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ABSTRACT
Meta-analytic structural equation modeling (MASEM) is increasingly applied to advance theories by
synthesizing existing findings. MASEM essentially consists of two stages. In Stage 1, a pooled corre-
lation matrix is estimated based on the reported correlation coefficients in the individual studies. In
Stage 2, a structural model (such as a path model) is fitted to explain the pooled correlations. Fre-
quently, the individual studies do not provide all the correlation coefficients between the research
variables. In this study, wemodify the currently optimal MASEM-method to deal with missing correla-
tion coefficients, and compare its performancewith existingmethods. This study is the first to evaluate
the performance of fixed-effects MASEMmethods under different levels of missing correlation coeffi-
cients.We found that the oftenusedunivariatemethods performedvery poorly,while themultivariate
methods performed well overall.

Accounting for missing correlation coefficients in
fixed-effects MASEM

Meta-analytic structural equation modeling (MASEM) is
a technique of pooling correlation coefficients of a set
of variables from several independent samples, in order
to fit structural equation models on the pooled matrix
(see Cheung, 2015a; Jak, 2015). Researchers are increas-
ingly interested in how MASEM can be used to advance
theories by synthesizing existing findings (Bergh et al.,
2016). The increasing popularity is demonstrated through
a recently published special issue of the journal Research
Synthesis Methods devoted to the methodological and
statistical development of MASEM (Cheung & Hafdahl,
2016).

MASEM essentially comprises two stages. In Stage 1, a
pooled correlationmatrix is estimated. In Stage 2, a struc-
tural model (such as a path model) is fitted to explain
the pooled correlations. One of the many nice aspects
of MASEM is that the primary studies do not have to
include all variables of interest (Viswesvaran & Ones,
1995). For example, Topa&Moriano (2010) gathered cor-
relation coefficients between social norms, attitudes, per-
ceived control, smoking intention, and smoking from 35
published studies, obtaining a total of 217 correlations. A
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synthesis of the observed correlations across studies pro-
vided a pooled correlation matrix of the five variables. By
fitting a pathmodel to the pooled correlationmatrix, they
tested howwell the theory of planned behavior could pre-
dict smoking behavior. Among other results, they found
that social norms better predicted smoking intentions
and smoking than attitudes. These researchers obtained
217 correlation coefficients, while with complete data one
would extract 10 correlation coefficients per study, lead-
ing to 350 correlation coefficients. The missing correla-
tion coefficients may be the result of variables not being
included in the study, or of nonreporting correlation coef-
ficients between variables that were included in the study.

When a primary study includes a variable, but does not
report all correlations or covariances of this variable with
the other variables, this leads to difficulties when applying
someMASEM-methods. Specifically, it leads to problems
when using methods that pool the data on the variable
level, such as fixed-effects two-stage structural equation
modeling (TSSEM, Cheung & Chan, 2005). As TSSEM
is found to outperform other methods in several aspects,
and TSSEM is increasingly applied by meta-analysts, it is
essential to adapt TSSEM to handle missing correlation
coefficients.
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One aim of this article is to show how fixed-effects
TSSEM can be used when some correlation coefficients
are missing, and to compare the new approach with
existing approaches using simulated data with varying
amounts of missing data. The new approach will be
compared to the original TSSEM approach and two other
MASEM-methods that accommodate missing correla-
tions coefficients, being the GLS approach (Becker, 2009)
and the univariate approach (Viswesvaran &Ones, 1995).

The second aim of this study is to compare the per-
formance of univariate and multivariate models in the
presence of missing correlation coefficients. MASEM is
increasingly applied in many fields, such as personality
(Connelly & Chang, 2016), health psychology (Cheung
& Hong, 2017), medicine (Rich, Brandes, Mullan, &
Hagger, 2015), management (Mesmer-Magnus, Asencio,
Seely, & DeChurch, 2015), and international business
(Tang & Cheung, 2016), but most researchers pool
correlation coefficients using (sub-optimal) univariate
methods (Hedges & Olkin, 1985; Schmidt & Hunter,
2015). Univariate methods ignore that correlation coef-
ficients within a study are based on the same sample,
and that they are therefore not independent. Ignoring
this dependency has been found to lead to incorrect
results (Cheung & Chan, 2005; Riley, 2009). Multivariate
methods such as TSSEM and the GLS approach, that
account for within-study dependency of effect-sizes, may
improve the performance of the analyses.

One common criticism on the univariate models is
that they treat the pooled correlation matrix as if it was
a covariance matrix in fitting structural equation models
(Cheung, 2015a; Cheung & Chan, 2005). Correlation
matrices can be correctly analyzed by imposing appropri-
ate constraints on the model implied variances (Bentler
& Lee, 1983). It is of practical interest to see whether the
univariatemodels can bemodified to improve their statis-
tical performance. If the modified approach performs as
well as multivariate approaches, applied researchers may
use the modified univariate models which are arguably
easier to implement than the multivariate models. Before
presenting the new method to account for missing cor-
relation coefficients and the simulation study, we will
elaborate on the occurrence of missing correlation coef-
ficients and explain how the currently available methods
handle missing coefficients.

Missing data inMASEM

Missing data in MASEM can occur at different levels:
at the study level, at the variable level, and at the coef-
ficient level. At the study level, missing data may occur
because not all executed studies may be included in the
review. It is a well-known problem that studies with

favorable outcomes are easier to publish than studies with
unfavorable outcomes, known as publication bias (Roth-
stein, Sutton, & Borenstein, 2006). Publication bias is a
large problem, and various researchers work on methods
to attack this problem (Guan & Vandekerckhove, 2016;
Simonsohn, Nelson, & Simmons, 2014; van Assen, van
Aert, & Wicherts, 2016).

Within available studies, there may be missing data at
the variable level, meaning that not all variables of interest
were included in the study. Possible reasons are that: (1)
the variable was outside the scope of the specific study,
(2) at that time, a variable was not operationalized yet
(for example, “emotional intelligence” or “cyberbullying”
are fairly new concepts), (3) the variable did not show
interesting effects, and therefore the authors decided not
to report anything on this variable (selective reporting;
John, Loewenstein, & Prelec, 2012). The effect of missing
variables on the performance of a selection of MASEM-
methods was evaluated by Furlow & Beretvas (2005).

If a variable was included in the final model, then
there may still be missing information at the coefficient
level: not all correlation coefficients of the included vari-
ables may be reported. This often happens for correla-
tions that were not the main focus of the researchers, like
the correlation between two dependent variables in two
separate univariate regression analyses, or the correla-
tion between two independent variables in a path model.
In a recent review of applications of MASEM by Sheng,
Kong, Cortina, & Hou (2016), it appeared that 38.8% of
the meta-analyses were hampered by missing correlation
coefficients of this kind. In this article, we focus on miss-
ingness at the coefficient level, as the impact of this type
of missingness on the performance of MASEM-methods
has never been evaluated yet.

In the next section, we will briefly explain the univari-
ate method, the GLS method and TSSEM for fixed effects
MASEM, and we will indicate how these methods handle
missing correlation coefficients.

Existingmethods andmissing correlation
coefficients

All MASEM-methods essentially consist of two stages. In
Stage 1, correlation coefficients are pooled across the stud-
ies. In Stage 2, a structural model is fitted to explain the
pooled correlations. The existing methods for MASEM
differ mostly in how the correlations are pooled (Stage 1).
Fitting the model at Stage 2 is not well developed for any
of the methods, except for TSSEM.

Univariate MASEM. Although the univariate methods
are not recommended in MASEM (Cheung, 2015a; Che-
ung & Chan, 2005; Cheung & Hafdahl, 2016; Jak, 2015),
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most researchers still use univariate methods to pool the
correlations (Rosopa & Kim, 2016; Sheng et al., 2016).
In univariate MASEM, standard univariate meta-analytic
techniques are used to pool correlation coefficients (Field,
2001; Hafdahl & Williams, 2009; Hedges & Olkin, 1985;
Schmidt & Hunter, 2015). In the Hunter and Schmidt
approach, which we will use in this study, the pooled cor-
relation coefficient between the ith and jth variable across
the K studies that reported the correlation coefficient is
estimated by

r̄i j =
∑K

k=1 nkri jk∑K
k=1 nk

, (1)

where nk is the sample size in a specific study k. Because
the correlation coefficients are pooled across studies one
by one, using only the information from studies that
provided the respective correlation coefficient, miss-
ing correlation coefficients do not immediately lead to
problems in Stage 1 of the univariate methods.

Univariate pooling of correlation coefficientswill result
in a pooled correlation matrix in which possibly each
correlation is based on a different subset of studies. This
pooled correlation matrix is then used as the observed
matrix in an SEM-analysis, where the hypothesized struc-
tural model is fitted on the pooled correlations. Although
missing correlation coefficients do not seem to be a prob-
lem in constructing a pooled correlation matrix, several
other issues limit the usefulness of the approach. First,
within-study dependency across correlation coefficients
is not taken into account (as opposed to multivariate
methods such as GLS and TSSEM). Second, using dif-
ferent information for each correlation coefficient may
lead to nonpositive definite correlation matrices, which
cannot be analyzed with structural equation modeling.
Third, by using the pooled correlation matrix as the
observed matrix, differences in precision of the estimated
pooled correlations are ignored. Fourth, as each corre-
lation may be based on a different number of studies,
it is unclear which sample size should be used at Stage
2. Fifth, the univariate approach incorrectly treats the
pooled correlation matrix as if it was a covariance matrix.
Our simulation study will show whether the advantage
of handling missing correlation coefficients outweighs
these five disadvantages of the univariate approach. In
addition, we will evaluate whether evaluating the corre-
lation matrix using the appropriate diagonal constraints,
ensuring that the implied variances are one during esti-
mation, will lead to better performance of the univariate
approach.

Generalized least squares (GLS). Generalized least
squares (GLS, Becker, 1992, 1995) is a multivariate

approach to pool correlation matrices for MASEM. With
GLS, the vector of pooled correlation coefficients across
studies, ρ, is estimated using

ρ̂ = (XTV−1X)−1XTV−1r, (2)

where V is a block diagonal matrix with the sampling
covariance matrix of the observed correlation coefficients
for each study on its diagonal, X is a selection matrix to
select which correlation coefficients are present in each
study, and r is a vector with the observed correlations
in all the studies. For a detailed and accessible descrip-
tion of GLS, readers may refer to Card (2015). With GLS,
the correlations are pooled on the coefficient level, which
means that missing coefficients in studies are no problem
at Stage 1. GLS takes dependency across correlation coef-
ficients into account by weighting the studies’ correlations
by the inverse sampling variances and covariances in V.
In a study on the effect of missing variables in MASEM,
GLS was found to consistently outperform the univariate
methods (Furlow & Beretvas, 2005).

GLS is rarely applied by researchers, because there is no
dedicated software to conduct the analyses. Researchers
will have to write their own programs to implement
the approach. An example of a Stage 1 analysis with
GLS using R is provided by Jak (2015). At Stage 2, the
original GLS approach (Becker, 2009) can only evalu-
ate path models, and not factor models. A practical,
and statistically correct, approach is to fit the struc-
tural model on the pooled correlation matrix while using
the asymptotic covariance matrix of the pooled corre-
lations as weights in WLS-estimation (Cheung & Chan,
2005), similar to TSSEM, which is explained in the next
paragraph.

The original TSSEM (OV approach). Fixed-effects two-
stage structural equation modeling (Cheung & Chan,
2005) uses structural equation modeling at both stages of
MASEM. The pooled correlation matrix is estimated by
fitting amultigroupmodel in which each study represents
a group, and the correlations are constrained to be equal
across groups. For each study kwith q of the p variables of
interest, the multigroup model is

�k = Dk (Xk PFXT
k )Dk , (3)

where PF is the p by p common population correlation
matrix, �k is the q by qmodel implied covariance matrix
for study k,Dk is a q by q diagonal matrix for study k that
accounts for scaling differences (or standard deviations)
across the studies, and Xk is a q by p selection matrix to
select out missing variables for study k.

Missing variables do not impose any problem in
TSSEM, as they are filtered out by Xk, but missing cor-
relations on the coefficient level may lead to nonpositive
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definite observed correlation matrices, which cannot be
analyzed in SEM. As a consequence, for each missing
correlation, one of the two variables associated with the
correlation has to be treated as missing. For example, if
a study included three variables, but r32 is not reported,
while r21 and r31 are, either Variable 2 or Variable 3 is
deleted to make the observed matrix positive definite
again. This leads to a loss of information and counts as
the biggest disadvantage of fixed-effects TSSEM.

On the other hand, TSSEM does not have the limi-
tations of the univariate approach, and the user friendly
R-package “metaSEM” can be used to fit the models
(Cheung, 2015b). In TSSEM, the structural model is
fitted to the pooled correlation matrix using weighted
least-square estimation with the asymptotic covariance
matrix from Stage 1 as the weight matrix W (Cheung
& Chan, 2005). These weights ensure that correlation
coefficients that are based on more information (on more
studies and/or studies with larger sample sizes) get more
weight in the estimation of the Stage 2 parameters. The
employed WLS-discrepancy function is

FWLS = [r − ρ(θ)]T WF [r − ρ(θ)], (4)

where r is a vector with the lower triangular elements of
the estimated pooled correlation matrix PF from Stage 1,
ρ(θ) is a vector with the lower triangular elements of the
model implied correlation matrix, and W is the weight
matrix containing the inverse of the asymptotic covari-
ance matrix of the elements in r. In order to analyze a
correlation matrix correctly, the constraint diag(�(θ)) =
diag(I) on themodel implied covariance matrix is applied
during the estimation (Cheung, 2015a). Minimizing FWLS
leads to estimates of the model parameters in θ and a χ2

measure of fit.
Using WLS ensures that differences in precision of the

pooled correlation coefficients are taken into account, that
all types of structural models can be estimated, and that
one does not have to specify a specific sample size at Stage
2. The only limitation of TSSEM is therefore that missing
correlation coefficients lead to the removal of even more
data. This is a problem that we will solve by proposing an
adapted version of TSSEM.

The adapted TSSEM (OC approach). In this study, we
propose and evaluate an adapted version of TSSEM that
can account for missing correlation coefficients. To dif-
ferentiate between the original and the new method, we
will refer to the original TSSEM as the omitted variable
approach (OV approach) and to the new approach as
the omitted correlation approach (OC approach). In the
OC approach, similar to the OV approach, a multigroup
model with equality constraints on the correlation coef-
ficients is used to estimate the pooled correlation matrix.

Now, instead of deleting a variable for which a correlation
coefficient is missing, for each missing correlation coeffi-
cient, we plug in an arbitrary value and free the respective
equality constraint on the parameter in the specific study
where the coefficient is missing. This leads to an addi-
tional estimated parameter for each missing (and conse-
quently plugged in) correlation coefficient. The missing
correlations may be replaced by some arbitrary value, as
long as the observed correlationmatrix is still positive def-
inite, and as long as it does not lead to computational dif-
ficulties. In our experience, replacing the missing corre-
lations with the average correlation across studies works
well (while replacing it with zero leads to estimation prob-
lems in some cases). Because one additional parameter
is estimated for each missing correlation, the plugged-in
coefficient is not expected to affect the estimates of the
pooled correlations or the test statistic. In order to illus-
trate the OC approach, we take as an example three stud-
ies with the correlations between three variables. Study 1
contains all correlations, Study 2 is missing the correla-
tion between Variable 1 and Variable 3, Study 3 is miss-
ing the correlation between Variable 2 and Variable 3, and
Study 4 is missing Variable 1. Note that the OV approach
can handle missing variables such as Variable 1 in Study
4. However, the missing coefficients in Studies 2 and 3
create problems in the OV approach. The new adaptation
involves accounting for missing coefficients for included
variables, such as r31 in Study 2, r32 in Study 3.

[
r21,1
r31,1 r32,1

] ⎡
⎣ r21,2

− r32,2

⎤
⎦

Study 1 Study 2[
r21,3
r31,3 −

] [−
− r32,4

]

Study 3 Study 4

SEM-programs need positive definite observed matri-
ces, which is not the case for Study 2 and Study 3. There-
fore, we plug in a value for the missing coefficients (we
propose to plug in the average correlation across the other
studies). The adjusted observed correlation matrices are
then [

r21,1
r31,1 r32,1

] [
r21,2
r̄31 r32,2

]

Study 1 Study 2[
r21,3
r31,3 r̄32

] [−
− r32,4

]

Study 3 Study 4

In the multigroup model, equality constraints are
applied on the same correlation coefficient across studies,
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except for the plugged-in values for the missing coeffi-
cients. The correlation parameters to be estimated are

[
ρ21
ρ31 ρ32

] [
ρ21
ρ31,2 ρ32

] [
ρ21
ρ31 ρ32,3

] [−
− ρ32

]

Study 1 Study 2 Study 3 Study 4

Consequently, we ignore the study-specific estimates
(ρ31,2 and ρ32,3), and combine the equality constrained
correlations into the pooled correlation matrix. In this
example, the pooled correlationmatrix is equal to the esti-
mated correlation matrix in Study 1, because Study 1 had
no missing coefficients.

A similar approach has been proposed by Jak, Oort,
Roorda, & Koomen (2013), but was only evaluated
using simulated data generated in one condition with an
extreme amount of missing correlations. Our study is the
first to evaluate the OC approach under a variety of real-
istic conditions.

Comparisonwithmissing data approaches in
primary research

The difference between the OV and the OC approach is
that the OC approach uses all available information, and
the OV approach deletes (part of the) variables for which
one or more correlation coefficients are missing. The OV
approach accounts for missing variables, but not for miss-
ing coefficients for included variables. That is, in the
example above, the OV approach could only be applied
if Variable 1 or Variable 3 would be deleted from Study
2, and if Variable 2 or Variable 3 would be deleted from
Study 3. Conceptually, one could compare the way miss-
ing correlations are treated in theOV approachwith using
listwise deletion for missing data in primary research.
Similarly, the way missing correlations are accounted for
in the OC approach and GLS could be compared with
using full information maximum likelihood, because all
information in the data is being used in the model esti-
mation. The way missingness is treated in the univari-
ate approach could be viewed as similar to using pair-
wise deletion. As full information maximum likelihood
is found to be the optimal method to deal with missing
data in primary research (Enders & Bandalos, 2001), we
expect that the same holds in MASEM. We do not con-
sider usingmultiple imputation as away to dealwithmiss-
ing data in this article, because applications of multiple
imputation with MASEM are unknown to us, it is not
easy to apply, and the results are asymptotically similar to
FIML (Savalei & Rhemtulla, 2012). However, see Furlow
& Beretvas (2010) for a simulation study using multiple
imputation in MASEM.

Evaluating heterogeneity in correlationmatrices

In this study, we only focus on fixed-effectsmodels. Fixed-
effects models assume homogeneity of correlation matri-
ces across studies. That is, it is assumed that all studies
share the same population correlations, and that all dif-
ferences between studies are the results of sampling fluc-
tuations. As the results will not be valid if homogeneity
does not hold (Hafdahl, 2008; Hedges & Vevea, 1998), it
is necessary to test for homogeneity of correlation matri-
ces before interpreting any results or proceeding to Stage
2 of the analysis. Each MASEM-method has its specific
test on homogeneity.Wewill evaluate the effect ofmissing
correlations on these different methods in the simulation
study.

Simulation study

Methods under evaluation

In the simulation study, we compare the performance
of the univariate analysis, GLS, the OV approach, and
the OC approach across conditions. As the univariate
approach, we pool the raw correlation coefficients (as
opposed to z-transformed correlations). Earlier simula-
tions showed similar results for using raw and trans-
formed correlation coefficients in MASEM (Cheung &
Chan, 2005). With GLS, we estimate the sampling vari-
ances and covariances using the average correlations, as
recommended by Becker (2009) and Hafdahl (2007).

At Stage 1, we use two different tests on the homogene-
ity of correlation matrices with the univariate approach.
UNIsum evaluates the sum of the Q-statistics across
coefficients against a chi-square distribution with degrees
of freedom equal to the number of observed correla-
tion coefficients minus the number of estimated pooled
correlation coefficients (Cheung & Chan, 2009). UNI1df
tests whether at least one of the univariate Q-statistics is
significant with 1 degree of freedom and a Bonferroni cor-
rected alpha of 0.05 divided by the number of correlation
coefficients (Cheung, 2000). In the GLS approach, homo-
geneity is tested using the Q-test based on GLS (Becker,
2009). In the OC and OV approach, homogeneity is
evaluated using the chi-square difference test on models
with and without equality constraints on the correlations
coefficients across studies (Cheung & Chan, 2005).

At Stage 2, the structural model is fitted to the pooled
correlation matrix. In order to obtain correct standard
errors and test-statistics when analyzing a correlation (as
opposed to a covariance)matrix, one needs to apply a con-
straint on the diagonal of the model implied covariance
matrix during estimation (Bentler & Lee, 1983; Cudeck,
1989). This constraint ensures that the model implied
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variances do not deviate from one during estimation. In
this simulation study, we apply this constraint for all mul-
tivariate methods. In applications of MASEM with the
univariate approach, this constraint is often not applied.
Therefore, at Stage 2, we use two versions of the univariate
approach.We useUNI1 to refer to the naive approach that
takes the pooled correlation matrix and fits the model to
it as if it is a covariancematrix usingmaximum likelihood
estimation. UNI2 then refers to analyzing the correlation
matrix correctly using the diagonal constraint. We will
use the harmonic mean across correlation coefficients
as the overall sample size for the univariate methods.
For the multivariate methods, we use the weight matrix
from Stage 1, so we do not need to choose a sample
size.

Substudies and evaluation criteria

Study 1—Fitting the correct model. In study 1, we fit the
correct models to the data. The goal of the first study is to
evaluate the false positive rates of the homogeneity tests at
Stage 1 and the false positive rates of the chi-square tests
of model fit at Stage 2. In addition, we evaluate the relative
bias in parameter estimates and standard errors across
methods and conditions as well as the size of the standard
errors. False positive rates are evaluated by calculating
the proportion of significant test results within the con-
verged replications. The relative percentage of estimation
bias for a specific model parameter β is calculated as
100* (β̂ - β) / β . We regard estimation bias less than 5%
as acceptable (Hoogland & Boomsma, 1998). Relative
percentage bias of the standard error of a specific param-
eter β is calculated as 100 * (S̄E(β̂ ) − SD(β̂ ))/SD(β̂ ),
where S̄E(β̂ ) is the average standard error of β̂ across
replications, and SD(β̂ ) is the standard deviation of the
parameter estimate across replications. We consider the
standard errors unbiased if the relative bias is smaller
than 10% (Hoogland & Boomsma, 1998). The efficiency
of the estimation methods is evaluated by computing
the average standard error S̄E(β̂ ) across replications.

The most efficient method will have the smallest average
standard errors.

Study 2—Fitting a misspecified model. The goal of the
second study is to evaluate the power (true positive rates)
to reject homogeneity at Stage 1 and the power to reject
a misspecified model at Stage 2 (under homogeneity). We
calculate the power as the proportion of replications in
which the null-hypothesis of homogeneity (Stage 1) or
exact model fit (Stage 2) is correctly rejected.

Conditions

The population model under which we generated data
was a path model on five variables that were originally
evaluated by Cooke, Dahdah, Norman, & French (2016),
and reanalyzed usingMASEMbyCheung&Hong (2017).
The meta-analytic path model was used to predict smok-
ing behavior with the theory of planned behavior (Ajzen,
1991). Figure 1 shows the pathmodel with the population
parameter values that were used to generate the data. We
evaluated the performance of MASEM-methods in con-
ditions varying in the number of studies, the sample sizes
within studies, the amount of missing correlation coeffi-
cients, and the amount of heterogeneity.

Number of studies. The example data set on which we
base our population values included 33 studies. Reviews
of applied MASEM studies indicated that a number
of around 30 studies is typical in MASEM (Cheung &
Chan, 2005; Furlow & Beretvas, 2005). Earlier simulation
studies on MASEM evaluated conditions with 25, 50, and
100 studies (Furlow & Beretvas, 2010), 5, 10, 20, 50, 100,
or 200 studies (Hafdahl, 2007), 10 and 30 studies (Furlow
& Beretvas, 2005), and 5, 10, and 15 studies (Cheung &
Chan, 2005). As fixed effects models are typically appro-
priate in groups of studies that all target a very specific
population, we evaluate conditions with k = 10 and k =
30 studies. Furlow & Beretvas (2005) defined 10 studies
as small and 30 studies as moderate.

Figure . Population model with parameter values.
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Sample sizes within studies. The example data set
had a median sample size of 170. Other simulation
research where sample size was random within a study
considered conditions with averages of 100, 300, and
1000 (Cheung, 2009), 50 and 100 (Furlow & Beretvas,
2010), and 5, 10, 20, 50, 100, and 200 (Hafdahl, 2007).
Furlow & Beretvas (2005) used a fixed sample size of
100 for each study, and Cheung & Chan (2005) used
fixed sample sizes of 50, 100, 200, 500, or 1000 for each
study. We evaluated conditions where the average sample
size within a study was 100 or 300, and we varied the
specific sample sizes within each study using the pos-
itively skewed distribution as used in Hafdahl (2007).
Specifically, the sample size n in each study k, equals
nk = (n̄/2) [(χ2

k - 3)/
√
6] + n̄, rounded to the nearest inte-

ger, where n̄ is 100 or 300 depending on the condition,
and χ2

k is a random draw from a χ2(3)-distribution. This
leads to expected distributions of nk with a mean of n̄,
variance of (n̄/2)2 and skewness of 1.63.

Missing variables. We did not vary the pattern and
amount of missing variables. Instead, we fixed the pattern
of missing variables to the one observed in the data set of
Cooke. This means that all studies included the first three
variables (V1–V3), 4 of the 30 studies missed V4, and 13
studies missed V5. In conditions with 10 studies, V4 and
V5 were missing in, respectively, 1 and 4 of the studies.

Missing correlation coefficients. We evaluated condi-
tions with correlation coefficients missing at random.
There are no earlier simulation studies investigating the
effect ofmissing correlations at the coefficient level, except
for a very small one (Jak et al., 2013). Becausemissing cor-
relation coefficientsmostly occurwhen researchers do not
report the correlation between two independent or two
dependent variables, we selected the correlation between
V1 and V2 and the correlation between V4 and V5 to be
missing in part of the studies. We evaluated conditions
where 0, 20, 50, or 70 % of these two correlation coeffi-
cients weremissing. AsV4 andV5were alreadymissing at
the variable level in some studies, we removed correlation
coefficients in 20, 50, or 70 % of the studies that included
these variables. Note that even in the 0% missing coeffi-
cients level, there are missing correlations in studies due
to missing variables.

Heterogeneity. To investigate the power to reject homo-
geneity at Stage 1, we generated data from two different
populations. In population 1, the population correlation
matrix was identical to Study 1. In population 2, all popu-
lation correlations were 0.10 higher than in population 1.
In the small heterogeneity condition, 20% of the studies
were drawn from population 2 (and 80% from population

1), while in the large heterogeneity condition, 50% of the
studies were drawn from population 2 (and 50% from
population 1). This is similar to the conditions evaluated
by Cheung & Chan (2005).

Misspecification at Stage 2. In order to evaluate the
power to reject an incorrect model at Stage 2 (under
homogeneity), we generated data from a model with a
small (β = 0.10) effect of V3 on V5. At Stage 2, we fitted
a path model without this direct effect. We obtained the
expected power on the basis of the noncentrality param-
eter by fitting the path model without the direct effect to
the population data (Saris & Satorra, 1993). The expected
power in the conditions without missing correlation coef-
ficients was 0.58 and 0.98 for conditions with k = 10 and
n = 100 or n = 300, respectively, and 0.97 and 1.00
for conditions with k = 30 and n = 100 or n = 300,
respectively.

Number of conditions and replications. Varying the fac-
tors number of studies (k = 10 or k = 30), average sam-
ple size within a study (n̄ = 100 or n̄ = 300) and amount
of missing correlations (zero, small, medium, or large)
yielded 16 conditions in Study 1. In Study 2, we ana-
lyzed the same conditions with small and large hetero-
geneity at Stage 1, leading to 32 conditions. We generated
1000 meta-analytic data sets for each condition using the
mvrnorm function in the MASS-package in R (R Core
Team, 2016).

Study 1—Fitting the correct model

Expected differences between univariate approaches and
multivariate approaches. Based on earlier simulation
research (Cheung & Chan, 2005; Hafdahl, 2007), we
expect similar performance across the methods when
testing homogeneity at Stage 1. At Stage 2, it is expected
that the univariate methods will reject the correct model
too often, while the multivariate methods have false pos-
itive rates around the nominal alpha level.

The univariate approaches use the harmonic mean
across correlation coefficients as the sample size at Stage
2. For the correlation between V4 and V5, the harmonic
mean is larger than the actual sample size, while for the
other correlations, the harmonic mean is smaller than
the actual sample size. Therefore, we expect that with
the univariate approaches, the standard errors for β54
will be underestimated, while the standard errors of the
other direct effects will be overestimated. We expect the
differences to be the largest for β54, because the largest
missingness at the variable and correlation level is in the
correlation between V4 and V5.
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Expected differences between the two univariate
approaches. The two univariate approaches that we
evaluate only differ in whether the correlation matrix
is analyzed correctly or not. UNI1 fits the model to the
pooled correlation matrix as if it is a covariance matrix
using maximum likelihood estimation. UNI2 analyzes
the correlation matrix correctly using the diagonal con-
straint. We expect that UNI2 will perform better than
UNI1, although both are expected to have biased standard
errors due to missing data.

Expected differences between OC approach and OV
approach. When there are no missing correlation coef-
ficients, the OC and OV approach are equivalent. With
increasing missing correlation coefficients, we expect that
the standard errors in the OC approach will be smaller
than those from the OV approach, and that the differ-
ences increase with increasing amount ofmissing correla-
tions. Based on themodel and conditions underwhich the
population correlations were generated, we expect that
the differences between the OC and OV approach will be
largest forβ41 andβ42. The reason is that these two param-
eters will be directly affected if V1, V2, or V4 is deleted in
the OV approach, while β43 and β54 are only affected if V4
is deleted. Moreover, there is already missingness on the
variable level in V4 and V5, so the induced missingness
(which is based on a percentage) is less in absolute value
for these variables.

Expected differences between GLS and TSSEM. The
GLS approach handles missing correlation coefficients
at the coefficient-level, and is therefore expected to per-
form similarly to the OC-approach across different miss-
ing data conditions.

Results

All results from all conditions of both simulation stud-
ies are provided in the supplementary material. In the
following section we will show a selection of the results
graphically.

Nonconvergence. Nonconvergence only occurs for the
TSSEMmethods, as for the other methods the parameter
estimates were not obtained iteratively. At Stage 1, con-
vergence rates were not systematically different between
the OC and OV approach or across different missing data
conditions, and varied between 92% and 100% for k= 10,
and between 97.2% and 100% for k = 30. We disregarded
nonconverged solutions, and only fitted the Stage 2model
for the converged solutions. At Stage 2, all models con-
verged in all conditions for all methods. The full results
can be found in Table 2 in the supplementary material.

False positive rates. With 1000 data sets and a nominal
α of 0.05, one would expect 95% of the results to lie within
the interval [0.036–0.064].
Stage 1 (Testing homogeneity of correlations). False
positive rates at Stage 1 are provided in Table 3 in the
supplementary material. The false positive rates of the
univariate methods were very small, and never exceeded
0.02. With the multivariate methods, the Stage 1 model
was generally overrejected, especially when the within
sample size was 100. With a within-study sample size
of 300, the false positive rates were closer to 0.05 for
all multivariate methods, but still higher than expected
(ranging from 0.050 to 0.076). GLS showed somewhat
better false positive rates than the OV and OC approach.
False positive rates did not vary with missingness for any
of the methods.
Stage 2 (Fitting the correct pathmodel).A table with the
false positive rates of the chi-square test when fitting the
correct model at Stage 2 is provided in Table 4 in the sup-
plementary material. As expected, the false positive rates
of the univariate approaches are larger than the nominal
alpha level, ranging from 0.111 to 0.169. The false positive
rates of the multivariate approaches are within the limits
of the prediction interval in all conditions, except for two
cases in the k = 10 n = 100 condition where the false
positive rate was 0.066 for both the OC andOV approach.

Bias in parameter estimates at Stage 2. Relative bias in
the parameter estimates was very small (less than 2%) for
all methods in all conditions, and is therefore not further
discussed. The detailed results can be found in Tables 6–9
in the supplementary material.

Bias in standard errors at Stage 2. The standard errors
of the multivariate methods were all relatively unbiased
(with a maximum of 6% underestimation), and did not
differ across the multivariate methods. As expected, the
univariate methods showed increasingly biased standard
errors with increasing amount of missing correlations.
The standard errors were overestimated with univariate
methods for those direct effects for which the harmonic
mean was smaller than the actual sample size (for β43,
β42, and β41), and underestimated for direct effects where
the harmonic mean was larger than the actual sample
size (β54). The tables and figures of the bias in SE’s for all
regression coefficients can be found in the supplementary
material (Tables 10–13 and Figures 10–13). Figures 2
and 3 show the percentages of bias in the standard errors
for the parameters β42 and β54. With large amounts of
missingness in conditions with k = 30 and n = 300, the
univariate methods lead to standard errors that were up
to 34% too large for β42 and β43, and up to 43% too small
for β54. As expected, UNI1 performed worse than UNI2.
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Figure . Percentages of bias in standard error of β42.

Bias in standard errors at Stage 2 for alternative uni-
variate methods. The results showed increasing bias in
standard errors with increasing missingness for the uni-
variate methods. As one of the reviewers suggested, this
effect may partially be remedied by using the variances
associated with the pooled correlation coefficients in a
diagonal asymptotic covariance matrix in Stage 2. More-
over, we evaluated the univariate approach with sample

size weighted coefficients (Schmidt & Hunter, 2015), and
not with inverse variance weighted coefficients (Hedges
& Olkin, 1985). In order to evaluate whether these alter-
native univariate approaches would perform better than
UNI1 and UNI2 from the previous analyses, we ran addi-
tional simulations with inverse variance weighted meth-
ods. The results showed that the “naive” inverse variance
weighted univariate method performed similarly to the

Figure . Percentages of bias in standard error of β54.
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Figure . Mean standard error of β42 for OC, OV, and GLS.

UNI1 and UNI2 in the original simulation study. Using
a diagonal asymptotic covariance matrix in the estima-
tion of model parameters in Stage 2 lead to biased stan-
dard errors for both the sample size and inverse variance
weightedmethods, but as expected, the bias was not influ-
enced by the amount of missing correlations. The best
(but still not acceptable) performing univariate method
was the inverse variance weighted method, with around
10 % relative bias in β42 and −25 % relative bias in β54 in
all conditions. The full results can be found in Figures 14
and 15 in the supplementary material.

Size of standard errors at Stage 2. We will not evaluate
the size of the standard errors of the univariate methods
as they were found to be biased in all conditions. Looking
at the size of the standard errors of β42 for themultivariate
approaches (Figure 4), we see that with missing correla-
tions, the standard errors of the OC approach and GLS
approach are equivalent, and slightly better (smaller) than
those of the OV approach. With increasing missingness,
the standard errors of OV increase rapidly, while with
OC and GLS the size of the standard errors is quite stable.
This is as expected because increases in the number of
missing correlations imply the deletion of more data with
the OV approach than with the OC or GLS approach.
The same pattern is found for the other parameters (see
Figures 16–19 in the supplementary material).

Study 2—Fitting amisspecifiedmodel

Expectations about statistical power

We expect that across methods, the power increases with
the number of studies and sample size, and that the power

decreases with increased missingness. The OC approach
and GLS approach are expected to have higher power
than the OV approach. The multivariate approaches
are expected to have higher power than the univariate
approaches. At Stage 1, more heterogeneity is expected to
lead to larger power rates.

Results

Nonconvergence. Nonconvergence occurred more
often with heterogenous correlation matrices than under
homogeneity (as evaluated in Study 1). At Stage 1, con-
vergence rates were between 89.6% and 100% for small
heterogeneity, and between 85.6% and 100% for large
heterogeneity. Similar to Study 1, we disregarded non-
converged solutions. At Stage 2, all models converged in
all conditions for all methods.

Power to reject heterogeneity at Stage 1. With small het-
erogeneity, empirical power rates were only acceptable
(over 0.80) for the multivariate methods in the condition
with 30 studies with an average sample size of 300 (see
Figure 20 in the supplementary material). The univari-
ate approaches showed insufficient power in all conditions
with small heterogeneity. With large heterogeneity (see
Figure 21 in the supplementary material), the multivari-
ate methods had power rates over 0.80 in all conditions
with average sample sizes of 300. The power rates of the
OC method are consistently highest, followed by the OV
approach and GLS. The univariate approaches showed
acceptable power rates only in conditions with 30 stud-
ies and sample sizes of 300. Missingness does not seem
to affect the power to reject homogeneity for any of the
methods.
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Power to reject a misspecified model at Stage 2. Figure
22 in the supplementary material shows the empiri-
cal power rates of rejecting a model with an omitted
direct effect of size 0.10 of V3 on V5. The results in
the conditions without missing correlations show the
expected power levels for the multivariate methods. With
30 studies, all methods rejected the incorrect model
in almost all cases. With 10 studies and an average
within-study sample size of 300, all methods showed
empirical power rates over 0.80, and only the OV
approach shows a small decline in power with increasing
missingness. In the conditions with 10 studies with an
average sample size of 100, none of the methods had
acceptable power rates. The univariate methods and the
OV approach are strongly affected by missingness. The
OC approach and GLS show a fairly stable power rate just
below 0.60.

Discussion

Summary

Table 1 provides an overview of the main results from
the simulation studies. Overall, both univariate methods
performed poorly. Specifically, the standard errors were
extremely biased at Stage 2 analysis. The bias could be
either positive or negative depending on the patterns
of the missing correlations. Moreover, the statistical
power was lower than for the multivariate methods,
and false positive rates at Stage 2 were inflated. The
more correlation coefficients were missing, the poorer
the performance of the univariate methods. From the
multivariate methods, the OC approach performed best,
although differences with GLS were minimal (the OC
approach showed slightly better power rates at Stage 1).
The OV approach showed similar performance as the
OC approach and GLS in conditions with no missing

correlation coefficients. However, with increasing miss-
ingness, the OV approach showed decreasing power
levels and increasing standard errors at Stage 2. The
results from the OC approach and GLS were quite stable
across missing data conditions. Based on these results, we
advise researchers to use multivariate approaches instead
of univariate approaches for MASEM, and to apply the
OC approach or GLS in the presence of many missing
correlation coefficients.

Limitations and future research

This study is the first simulation study that evaluated
the influence of missing correlation coefficients on the
performance of MASEM methods under several realistic
scenarios. However, we did not evaluate all possible
conditions. For example, we only evaluated conditions
where correlation coefficients were missing at random.
We think this is a realistic situation, because not reporting
correlation coefficients often happens because of the role
of the variables in the analyses. For example, the corre-
lation between two exogenous variables in a path model,
or the correlation between two outcome variables in two
separate regression analyses is often not reported. In such
cases, the missingness of a coefficient is not related to the
size of the coefficient, only to the role of the variables in
the model. However, additional simulation research is
needed to evaluate the performance of MASEM-methods
in situations where missingness of a correlation coeffi-
cients is related to the size of the correlation. For example,
if correlations are not reported because they were not
strong enough to be significantly different from zero,
applying MASEM will overestimate the strength of the
relations between those variables.

This article focused on the evaluation of fixed-effects
MASEMmethods, because these are themodels for which

Table . Summary of the results of the simulation study for the four MASEMmethods under evaluation.

Stage  Stage 

Outcome
Method

False
positives Power

False
Positives Power∗

Parameter
bias SE bias SE efficiency

Univariate Too small Overall bad Too large Decreases with
missingness

Unbiased Biased —

OV approach Too large Acceptable only with
N= 

Good Decreases with
missingness

Unbiased Unbiased SE increases with
missingness

OC approach Too large Acceptable only with
N= 

Good Stable Unbiased Unbiased Stable (similar to GLS)

GLS Too large Acceptable only with
N= 

Good Stable Unbiased Unbiased Stable (similar to OC)

∗Power was acceptable for all methods in all conditions except for the k= , n=  conditions.
Shaded cells indicate that the method outperformed other methods for the criterion in the respective column.
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missing correlation coefficients are problematic. Models
for random-effects MASEM generally account for miss-
ing correlation coefficients at the coefficient level, simi-
lar to fixed-effects GLS. As we found that GLS and the
OC approach performed quite stable across missing data
conditions, we expect their performance to be stable for
random-effects models as well. Future simulation studies
may verify these expectations.

Implementation

As the OC approach was found to perform best overall, it
is important that this method is available to researchers.
We wrote an R-function, Stage1.OC(), that can be used
to apply Stage 1 of TSSEM using the OC approach. This
function needs two arguments, a list with the correlation
matrix for each study, and a vectorwith the sample sizes in
the studies. In the supplementarymaterial, we provide the
link to download the function, and we provide an anno-
tated example script using the OC approach on one of the
generated data sets.

Conclusion

This study is the first to evaluate the performance of
fixed-effects MASEM methods under different levels
of missing correlation coefficients. We found that the
univariate methods performed very poorly, while the
multivariate methods performed well overall. Based on
our results, we recommend using the OC approach or
GLS when the amount of missing correlation coefficients
is substantial, as these methods were most stable in
conditions with increasing missing data. The univariate
methods should not be used for MASEM.
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