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Estimating Optimal Weights for Compound Scores: A Multidimensional
IRT Approach

Hendrika G. van Liera , Liseth Siemonsb, Mart A.F.J. van der Laara, and Cees A.W. Glasb

aDepartment of Psychology, Health and Technology, Universiteit Twente; bDepartment of Research Methodology, Measurement and
Data-analysis, Universiteit Twente

ABSTRACT
A method is proposed for constructing indices as linear functions of variables such that the
reliability of the compound score is maximized. Reliability is defined in the framework of
latent variable modeling [i.e., item response theory (IRT)] and optimal weights of the com-
ponents of the index are found by maximizing the posterior variance relative to the total
latent variable variance. Three methods for estimating the weights are proposed. The first is
a likelihood-based approach, that is, marginal maximum likelihood (MML). The other two
are Bayesian approaches based on Markov chain Monte Carlo (MCMC) computational meth-
ods. One is based on an augmented Gibbs sampler specifically targeted at IRT, and the
other is based on a general purpose Gibbs sampler such as implemented in OpenBugs and
Jags. Simulation studies are presented to demonstrate the procedure and to compare the
three methods. Results are very similar, so practitioners may be suggested the use of the
easily accessible latter method. A real-data set pertaining to the 28-joint Disease Activity
Score is used to show how the methods can be applied in a complex measurement situ-
ation with multiple time points and mixed data formats.
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information factor analysis;
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Introduction

Researchers and practitioners in the fields of
psychology, sociology, health, educational measure-
ment and epidemiology often combine multiple
measures into an index, i.e., a compound, or
composite score. An example is the Economic
Social and Cultural Status (ESCS) index used in the
Programme for International Student Assessment
(PISA) project, which is an index of economic,
social and cultural status made up of subscales
measuring Family Wealth, Cultural Resources,
Home Educational Resources and the Educational
and Income Level of the Parents (OECD, 2015). In
this article, an index from health assessment is used
as an example, that is, the 28-joint Disease Activity
Score (DAS28), made up of four different measures
that will be discussed below.

In classical test theory (CCT), expressions for the
reliability of composite scores are well known (see,
e.g., Feldt & Brennan, 1989; Rudner, 2005). Further,
Mosier (1943) proposed a method to optimize the

reliability of a linear composite by finding weights for
each measure by minimizing the error variance in the
index. So this method provides the linear combination
of the multiple measures that maximizes the
reliability.

Nowadays, IRT has emerged as an alternative
statistical framework for addressing measurement
problems, or rather, as an extension of CCT (see, e.g.,
Bechger, Maris, Verstralen, & B�eguin, 2003). IRT pro-
vides a well-founded framework for the construction
of measurement instruments, linking and equating
measurements, and evaluation of test bias and differ-
ential item functioning. Further, IRT has provided
the underpinnings for item banking, optimal test con-
struction and various flexible test administration
designs, such as multiple matrix sampling, and com-
puterized adaptive testing. An important advantage of
IRT over CCT is that missing data and complex data
collection designs (such as adaptive tests, multistage
tests, and booklet-rotation designs) can be easily
accommodated. Since global reliability as defined in

CONTACT: Cees Glas c.a.w.glas@utwente.nl Department of Research Methodology, Measurement and Data-analysis, Universiteit Twente, Enschede,
Netherlands.
� 2018 The Author(s). Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/Licenses/by-
nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed,
or built upon in any way.

MULTIVARIATE BEHAVIORAL RESEARCH
2018, VOL. 53, NO. 6, 914–924
https://doi.org/10.1080/00273171.2018.1478712

http://crossmark.crossref.org/dialog/?doi=10.1080/00273171.2018.1478712&domain=pdf
http://orcid.org/0000-0001-9539-5508
http://orcid.org/0000-0001-6531-5503
http://creativecommons.org/Licenses/by-nc-nd/4.0/
http://creativecommons.org/Licenses/by-nc-nd/4.0/
https://doi.org/10.1080/00273171.2018.1478712
http://www.tandfonline.com


IRT can be seen as a generalization of the reliability
concept of CCT (Bechger et al., 2003), the current
approach solves many problems associated with the
estimation of reliability in more traditional fashions,
especially in the case of missing data and complex
data collection designs.

In IRT, the problem of composite scores can be
tackled in the framework of multidimensional IRT
(MIRT, see Ackerman, 1992, 1994, 1996; Bock,
Gibbons, & Muraki, 1988; Reckase, 1985, 1997, 2009).
In this approach, every measurement instrument loads
on one specific latent dimension and the ensemble of
latent dimensions has a multivariate normal distribu-
tion. This framework is, for instance, used to compute
subscores (see, e.g., Haberman, 2008; Haberman,
Davier & Lee, 2008; Haberman, Sinharay, & Puhan,
2009; Haberman & Sinharay, 2010; Reise, Bonifay, &
Haviland, 2013; Sinharay, 2010; Sinharay, Puhan &
Haberman, 2010, 2011) and to augment the test reli-
ability by collateral information (see, e.g., Wainer,
Vevea, Camacho, Reeve, Rosa, & Nelson, 2001).
This framework is further generalized by Rijmen,
Jeon, von Davier, and Rabe-Hesketh (2014) who
present a model where the latent dimensions associ-
ated with the subscores load on a second-order
latent principal component. Also relevant here is a
study by Culpepper (2013) into the precision of the
IRT-based approach relative to an approach based
on CCT.

The problem addressed in the present article is
how to estimate optimal weights to optimize the glo-
bal reliability of an index based on multiple measures.
Nowadays, the prominent frameworks for estimating
MIRT models are marginal maximum likelihood
(MML) and a fully Bayesian framework. The proced-
ure for the estimation of optimal weights will be
implemented in both. Estimation of multidimensional
IRT models in the likelihood-based MML framework
was outlined by Bock et al. (1988; also see, Bock &
Schilling, 1997; Schilling & Bock, 2005). In the
Bayesian approach, the posterior distribution of the
optimal weights together with their posterior expect-
ation (EAP) as point estimates and their credibility
regions are obtained in an MCMC procedure. The
procedure to compute the estimates is either imple-
mented in a Gibbs Sampler (Gelfand & Smith, 1990)
with data-augmentation developed for MIRT models
(Albert, 1992; B�eguin & Glas, 2001; Johnson & Albert,
1999) or in the general purpose sampler implemented
in OpenBugs (Lunn, Spiegelhalter, Thomas, & Best,
2009; also refer to the package Jags, by Plummer,
2003). The second Bayesian approach needs an

additional software application, because the optimiza-
tion step needs to be performed in every iteration of
the MCMC procedure. Therefore, the complete sam-
ple of all parameter draws must be saved first (the
Coda option in OpenBugs) and the optimal weights
are then afterwards computed using this saved infor-
mation. Still, this last method is simple and easy-to-
implement because apart from the tool needed to pro-
cess the Coda file (available on the author’s website)
all computations can be made in the public domain
software packages OpenBugs or Jags. The main motive
to consider the other two procedures is to validate the
third one.

The three frameworks discussed here will be
labeled MML, MCMC-daug and OpenBugs.

The article is organized as follows. First, the IRT
models are explained, the optimization problem is
outlined, and the estimation procedures are discussed.
Next, a number of simulation studies is presented to
demonstrate the feasibility of the method and to com-
pare the output of the three estimation procedures.
Then, the model is applied to a complex measurement
situation with multiple time points and mixed data
formats (both discrete and continuous). The example
pertains to the DAS28, a multiple-measures index for
disease activity in Rheumatoid Arthritis (RA) patients.
Finally, some suggestion for further research will
be given.

IRT model and optimization problem

MIRT models can be seen as factor analysis models
for discrete observations that use all available informa-
tion in individual item response patterns; hence the
alternative name full-information factor analysis (Bock
et al., 1988). In fact, Takane and de Leeuw (1987)
show MIRT models in a representation as used below
are equivalent to factor analysis models for categorical
data. The model will be presented here for polyto-
mously scored items, with dichotomously scored items
as a special case. So let the response variable ynqij be
equal to one if a person indexed n (n¼ 1,… , N) gives
a response in category j (j¼ 0,… , Mi) of item i
(i¼ 1,… , Kq) of subscale q (q¼ 1,… ,Q). For dichot-
omously scored items, Mi ¼1 leads to a special case.
It is assumed that the responses on the items of every
subscale are given according to the normal ogive rep-
resentation of the Graded Response Model (GRM) by
Samejima (1969). Alternative representations such as a
logistic version of the GRM and the generalized par-
tial credit model (Muraki, 1992) are possible, but
Verhelst, Glas, and de Vries (1997) show that the
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results under the various representations are quite
similar. In the GRM, conditional on a latent variable
hnq, the probability of a response in category j (j¼ 0,
… , Mi) is given by

Pij hnq
� � ¼ Pr Ynqij ¼ 1jhnq; aqi; bi

� � ¼ / aqihnq�bqij
� ��

/ aqihnq�bqi jþ1ð Þ
� �

;

(1)

where /ð:Þ is the cumulative normal distribution. For
the item location parameters, it holds that bqij<bqiðjþ1Þ
and it is assumed that bqi0 ¼ �1 and bqiðMiþ1Þ ¼ 1.
Further, referring to the analogy between MIRT and
factor analysis pointed out by Takane and de Leeuw
(1987), aqi can be seen as a factor loading. Note that
in the present application, it is assumed that every
item loads on one latent dimension only. In IRT, this
is referred to as between-items multidimensionality, as
opposed to within-items multidimensionality, the case
where an item loads on more than one of the dimen-
sions (see, e.g., Reckase, 1997, 2009).

The second assumption of the model is that the
latent variables hn ¼ ðhn1; :::; hnq; :::; hnQÞ have a Q-
variate normal distribution with a density given by

g hnjl;Rð Þ: (2)

Often, l ¼ 0 and R equals a correlation matrix to
identify the model. These restrictions are also used in
the simulation study. However, in multiple group
applications the restriction on the means can be
relaxed, for instance, by assuming that only the mean
of one group is fixed and other groups have free
means; this is also done in the real-data application
presented below.

In the unidimensional case of latent variable modeling,
reliability can be based on the variance decomposition

var hð Þ ¼ var E hjyð Þ½ � þ E var hjyð Þ½ �;
where y is the person’s observed response pattern,
where varðhÞ is the population variance of the latent
variable, var½EðhjyÞ� is the posterior variance of the
expected person parameters (say, the EAP estimates of
h, and E½varðhjyÞ� is the expected posterior variance
of the EAP estimate. Reliability is given by the ratio

q ¼ var E hjyð Þ½ �
var hð Þ ¼ 1�E var hjyð Þ½ �

var hð Þ (3)

(see, Bechger et al., 2003). The middle expression is
the variance of the estimates of the person parameters
relative to the “true” variance, and the right-hand
expression is one minus the average variance of the
estimates of the person parameters relative to the
“true” variance.

In a multidimensional case, reliability can be
defined as follows. An estimate of the latent person
parameter hn can be obtained by its posterior expect-
ation given of a response pattern yn, that is, by
EðhnjynÞ¼

Ð
:::
Ð
hnPðynjhnÞgðhnjRÞdhn1;:::;dhnQ

PðynÞ; where

P ynjhn
� � ¼ Y

q;i;j

Pij hnq
� �ynqij (5)

is the probability of the response pattern, and

P ynð Þ ¼
ð
:::

ð
P ynjhn
� �

g hnjRð Þdhn1; :::; dhnQ (6)

is the marginal probability of response pattern yn.
Then

Cov E hjyð Þ;E hjyð Þt
� �

is the covariance matrix of this estimate. If an index is
defined as the linear combination wth ¼ P

qwqhq,
then for a compound index the definition of reliability
in formula (3) generalizes to

q ¼ wtCov E hjyð Þ;E hjyð Þt
� �

w
wtRw

: (7)

This reliability can be optimized by choosing
appropriate weights. This leads to the constraint maxi-
mization problem Max½wtCovðEðhjyÞ;EðhjyÞtÞw� with
respect to w, subject to the constraint wtRw ¼ 1. The
constraint is chosen such that the variance of the
compound scores is equal to one. Other choices for
the variance are possible, but they will not change the
weights because they figure in a variance ratio.

Solving the optimization problem

The solution is an adaptation of the solution of a more
general problem solved by Albers, Critchley, and
Gower (2011). As a first step, rewrite Equation (7) as

q ¼ 1�wtE Cov h; htjy� �� �
w

wtRw
:

Introducing the notation

E ¼ E Cov h; htjy� �� �
problem becomes

Minimize wtEw
with respect to wtRw ¼ 1:

(8)

Define E ¼ UDU t and C ¼ E�1=2U ’RU E�1=2 ¼
V ’CV . Next, we introduce the change of variables z ¼ T�1w
with T ¼ UE�1=2V so T�1 ¼ V tE1=2U t. As a result
TtET ¼ I, where I is an identity matrix, because
V tD�1=2UEUD�1=2V ¼ V tD�1=2U tUD U tUD�1=2V ¼
I , UtU ¼ I and VtV ¼ I (orthonormal basis of
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eigenvectors). This changes to problem to

Minimize ztz
with respect to ztCz ¼ 1:

However, this is a simple problem, since ztz ¼
z21 þ z21 þ ::::þ z2Q with respect to z21C1 þ z21C2 þ ::::þ
z2QCQ ¼ 1 is minimized upon ordering C1;C2; ::::;CQ

from large to small and set-
ting z1 ¼ C�1=2

1 ; z2 ¼ 0; ::::; zQ ¼ 0:

Marginal likelihood inference

Marginal inference in IRT models (see, Bock &
Aitkin, 1981) proceeds by considering a likelihood
function that is marginalized with respect to the latent
person parameters, that is, the likelihood function of
all item and population parameters is given by

L a; b; l;Rð Þ ¼
Y
n

P ynð Þ

¼
Y
n

ð
:::

ð
P ynjhn
� �

g hnjRð Þdhn1; :::; dhnQ (9)

where PðynjhnÞ is the probability of a response pattern
yn given the latent person parameter hn (Equation
(5)) and gðhnjRÞ is the density of hn (Equation (2)).

For solving the estimation equations, Bock et al.
(1988) employ the EM algorithm (expectation-maxi-
mization algorithm, Dempster, Laird, and Rubin,
1977), where the values of hn are seen as missing data.
It handles missing data, firstly, by replacing missing
values by a distribution of estimated values, secondly,
by estimating new parameters, thirdly, by re-estimat-
ing the distribution of missing values assuming the
new parameter estimates are correct, and fourth, re-
estimate parameters, and so forth, iterating until con-
vergence. The multiple integrals that appear above
(e.g.,, Equations (4), (6), and (9)) can be evaluated
using Gauss-Hermite quadrature. A critical point
related to using Gauss-Hermite quadrature is the
dimensionality of the latent space, that is, the number
of latent variables that can be analyzed simultan-
eously. Bock et al. (2003) indicate that the maximum
number of factors is 10 with adaptive quadrature, 5
with nonadaptive quadrature, and 15 with Monte
Carlo integration.

Bayesian inference

There are several motives for choosing a Bayesian
framework for estimation of the parameters in an IRT
model. One of them is that all uncertainty regarding
the parameters can be incorporated in the analysis.
However, in IRT, another very important motive is

that likelihood-based inference of the more complex
versions of IRT models requires the evaluation of
highly dimensional integrals which, at some point,
becomes infeasible. Bayesian interference using
MCMC computational methods does not suffer from
this problem. In the MCMC approach, samples are
drawn from the posterior distribution of all parame-
ters and so the problem of complex multiple integrals
does not arise here. Another important point is that
along with the parameters, also complex functions of
the parameters can be sampled, and, thus, also their
credibility regions become available. This will be
exploited below to obtain optimal weights and their
credibility regions.

The MCMC-daug algorithm (-daug stands for data-
augmentation) used in the present article is a combin-
ation of the algorithm for MIRT for dichotomously
scored items by B�eguin and Glas (2001) and the
Metropolis-Hastings-algorithm for a unidimensional
GRM by Johnson and Albert (1999). The procedure is
a Gibbs Sampler (Gelfand & Smith, 1990) with data-
augmentation (Tanner & Wong, 1987). The algorithm
iterates over the following steps:

1. Draw augmented data Znqi given a draw of all
other parameters. These variables are independent
and normally distributed as

N aqihnq; 1
� �

I bqij<Znqi<bqi jþ1ð Þ
� �

if Ynqij ¼ j:

This step maps the discrete item responses into
continuous responses. As a result, all remaining
steps are based on regression models with nor-
mally distributed error terms.

2. Draw item parameters b given all other parame-
ters using a Metropolis-Hastings step.

Refer to Johnson and Albert (1999) for details.

For the remaining steps, refer to B�eguin and Glas
(2001). These steps are:

3. Draw the item discrimination parameters a given
the draw of all other parameters;

4. Draw values for the latent variables h given the
draw of all other parameters;

5. Draw the mean l (if needed) and covariance
matrix R from a normal-inverse Wishart distribu-
tion, given the draw of all other parameters.

After a number of burn-in iterations, the draws are
draws from the full posterior distribution. The priors
are independent standard normal for bqij, independent
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normal with expectation 1 and standard deviation 10,
confined to the positive values for aqi, and an unin-
formative inverse-Wishart prior for l and R.

Obtaining estimates of CovðEðhjyÞ;EðhjyÞtÞ, of
EðCovðh; htjyÞÞ, of the weights w and of q can be
done in two ways. The first one is to evaluate of
Equation (1) in every iteration of the MCMC-daug
algorithm using Gaussian quadrature, and solve the
optimization problem defined by Equation (8) to
obtain a value for w and q. The second approach is to
divide the MCMC-daug chain in a number of batches.
Within every iteration, we compute Covðh; htjyÞ, and
over every batch we compute EðCovðh; htjyÞÞ by tak-
ing the average over the iterations within the batch.
So essentially, we are performing a Monte Carlo inte-
gration. Further, for every batch we solve the opti-
mization problem to obtain a value for w and q.
Then, the EAP estimate of EðCovðh; htjyÞÞ, w, and q is
computed as the mean over batches. Note that the
computation of the optimal weights does not interfere
with the MCMC estimation procedure. That is, the
procedure behaves as normal and produces results
that are analogous to the results obtained with a nor-
mal run without the optimization added.

Both approaches are examined in the simulation
study using the MCMC-daug procedure. Implementing
the first procedure in OpenBugs or Jags is problematic,
so there only the second procedure will be used.

Simulation studies

Two sets of simulation studies are presented below,
one for dichotomously scored items and one for pol-
ytomously scored items. The purpose of the simula-
tion studies is to show what type of results can be
expected in a number of typical situations, and to
assess the differences between the three procedures.

Dichotomously scored items

Three simulation studies were made with dichotom-
ously scores items. The first study was made to assess
the effects of varying correlation, sample size and test
length, the second study was made to assess the effects
of unequal numbers of items in subscales, and the
third study was made to assess interaction effects of
differences in correlation and test length in subscales.

The setup of the first set of simulations can be
inferred from Table 1. For all simulations, three sub-
scales were used. The covariance matrix was a correl-
ation matrix with equal correlations between
subscales. In the first column, it is shown that this

correlation was varied as 0.20 and 0.80. In the next
columns, it can be seen that the sample size was var-
ied as 400 and 1000 and that the test length of every
subscale was varied as 5 and 9. The discrimination
parameters were redrawn for every replication from a
log-normal distribution with a mean equal to one,
and a standard deviation equal 0.20. Both for the con-
dition with 5 items and 9 items, the location parame-
ters were equally spaced between –1.00 and 1.00.

The columns labeled MML, MCMC-daug and
OpenBugs give the estimates of the weights and reli-
abilities for the three procedures. For the MML and
MCMC-daug procedures, 100 replications were made
for each condition. For the MML procedure, the num-
ber of quadrature points was equal to 8 for each
dimension, resulting in a grid of 512 points.
Quadrature was adaptive (see, Schilling & Bock,
2005). For both MCMC procedures, 3000 burn-in
iterations were followed by 8100 operational itera-
tions. Checks on the convergence of the MCMC pro-
cedure showed this to be sufficient. To compute the
posterior covariance matrices the 8100 operational
iterations were divided into 90 batches with 90 itera-
tions to compute each replicated posterior covariance
matrix. Comparisons with the analogous computations
using the explicit expression for the matrix and
Gaussian quadrature showed that the results were
very close. The number of within and between batches
iterations will be returned to when discussing the
results of the real-data example. Finally, the estimation
procedure using OpenBugs is less suited for simula-
tion studies, because it is difficult to run OpenBugs in
batch, so here only 20 replications were used.

In Table 1, it can be seen that the agreement
between estimated weights and reliabilities for the
three estimations was very high. Also, the correlation
between the estimates for the three methods was very
high (not shown, but always above .90). Since all test
lengths on all dimensions and the correlations

Table 1. Effects of correlation between subscales (R), sample
size (N), and subscale length (K) on weights (W), and reliability
(q).

MML
Weights

MCMC-daug
Weights

Open Bugs
Weights

R N K W1 W2 W3 q W1 W2 W3 q W1 W2 W3 q

.20 400 5 .36 .27 .28 .74 .33 .32 .33 .75 .33 .32 .33 .75
9 .32 .33 .30 .83 .34 .34 .31 .83 .34 .34 .31 .83

1000 5 .32 .32 .32 .74 .34 .33 .33 .75 .34 .33 .33 .75
9 .30 .35 .32 .82 .32 .34 .34 .82 .32 .34 .34 .82

.80 400 5 .59 .12 .08 .75 .33 .34 .35 .84 .33 .34 .35 .84
9 .32 .32 .36 .90 .34 .33 .34 .90 .34 .33 .34 .90

1000 5 .33 .30 .36 .82 .33 .34 .34 .84 .33 .34 .34 .84
9 .35 .31 .34 .89 .34 .33 .34 .90 .34 .33 .34 .90

W1, W2, and W3 are the weights for subscales 1, 2, and 3, respectively.
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between dimensions were all equal within each condi-
tion, average weights were all approximately equal.
The variance across replications will be returned to
when discussing the next study. Further, as expected,
there were two main effects on the average reliability,
that is, a main effect of the size of the correlation
between dimensions and a main effect of the
test length.

In the second set of simulations, the numbers of
items in the subscales were varied. Overall, the setup
was the same as in the first simulation study. Only
sample sizes of 400 persons were considered here.
Again, the agreement between the three methods was
very high, so only the results of the MCMC-daug pro-
cedure are reported in Table 2, this time with the
standard error over replications. In this set of simula-
tions, there was no main effect of the test length on
the attained reliability and its standard error. The
attained reliability was very high and there seemed to
be no room for further improvement by augmenting
the test length. The weights were always largest for
the longest subscale. However, the weights for the
shorter subscales increased with the correlation. So for
a correlation of .80, the contribution of the shorter
tests to the overall reliability was weighted higher.
Further, also the average reliability over the three
conditions was slightly larger for a correlation of .80.
Standard errors of the weights were smaller in
this case.

In the third set of simulations, the correlation
between the subscales was varied, along with the
distribution of items across the subscales. Sample size
was again 400, and 100 replications were made for
each condition. This was done according to the fol-
lowing logic. Suppose a cluster is defined as a combin-
ation of two subscales. Two combinations are made: a
cluster of two highly correlated subscales combined
with a low correlation with the remaining cluster, or
two subscales with a low correlation combined with a

high correlation with the remaining cluster. These two
configurators are crossed with test lengths as follows.
Within the cluster we can have two short subscales, a
short and a long subscale, or two long subscales.
These three combinations are combined with a short
or a long test for the subscale outside the cluster.
Together this leads to 2� 3� 2¼ 12 combinations
listed in Table 3.

In Table 3, it can be seen that, again, the weights
were always largest for the longest subscale. The
weights were higher when the correlation between the
two subscales in a cluster was higher. Further, a high
correlation of a cluster with the remaining subscale
had an increasing effect on weight of the other sub-
scale. Finally, again the attained reliability increased
with the overall test length, but the pattern of the cor-
relations did not have a discernible effect.

Polytomously scored items

The study with polytomously scored items generally
had the same setup as the three studies regarding
dichotomously scored items reported above. Sample
size was again 400, and 100 replications were made
for each condition. Results are reported in Table 4.
Note that the correlations were varied as 0.20 and
0.80, and the subscale length was varied as 3 and 5.

In the fifth column, under the label M, it can be
seen that the number of response categories was var-
ied as 3 and 5, that is, as Mi¼ 2 and Mi¼ 4, respect-
ively. The item parameters for the condition with
Mi¼ 2 and subscale length 3 were fixed to bi1 ¼
di�0:5 and bi2 ¼ di þ 0:5, where the mean item loca-
tions were fixed at di ¼ �0:25; 0:00 and 0:25. For
the subscale length of 5, two items were added with
mean item locations of di ¼ �0:50 and 0:50. The
item parameters for the condition with Mi¼ 4 and
subscale length 3 were fixed to bi1 ¼ di�0:75;
bi2 ¼ di�0:25;bi3 ¼ di þ 0:25 and bi4 ¼ di þ 0:75,

Table 2. Effects of varying correlation between subscales (R), test length of subscales (K) on weights (W) and reli-
ability (q) MCMC-daug estimation method, 400 persons per replication.

Subscale length
Average over 100
replications Weights

Standard error over 100
replications Weights

R K1 K2 K3 W1 W2 W3 q W1 W2 W3 q

.20 9 21 21 .09 .43 .42 .91 .019 .035 .035 .004
9 9 21 .10 .10 .63 .89 .028 .029 .040 .005
5 9 21 .05 .10 .65 .90 .015 .030 .044 .006

.80 9 21 21 .17 .42 .42 .95 .010 .019 .018 .003
9 9 21 .22 .22 .56 .93 .013 .013 .020 .004
5 9 21 .13 .12 .62 .93 .010 .015 .027 .004

K1, K2, and K3 are the numbers of items in subscales 1, 2 and 3, respectively.
W1, W2, and W3 are the weights for subscales 1, 2 and 3, respectively.
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where the mean item locations were fixed at di ¼
�0:50; 0:00 and 0:50 . For the subscale length of
5, two items were added with mean item locations of
di ¼ �1:00 and 1:00. The item discrimination
parameters were drawn from a lognormal distribu-
tion as indicated above.

In Table 4, it can be seen that the results were
analogous to the results obtained with dichotomously
scored items. The longer subscales obtained higher
weights, and the shorter subscales obtained higher
weights in the conditions with a correlation of .80
relative to the conditions with a correlation of .20.
The reliability had a positive main effect of overall
test length and of correlation, while standard errors
over replications went down as the correlation went
up. Further, for polytomously scored items, the reli-
ability had a positive relation with the number of
response categories.

A real-data example

The example pertains to the DAS-28, an index of dis-
ease activity for RA patients. The data are a set of
patients drawn from the remission induction cohort
of the Dutch Rheumatoid Arthritis Monitoring
(DREAM) registry (Siemons et al., 2011). The remis-
sion induction cohort is a longitudinal observational,
multicenter cohort of clinically diagnosed patients
with early RA that aims to evaluate the effects of a
protocolized treat-to-target strategy in daily clinical
practice. The project started with recruiting patients
in 2006 and data collection is still going on. However,
the used data set was closed in 2012 with 546 patients
included in the sample. These patients were measured
at 0, 3, 6, 9 and 12months. The DAS-28 consists of
four different measures; that is, the 28-tender joint
count (TJC28, a count of joints that are painful in the
hands, shoulders, elbows, wrists and knees, 14 at each

Table 3. Effects of varying correlations and subscale lengths on weights (W) and reliability (q) MCMC-daug estimation
method, 400 persons per replication.

Correlation Subscale length
Average over 100
replications Weights

Standard error over 100
replications Weights

1,2 1,3 2,3 K1 K2 K3 W1 W2 W3 q W1 W2 W3 q

.8 .8 .4 9 9 9 .38 .23 .30 .90 .017 .022 .021 .006
9 9 21 .24 .17 .59 .93 .014 .017 .027 .004
9 21 9 .24 .58 .18 .93 .013 .027 .016 .004
9 21 21 .22 .41 .40 .94 .010 .023 .021 .004
21 21 9 .43 .40 .14 .94 .016 .016 .017 .002
21 21 21 .35 .31 .32 .95 .014 .014 .019 .002

.4 .4 .8 9 9 9 .27 .36 .36 .89 .024 .021 .017 .005
9 9 21 .14 .22 .58 .92 .016 .015 .022 .005
9 21 9 .14 .58 .22 .92 .017 .024 .012 .003
9 21 21 .10 .42 .42 .94 .010 .016 .016 .003
21 21 9 .53 .49 .02 .93 .017 .022 .017 .003
21 21 21 .23 .23 .36 .95 .019 .012 .012 .004

K1, K2, and K3 are the numbers of items in subscales 1, 2 and 3, respectively.
W1, W2, and W3 are the weights for subscales 1, 2 and 3, respectively.

Table 4. Effects of correlation between subscales (R), varying length of subscales (K), and number of response cat-
egories of polytomously scored items (M) on weights (W) and reliability (q) MCMC-daug estimation method, 400
persons per replication.

Subscale length
Average over 100
replications Weights

Standard error over 100
replications Weights

R K1 K2 K3 M W1 W2 W3 q W1 W2 W3 q

.20 3 3 3 2 .327 .316 .335 .727 .075 .068 .076 .009
4 .324 .318 .325 .759 .075 .069 .065 .025

3 3 5 2 .187 .174 .554 .776 .052 .049 .049 .017
4 .193 .193 .542 .800 .048 .048 .042 .013

3 5 5 2 .158 .396 .396 .797 .035 .069 .061 .001
4 .157 .397 .404 .818 .038 .063 .057 .001

.80 3 3 3 2 .334 .340 .331 .829 .023 .030 .024 .000
4 .334 .338 .333 .848 .027 .024 .027 .001

3 3 5 2 .273 .264 .466 .853 .021 .025 .032 .018
4 .268 .277 .455 .869 .027 .022 .032 .020

3 5 5 2 .225 .397 .388 .873 .012 .024 .026 .001
4 .231 .388 .387 .888 .019 .028 .014 .001

K1, K2, and K3 are the numbers of items in subscales 1, 2, and 3, respectively.
W1, W2, and W3 are the weights for subscales 1, 2 and 3, respectively.
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side of the body), the 28-swollen joint count (SJC28),
a patient-reported measure of general health (GH),
and a measure of inflammation consisting of either
the erythrocyte sedimentation rate (ESR) (i.e., the
DAS28-ESR) or the C-reactive protein (CRP) (i.e., the
DAS28-CRP). Both indices, the DAS28-ESR and
DAS28-CRP, are being used in practice. GH is meas-
ured on a 0 to 100 visual analog scale on general
health, where 0 is very good and 100 is very bad.
Tender joints and swollen joints are scored dichotom-
ously and Siemons et al. (2011) showed that these
counts fitted an IRT model (the Rasch model, Rasch,
1960) very well, although a log-likelihood ratio test
showed that the 2-PL model had a significantly better
fit to the TJC28 than the Rasch model (log-likelihood
ratio test ¼163.81, df ¼27, p< .01).

The DAS28-ESR and DAS28-CRP were originally
developed using linear regression. Since this article
has no clinical interest, the ESR and CRP are included
simultaneously. To create the present example, the
values of the ESR, the CRP and GH were transformed
such that they had a standard normal distribution at
the first time point.

For some patients, measures at some time points
were missing. The percent of missing data on each
time point for the different instruments can be found
in Table 5. Note that the percentage increases with
time, this seems to imply that certain people drop out
after a few measurement moments. The missingness is
assumed to be at random and to have no relation
with the outcome measures. One of the strong points
of the present approach is that missing data do not
complicate the estimation procedure. The missing
data are just ignored and all estimates are based on
the observed data only.

The model is as follows. It is assumed that all five
measures at all time points t (t¼ 1,… ,T, T¼ 5)
loaded on a latent person parameter hnqt . Further,
hnqt ¼ hnq þ dt þ enqt, where hnq is a random person
effect that is constant over time, dt is a change param-
eter and enqtare independently normally distributed
errors. The Q-dimensional latent variable hnt ¼
ðhn1t; :::; hnqt; :::; hnQtÞ has a Q-variate normal distribu-
tion given by

hnt�N lt;Rð Þ
where lt has elements dt for t¼ 1,… ,T. Note that the
covariance matrix is assumed constant over time, so R
has elements Covðhnq; hnq0 Þ. So though GH, ESRC and
CRP are scalar-valued measures, the fact that they are
measured repeatedly provides a measure of their reli-
ability. The observations of the tender joints and the
swollen joints were modeled by the 2-parameter

normal ogive model, that is, the model given by
Equation (1) with Mi¼ 1 for all i.

The model was estimated in OpenBugs. Priors for
the item location parameters and the change parame-
ters were independent standard normal distributions,
the item discrimination parameters had independent
log-normal distributions, and the inverse of the
covariance matrix had a Wishart distribution.
The number of burn-in iterations was 3000, then
21,000 iterations were made to estimate all
model parameters.

The obtained change parameters dt are given in
Table 6. Note that all disease indicators decreased
over time, which was as expected.

The EAP estimate of the correlation matrix is given
in Table 7, together with the posterior standard devia-
tions. Note that the CRP and ESR correlated highly.
As do the TJC and GH. The correlation between ten-
der and swollen joints was moderate, 0.58. All other
correlations were quite low, the correlation of ESR
with GH and TJC was even far outside the 99% cred-
ibility region.

To obtain estimates of the weights and reliability
the iterations following the burn-in iterations were
divided into batches. Within a batch, we computed
EðCovðh; htjyÞÞ by taking the average of
Covðh; htjyÞover the iterations. Then, the EAP estimate
of EðCovðh; htjyÞÞ was computed as the mean over
batches. Further, for every batch we solve the opti-
mization problem to obtain a value for w and q. To

Table 5. Percent missing per time point for each instrument.
TJC SJC GH ESR CRP

0 months (t¼ 1) 4.3 0.2 0.9 2.2 5.3
3 months (t¼ 2) 11.6 7.8 8.4 9.5 12.1
6 months (t¼ 3) 20.7 17.0 18.3 19.4 21.8
9 months (t¼ 4) 28.8 24.0 26.7 26.2 28.4
12 months (t¼ 5) 32.4 28.2 30.8 31.9 33.9

Table 6. Mean time effects, posterior standard deviation
between brackets.
t TJC SJC GH ESR CRP

1 –1.53 (.16) –2.80 (.19) –3.44 (.20) –3.55 (.21) –4.16 (.23)
2 –1.12 (.12) –2.29 (.13) –2.81 (.14) –3.19 (.15) –3.54 (.17)
3 0.58 (.04) –0.03 (.04) –0.10 (.04) –0.22 (.05) –0.26 (.05)
4 0.51 (.04) –0.07 (.04) –0.16 (.04) –0.23 (.05) –0.23 (.05)
5 0.49 (.04) –0.11 (.04) –0.18 (.05) –0.17 (.05) –0.16 (.05)

Table 7. Correlation matrix between instruments, posterior
standard deviation between brackets.

TJC SJC GH ESR

SJC 0.58 (.05) – – –
GH 0.74 (.04) 0.15 (.06) – –
ESR 0.02 (.06) 0.20 (.05) 0.02 (.06) –
CRP 0.07 (.07) 0.26 (.06) 0.12 (.07) 0.77 (.04)
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get an impression of the influence of the choice of the
number of within and between batches iterations, several
independent runs were made. The results are given in
Table 8. It can be seen that the results were quite stable.

Discussion

Reliability of indices is an important issue when they
are used as covariates in regression models (as in
large-scale educational surveys such as PISA) or when
they are used to classify respondents (such as patients
with RA). It must be noted that, though maximal reli-
ability is important in the applications addressed here,
reliability is not the only thing that assessments might
aims for. In educational testing, for instance, a test
battery may be made up of several components where
the weights must reflect the understanding and conse-
quently the buy-in of various stakeholders. Therefore,
reliability may be moderated by other, mostly content
driven constraints for weighting the components. For
such applications, research on maximal reliability
under practical constraints is a useful topic, but
beyond the scope of the present study. Here, the focus
is on indices with a different purpose. An example is
the ESCS index in the PISA project. The index has
evolved over the years, but for the 2018 cycle, it is
derived from questions about general wealth (based
on several proxy variables including home posses-
sions), parental education, and parental occupation
(OECD, 2016, for more information on the index
refer to Willms, 2006). The index is a combination of
IRT scales and directly observable variables and maxi-
mizing its reliability is important because it functions
as a predictor for educational achievement.

In this article, it was shown how the reliability of a
compound score or index can be maximized by
weighting the components making up the compound
score. The problem was tackled in the framework of
IRT, both because IRT is by now a much used frame-
work for solving measurement and testing problems,
and because of its flexibility in handling missing data
and multiple groups. The simulation studies showed
that the method behaves as expected. Of course, the
simulation studies do not have the pretention of being

exhaustive and many more conditions could be envi-
sioned. However, the results clearly show the feasibil-
ity of the procedure. Since test length, subscale length,
the average height of the correlation of the subscales
and the number of response categories of polyto-
mously scored items all positively contribute to test
information, they are all positively related to the
attained reliability of the compound score. Also, the
weights behave as expected: the longer subscale has
the higher weight and subscales that highly correlate
with the longest subscale also gain in weight.

The simulations further showed that the statistical
framework is not essential for the results. The
OpenBugs scripts and the programs for the MML
estimation, the MCMC estimation and the computa-
tions on the CODA file are available on the website
https://www.utwente.nl/nl/bms/omd/Medewerkers/
medewerkers/glas/. The real-data example shows
that the method is very flexible and can easily be
adapted for application in more complex measure-
ment situation with multiple time points and mixed
data formats (both discrete and continuous).

Further research pertains to the fact that the pro-
posed procedure maximizes global reliability, that is,
the extent to which random respondents from some
population can be distinguished. IRT distinguishes
between global and local reliability, where the latter
refers the measurement precision locally on the ability
scale, say the person-specific or score-specific reliabil-
ity or measurement error. Optimal weighting to maxi-
mize local reliability in a multidimensional situation is
not straight-forward. Several possibilities are open to
define cutoff scores or cutoff lines in the multidimen-
sional latent space, and it has to be whether decision
rules are conjunctive, disjunctive of compensatory
(see, e.g., Glas, 2014; Glas and Vos, 2010). Therefore,
optimal weighting to maximize local reliability is one
of the more interesting lines of research needing fur-
ther attention.
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