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ABSTRACT
This article explains in detail the state space specification and estimation of first and higher-order
autoregressive moving-average models in continuous time (CARMA) in an extended structural equa-
tion modeling (SEM) context for N = 1 as well as N > 1. To illustrate the approach, simulations will be
presented in which a single panel model (T = 41 time points) is estimated for a sample of N = 1,000
individuals as well as for samples of N = 100 and N = 50 individuals, followed by estimating 100 sep-
arate models for each of the one-hundred N = 1 cases in the N = 100 sample. Furthermore, we will
demonstrate how to test the difference between the full panel model and eachN= 1 model bymeans
of a subject-group-reproducibility test. Finally, the proposed analyses will be applied in an empirical
example, inwhich the relationships betweenmood atwork andmood at homeare studied in a sample
of N = 55 women. All analyses are carried out by ctsem, an R-package for continuous time modeling,
interfacing to OpenMx.

Introduction

Time series analysis, made popular by Box and Jenkins
(1970), has greatly benefited from the introduction of
the state space approach. The state space approach stems
from control engineering (Kalman, 1960; Zadeh & Des-
oer, 1963) and distinguishes the state of a system, which is
a vector of latent variables driven by the system dynamics
in the state transition equation, from the observations.
It turns out that any Box-Jenkins autoregressive and
moving-average (ARMA) model as well as any extended
ARMAX model, in which exogenous variables are added
to the model, can be represented as a state space model
(Aoki, 1987; Caines, 1988; Deistler, 1985; Harvey, 1981;
Ljung, 1985). However, the state space representation
is much more flexible, allowing one to formulate many
time series models that cannot easily be handled by the
Box-Jenkins ARMA approach, and makes important
state space modeling techniques such as the Kalman
filter and smoother accessible for time series analysis
(Durbin & Koopman, 2001). These advantages are well-
known in control theory but less so in the behavioral and
related sciences. Therefore, the ARMA model in con-
tinuous time presented in this article, called a CARMA
model (Brockwell, 2004; Singer, 1991; Tómasson, 2011;
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Tsai & Chan, 2000), will be formulated as a state space
model.

The same argument that in discrete time leads from
a simple autoregressive model to a more complicated
ARMA representation, namely that the past is influenc-
ing the present in this more complicated fashion, applies
for the choice of a basic or more complicated CARMA
model. The realization thatmost real-life processes evolve
in continuous time is one reason to model from the start
in continuous time and to consider discrete-time ARMA
processes to be “embedded” in true underlying CARMA
processes. Chow, Lu, Zhu, and Sherwood (2016), Oud
and Delsing (2010), Oud and Jansen (2000), Voelkle,
Oud, Davidov, and Schmidt (2012) discussed a series
of problems connected with discrete time models. Two
main problems are the difficulty of fitting discrete time
models to irregularly spaced longitudinal data and the
dependence of discrete time results on the time interval
selected. Continuous time analysis is needed to make the
different and, possibly, contradictory effects in discrete
time independent of the interval. The definition of the
time scale and thus of the interval may of course depend
on the research context. In educational research, a year
may be restricted to the days that education is given and
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in medical research bone age may sometimes be more
appropriate than chronological age. Situations in which
the system follows a truly discrete-time pattern are rare. A
truly discrete time system functions at and only at the time
points it is observed and so the length of the time interval
between observations becomes irrelevant. Most psycho-
logical processes, however, evolve continuously over time,
even if unobserved. The discrete time systems considered
in this article are so-called sampled continuous time sys-
tems, sampled at the discrete observation time points but
functioning in continuous time (Zadeh & Desoer, 1963).

Structural equation modeling (SEM) was introduced
by Jöreskog with two seminal papers (Jöreskog, 1973,
1977) along with LISREL (Jöreskog & Sörbom, 1976), the
first published SEM program. The strong relationships
between the state space model (SSM) and SEM have
been highlighted by MacCallum and Ashby (1986), Oud
(1978), Oud, van den Bercken, and Essers (1990), and
more recently by Chow, Ho, Hamaker, and Dolan (2010).
Both consist of a measurement part and an explanatory
part and in both the explanatory part specifies the rela-
tionships between latent variables. While in the state
space approach the latent explanatory part is a recursive
dynamic model, in SEM it is a latent structural equation
model. The debate about which of the two, the state space
model (SSM) or SEM, is more general (Chow et al., 2010),
should be considered in connection with the associated
estimation procedures: filtering for SSM, which is a recur-
sive stepwise procedure from time point to time point,
and an overall procedure applied on the entire time series
at once for SEM.While for long time series, filtering tech-
niques are computationally faster, the possibility to allow
arbitrary measurement error structures, spanning the
entire time range of the model is an important advantage
of SEM (Voelkle, Oud, von Oertzen, & Lindenberger,
2012). Especially in behavioral science latent variables
are typically measured by multiple measures which in
addition to a common part may be composed of a specific
part. SEM’s overall procedure allows the specific parts
to correlate across time independently from and thus
not confounding the relationships between the latent
variables in the structural equation.

The CARMA time series analysis procedure to be
presented in this article is based on SEM continuous-
time state-space modeling, developed for panel data by
Oud and Jansen (2000) and Voelkle and Oud (2013) and
implemented in the R-package ctsem (Driver, Oud, &
Voelkle, 2017). The package ctsem interfaces to OpenMx
(Boker et al., 2011; Neale et al., 2016), an open source
extended structural equation modeling framework. The
kernel of the procedure is a multivariate stochastic dif-
ferential equation coupled with a measurement model,
for which maximum likelihood estimation is performed

via the so-called exact discrete model EDM (Bergstrom,
1984). The EDM uses the exact solution of the stochastic
differential equation to link the underlying continuous
time parameters exactly to the parameters of the discrete-
time model describing the data. Despite the nonlinear
connection between discrete and continuous time, the
stochastic differential equation on which the procedure
and ctsem are based, is linear. This differs from nonlinear
SSMs that several authors in the behavioral and related
sciences have turned attention to recently (e.g., Chow et
al., 2016; King, Nguyen, & Ionides, 2016; Molenaar &
Newell, 2003; Singer, 2011).

As pointed out above and emphasized by Chow et al.
(2010), different estimation procedures have traditionally
been associated with SSM and SEM. In addition, SSM
is typically applied in a N = 1 context and SEM on
large N data. Chow et al. (2010) also note that different
traditions in handling the initial conditions (means and
variances-covariances) might lead to different analysis
results from SSM and SEM. In a series of simulations,
Oud (2007) and Oud and Singer (2008) compared the
results of SEM and filtering in maximum likelihood
estimation of various continuous time models. It turned
out that in case of identical models, being appropriate for
both procedures, the parameter estimates as well as the
associated standard errors are equal. Making use of the
extended SEM framework underlying OpenMx, which
offers Kalman filtering (Neale et al., 2016), ctsem now
combines and fully integrates the SEM and Kalman filter
procedures. By the keywords “mxRAM” and “Kalman”
one can easily switch between the SEM and Kalman filter
procedure (for N = 1 “Kalman” is default but this may
be overridden by “mxRam”). Under both procedures N
may range from large to 1 and initial conditions may be
handled by extra parameters as in the SEM tradition or by
the stationarity assumption (with regard to means and/or
variances-covariances) using the keyword “stationary” as
in the SSM tradition. Computing time depends on these
choices but most importantly on the number of observa-
tion time points T. For small T and small or no variation
in observation intervals, SEM (“mxRAM”) takes less
computing time than the Kalman filter. SEM will take
increasingly more computing time for larger T. For the
analysis of the classic example of the Wolfer sunspot data
(N = 1, T = 167) by a CARMA(2,1) model (Phadke &
Wu, 1974) ctsem took 1.44 seconds with the Kalman filter
and 224.8 seconds with SEM. The longer computing time
for larger T is related to the fact that the size of most of
the matrices increases by a multiple of the increase in
T.

So far there is no comprehensive treatment of how to
specify CARMA models by means of SEM and ctsem.
Thus, the aim of the present article is, first, to discuss the
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state space specification of CARMA models in an SEM
context and to show how the analysis of CARMAmodels
of increasing order in simulated data sets is performed
by ctsem. Second, we will examine the correctness and
the quality of the proposed estimation procedure for
the specified models and for samples of N = 1000, N =
100, N = 50, and N = 1. A large sample of N = 1000
is used, because examining the correctness of deriva-
tions and procedure with regard to CARMA requires
parameter estimates to hardly differ from the simulated
values; N = 100 and N = 50 are used to evaluate the
decrease in quality under more common conditions;
N = 1 is used, because this is a novel situation. Contrary
to some suggestions in the literature, there is no doubt
that SEMmay be applied in situations ofN< T, including
N = 1 (Hamaker, Dolan, & Molenaar, 2003; Singer, 2010;
Voelkle et al., 2012). Except for a small simulation study
in Singer (2012), the SEM continuous time procedure
has not yet been applied to N = 1, in particular not on
empirical data and by ctsem. The analysis is repeated
over the 100 separate models for each of the 100 N = 1
cases in the sample of N = 100. While the different
traditions of N = 1 and large N in, respectively, SSM
and SEM, made it difficult to compare a group model
to a model estimated in an individual subject, this is
easily done by the SEM procedure implemented in ctsem.
We will, third, demonstrate how to test the difference
between the full panel model and the N = 1 model by
means of a subject-group-reproducibility test. Fourth,
the proposed analyses will be applied in an empirical
example in which the relationships between mood at
work and mood at home are analyzed in a sample of N =
55 women. The example illustrates many features of the
continuous-time procedure, its applicability onN= 1, the
subject-group-reproducibility, and the extreme diversity
of the observation intervals entertained by the subjects.1

Continuous timemodel

Basic model
In discrete time, the multivariate autoregressive moving-
averagemodel ARMA(p,q) with p themaximum lag of the
dependent variables vector yt and q the maximum lag of
the error components vector et reads for amodel with, for
example, p = 2 and q = 1

yt = Ft,t−1yt−1 + Ft,t−2yt−2 + Gtet + Gt,t−1et−1. (1)

The autoregressive part with F-matrices specifies the
lagged effects of the dependent variables, while the
moving-average part with G-matrices handles the

 ctsem input and output code for the simulations and the empirical example
can be found on the first author’s website http://www.socsci.ru.nl/∼hano/

incoming errors and lagged errors. So, an ARMA model
applies two different mechanisms to let past values influ-
ence present values in a time series. By the F-matrices
observed past values, in Equation (1) yt−1, yt−2 with
successive lags 1, 2, directly influence the present value
yt , while by the G-matrices the successive unobserved
error components, et , et−1 in Equation (1), are used
to predict yt . The autoregressive F-matrices need not
be diagonal nor even symmetric, allowing reciprocal
effects with different values in both directions to be
specified. The errors in vectors et , et−1 are assumed to
be independently standard-normally distributed (having
covariance matrices I) with the matrices Gt ,Gt,t−1 being
lower-triangular. Because et , et−1 have covariance matri-
ces I, the moving-average effects, Gtet , Gt,t−1et−1, get
covariance matrices Qt = GtG′

t
2, Qt,t−1 = Gt,t−1G′

t,t−1,
which may be nondiagonal and with arbitrary variances
on the diagonal. Specifying moving-average effects is no
less general than the specification of covariance matrices.
Any covariance matrix Q can be written as Q = GG′

in terms of a lower-triangular matrix (Cholesky factor)
G. In addition, estimating G instead of directly Q has
the advantage of avoiding possible negative variance
estimates showing up in the direct estimate of Q.

The moving-average part Gtet + Gt,t−1et−1 in
Equation (1) may equivalently be written as Gt,t−1et−1 +
Gt,t−2et−2 with the time indices shifted backward in
time from t and t − 1 to t − 1 and t − 2. Replacing the
instantaneous error component Gtet by the lagged one
Gt,t−1et−1(and Gt,t−1et−1 by Gt,t−2et−2) could be consid-
ered more appropriate, if the errors are taken to stand for
the unknown causal influences on the system, which need
some time to operate and to affect the system. The fact
that the two unobserved consecutive error components
get other names but retain their previous values will result
in an observationally equivalent (equally fitting) system.
Although equivalent, the existence of different repre-
sentations in discrete time (forward or instantaneous
representation in terms of t and t − 1 and backward or
lagging representation in terms of t − 1 and t − 2) is
nevertheless unsatisfactory. The forward representation
puts everything that happens in between t and t − 1
forward in time at t , the backward representation puts
the same information backward in time at t − 1. From a
causal standpoint, though, the backward representation
is no less problematic than the forward representation,
since it is anticipating effects that in true time will happen
only later.

The ambiguous representation in discrete time of the
behavior between t and t − 1 in an ARMA(p, q) model
disappears in the analogous continuous-time CARMA

 In this article the prime sign ʹ indicates transpose of a matrix.
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(p, q) model, which reads for p = 2 and q = 1

d2y(t )
dt2

= F0y(t ) + F1
dy(t )
dt

+ G0
dW(t )
dt

+ G1
d2W(t )
dt2

.

(2)
Writing y(t ) instead of yt emphasizes the development
of y across continuous time. The role of successive lags
in discrete time is taken over by successive derivatives
in continuous time. The causally unsatisfactory instan-
taneous and lagging representations meet, so to speak,
in the derivatives, which instead of using a discrete time
interval �t = t − (t − 1) = 1, let the time interval go to
zero: �t → 0. Derivative dy(t )/dt , for example, informs
about the value of the difference yt − yt−1 per time inter-
val unit, as the time interval �t goes to zero (gradient
at t).

The error process in continuous time is the famous
Wiener process3 W(t ) or random walk through con-
tinuous time. Its main defining properties are the con-
ditions of independently and normally distributed incre-
ments, �W(t ) = W(t ) − W(t − �t ), having mean 0
and covariance matrix �tI. This means that the incre-
ments with arbitrary �t are for �t = 1 standard-
normally distributed as assumed for et , et−1 in discrete
time. Likewise, the role of lower-triangular G0,G1 in (2)
is analogous to the role of Gt ,Gt,t−1 in discrete time.
Derivative dW(t )/dt (white noise) does not exist in the
classical sense but can be defined in the generalized func-
tion sense and also integral

∫ t
t0 GdW(t ) can be defined rig-

orously (Kuo, 2006, pp. 104–105 and pp. 260–261). Inte-
grals are needed to go back again from the continuous
time specification in Equation (2) to the observed values
in discrete time, which will be the topic of the next sub-
section. The next subsection will show inmore detail how
discrete time and continuous time equations such as (1)
and (2) become connected as �t → 0.

Equation (2) is sometimes written as

F0y(t ) + F1
dy(t )
dt

+ F2
d2y(t )
dt2

= G0
dW(t )
dt

+ G1
d2W(t )
dt2

.

(3)
with F2 = −I and opposite signs for G0,G1, making it
clear that the CARMA(2,1) model has F2 as the highest
degree matrix in the autoregressive part and G1 as the
highest degree in the moving-average part.

We will now show how the CARMA(2,1) model in
Equation (2) and the general CARMA(p, q) model can be
formulated as special cases of the continuous-time state
spacemodel. The continuous-time state spacemodel con-
sists of two equations: A latent dynamic equation (4) with
so-called drift matrix A and diffusion matrix G, and a

 In this article, we follow commonpractice towrite theWiener process by cap-
ital letterW, although it is a vector whose size should be inferred from the
context.

measurement equation (5) with loading matrix C and
measurement error vector v(t ):

dx(t )
dt

= Ax(t ) + G
dW(t )
dt

, (4)

y(t ) = Cx(t ) + v(t ). (5)

Many dynamic phenomena in continuous time physics
are described by drift and diffusion. In meteorology, for
example, the movement of clouds from one place to
another is called drift, shrinkage or expansion on the same
place is called diffusion. In general, the variables in state
vector x(t ) are assumed to be latent and only indirectly
measured by the observed variables in y(t ) with mea-
surement errors in v(t ). The measurement error vector
v(t ) is assumed independent of x(t ) and normally dis-
tributed: v(t ) ∼ N(0,R). For the initial state x(t0) we
assume x(t0) ∼ N(μx(t0), �x(t0)). Often, but not necessar-
ily, it is assumed E[x(t0)] = μx(t0) = 0. The latter would
imply that E[x(t )] = E[x(t0)] = 0 and, in case all eigen-
values ofA have negative real part, the mean trajectory of
the model would then have 0 as stable equilibrium state.

In state space form, the observed second-order model
CARMA(2,1) in Equation (2) gets a state vector x(t ) =
[x1(t )′x2(t )′]′, which is two times the size of the observed
vector y(t ). The first part x1(t ) is not directly related to the
observed variables and thus belongs to the latent part of
the state space model. This special case of the state space
model equates the second part to the observed vector:
y(t ) = x2(t ). Equation (2) then follows from state space
model (4)-(5) by specification

A =
[
0 F0
I F1

]
,G =

[
G0 0
G1 0

]
,C = [

0 I
]
, v(t ) = 0.

(6)
Applying (6) we find first

dx1(t )
dt

= F0x2(t ) + G0
dW(t )
dt

, (7)

dx2(t )
dt

= x1(t ) + F1x2(t ) + G1
dW(t )
dt

⇒
d2x2(t )
dt2

= dx1(t )
dt

+ F1
dx2(t )
dt

+ G1
d2W(t )
dt2

. (8)

Substituting (7) into the implication in (8) gives

d2x2(t )
dt2

= F0x2(t ) + F1
dx2(t )
dt

+ G0
dW(t )
dt

+ G1
d2W(t )
dt2

,

(9)
which for y(t ) = x2(t ) leads to the CARMA(2,1) model
in (2).

The specification in the previous paragraph can be gen-
eralized to find the CARMA(p,q) model as follows in state
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space form, where r = max(p, q + 1).

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 F0

I 0
. . . 0 F1

0 I
. . . 0 F2

...
...

. . .
...

...
0 0 . . . I Fr−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G0 0 · · · 0 0

G1 0
. . . 0 0

G2 0
. . . 0 0

...
...

. . .
...

...
Gr−1 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

C = [
0 0 0 · · · I

]
, v(t ) = 0. (10)

G leads to diffusion covariance matrix Q = GG′, which
has Cholesky factor based covariance matrices GiGi

′ on
the diagonal and in case q > 0 off-diagonal matrices
GiG j

′ (i, j = 0, 1, . . ., r − 1). Instead of (10) which is
based on Singer (1992b), one often finds the alternative
state space form (11) (see e.g. Singer, 1992b; Tómasson,
2011; Tsai &Chan, 2000). Here themoving averagematri-
cesG1,G2, . . .,Gr−1 are rewritten asGi = HiG0 in terms
of corresponding matrices H1,H2, ...,Hr−1, specified in
the measurement part of the state space model, and G0.
For two reasons we prefer (10) in the case of CARMA(p,q)
models with q > 0. Application of (11) requires thematri-
ces Hi and F j to commute, which in practice restricts
the applicability to the univariate case. In addition, using
the measurement part for the moving average specifica-
tion would make it difficult to specify at the same time
measurement parameters. For CARMA(p,0) models (all
Hi = 0) we prefer (11), because each state variable in state
vector x(t ) is easily interpretable as the derivative of the
previous one. The interpretation of the state variables in
(7)-(8) is less simple.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0

0 0 I
. . . 0

...
...

...
. . .

...
0 0 0 . . . I
F0 F1 F2 · · · Fr−1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0

0 0 0
. . . 0

...
...

...
. . .

...
0 0 0 . . . 0
0 0 0 · · · G0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

C = [
I H1 H2 · · · Hr−1

]
, v(t ) = 0. (11)

The fact that the general CARMA(p,q) model fits
seamlessly into the state space model, means that all
continuous-time time series problems in modeling and
estimation can be handled by state space form (4)-(5).
The state space approach reformulates higher-ordermod-
els (p > 1 and/or q > 0) as a first-order model (with r
components) and this will be applied in the sequel.

Connecting discrete and continuous timemodel in the
EDM
The EDM combines the discrete time and continuous
time model and does so in an exact way. It is by the
EDM that the exact procedure in this article differentiates
from many approximate procedures found in the litera-
ture (e.g., Gasimova et al., 2014; Steele & Ferrer, 2011a,
2011b), which try to avoid the nonlinearity in the con-
nection the EDMmakes between discrete and continuous
time. In an extensive simulation study (Oud, 2007), the
exact procedure was compared to a well-known example
of those approximate procedures and found to give con-
siderably lower biases and rootmean squared error values
for the continuous time parameter estimates.

Our aim is to showwhat the exact connection looks like
between the general continuous-time state space model
and its discrete-time counterpart, derived from it. The
first-order models ARMA(1,0) and CARMA(1,0) in state
space form differ from the general discrete and con-
tinuous time state-space model only in a simpler mea-
surement equation. So, having made the exact connec-
tions between the general state space models and thus
between ARMA(1,0) and CARMA(1,0) and knowing that
each CARMA(p,q) model can be written as a special case
of the general state space model, the exact connections
between CARMA(p,q) and ARMA(p,q), where the latter
is derived from the former, follow. Next we consider the
question of making an exact connection between an arbi-
trary ARMA(p∗,q∗) model and a CARMA(p,q) model,
where the degrees p∗ and p as well as q∗ and q need not
be equal.

Comparing discrete time equation (1) to the general
discrete-time state space model in (12)-(13) one observes
that the latter becomes immediately the ARMA(1,0)
model for yt = xt .

xt = A�txt−�t + G�tet−�t, (12)
yt = Cxt + vt . (13)

Inserting arbitrary lag �t instead of fixed lag �t = 1
enables us to put discrete timemodels with different inter-
vals (e.g., years and months) on the same time scale and
to connect them to the common underlying continuous
time model for �t → 0.
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State equation (12) can be put in the equivalent differ-
ence quotient form

�xt
�t

= A∗�txt−�t + G�t
et−�t

�t
for

A∗�t = (A�t − I)/�t implyingA�t = I + A∗�t�t.
(14)

So we have the discrete-time state space model in two
forms: difference quotient form (14) and solution form
(12). Equation (12) is called the solution of (14), because
it describes the actual state transition across time in
accordance with (14) and is so said to satisfy the dif-
ference quotient equation. Note that analogously the
general continuous-time state space model (4)-(5) imme-
diately accommodates the special CARMA(1,0) model
for y(t ) = x(t ) and can be put in two forms: stochastic
differential equation (4) and its solution (15) (Arnold,
1974; Singer, 1990):

x(t ) = eA�tx(t − �t ) +
∫ t

t−�t
eA(t−s)GdW(s). (15)

In the exact discrete model EDM the connection between
discrete and continuous time is made by means of the
solutions, which in both cases describe the actual tran-
sition from the previous state at t − �t to the next state
at t . The EDM thus combines both models and connects
them exactly by the equalities:

A�t = eA�t and Q�t =
∫ t

t−�t
eA(t−s)QeA

′(t−s)ds. (16)

While discrete time autoregression matrix A�t and con-
tinuous time drift matrix A are connected via the highly
nonlinear matrix exponential (Moler & Van Loan, 2003),
the errors are indirectly connected by their covariance
matrices Q�t = G�tG′

�t and Q = GG′. In estimating,
after finding the drift matrix A on the basis of A�t , next
on the basis of G�t the diffusion matrix G is found.

Let us illustrate the connection between CARMA(1,0)
and ARMA(1,0) by an example that will be used later
on in the simulations. If A = [−1.0 0.2

0.3 −1.5

]
, the exact

connection in the EDM is for �t = 1 made by A�t=1 =
eA�t = eA = [

0.377 0.058
0.088 0.231

]
. A in the differential equa-

tion may be compared to A∗�t=1 = (eA�t − I)/�t =
eA − I = [−0.623 0.058

0.088 −0.769

]
in the difference equation for

�t = 1. For�t = 0.1 we getA∗�t=0.1 = (eA×0.1 − I)/0.1
= [−0.949 0.177

0.264 −1.390

]
which is much closer to A and

for �t = 0.001 A∗�t=0.001 = (eA×0.001 − I)/0.001 =[−0.999 0.200
0.300 −1.499

]
becomes virtually equal to A.

Making an exact connection between anARMA(p∗,q∗)
model and a model CARMA(p,q) such that the ARMA

process {yt; t = 0, t = �t, t = 2�t, . . .} generated
by ARMA(p∗,q∗) is a subset of the CARMA process
{y(t ); t ≥ 0} generated byCARMA(p,q) is called “embed-
ding” in the literature. The degrees p∗ and q∗ of the
embedded model and p and q of the embedding model
need not be equal. Embeddability is a much-debated
issue. Embedding is not always possible and need not
be unique. Embedding is clearly possible for the case of
ARMA(1,0) model yt = A�tyt−�t + G�tet−�t derived
from CARMA(1,0) model dy(t )

dt = Ay(t ) + G dW(t )
dt with

A�t = eA�t ,Q�t = ∫ t
t−�t e

A(t−s)QeA′(t−s)ds, Q�t =
G�tG′

�t , Q = GG′ as shown above. The same is true
for the higher-order ARMA(p,q) model, derived from
CARMA(p,q). However, in general it is nontrivial to
prove embeddability and to find the parameters of the
CARMA(p,q) model embedding an ARMA(p∗,q∗) pro-
cess. For example, not all ARMA(1,0) processes have
a CARMA(1,0) process in which it can be embedded.
A well-known example is the simple univariate process
yt = a�t yt−�t + g�t et−�t with −1 < a�t < 0, because
there does not exist any a for which a�t = ea�t can be
negative. However, Chan and Tong (1987) showed that
for this ARMA(1,0) process with −1 < a�t < 0 a higher
order CARMA(2,1) process can be found, in which it can
be embedded.

Also embeddability need not be unique. Different
CARMA models may embed one and the same ARMA
model. A classic example is “aliasing” in the case of
matrices A with complex conjugate eigenvalue pairs
λ1,2 = α ± βi with i the imaginary unit (Hamerle, Nagl,
& Singer, 1991; Phillips, 1973). Such complex eigen-
value pairs imply processes with oscillatory movements.
Adding ±k2π/�t to β leads for arbitrary integer k to
a different A with a different oscillation frequency but
does not change A�t = eA�t and so may lead to the same
ARMA model. The consequence is that the CARMA
model cannot uniquely be determined (identified) by
the ARMA model and the process generated by it. For-
tunately, the number of aliases in general is limited in
the sense that there exists only a finite number of aliases
that lead for the same ARMA model to a real G and so
to a positive definite Q in the CARMA model (Hansen
& Sargent, 1983). The size of the finite set additionally
depends on the observation interval �t , a smaller �t
leading to less aliases. The number of aliases may also
be limited by sampling the observations in the discrete
time process at unequal intervals (Oud & Jansen, 2000;
Tómasson, 2015; Voelkle & Oud, 2013).

An important point with regard to the state spacemod-
eling technique of time series is the latent character of
the state. Even in the case of an observed ARMA(p,q) or
CARMA(p,q) model of such low dimension as p = 2, we
have seen that part of the state is not directly connected
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to the data. This especially has consequences for the ini-
tial time point. Suppose for the ARMA(2,0)model in state
space form (17)-(18)[

x1,t−�t

x1,t

]
=

[
0 I

Ft,t−2�t Ft,t−�t

] [
x1,t−2�t

x1,t−�t

]
+

[
0 0

0 Gt,t−�t

]
et−�t ,

xt = A�t xt−�t + G�t et−�t

(17)

yt = [
0 I

]
xt , (18)

the initial time point, where the initial data are located,
is t0 = t − �t . It means that there are no data directly
or indirectly connected to (the lagged) part of xt−�t . The
initial parameters related to this part can nevertheless be
estimated but become highly dependent on the model
structure and the uncertainty will be reflected in high
standard errors. It does not help to start the model at later
time point t0 + �t , as this would result in data loss, since
the 0 in (18) simply eliminates the lagged part of xt−�t
without any connection to the data. Similar remarks apply
to the initial derivative dx1(t )/dt⎡
⎢⎣

dx1(t )
dt

d2x1(t )
dt2

⎤
⎥⎦ =

[
0 I
F0 F1

] ⎡
⎣ x1(t )
dx1(t )
dt

⎤
⎦ +

[
0 0
0 G0

]
dW(t )
dt

,

dx(t )
dt

= A x(t ) + G
dW(t )
dt

,

(19)

y(t ) = [
I 0

]
x(t ), (20)

in (19)-(20), which is not directly connected to the data
and cannot be computed at the initial time point. Again,
the related initial parameters can be estimated in prin-
ciple. It is important to realize, however, that dependent
on the model structure, the number of time points ana-
lyzed and the length of the observation intervals, these
initial parameter estimates can become extremely unreli-
able. In a simulation study of a CARMA(2,0) model with
oscillating movements, Oud and Singer (2008) found in
the case of long interval lengths extremely large standard
errors for the estimates related to the badly measured ini-
tial dx1(t )/dt . This lack of data and relative unreliability
of estimates is the price one has to pay for choosing higher
order ARMA(p, q) and CARMA(p, q) models.

Extended continuous timemodel
The extended continuous-time state space model reads

dx(t )
dt

= Ax(t ) + Bu(t ) + γ + G
dW(t )
dt

, (21)

yti = Cx(ti) + Du(ti) + κ + vti . (22)

Technical details of the extended model are discussed by
Hamerle, Singer, and Nagl (1993). In comparison to the
basic model in (4)-(5), the extended model exhibits one

minor notational change and two major additions. The
minor change is in the measurement equation and is only
meant to emphasize the discrete time character of the data
at the discrete time points ti(i = 0, . . . ,T − 1) with x(ti)
and u(ti) sampling the continuous time vectors x(t ) and
u(t ) at the observation time points. One major addition
are the effects B and D of fixed exogenous variables in
the vector u(t ). The other is the addition of random sub-
ject effect vectors γ and κ to the equations. While the
(statistically) fixed variables in u(t ) may change across
time (time-varying exogenous variables), the subject spe-
cific effects γ and κ with possibly a different value for
each subject in the sample are assumed to be constant
across time, but normally distributed random variables:
γ ∼ N(0, �γ), κ ∼N(0, �κ). To distinguish them from
the changing states the constant random effects in γ are
called traits. Because trait vectorγ ismodeled to influence
x(t ) continuously, before as well as after t0, �x(t0),γ, the
covariance matrix between initial state and traits, cannot
in general be assumed zero. The additions in state equa-
tion (21) lead to the following extended solution:

x(t ) = eA(t−t0)x(t0) +
∫ t

t0
eA(t−s)Bu(s)ds

+A−1[eA(t−t0) − I]γ +
∫ t

t0
eA(t−s)GdW(s).

(23)

Exogenous variables
We have seen in the case of stability, defined as all eigen-
values of A having negative real part, that basic model
(4)-(5) has in its mean trajectory 0 as stable equilibrium
state. ExogenousBu(t ) andDu(t ) accommodate nonzero
constant as well as nonconstant mean trajectories E[x(t )]
and E[y(t )] even in the case of stability. By far the most
popular exogenous input function is the unit function,
e(s) = 1 for all s over the interval, with the effect be
called intercept and integrating over interval [t0, t ) into∫ t
t0 e

A(t−s)bee(s)ds = A−1[eA(t−t0) − I]be. In the measure-
ment equation the effect of the unit variable inD is called
measurement intercept or origin and allowsmeasurement
instruments to have scales with different starting points in
addition to the different units specified in C.

Useful in describing sudden changes in the environ-
ment is the intervention function, a step function that
takes on a certain value a until a specific time point t ′ and
changes to value b at that time point until the end of the
interval: i(s) = a for all s < t ′, i(s) = b for all s ≥ t ′. An
effective way of handling the step or piecewise constant
function is a two-step procedure, in which Equation (24)
is applied twice. First with u(t0) containing the step func-
tion value of the first step before t ′ and next with u(t0)
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containing the step function value of the second step.

x(t ) = eA(t−t0)x(t0) + A−1[eA(t−t0) − I]Bu(t0)

+A−1[eA(t−t0) − I]γ +
∫ t

t0
eA(t−s)GdW(s).

(24)

In the second step the result x(t ) of the first step is inserted
as x(t0). The relatively simple solution equation (24) that
will be used in the sequel, hasmuchmore general applica-
bility, though, than just for step functions. It can be used
to approximate any exogenous behavior function in steps
and approximate its effect arbitrarily closely by oversam-
pling (dividing the observation interval in smaller inter-
vals) and choosing the oversampling intervals sufficiently
small.4

The handling of exogenous variables takes another
twist, when it is decided to endogenize them. The prob-
lem with oversampling is that it is often not known, what
the exogenous behavior function looks like in between
observations. By endogenizing exogenous variables they
are taken out of the exogenous vector u(t ) in (21), added
as extra variables to the state vector x(t ) in dx(t )/dt and
in the same way as the other state variables related to their
past values by means of drift matrix A and made subject
to continuous-time error by means of diffusion matrix
G. Advantages of endogenizing are its non-approximate
nature and the fact that the new state variables may not
only be modeled to influence the other state variables but
also to be reciprocally influenced by them.

In addition to analyzing differences between time
points within subjects, exogenous variables also allow for
analyzing differences between subjects in case of anN > 1
sample. Suppose the first element of u(t ) is the unit vari-
able, corresponding inBwith first column be, and the sec-
ond element is a dummy variable differentiating boys and
girls (boys 0 at all time points and girls 1 at all time points)
and corresponding to second column bd . Supposing all
remaining variables have equal values, themean or expec-
tation E[x(t )] of girls over the interval [t0, t )will then dif-
fer by the amount of A−1[eA(t−t0) − I]bd from the one of
boys. This amount will be zero for t − t0 = 0, but relat-
ing the dummy variable at initial time point t0 in a simple
regression also to the state variables at initial time point
t0 allows to distinguish different initial means E[x(t0)]
for boys and girls. Thus, the same dummy variable at t0
impacts both the state variables at t0 and according to the

 A better approximation than a step function is given by a piecewise linear
or polygonal approximation (Oud & Jansen, ; Singer, a). Then
we write u(t ) in () as u(t ) = u(t0) + (t − t0)b(t0,t] and () becomes:
x(t ) = eA(t−t0 )x(t0) + A−1[eA(t−t0 ) − I]Bu(t0) + {A−2[eA(t−t0 ) − I] −
A−1(t − t0)}Bb(t0,t] + A−1[eA(t−t0 ) − I]γ+ ∫ t

t0 e
A(t−s)GdW(s). (A)

state space model over the interval t − t0 the state vari-
ables at the next observation time point.

Traits
Although, as we have just seen, there is some flexibility
in the mean or expected trajectory, because subjects in
different groups can have different mean trajectories, it
would nevertheless be a strange implication of the model,
if a subject’s expected current and future behavior is
totally dependent on the group of which he or she is mod-
eled to be a member. It should be noted that the expected
trajectories are not only interesting per se, but they also
play a crucial role in the estimated latent sample trajectory
of a subject, defined as the conditional mean E[x(t )|y],
where y is the total data vector of the subject (Kalman
smoother), or E[x(t )|y[t0, t]], where y[t0, t] is all data up
to and including t (Kalman filter). In a model without
traits, the subject regresses towards (in the case of a sta-
ble model) or egresses from (in an unstable model) the
mean trajectory of its group. The consequences are par-
ticularly dramatic for predictions, because after enough
time is elapsed, the subject’s trajectory in a stable model
will be coinciding with its group trajectory.

From solution equation (23) it becomes clear, however,
that in the state-traitmodel each subject gets its ownmean
trajectory that differs from the group’s mean. After mov-
ing the initial time point of a stable model sufficiently far
into the past, t0 → −∞, the subject’s expected trajectory
is

E[x(t )|γ] =
∫ t

−∞
eA(t−s)Bu(s)ds − A−1γ, (25)

which keeps a subject specific distance −A−1γ
from the subject’s group mean trajectory E[x(t )] =∫ t
−∞ eA(t−s)Bu(s)ds. As a result the subject’s sample tra-
jectory regresses towards its own mean instead of its
group mean. A related advantage of the state-trait model
is that it clearly distinguishes trait variance (diagonals
of �γ), also called unobserved heterogeneity between
subjects, from stability. Because in a pure state model
(γ = 0) all subject-specific mean trajectories coincide
with the group mean trajectory, trait variance and stabil-
ity are confounded in the sense that an actually nonzero
trait variance leads to a less stable model (eigenvalues
of A having less negative real part) as a surrogate for
keeping the subject-specific mean trajectories apart. In
a state-trait model, however, stability is not hampered
by hidden heterogeneity. A similar distinction between
state and trait is made by Hamaker, Dolan, and Molenaar
(2005), although in their approach traits tend to replace
states (some individuals are more “traited” than others; p.
228), while in a state-trait-model both are specified.
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It should be noted that the impact of the fixed and ran-
dom effectsBu(t ) andγ in the state equation (21) is quite
different from that of Du(t ) and κ in the measurement
equation (22). The latter is a one-time snapshot event with
no consequences for the future. It just reads out in a spe-
cific way the current contents of the system’s state. How-
ever, the state equation is a dynamic equationwhere influ-
ences may have long lasting and cumulative future effects
that are spelled out by Equation (23) or (24). In particular,
the traitsγ differ fundamentally from the nondynamic or
“randommeasurement bias” κ, earlier proposed for panel
data by Goodrich and Caines (1979), Jones (1993), and
Shumway and Stoffer (2000).

Model estimation by SEM
As emphasized above, if the data are collected in discrete
time, we need the EDM to connect the continuous time
parameter matrices to the discrete time parameter matri-
ces describing the data. The continuous time model in
state space form contains eight parameter matrices that
are connected to the corresponding discrete time matri-
ces as shown in Table 1. In Table 1 ⊗ is the Kronecker
product and the row operator puts the elements of the Q
matrix row-wise in a column vector, whereas irow stands
for the inverse operation.

While there are only eight continuous time param-
eter matrices, there may be many more discrete time
parameter matrices. This is typically the case for the
dynamic matrices A�ti, j ,B�ti, j ,Q�ti, j . The observation
time points ti(i = 0, . . . ,T − 1) may differ for differ-
ent subjects j( j = 1, . . . ,N) but also the observation
intervals �ti, j = ti, j − ti−1, j (i = 1, . . . ,T − 1) between

Table . Relationships between the single set of eight continuous-
time parameter matrices/vector (left) and possibly many discrete-
timematrices (right) as specified in the EDM; initial parameter vec-
tor andmatrixμx(t0 )

and�x(t0 )
are equal between continuous and

discrete time; measurement parameter matrices C,D, and R are
chosen equal to realize measurement invariance.

Continuous time Discrete time

A A
�ti, j

= eA�ti, j

B B
�ti, j

= A◦
�ti, j

B

for A◦
�ti, j

= A−1(eA�ti, j − I)

Q = GG′ Q
�ti, j

= ∫ t
t−�ti, j

eA(t−s)QeA
′(t−s)ds

= irow[A−1
# (eA#�ti, j − I)rowQ]

for A#=A ⊗ I + I ⊗ A
C Cti, j

= C

D Dti, j
= D

R Rti, j
= R

μx(t0 )
= E[x(t0)] = Bt0

u(t0)
�x(t0 )

= E[(x(t0) − μx(t0 )
)(x(t0) − μx(t0 )

)′]

the observation time points. Different observation inter-
vals can lead to many different discrete time matrices
A�ti, j ,B�ti, j ,Q�ti, j but all based on the same underlying
continuous timematricesA,B,Q. Themost extreme case
is that none of the intervals is equal to any other interval,
a situation a traditional discrete time analysis would be
unable to cope with but is unproblematic in continuous
time analysis (Oud & Voelkle, 2014).

The initial parametermatricesμx(t0) and�x(t0) deserve
special attention. In a model with exogenous variables
the initial state mean may take different values in dif-
ferent groups defined by the exogenous variables. Since
the mean trajectories E[x(t )] may be deviating from each
other because of exogenous influences after t0, it is natu-
ral to let them already differ at t0 as a result of past influ-
ences. These differences are defined regression-wise by
E[x(t0)] = Bt0u(t0) with Bt0u(t0) absorbing all unknown
past influences. For example, if u(t0) consists of two vari-
ables, the unit variable (1 for all subjects) and a dummy
variable defining gender (0 for boys and 1 for girls), there
will be two means E[x(t0)], one for the boys and one for
the girls. Ifu(t0) contains only the unit-variable, the single
remaining vector bt0 inBt0 will become equal to the initial
mean: E[x(t0)] = bt0 . Because the instantaneous regres-
sion matrix Bt0 just describes means and differences as
a result of unknown effects from before t0, it should not
be confused with the dynamic B and as a so-called pre-
determined quantity in estimation not undergo any con-
straint from B. Similarly, �x(t0) should not undergo any
constraint from the continuous-time diffusion covariance
matrixQ.

A totally new situation for the initial parameters arises,
however, if we assume the system to be in equilibrium.
Equilibriummeans firstμx(t ) = μx(t0) as well as all exoge-
nous variables u(t ) = u(t0) being constant. Evidently, the
latter is the case, if the only exogenous variable is the
unit variable, reducing B to a vector of intercepts, but
also if it contains additionally gender or any other addi-
tional exogenous variables, differentiating subjects from
each other but constant in time. The assumption of equi-
librium,μx(t ) = μx(t0), –possibly but not necessarily a sta-
ble equilibrium– leads to equilibrium value

μx(t ) = μx(t0) = −A−1Buc, (26)

with uc the value of the constant exogenous variables
u(t ) = u(t0) = uc. If we assume the system to be station-
ary, additionally �x(t ) = �x(t0) is assumed to be in equi-
librium, leading to equilibrium value

�x(t ) = �x(t0) = irow[ − A−1
# rowQ] . (27)

The novelty of the stationarity assumption is that the ini-
tial parameters are totally defined in terms of the dynamic
parameters as is clearly seen from (26) and (27). It means,
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in fact, that the initial parameters disappear and the total
number of parameters to be estimated is considerably
reduced. Although attractive and present as an option in
ctsem (Driver et al., 2017), the stationarity assumption is
quite restrictive and can be unrealistic in practice.

To estimate the EDM as specified in Table 1 by SEMwe
put all variables andmatrices of the EDM into SEMmodel

η = Bη + ζ with � = E(ζζ′
), (28)

y = �η + ε with � = E(εε′). (29)

The SEM model consists of two equations, structural
equation (28) and measurement equation (29), in terms
of four vectors, η, y, ζ, ε, and four matrices, B, �, �, �.

From Equations (28)-(29) one easily derives the model
implied mean μ and covariance matrix � and next the
raw maximum likelihood equation (30) (see e.g., Bollen,
1989)

RML =
N∑
j=1

[mj log(2π)

+ log(|� j|) + (y j − μ j)
′�−1

j (y j − μ j)]. (30)

The subscript jmakes the SEM procedure extremely flex-
ible by allowing any number of subjects, includingN = 1,
and any missing value pattern for each of the subjects j, as
the number of variablesmj (m = pT ), the data vector y j,
the mean vector μ j and the covariance matrix � j may all
be subject specific. In case of missing values, the corre-
sponding rows and columns of the missing elements for
that subject j are simply deleted.

For obtaining themaximum likelihood estimates of the
EDM, it suffices to show how the SEM vectors η, ζ, y, ε
and matrices B, �, �, � include the variables and matri-
ces of the EDM (see Appendix A). In the vector of exoge-
nous variables u(t ) = [uc′ uv

′(t )]′ we distinguish two
parts: the part uc, consisting of the unit variable and, for
example, gender and other variables that differ between
subjects but are constant across time, and the part uv (t ),
that at least for one subject in the sample is varying across
time. Exogenous variables like weight and income, for
example, are to be put into uv (t ).

For the crucial property ofmeasurement invariance we
need to specify

Ct0, j = Ct1, j = · · · = CtT−1, j = C,

Dc,t0, j = Dc,t1, j = · · · = Dc,tT−1, j = Dc,

Dv,t0, j = Dv,t1, j = · · · = Dv,tT−1, j = Dv ,

Rt0, j = Rt1, j = · · · = RtT−1, j = R. (31)

Although measurement invariance is important for sub-
stantive reasons, statistically speaking, the assumption of
strict measurement invariance may be relaxed if neces-
sary. An additional advantage of the SEM approach is

the possibility of specifying measurement error covari-
ances across time in �cov. This can be done in ctsem
by the MANIFESTTRAIT option. Measurement instru-
ments often measure specific aspects, which they do not
have in commonwith other instruments and can be taken
care of by freeing corresponding elements in �cov. In
view of identification, however, one should be cautious in
choosing elements of �cov to be freed.

Simulations

The aim of this section is to evaluate the qual-
ity of continuous-time model estimation for increas-
ing complexity (first-order autoregressive, second-order
autoregressive, second-order autoregressive withmoving-
average parameters) and decreasing sample size (N =
1000, N = 100, N = 50 and N = 1). The N = 1 analysis
is repeated for each of the subjects in the N = 100 sam-
ple. In addition a test is described to test the difference
between subject and group results, which is applied on
each subject and group of remaining 99 subjects in the
N = 100 sample.

CARMA(,) model
The first model simulated is a simple bivariate
CARMA(1,0) model, whose true parameter values
are displayed in Table 2. The model consists of a 2 ×
2 drift matrix with auto-effects a11, a22 and reciprocal
cross-effects a12, a21, intercepts b1, b2, uncorrelated error
variances q11 = g211, q22 = g222 and initial parameters
μy1(t0), μy2(t0) and σ 2

y1(t0), σ
2
y2(t0), σy1(t0),y2(t0). In total, the

model has 13 parameters, for which data were randomly
generated forN= 1,000 subjects over T= 41 time points,
separated by 40 observation intervals of equal length
�t = 1. The analyses were carried out using ctsem. To
check the validity of the data generation procedure and
to serve as a reference point for the subsequent analyses,
we started by analyzing the total sample of N = 1,000.
As expected under these favorable circumstances, the
parameter estimates hardly differ from the true values
used in the data generation (see Table 2). The saturated
model contains 3485 parameters [41 × 2 = 82 means
and (82 × 83)/2 = 3403 (co)variances], the degrees
of freedom of the restrictive model with as few as 13
parameters is df = 3472. Despite the highly restrictive
character of the model and the huge sample, χ2= 3603.7
with df = 3472 does not lead to significance (p = 0.06).
Wemay conclude that the data generation and estimation
procedure has been successful. Please note that while
under these favorable circumstances the computation
of a saturated model is possible and useful for reasons
of comparison, for other models (e.g., time series with



46 J. H. L. OUD ET AL.

Table . True parameter values and estimation results of the simulation study of a CARMA(,) model.

N=  (x )a

True Parameter Value N= , N=  (se) N=  (se) est se
√
var(est)

a11 − . − . − .(.) − . (.) − . . .
a22 − . − . − . (.) − . ( .) − . . .
a12 . . . (.) . (.) . . .
a21 . . . (.) .(.) . . .
b1  . .(.) .(.) . . .
b2  . . (.) . (.) . . .
q11  . . (.) .(.) . . .
q22  . .(.) . (.) . . .
μy1(t0 )

 − . . (.) . (.) . . .

μy2(t0 )
 . − .(.) − . (.) − . . .

σ 2
y1(t0 )

 . .(.) . (.)

σ 2
y2(t0 )

 . . (.) . (.)

σy1(t0 ),y2(t0 )
 . − .(.) − . (.)

χ 2 .
df 
p .

aOne improper N=  solution because of out-of-bound standard errors was deleted.

N = 1) the computation of a saturated model may be
impossible or even undesirable.

Because a sample size of N = 1,000 is quite large
for many practical applications, we next concentrated on
samples ofN= 100 andN= 50. As apparent fromTable 2,
in these conditions the parameter estimates are not devi-
ating much more from the true parameter values than for
theN= 1,000 sample. For one parameter (σ 2

y1(t0)) theN=
100 estimate is even closer than the N = 1,000 one. Also,
in several cases theN= 50 sample is closer to the true val-
ues than the N = 100 sample. Whereas in the N = 1,000
case the restrictive continuous time model (H0) could be
tested bymeans of the likelihood ratio test against the sat-
urated model (H1), this was not possible in the N = 100
case, because the determinant of the huge 82 × 82 data
covariance matrix turned out to be virtually zero. By defi-
nition, computing the likelihood ratio test against the sat-
urated model is impossible for samples N ≤ 82 and the
more so for N = 1.

Next we took the same 100 subjects of the N = 100
sample but performed on each of them anN= 1 analysis.
A classic problem in N = 1 analysis is the estimate of
initial parameter values. Because for a single subject
there is only one datum available for each variable at the
initial time point, one could estimate the mean μyi(t0)
but not simultaneously also the variance σ 2

yi(t0), let alone
additionally the covariance σyi(t0),yi′ (t0)

with any other
variable yi′ (t0). Usually, however, the initial covariance
matrix is not of great concern in state space modeling
and rather arbitrarily set, for example, to �y(t0) = I. This
is justified by the fact that for a stable model and many
observation time points T, the effect of the initial value
chosen will be “forgotten” after a while and have minimal

effect on the other estimates (Jazwinski, 1970, p. 243).
We followed standard practice and fixed �y(t0) at I in the
N = 1 analyses of the simulation, while estimating only
the mean μy(t0), which for N = 1 is equal to the observed
data.

As apparent from Table 2, the average parameter esti-
mates est over the 100 N = 1 analyses are only a bit more
deviating from the true values than the estimates in the
N = 100 analysis. In one case (b1) est was closer to the
true value. Observe that, as expected, the mean μy(t0) in
the N = 100 analysis is equal to the average over the 100
N= 1 analyses. Not only the parameter estimates, but also
the average standard error estimates se show little or no
bias, when compared to the actual standard deviations of
the parameter estimates

√
var(est) in Table 2.

Subject-group-reproducibility test
Whereas it is not possible in N = 1 research to perform a
likelihood ratio test for the comparison of the estimated
model with the saturated model, it is possible to com-
pare and test the results on the individual level with the
results on the group level, in particular, to test whether
the models on the individual and group level coincide.
The total sample of N = 100 is divided into two subsam-
ples, one sample of N = 99 and one of N = 1, and a com-
bined multiple group analysis is carried out. By leaving
out each time one different subject from the total group
the test has some similarity with the jackknife. In one
analysis, the restricted model is estimated, in which all
parameters are constrained to be equal in both samples.
In a second analysis, parameters are estimated without
any restrictions across the two submodels, except on the
initial variances/covariances (H1). Because the combined
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Figure . Q-Qplot for the χ 2-values resulting from the subject-
group-reproducibility tests in which  subjects, generated from
the same model, were individually compared to each sample of
remaining subjects.

analysis has also the group sample available, we have the
opportunity to use equality constraints to take over the
variances/covariances estimates of the group sample to
the N = 1 sample. In both analyses the total −2ll (−2
times the log likelihood) is computed as the sum of the
two −2ll ′s in the two samples. The difference between
−2ll under H0 and −2ll under H1, that is (−2ll_H0) −
(−2ll_H1), is χ2-distributed with degrees of freedom df
equal to the number of additional equality constraints
under H0 (Voelkle et al., 2012). In case of the simula-
tionmodel in Table 2 there are 10 additional equality con-
straints under H0 and so df= 10. Rejecting H0 means that
the model of the tested individual cannot be equated with
the model of the remaining group of 99 individuals.

For the 100 individuals 100 subject-group-
reproducibility tests were performed. The 100 resulting
χ2-values are displayed in the Q-Q plot of Figure 1.
Because all 100 individual models were generated from
the same model, H0 is true for all individuals and the
empirically found χ2-distribution should coincide with
the theoretical χ2-distribution, that is, the values should
be located on the diagonal in Figure 1. As apparent from
Figure 1, the empirical χ2-values follow rather precisely
the diagonal and are only a little higher than theoretically
expected. In agreement with that, the 5% rejection region
becomes empirically 7% because of two subjects with a
χ2-value just above the critical value of 18.307.

The question may arise what happens and what it
means, if the subject-group-reproducibility test is not
passed. We distinguish two ideal-typical situations. In the
first situation, every subject differs differently from every
other subject in the N = 100 sample. In this situation, the

Figure . Q-Qplot for the χ 2-values resulting from the subject-
group-reproducibility tests on  subjects, of whom were gen-
erated by one model and  others by a different model.

χ2-values will be far above the diagonal in the Q-Q plot
and the implication is that a general model for all stud-
ied subjects does not hold. In the second situation the
vast majority of the group shares a model, while only a
small group of individuals share a different model. We
simulated the second situation by replacing 5 subjects in
the N = 100 sample by 5 subjects that were generated
by a model, in which 4 of the 13 parameters had true
values that differed substantially from the ones in Table
2: b1 = 10, b2 = 12, q11 = 4, q22 = 4 were changed for
those subjects into b1 = 5, b2 = 6, q11 = 1, q22 = 1. The
resulting Q-Q plot is shown in Figure 2. The figure first
shows that the χ2-values of the 5 deviating subjects are
clearly differentiated from those of the majority group.
The χ2-values of the majority group are not far above the
diagonal but more than in Figure 1. This is explained by
the fact that in the tests of the non-deviating subjects the
deviating subjects are part of the sample of 99 remaining
subjects.

CARMA(,) and CARMA(,) models
The second and third simulated models are a
CARMA(2,0) and CARMA(2,1) model as shown in
Table 3 and 4. The CARMA(2,0) model extends the
CARMA(1,0) model in Table 2 with the following
second-order effect matrix F1 (see Equation (2))

F1 =
[
f1.11 0
0 f1.22

]
=

[−2.4 0
0 −2.6

]
. (32)

In addition the following second-order MA effect
matrix G1 was added to the CARMA(2,1) model (see
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Table . True parameter values and estimation results of the simulation study of a CARMA(,) model.

N=  (x )a

True Parameter Value N= , N=  (se) N=  (se) est se
√
var(est)

f0,11 − . − . − . (.) − . (.) − . . .
f0,22 − . − . − . (.) − . (.) − . . .
f0,12 . . . (.) . (.) . . .
f0,21 . . . (.) . (.) . . .
f1,11 − . − . − .(.) − .(.) − . . .
f1,22 − . − . − . (.) − .(.) − . . .
b1  . . (.) . (.) . . .
b2  . . (.) . (.) . . .
q11  . . (.) . (.) . . .
q22  . . (.) . (.) . . .
μy1(t0 )

 − . . (.) . (.) . . .

μy2(t0 )
 − . .(.) . (.) . . .

σ 2
y1(t0 )

 . . (.) . (.)

σ 2
y2(t0 )

 . .(.) . (.)

σy1(t0 ),y2(t0 )
 − . . (.) . (.)

σx1(t0 )
 . .(.) .(.)

σx2(t0 )
 . .(.) .(.)

χ 2 .
df 
p .

aEight improper N=  solutions because of out-of-bound standard errors were deleted.

again Equation (2))

G1 =
[
g1,11 0
0 g1,22

]
=

[
0.5 0
0 0.5

]
⇒

Q1 = G1G′
1 =

[
q1,11 0
0 q1,22

]
=

[
g21,11 0
0 g21,22

]

=
[
0.25 0
0 0.25

]
. (33)

As apparent from Table 3, the quality of the
CARMA(2,0) estimates in the N > 1 samples is hardly
worse than found for CARMA(1,0) in Table 2. An excep-
tion are the initial variances σx1(t0) and σx2(t0) of the latent
variables in the model. However, these initial variables
actually are not part of the model itself (see Equation
(2)) but function as a kind of byproduct in its state space
formulation. Oud and Singer (2008) found for these
latent variables also bias and large standard errors but
little influence on the quality of the other parameter
estimates. We did not fix these variances at arbitrary
values, because this is even less satisfactory than esti-
mating, which had in fact more positive than negative
effects on the other parameter estimates. As mentioned
above, a possible solution would be to replace the initial
parameters by their stationary values, which, however,
may not be realistic in practice and was not simulated in
the present case. Eight of the 100 N = 1 analyses were
useless because of clearly out-of-bound standard errors
(>100). Some small sample bias is undoubtedly present
in the parameter values of the remaining N = 1 analyses.
Also in these analyses with only T = 41 data points per
subject the standard errors are pretty large and would in

practice prevent drawing clear conclusions. It is never-
theless comforting that the estimated standard errors are
in most cases close to the true standard deviations of the
parameter estimates.

Although the number of parameters to be estimated
increases from 13 in CARMA(1,0) to 17 in CARMA(2,0)
and 19 in CARMA(2,1), the N = 1,000 samples hardly
show deterioration in the quality of the parameter esti-
mates. With the exception of the initial latent variances,
the estimates of the CARMA(2,1) parameters are quite
accurate with small standard errors (see Table 4). Also
the results of the N = 100 and even N = 50 sample are
not much worse for the CARMA(2,1) model than for the
simpler models, although the estimates are somewhat
less accurate and the standard errors clearly larger than
for the simpler models. The results of the N = 1 analyses
(not reported in Table 4) were not acceptable, however.
Forty of the 100 analyses gave a nonconvergent solution
(38 had OpenMx status code 6 and 2 had code 5). We
repeated the analysis for sample sizes ranging between
N = 50 and N = 1, and found that especially the esti-
mates of the variances σx1(t0) and σx2(t0) of the moving
average components deteriorate rapidly with decreasing
N, becoming even negative for N = 24. We conclude
that with T = 41 time points (40 observation intervals)
estimation of the CARMA(2,1) model can be done by
samples of at least N = 25 or larger but that the use of
smaller samples may then be questionable. In N = 1
ARMA and CARMA modeling, one sometimes finds
shorter time series but mostly univariate cases without
effects estimated between variables.
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Table . True parameter values and estimation results of the simulation study of a CARMA(,) model.

True Parameter Value N= , (se) N=  (se) N=  (se)

f0,11 − . − .(.) − .(.) − .(.)
f0,22 − . − .(.) − .(.) − . (.)
f0,12 . .(.) .(.) .(.)
f0,21 . .(.) .(.) .(.)
f1,11 − . − .(.) − .(.) − .(.)
f1,22 − . − . (.) − .(.) − .(.)
b1  .(.) . (.) . (.)
b2  .(.) . (.) . (.)
q0,11  .(.) . (.) . (.)
q0,22  .(.) . (.) . (.)
q1,11 . .(.) .(.) .(.)
q1,22 . .(.) .(.) .(.)
μy1(t0 )

 .(.) − .(.) − .(.)

μy2(t0 )
 − .(.) .(.) .(.)

σ 2
y1(t0 )

 .(.) . (.) . (.)

σ 2
y2(t0 )

 . (.) .(.) . (.)

σy1(t0 ),y2(t0 )
 − .(.) − . (.) . (.)

σx1(t0 )
 .(.) .(.) .(.)

σx2(t0 )
 .(.) .(.) .(.)

χ 2 .
df 
p .

Empirical example: Mood at home andmood at
work, CARMA(1,0) on N= 55, T= 48

The data were collected as part of a more comprehen-
sive project on work and family (Klumb, Hoppmann, &
Staats, 2006; Klumb, Voelkle, & Siegler, 2017). In this
study, dual-career couples, with at least one child under
five years, were investigated during a seven-day ambula-
tory assessment period. During this period, participants
completed short questionnaires on momentary affect, sit-
uational variables including their current location (i.e.,
work vs. home), and social interactions using a handheld
computer (Psion 3a, Psion PLC, London, Great Britain).
During 7 workdays, people had to complete a question-
naire after waking up and before going to bed. In between,
they received 5 signals with an interval length of about
3 hours between them, resulting in a total of T = 7 × 7 =
49measurement occasions. For the purpose of the present
work wewill focus on 55women and their reportedmood
across themeasurement occasions.Moodwas assessed on
a 9-point-scale from 1 (very bad) to 5 (very good): 1, 1.5,
2, 2.5, 3, 3.5, 4, 4.5, 5. The aim of this exemplary analy-
sis is to find out, whether mood at work (MW) influences
mood at home (MH), MH influences MW, both effects
take place, or none of both. This will be evaluated by
the cross-effects in the drift matrix, by the implied cross-
lagged effects across time, and by trajectories described by
subjects through the two-dimensional state space in the
phase portrait (Butner, Gagnon, Geuss, Lessard, & Story,
2015). The models CARMA(1,0) and CARMA(2,0), used
in the simulation in the previous section, were applied to
the data.

Depending on the place where the subject was at the
moment of the measurement, each of a maximum of 48
measurements per subject was assigned to the variable
MW or the variable MH. Because all values were missing
in one of the variables at the start, we skipped the first of
the 49 measurement occasions. The pattern of measure-
ment intervals and home-work shifts was extremely irreg-
ular between subjects. In fact, each measurement came
from a unique point in time. A correct discrete time anal-
ysis would therefore not be possible as it would require
at least as many variables as there are values in the data
set and many more extra phantom variables to take care
of the irregular time intervals betweenmeasurement time
points (Oud &Voelkle, 2014). In contrast, the continuous
time analysis performed here requires “only” 2× 48= 96
variables. Even if analyzed in continuous time, the data set
contains a huge amount ofmissing values. This is the case,
because at the person level it is impossible to have simul-
taneous observations at work and at home. So, if MW is
present,MH ismissing, and vice versa. Thesemissing val-
ues were taken care of by OpenMx’s FIML function.

As in the simulations we started with analyses on the
total sample of N = 55 women. Based on the experi-
ence in the simulations we tried the CARMA(2,0) and
CARMA(1,0) models. As in ARMA modeling, extend-
ing the order of the model and using a model selec-
tion criterion such as AIC and BIC to select the best fit-
ting model, is customary in CARMA modeling. The BIC
measure,−2ll − ln(number of observations) × df , indi-
cates that the simpler model CARMA(1,0) has to be
preferred to CARMA(2,0), CARMA(1,0)’s BIC-value of
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Table . Parameter estimates and standard errors in the total sam-
ple of N=  for CARMA(,) model of the empirical example.

Parameter Estimate Standard error

a11 − . .
a22 − . .
a12 . .
a21 . .
b1 . .
b2 . .
q11 . .
q22 . .
μy1(t0 )

. .

μy2(t0 )
. .

σ 2
y1(t0 )

. .

σ 2
y2(t0 )

. .

σy1(t0 )y2(t0 )
. .

−2ll .
observations 
df 

5105.6 being 11.1 lower than the one of CARMA(2,0).
The CARMA(2,0) solution has to be rejected on several
other counts too: Two parameters had no standard errors,
four standard errors were out-of-bound (>100) and most
of the estimates were unacceptably high or low. In con-
trast, the CARMA(1,0) gave a solution that is acceptable
in all respects with parameter estimates that are all highly
significant.

As apparent from Table 5, in CARMA(1,0) MH
(variable 1) has an auto-effect of −0.465 in continuous
time which is substantively lower than the auto-effect of
−0.165 of MW (variable 2), meaning that MH is a less
persistent property than MW. Figure 3 displays what this
means in terms of the autoregressive effects over different
intervals across time. Both MW and MH are rather

Figure . Autoregressive effects of mood at work (MW) and mood
at home (MH) over intervals in terms of hours, computed as the
diagonal elements of matrix exponential eA�t .

Figure . Cross-lagged effects of MW onMH (MW→MH) andMH
onMW (MH→MW) over intervals in terms of hours, computed as
the off-diagonal elements of matrix exponential eA�t .

short-lived. While after 24 hours about 10% of MW is
left, MH is almost totally gone after the same interval.

The main research question, however, concerns the
cross-effects betweenMW andMH. It turns out that both
the effect of MW on MH (a12 = 0.324) and MH on MW
(a21 = 0.064) are significant but the effect in the first
direction (from work to home) is much stronger. These
effects can also be visualized across time by means of
the cross-lagged effects (see Figure 4). As apparent from
Figure 4 the maximum cross-lagged effect for MW →
MH is a little higher than 0.4 and for MH → MW a little
below 0.1. In both cases the maximum is already reached
after just a few hours.

Figure 5 shows themean development ofMH andMW
over time. Starting from an initial value of 3.923 at t0,

Figure . Mean development of MH and MW across time in terms
of hours frommeasurement start, computed as eA(t−t0 )E[x(t0)] +
A−1[eA(t−t0 ) − I]b.
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Figure . Phase portrait of the estimated model with arrows indi-
cating change directions in the state space of MH and MW, the
stable equilibrium state (attractor) located at [., .], and five
trajectories starting from initial states [,], [,], [,], [,] and
[.,.].

the mean of MH goes up a tiny fraction before converg-
ing rapidly to the stable equilibrium state. The mean of
MW goes from 4.118 immediately in the direction of its
stable equilibrium state. Note that the difference between
the two initial means as well as the difference between ini-
tial means and stable equilibrium states are in fact small.
Nevertheless, the phase portrait below will make visible
big differences in the movement from initial state to final
equilibrium state. Considerable and significant difference
can be observed between the variances of MH and MW.
The differences inmood betweenwomen aremuch bigger
at work than at home (Table 5 gives at t0 variance values
of 0.708 and 0.343, respectively).

Important information about the dynamics of the
state variables MH and MW in their interaction can be
obtained from the phase portrait in Figure 6. Use of phase
portraits in psychological research to generate and test
theories of change is advocated, for example, by But-
ner et al. (2015). Phase portraits are easily produced by
the R-package phaseR (Grayling, 2014). The portrait dis-
plays the two-dimensional state space with arrows indi-
cating the direction of changes in the space, implied by
the model. Because drift matrix A has both eigenvalues
real and negative, themodel has a stable equilibrium state,
located at the point [MH = 3.88, MW = 4.03] defined by
−A−1b, and all arrows point more or less strongly in that
direction. A stable equilibrium point in a phase portrait is
called attractor and located at such a point of no change.

How this works out for the trajectories which
subjects describe through the state space, is shown
by means of five cases with different initial values
[MH, MW]: Four exemplary subjects start from the
rather extreme initial value pairs [2,6], [6,6], [2,2] and

[6,2] and one from a more realistic initial value pair
[mean − SD forMH,mean + SD forMW]. It turns out
that subjects starting with low or high scores on both
dimensions MH and MW go almost linearly to the stable
equilibrium position. However, subjects low on MH but
high onMWhave a tendency to maintain this high mood
on MW relatively long and to improve simultaneously
their low level on MH considerably, temporarily even
beyond the final equilibrium position of MH, before
joining the [6,6] trajectory toward the equilibrium posi-
tion. A similar trajectory pattern of change is followed by
subjects starting at or close to [3.34, 4.96]. The trajectory
from [6,2] mirrors the one from [2,6]. Before joining the
[2,2] trajectory to the equilibrium point, the low level
on MW in the [6,2] trajectory is maintained relatively
long and the high level on MH is deteriorating relatively
rapidly, temporarily even to a lower HM level than in
the final equilibrium point. So, the portrait nicely shows
how for these women a bad mood at work is relatively
persistent and tends at least temporarily to ruin the
mood at home. It should be noted, that in a discrete-time
approach with only a limited number of snap shots given,
it would be impossible to reconstruct the detailed picture
of the continuous-time trajectory.

Finally, the analysis was repeated for each of the 55
women separately in combination with each remaining
group of 54 women for comparison as explained before.
The resulting χ2-values of the comparison between each
individual woman and the remaining group (subject-
group-reproducibility test value) are displayed in Figure 7.
Because of lacking standard errors in the combined solu-
tion, 11 individuals were omitted, so that Figure 7 con-
tains only 44 values. As can be observed in Figure 7,

Figure . Q-Q plot for  χ 2-values resulting from the subject-
group-reproducibility tests in which the  women in the real life
examplewere individually compared to each sample of  remain-
ing subjects;  χ 2-values for analyses with lacking standard errors
were omitted.
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the empirical rejection rate of 70% is much higher than
the nominal level of 5% and so the hypothesis that all
55 individuals follow the same CARMA(1,0) has to be
rejected. Unfortunately, the Q-Q plot does not reveal a
clear subgroup of similarly deviating individuals as shown
in the simulation study (see Figure 2), so that a straight-
forward solution by simply partitioning the sample, seems
unlikely. Thus, caution should be exercisedwhen attempt-
ing to generalize from the model estimated for the entire
group to any specific woman. One could decide to refrain
from interpreting the model on the group level and to
concentrate exclusively on the individual subjects. How-
ever, similar patterns in individual subject analyses may
also point to the value of such higher-level analysis and
in the case of short series of individual subjects no other
possibility might be left.

Conclusion

In their comprehensive introduction to modern time
series analysis Prado and West (2010) observed that in
many statistical models “the assumption that the obser-
vations are realizations of independent random vari-
ables is key. In contrast, time series analysis is concerned
with describing the dependence among the elements of
a sequence of random variables” (p. 1). Without doubt,
SEM for a long period took position in the first group
of models, which hampered the development of N = 1
modeling and time series analysis in an SEM context.
The present article attempts to reconcile both perspec-
tives by putting time series of independently drawn sub-
jects in one and the same overall SEM model, while
using continuous time state space modeling to simulta-
neously account for the dependence between observa-
tions in each time series over time. The present article
explained in detail how this may be achieved for first and
higher order CARMA(p,q) models in an extended SEM
framework.

The analyses in this article are done by the R-package
ctsem, which interfaces to the flexible SEM package
OpenMx. Both the more recent SEM procedure and
the Kalman filter procedure, common in state space
modeling, are options in OpenMx and ctsem. If both
procedures are applicable, the results are equal. However,
the SEM procedure allows estimation of models with
arbitrary measurement error structures across time,
whereas the stepwise recursive Kalman filter procedure
essentially assumes the measurement errors to be uncor-
related between time points, but is less time consuming
for large T. In both procedures one easily performs N =
1 and N > 1 analyses and both enable to combine the N
N = 1 analyses with the N group analyses of remaining
subjects in one overall analysis and to test in

subject-group-reproducibility tests whether the sub-
ject models coincide with the model for the entire group.

Attempts to combine time series of different subjects
in a common model are rare in traditional time series
analysis and state space modeling. A rather isolated pro-
posal was done by Goodrich and Caines (1979). They call
a data set consisting ofN> 1 time series “cross-sectional”,
thereby using this term in a somewhat different mean-
ing from what is customary in behavioral science. They
give a consistency proof for state space model parame-
ter estimates in this kind of data in which “the number T
of observations on the transient behavior is fixed but the
number N of independent cross-sectional samples tends
to infinity” (p. 403).

Special in the proposal of Goodrich and Caines (1979)
is that they made the measurement intercepts random
over subjects (κ). The present publication allows not
only the measurements intercepts but also the dynamic
intercepts in the state equation (γ) to be random (as
‘traits” differentiated from the changing “states”). We
could have gone one step further by randomizing also
other parameters and so making the common overall
model maximally subject specific. We refrained from
doing that, because this would have led to complex inter-
action terms, which are difficult to handle in a frequentist
approach (Boulton, 2014). As remarked by Boulton, the
specification of such random effects muchmore naturally
arises in the Bayesian paradigm. Some Bayesian work in
this direction has been done by Oravecz, Tuerlinckx, and
Vandekerckhove (2009, 2011, 2016) and is implemented
in the latest version of ctsem.

As a matter of fact, an important advantage of N >

1 models is to not be forced to T → ∞ asymptotics,
which at least in the social and behavioral sciences is
often unrealistic. Arguably, there are not many processes
with, for example, exactly the same parameter values over
the whole time range until infinity. As argued by Yu
(2014, p. 738), an extra advantage offered by continuous
time modeling in this respect is, that asymptotics can be
applied on the time dimension, even if T is taken as fixed.
Supposing the discretely observed data to be recorded
at 0, �t, 2�t, n�t(= T ), this so-called “in-fill” asymp-
totics takes T as fixed but lets n → ∞ in continuous time.
By letting N as well as n go to infinity a kind of double
asymptotics results, which may be particularly useful for
typical applications in the social sciences, where it is often
hard to argue that T will approach infinity.

Although continuous time modeling is still rare in
behavioral science, compelling reasons exist to switch
from discrete time to continuous time and thus from
ARMA to CARMA. One main point is the analysis of
irregularly spaced data. An extreme case of such irreg-
ularly spaced data was found in the empirical example.
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Forcing irregularly spaced data into the equal interval
framework of a discrete time analysis leads to missing
data and is possible only to a limited degree (Oud &
Voelkle, 2014). In fact, because the time intervals are arbi-
trary in a continuous time analysis, missing data of this
type totally disappear in continuous time. In discrete time
research usually a lot of effort is put into avoiding miss-
ing data. However, by distributing different observation
time points over the sample units instead of giving them
all the same observation time points, usually a better rep-
resentation of the underlying continuous time process is
obtained but one deliberately enhances the missingness
problem from a discrete time perspective (Voelkle &Oud,
2013).
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Appendix

Including the variables andmatrices of the EDM
into the SEM vectors η, ζ, y, ε and SEMmatrices
B,�, �, �

η = [x′
ju′

j]′ with x j = [x′(t0, j)x′(t1, j) · · · x′(tT−1, j)]′

and u j= [u′
c, ju′

v (t0, j)u′
v (t1, j) · · · u′

v (tT−1, j)]′,
ζ = [w′

ju′
j]′ with w j = [x′(t0, j) − μ′

x(t0, j ) w
′(t1, j − �1, j) · · ·

w′(tT−1, j − �T−1, j)]′,
y = [y′

ju
′
j]′ with y j = [y′(t0, j)y′(t1, j) · · · y′(tT−1, j)]′,

ε = [v′
j0′]′ with v j = [v′(t0, j)v′(t1, j) · · · v′(tT−1, j)]′,

B =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 Bc,t0 Bv,t0 0 · · · 0
A�t1, j 0 · · · 0 Bc,�t1, j Bv,�t1, j 0 · · · 0
0 A�t2, j · · · 0 Bc,�t2, j 0 Bv,�t2, j · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · A�tT−1, j Bc,�tT−1, j 0 0 · · · Bv,�tT−1, j

0 0 · · · 0 0 0 0 · · · 0
0 0 · · · 0 0 0 0 · · · 0
0 0 · · · 0 0 0 0 · · · 0
0 0 · · · 0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�x(t0) 0 · · · 0 �x(t0),u

0 Q�t1, j · · · 0 0
...

...
. . .

...
...

0 0 · · · Q�tT−1, j 0
�u,x(t0) 0 · · · 0 �u

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

� =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ct0, j 0 · · · 0 Dc,t0, j Dv,t0, j 0 · · · 0
0 Ct1, j · · · 0 Dc,t1, j 0 Dv,t1, j · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · CtT−1, j Dc,tT−1, j 0 0 · · · Dv,tT−1, j

0 0 · · · 0 I 0 0 · · · 0
0 0 · · · 0 0 I 0 · · · 0
0 0 · · · 0 0 0 I · · · 0

0 0 · · · 0 0 0 0
. . . 0

0 0 · · · 0 0 0 0 · · · I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

� =

⎡
⎢⎢⎢⎢⎢⎣

Rt0, j �cov 0
Rt1, j 0

�′
cov

. . .
...

RtT−1, j 0
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

We abbreviate the dynamic errors
∫ ti, j
ti, j−�ti, j e

A(ti, j−s)

GdW(s) to w(ti, j − �i, j). The mean sum of squares
and cross-products matrix of u j over sample units is
called �u and the mean sum of cross-products between
x(t0, j) − μx(t0, j ) and u j is called �x(t0),u. The latter must
be estimated, though, if the state is latent.
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The traits γ and κ are not explicitly displayed but can
be viewed as a special kind of constant zero-mean exoge-
nous variables uc, j in u j, whose covariance matrices �γ

and�κ in�u as well as�x(t0),γ and�x(t0),κ in�x(t0),u are

not fixed quantities but have to be estimated. These latent
variables have no loadings in � and have Bc,t0 = 0 in B.
For γ the Bc,�ti, j in B are replaced by A◦

�ti, j (see Table 1)
and for κ theDc,ti, j in � by I.
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