working structure, which is recommended
when data are clustered cross-sectionally (Ballinger, 2004;
Horton & Lipsitz, 1999). The exchangeable working
structure should be a proper specification because, with
continuous outcomes, GEE with an exchangeable work-
ing structure is equivalent (barring differences in esti-
mation methods) to an MLM with random intercepts
(Twisk, 2004).

Outcomemeasures

Three outcome measures were tracked and reported.
First, the median relative bias was recorded for each
parameter estimate to examine howwell eachmethodwas
able to estimate effects under such extreme sample sizes.
Using criteria from Flora and Curran (2004), estimates
with a magnitude of bias greater than 10% were consid-
ered meaningfully biased. Second, because a major con-
cernwith a small number of clusters is downwardly biased
standard error estimates, which leads to inflated Type I
error rates, we tracked the 95% confidence/credible inter-
val coverage rate. From criteria in Bradley (1978), con-
fidence/credible interval coverage rates between [0.925,
0.975] will be considered to be reasonably close to the
nominal rate, suggesting adequate Type I error rates. Note
that some of the small-sample corrections (e.g., Kenward-
Roger) also adjust degrees of freedom, which will affect
t statistics used in the computation of confidence inter-
vals with frequentists methods. Last, empirical statistical
power for each effect was documented, given that our aim
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Table . Twelve analysis models used in the simulation and associated software options.

Model Estimation Correction/prior SAS Proc Additional notable software

Multilevel model ML — Mixed/Glimmix Mplus, SPSS, Stata, MLwiN, R, HLM
REML — Mixed/Glimmix SPSS, Stata, MLwiN, R, HLM
REML Kenward-Roger Mixed/Glimmix Stata, R (pbkrtest)
MCMC �−1(0.01, 0.01) MCMC Mplus, JAGS, STAN, WinBUGS, MLwiN
MCMC U(0, 10) MCMC Mplus, JAGS, STAN, WinBUGS, MLwiN
MCMC Half-Cauchy (, ) MCMC JAGS, STAN, WinBUGS

GEE GEE — Genmod/Glimmix SPSS, Stata, R (gee,geepack)
GEE Mancl-DeRouen Glimmix R (geesmv)
GEE Kauermann-Carroll Glimmix R (geesmv)
GEE Fay-Graubard Glimmix R (geesmv)
GEE Morel-Bokossa-Neerchal Glimmix R (geesmv)

Fixed effects model OLS — GLM/Reg Too numerous to list

Note: GEE = generalized estimating equation; MCMC = Markov chain Monte Carlo; ML = maximum likelihood; OLS = ordinary least squares; REML = restricted
maximum likelihood. Generalized estimating equation models were fit with a compound symmetric working covariance structure. The hyperparameters of the
uniform and half-Cauchy priors are rather small because they are applied to the standard deviation, not the variance.

is to make recommendations for which method(s) pro-
vide the greatest relative power under such extreme cir-
cumstances.12

Results

Parameter relative bias

Regression coefficient estimate bias
For themost part, there was very little bias observed in the
estimates of regression coefficients across conditions. Fre-
quentist MLMs and GEE underestimated the cross-level
interaction and the treatment effect with four clusters. For
all other parameters in all other conditions, the bias was
less than ±10%. Full results for the 7–14 cluster-size con-
dition are presented inTable 5. Becausemany of themeth-
ods under investigation in this study are corrections for
appropriate inference, they do not affect the regression
coefficient estimation. Thus, Table 5 only shows frequen-
tist MLMs estimated by ML and REML, Bayesian MLMs,
classical GEE, and FEMs. Results for the 17–34 cluster-
size condition were similar (although slightly better) and
are not reported to avoid redundancy.

Variance component estimate bias
Table 6 reports the variance component bias for the inter-
cept random effect and the Level 1 residual. Only 6 of
the 12 methods under investigation estimate Level 2 ran-
dom effects, so estimates from FEMs and GEE are not
reported in Table 6. In addition, REML and the Kenward-
Roger correction produce the same variance component
estimates, so they aremerged into a single column. As can
be expected from prior research (e.g., Browne & Draper,

 Although not reported in text, Appendix A shows the comparison of effi-
ciency for each method as well. These were excluded from the main text
because efficiency is largely related to power, which is presented in the text.

2006), theML intercept variance estimate was highly neg-
atively biased for all conditions of the simulation. Further-
more, as discussed in Ferron et al. (2009) and McNeish
and Stapleton (2014), REML vastly reduces the estima-
tion bias in intercept variance. However, REML begins
to falter at about 10 clusters once models become even
moderately complex (Browne and Draper, 2006, found
no discernable bias with as few as six clusters in a very
simple model). With small samples and frequentist esti-
mation, nonpositive definite covariance matrices are a

Table . Regression coefficient percentmedian bias bymethod for
 or fewer clusters with  to  observations per cluster.

Clusters Parameter ML REML IG Uni HCchy GEE FEM

 ELL    − −  −
Pretest     −  
Sex − −    − −
Sex×Treat − − − − − − −
Treat −15 −14  −  −14 −
ELL×Treat −55 −53    −36 −
Pre×Treat −12 −12    − 
Intercept       

 ELL   −  −  −
Pretest       
Sex    14 12  
Sex×Treat − − − − − − −
Treat − −    − −
ELL×Treat − − − − − − −
Pre×Treat  − − −  − −
Intercept       

 ELL  −   − − 
Pretest       −
Sex    16 12 15 −
Sex×Treat − − − −  − −
Treat       
ELL×Treat   −    −
Pre×Treat − − − − − − −
Intercept       

Note: ML = maximum likelihood; REML = restricted maximum likelihood;
KR = Kenward Roger; IG = inverse gamma MCMC prior; Uni = MCMC uni-
form prior; HCchy = MCMC half-Cauchy prior; GEE = generalized estimat-
ing equation; FEM = fixed effect model. For the Intercept, Pretest × Treat-
ment, and Sex× Treatment effects, absolute bias is reported instead of rela-
tive bias because the true effects were either zero or very close to zero. Bold
entries indicate bias that exceeded the % threshold suggested by Flora and
Curran ().
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Table . Percent relative bias of variance components.

Cluster size Clusters Parameter ML REML/KR IG UNI HCchy

 to   g00 −85 −20 −50 52 58
 −55 −15 −40 11 −
 −36 −11 −21 12 −
 −26 − −12 12 −

 σ 2 −18 −   
 − −   
 −    
 −    

 to   g00 −74 −31 −33 47 50
 −45 −13 −12  
 −32 − −  −
 −24 − −  −

 σ 2 − −   
 −    
 − −   
 −    

Note: ML = maximum likelihood; REML/KR = restricted maximum likeli-
hood/Kenward Roger; IG = inverse gamma MCMC prior; Uni = MCMC uni-
form prior; HCchy = half-Cauchy MCMC prior. ML, REML, and KR do not
include nonconvergent replications. GEE and FEM are not shown because
they do not estimate variance components. In accordance with Browne and
Draper (), the posteriorwith an inverse gammapriorwas summarized by
themedian, and the uniform prior was summarized by themode. Congruent
with Gelman (), the posterior with a half-Cauchy prior is summarized by
the median. Bold entries indicate bias that exceeded the % threshold sug-
gested by Flora and Curran ().

common concern. Table 7 shows the percentage of non-
definite covariance matrices across conditions. These
replications are excluded from the results reported for the
remainder of the article.

As expected according to Gelman (2006), MCMCwith
a uniform prior in this simulation resulted in very highly
upwardly biased intercept variance estimates that became
less biased as the number of clusters and the cluster size
increased (although the choice of hyperparameters would
of course influence these results to some degree). Unex-
pected according to findings in Gelman (2006) and Pol-
son and Scott (2012), although using a half-Cauchy prior
resulted in more desirable performance as compared to
using a uniform prior, the bias in the intercept variance
was still rather high for the smallest number of cluster
conditions included in this study and was more or less

Table . Percentage of nondefinite covariance matrices by
condition.

Number of clusters Cluster size ML REML/KR

  to   
 to   

  to   
 to   

  to   
 to   

  to   
 to   

Note: ML = maximum likelihood; REML/KR = restricted maximum likeli-
hood/Kenward Roger. The Kenward-Roger correction affects fixed effect
standard errors and denominator degrees of freedom, so the variance com-
ponent estimates are identical to standard REML estimation.

on par with an inverse gamma prior. With smaller clus-
ter sizes, however, the half-Cauchy prior performed best,
with the Kenward-Roger correction not too far behind.
With larger cluster sizes, the inverse gamma prior per-
formed approximately equal to Kenward-Roger correc-
tion. Overall, the half-Cauchy prior produced the best
estimates of the variance components with few clusters
although it appears that performance with very few clus-
ters is adversely affected when the model has several pre-
dictors (as opposed to the model used in Gelman, 2006).

Confidence/credible interval coverage

Table 8 shows the confidence/credible interval coverage
rates for all regression coefficients in the model for all 12
methods for the 7 to 14 cluster-size condition. The con-
fidence/credible interval coverage rates for the 17 to 34
cluster-size condition were rather similar to the 7 to 14
cluster-size condition and are not reported for brevity.

Generalized estimating equations
Immediately in Table 8, it can be seen that classical
GEE, the Kauermann-Carroll correction, and the Fay-
Grabuard correction do not perform well, especially with
10 or fewer clusters, and are at risk for highly inflated Type
I error rates.Mancl-DeRouenhad coverage rates thatwere
much closer to nominal rates but were still a little too
short, particularly for predictors at Level 1with fewer than
10 clusters. Morel-Bokossa-Neerchal performed the best
of all theGEEmethods although the coverage rates tended
to consistently be on the high end of Bradley’s range, as
was similarly found in McNeish and Harring (2015).

Fixed effectmodels
FEMs provided very good coverage rates for predictors
directly estimated by the model regardless of the number
of clusters. Before correcting the standard error estimates
for the Level 2 variance, coverage rates were quite poor.13

However, the issue was anticipated and, after multiplying
by DEFT, coverage rates were quite good and showed no
evidence of deviating from the nominal rate.

Multilevel models
As has been demonstrated in previous research (e.g.,
Browne & Draper, 2006; McNeish & Harring, 2015),
ML and REML tended to have coverage intervals that
are shorter than the nominal rate, especially for predic-
tors involving a variable at Level 2. Use of a Kenward-
Roger correction was largely able to address this limi-
tation and provided coverage rates within the nominal

 Prior to the DEFT correction, the coverage rate for the treatment effect with
 to  observations per cluster was % and with  to  observations per
cluster it was % across all number-of-cluster conditions.
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Table . Confidence/credible interval coverage of model parameters for cluster size of  to .

Clusters Parameter ML REML KR IG Uni HCchy GEE FG KC MD MBN FEM

 ELL 91      51 78 62 89  
Pretest       52 77 62 90  
Sex       52 78 62 87  
Sex×Treat 81 83 83    50 66 61 82 82 
Treat 75 80 82  99 100 74 83 79 87 88 
ELL×Treat 78 80 80    45 64 57 81 80 
Pre×Treat 82 84 84    48 66 59 83 83 
Intercept   91  99 99 65 92 69   

 ELL       67 82 78 88  
Pretest       70 82 78 90  
Sex       72 82 80 89  
Sex×Treat 92 92     75 85 83 92  
Treat 88 92     84 92 89   
ELL×Treat 91 92     72 84 82 92  
Pre×Treat       72 86 82   
Intercept       78 88 83 92  

 ELL       79 86 85 90  
Pretest       79 85 85 91  
Sex       82 87 86 91  
Sex×Treat       84 91 89   
Treat 92      91  93  98 
ELL×Treat       83 90 89   
Pre×Treat       81 89 88   
Intercept       90  92   

 ELL       86 89 89 92  
Pretest       85 89 89 92  
Sex       87 90 91   
Sex×Treat       88    98 
Treat 92      91    98 
ELL×Treat       88  92   
Pre×Treat       86 91 90   
Intercept       90 92 92  98 

Note: KR= Kenward-Roger; IG= inverse gamma; MCMC prior; Uni=MCMC uniform prior; HCchy=MCMC half-Cauchy prior; GEE= generalized estimating equa-
tions; FG = Fay-Graubard; KC = Kauermann-Carroll; MD = Mancl-DeRouen; MBN = Morel-Bokossa-Neerchal; FEM = fixed effect model. Bold entries indicate
coverage intervals beyond [., .] from Bradley ().

range except in the four-cluster condition. Although Fer-
ron et al. (2009) generally found that a Kenward-Roger
correction was able to estimate standard errors appropri-
ately even for extremely small numbers of clusters, the
data-generation model in this study was much larger, and
so the slight dip in performance was anticipated (e.g.,
McNeish & Stapleton, 2014).

MCMCmethods generally performed quite well, even
in the four-cluster condition where many other meth-
ods tended to exhibit coverage intervals that were too
short. The choice of the prior distribution with MCMC,
however, was not arbitrary, and some choices yielded
more desirable coverage intervals than others. The inverse
gamma prior had coverage rates close to the nominal rate
across all conditions; however, the uniformprior and half-
Cauchy prior coverage rates were too wide for the Level
2 binary predictor with four clusters, which adversely
affected power as will be discussed in the next section.

Power

Tables 9 and 10 show the empirical power rates for all
regression coefficients in the model for all 12 methods
for the 7 to 14 cluster-size and the 17 to 34 cluster-size

conditions, respectively. Unlike the previous section, both
cluster-size conditions are reported because the differ-
ence in power was noticeable between the 7 to 14 and
17 to 34 conditions. Cells that are greyed out indicate
that the confidence/credible interval coverage rates were
outside the range recommended in Bradley (1978), and
rejection rates are likely to be inappropriate as a result.
In the following sections, we will discuss power in a rela-
tive manner; this is not intended to imply that data with
7 or 10 clusters is optimal or even sufficient from a design
perspective.

Generalized estimating equations
Power for GEE, the Fay-Graubard correction, and
the Kauermann-Carroll correction is almost completely
uninterpretable because coverage rates were so poor.
For conditions where one might reasonably expect to
detect effects (i.e., where Cohen’s d is 0.20 or larger),
both the Mancl-DeRouen and Morel-Bokossa-Neerchal
corrections had moderately less power than MLMs and
FEMs. Although the Morel-Bokossa-Neerchal correction
was the only GEE method to generally yield appropri-
ate coverage rates, it appears that the price paid is dimin-
ished power.McNeish andHarring (2015) similarly found
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Table . Empirical power of model parameters for the unbalanced cluster condition with  to  observations per cluster.

Clusters Parameter |ES| ML REML KR IG Uni HCchy GEE FG KC MD MBN FEM

 ELL . 22      66 42 54 24  
Pretest .       100 97 100 81  
Sex .       50 27 42 14 9 
Sex×Treat . 19 18 17    50 34 40 18 18 
Treat . 43 33 26  2 2 40 26 31 19 18 39
ELL×Treat . 25 22 22    59 41 46 22 25 
Pre×Treat . 19 16 16    54 36 43 17 17 

 ELL .       48 37 39 24  
Pretest .       100 99 99 94  
Sex .       31 21 24 13  
Sex×Treat . 7 6     26 16 17 8  
Treat . 43 35     42 26 29   61
ELL×Treat . 16 14     33 21 23 11  

 ELL .       43 36 37 28  
Pretest .       100 100 100 99  
Sex .       23 17 17 12  
Sex×Treat .       15 10 11   
Treat . 52      48  38  24 73
ELL×Treat .       29 18 20   
Pre×Treat .       20 11 13   

 ELL .       44 39 39 33  
Pretest .       100 100 100 100  
Sex .       17 14 14 11  
Sex×Treat .       12    2 
Treat . 66      61    38 81
ELL×Treat .       28  21   
Pre×Treat .       17 12 13   

Note: ES= population Cohen’s d effect size; ML=maximum likelihood; REML= restricted maximum likelihood; KR= Kenward Roger; IG= inverse gammaMCMC
prior; Uni = MCMC uniform prior; HCchy = MCMC half-Cauchy prior; GEE = generalized estimating equations; FG = Fay-Graubard; KC = Kauermann-Carroll;
MD = Mancl-DeRouen; MBN = Morel-Bokossa-Neerchal; FEM = fixed effect model. Grayed entries indicate coverage intervals beyond [., .] from Bradley
() and therefore represent noncomparable/inappropriate power estimates.

disparate power between Kenward-Roger and Morel-
Bokossa-Neerchal with few clusters.

Fixed effectmodels
Overall, power rates for FEMs were higher than for other
methods, especially with very few clusters, while also
being one of only two methods that was able to control
the Type I error rate with as few as four clusters (the other
being an MLM with an inverse gamma prior). This is
related to improved efficiency of theOLS estimates, which
is displayed in Appendix A. Briefly, the FEM model esti-
mates exhibit less sampling variability than othermethods
with very few clusters, meaning that the standard errors
are rightfully smaller (about 15%–20%with fewer than 10
clusters, see TableA2 for full detail). Efficiency for FEMs is
comparable to othermethods once the number of clusters
reaches the mid-teens and power is essentially equivalent.

Multilevel models
In general, different types of MLMs performed fairly sim-
ilarly with regard to power for those cells in which cover-
age rates were near the nominal level. Kenward-Roger and
MCMC with an inverse gamma generally performed well
and maintained appropriate coverage rates. As expected

from the wide coverage intervals, MCMC with a uni-
formprior had noticeably smaller power for the treatment
effect across conditions, and the half-Cauchy prior had
slightly smaller power than the inverse gammapriorwhen
there were fewer than 10 clusters. Across conditions, with
very few clusters, MLMs were consistently outperformed
by FEMs in terms of detecting true non-null effects.

Analysis of motivating data

Returning to the motivating example, we modeled the
IES Reading Buddies data with each of the 12 compet-
ing methods. These data featured 203 students clustered
within 12 classrooms, meaning that each classroom had
approximately 17 students (range= 12 to 24) and students
weremeaningfully nested within classrooms as evidenced
by an ICC of 0.21 and an unconditional DEFT of 2.09.
The continuous outcome variable, PPVT posttest score,
is regressed on five predictors: Treatment Effect (at Level
2), ELL, PPVT pretest score, Treatment Effect× ELL, and
Treatment Effect × PPVT pretest score. ELL and PPVT
pretest score were grand-mean centered prior to being
included in the model in accordance with recommenda-
tions in Enders and Tofighi (2007) because the primary
interest was on the treatment effect located at Level 2. In
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Table . Empirical power of model parameters for the unbalanced cluster condition with  to  observations per cluster.

Clusters Parameter |ES| ML REML KR IG Uni HCchy GEE FG KC MD MBN FEM

 ELL . 33      74 53 63 31 29 
Pretest .       100 100 100 84  
Sex .       53 35 46 16 11 
Sex×Treat . 18 17 17    52 37 43 18 19 
Treat . 55 42 29  4 6 43 28 34 16 18 
ELL×Treat . 23 22 22    61 43 50 21 23 
Pre×Treat . 20 19 19    54 38 45 19 20 

 ELL .       65 55 57 42  
Pretest .       100 100 100 96  
Sex .       37 27 31 18  
Sex×Treat .     5 5 22 15 17   
Treat . 56 47     52 35 41   87
ELL×Treat .       45 30 35 19  
Pre×Treat . 10      29 18 21 10  

 ELL .       67 60 60 51  
Pretest .       100 100 100 100  
Sex .       31 25 26 19  
Sex×Treat .       16 10 12   
Treat . 67      64     
ELL×Treat .       44 32 36   
Pre×Treat .       18 12 13   

 ELL .       76 70 70 63  
Pretest .       100 100 100   
Sex .       28 24 24 20  
Sex×Treat .       11  8   
Treat . 79      77    57 96
ELL×Treat .       50  44   
Pre×Treat .       15  12   

Note: ES= population Cohen’s d effect size; ML=maximum likelihood; REML= restricted maximum likelihood; KR= Kenward Roger; IG= inverse gammaMCMC
prior; Uni = MCMC uniform prior; HCchy = MCMC half-Cauchy prior; GEE = generalized estimating equations; FG = Fay-Graubard; KC = Kauermann-Carroll;
MD = Mancl-DeRouen; MBN = Morel-Bokossa-Neerchal; FEM = fixed effect mode. Grayed entries indicate coverage intervals beyond [., .] from Bradley
() and therefore represent noncomparable/inappropriate power estimates.

Raduenbush and Bryk notation, the MLMs could be for-
mulated as

PPVT Posttesti j = β0 j + β1 j(ELLi j) + β2 j (PPVT

Pretesti j − PPVT Pretest
) + ri j

β0 j = γ00 + γ01Treatment j + u0 j
β1 j = γ10 + γ11Treatment j
β2 j = γ20 + γ21Treatment j (11)

The GEE models can be similarly written by removing
the random effect u0 j and substituting to yield a single-
level equation. The FEM can also be similarly specified by
removing the random effect, γ00, γ01 (although this can
be estimated with contrasts) and then adding cluster affil-
iation predictors. Because the scale of the outcome vari-
able was larger than in the simulation, the priors will be
changed slightly to maintain their intended uninforma-
tive nature. Specifically, the uniform prior will range from
0 to 500, and the scale of the half-Cauchy distribution
will be 100 rather than 16. Similar to the simulation, the
MCMCmodels use 10,000 burn-in iterations with 50,000
recorded iterations thinned by 50. The Geweke test was
not significant for any parameter, and the autocorrelations
were well behaved, meaning that there is reasonable evi-
dence that MCMC chains reached convergence.

The resulting estimates are provided in Table 11.
Because the FEM accounts for all observed and unob-
served variables at Level 2, the FEM estimates are con-
ditional on different information and are thus noticeably
different from each of the other models. Most important,
the treatment effect with the FEMwas about half the other
methods and was not statistically significant. This differ-
ence will be discussed further in the Discussion.

Of particular note is the wide amount of variation in
the estimate of the intercept variance among the multi-
level models (range: 5.00 to 9.56). In addition, the wide
variation of statistical significance (or 0 not being in
the credible interval for MCMC models) can be readily
seen: MLMs identified four significant predictors at an
alpha level of .05 whereas the Kauermann-Carroll cor-
rection,Mancl-DeRouen correction, andMorel-Bokossa-
Neerchal correction (methods with less desirable per-
formance in the simulation) only indicated two signifi-
cant predictors. This particular data analysis has many
effects that closely straddle a p value of .05 and is thus a
good example of how choice of method with few clusters
can markedly affect the interpretation if one adjudicates
importance of predictors according to p values.

It should be noted that these are empirical data, and
therefore population parameter values, or which model is
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Table . Comparison of estimates and standard errors/posterior standard deviations from Reading Buddy data across all  methods.

Multilevel models
Effect ML REML KR IG Uni HCchy
Intercept . . . . . .
ELL . (.) . (.) . (.) . (.) . (.) . (.)
Pretest .∗∗(.) .∗∗ (.) .∗∗ (.) .† (.) .†† (.) .†† (.)
Treat .∗∗(.) .∗∗ (.) .∗∗ (.) .†† (.) .†† (.) .†† (.)
ELL×Treat −.∗ (.) −.∗ (.) .∗ (.) −.† (.) −.† (.) −.† (.)
Pre×Treat −.∗∗ (.) −.∗ (.) −.∗ (.) −.†† (.) −.†† (.) −.†† (.)
Intercept var . . . . . .
Residual var . . . . . .

GEE and fixed effect model
GEE FG KC MD MBN FEM

Intercept . . . . . .
ELL . (.) . (.) . (.) . (.) . (.) . (.)
Pretest .∗∗(.) .∗∗(.) .∗∗ (.) .∗∗ (.) .∗∗ (.) .∗∗ (.)
Treat .∗ (.) .∗ (.) .∗ (.) .∗ (.) .∗ (.) . (.)
ELL×Treat −.∗ (.) −.∗ (.) −. (.) −. (.) −. (.) −.∗ (.)
Pre×Treat −.∗ (.) −. (.) −. (.) −. (.) −. (.) −.∗∗ (.)
Residual Var . . . . . .

Note: Standard errors/posterior standard deviations appear in parentheses. To aid interpretation, the mean of the outcome was . with a standard deviation of
..

† % credible interval does not contain .
††% credible interval does not contain .

∗p< .; ∗∗p< ..

closest to “truth,” cannot be determined. In addition, due
to space limitations, we do not report tests of the statistical
assumptions inherent with each model (assumptions are
overviewed in the Discussion).

Discussion

Very broadly, the 30-cluster / 30-unit recommendation
for minimum sample size with clustered data that is often
attributed to Kreft (1996) still permeates in much applied
literature but is quickly being rendered obsolete, outdated,
and inaccurate as methodological advances continue to
burgeon. As shown in this study, for a moderately sized
model, many methods are able to produce estimates with
desirable properties with fewer than 10 clusters although
the analysis will almost certainly be underpowered to
some degree for any effects that are not large in mag-
nitude. There are clear choices for which methods are
preferablewhen one encounters datawith few clusters and
a moderate number of predictors, however.

First, estimating the model with uncorrected GEE is
a poor choice as the standard error estimates are heav-
ily downwardly biased. Furthermore, most small-sample
corrections to the sandwich estimator in GEE were also
rather ineffective under the conditions of this simulation
with the exception of the Morel-Bokossa-Neerchal cor-
rection. However, the Morel-Bokossa-Neerchal correc-
tion tended to overcorrect in the conditions in this study,
which was shown to adversely affect power (as has been
shown previously in McNeish & Harring, 2015, with a
more complex model). In substantive research contexts
with few clusters, a loss of power is not a trivial matter

because power will already be diminished due to the small
number of clusters.

Of theMLMmethods investigated, MCMC estimation
with an inverse gamma prior andMCMC estimation with
a half-Cauchy prior were the best choices when broadly
considering bias, power, and coverage intervals concur-
rently. Themagnitude of the bias ofMLMswith an inverse
gamma prior and an MLM with a half-Cauchy prior was
about equal although the inverse gamma prior tended
toward being downwardly biased and a half-Cauchy prior
tended toward being upwardly biased. In addition, the
inverse gamma prior performed slightly better when the
cluster size was smaller (7 to 14 observations per clus-
ter) whereas the half-Cauchy prior performed slightly
better with larger cluster sizes (17 to 34 observations
per cluster). It should be noted that, in general, MLMs
require a large number of assumptions and each of these
assumptions were met by the data-generation process.
With real data, the various assumptions of MLMs may
not necessarily be upheld. In addition, with few clusters,
the assumptions themselves are difficult to test and val-
idate, so it can be unclear whether the assumptions are
met. Furthermore, the ubiquitous Hausman specification
test (Hausman, 1978) that is commonly used to assess
the tenability of random effect model violations encoun-
ters problems with small sample sizes (Schreiber, 2008;
Sheytanova, 2014).

Perhaps surprising to behavioral science researchers
due to their scarce usage (outside of economics), FEMs
performed extremely well for modeling data with few
clusters and a moderate number of predictors. With very
few clusters, the efficiency of the FEMs surpassed all other
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methods, which helped to produce the maximal amount
of power. Although Bayesian methods are often touted
as being advantageous with smaller samples, FEMs vastly
outperformed Bayesian methods in the simulation, espe-
cially in terms of power. For example, for the treatment
effect with only four clusters and 17 to 34 observations per
cluster, the empirical power for the half-Cauchy prior was
4% and the empirical power for the inverse gamma prior
was 10%. Compare those values to the FEMwhose empir-
ical power was 32%. Although still far short of the 80%
(arbitrary) cutoff applied in behavioral science, applied
researchers wouldmuch rather have power near 30% than
4% or 10% provided that the regression coefficients are
unbiased and Type I error rates are controlled (which was
the case with FEMs in the simulation).

In FEMs, the regression coefficients were estimated
without bias; the model makes a minimal number of
assumptions; and concerns about omitted variable bias at
Level 2 are alleviated. The last of these advantages can be
particularly useful for research with few clusters. These
studies often collect primary data (large-scale data sets
would not likely feature so few clusters), and researchers
may not always have the funds to collect several measures
or may not have the insight a priori to note which vari-
ables at Level 2 should have been collected. In the moti-
vating example, this was rather salient—11 of themethods
identified the treatment as being significant; however, the
FEM treatment effect was noticeably smaller and not sta-
tistically significant. As is common is small data sets, the
number of measured variables was not highly extensive
and MLMs and GEE are limited to the variables available
in the data. FEMs can account for unmeasured Level 2
variables, and it seems plausible that an unmeasured Level
2 variable might have been related to the treatment effect
in themotivating data, and after conditioning on this vari-
able, the treatment effect was reduced.

The main drawback with FEMs is that Level 2 predic-
tors cannot be explicitly included in the model because
the cluster-affiliation variables account for all variation
at Level 2. However, in cases where very few clusters are
present, information at Level 2 is often not an explicit
research interest. That is, when the number of clusters falls
in the single digits, the research questions are often not
overly concerned with specific effects at the cluster level,
and the sample size would not likely be sufficient to make
meaningful inferences about these effects. The motivat-
ing example on vocabulary demonstrated this common
occurrence—the interest was on the performance of stu-
dents and the students happened to be naturally clustered
within classrooms. The classrooms and their character-
istics did not play a large role in the broader research
interests of the study—students were the primary inter-
est and they happen to be naturally clustered within
classrooms. This extends to other disciplines as well—in

medical and epidemiological studies the interest is very
often on patients or individuals who happen to be clus-
tered within hospitals or geographic areas. The charac-
teristics of a hospital, for example, are important to take
into account, but the magnitude of effects at the hospital
level and/or their statistical significance may not always
be directly relevant.

Although not the direct focus in this study, the adjust-
ment made to the standard errors of the binary Level 2
predictor through the DEFT was quite effective, provided
that some fairly rigid assumptions were upheld. None of
the simulation conditions exhibited confidence interval
coverage rates outside of the criteria in Bradley (1978). On
the contrary, if the standard errors were uncorrected, the
confidence interval coverage rates would have been in the
high 60s to low 80s across conditions, which are clearly
indicative of underestimated standard errors considering
that the coefficient estimate was unbiased. Overall, this
shows that FEMs may be of more utility than previously
thoughtwith very few clusters in cluster randomized trials
though conventional wisdomprecludes Level 2 predictors
from the model.

As noted by an anonymous reviewer, data with few
clusters could also be reasonably considered as amultiple-
group structural equation model (MG-SEM). In this
framework, a regression model would be specified, but
the coefficient estimates and possibly the error variance
would be freely estimated for each cluster (the group vari-
able). If one were interested, the variance of coefficients
could then be easily calculated across clusters, or more
importantly, one could conduct significance tests to deter-
mine whether paths differ across groups. The variance of
parameters calculated from an MG-SEM would likely be
larger than the variance calculated from anMLM because
MLMs will use empirical Bayes to shrink the random
effect estimates for specific clusters (Hox, 2002). The FEM
could be considered a special case of MG-SEM where
the coefficients for Level 1 predictors and error variance
are constrained to be equal across clusters but the inter-
cept for each cluster is allowed to be different in each
cluster.

As a notable limitation of the simulation, the values
for the hyperparameters in the prior distributions of the
MCMC conditions could have affected the results. The
selected values were intended to be reasonably noninfor-
mative while also considering the scale of the outcome.
That is, the priors featured a wide support over plausible
values for the variance components without being naively
noninformative by specifying a distribution such as an
unbounded uniform prior, which can have deleterious
effects on model estimates with small samples (McNeish,
2016). Despite this intention, with small samples, minor
changes in the hyperparameters can affect posterior
distributions. For example, the uniform prior for the
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standard deviation of the random effects was bounded by
[0, 10] in the simulation, but one could argue that [0, 5]
may have been just as noninformative or that [0,10] was
possibly too informative. Given the small sample sizes of
interest in this article, changing these bounds would have
affected the resulting posterior distribution. In accor-
dance with sensitivity checks provided in Depaoli and
van de Schoot (2016), we reran the model after adjusting
the values for the hyperparameters in the prior distribu-
tions for the variance components in the applied example.
The substantive conclusions for all parameters were not
altered, and the relative change in the summaries of the
posterior distributions (the Bayesian equivalent of point
estimates) was at most a few percent which, according to
criteria in Depaoli and van de Schoot (2016), would be
classified as a small to moderate effect.

As extensions of this study, the present simulation
study considered models with Level 2 variation induced
through random intercepts. For models in which multi-
ple random effects may be posited, multivariate prior dis-
tributions are likely necessary to ensure that the result-
ing MCMC draws produce a positive definite covariance
matrix. The inverse Wishart distribution is a common
prior distribution choice; however, this results in drawing
values for variances from an inverse gamma distribution.
Wand, Ormerod, Padoan, and Führwirth (2011) showed
that one could create a half-t distribution from a mixture
of inverse gammas, and it could be worthwhile to gauge
whether the differences between inverse gamma and half-
Cauchy generalize to the multivariate extension. In addi-
tion, given the strong performance of FEMs, it would be
important to determine whether the treatment effect at
Level 2 could still be estimated with linear combinations
of the cluster affiliation coefficients. The unconditional
DEFT-based standard error estimate correction will fail
if slopes are heterogeneous, so a more clever and gener-
alizable solution to the standard error problem would be
valuable.

As a concluding remark based upon the overarching
theme of this article, researchers may want to consider
and draw from methods from other disciplines when
faced with methodological challenges. Methodological
work is published in a wide variety of outlets that may
often include substantive journals with which behavioral
science methodologists are not familiar. For the prob-
lem of interest in this article, extant methods common
to the area of application performed decently but could
be equaled or improved upon fairly readily by consider-
ing methods common to economics. Although there are
many methodological problems in need of solutions in
the behavioral sciences, sometimes a viable solution may
already be available, albeit from a slightly different, non–
behavioral science vantage point.
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Table A. Standard error estimate percent median bias by method with  to  observations per cluster.

Clusters Effect ML REML KR IG Uni HCchy GEE FG KC MBN MD FEM FEM-DEFT

 ELL −21 −13 −12 −   −65 −36 −48 −13 −16 − −
Pretest −17 − − −   −64 −33 −48 − 16 − −
Sex −14 − −    −61 −28 −43 − − − −
Sex×Treat −      −59 −22 −41 −  − −
Treat −27 − − 22 80 81 −55 −23 −39 − −15 −29 −
ELL×Treat −   −   −62 −27 −42 − −13  
Pre×Treat −      −62 −26 −43 − 40  
Intercept −31 −13 −13 22 103 103 −56 −31 −41 − −13 −30 −

 ELL −16 −11 − − − − −45 −24 −27 − − − −
Pretest −12 − − −   −44 −23 −26 − 12 − −
Sex − − −    −37 −16 −19    
Sex×Treat − − −    −36 − −17  15  
Treat −16 − − 22 20 15 −33 − −16   −29 −
ELL×Treat − − − − − − −40 −12 −19   − −
Pre×Treat −11 − −    −42 −17 −24 − 28 − −
Intercept −19 − −  21 18 −37 −18 −22  − −28 −

 ELL − − − − − − −29 −15 −14   − −
Pretest − − − −   −30 −17 −16   − −
Sex − − −    −25 −11 −11    
Sex×Treat −      −21 − − 14 15  
Treat − −     −19 − − 14 13 −29 −
ELL×Treat − − − − − − −27 − −  12 − −
Pre×Treat − − −    −30 −11 −14  16 − −
Intercept − − −    −20 − − 15  −28 −

 ELL − − − −   −19 − − 12  − −
Pretest − − − −   −23 −14 −13    
Sex −    − − −15 − − 18  − −
Sex×Treat −      −14  − 17  − −
Treat −    − − −13  − 17  −29 −
ELL×Treat −    − − −14  − 17 12 − −
Pre×Treat − − − −   −20 − −   − −
Intercept − − − − − − −16 − − 14  −29 −

Note: ML = maximum likelihood; REML = restricted maximum likelihood; KR = Kenward Roger; IG = inverse gamma MCMC prior; Uni = MCMC uniform prior;
HCchy=MCMC half-Cauchy prior; GEE= generalized estimating equations; FG= Fay-Graubard; KC= Kauermann-Carroll; MD=Mancl-DeRouen; MBN=Morel-
Bokossa-Neerchal; FEM = fixed effect model; FEM-DEFT = fixed effect model with DEFT correction. Bold entries indicate bias that exceeded the % threshold
suggested by Flora and Curran ().
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Table A. Standard error estimate percent median bias by method with  to  observations per cluster.

Clusters Effect ML REML KR IG Uni HCchy GEE FG KC MBN MD FEM FEM-DEFT

 ELL − − −   − −58 −35 −44 −  − −
Pretest −11 − − − − − −58 −37 −43 − 36 − −
Sex −13 − − − −  −60 −39 −45 −   
Sex×Treat    − −  −55 −23 −38  39 − −
Treat −31 −11 −11 27 62 79 −56 −27 −41 −  −48 −
ELL×Treat      − −55 −22 −37  25 − −
Pre×Treat −   − −  −56 −26 −39  78 − −
Intercept −36 −19 −19 29 97 113 −59 −40 −47 −13 − −46 −

 ELL − − − − − − −38 −21 −22   − −
Pretest − − − − − − −39 −22 −23   − −
Sex − − − − − − −37 −20 −21   − −
Sex×Treat −     − −31 − −14  25 − −
Treat −17 − − 13 22 15 −32 − −17  11 −46 −
ELL×Treat −      −34 − −17  20  
Pre×Treat − − − − −  −36 −11 −19  28 − −
Intercept −20 − −  21 18 −37 −21 −23   −46 −

 ELL      − −22 − − 13  − −
Pretest − − − − − − −23 − −  11 − −
Sex − − − − − − −26 −14 −15   − −
Sex×Treat −     − −20 − − 12 14  
Treat − − −    −19 − − 12  −47 −
ELL×Treat       −17  − 18 18  
Pre×Treat − − − − −  −22 − −  16 − −
Intercept −11 − −    −21 − − 11  −46 −

 ELL − − − − − − −17 − − 13  − −
Pretest      − −12 − − 19  − −
Sex − − − − − − −16 − − 13   
Sex×Treat      − −12  − 18   
Treat −    − − −11  − 17  −46 −
ELL×Treat       −13  − 17  − −
Pre×Treat − − − − −  −14 − − 15  − −
Intercept − − −  − − −15 − − 15  −47 −

Note: ML = maximum likelihood; REML = restricted maximum likelihood; KR = Kenward Roger; IG = inverse gamma MCMC prior; Uni = MCMC uniform prior;
HCchy=MCMC half-Cauchy prior; GEE= generalized estimating equations; FG= Fay-Graubard; KC= Kauermann-Carroll; MD=Mancl-DeRouen; MBN=Morel-
Bokossa-Neerchal; FEM = fixed effect model; FEM-DEFT = fixed effect model with DEFT correction. Bold entries indicate bias that exceeded the % threshold
suggested by Flora and Curran ().
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