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ABSTRACT
Multilevel autoregressive models are especially suited for modeling between-person differences in
within-person processes. Fitting these models with Bayesian techniques requires the specification
of prior distributions for all parameters. Often it is desirable to specify prior distributions that have
negligible effects on the resulting parameter estimates. However, the conjugate prior distribution for
covariance matrices—the Inverse-Wishart distribution—tends to be informative when variances are
close to zero. This is problematic formultilevel autoregressivemodels, because autoregressive param-
eters are usually small for each individual, so that the variance of these parameters will be small. We
performed a simulation study to compare the performance of three Inverse-Wishart prior specifica-
tions suggested in the literature, when one or more variances for the random effects in the multilevel
autoregressivemodel are small. Our results show that the prior specification that uses plug-inML esti-
mates of the variances performs best. We advise to always include a sensitivity analysis for the prior
specification for covariance matrices of random parameters, especially in autoregressive models, and
to include a data-based prior specification in this analysis. We illustrate such an analysis by means of
an empirical application on repeated measures data on worrying and positive affect.

Introduction

Psychological processes occur within individuals: stress
affecting a person’s mood, a mother’s self-esteem influ-
encing her teenage daughter’s self-esteem, an individual’s
job satisfaction affecting job performance, and so on. It
is likely that many of these dynamical processes also dif-
fer across individuals (see for instance Adolf, Schuurman,
Borkenau, Borsboom, & Dolan, 2014; Hamaker, 2012;
Lodewyckx, Tuerlinckx, Kuppens, Allen, & Sheeber, 2011;
Molenaar, 2004; Rovine & Walls, 2006; Wang, Hamaker,
& Bergeman, 2012). For instance, stressful situations may
strongly affect the mood of one individual, while they
have little effect on the mood of another individual. Mul-
tilevel autoregressive models are ideal for investigating
these types of processes, because they allow for modeling
how variables affect themselves and each other over time.
Moreover, they allow for modeling these effects for each
individual separately in the form of random parameters,
and for the individuals on average, as a result of the inclu-
sion of fixed effects.

Multilevel autoregressive models are complex models
that can prove difficult to fit with software based on tra-
ditional maximum likelihood modeling, especially when
considering multivariate or latent variable extensions, or
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models that include random residual variances. In con-
trast, with Bayesian modeling software, such as Win-
BUGS or OpenBUGS (Lunn, Spiegelhalter, Thomas, &
Best, 2009; Lunn, Thomas, Best, & Spiegelhalter, 2000),
fitting these complex multilevel models is relatively triv-
ial (see for instance Song & Ferrer, 2012; Wang et al.,
2012; or Lodewyckx et al., 2011, for an implementation
in R). Other benefits of Bayesian modeling are its flexi-
bility in handling missing data, and that it directly pro-
vides the researcher with the estimated random parame-
ters. To benefit from this flexibility of Bayesian modeling,
it is necessary to specify prior distributions for the param-
eters that are to be estimated. The prior distributions may
be specified based on a researcher’s prior knowledge about
the parameters in question, such as results from previous
research. However, when there is little or no prior infor-
mation available, or when the researcher wishes to take
a more objective approach, it may be desirable to specify
uninformative prior distributions, prior distributions that
have a negligible influence on the estimated parameters.

In certain cases it can be difficult to specify uninfor-
mative prior distributions. One of these cases is spec-
ifying priors for variances or for covariance matrices
when the variances are small (close to zero). Typical prior
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distributions chosen for variances and covariance matri-
ces are Inverse-Gamma (IG) distributions and Inverse-
Wishart (IW) distributions respectively (e.g., Gelman &
Hill, 2007). These prior distributions, which are usually
uninformative with certain hyperparameters, are quite
informativewhen variances are small, resulting in a strong
effect of the prior distribution on the parameter estimates
(Gelman, 2006; see also Song & Ferrer, 2012, for an exam-
ple). Gelman (2006) and Browne andDraper (2006) show
that when a single variance is modeled, choosing a uni-
form distribution for the standard deviation or variance
instead of the IG distribution results in parameter esti-
mates that are negligibly affected by the prior distribu-
tion. However, the problem is harder to solve in the case
of specifying a prior for a covariance matrix.

The issue is particularly relevant when considering
multilevel models, because multilevel models are prone
to having small variances in the covariance matrix of
the random parameters. Small variances for the random
parameters will result when the interindividual differ-
ences in the parameters are not very large, that is, the
individuals have similar parameter estimates. However,
it is important to note that the size of the variances also
depends on the scale of the random parameters. For
example, small variances for the random parameters may
result as an artifact when the random parameters are
restricted in range, which also restricts the size of their
variance. For example, this may be the case when the ran-
dom parameters are proportions, or probabilities. In the
case of multilevel autoregressive modeling, the regression
parameters are restricted in range as a result of the station-
arity of the model (Hamilton, 1994). For instance, in a lag
1 autoregressive model (AR(1) model), where a variable
is regressed only on itself at the preceding time point, the
autoregression coefficient lies in the range from −1 to 1,
which necessarily results in a small variance for this coeffi-
cient across individuals. As a result, it is difficult to specify
uninformative priors for the covariancematrix of the ran-
dom effects in multilevel autoregressive models (cf. Song
& Ferrer, 2012).

Proper estimation of the covariance matrix of ran-
dom parameters is essential for psychological research,
in order to get an accurate impression of the magnitude
of interindividual differences in the dynamics of individ-
uals, and proper estimations of the covariances are nec-
essary for getting an accurate impression of the associa-
tions among these interindividual differences. Therefore,
the aimof this study is to compare the performance of sev-
eral prior specifications for covariancematrices suggested
in the literature, when one or more of the variances in the
covariance matrix are close to zero. Specifically, we com-
pare three IWprior specifications: (a) a prior specification
that is based on an identity matrix, and is often used as

an uninformative prior in practice, (b) a data-based prior
that uses input from maximum likelihood estimations,
and (c) the default conjugate prior proposed by Kass and
Natarajan (2006). Although we are especially interested
in the Bayesian estimation of multivariate autoregressive
models, in the simulation study we use univariate autore-
gressive models with one outcome variable and a time
varying predictor variable for practical reasons (explained
further in the following section). We illustrate a full mul-
tivariate model in an empirical example on repeatedmea-
sures of positive affect and worrying for 129 participants.

The remainder of this article is organized as follows.
We start by discussing themultilevel autoregressivemodel
in more detail, followed by a section on the IW distribu-
tion and the three prior specifications for the covariance
matrix of the random parameters. After that we present
our simulation studies and their results, andwe present an
empirical application in which we compare the effects of
the different prior specifications for a multivariate model.
We end with our main conclusions and a discussion.

Multilevel autoregressive model

In autoregressive models variables are regressed on them-
selves and each other on a previous time point. In such
a model, the autoregression coefficient reflects the influ-
ence the previous state of a variable has on its current state,
and crossregression coefficients reflect the influence of the
previous value of another variable has on the current state
of this variable (Hamilton, 1994; Kim & Nelson, 1999).
Multilevel extensions of these models allow for model-
ing these dynamic processes for multiple persons, and to
model the average intraindividual effects over the multi-
ple subjects, which helps generalize the results to a larger
population.

Although ourmain interest is in specifying uninforma-
tive priors for full multivariate multilevel autoregressive
models with multiple outcome variables, for the simula-
tion study we focus on a univariate multilevel autoregres-
sivemodelwith one outcome variable and a lagged predic-
tor variable instead, for practical reasons: a bivariate mul-
tilevel autoregressive model contains six random effects
(i.e., two autoregression parameters, two crossregression
parameters, and two means), such that the covariance
matrix of the random effects contains six variances and
15 covariances. Estimating such amodel usingWinBUGS
is time intensive and computationally demanding, which
would make a simulation study based on such a model
challenging. Instead, we focus on a univariate multilevel
autoregressive model with a lagged predictor, which con-
tains only three random effects, such that the covariance
matrix of the random effects contains three variances and
three covariances. However, we emphasize that the model



MULTIVARIATE BEHAVIORAL RESEARCH 187

Figure . Multilevel AR() model with time-varying predictor. At
level , the outcome variable y for individual j is regressed on itself
at the previous time point t − 1, and on a time varying predictor
x at the previous time point t − 1. The mean of y, μ, the autore-
gression coefficient φ, and the crossregression coefficient β , are
allowed to vary over individuals j (indicated by the black dots). At
level two, the random coefficients are multivariate normally dis-
tributed, with the covariance structure as indicated in the figure.

can be generalized to include more than one outcome
variable. We illustrate such a multivariate model in the
empirical example, for which we fit a bivariate model (this
took approximately 24 hours with three chains, without
parallel computing for the three chains). For a graphical
representation of the univariate model with a lagged pre-
dictor, see Figure 1.

In the univariate multilevel AR(1) model with a time-
varying predictor, ytj is a score on outcome variable y for
person j at time point t. The scores ytj are split in individ-
ual means μ j, and a residual score ztj. The autoregression
and crossregression effects are modeled using residual
scores ztj: ztj is regressed on zt−1 j, the residual score for
outcome variable yt−1 j for person j at previous time point
t − 1, and on xt−1 j, the score on a time-varying predictor
variable x for person j at time point t − 1. Modeling the
autoregression effects on ztj rather than on ytj directly
allows us to estimate the means μ j directly rather than
the intercepts. The means represent the baseline score for
an individual, which is more intuitive than the intercept,
which represents the score of an individual when the
predictor variables are zero. The autoregression coeffi-
cients φ j represent the association between the outcome
variable y at time t with itself at time t − 1. The larger
the absolute autoregression coefficient, the better future
values of y can be predicted by the previous value of y.

Positive autoregression coefficients are also interpreted as
a measure of inertia—the larger the autoregression coef-
ficient, the slower it will take for y to return to its baseline
μ after a perturbation of the system (Suls, Green, &
Hillis, 1998). The crossregression coefficients β j indicate
how well a past value of a predictor x predicts the future
value of y. In multivariate models the crossregression
coefficients can be used to investigate the reciprocality
of the effects between multiple variables (Moberly &
Watkins, 2008; Nezlek & Allen, 2006; Nezlek & Gable,
2001). Innovation etj represents anything that is not
directly measured that may influence the system. These
innovations are assumed to be normally distributed with
a mean of zero and variance σ 2. In other words, at level 1
the multilevel model can be specified as:

ytj = μ j + ztj
ztj = φ jzt−1 j + β jxt−1 j + etj (1)
etj ∼ N(0, σ 2). (2)

In this model, three parameters are allowed to vary
over individuals:μ j, themean for person j;φ j, the autore-
gression coefficient for person j; and β j, the crossregres-
sion coefficient for person j.Wewill refer to these individ-
ual parameters as random parameters, and assume that
they are multivariate normally distributed, with means
γμ, γφ , and γβ , and 3 × 3 covariancematrix�. Themeans
describe the average effects (i.e., fixed effects) for the
group of individuals, and the covariance matrix describes
the variations around these means for the group of indi-
viduals. Hence, at level 2 we have:

⎡
⎣
μ j
φ j
β j

⎤
⎦ ∼ MvN

⎧⎨
⎩

⎡
⎣
γμ
γφ
γβ

⎤
⎦ ,

⎡
⎣
ψ2
μ

ψμφ ψ2
φ

ψμβ ψφβ ψ2
β

⎤
⎦

⎫⎬
⎭. (3)

We focus here on autoregressive processes that are station-
ary for each individual, meaning that the mean and vari-
ance of the outcome variable are stable over time for each
individual. If the AR(1) process is stationary, the autore-
gression parameters φ j will lie within a range of −1 to 1
(Hamilton, 1994).1 When this holds for every individual,

 Note, however, because we assume that φ comes from amultivariate normal
distribution, that technically autoregressive parameters outside of this range
can occur. In our simulation study we chose the mean vectors and covari-
ance matrices for the multivariate normal distribution so that parameters
not in line with the stationary assumption are extremely unlikely. We chose
these parameters to be in line with what we generally have encountered for
autoregressivemodeling in psychological practice: stationary processes with
autoregressive parameters in a range of about  to.. Note that encounter-
ing a nonstationary parameter value during estimation is not problematic
for the estimation procedure, so that using amultivariate normal distribution
rather than, for instance, a truncatedmultivariate normal distribution should
not result in any technical (estimation) problems. In practice, encountering
such a nonstationary parameter value would simply imply that the process
is not stationary for that person. It may then be useful to consider different
or extended models that models nonstationarity in an informative way (c.f.
Hamilton, ).



188 N. K. SCHUURMAN ET AL.

the variance of the autoregression coefficients ψ2
φ will be

small. For instance, the mean of.4 and a variance of.04
for φ j would result in a relatively large range of possi-
ble values for φ j, namely a 95% interval of [.008,.792],
whereas a variance of.01 would still result in a relatively
large 95% interval of [.204,.596]. Similar ranges are found
empirically, for instance by Wang et al. (2012): they stud-
ied daily measures of negative affect, and found a γφ of.15
and a variance ψ2

φ of.04. The means μ j and crossregres-
sion coefficients β j are not restricted in range. Of course,
the variances of μ j and the random crossregression coef-
ficients β j may be small as well, due to the scale of the
variables resulting in a small coefficient,2 or simply due
to minimal individual differences in these coefficients.
Given that the standard priors for covariance matrices are
very informative when variances are small, it will be dif-
ficult to specify the prior distribution for the covariance
matrix of the random parameters � such that it has a
negligible influence on the results. In the next section we
will go into more detail about the priors for covariance
matrices, and why they are informative when variances
are small.

Priors for the covariancematrix of the random
parameters

For Bayesian estimation of the multilevel autoregressive
model, prior distributions have to be specified for the ran-
dom parameters (i.e., μ j, φ j, β j for j = 1, . . . , n), for the
fixed effects (i.e., γμ, γφ, γβ), for the innovation variance
(i.e., σ 22), and for the covariance matrix of the random
parameters (i.e., �). When an influence of the prior dis-
tributions on the results is undesirable, for instance when
no relevant prior information is available, it is desirable to
specify uninformative prior distributions that have a neg-
ligible influence on the end results.However, prior specifi-
cations that are uninformative in specific circumstances,
may become informative under different circumstances.
Ourmain interest here is in how to specify an uninforma-
tive prior distribution for �, so that the influence of the
prior specification on the estimates of the variances and
covariances of the random effects is minimal, under the
specific circumstance that the true sizes of some of these

 Note that it is possible to increase the meansμ j and their variance, by trans-
forming the relevant outcome variable (e.g., multiply the variable by ).
When the variance for the mean is increased so it is no longer close to zero,
specifying the IW prior distribution for this coefficient will be relatively trivial.
However, this is not possible for the autoregressive coefficient, because it is
standardized as a result of the stationarity assumption that results in equal
variances for yt and yt−1 (Hamilton, ). While the transformation is pos-
sible for the crossregression coefficients, in a multivariate model increasing
one crossregression coefficient results in decreasing the other crossregres-
sion coefficient—merely shifting the problem to another coefficient. Further,
it may be difficult to determine in advance by howmuch to increase a coeffi-
cient, since its value is unknown a priori.

variances are small, as would be the case for the autore-
gression coefficients φ j.

For this purpose we will first discuss the IW distribu-
tion, which is the conjugate prior for covariance matrices
given normally distributed data, thenwewill go intomore
detail about the prior specification problem for covariance
matrix�, andwewill discuss three prior specifications for
� suggested in the literature.

The IW prior distribution

The prior distribution that is typically used for the covari-
ance matrix of multivariate normally distributed vari-
ables, such as the covariance matrix � for the random
effects, is the IW distribution (Gelman et al., 2013; Gel-
man & Hill, 2007). The IW distribution is a conjugate
prior for the covariancematrix ofmultivariate normal dis-
tributed variables, which implies that when it is combined
with the likelihood function, it will result in a posterior
distribution that belongs to the same distributional fam-
ily. Another important advantage of the IW distribution
is that it ensures positive definiteness of the covariance
matrix.

The IW distribution is specified with an r × r scale
matrix S, where r is equal to the number of random
parameters, and with a number of degrees of freedom df ,
with the restriction that df > r − 1. S is used to position
the IW distribution in parameter space, and the df set the
certainty about the prior information in the scale matrix.
The larger the df , the higher the certainty about the infor-
mation in S, and the more informative is the distribu-
tion (Gelman et al., 2013; Gelman &Hill, 2007). The least
informative specification then results when df = r, which
is the lowest possible number of df .

The means and covariance matrix of the IW distribu-
tion are a function of the elements skl on row k and col-
umn l from S, r, and the df . That is, the density of the IW
distribution is

∣∣∣S d f
2

∣∣∣
2

d f r
2 �r

(
d f
2

) |X |− d f+r+1
2 e−

1
2 tr(SX

−1) (4)

where tr () stands for the trace function, and�r stands for
the multivariate Gamma function. The mean of the IW
distribution is

E[X] = S
d f − r − 1

(5)

and the variance of each element of the IW distribution is

Var[xkl] = (d f − r + 1)s2kl + (d f − r − 1)skksll
(d f − r)(d f − r − 1)2(d f − r − 3)

). (6)
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The variances for the diagonal elements of the IW distri-
bution simplify to

Var[xkk] = 2s2kk
(d f − r − 1)2(d f − r − 3)

. (7)

It can be seen from Equation (6) that when the df
increase, the denominator will increasemore rapidly than
the numerator, so that the variance will become smaller,
which implies that the IW distribution will become more
informative. It can also be seen that the size of the vari-
ance is partly determined by S: The smaller the elements
of S, the smaller the variance of the IW distribution, and
hence the more informative the prior will be. However,
setting the scale to large values also influences the posi-
tion of the IW distribution in parameter space, as can be
seen from Equation (5). In other words, specifying a IW
prior distribution requires balancing the size of S and the
df .

A typically used relatively uninformative IW prior is
a prior with small df and an identity matrix S. In many
situations this prior specification will be uninformative
enough for the the data to dominate the prior, so that the
influence of the prior on the results will beminimal. How-
ever, when the variances are quite small, IW priors are
informative, so that the estimates for the variances will be
sensitive to the IW prior specification, resulting in over-
or under-estimation of the variances depending on the
specification of the prior distribution. The reason for this
sensitivity when the variances are close to zero is that the
IW distribution is bounded at zero for the variances: in
consequence of this boundedness, slightly changing the
central tendency of the distribution can have large effects
on the weights placed on values close to zero.

We illustrate this in Figure 2, which shows eight plot-
ted marginal densities for one of the diagonal elements
of a bivariate IW distribution with varying df and S. The
four panels include two densities with the same diagonal
S, with respectively.001,.01,.1, or 1 as diagonal elements.
For each panel, the density plotted in black has a larger
df than the corresponding density plotted in gray. These
plots further demonstrate that the IW-distribution tends
to place either a lot of weight on a specific value close to
zero (as in the upper panels), or place almost no weight
close to zero (as in the lower panels). This shows that the
IW-distribution is easily misspecified when variances are
small. When the prior is specified too far from zero (e.g.,
IW prior with S as an identity matrix), this will result in
an overestimation of the variances. However, specifying
the central tendencies too close to zero will result in an
underestimation of the variances, firstly because toomuch
weight is shifted towards zero, and secondly because an
element of the scale matrix set close to zero will also have
a small variance (the density is more peaked). This is the

case for instance for an IG distribution—which is basi-
cally a univariate simplification of the IW distribution—
with a shape and scale close to zero (e.g., IG[10−5,10−5]).
This IG distribution is often considered as an uninfor-
mative prior specification for a single variance, however
it has been shown that this indeed results in an under-
estimation of the variance when this variance is small
(Browne & Draper, 2006; Gelman, 2006). Although Gel-
man (2006) demonstrates that in the univariate case it is
possible to use a Uniform or Inverse Half-Cauchy dis-
tribution instead of the conjugate IG distribution, giving
good results, the solution to this problem is less simple
for multivariate (IW prior) cases. In the following we will
discuss three IW prior specifications that have been sug-
gested in the literature.

Three ways to choose S for the IW prior distribution

In order to find the best way to specify the prior for �

when some of the variances are close to zero, we will
evaluate the performance of three IW priors for � that
have been suggested in the literature, using a simulation
study.3 Note that for most Bayesian software, including
the software WinBUGS that we use for the simulation
study (Lunn et al., 2000), one actually specifies a Wishart
distribution for the precisions, rather than the IW for the
variances. The relation of the IW and the Wishart distri-
bution is that if X (here, the precision matrix) is Wishart
distributed with scale matrix V and degrees of freedom
df , then variable X−1 (here, the covariance matrix) is IW
distributed with scale matrixV−1 and degrees of freedom
df . Below, we discuss the prior specifications in terms of
the IW distribution. For the correspondingWishart spec-
ification, the scale matrix is simply inverted. For all three
specifications the df are set equal to r (here r = 3), so that
the priors are minimally informative (Gelman et al., 2013;
Gelman & Hill, 2007).

The first IW prior specification we will examine is the
one that is commonly used as an uninformative prior
specification, and which we will refer to as the Identity
Matrix (ID) specification. In this specification the diag-
onal elements of scale matrix S are set to 1 and the off-
diagonal elements are set to zero.We expect that this prior
specification will prove to be quite informative in the cur-
rent context where the variance of φ j is small.

 Weconsidered the scaledWishart describedbyGelmanandHill () aswell;
however, this specification resulted in traps in WinBUGS (e.g., the estimation
procedure would crash). Further, we considered specifying the variances and
covariances in a regression structure avoiding the use of the IW prior spec-
ification, specifying the model with univariate priors, and to transform the
random parameters so that they have a larger variance, and specifying an IW
prior for the covariance matrix of the transformed parameters. For this work
however, we decided to focus on different specifications of IW specifications
suggested in the literature. More information on the other specifications is
available from the first author.
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Figure . Eight Inverse-Wishart (IW) marginal probability densities, each specified with specific degrees of freedom (df ) and scale matrix
S. The densities are based on samples from a bivariate IW distributionwith a diagonal S. All eight specifications are informative: in the area
around zero, each specification gives either a lot of weight to a specific value around zero, or gives almost no weight around zero. As such,
the IW-distribution is easily misspecified if a IW-distributed variance is close to zero.

The second IW prior specification that will be exam-
ined is an IW prior specification in which the scale matrix
is based on prior estimates of the variances of the random
parameters. Using estimates of the variances as input for
the IW prior specification ensures that the prior specifi-
cation will be close to the data, and therefore should limit
bias. However, this requires us to use the data twice; once
for estimating the input for the prior, and again for the
likelihood. When the data are used twice, the certainty
about the estimated parameters is exaggerated (Kass &
Steffey, 1989; see also discussions on the use of Empirical
Bayes by Gill, 2014, p. 276–270, and Lindley, 1969, p. 420–
421). This can have statistical repercussions: because cer-
tainty about the point estimates is exaggerated, the stan-
dard deviations of the point estimates and their credible
intervals will become too small (Kass & Steffey, 1989).
How much the estimates will be influenced by using the
data twice, will depend on how, and howmuch of the data
is used.When the information in the used data is little, the
effect will be negligible asymptotically (see for instance

Berger&Pericchi, 1996;O’Hagan, 1995, on training data).
Setting the df of the IW specification as small as pos-
sible minimizes the information value of the data-based
prior, and therefore limits the effects of exaggerating the
certainty about the point estimates. We will examine the
effect of using the data twice as part of the simulation
study, for instance by examining the coverage rates for the
credible intervals of the estimated variances.

For the simulation study we will use a maximum like-
lihood procedure to obtain prior estimates of the vari-
ances, and we will refer to the prior specification based
on these estimates as themaximum likelihood input (ML)
specification. In this ML prior specification, we specify
the Wishart prior distribution in WinBUGS so that the
ML estimates of the variances of the random parame-
ters are plugged into theWishart distribution scalematrix
S−1 so that the mean of the Wishart distribution equals
the estimated precisions (inverted variances). Note how-
ever that it is also possible to obtain estimates of the vari-
ances by other means—for instance by fitting a Bayesian
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model with uniform priors on the variances (ignoring any
covariances), and base the IW orWishart scale matrix on
those estimates of the variances. Another option would
be to fit an autoregressive model for each individual sepa-
rately, provided that there are enough repeated measures
per person to do this. Afterwards, the variances can be
estimated by computing the variances of the estimated
individual coefficients, which can then be used for the IW
or Wishart prior specification. For our simulation study
we opt for ML mainly because of its speed. We obtain
the ML estimates by fitting the model in R (R Develop-
ment Core Team, 2012) with the R-package lme4 (Bates,
Maechler, & Bolker, 2012). In order to estimate the vari-
ance of the mean and not the variance of the intercept,
the model in lme4 was fit on person-centered data. We
used only the ML estimated variances as input for the
prior specification, while setting the prior covariances
to zero, because preliminary results showed that using
estimates of the full covariance matrix decreased perfor-
mance, probably because theML-estimates for the covari-
ances were not close to the true values.

The third IW specification we consider is the default
conjugate (DC) prior proposed by Kass and Natarajan
(2006). In the DC prior specification, the mean of the IW
distribution is set to

⎛
⎝1
n

k∑
j=1

Z′
jW jZ j

⎞
⎠

−1

(8)

where n is the number of participants, Z j is the design
matrix for person j, and W j is the generalized linear
model weight matrix for person j. The latter is based on
(estimates of) model parameters. In the case of a normal
model,W j is a diagonal matrix with 1/σ 2 on the diago-
nal (see Fahrmeir, Tutz, & Hennevogl, 2010). Given that
we need an estimate of the residual variance σ 2 for the
specification of the DC prior specification, we fit the mul-
tilevel model with maximum likelihood techniques in R-
package lme4, and useML-estimates of σ 2 as input for the
generalized linear model weight matrix. Therefore, this
specification is also data-based. However, the information
in the data used will be little, so that the effect of using the
data twice should be negligible, as is shown by Kass and
Natarajan (2006).

The effect of the DC prior specification is that half of
the prior weight on the random parameters is given to
the common effects (γμ, γφ, γβ), and half of the weight is
given to estimates for each individual separately (μ, φ, β
for each individual) as if a model was fit for each individ-
ual separately. This approach is directly related to shrink-
age estimates (see Bryk & Raudenbush, 1992; Kass &
Natarajan, 2006, but note that the weight on the random

parameters is not necessarily one half for shrinkage esti-
mates). In other words, the prior information is specified
so that the prior weight is in between a parameter vari-
ance of zero (i.e., no individual differences) and the max-
imum parameter variance (i.e., maximum individual dif-
ferences).

Kass and Natarajan (2006) compare the performance
of the DC prior specification and ML specification for a
Poisson model in a simulation study. In their study the
DC prior outperformed theML prior in terms of coverage
rates, and squared and entropy loss. However, the model
used was univariate with respect to the random parame-
ters: only one parameter was random, so only one vari-
ance had to be modeled. Hence it remains unclear how
the DC prior performs with regard to the estimation of
the covariances between the random parameters. It also
remains unclear how the DC prior performs when vari-
ances are close to zero. We will investigate these issues in
the simulation study.

Simulation study

Our simulation study consists of two parts: in the first
part we examine the performance of the Wishart pri-
ors for different sizes of (small) variances in �, and in
the second part we examine the performance of the IW
prior specifications for different sample sizes and covari-
ance structures when one ormore variances in the covari-
ance matrix are small. We compare three prior specifi-
cations for � as discussed previously: the ID specifica-
tion, theML specification, and the DC specification (Kass
& Natarajan, 2006). We will evaluate the performance of
these three specifications against a specification that has
the df set to 3, and the means of the IW distribution set to
the true values. In practice this benchmark (BM) specifi-
cation of course cannot be used, but we use it in the simu-
lation study to determine optimal performance. For both
parts the data are simulated according to the previously
described model in open source software R (R Develop-
ment Core Team, 2012). For both parts of the study the
models are simulated 1,000 times (1,000 replications). In
both parts of the simulation study γμ is set to 3, ψ2

μ is set
to 0.25, γφ is set to 0.3, γβ is set to 0.35, and σ 2 is set to 1.
The variance of the predictor variable x, ν2, is set to 1.2.

For both parts we implemented and estimated all
models in free Bayesian modeling software WinBUGS
(Lunn et al., 2000), in combination with the R-package
R2WinBUGS (Sturtz, Ligges, & Gelman, 2005). We chose
Normal(0, 10−9) priors (specified in terms of precision
instead of variance, which is required in WinBUGS) for
the fixed effects γφ , γβ , and γμ, and aUniform(0, 10) prior
for σ 2, the residual variance at level 1. We evaluated the
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convergence of each model based on the visual inspec-
tion of the mixing of the three chains, and the Gelman-
Rubin convergence diagnostic (Gelman & Rubin, 1992).
We also evaluated the autocorrelations for the samples.
Practically it was not possible to evaluate the convergence
for each replication of each model in the simulation study
(e.g., run each replication with three chains and visually
inspect the convergence). Instead, we fitted and evaluated
the convergence for one replication for each different con-
dition in Part I and II of the study.

For all models convergence results were fairly similar.
The three chains mixed well for all models and parame-
ters. The Gelman-Rubin diagnostic was 1, or very close to
1, for the parameters in all models. Generally, the autocor-
relations decreased exponentially to zero for the param-
eters σ 2, γμ, and ψμ, and the individual μ js. For the
remaining parameters, the autocorrelations were gener-
ally a bit slower to decrease, depending on the sample
size and size of the variances of the random parameters.
For most model specifications autocorrelations for these
parameters diminished to zero after about 20 lags. Auto-
correlations diminished to zero after about 40 to 60 lags
when variance size is the smallest (0.0025), and sample
size is the smallest (25 persons and repeated measures).
Based on the convergence results and the autocorrela-
tions, we judged 40,000 iterations with 30,000 burn-in
iterations as sufficient for convergence.

As point estimates for the parameters we used the
means of the posterior distributions. Performance is eval-
uated using: a) coverage rates of the 95% (equal tailed)
credibility intervals (CIs), which we would expect to be
about.95 when the priors are uninformative; (b) bias,
which is computed by taking the average of the difference
between the true value and the point estimate across all
1,000 replications; and (c) the ratio of the average pos-
terior standard deviation and the standard deviation of
the posterior averages, which should be about 1 if the
posterior standard deviations reflect the actual sampling
variation.

Part I: The effect of small variances in�

In order to study the effect of the (small) size of the
variances of the random parameters per prior for �, the
variances ψ2

φ and ψ
2
β were either set to.0025,.01, or.0225.

These variances result in 95% intervals for the autoregres-
sion coefficients of respectively [.202,.398], [.104,.496],
and [.006,.594]. These ranges are in line with autoregres-
sive coefficients reported in the literature, which are usu-
ally small and positive (e.g, Moberly and Watkins (2008),
Nezlek and Gable (2001), Suls et al. (1998), and Wang
et al. (2012) report fixed autoregression effects between.08

and.3 approximately). The sample size is set to 50 indi-
viduals and 50 time points. All the correlations between
the random parameters are set to.3. This results in a 4
× 3 (i.e., prior specification × size variance) simulation
design. Below, we summarize the results for Part I of the
simulation study. More detailed results for the simulation
study are available in the supplementary materials, and
the simulated data are available upon request from the
first author.

The results show that overall, the ML prior specifica-
tion performs best. The bias of the ML specification is
quite close to that of the BM specification. It can be seen
from Figure 3 that even though coverage rates are lower
than 95% forψ2

φ andψ
2
β for this prior specification, it out-

performs both the ID specification and DC specification.
The coverage rates forψ2

φ andψ
2
β are lower than .95 likely

as a result of the double use of data: the data is used once
in the prior and again in the likelihood, and as a result the
information about the estimation is exaggerated, which in
turn results in smaller credible intervals. The ID specifica-
tion severely overestimatesψ2

φ andψ
2
β . The DC specifica-

tion performswell only if the prior specification is close to
the true values ofψ2

φ andψ
2
β . In this simulation study this

was the case when the true variances were.01 or.0225, but
not when they were.0025. Since in practice it is unknown
if the DC prior is close to the true values of ψ2

φ and ψ2
β ,

it is an undependable prior to use when the aim is to use
an uninformative prior for the covariance matrix, while
some variances are close to zero. The ML specification on
the other hand is by definition close to the information in
the data and therefore performs relatively well.

Note that when a variance is further away from zero,
all prior specifications perform reasonably well: the true
value for the variance ψ2

μ for random effect μ j was .25,
and it can be seen from Table 1 to 3 that all prior speci-
fications perform well for this parameter. We discuss the
results per prior specification in more detail below.

Performance ID specification
Overall, the ID specification performs poorly. From
Figure 3 it can be seen that the coverage rates for ψ2

φ

and ψ2
β are equal to zero regardless of the true sizes for

ψ2
φ and ψ2

β , indicating that the true values were never
within the credible interval. This is due to a large bias in
these parameter estimates: the parameters ψ2

φ and ψ
2
β are

severely overestimated. The coverage rates for the remain-
ing parameters on the other hand are equal or close to
1 (see Table 1), as a result of too conservative standard
deviations for all parameters for the ID specification. This
is illustrated by the the ratios of the average posterior
standard deviations and calculated standard deviations of
the posterior means, over 1,000 replications, reported in
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Figure . Part I coverage rates, estimated bias, and ratios of the average estimated posterior standard deviations and the standard devi-
ations of the estimated posterior means, for the variance ψ2

φ of the autoregression coefficient and the variance ψ2
β of the cross-lagged

coefficient calculated over , replications. The coverage rates, bias, and ratios of standard deviations are shown for the benchmark
(BM), identity matrix (ID), maximum likelihood (ML) input, and default conjugate (DC) prior specification, for true values forψ2

φ andψ
2
β of

.0025, .01, and .0225. Overall, the ID specification clearly performs the worst. The performance of the ML specification performs the best,
as it is closest overall to the benchmark specification. The performance of the DC specification depends on if the specification is close or
not to the true value of ψ2

φ and ψ
2
β , as can be seen most clearly from the graphs of the bias and coverage rates. The DC specification of

performs relatively well whenψ2
φ is .01 or .0225, but its performance dramatically decreases whenψ2

φ is .0025.
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Table . Part I: Coverage rates for the % credible intervals, calculated over , replications.

ψ2
β

=ψ2
φ

=. ψ2
β

=ψ2
φ

=. ψ2
β

=ψ2
φ

=.

BM ID ML DC BM ID ML DC BM ID ML DC

μ j . . . . . . . . . . . .
β j . . . . . . . . . . . .
φ j . . . . . . . . . . . .
γ
μ

. . . . . . . . . . . .
γ
β

. . . . . . . . . . . .
γ
φ

. . . . . . . . . . . .
ψ2
μ

. . . . . . . . . . . .
ψ2
β

. . . . . . . . . . . .
ψ2
φ

. . . . . . . . . . . .
ψ
μβ

. . . . . . . . . . . .
ψ
μφ

. . . . . . . . . . . .
ψ
φβ

. . . . . . . . . . . .
ρ
μβ

. . . . . . . . . . . .
ρ
μφ

. . . . . . . . . . . .
ρ
φβ

. . . . . . . . . . . .

Note. A coverage rate of. is considered optimal. The coverage rates are calculated for three different true values of variancesψ2
φ andψ

2
β . Coverage rates are shown

for the benchmark (BM) prior specification, the identitymatrix (IM) prior specification, themaximum likelihood (ML) input specification, and the default conjugate
(DC) prior specification, and for the following parameters: the random effectsμ j , φ j , and β j , the fixed effects γμ j , γφ j , and γβ j , all elements from the covariance
matrix
 for the random effects, and the correlations between the random effects ρμφ , ρμβ , and ρφβ .

Table 3, which are much larger than 1—indicating too
large posterior standard deviations.

PerformanceML specification
The coverage rates for the ML specification are similar to
those for the BM specification, except for the estimates
of the random effects φ j, β j, and their variances ψ2

φ and
ψ2
β . The coverage rates for ψ

2
φ and ψ2

β for the ML speci-
fication are low compared to the BM specification, rang-
ing from approximately .70 when ψ2

φ and ψ
2
β are .0025 to

approximately .90whenψ2
φ andψ

2
β are .01 or .0225. These

coverage rates are however considerably better than those
for the ID specification. The coverage rates for the ran-
dom parameters φ j and β j range from .893 to .936 (low-
est rates for a true variance of .0025), which is relatively
low compared to the other prior specifications, includ-
ing the BM specification. These results are consistent with
the relatively small posterior standard deviations for ψ2

φ ,
ψ2
β , φ j, and β j for the ML specification compared to the

other prior specifications, as can be seen from the ratios
of standard deviations in Table 3. The relatively small pos-
terior standard deviations for these parameters are likely
the consequence of the double use of data. Further, it can
be seen from Table 2 that the ML specification results in
very little bias compared to the ID and DC specification,
and that the amount of bias is actually similar to that of
the BM specification.

Performance DC specification
The performance of the DC specification varies depend-
ing on the true values for the variancesψ2

φ andψ
2
β , as can

be most clearly seen from a plot of the bias and cover-
age rates in Figure 3. The DC specification performs well
when ψ2

φ and ψ2
β are .01 and .0225: the coverage rates,

bias, and ratios of the posterior standard deviations and
standard errors for the DC specification are then close to
those for the BM specification. However, when the vari-
ances are equal to .0025, performance strongly declines,
with coverage rates for ψ2

φ and ψ
2
β that are equal to zero.

Closer inspection of the results indicates that this low cov-
erage rate is due to an upward bias for these parameters.
The ratio of the posterior standard deviations and stan-
dard errors also strongly increases when ψ2

φ and ψ2
β are

.0025, indicating that the posterior standard deviations
are overestimated. The upward bias for the parameters is
so large however that it is not compensated by the rela-
tively wide credible intervals. The DC prior has low cov-
erage rates for the covariance and correlation between
μ j and φ j. This is the result of a downward bias for this
parameter, which seems due to the DC prior specification
that sets ρφμ to approximately −.90 based on Equation
(8). The coverage rates for the remaining parameters are
high compared to the BM specification, due to relatively
large posterior standard deviations for these parameters,
as shown in Table 3.

The discrepancy in performance of the DC prior spec-
ification across the three values of ψ2

φ and ψ2
β proba-

bly results because the DC specification does not depend
directly on ψ2

φ and ψ2
β , so that it does not change much

in accordance with ψ2
φ and ψ2

β . Therefore, the input for
the DC specification may be similar regardless of the true
value for ψ2

φ and ψ2
β . When the information in the DC

specification forψ2
φ andψ

2
β is not close to the information
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Table . Part I: Ratio of estimated average posterior standard deviations and calculated standard deviations of the estimated posterior
means over , replications.

ψ2
β

= ψ2
φ

= .0025 ψ2
β

= ψ2
φ

= .01 ψ2
β

= ψ2
φ

= .0225

BM ID ML DC BM ID ML DC BM ID ML DC

γ
μ

. . . . . . . . . . . .
γ
β

. . . . . . . . . . . .
γ
φ

. . . . . . . . . . . .
ψ2
μ

. . . . . . . . . . . .
ψ2
β

. . . . . . . . . . . .
ψ2
φ

. . . . . . . . . . . .
ψ
μβ

. . . . . . . . . . . .
ψ
μφ

. . . . . . . . . . . .
ψ
φβ

. . . . . . . . . . . .
ρ
μβ

. . . . . . . . . . . .
ρ
μφ

. . . . . . . . . . . .
ρ
φβ

. . . . . . . . . . . .

Note.A ratio of  is consideredoptimal,with a ratio>  indicatinganoverestimationof theposterior standarddeviations, anda ratio<  indicatinganunderestimation
of the posterior standard deviations. The ratios are calculated for three different true values of variancesψ2

φ andψ
2
β . The ratios are shown for the benchmark (BM)

prior specification, the identitymatrix (IM) prior specification, themaximum likelihood (ML) input specification, and the default conjugate (DC) prior specification,
and for the following parameters: the random effectsμ j ,φ j , and β j , the fixed effects γμ j , γφ j , and γβ j , all elements from the covariancematrix
 for the random
effects, and the correlations between the random effects ρμφ , ρμβ , and ρφβ .

from the data, it biases the estimates for ψ2
φ and ψ

2
β . This

can be seen most clearly from Figure 3, which shows that
the bias increases when the true variance diverges from
the DC prior specification: when ψ2

φ and ψ
2
β are .0025 or

.01 the bias is positive, and when they are .0025 the bias
turns negative. Apparently the DC specification was close
enough toψ2

φ andψ
2
β when their true values were .01 and

.0225, but not close enough when their true values were

.0025.

Part II: The effects of sample size and covariance
structure

For Part II of our simulation study, we aim to study the
effect of sample size and the sizes of the covariances or cor-
relations on the parameter estimates for each prior spec-
ification for �. For this purpose we vary sample sizes
between 25, 50, and 75 for both number of individuals
and time points, and the correlations between the ran-
dom parameters are either all set to 0 or all set to.3. The
variances for both the crossregression and autoregres-
sion coefficients are set to.01 for this study, which is the
medium value for the variances in Part I. This results in
a 4 × 3 × 3 × 2 (i.e., prior specification × time points
× individuals × correlation matrix specification) simula-
tion design. The results for Part II of the simulation study
are presented below.

Effects of sample size
In general, when sample size increased, parameter esti-
mates improved as would be expected: the bias became
smaller, the coverage rates became closer to .95, and the

ratios of the posterior standard deviations and standard
errors became closer to 1. Figure 4 contains graphs for the
coverage rates, bias, and ratios of standard deviations for
ψ2
φ , and ψ

2
β for sample sizes of 25 time point and individ-

uals, 50 time points and individuals, and 75 time points
and individuals. The results for different combinations of
time points and individuals, such as 25 time points and 50
individuals, were not included in Figure 4 to save space;
these results, as well as the results for the other parame-
ters are available in the supplementary materials, and the
simulated data are available upon request from the first
author.

The estimates for μ j, φ j, and β j improved when the
number of time points increased, as would be expected for
within-subject parameters. For the remaining parameters,
estimates improved bothwhen time points and number of
individuals increased, as would be expected for between-
subject parameters. Increasing the number of individ-
uals seems most advantageous for these parameters.
Noteworthy is that for all sample sizes and all prior
specifications, including the BM specification, the cred-
ible intervals and posterior standard deviations for the
correlations were quite large: for the BM specification the
posterior standard deviations ranged from approximately
.30 for the smallest sample size to .16 for the largest sam-
ple size. Although the accuracy of the estimates of the cor-
relations increases as sample size increases, efficient esti-
mates of the correlations clearly will require even larger
sample sizes.We discuss the results per prior specification
in more detail below.

The ID specification did not perform well regardless
of sample size, as can be seen from Figure 4. The cover-
age rates for ψ2

φ and ψ j
β were equal to zero, regardless of
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Figure . Part II coverage rates, estimated bias, and ratios of the average estimated posterior standard deviations and the standard devi-
ations of the estimated posterior means, for ψ2

φ and ψ
2
β calculated over , replications for the models with correlations set to.. The

coverage rates, bias, and ratios of standard deviations are shown for the benchmark (BM), identity matrix (ID), maximum likelihood (ML)
input, and default conjugate (DC) prior specification, for sample sizes of  time points (nt) and  individuals (np),  time points and 
individuals, and  time points and  individuals. We choose to present only these combinations of number of time points and persons in
order to save space. The results for the the remaining combinations are available as supplementary materials. For each prior specification,
performance improves as sample size increases and the data dominates the prior specification more.

number of time points or individuals. Although the bias
in the parameter estimates decreased when sample sizes
increased, it remained large, which was reflected in the
coverage rates. The ratios of standard deviations are larger

than 1, and large compared to the other prior specifica-
tions, which indicates that the posterior standard devia-
tions are relatively large across sample sizes, resulting in
relatively large credible intervals.
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For the ML specification, the coverage rates for φ j
and β j were low when sample sizes were small, but they
improved as sample size increased, from approximately
.88 for 25 time points and participants to .94 for 75 time
points and individuals. The coverage rates for ψ2

φ and ψ
2
β

also improved when sample size increased, from approxi-
mately .73 for 25 time points and individuals to .90 for 75
time points and individuals (see Figure 4).

The performance of the DC prior specification also
increased when sample size increased. However, Figure 4
shows that for small sample sizes the DC specification
shows an especially sharp drop in coverage ratesψ2

β , indi-
cating that for this parameter the small sample was not
enough to dominate the prior. In general, for all prior
specifications and across both parts of the simulation
study, the estimates for ψ2

φ seem to be slightly less biased
than those forψ2

β . In this case the true value forψ
2
β seems

to lie just outside the credible interval, whereas the true
value for ψ2

φ lies just within the credible interval, result-
ing in this sharp drop in coverage rates for ψ2

β , but less so
forψ2

φ . The estimates for the covarianceψμφ and correla-
tion ρμφ improve strongly as sample size increases, with
coverage rates ranging from approximately .55 to .92 for
ψμφ and from .43 to .93 for ρμφ , and bias ranging from
approximately from−.04 to−.003 forψμφ , and from−.7
to−.08 for ρμφ , for the smallest to the largest sample sizes
respectively.

Effects of covariance structure
In general, performance did not differ much when the
covariance structure was altered, except for the estimates
of the covariances and correlations of the random param-
eters for the ID and ML prior specification. Note that the
performance for the correlations and covariances will not
necessarily be the same because the correlations are also
affected by the estimates of the variances. However, for
both the correlations and covariances estimates were bet-
ter when the true values of the covariances were set to
zero, which is not surprising since these prior specifica-
tions had covariances set to zero. When correlations of .3
were used to generate the data, the covariance and cor-
relation estimates were downward biased for these spec-
ifications compared to the benchmark specification. This
relatively large bias compared to the benchmark specifi-
cation was absent for the ID and ML specification when
the true values of the correlations were equal to zero, and
decreased when sample size increased so the data domi-
nated the prior more. For the smallest to the largest sam-
ple sizes, for the BM specification this bias ranged from
approximately −.06 to .004 for ρμφ and ρμφ , and from
−.18 to −.04 for ρμφ . For the ID specification the bias
ranged from approximately−.24 to−.16 for ρμφ and ρμφ ,

and from−.27 to−.23 for ρβφ . The bias for the ML spec-
ification was considerably less with the bias for ρμφ and
ρμφ ranging from −.19 to −.03, and from −.26 to −.04
for ρβφ . For the DC specification, the bias for the corre-
lations was generally in between the bias for the ML and
BM specification, except for ρμφ as described in section
4.2.3 and 4.3.1. For all prior specifications, the coverage
rates and ratios of standard deviations were not clearly
affected by the different true correlation values.We briefly
evaluated the performance of the BM and ML model for
correlations equal to.7 rather than.3, with sample sizes of
25 occasions and persons, and 75 occasions and persons.
As would be expected, the bias in the correlations for the
ML specification was more severe when the correlations
were equal to.7. For the rest, results were comparable to
the condition for which the correlations were equal to.3.

Conclusion

Overall, the ML prior specification outperformed the
other prior specifications. The ID specification, which is
probably one of the most common choices in specify-
ing uninformative priors for covariance matrices in prac-
tice, is not a good choice when variances may be small,
because it results in severely overestimated variances even
for relatively large sample sizes. The DC specification per-
forms better than the ID specification, but gives incon-
sistent results. That is, it strongly influences the results
when the DC prior information is not close enough to the
information in the data. Given that there is no guaran-
tee that the prior information from the DC will be close
to the information in the data, the performance of the
DC prior is unreliable when variances are small. The ML
specification on the other hand, is directly based on max-
imum likelihood estimates of the variances from the data,
which provide a good guess of the true value of the vari-
ances. As a result, theML specification performs relatively
well. The double usage of the data in the ML specification
however does have consequences for the standard devia-
tions and credible intervals of the variances: these are too
small. However, this effect diminishes when sample size
increases.

A disadvantage of the ML specification is that when
the models of interest become more complex, it may be
difficult to fit these models with traditional ML proce-
dures and software—in fact, this may be one of the rea-
sons to opt for Bayesian estimation in the first place. For
instance, multivariate multilevel modeling is often not
available in frequentist software whereas it is relatively
easy to fit with Bayesian software. Two other examples are
multilevelmultivariate autoregressivemodels that include
latent variables, and models that include random resid-
ual variances—both may not be possible with frequentist
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software, whereas it is relatively trivial within Bayesian
software. There are several ways to get estimates for the
covariance matrix of the random parameters, or the vari-
ances in this matrix, when the models are too complex
to fit with traditional techniques: firstly, it may be pos-
sible to use simpler models that allow ML estimation to
get preliminary estimates of the variances in question.
For instance, if one aims to fit a multivariate multilevel
autoregressive model, one option is to fit multiple uni-
variate models with ML techniques in order to get pre-
liminary estimates for the variances, and use these esti-
mates in the prior specification. Secondly, an option is to
fit state-space models per individual instead of one multi-
level model, and calculate the variances based on the esti-
mates of the individual parameters. Thirdly, one can fit the
model with Bayesian estimation using uniform priors for
the variances, while disregarding potential covariances,
and use these estimates for the variances in the specifica-
tion of the IW prior distribution. In the following section
wewill illustrate this last option, together with the ID,DC,
and ML prior specification, using an empirical example.

Empirical application on positive affect and
worrying

The data for this empirical illustration consist of ESM
measurements (see Geschwind et al., 2011). Each par-
ticipant was alerted randomly throughout each day to
fill out the provided questionnaires, for six days, result-
ing in approximately 45 repeated measures per par-
ticipant. Here we focus on baseline measures for 129
participants of positive affect (PA), measured with prin-
cipal component scores for seven items (I feel ‘happy’,
‘satisfied’, ‘strong’, ‘enthusiastic’, ‘curious’, ‘animated’, and
‘inspired’) (for details, see Geschwind et al., 2011), and
on baseline measures of worrying, measured with the
item ‘I am worrying’. All items were answered on a scale
from 1 to 7 (with 1 being ‘not at all’ and 7 being ‘very
much so’). Because an assumption for AR(1) models
is that time intervals between measurement are about
equal, we added observations and coded these observa-
tions asmissing betweenmeasurements, when time inter-
vals between randommeasurements were especially large
(e.g., between the last observation of a day and the first
observation of the following day), resulting in an average
time lag of about 1.7 hours.

In the psychological literature worrying is considered
to be both potentially productive and potentially destruc-
tive. That is, worrying is productive when it results in
solving a (potential) problem, reducing negative affect
that accompanied the problem. In that case, worrying is
considered an adaptive emotion-regulating strategy

(Ehring & Watkins, 2008; Nolen-Hoeksema et al., 2008;
Pyszcynski & Greenberg, 1987; Watkins, 2008). On the
other hand, it may become destructive when the problem
cannot be solved, and worrying becomes repetitive or
compulsive in continuously trying to solve the problem,
exacerbating negative emotions related to the prob-
lem. This repetitive worrying has been considered as a
maladaptive strategy to regulate emotions, and has been
related to affect, especially negative affects such as sadness
and anxiety, to rumination, and to various depressive and
anxiety disorders (Aldao et al., 2010; Ehring & Watkins,
2008; Nolen-Hoeksema et al., 2008; Querstret & Cropley,
2013; Pyszcynski & Greenberg, 1987; Watkins, 2008).
Within the current modeling framework, a positive
autoregressive effect for worrying may serve as an indi-
cation of such repetitive or compulsive thinking —
reflecting that a person tends to ‘get stuck’ in their wor-
rying across multiple observations. Here, we will explore
this autoregressive effect of worrying, and that of PA,
and we will explore the reciprocal effects of worrying
and PA on each other, by means of fitting a multilevel
multivariate autoregressive model. Furthermore, we will
investigate whether there are any associations between
the individual autoregressive effects, cross-lagged effects,
and individual means. Note that this is possible because
we are using a model with a multilevel and multivariate
structure.

Modeling approach

Applications of multivariate multilevel autoregressive
models are sparse (see Lodewyckx et al., 2011, for an
exception). Univariate applications are more commonly
seen in the psychological literature (e.g., Cohn & Tron-
ick, 1989; Moberly & Watkins, 2008; Nezlek & Allen,
2006; Nezlek&Gable, 2001; DeHaan-Rietdijk et al., 2014;
Rovine &Walls, 2006; Suls et al., 1998).When researchers
are interested in reciprocal lagged effects between two or
more variables, they typically estimate several univariate
models instead (e.g., Moberly &Watkins, 2008; Nezlek &
Allen, 2006; Nezlek & Gable, 2001). The reason for this
may be that it is difficult to estimate multivariate multi-
level models using traditional software. Here, a Bayesian
approach is extremely valuable, because it can be easily
extended to multivariate processes. An additional advan-
tage of the Bayesian approach that is especially impor-
tant for longitudinal designs is that it handlesmissing data
well.We have somemissing data for themeasures onwor-
rying and PA as a result of nonresponse, as well as the
observations we added and coded asmissing as noted pre-
viously. As such, the Bayesian approach will be quite help-
ful here.
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In order to illustrate the effect of different prior specifi-
cations for the covariancematrix
 of the randomparam-
eters (two means, two cross-lagged parameters, and two
autoregressive parameters per person), we fit the model
with the ID prior, theDC prior, and theML prior. Because
fitting a multivariate multilevel autoregressive model cur-
rently is not an option in ML software, we fit two univari-
ate models with package lme4 in R (Bates et al., 2012; R
Development Core Team, 2012) in order to obtain esti-
mates for the variances in
 to plug into the ML and DC
prior. This may not be ideal, because 1) fitting two uni-
variate models ignores any residual correlation between
PA and worrying; and 2) In lme4 any missing observa-
tions are discarded from the analysis by means of listwise
deletion, so thatmany observations are disregarded in this
analysis: onemissing value in the dependent variable, also
means a missing value in the predictor at the preceding
occasion, resulting in the list-wise deletion of two obser-
vations. Therefore, we also specify a second data-based
prior, based on first fitting a bivariate Bayesianmodel with
Uniform priors on the variances of the random parame-
ters. Although thismodel ignores any correlation between
the randomparameters, it allows for a residual correlation
between PA and worrying, and more importantly, it effi-
ciently deals with the missing observations. We plug the
estimates for the variances of the random parameters of
this model into an Inverse-Wishart prior for a full mul-
tivariate model, and we will refer to this Inverse-Wishart
prior specification as the Bayesian data based (BDB) prior
specification.

In the first six panels of Figure 5 we provide plots of
the resulting (marginal) IW prior distributions for the
variances of the random parameters. For the variances of
the means (two top most panels) the ML, BDB, and DC
prior specifications are quite similar, with the exception
of the DC prior specification for the mean of worrying
which is more similar to the ID prior specification. For
the variances of the autoregressive and cross-lagged
coefficients there are more dissimilarities between the
prior specifications, as we would expect. The ML, DC,
and BDB prior distributions all peak in the area close to
zero for the variances of these regression coefficients. For
these parameters, the prior distributions for the ML and
BDB specification are most similar (except for βWo−>PAj),
but they do not overlap completely, especially in the area
close to zero. As expected, the ID prior peaks quite far
away from zero, and is most dissimilar to the other prior
specifications. The final two panels of Figure 5 show plots
for two of the fifteen correlations between the random
parameters, specifically between βWo−>PAj and φWoj, and
between φWoj and μWoj. For the correlation between
βWo−>PAj and φWoj the prior covariance was set to zero
for all prior specifications, resulting in a symmetric,

saddle-shaped distribution. For the correlation between
φWoj and μWoj, the prior covariance was set to zero for all
specifications except the DC prior, for which the prior is
shifted in favor of a negative correlation.

We fitted each model with three chains, with each
40,000 samples of which 20,000 were burn-in. We eval-
uated the convergence of each model through the visual
inspection of the mixing of the three chains, the Gelman-
Rubin convergence diagnostic (Gelman & Rubin, 1992),
and autocorrelations. Based on these results we judged
40,000 iterations with 20,000 burn-in iterations as suffi-
cient for convergence. Code for R andWinBUGS for sim-
ulating data and fitting the bivariate model, based on the
ML prior specification and the BDB prior specification, is
provided as supplementary materials.

Results

From Table 4 it can be seen that for most parameters,
the estimates are quite similar across the different prior
specifications. As would be expected, the largest differ-
ences are between the estimated variances of the random
autoregressive and cross-lagged parameters (see the ran-
dom effect for φPA and φWo, and βPA→Wo and βWo→PA
in Table 4), and therefore, between the estimates of the
individual random parameters. For the models with the
ML based prior and the BDB prior we find very simi-
lar estimates for the variances. For the DC prior, we also
find similar results, albeit a somewhat smaller point esti-
mate for the variance of the cross-lagged effect of PA on
worrying, compared to the models with ML and BDB
priors. In the model with the ID prior specification, the
variances are consistently estimated to be about twice
as large compared to the estimates for the other prior
specifications.

The fixed autoregressive effects are positive, which
implies that on average, a participants’ current PA is likely
to be similar to their PA of the previous occasion, and
a participants’ current worrying is likely to be similar to
their worrying of the previous occasion. Based on these
point estimates for fixed effects, and the corresponding
estimates of the variances based on BDB prior, we find an
approximate 95% interval of .065 to .647 for the random
autoregressive parameters of PA, and of -.041 to .591 for
the autoregressive parameters of worrying. This indicates
that the autoregressive coefficients are expected to be pos-
itive for most individuals. The average cross-lagged effect
for the effect of worrying onPA is near zero, which implies
that on average worrying on the preceding occasion does
not affect PA at the current occasion. However, the varia-
tion around this average effect implies that for some per-
sons the effect is actually positive, whereas for others it is
negative: The point estimate of the fixed effect and of the
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Figure . Plots of the (marginal) Inverse-Wishart prior distributions based on the maximum likelihood (ML), Bayesian data-based (BDB),
default conjugate (DC), and identity matrix (ID) specification for the variances of the random parameters, and for the correlation between
βWo−>PA j and φWoj , and βWo−>PA j and φWoj , and between φWoj andμWoj .

corresponding variance imply a 95% interval of −.172 to
.132 for the cross-lagged effects of worrying on PA. This
may indicate that for some persons worrying is mostly
a productive problem solving behavior, with successful
problem solving leading to more positive affect, whereas
for others worrying is ineffective, leading to less positive
affect. The average cross-lagged effect of PA on worry-
ing is negative, which implies that on average (across per-
sons), higher PAon the preceding occasion is likely to lead

to less worrying at the current occasion, whereas dimin-
ished PA is likely to lead to more worrying. Based on the
estimated fixed effect and corresponding variance, we find
a 95% interval of −.485 to .171 for the random cross-
lagged effects of PAonworrying, indicating that this effect
is expected to be negative for most persons. This seems a
logical result if worrying is problem-oriented:When there
are problems to be solved, this may lead to lower PA, and
to worrying in order to solve the problem, and vice versa.
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Table . Parameter estimates for themultilevel bivariate autoregressive model on positive affect and worrying (posterior means and %
CI), for four different prior specifications for the covariance matrix of the random parameters.

Parameter ID DC ML BDB

Fixed Effects for:
μPA . (., .) . (., .) . (., .) . (., .)
μWo . (., .) . (., .) . (., .) . (., .)
φPA . (., .) . (., .) . (., .) . (., .)
φWo . (., .) . (., .) . (., .) . (., .)
βWo→PA -. (-., .) -. (-., .) -. (-., .) -. (-., .)
βPA→Wo -. (-., -.) -. (-., -.) -.(-., -.) -. (-., -.)
Random Effects for:
μPA . (., .) . (., .) . (., .) . (., .)
μWo . (., .) . (., .) . (., .) . (., .)
φPA . (., .) . (., .)  (., .) . (., .)
φWo . (., .) . (., .) . (., .) . (., .)
βWo→PA . (., .) . (., .) . (., .) . (., .)
βPA→Wo . (., .) . (.,.) . (., .) . (., .)
Residuals:
σ 2
PA . (., .) . (., .) . (., .) . (., .)
σ 2
Wo . (., .) . (., .) . (., .) . (., .)
ρPAWo -. (-., -.) -. (-., -.) -. (-., -.) -. (-., -.)

Note. Included are the average effects (fixed effects) and the variances (random effects) for the means of PA and worrying (μPA,μWo), autoregressive effects of PA
and worrying (φPA, φWo), the cross–lagged effect of worrying on PA (βWo→PA) and of PA onworrying (βPA→Wo). Further included are the residual variances (σ 2

PA,
σ 2
Wo), and the residual correlation (ρPAWo).

For the correlations between the random parameters
(not reported in Table 4 for reasons of space) we find that
most correlations have quite wide credible intervals, with
values ranging from strongly negative to strongly posi-
tive, so that we have too little information to draw con-
clusions about these correlations (similar to our findings
in the simulation study). However, for three correlations
we find credible intervals that include only negative val-
ues across the DC, ML, and DBD prior specifications,
namely between the means for PA μPAj and worrying
μWoj (−.293, 95%CI:[−.453,−.115]), between themean
of worrying μWoj and the cross-lagged effect of worry-
ing on PA βWo→PAj (−.360, 95% CI:[−.615,−.047]), and
between the autoregressive parameter for worrying φWoj
and the cross-lagged effect of worrying on PA βWo→PAj
(−.551, 95%CI:[−.771,−.197]; herewe report the results
based on the BDB prior, though results are similar across
the other specifications). To gain more insight in the
meaning of these correlations wemade scatter plots of the
individual parameters (see Figure 6), and we discuss each
correlation in more detail below. First, the negative cor-
relation between the mean of PA and of worrying (left
panel of Figure 6), indicates that personswith higher aver-
age PA are likely to worry less on average compared to
persons who generally have lower average PA. Second,
the correlation between the cross-lagged effect of worry-
ing on PA with the mean of worrying (middle panel of
Figure 6) implies that individuals whoworry a lot on aver-
age tend to have a negative cross-lagged effect of worry-
ing on PA at the next occasion, whereas individuals who
do not worry a lot on average tend to have a positive
cross-lagged effect of worrying on PA. This may reflect

the dual nature of worrying. For persons for whom wor-
rying is effective in solving problems, worrying results in
a higher positive affect because problems are being dealt
with (i.e., a positive cross-lagged effect), and therefore
may not need to worry as much (i.e., a low mean of wor-
rying). In contrast, for persons for whom worrying is not
effective, worrying may result in a lower PA (i.e., a neg-
ative cross-lagged effect) without the relief and accom-
plishment of solving the problem, and they may worry
relatively a lot on average (i.e., a high mean for worry-
ing), because their problems are not going away. Third,
the correlation between the cross-lagged effect of wor-
rying on PA with the autoregressive effect of worrying
(right panel of Figure 6) implies that persons who have
high inertia in worrying (i.e., get stuck in worrying), tend
to have a negative cross-lagged effect of worrying on PA,
whereas persons that have little or no inertia in their wor-
rying tend to have a positive cross-lagged effect of wor-
rying on PA. This correlation also seems to illustrate the
potential problem solving nature of worrying:Whenwor-
rying results in solving the problem, worrying may result
in a higher PA (i.e., a positive cross-lagged effect), and for
persons for whom this is the case there may be little need
to keepworrying (i.e., a relatively low inertia inworrying).
In contrast, whenworrying is ineffective, the futile worry-
ing may result in a lower PA (i.e., a negative cross-lagged
effect), and the persons for whom this is the case may
continuously worry in order to keep trying to solve the
problem, resulting in a relatively high positive inertia in
worrying.

Finally, we note that there remains a strong negative
association (−.479, 95% CI:[−0.499,−0.459]) between
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Figure . Scatter-plots of the point estimates of the random parameters based on the Bayesian data-based (BDB) prior specification, indi-
cating negative correlations between the means for PA and worrying (μPA j andμWoj), the cross-lagged effects of worrying on PA and the
means ofworrying (βWo−>PA j andμWoj), and cross-lagged effects ofworrying on PA and the autoregressive effects forworrying (βWo−>PA j
and φWoj).

the residuals of PA and worrying. This residual correla-
tion between PA and worrying after the lagged effects are
taken into account, indicates that there ismore to the rela-
tionship between PA and worrying. As such, it may be
worthwhile to look at the relationship between PA and
worrying at other time intervals than the interval of about
1.7 hours that was considered here, or to look for addi-
tional explanatory variables, for instance specific negative
events, social interactions, stress, or psycho-physiological
factors.

In sum, these results provide interesting considera-
tions for future (confirmatory) research on the relation-
ship betweenworrying and PA, and individual differences
in this relationship. Based on the correlations between the
random effects, we found that individuals who worry a lot
on average, as well as individuals who get stuck in worry-
ing, tend to have a negative cross-lagged effect of worrying
on PA, indicating that for them worrying is a maladap-
tive coping strategy. In contrast, individuals who do not
worry a lot on average, or who bounce back from wor-
rying quickly, tend to have a positive cross-lagged effect
from worrying to PA, indicating that for them worry-
ing is a adequate tactic to solve current problems. Note
that we were only able to find these results because we
made use of a multivariate multilevel model, allowing
for all random effects to be correlated. That is, had we
used two separate multilevel models (i.e., for PA and wor-
rying as dependent variables separately), we would not
have obtained estimates of the correlations between these
random effects. This illustrates the unique opportunities
offered by the multivariate approach. Furthermore, fit-
ting several (data-based) priors helps evaluate the influ-
ence of specifying certain priors: The results for the ID
specification considerably diverged from the results from
the other prior specifications. The remaining three prior
specifications however converged to approximately the
same results, so that we feel that we can be reasonably

confident about our results and conclusions based on
these specifications.

Discussion

The multivariate multilevel autoregressive model is a
valuable model for studying between-person differences
in within-person processes. The Bayesian modeling
framework provides a flexible environment for fitting this
complex multilevel model. However, when some vari-
ances of the random parameters in the model are close to
zero, the conjugate IW prior distribution for the covari-
ance matrix of the random parameters becomes quite
informative, unintentionally influencing the parameter
estimates. In this study we evaluated the performance of
three different IW prior specifications for the covariance
matrix of the random parameters by means of a simula-
tion study. In addition, by means of an empirical data set
we demonstrated a sensitivity analysis for the IW prior
specification, and illustrated the added value of the mul-
tivariate, multilevel modeling approach provided by the
flexible Bayesian modeling environment.

The results from the simulation study indicate that
the data-based ML prior specification for the covariance
matrix of the random parameters performs the best com-
pared to the ID specification and the DC specification.
TheML specification performs well because it is based on
estimates of the variances from the data. There are mul-
tiple ways to obtain estimates of the variances based on
the data besides the ML procedure, that we discussed in
the conclusion section of the simulation study. The conse-
quence of using the data twice is that the certainty about
the parameter estimates is overestimated, resulting in too
small posterior standard deviations. A solution to this
problem may be to use a small part of the data for cal-
ibrating the prior specification (also referred to as train-
ing data, see Berger &Pericchi, 1996; O’Hagan, 1995), and
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using the remainder of the data for the model fitting pro-
cedure. Of course, this raises questions for future research
on exactly how to do this. To cite two examples: should
you use part of the persons in your sample for calibrating
the prior, or part of the repeatedmeasures of each person?
What sample size would provide good enough estimates
for calibrating the prior?

An alternative specification that we considered, but
was inoperative for the multilevel autoregressive model
in WinBUGS (see footnote 3), is the scaled Wishart dis-
cussed in Gelman and Hill (2007). However, this may be
a viable specification for other multilevel models. Other
alternative IW prior specifications for � that we did not
investigate consist of specifying improper IW priors with
d f smaller than r, or to use a specification suggested
in a recent study by Huang and Wand (2013), in which
Half-Cauchy distributions for the standard deviations,
and Uniform distributions for the correlations, are spec-
ified via an IW distribution. However, both WinBUGS
and OpenBUGS require proper IW priors, and do not
allow for setting priors within IW priors, so that these
specifications are not available within this software. Still
another option may be to transform the random param-
eters so that they have a larger variance, and specifying
an IW prior for the covariance matrix of the transformed
parameters. Finally, two potential specifications that cir-
cumvent the use of an IW distribution, are to specify the
variances and covariances in a regression structure, or to
specify uniform distributions for the variances of the ran-
dom parameters, if disregarding the covariances does not
affect the parameter estimates of interest. If the covari-
ances between the random covariances are of primary
interest, a possibility for the latter specification may be
to correlate the random parameters a posteriori. Possible
directions for future research are to compare the perfor-
mance of the alternative specifications with the ML spec-
ification in a simulation study (in other software).

In conclusion, this study demonstrates that the IW
prior specification for covariance matrices should not be
taken lightly. When variances are small, the prior specifi-
cation can have considerable consequences for the param-
eter estimates. In the multilevel autoregressive model, it
is known in advance that some variances will be close
to zero. We expect that our results will generalize to any
multilevel model that has small variances in the covari-
ance matrix of the random parameters, either as a result
of the scale of the variables or parameters, or simply
because there are only small individual differences in
the parameters. Therefore, it seems imperative to include
a prior specification sensitivity analysis for the covari-
ance matrix of the random parameters in multilevel stud-
ies in psychology. Our empirical application provides an
example of such an analysis, in which we compared the

results for four different prior specifications: three differ-
ent (data-based) priors converged to approximately the
same results, whereas the ID specification showed diver-
gent results. Finally, we advise to include a data-based
prior in such a prior sensitivity analysis. Although it may
not be ideal to use the data twice in order to calibrate the
prior, our simulation study results indicate that a prior
distribution based on estimates of the variances of the ran-
dom parameters performs the best in this specific situa-
tion that some variances in the covariance matrix may be
close to zero.
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