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ABSTRACT
The total variance of a first-order autoregressive AR(1) time series iswell known in time series literature.
However, despite the increased use and interest in two-level AR(1) models, an equation for the total
variance of these models does not exist. This paper presents an approximation of this total variance.
It will be used to compute the unexplained and explained variance at each level of the model, the
proportion of explained variance, and the intraclass correlation (ICC). The use of these variances and
the ICCwill be illustrated using an example concerning structured diary data about the positive affect
of 96 married women.

Proportion of variance explained in the AR(1)
model

The AR(1) model

The AR(1) model can be used to model longitudinal data
in which observations that are closer together in time are
more highly correlated than observations that are further
apart (Jöreskog, 1971, 1979). There are two possible spec-
ifications for an AR(1) process: a one-equation specifica-
tion and a two-equation specification. If we use the one-
equation specification to analyze repeated measurements
of an individual that were collected on t = 1, . . . ,T con-
secutive measurement occasions, than the model can be
written as

yt = c + φyt−1 + εt (1)

where yt is the observed score at timepoint t , c is the inter-
cept (i.e., the expected score when yt−1 = 0), φ is the AR
parameter used for the regression of each observation on
its immediate preceding value, and εt is the unpredictable
part, referred to as the innovation, residual, or random
shock. It is assumed that φ lies between −1 and 1 to
ensure stationarity, that is, a situation in which the mean
and variance of the process do not change over time, see
Hamilton, 1994; Chatfield, 2003. If a time series is not sta-
tionary, themean and/or variance at timepoint t can differ
from the mean and/or variance at timepoint t + k, where
k is any real number. In that case, it would not be possible
to speak of the mean and the variance of the time series,
as these parameters would change over time. In this study,

CONTACT J. Jongerling jongerling@fsw.eur.nl Department of Psychology, Education and Child Studies, Faculty of Social Sciences, Erasmus University, P.O.
Box ,  DR, Rotterdam, The Netherlands.

the AR parameter φ is further assumed to be fixed across
time (φt = φ for all values of t). Finally, it is assumed that
the innovations are independent andnormally distributed
with 0 mean and variance σ 2.

Alternatively, we can use the two-equation specifica-
tion of anAR(1)model, inwhich yt is viewed as consisting
of two parts: amean scoreμ that represents an individual’s
trait score (i.e., his/her long-run tendency, equilibrium, or
long-term preferred state) and a error term ζt that repre-
sents a temporal deviation from this mean:

yt = μ + ζt (2)

The temporal deviations (or states) can subsequently be
modeled with the AR(1) model:

ζt = φζt−1 + εt (3)

where φ and εt again are the AR parameter and the
innovation, respectively, which are subject to the same
constraints as under the one-equation specification. The
temporal deviations ζt are assumed independent and
normally distributed with mean 0 and variance σ 2

ζ .
Even though the one-equation specification and two-

equation specification expressed above describe the exact
same process, they are more than a simple renaming of
one another. They are reparametrizations. The equiva-
lence between these two specifications can be seen by
relating themean in Equation (2) to the intercept in Equa-
tion (1) through

μ = c
1 − φ

(4)
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which is a standard result in time series literature (cf.,
Hamilton, 1994; Chatfield, 2003). Despite the equivalence
of the two specifications, we prefer the two-equation spec-
ification since it allows for the modeling of individual
means μ, which are usually more informative than inter-
cepts c. In the rest of this article, we will therefore use the
two-equation specification of the model.

Explained variance

For the AR(1) model, the total variance is

σ 2
y = σ 2

1 − φ2 (5)

where σ 2
y denotes the total variance of the time series

(Hamilton, 1994, pg. 53), φ is the AR parameter, and σ 2

is the variance of the innovation εt . Since the innovation
is the unpredicted part of the AR(1) model, σ 2 can also
be interpreted as the unexplained variance in an AR(1)
model:

Definition 1. The unexplained variance in an AR(1)
model is equal to the variance of the innovation, σ 2.

The proportion of explained variance R2 in the AR(1)
model can then be found by dividing the unexplained
variance by the total variance, to get the proportion of
unexplained variance, and substracting the result from1,

R2 = 1 − σ 2

σ 2

1−φ2

(6)

= 1 − σ 2(1 − φ2)

σ 2

= φ2

which shows that the explained variance is equal to the
AR parameter squared, just like the explained variance is
equal to the regression coefficient squared in standardized
normal linear regression.

Total variance in the two-level AR(1) model

The two-level AR(1) model

The two-level AR(1) model can be used to model time
series for i = 1, . . . ,N individuals, where N denotes the
total number of individuals. In this section, we begin with
presenting the level 1 or within-person part of the two-
level AR(1) model. On this level, the scores of each of
the N individuals are modeled using the AR(1) model
presented in the previous section. This is followed by
the presentation of the level 2 or between-persons part of
the model, in which individual differences in the level 1
parameters are modeled.

Level : Within-person
Like the AR(1) model presented in the previous section,
the within-person part of a two-level AR(1) model can be
thought of as consisting of two parts: a mean score and a
temporal deviation from this mean. The only difference is
that, in the two-level AR(1) model, all parameters in the
equations for these two parts have a subscript i to identify
the individual to which the model applies

yit = μi + ζit (7)

where

ζit = φiζi,t−1 + εit (8)

So, in the model above, yit is the observed score of indi-
vidual i at timepoint t , μi is the mean score of individual
i, ζit is the temporal deviation of individual i at timepoint
t from his/her mean, φi is individual i’s AR parameter,
and εit is the innovation of individual i at timepoint t . As
was the case in the single-level AR(1) model presented in
the previous section, it is assumed that φi lies between−1
and 1 to ensure stationarity, that φi is fixed across time,
and that the innovations are independent and normally
distributed with 0mean and variance σ 2

i . Note that we are
allowing different individuals i to have their own error
variance σ 2

i (which like the AR parameter are considered
fixed across time, that is, σ 2

it = σ 2
i for all values of t).

This makes our model a heterogeneous variance model,
in the sense that different individuals are allowed to
have different amount of innovation variance. However,
unlike standard specifications of heterogeneous variance
models, these differences in variance do not have to be
fully accounted for by a level 2 predictor. This makes this
multilevel extension of the AR(1) model more extensive
than the ones usually considered in the literature. One
exception is the study by Wang, Hamaker, and Bergeman
(2012), in which person-specific innovation variance was
also included in the model. However, the authors did not
consider the need for this in depth. More information
on this specification of a multilevel AR(1) model and the
reasons for allowing for individual differences in the inno-
vation variance are given in Jongerling, Laurenceau, and
Hamaker (2015).

Level : Between-person
When analyzing different individuals, these individuals
are likely to have different values for the parameters of the
within-personmodel, that is, themeanμi, the AR param-
eter φi, and the innovation variance σ 2

i . These individual
differences in model parameters can be modeled at level
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2 of our two-level AR(1) model⎡
⎢⎣

μi

φi

σ 2
i

⎤
⎥⎦ ∼ MVN

⎛
⎜⎝
⎡
⎢⎣

μμ

μφ

μσ 2

⎤
⎥⎦,

⎡
⎢⎣

τ 2
μ

τμφ τ 2
φ

τμσ 2 τφσ 2 τ 2
σ 2

⎤
⎥⎦
⎞
⎟⎠
(9)

where MVN denotes a multivariate normal distribu-
tion1, τ 2

μ, τ 2
φ , and τ 2

σ 2 are the interindividual variances
in the model parameters, τμφ is the covariance between
the mean and the AR parameter, τμσ 2 is the covariance
between the mean and the innovation variance, and τφσ 2

is the covariance between the AR parameter and the
innovation variance. Furthermore, μμ, μφ , and μσ 2 are
the expected values across individuals of μi, φi, and σ 2

i
respectively.

We can also write the above as separate equations for
μi, φi, and σ 2

i , such that

μi = μμ + εiμ (10)
φi = μφ + εiφ (11)
σ 2
i = μσ 2 + εiσ 2 (12)

where εiμ, εiφ , and εiσ 2 are individual deviations fromμμ,
μφ , and μσ 2 , respectively, with means equal to 0; vari-
ances τ 2

μ, τ 2
φ , and τ 2

σ 2 ; and covariances τμφ , τμσ 2 , and τφσ 2

(where, as before, τμφ is the covariance between the mean
and the AR parameter, τμσ 2 is the covariance between
the mean and the innovation variance, and τφσ 2 is the
covariance between the AR parameter and the innovation
variance).

Total variance

Until now, no expression was available for the total vari-
ance of a two-level AR(1) model. An approximation for
the total variances across all timepoints t and all individ-
uals i is derived in Appendix A

σ 2
y ≈ μσ 2

1 − (μ2
φ + τ 2

φ )
+ 2μφτφσ 2

(1 − (μ2
φ + τ 2

φ ))2

+
μσ 2 [(4(μφ

τφ
)2 + 2)τ 4

φ]

(1 − (μ2
φ + τ 2

φ ))3
+ τ 2

μ (13)

Note that interindividual variance in the innovation
variance does not directly influence the total variance.

 Weuse amultivariate normal distribution, and so assume the innovation vari-
ance is normally distributed instead of distributed following amore common
distribution (e.g., lognormal, inverse gamma, folded normal, etc.), because
the derivation of the expression for the total variance of a two-level AR()
model requires the assumption of normality for all model parameters. We do
not expect this approach to cause computational problems, because innova-
tion variances are expected to be clearly larger than zero in the data. A deriva-
tion for the total variance of the two-level AR() model without the normality
assumption for the innovation variance is the topic of a future study.

This follows from the fact that Equation (13) does not
contain the term τ 2

σ 2 . Instead, random variance in the
innovation variances τ 2

σ 2 only influences σ 2
y through its

covariance τφσ 2 with the AR parameter φ. Further note
that not all terms in Equation (13) are easy to interpret.
The interpretation of τ 2

μ, the last term in Equation (13),
is straightforward. This term represents the contribution
of interindividual differences in mean scores to the total
variance across time series. What might be less obvious
is that the first three terms represent the combined,
and interrelated, contribution of the AR parameter and
the innovation variances to the total variance, with the
second term showing how the simple covariance between
the innovation variance and the AR parameter influences
the total variance. For example, this term shows that for
a positive AR parameter, a negative covariance between
the AR parameter and the innovation variance leads to a
smaller total variance. This makes sense since for positive
AR parameters, a negative covariance implies that higher
AR parameters are associated with smaller innovation
variances. Since both small innovation variances and
high positive values of the AR parameter lead to succes-
sive scores that are more alike, the total variance will be
smaller in this situation. For negative values of the AR
parameter, on the other hand, the second term shows
that a negative covariance leads to more total variance.
Again this makes sense, since for negative values of the
AR parameter and a negative covariance, lower (more
negative) AR parameters are associated with higher
innovation variance. Given that both (more) negative AR
parameters (which represent switches between positive
and negative scores) and larger innovation variance lead
to successive scores that are less alike, the total variance
should be larger in this situation.

To show that the random innovation variance indeed
does not influence the total variance by itself and to get
a better idea of what that means, we generated two sets
of time series each for 100 individuals. In the first set, we
have time series for 100 individuals in which the innova-
tion variance is fixed, so τ 2

σ 2 = 0. Specifically, the param-
eter values in this first set of 100 time series are μμ = 10,
μφ = .20, μσ 2 = 3, τ 2

μ = 2.188, τ 2
φ = .01, τ 2

σ 2 = 0, and
τφσ 2=0. Three example time series out of these 100 fixed
innovation time series are plotted in Figure 1(a). In the
second set of time series, all parameter values are exactly
equal as in the first, but now there are interindividual
differences in innovation variance with τ 2

σ 2 = 1. The
correlation between the innovation variances and the AR
parameter are still set to 0 however. Three example time
series out of these 100 random innovation time series are
plotted in Figure 1(b). The total variance across these two
sets of time series is equal ( 5.07 vs. 5.13 with the differ-
ence of .06 being caused by sampling error); however, the
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Figure . (a)  example time series out of  time series generated
with a fixed innovation variance of . This results in a total variance
of .. (b)  example time series out of  time series generated
with a random innovation variance with a mean of  and variance
of . This results in a total variance of .. Note that in this second
set, the large innovation variances and small innovation variances
cancel out to asymptotically get the same total variance as in (a).

pattern in the two sets of time series is different. To see
this, letus first look at what makes up a person’s score in
a time series. As can be seen from Equations (7) and (8),
an individual’s score at timepoint t is made up of (1) his
or her mean score, (2) a part that is predicted from the
immediate preceding value using autocorrelation, and (3)
innovation that represents random deviations from the
score predicted for an individual at timepoint t by his/her
mean and previous score. Both sets of time series are
identical with respect to the amount of variability caused
by differences in mean and differences in autocorrelation.
The way that innovations influence the individual time
series is different though. In the first set of time series, the
size of the random deviations from the scores predicted
by a person’s mean and amount of autocorrelation is the
same for everyone. The size of an individuals random
deviations will differ from timepoint to timepoint, but
the range of these deviations is the same for each of the
100 individuals in the set. In the second set, however, the
range of the random deviations is not the same for every-
one. Some individuals can display quite large deviations
from the score predicted by his/her mean and amount
of autocorrelation, while others only have small devia-
tions from this predicted score. This is clearly visible in
Figure 1.

In Figure 1(a), we see that the differences between
successive timepoints in the individual time series are
pretty homogeneous, and the 3 time series look quite
alike. In Figure 1(b), however, the amount of difference
between successive timepoints is much larger in some
individuals’ time series than in those of others, with
the time series plotted with a solid line showing an aver-
age amount of difference between successive timepoints,
the time series plotted with short dashes showing small
differences between timepoints, and the time series plot-
ted with long dashes showing large differences between
successive timepoints. These last three time series also
clearly look less alike than those in Figure 1(a). In short,
even though there is no difference in the total variance
between the time series with fixed innovation and the
time series with random innovation, the total variance
is less evenly distributed across individual time series
when individuals differ with respect to their innovation
variance. Individuals with larger ranges in innovation
values contribute more variability than the average per-
son, while individuals with smaller ranges of innovation
values contribute less variability than the average per-
sons. Both these deviations from the average cancel out,
however, resulting in the same amount of total variance
that is obtained for time series in which everybody has
the same, average range of innovation values.

To test the validity of our approximation of the total
variance of a two-level AR(1) model [Equation (13)], we
undertook a small simulation study in which we deter-
mined how accurate the estimate of the total variance
obtained with Equation (13) was as a measure of (1) the
population variance in a two-level AR(1) model, and (2)
the sample variance of the two-level AR(1) model. To
do so, we generated data sets with different sample sizes
and with T = 20 different timepoints. The parameter val-
ues chosen to generate the data will be the same for all
sample sizes considered and are given in Table 1. Note
that all covariances not listed in this table were set to 0.
The number of timepoints and the parameter values were
chosen based on literature on this kind of model from
the social sciences. Specifically, the parameter values used
where the ones found in the application of the two-level
AR(1) model with person-specific innovation variance in
Wang et al. (2012). The only exception being the correla-
tion between the AR parameter and innovation variance
ρφσ 2 of −.95, that was used in the last three simulations.
This is an extreme and unrealistic value for this correla-
tion, and it was chosen to thoroughly test our approxi-
mation. The parameter values used in this extreme case
were chosen so that this extreme correlation value could
be obtained.

To test Equation (13)’s ability to estimate the popu-
lation variance (i.e., to test the asymptotic performance
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Table . Results from the simulation study comparing the total variance estimated using Equation () to the sample variance of generated
data sets with varying sample sizes and parameter estimates.

μ
μ
/τ 2

μ
μ

φ
/τ 2

φ
μ

σ 2/τ
2
σ 2 ρ

φσ 2 N Sample variance Equation () Relative difference (%)

/. ./. ./. .  . . .
/. ./. ./. .  . . .
/. ./. ./. . ,, . . .
/. ./. ./. .  . . .
/. ./. ./. .  . . .
/. ./. ./. . ,, . . .
/. ./. ./. − .  . . .
/. ./. ./. − .  . . .
/. ./. ./. − . ,, . . .
/ . ./. ./. − .  . . .
/ . ./. ./. − .  . . .
/ . ./. ./. − . ,, . . .

Note: ρ
φσ 2 denotes the correlation between φ and σ 2 , which is

τ
φσ2

τ
φ
τ
σ2
. The column Sample Variance contains the sample variance of a generated data set. For the

smaller samples of N = 100 and N = 20, we generated  samples for each value of ρ
φσ 2 , so for these smaller samples the column Sample variance contains the

average sample variance across the  data sets. The column Equation () contains the total variance estimates obtained fromEquation (). For the large samples of
N = 10, 000, 000, variance estimates were obtained by entering population values (i.e., the values used to generate the data) into Equation () to get an estimate
of the population variance. For the samples of size N = 100 and N = 20, variance estimates were obtained by entering the parameter estimates obtained in each
generated data set into Equation () to get estimates of the sample variance. Since we generated  data sets for each value of ρ

φσ 2 with the smaller sample sizes,
the value given in the column Equation () for these smaller samples gives the average estimate obtained from Equation () across the  data sets. The column
Relative difference shows the difference (in percentages) between the actual variance of the samples and the variance estimate obtained from Equation (). For the
smaller samples of N = 100 and N = 20, we generated  samples for each value of this correlation is as follows. The sample variance between the AR parameter
and the innovation variance, and the relative difference given here is the average relative difference between the sample variance and the variance estimates with
Equation () across all samples. Data were simulated, and (where necessary) parameters were estimated using the methods described in Jongerling, Laurenceau,
and Hamaker ().

of our approximation), we generated four very large data
sets of sample size N = 10, 000, 000, each with a differ-
ent value for the correlation between the AR parame-
ter and the innovation variance. Subsequently, we deter-
mined the total variance across the 10,000,000 individuals
in these samples, and compared that estimate of the vari-
ance to the one obtained by entering the parameter values
used to generate the data into Equation (13). The reason-
ing behind this approach is that in samples of 10,000,000
individuals, the sample variance is nearly identical to the
true population variance, and can therefore be used as
accurate and valid benchmark for the population vari-
ance estimate obtained by entering the population param-
eter values (i.e., the parameter values used to generate
the data) into Equation (13). If Equation (13) is correct,
the total population variance estimate obtained by enter-
ing the parameter values used to generate the data into
Equation (13) should be close to the large sample variance.

To test our approximation’s ability to estimate sample
variances in realistic situations, we generated 100 data
sets with realistic sample sizes of N = 100 (a sample size
that, like the number of timepoints, we consider realis-
tic for these kinds of models based on literature from
the social sciences [see Wang et al. (2012) and Jongerling
et al. (2015)] and 100 data sets with small sample sizes
of N = 20 for every value of the correlation between the
AR parameter and the innovation variance considered.
As with the large samples of N = 10, 000, 000, we sub-
sequently compare the sample variances of these smaller
samples to estimates obtained with Equation (13). Note,

however, that in these smaller samples, the sample vari-
ance is a less accurate estimate of the population variance
than in the large samples of N = 10, 000, 000. Compar-
ing the sample variances from these smaller samples to
estimates obtained from Equation (13) by entering the
values used to generate the data therefore provides lit-
tle information about the accuracy of the equation. That
is why we compare the variance in these smaller sam-
ples to estimates obtained by entering sample estimates
of the parameter values into Equation (13). So, with the
small sampleswefirst estimate the parameter values of our
two-level AR(1) model using the data from the sample
at hand, subsequently use these parameter estimates in
Equation (13) to get an estimate of the total sample vari-
ance, and finally compare this estimate to the actual vari-
ance in the current sample. The differences between these
two sample variance estimates are subsequently averaged
across the 100 samples generated for a given value of the
correlation between the AR parameter and the innova-
tion variance, which will give an indication of how accu-
rate Equation (13) can estimate the total sample variance
under realistic conditions. The reason we generate 100
data sets of sizeN = 100 and sizeN = 20 for each value of
this correlation is as follows. The sample variance between
the AR parameter and the innovation variance, while we
only generate one sample of N = 10, 000, 000 for each
value of this correlation is that the sample variances and
the performance of Equation (13) will be variable within
the smaller sample sizes, while they can be considered
more or less fixed in the asymptotic large sample case of



408 J. JONGERLING AND H. HOIJTINK

N = 10, 000, 000. In addition, we used the large sample to
test our approximation’s ability to estimate the population
variance, while we use the smaller samples to test Equa-
tion (13)’s ability to estimate sample variances, the value
of which will differ from sample to sample.

The results of this simulation study are shown in the
right-hand panel of Table 1. They show that the differ-
ence between the total variances in our large samples of
N = 10.000.000 (which can be considered accurate esti-
mates of the true, population value of the total variance,
and which are given on line 3, 6, 9, and 12 of Table 1) and
the estimates of these total variances obtained by entering
the parameter values used to generate the data into Equa-
tion (13), is equal to at most 1% (in case of the extreme
correlation of −.95, where (3.2029 − 3.1711)/3.2029 =
.01). In other words, the total variance estimate from our
equation is really close to what we consider to be a good
estimate of the total population variance, which indicates
the validity of our approximation in Equation (13). Next,
when comparing the average sample variance across the
100 smaller samples of N = 100 to the average total vari-
ance estimate obtained by entering the parameter esti-
mates obtained from each of these samples into Equation
(13), we see that the largest relative difference between
these two is equal to 2.89% (for ρφσ 2 = −.950). So like
in the larger samples, the total variance estimate obtained
from our approximation is close the sample variance in
these smaller samples ofN = 100, which proves that, next
to the population variance, our approximation can accu-
rately estimate the sample variance as well. For the small
sample sizes of N = 20, the difference between the sam-
ple variance and the variance estimates of our approxima-
tion is larger than for the other two sample sizes. However,
even with this small sample size, the relative difference is
still 13.93% at most (for ρφσ 2 = −.600). Note that it is
not surprising that the relative difference is larger when
comparing the sample variances from the small samples
(i.e., N = 100 and N = 20) to the total variance estimate
from Equation (13), than when comparing the sample
variance of the large samples (N = 10, 000, 000) to the
estimates obtained with our approximation. The fact that
we use parameter estimates for this comparison in the
smaller samples, instead of the true population values,
results in an extra source of bias. Taken together, we feel
these results show that Equation (13) provides accurate
and useful estimates of the total sample variance.

Proportion of variance explained and intraclass
correlation in the two-level AR(1) model

In the following sections, we will provide expressions
for different proportions of explained variance. Specifi-
cally, we will provide expressions for (1) the proportion

of explained variance at level 1, (2) the proportion of
explained variance at level 2, (3) the total proportion of
explained variance, and for (4) the proportion of variance
explained by autocorrelation. In addition, we will provide
an expression for the ICC of the two-level AR(1) model.

Proportion of explained variance at level 1

As was the case for the AR(1) model, the innovations rep-
resent the unpredicted part, and so the innovation vari-
ance can be interpreted as the unexplained variance. In
contrast to the AR(1) model, however, the amount of
innovation variance may differ across individuals in a
two-level AR(1) model, meaning that there is an overall
mean amount of innovation variance on level 1 (μσ 2 ), and
some interindividual variability in the amount of inno-
vation variance on level 2 (τ 2

σ 2 ). In other words, the total
innovation (or unexplained) variance is divided into two
parts or parameters. One for each level of the model. We
therefore define unexplained variance at level 1 of a mul-
tilevel AR(1) model as follows:

Definition 2. The unexplained variance at the first level
of a two-level AR(1) model is that part of the variance of
the innovations that is located at level 1. This implies

σ 2
y,un1 = μσ 2 (14)

where σ 2
y,un1 denotes the unexplained variance in y at level

1. Loosely formulated, each individual i (the units on level
1) has an amount of unexplained variance σ 2

i . The average
of these unexplained variances is a measure of the total
unexplained variance at level 1.

Following the same logic/reasoning, we define the total
variance at level 1 of a two-level AR(1) model as that part
of the total variance that isnotdue to between-person (i.e.,
level 2) variance in the model parameters:

Definition 3. The total variance at the first level of a two-
level AR(1)model is that part of the total variance not due
to τ 2

μ and τ 2
φ . Removing these level 2 variance terms from

Equation (13) renders

σ 2
y,tot1 = μσ 2

1 − μ2
φ

(15)

where σ 2
y,tot1 denotes the total variance in y at level 1.

Loosely formulated, this expression, like Equation (1)
and Equations (2) and (3), shows that a persons’ score
varies around his/hermean due to two different sources of
fluctuation. Fluctuation due to autoregression and unex-
plained fluctuation. In addition, Equation (15) shows that
these two sources are not simply additive.
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Note that this expression is very similar to the expression
for the total variance of the AR(1) model [Equation (5)].
The only difference is that in the two-level AR(1) model,
the total variance at level 1 is determined using μφ and
μσ 2 , whereas in the AR(1) model, the total variance is
determined using φ and σ 2. Further note that we did not
include interindividual variance in the innovation vari-
ance (τ 2

σ 2 ) in the definition of the total level 1 variance,
since Equation (13) shows that this term does not affect
the total variance (i.e., Equation (13) does not include the
term τ 2

σ 2 ).
The explained variance at level 1 can now be obtained

by dividing the unexplained variance at level 1 by the total
variation at level 1, to get the proportion of unexplained
variance, and substracting the result from 1:

R2
level 1 = 1 − μσ 2

μσ2

1−μ2
φ

(16)

= 1 −
μσ 2

(
1 − μ2

φ

)
μσ 2

= μ2
φ

In multilevel literature, the concept of explained variance
is complex (Hox, 2010, pg. 70), especially in the presence
of random slopes, becausemaximum likelihood estimates
of level 1 and level 2 variance termsmight be biased (Hox,
2010, pg. 73; Snijders &Bosker, 1994). However, since this
is more a computational issue than a conceptual one, we
will nevertheless use this theoretical conceptualization of
level 1 variance being the variance associated with level 1
parameters.

Proportion of explained variance at level 2

Definition 4. As the total variance of a two-level model is
equal to the sum of the level 1 and level 2 variance (Hox,
2010, pg. 70), we define the total variance at the second
level of a two-level AR(1)model as the difference between
the total variance of a two-level AR(1) model [Equation
(13)] and the total variance at the first level of the model
[Equation (15)]:

σ 2
y|l2 ≈

(
1

1 − (μ2
φ + τ 2

φ )
+

(4( μφ

τφ
)2 + 2)τ 4

φ

(1 − (μ2
φ + τ 2

φ ))3
− 1

1 − μ2
φ

)
μσ 2

+ 2μφτφσ 2

(1 − (μ2
φ + τ 2

φ ))2
+ τ 2

μ

(17)

Since there are no predictors at level 2 in our model, and
since there are no level 1 predictors on which individuals
differ in their mean scores (since Et

[
ζi,t
] = Et

[
ζi,t−1

] =
0, ∀i), the unexplained variance is also equal to Equation

(17). Therefore,

R2
level2 = 0 (18)

Proportion of variance related to autocorrelation

Apart from the explained variance on the first and second
level, a third type of variance can be determined for the
two-level AR(1) model; the variance not attributable to φ.
We define this variance as follows:

Definition 5. The variance in a two-level AR(1) model
that is not attributable to φ is obtained when μφ = 0 and
τ 2
φ = 0. Applying this to Equation (13) renders

σ 2
y|μσ 2 = μσ 2 + τ 2

μ (19)

The proportion of the variance that is related to autocor-
relation can now be determined by dividing the amount
of variance that is not related to φ [Equation (19)] by the
total variance in a two-level AR(1) model [Equation (13)]
and substracting the result from 1:

R2
φ ≈ 1 − μσ 2 + τ 2

μ

μσ2

1−(μ2
φ+τ 2

φ )
+ 2μφτφσ2

(1−(μ2
φ+τ 2

φ ))2
+ μσ2 [(4(

μφ

τφ
)2+2)τ 4

φ ]

(1−(μ2
φ+τ 2

φ ))3
+ τ 2

μ

(20)

Total proportion of variance explained at level 1 and
level 2

From Equations (16) and (18), it follows that the propor-
tion of explained variance at level 1 is μ2

φ , while the pro-
portion of explained variance at level 2 is 0. This means
that the total amount of explained variance is:

R2
total ≈ μ2

φ ∗ σ 2
y,tot1

μσ2

1−(μ2
φ+τ 2

φ )
+ 2μφτφσ2

(1−(μ2
φ+τ 2

φ ))2
+ μσ2 [(4(

μφ

τφ
)2+2)τ 4

φ ]

(1−(μ2
φ+τ 2

φ ))3
+ τ 2

μ

(21)

where ∗ stands for multiplication. Since the proportion of
explained variance at level 1 is equal toμ2

φ , this expression
is closely related to the proportion of the variance that is
related to φ [Equation (20)]. However, the two are not the
same. This is because the interindividual variance in the
AR parameter τ 2

φ is not part of Equation (21), eventhough
it is part of the variance associated with the AR parameter
in Equation (20).

Intraclass correlation for a two-level AR(1) model

Using Equation (17), we can also determine the ICC for
a two-level AR(1) model, that is, the percentage of the
total variance of this two-level model that is located on
the higher levels. The expression for the ICC is obtained
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Table . Estimates, standard deviations, and credible intervals for
the parameters of the two-level AR() model obtained using the
data of Laurenceau, Feldman Barrett, and Rovine ().

Parameter estimate % credibility interval

Fixed effects
μ

μ
. (.) .–.

μ
φ

. (.) .–.

μ
σ 2 . (.) .–.

Random effects
τ 2
μ

. (.) .–.

τ 2
φ

. (.) .–.

τ 2
σ 2 . (.) .–.

τ
μφ

− . (.) − . to .

τ
μσ 2 . (.) − . to .

τ
φσ 2 − . (.) − . to .

The table shows the parameter estimates, standard deviations, and % cred-
ibility intervals of the Bayesian analysis of the daily positive affect data from
Laurenceau, FeldmanBarrett, and Rovine (). The standard deviations of the
posterior distributions of the parameters are given between brackets.

by dividing the total variance on level 2 [Equation (17)] by
the total variance of the two-level AR(1) model [Equation
(13)] to get,

ICC ≈

(
1

1−(μ2
φ+τ 2

φ )
+ (4(

μφ

τφ
)2+2)τ 4

φ

(1−(μ2
φ+τ 2

φ ))3
− 1

1−μ2
φ

)
μσ 2 + 2μφτφσ2

(1−(μ2
φ+τ 2

φ ))2
+ τ 2

μ

μσ2

1−(μ2
φ+τ 2

φ )
+ 2μφτφσ2

(1−(μ2
φ+τ 2

φ ))2
+ μσ2 [(4(

μφ

τφ
)2+2)τ 4

φ ]

(1−(μ2
φ+τ 2

φ ))3
+ τ 2

μ

.

(22)

Empirical illustration

To illustrate the estimation of the proportions of
explained variance and the ICC in the context of a
two-level AR(1) model, we will analyze data collected
in a study by Laurenceau, Feldman Barrett, and Rovine
(2005), which were also previously analyzed in Jonger-
ling, Laurenceau, and Hamaker (2015). In this study,
spouses from 96 married couples independently com-
pleted a structured diary each evening over a period
of 42 consecutive days. We summed the scores on four

items labeled excited, enthusiastic, energetic, and happy
(all rated on 5-point Likert scales) to comprise a single
positive affect (P/A) PA score. Focusing on the women
only, there were 127 out of the total of 96*42=4032 PA
scores missing. Based on individual sequence plots (i.e.,
plots of the repeated measurements of each woman),
we removed seven women who had none or very little
variability over time, such that the final data set contained
89 female participants.

To analyze the data, we used a Bayesian estimation
method with uninformative normal priors for μμ, μφ ,
and μσ 2 and an uninformative Inverse Wishart prior for
the variance covariance matrix of these three param-
eters. To keep the demonstration short and clear, we
also assume that the (individual) AR parameters and
innovation variances are fixed across time, and that the
data are accurately described by an AR(1) process (while
in practice, the functional form of the model and the
optimal lag obviously need to be determined/tested first).
A thorough explanation of this estimation method is
available in Jongerling, Laurenceau, and Hamaker (2015),
where it is referred to as method B1. The results are
summarized in Tables 2 and 3, and in Figure 2. The
first column of Table 2 contains the means and standard
deviations of the posterior distribution displayed in
Figure 2, while the second column contains the lower and
upper bounds of the 95% central credibility intervals.

In Table 3, different types of variance and the ICC are
presented. Using the parameter estimates from Table 2,
it follows that the total variance is equal to 9.324, of
which 4.862 is on level 1 and 4.463 is on level 2. The
explained variance on level 1 is equal to 6.80%, while the
total percentage of explained variance is equal to 3.50%.
These amounts of explained variance are not very large,
and can be seen as a strong indication that the inclusion
of level 1 and level 2 predictors in the model is impor-
tant (eventhough small amounts of explained variance
obviously do not necessarily mean that the model is of
little substantial interest. Model parameters might still be

Table . Variances and ICC for the data from Laurenceau, Feldman Barrett, and Rovine ().

Unexplained Explained Total R2

Level  . [Equation ()] . [Equations () and ()] . [Equation ()] . [Equation ()]
Level  . [Equation ()] . [Equations () and ()] . [Equation ()] . [Equation ()]
Related to φ . . [Equations () and ()] . [Equations () and ()] . [Equation ()]
Total . . [Equations () and ()] . [Equation ()] . [Equation ()]
ICC . [Equation ()]

Between brackets the equations used to obtain the corresponding quantities are given. Note that for the explained variances, information from two equations needs
to be combined. For example, the explained variance at level  is calculatedby first determining the total variance on this level using Equation (), and theproportion
of explained variance on this level using Equation (). Subsequently, the specific amount of variance corresponding to this proportion of explained variance is
determined by multiplying the results of Equations () and (). The explained variance on level , the amount of explained variance related to φ, and the total
amount of explained variance can be determined in a similar manner. The total amount of variance related to φ is calculated by first determining the total variance
using Equation (), and determining the proportion of variance related to φ using Equation (). Subsequently, the specific amount of variance corresponding to
this proportion is determined by multiplying the results of Equations () and (). The amount of explained variance related to φ is again determined in a similar
manner bymultiplying the results of Equations () and (). Finally, the unexplained variance related toφ is obtained by substracting the explained variance related
to φ from the total variance related to φ.



MULTIVARIATE BEHAVIORAL RESEARCH 411

Figure . The histograms show the posterior distributions of μφ , μμ, and μσ 2 . The scatterplots show the bivariate relation between the
parameters of the corresponding row and column (e.g., the scatterplot on the second row of the first column shows the relation between
μμ andμφ ).

meaningfully related to important theoretical concepts).
The importance of adding predictors on level 1 is further
illustarted by the fact that the proportion of variance
related to autoregression is equal to .037. Apparently, the
only level 1 predictor currently in the model explains
just 6.80% of the variance on level 1, and is related to
just 3.70% of the total variance in the model. This shows
that there is a lot of variance still unaccounted for. In
addition, the importance of adding predictors on level 2
is further illustrated by the ICC value of .479 (indicating
that 47.9% of the total variance is located on the second
level). Without predictors on this level of the model,
we are currently not explaining any variance at level 2,
despite the fact that the amount of variance at this level
is nearly half of the total variance. With such large parts
of the variance on level 1 and level 2 being unrelated to
the predictor in the model, it is no wonder it can explain
only 3.50% of the total variance in the data.

Conclusion

In this paper, we derived an expression for the total vari-
ance of a two-level AR(1) model. This expression is an
elaboration on thewell-known, single-level expression for

AR(1) models. Based on this expression, we derived the
proportion of explained variance (both total and on level 1
and level 2 separately), the proportion of variance related
to the AR-parameter φ, and the ICC of a two-level AR(1)
model. This was demonstrated with the diary data from
the positive affect study by Laurenceau, Feldman Barrett,
and Rovine (2005).

Unexpectedly, the expressions derived in the study
also revealed that random variance in the innovation
variance does not directly influence the total variance
of a two-level AR(1) model. Instead, interindividual
variances in the innovation variance only influences the
total variance through their correlation with the AR
parameter. To us, this was an unexpected result, which
has important implications. In Jongerling, Laurenceau,
and Hamaker (2015), we argued that individual differ-
ences in the innovation variance τ 2

σ are indicative of
differential sensitivity and/or exposure to unmodeled
factors. Taken together with the results found here, we
can now conclude that such differential sensitivity and/or
exposure will not show up in the total variance of an
AR(1) model. Specifically, any interindividual differences
in these areas that are independent of the AR parameter
will go unnoticed when only looking at the total variance
of the time series. This shows that the separate detection
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and modeling of individual differences in innovation
variances is very important, a point already made in
Jongerling, Laurenceau, and Hamaker (2015) as well.

For now, we assumed that there were no (higher level)
predictors in the model. Extending our two-level AR(1)
model to include predictors is straightforward as it only
involves writing the means of the model parameters as
functions of these predictors. However, doing so would
make the variance structure of the model more compli-
cated. Expressions for the proportion of explained vari-
ance and ICC for two-level AR(1) models that include
predictors are therefore the topic of future research.

We also assumed that the random innovation variance
was normally distributed instead of distributed following
a more common distribution like a lognormal, inverse
gamma, exponential, or folded normal distribution,
for example, [see Hedeker, Mermelstein, and Demirtas
(2008), Hedeker, Demirtas, and Mermelstein (2009),
Wang and Grimm (2012), and Estabrook, Grimm, and
Bowles (2012)]. This was done because the derivation
of the expression for the total variance of a two-level
AR(1) model requires the assumption of normality for
all model parameters. We do not expect this approach
to cause computational problems because innovation
variances are expected to be clearly larger than zero in the
data; however, a derivation for the total variance of the
two-level AR(1)model without the normality assumption
would still be very useful and is a topic we are currently
working on.

Finally, in our derivation and applied example, we
assumed to have balanced data, with every individual hav-
ing the same number of observations. Question remains
if our approximation also works well with unbalanced
data. We think it does because the expression for the total
variance that we expand using a Taylor series [Equation
(5)] applies to any time series (regardless of its length) and
because the multilevel parameter estimates we use in our
expression for the total variance [Equation (13)] are cor-
rected for unbalancedness in the data. Nevertheless, test-
ing our approximation robustness to unbalanced data is
an important step, and will be part of our future research.
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Appendix A

For a simple univariate AR(1) model, the well-known
expression for the total variance can be written as
follows:

σ 2
y = σ 2

1 − φ2 (A1)

whereσ 2
y is the total variance of the time series,φ is theAR

parameter used to regress the current state on the previ-
ous one(s), and σ 2 is the error variance, referred to as the
innovation variance in time series literature, which rep-
resent variance that could not be predicted based on pre-
vious scores or states (and as such can be thought of as
the collection of all unmodeled factors that influence the
process under investigation (Jongerling, Laurenceau, and
Hamaker, 2015).

Although the expression for the total variance of a
single-level AR(1) model is a well-known result in time
series literature, no such expression exists for multi-
level extensions of the model. To find such an expres-
sion for a two-level AR(1) model, we start with rewrit-
ing the total variance as the difference between two
expected values (i.e., the expected value over time (t)
of the squared repeated observations (Et (y2t )) minus the
squared expectation over time of the repeated observa-
tions (Et (yt )2))[Equation (A2)]:

σ 2
y = Et (yt − ȳ)2

= Et (y2t ) − Et (yt )2

and so, from Equation (A1)

Et (y2t ) − Et (yt )2 = σ 2

1 − φ2 (A2)

Next, we take the expected value over all individuals on
both sides of the equality sign [Equation (A3)]:

Ei[Et (y2it ) − Et (yit )2] = Ei

[
σ 2
i

1 − φ2
i

]
(A3)

Ei[Et (y2it ) − μ2
i ] = Ei

[
σ 2
i

1 − φ2
i

]

Eit (y2it ) − Ei(μ
2
i ) = Ei

[
σ 2
i

1 − φ2
i

]
(A4)

Since, for any random variable x

E(x − μx)
2 = E(x2) − E(x)2 (A5)

where E(x − μx)
2 is the variance of variable x, we can

rewrite the left side of Equation (A4) to get,

Eit (y2it ) − [Ei(μi)
2 + τ 2

μ] = Ei

[
σ 2
i

1 − φ2
i

]
(A6)

Eit (yit )2 + σ 2
y − Ei(μi)

2 − τ 2
μ = Ei

[
σ 2
i

1 − φ2
i

]

σ 2
y = Ei

[
σ 2
i

1 − φ2
i

]
+ τ 2

μ

where σ 2
y is again the total variance of the time series, σ 2

i
is the innovation or error variance of individual i, φi is the
AR parameter of individual i, and τ 2

μ is interpersonal vari-
ation inμ. Since there are no simple exact formulas for the
mean of a quotient, we eliminate the expected value of the
quotient on the right side of the equation by using Taylor
series (Mood, Graybill, & Boes, 1985, pg. 181). A Taylor
series can be used to approximate the value of a function
around a specific value, and, in general, the Taylor series
for function f(x) around the value a can be written as

∞∑
n=0

f (n)(a)
n!

(x − a)n (A7)

where f (n)(a) denotes the nth derivative of f evaluated
at the value a. The more derivatives of f(x) used in the
series, the more precise the approximation of f(a). Here,
second-order Taylor series (i.e., Taylor series in which
the highest used derivative is the second-order deriva-
tive) was used. The Taylor series expansion for the prod-
uct of two random variables is equal to the product of the
Taylor series that can be derived for the variables sepa-
rately. So, to get the Taylor series for the quotient σ 2

i
1−φ2

i

about (μσ 2, μ[1−φ2]), we first consider σ 2
i and 1 − φ2

i as
our two randomvariables, and construct separate second-
order Taylor series for the function f (σ 2

i ) = σ 2
i and the

function g(1 − φ2
i ) = 1

1−φ2
i
. For f (σ 2

i ), the second-order
Taylor series around μσ 2 is equal to

f (μσ 2 ) = σ 2
i + (σ 2

i − μσ 2 ) (A8)

Note that the second- and higher order terms in this
Taylor series are 0 because we take σ 2

i as our parameter
of interest. The first derivative of σ 2

i is equal to 1, while
the second- and higher-order derivatives are 0.

For g(1 − φ2
i ), the second-order Taylor series around

μ[1−φ2] is equal to

g(μ[1−φ2]) ≈ 1
(1 − φ2

i )
− 1

(1 − φ2
i )

2 ((1 − φ2
i ) − μ[1−φ2])

+ 1
(1 − φ2

i )
3 ((1 − φ2

i ) − μ[1−φ2])
2 (A9)

By subsequently multiplying these two Taylor series term
by term, we get the following second-order Taylor series
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for the quotient of σ 2
i and 1 − φ2

i

f (μσ 2 )g(μ[1−φ2])

≈ σ 2
i

(1 − φ2
i )

− σ 2
i

(1 − φ2
i )

2 ((1 − φ2
i ) − μ[1−φ2])

+ σ 2
i

(1 − φ2
i )

3 ((1 − φ2
i ) − μ[1−φ2])

2

+ (σ 2
i − μσ 2 )

(1 − φ2
i )

− (σ 2
i − μσ 2 )

(1 − φ2
i )

2 ((1 − φ2
i ) − μ[1−φ2])

+ (σ 2
i − μσ 2 )

(1 − φ2
i )

3 ((1 − φ2
i ) − μ[1−φ2])

2 (A10)

When we now take the expectation of both sides of
Equation (A10), this simplifies to

Ei[ f (μσ 2 )g(μ[1−φ2])] ≈ μσ 2

μ[1−φ2]

− τ(σ 2,1−φ2)

(μ[1−φ2])
2 +

μσ 2τ 2
[1−φ2]

(μ[1−φ2])
3 (A11)

Substituting this expression for the expectation of the
quotient in Equation (A6) we get

σ 2
y ≈ μσ 2

μ[1−φ2]
− τ(σ 2,1−φ2)

(μ[1−φ2])
2 +

μσ 2τ 2
[1−φ2]

(μ[1−φ2])
3 + τ 2

μ

≈ μσ 2

1 − (μ2
φ + τ 2

φ )
+ ρ(σ 2,φ2)τσ 2τφ2

(1 − (μ2
φ + τ 2

φ ))2

+
μσ 2τ 2

φ2

(1 − (μ2
φ + τ 2

φ ))3
+ τ 2

μ (A12)

This takes care of all the expected values, but the expres-
sion still contains some random variables that are not
directly modeled, like τ 2

φ2 instead of τ 2
φ for example. To

make sure our expression for the total variance of a
two-level AR(1) model only contains parameters that are
directly modeled, we view the square of the AR param-
eters as the product of two random variables, that is, as
the product of theARparameterswith themselves. Aroian
(Aroian, 1947) showed that the standard deviation of the
product of two random variables θ1 and θ2 can be written
as

τθ1θ2 =

τθ1τθ2

√(
μθ1

τθ1

)2

+
(

μθ2

τθ2

)2

+ 2ρ
(

μθ1

τθ1

)(
μθ2

τθ2

)
+ 1 + ρ2

(A13)

where ρ is the correlation between the two random vari-
ables. Applying this to our ’product’ of AR parameters,
this expression becomes

τφφ = τ 2
φ

√(
μφ

τφ

)2

+
(

μφ

τφ

)2

+ 2
(

μφ

τφ

)(
μφ

τφ

)
+ 2

= τ 2
φ

√
4
(

μφ

τφ

)2

+ 2

(A14)

Substituting this expression for τφ2 (and the square of this
expression for τ 2

φ2 ) in Equation (A12) results in

σ 2
y ≈ μσ 2

1 − (μ2
φ + τ 2

φ )
+

ρ(σ 2,φ2)τσ 2

√
(4(μφ

τφ
)2 + 2)τ 4

φ

(1 − (μ2
φ + τ 2

φ ))2

+
μσ 2 [(4(μφ

τφ
)2 + 2)τ 4

φ]

(1 − (μ2
φ + τ 2

φ ))3
+ τ 2

μ (A15)

Finally, the correlation between the innovation vari-
ance and the square of the AR parameter (ρ(σ 2,φ2)) can
also be interpreted as the correlation between a ran-
dom variable (the innovation variance) and the product
of a random variable (the AR parameter multiplied by
itself). According to Bohrnstedt and Goldberger (1969),
the covariance between the product of the two random
variables x and y, and a third random variable v can be
written as

τxy,v = E(x)τy,v + E(y)τx,v + E
[
(
x)(
y)(
v )

]
(A16)

where 
x = x − E(x), 
y = y − E(y), and

v = v − E(v ). Since the product in our correlation
is the product of one random variable with itself, and
since τ 2

x = (x − E(x))2, the correlation between the
innovation variance and the square of the AR parameter
can be written as

ρ(σ 2,φ2) = 2μφτφσ 2 + Ei(τ
2
φ (σ 2

i − μσ 2 ))

τσ 2

√
(4(μφ

τφ
)2 + 2)τ 4

φ

(A17)

where the term under the square root in the denom-
inator can again be recognized from Equation
(A14) as the standard deviation of φ2, and the term
Ei(τ

2
φ (σ 2

i − μσ 2 )) will always be relatively small (since
μσ 2 is the mean value of σ 2 ) and can therefore be
ignored.

Substitution in Equation (A15) results in the follow-
ing expression for the total variance of a two-level AR(1)
model

σ 2
y ≈ μσ 2

1 − (μ2
φ + τ 2

φ )
+ 2μφτφσ 2

(1 − (μ2
φ + τ 2

φ ))2

+
μσ 2 [(4(μφ

τφ
)2 + 2)τ 4

φ]

(1 − (μ2
φ + τ 2

φ ))3
+ τ 2

μ (A18)
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Note that interindividual variance in the innovation
variance does not directly influence the total variance.
This follows from the fact that Equation (A18) does not
contain the term τ 2

σ 2 . Instead, random variance in the

innovation variances only influences σ 2
y through its cor-

relation with the AR parameter as can be seen by the
covariance term τφσ 2 included on the right-hand side of
Equation (A18).
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