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The Analysis of Multivariate Longitudinal Data: An Instructive Application
of the Longitudinal Three-Mode Model

M. G. E. Verdama,b and F. J. Oorta,b

aDepartment of Medical Psychology, Academic Medical Centre University of Amsterdam, Amsterdam, The Netherlands; bResearch
Institute Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands

ABSTRACT
Structural equation modeling is a common technique to assess change in longitudinal
designs. However, these models can become of unmanageable size with many measure-
ment occasions. One solution is the imposition of Kronecker product restrictions to
model the multivariate longitudinal structure of the data. The resulting longitudinal
three-mode models (L3MMs) are very parsimonious and have attractive interpretation.
This paper provides an instructive description of L3MMs. The models are applied to
health-related quality of life (HRQL) data obtained from 682 patients with painful bone
metastasis, with eight measurements at 13 occasions; before and every week after treat-
ment with radiotherapy. We explain (1) how the imposition of Kronecker product restric-
tions can be used to model the multivariate longitudinal structure of the data, (2) how to
interpret the Kronecker product restrictions and the resulting L3MM parameters, and (3)
how to test substantive hypotheses in L3MMs. In addition, we discuss the challenges for
the evaluation of (differences in) fit of these complex and parsimonious models. The
L3MM restrictions lead to parsimonious models and provide insight in the change pat-
terns of relationships between variables in addition to the general patterns of change.
The L3MM thus provides a convenient model for multivariate longitudinal data, as it not
only facilitates the analysis of complex longitudinal data but also the substantive inter-
pretation of the dynamics of change.
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Kronecker product;
longitudinal factor model
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Introduction

Longitudinal studies in the life-sciences involve mul-
tiple observations at multiple measurement occasions,
yielding multivariate longitudinal data sets. Structural
equation modeling (SEM) offers a general and versa-
tile framework for the analysis of such data.
Compared with usual regression methods, SEM allows
for the use of latent variables and measurement error
of observed variables, and provides tests for overall
goodness of fit, for specific hypotheses about relation-
ships between variables and about longitudinal devel-
opment. The longitudinal factor model (LFM; Oort,
2001; Tisak & Meredith, 1990) may include multiple
latent variables, with multiple indicators from multiple
measurement occasions, and thus enables investigation
of complex longitudinal relations. However, the LFM
becomes progressively large and unmanageable when

the number of measurement occasions increases. One
of the methods that facilitates the investigation of lon-
gitudinal relations in more extensive data structures is
the so-called longitudinal three-mode model (L3MM;
Oort, 2001). In this paper, we provide an instructive
description of the L3MM and illustrate how it can be
used to test substantive hypotheses. It is our aim to
facilitate applications of L3MMs for the investigation
and interpretation of longitudinal dynamics, and thus
help researchers and practitioners who are interested
in developmental processes. In order to fully profit
from the current tutorial, we recommend that the
reader is familiar with the general SEM framework
(cf. Bollen, 1989) and the LFM in particular.

The increased complexity of multivariate longitu-
dinal data with larger numbers of measurement occa-
sions can be best illustrated with an example. Imagine
that we want to study the development of three
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constructs measured with three indicator variables
each, which yields a data-structure consisting of nine
indicators and three common factors. The LFM
requires estimation of 78 parameters when it includes
two measurement occasions, 228 parameters when it
includes four measurement occasions, and 450 param-
eters when it includes six measurement occasions (see
Appendix A for the calculation of the numbers of
parameters). Estimation of model parameters may be
difficult with such large models. Also, it has been
argued that the trustworthiness of results decreases
when the number of parameter estimates increases in
relation to the sample size (Bentler & Chou, 1987;
Jackson, 2003; Kline, 2011). Although the trustworthi-
ness of results may also depend on many other model
characteristics such as the number of variables per
factor and the values of the factor loadings (Gagne &
Hancock, 2006; Marsh, Hau, Balla, & Grayson, 1998),
it seems plausible that convergence of estimation and
stability of parameter estimates will be negatively
affected with increasing model size because of increas-
ing numbers of measurement occasions. More import-
antly, it becomes more difficult to arrive at a
meaningful interpretation of findings when the num-
ber of model parameters is larger. For the interpret-
ation of relations between the common factors from
2, 4, or 6 measurement occasions in the situation
above, the LFM yields 15, 66, or 153 common factor
covariances, respectively (see Appendix A). Such large
numbers of parameter estimates complicate a mean-
ingful interpretation of change in the relationships
between common factors across time.

The increasing complexity of multivariate longitu-
dinal models with multiple measurement occasions
can be reduced by imposing additional restrictions
on model parameters. Three-mode models are suited
for the analysis of sets of data that are characterized
by three modes. Multivariate longitudinal data are a
kind of three-mode data, with the modes referring
to the subjects, the variables, and the measurement
occasions. Principal component and factor analysis
techniques for three-mode data originate from
Tucker’s (1966) three-mode principal component
analysis (e.g., the Tucker3 model), and include
extensions of component analyses (e.g., the
Candecomp/Parafac model; Carroll & Chang, 1970;
Harshman, 1970), and of common factor analysis
(Bentler & Lee, 1979; Bentler, Poon, & Lee, 1988;
Bloxom, 1968). In the present paper, we focus on
three-mode common factor analysis (see Kiers &
van Mechelen, 2001; Smilde, Bro, & Geladi, 2004;
Kroonenberg, 2008 for more general overviews of

three-mode methods). The advantage of the com-
mon factor analysis framework is that it incorpo-
rates a versatile range of models and hypotheses to
be tested. In addition, factor analysis techniques for
multivariate longitudinal data are a special topic, as
they offer unique opportunities for modeling the
three-mode structure of the data (Oort, 1999) that
not only greatly improve model parsimony but also
facilitate interpretation of model parameters.

Specifically, the longitudinal three-mode model
(L3MM; Oort, 2001) can be used for the analysis of
multivariate longitudinal data, where the imposition
of the so-called Kronecker product restrictions enables
the decomposition of parameter matrices that describe
the relationships between all variables from all meas-
urement occasions into parameter matrices that
describe the relationships between variables that apply
to all measurement occasions, and parameter matrices
that describe the relationships between measurement
occasions that apply to all variables. Using this
decomposition, the L3MM describes all relationships
between all variables from all measurement occasions,
but requires only the estimation of a much smaller
number of parameters. In the example described
above, imposition of Kronecker product restrictions
on the relations between the common factors would
require only 6, 13, or 24 estimates for the interpret-
ation of 15, 66, or 153 correlations between common
factors from 2, 4, or 6 measurement occasions,
respectively. The L3MM thus substantially reduces the
number of parameter estimates (i.e., leading to more
parsimonious models), especially with larger numbers
of measurement occasions. As a result, the L3MM
parameters are easier to interpret. Instead of large
matrices of parameters describing the relationships
between all possible combinations of variables and
measurement occasions, the L3MM yields two separ-
ate sets of much smaller matrices. One set of matrices
has parameters describing the relationships between
variables and another set of matrices has parameters
describing the relationships between measurement
occasions. In this way, relationships between variables
can be modeled and interpreted separately from the
relationships between measurement occasions. The
underlying assumption of the imposed Kronecker
product restriction is that longitudinal change in
model parameters is proportional; the factor by which
the relations between variables change over time
applies to all variables equally. In the case of multiple
indicators that measure the same underlying construct
across time, this seems a plausible assumption. The
Kronecker product decomposition imposes a
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multiplicative structure similar to longitudinal struc-
tures such as compound symmetry, autoregressive or
latent curve models, which are often described as con-
venient models to simplify the correlation matrix of
repeated measures (cf. Crowder & Hand, 1990;
Lindsey, 1993). However, if the underlying assumption
of the proposed Kronecker product restrictions does
not hold, this may lead to biased estimates of effects.
With the L3MM, the tenability of the Kronecker
product restrictions can be tested, but the evaluation
of (differences in) model fit is complicated due to the
size of the models and increased parsimony of
L3MMs. In the current tutorial, we will, therefore,
also address the challenges of how to make appropri-
ate decisions in evaluating the imposed L3MM restric-
tions, by using a combination of model fit statistics
and substantive considerations.

The main benefit of increased model parsimony
is that it enables the analysis of multivariate longitu-
dinal data from many measurement occasions within
the general SEM framework. Equally important,
however, is that the substantive interpretation of
changes in the relations between variables is facili-
tated as the L3MM yields separate estimates for the
relationships between (observed and latent) variables
and the relationships between the measurement
occasions (i.e., the change in the relationships
between the variables over time). The L3MM thus
has the potential to improve our insight of longitu-
dinal dynamics in the life sciences in general, and is
especially suited to investigate and test the nature of
these dynamics in multiple behavioral, cognitive, or
psychophysiological measures (e.g., how the relation-
ships between different neurological functionalities
change with age, whether the variability in different
mental abilities changes proportionally over time, or
how the strength between several health outcomes is
affected by therapeutic intervention). However, as of
yet only few applications exist in the literature that
take advantage of these unique characteristics of the
L3MM. That is, applications are mostly limited to
(technical) explanations (Kroonenberg & Oort, 2003;
Oort, 2001) and are not yet used to address substan-
tive research questions. There is thus a need to
bridge the gap between the availability of L3MM
model strategies for the analyses of longitudinal
dynamics and their application.

The aim of the present paper is to provide an
instructive description of L3MMs in order to stimulate
their successful application. First, we will explain (1)
how the imposition of Kronecker product restrictions
can be used to take into account the multivariate

longitudinal structure of the data, (2) how to interpret
the Kronecker product restrictions and the resulting
L3MM parameters, and (3) how to test substantive
hypotheses in L3MMs. Second, we will illustrate the
application of L3MMs with an example of health-
related quality of life (HRQL) data obtained from 682
patients with painful bone metastasis, with eight
measurements at 13 occasions (104 variables); before
and every week after treatment with radiotherapy.
Part of these data have been analyzed before using
simple repeated measures analyses to compare the
development of HRQL between two different treat-
ment regimens (Steenland et al., 1999), or using
between group analyses to compare scores from only
one specific measurement occasion (van der Linden
et al., 2004). The latent variable model enables the
analysis of changes in HRQL in much more detail, as
it not only provides insight into changes in the means
of variables, but also in changes in relations between
variables over time. Using the example of bone meta-
stases, we will illustrate how the L3MM can be suc-
cessfully applied to provide a more comprehensive
analysis of the multivariate longitudinal development
of HRQL.

The L3MM

In order to facilitate the explanation of the L3MM, we
will first describe the longitudinal factor model (LFM)
and show how Kronecker product restrictions can be
applied to yield the L3MM. Suppose R latent traits are
measured with K observed variables on J occasions,
the means and covariances of the observed variables
are given by

E xð Þ ¼ l ¼ sþ Kj; (1)

and

Cov x; x0ð Þ ¼ R ¼ KUK0 þH; (2)

where s is a JK-vector of intercepts, K is a JK� JR
matrix of common factor loadings, j is a JR-vector of
common factor means, U is a JR� JR symmetric
matrix containing the variances and covariances of the
common factors, and H is a JK� JK symmetric matrix
containing the variances and covariances of the residual
factors. To achieve identification of all model parame-
ters, scales and origins of the common factors can be
established by fixing the intercept of one indicator per
common factor (e.g., at zero), and fixing one common
factor loading per common factor (e.g., at one).

The L3MM can be described by restrictions on the
parameter matrices that feature in the mean and
covariance structures of the LFM. We will explain
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these restrictions on each of the parameter matrices,
and show how further restrictions can be imposed to
test substantive hypotheses. Specifically, we will
explain the imposition of Kronecker product restric-
tions on (1) factor loadings and intercepts (K and s)
to comply with longitudinal measurement invariance;
(2) residual factor variances and covariances (H), and
additional restrictions to test equality of variances,
correlations and covariances across occasions; (3)
common factor variances and covariances (U), and
additional restrictions to test equality of variances,
correlations and covariances across occasions; and (4)
common factor means (j), and additional restrictions
to test a linear trend of common factor means. This
sequence of imposing Kronecker product restrictions
was chosen because the K and s restrictions (1) are
the most logical starting point from the researcher’s
perspective, as longitudinal measurement invariance is
required for the comparison of common factors
means, the H and U restrictions (2, 3) are most
effective in increasing model parsimony and facilitat-
ing parameter interpretation, while j imposed restric-
tions (4) can be used to test specific hypotheses
regarding the common factor means while profiting
from the model parsimony yielded by the earlier
restrictions.

Longitudinal measurement invariance

With longitudinal data, the structure of matrix K is a
block diagonal matrix containing matrices of factor
loadings of each measurement occasion on the diagonal
(K1, K2, … , Kj, … , KJ; see Table 1), where each of
the Kj is a K�R matrix containing the factor loadings
of occasion j. Vector s consists of stacked vectors of

intercepts from all measurement occasions (s1, s2, … ,
sj, … , sJ; see Table 1), where each of the sj is of length
K. To test substantive hypotheses about the common
factors, it is required that the meaning of these factors
is the same across occasions. The requirement of longi-
tudinal measurement invariance entails that the com-
mon factor loadings (Kj) and the intercepts (sj) are
invariant across occasions (i.e., Kj¼K0, and sj¼ s0 for
all j). The usual longitudinal measurement invariance
restrictions, that is, equality restrictions on factor load-
ings and intercepts across time, can be written as a
Kronecker product constraint:

K ¼ I� K0; (3)

s ¼ u� s0; (4)

where K0 is a K�R matrix of invariant common factor
loadings, s0 is a K-vector of invariant intercepts, I is a
J� J identity matrix, u is a J-vector of ones, and the
symbol � denotes the Kronecker product (see Table 1).
The Kronecker product is an operation that can be
applied to two matrices A and B of arbitrary size, and
results in a block matrix that contains the matrices B
pre-multiplied by each element of A (see Appendix B).
The Kronecker product operations in Eqs. (3) and (4)
impose the restriction that factor loadings K0 and inter-
cepts s0 apply to all measurement occasions.

Residual factor variances and covariances

Matrix H is a symmetric JK� JK matrix, consisting of
K�K Hjj’ matrices that contain the covariances of the
residual factors on occasion j with the residual factors
on occasion j’. Residual factors do not correlate with
other residual factors, but are allowed to correlate
with the same residual factors across occasions. Thus,

Table 1. Imposition of measurement invariance restrictions on factor loadings and intercepts using the Kronecker product.
Factor loadings (K 5 I � K0), assuming Kj ¼ K0 for all j

K(JKxJR) I(JxJ) K0(KxR)
K1ðKxRÞ

K2

K3

:::
KJ

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

5 1
1

1
:::

1

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
k11 ::: k1R
k21 ::: k2R
k31 ::: k3R
::: ::: :::
kK1 ::: kKR

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Intercepts (s 5 u � s0), assuming sj ¼ s0 for all j
s(JKx1) u(Jx1) s0(Kx1)

s1ðKx1Þ
s2
s3
:::
sJ

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

¼ 1
1
1
:::
1

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

� s1
s2
s3
:::
sK

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Notes: K0 and s0 contain invariant factor loadings and intercepts of one measurement occasion that are applicable to all measurement occasions, I and u
are an identity matrix and unity vector with dimensions equal to the number of measurement occasions, and the symbol � denotes the
Kronecker product.
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all Hjj’ matrices are diagonal. Imposition of the
Kronecker product restriction entails

H ¼ HT �HV; (5)

where the full JK� JK matrix (H) is decomposed into
two smaller matrices that describe the relations
between the measurement occasions (HT; a symmetric
matrix of dimensions J� J) and the variances of the
residual factors (HV is a diagonal matrix of dimen-
sions K�K, containing within occasion correlations
between residual factors) (see Table 2). The subscripts
“T” and “V” refer to “time” and “variable.” To achieve
identification at least one parameter of HT or HV

needs to be fixed at a non-zero value. Fixing the first
element of HT to unity is a convenient choice for the
interpretation of parameter estimates. Matrix HV then
contains the residual factor variances at the first meas-
urement occasion, and HT contains the relationships
between residual factors across time that apply to all
residual factors. We refer to these estimates as coeffi-
cients of proportionate change. If useful, matrix HT

can be further restricted to conform to, for example,
compound symmetry, autoregressive, or latent curve
structures (Oort, 2001). Imposing the Kronecker prod-
uct restriction implies that the changes in variances
and covariances of the residual factors across occa-
sions are proportionate for all residual factors.

To further facilitate interpretation of parameter
estimates it is convenient to use a reparameterization
that decomposes the residual factor variances and
covariances of H into correlations H* and standard
deviations D:

H ¼ DH�D; (6)

where D is a JK� JK diagonal matrix containing the
standard deviations of the residual factors, and
diag(H*)¼ I, so that the off-diagonal elements of H*

contain the correlations between the residual factors.
This, in turn, enables the imposition of Kronecker
product restrictions on residual factor correlations,
using

H� ¼ HT
� �HV

�; (7)

where the full correlation matrix (H*) is decomposed
into two smaller matrices that describe the correla-
tions between the measurement occasions (HT

*) and
the correlations between residual factors (HV

*). As
residual factors do not correlate with other residual
factors, HV

*¼ I (see Table 2). The reparameterization,
therefore, allows investigation of the Kronecker prod-
uct restrictions on residual factor correlations, while
allowing each residual factor to have a unique stand-
ard deviation.

In addition, Kronecker product restrictions can be
imposed on the standard deviations of the residual
factors, using

D ¼ DT � DV; (8)

where DT is a J� J diagonal matrix that describes the
proportionate change in standard deviations across
occasions, and DV is a diagonal K�K matrix that
contains the standard deviations of the residual factors
at the first occasion (see Table 2). Imposition of
Kronecker product restrictions on both H* and D is
equivalent to the imposition of the Kronecker product
restriction directly on H (as in Eq. (5)).

Table 2. Imposition of Kronecker product restrictions on residual factor variances and covariances.
Residual factor variances and covariances (H ¼ HT � HV)
H(JKxJK) HT(JxJ) HV(KxK)

H11ðKxKÞ
H21 H22

::: ::: :::
HJ1 HJ2 ::: HJJ

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

5
hT11
hT21 hT22
::: ::: :::
hTJ1 hTJ2 ::: hTJJ

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
hV11

hV22
:::

hVKK

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Residual factor correlations (H* ¼ HT
* � HV

*)
H*

(JKxJK) HT
*
(JxJ) HV

*
(KxK)

IðKxKÞ
H�

21 I
::: ::: :::
H�

J1 H�
J2 ::: I

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

5
1
h�T21 1
::: ::: :::
h�TJ1 h�TJ2 ::: 1

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
1

1
:::

1

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Residual factor standard deviations (D ¼ DT � DV)
D(JKxJK) DT(JxJ) DV(KxK)

D1ðKxKÞ
D2

:::
DJ

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

5
dT11

dT22
:::

dTJJ

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
dV11

dV22
:::

dVJJ

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Notes: Residual factor covariances (H), correlations (H*), and standard deviations (D) are decomposed using the Kronecker product (�), where HT, HT
*,

and DT represent relationships between measurement occasions of residual factor covariances, correlations, and standard deviations, respectively; and
HV, HV

*, and DV represent residual factor variances, correlations, and standard deviations of one measurement occasion, respectively.
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Substantive hypotheses: Further restrictions enable
hypothesis tests about the equality of residual factor
correlations, variances, and covariances.

Equality of residual factor correlations of the same
lag is investigated by imposing a banded structure on
HT

* in Eq. (7) so that all elements of the same diag-
onal are equal. This restriction implies that correla-
tions between residual factors at the first occasion and
residual factors at the second occasion are equal to
correlations between residual factors at the second
and third occasion, and so on.

Equality of residual factor standard deviations is
investigated by imposing:

D ¼ I� D0; (9)

where I is a J� J identity matrix and D0 contains the
invariant standard deviations of the residual factors of
one measurement occasion that are applicable to all
measurement occasions.

Equality of residual factor covariances across
occasions of the same lag is tested by imposing both
restrictions described above. This is equivalent to
the imposition of the Kronecker product to H (as in
Eq. (5)), where the banded structure is imposed
on HT.

Common factor variances and covariances

The procedure of imposing Kronecker product restric-
tions on the matrix of common factor variances and
covariances is largely similar to the procedure for
imposing Kronecker product restrictions on the

matrix of residual factor variances and covariances
described above.

Matrix U is a JR� JR symmetric matrix, consisting
of R�R Ujj’ matrices that contain the covariances of
the common factors at occasion j with the common
factors at occasion j’. Imposition of the Kronecker
product restriction implies that the change in relations
between the common factors across occasions is pro-
portionate for all common factors1:

U ¼ UT �UV; (10)

where UT is a J� J symmetric matrix that describes the
relationships between the measurement occasions, and
UV is a R�R symmetric matrix that describes the rela-
tionships between the variables (see Table 3). For the
purpose of identification, the first element of UT can be
fixed at unity so that UV contains the common factor
variances and covariances at the first measurement
occasion, and UT contains coefficients of proportionate
change. If useful, matrix UT can be further restricted to
conform to, for example, compound symmetry, autore-
gressive, or latent curve structures (Oort, 2001).

In addition, it is convenient to use the following
reparameterization:

U ¼ CU�C; (11)

where C is a JR� JR diagonal matrix containing the
standard deviations of the common factors, and

Table 3. Imposition of Kronecker product restrictions on common factor variances and covariances.
Common factor variances and covariances ( U ¼ UT � UV )

U(JRxJR) UT(JxJ) UV(RxR)
U11ðRxRÞ
U21 U22

::: ::: :::
UJ1 UJ2 ::: UJJ

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

5
uT11
uT21 uT22
::: ::: :::
uTJ1 uTJ2 ::: uTJJ

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
uV11
uV21 uV22
::: ::: :::
uVR1 uVR2 ::: uVRR

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Common factor correlations ( U* ¼ UT
* � UV

*)
U*

(JRxJR) UT
*
(JxJ) UV

*
(RxR)

U�
11ðRxRÞ

U�
21 U�

22

::: ::: :::
U�

J1 U�
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Notes: Common factor covariances (U), correlations (U*) and standard deviations (C) are decomposed using the Kronecker product (�), where UT, UT
*
,

and CT represent relationships between measurement occasions of common factor covariances, correlations, and standard deviations, respectively; and
U V, UV

*, and CV represent common factor variances, correlations, and standard deviations of one measurement occasion, respectively.

1We note that the Kronecker product restriction of Eq. (10) is equivalent
to a second order factor model U¼K2 UT K2’ in which K2 contains the
factor loadings of the (first-order) common factors on the second-order
common factors, invariant across occasions (K25 I(JxJ) � k(Rx1) so that
UV5 k(Rx1) k(Rx1)

’ ).
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diag(U*)¼ I so that all off-diagonal elements of U*

are correlations between the common factors. This, in
turn, allows for imposition of the Kronecker product
restriction on the correlations between common fac-
tors (U*) and the common factor standard deviations
(C) separately

U� ¼ UT
� �UV

�; (12)

and

C ¼ CT � CV; (13)

where UT
* contains the correlations between measure-

ment occasions, UV
* contains the correlations

between common factors irrespective of the measure-
ment occasions, CT contains coefficients of propor-
tionate change in standard deviations across occasions
(where the first element of CT is fixed to unity for
identification), and CV contains the standard devia-
tions of the common factors at the first measurement
occasion (see Table 3). Imposition of Kronecker prod-
uct restrictions on both U* and C is equivalent to the
imposition of the Kronecker product restriction dir-
ectly to U.

Substantive hypotheses: Equality of common factor
variances, correlations and covariances across occa-
sions can be tested by further restricting the
L3MM matrices.

The hypothesis of equal common factor correla-
tions across occasions of the same lag is investigated
by imposing a banded structure on UT

* in Eq. (12) so
that all elements of the same diagonal are equal.
Because UV

* is a symmetric matrix, this restriction
entails that both the correlations between the common

factors of one measurement occasion are equal across
occasions, and that correlations between common fac-
tors at the first and second measurement occasions
are equal to correlations between common factors at
the second and third measurement occasions, and
so on.

The hypothesis of equality of common factor var-
iances across occasions is investigated by imposing

C ¼ I� C0; (14)

where I is a J� J identity matrix and C0 is an R�R
matrix that contains the invariant standard deviations
of the common factors of one measurement occasion
that apply to all measurement occasions.

Equality of common factor covariances across occa-
sions of the same lag is tested by imposing both
restrictions described above, which is equivalent to
imposing a banded structure directly on UT in
Eq. (10).

Common factor means

The JR-vector j consists of stacked jj vectors of
length R, containing the common factor means of
occasion j. The imposition of the Kronecker product
restriction requires only estimation of jT and jV:

j ¼ jT � jV; (15)

where jT is the J-vector that contains coefficients of
proportionate change in common factor means across
occasions, and jV is a R-vector that contains the com-
mon factor means at the first measurement occasion
(see Table 4).

Substantive hypotheses: To test and facilitate inter-
pretation of (possible) changes in common factor
means across time, we may impose various restric-
tions on j. For example, to test for linear develop-
ment of common factor means, we can impose

j ¼ u� aþt� b; (16)

where u is a unity J-vector, a is a K-vector of inter-
cepts, t is a J-vector with some coding for the time of
the occasions (for example 0, 1, 2, … J), and b is a
K-vector of slope parameters (see Table 4). The slope
parameters then give an indication of the change
across time for each common factor (instead of hav-
ing to interpret all separate estimates of common fac-
tor means). To test invariance of common factor
means we can fix the slopes at zero (i.e., b¼ 0).

Table 4. Imposition of Kronecker product restrictions on com-
mon factor means.
Common factor means (j¼jT � jV)

j(KJx1) jT(Jx1) jV(Kx1)
j1ðKx1Þ
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�
�
�

�
�
�
�
�
�
�
�

¼ jT1
jT2
:::
jTJ

�
�
�
�
�
�
�
�
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Linear trend of common factor means (j ¼ u � a þ t � b)
j(KJx1) u(Jx1) a(Kx1) t(Jx1) b(Kx1)
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�
b1
b2
:::
bK

�
�
�
�
�
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�
�
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�
�
�
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�

Notes: Common factor means (j) are decomposed using the Kronecker
product (�), where jT represents relationships between measurement
occasions, jV represents common factor means of one measurement
occasion, u is a unity vector, a is a vector of intercept parameters, t is
a vector with a time coding for the time of measurement, and b is
a vector of slope parameters.
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Longitudinal structures of common factor

To further test substantive hypotheses regarding the
common factors, one can apply longitudinal structures
to both the covariance and mean structures of the
common factors. Examples of these longitudinal struc-
tures are the autoregressive model and the latent
curve model, which are common extensions within
the SEM framework. For an explanation of these
models, including possible variations and examples of
hypotheses testing, the reader is referred to
Oort (2001).

Illustrative example

Sample

The sample in the current study is a subset from the
sample from the Dutch Bone Metastasis Study
(DBMS; Steenland et al., 1999; van der Linden et al.,
2004, 2006). In the DBMS, a total of 1157 patients
(533 women) with painful bone metastases from a
solid tumor were enrolled from 17 radiotherapy insti-
tutes in The Netherlands. The purpose of the study
was to investigate the effectiveness of single fraction

versus multiple fraction radiation therapy for patients
with painful bone metastases; the primary endpoint of
the study was response to pain. The Medical Ethics
Committees of all participating institutions approved
the study and all patients gave their informed consent.
For the present study, only patients who survived at
least 13weeks were included, which resulted in a total
sample size of 682 patients (354 women). Patients’
primary tumor was either breast cancer (n¼ 321),
prostate cancer (n¼ 181), lung cancer (n¼ 106), or
other (n¼ 74). Ages ranged from 33 to 90, with a
mean of 64.2 (standard deviation 11.5).

Measures

Health-related quality of life questionnaires were
administered before treatment (T0), and during the
first 12weeks of follow-up, patients completed weekly
HRQL questionnaires by mail (T1 through T12).
Questionnaire items were grouped into scales based
on the results of principal component analysis of data
from the first measurement occasion and substantive
considerations (for more information see Verdam,
Oort, van der Linden, & Sprangers, 2015). This
resulted in the computation of eight health indicators:
physical functioning (PF; four items), mobility (MB;

Figure 1. The measurement model. Notes: Circles represent latent variables (common and residual factors) and squares represent
observed variables (the scale scores). FUNC: functional limitations; HEALTH: health impairments; PF: physical functioning; MB: mobil-
ity; SF: social functioning; DP: depression; LS: listlessness; PA: pain; SI: sickness; SY: treatment related symptoms; Res.:
Residual factors.
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five items), social functioning (SF; two items), depres-
sion (DP; eight items), listlessness (LS; six items), pain
(PA; four items), sickness (SI; six items), and treat-
ment-related symptoms (SY; 11 items). All scale
scores were calculated as mean item scores, ranging
from 1 to 4, with higher scores indicating more symp-
toms or more dysfunctioning. Analysis at the scale
level is consistent with the usual evaluation of the ori-
ginal questionnaires that are still (partly) represented
in the current scales, and was required to yield
a manageable number of variables.

The eight health indicators were modeled to be
reflective of two common factors: functional limita-
tions and health impairments (see Figure 1). The
squares represent observed variables (scale scores), the
circles on the top represent the common factors, and
the circles on the bottom represent residual factors.
Functional limitations are measured by three observed
variables, health impairments are measured by
six observed variables, with one observed variable
in common.

Statistical analyses

The program OpenMx (Boker et al., 2011) was used
to run the statistical analyses. OpenMx is free and
open source software for use within R that allows esti-
mation of a wide variety of advanced multivariate
statistical models. It was used because it allows for an
operation of the structural equation model using
matrix specifications, and therefore the Kronecker
product restrictions can be easily applied. The vari-
ance-covariance matrix and mean vector that were
used for statistical analyses, and syntaxes of all analy-
ses that are reported in this paper, are provided as
online Supplementary material.

Evaluation of Goodness of Fit: To evaluate goodness
of fit the chi-square test of exact fit (CHISQ) was
used, where a significant chi-square indicates a signifi-
cant difference between model and data. As an alter-
native, the root mean square error of approximation
(RMSEA; Steiger, 1990; Steiger & Lind, 1980) was
used as a measure of approximate fit, where an
RMSEA value below .05 indicates “close” approximate
fit, and values below .08 indicate “reasonable”
approximate fit (Browne & Cudeck, 1992).
Additionally, the expected cross-validation index
(ECVI; Browne & Cudeck, 1989) can be used to com-
pare different models for the same data, where the
model with the smallest ECVI indicates the model
with the best fit. The ECVI is linearly related to the
Akaike Information Criteria (AIC; Akaike, 1987) and

thus provides the same ranking of competing models
(Browne & Cudeck, 1992). However, the ECVI has
the advantage that confidence intervals are available
for the differences between ECVI values of nested
models. For both the RMSEA and ECVI 95% confi-
dence intervals were calculated using the program
NIESEM (Dudgeon, 2003). We also calculated the
Comparative Fit Index (CFI; Bentler, 1990), where
the model of interest is compared to a model of
independence, i.e., a model where all covariances in R
are assumed zero. The CFI ranges from zero to one,
and as a general rule of thumb values above 0.95
are indicative of relatively “good” model fit (Hu &
Bentler, 1999).

With different tests and indices to evaluate model
fit, providing decision rules on whether the fit of
a model is “good” is complicated by the fact that one
might find inconsistent results (e.g., a significant exact
chi-square test, but close approximate fit according to
the RMSEA). The researcher then has to make a deci-
sion on which fit index is most appropriate for the
data and hypotheses under study. For example,
although the chi-square test of exact fit is the most
commonly used, it is also generally acknowledged that
it tends to become significant in larger samples and
favors highly parameterized models. The described
indices of approximate fit are less dependent on sam-
ple size and reward model parsimony, but they usually
do not provide a test of model fit. In our example of
bone metastasis the sample size is large and the model
has many degrees of freedom. As a result, the chi-
square test of exact fit has high power to detect small,
but clinically meaningless, differences between model
and data. Therefore, in this paper, we will base our
evaluation of overall model fit on indices of approxi-
mate fit and will substantiate decisions on model fit
evaluation in case of inconsistent results. A more
extensive discussion about model fit evaluation follows
in the discussion paragraph at the end of this paper
(see also Verdam, 2017).

Evaluation of differences in Model Fit: To evaluate
differences between hierarchically related models the
chi-square difference test (CHISQdiff) can be used,
where a significant chi-square indicates a significant
difference in model fit. The ECVI difference
(ECVIdiff) can be used to test equivalence in approxi-
mate model fit, where a value that is significantly
larger than zero indicates that the more restricted
model has significantly worse approximate fit. In add-
ition, it has been proposed that the difference between
CFI values (CFIdiff) can be used to evaluate measure-
ment invariance and more generally, the difference in
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model fit between two nested models (Cheung &
Rensvold, 2002). As a rule of thumb CFIdiff values
larger than 0.01 are taken to indicate that the more
restricted model should be rejected. As confidence
intervals are not available for CFI values, the CFIdiff
cannot be used to test whether the difference in model
fit is significant.

Evaluation of differences in model fit is compli-
cated for similar reasons as described above. When
comparing different models for the same data, one
has to decide on the tradeoff between a deterioration
of model fit and a gain in model parsimony. Such
decisions should be guided by the evaluation of differ-
ences in model fit, but depend also on the substantive
considerations with regard to interpretation of the
model or model parameters. For example, the impos-
ition of Kronecker product restrictions to take into
account the multivariate longitudinal structure of the
data generally leads to a large gain in model parsi-
mony. When one considers the assumption of the
multivariate structure of the data to be reasonable,
one might not want to have too much power to detect

small, but trivial, differences between model and data.
However, when testing specific substantive hypotheses,
one might consider high power to detect small differ-
ences to be beneficial. In this paper we will report
results of all tests for differences in model fit that are
explained above and will provide a rationale for the
decision that is being made.

Results

The measurement model of Figure 1 was the basis for
a structural equation model for baseline and follow-up
measurements without any across occasion con-
straints. This model yielded a chi-square test of exact
fit that was significant but the RMSEA measure and
CFI indicated close fit (see Table 5, Model 1.1). The
number of model parameters to be estimated
was 1274.

L3MMs were applied to the 104 variables from 13
measurement occasions to investigate change in
HRQL. Kronecker product restrictions were imposed
on (1) factor loadings and intercepts (K and s) to

Table 5. Goodness of overall fit of the longitudinal three-mode models.
Model P Df CHISQ CFI RMSEA [95% CI] ECVI [95% CI]

Measurement model
1.1 No restrictions 1274 4290 7002.34 0.975 0.031

[0.029; 0.032]
14.71

[14.30; 15.13]
L3MM restrictions
2.1 K¼ I � K0; s¼ u � s0 1118 4446 7661.17 0.971 0.033

[0.031; 0.034]
15.13

[14.70; 15.59]
2.2 a H¼D(HT

� � I)D 572 4992 9471.75 0.959 0.036
[0.035; 0.038]

15.90
[15.40; 16.41]

b H¼HT
� HV 488 5076 9829.93 0.956 0.037

[0.036; 0.038]
16.13

[15.62; 16.66]
c Equal e variances 476 5088 9846.17 0.956 0.037

[0.036; 0.038]
16.11

[15.60; 16.64]
d Equal e correlations 422 5142 10690.4 0.949 0.040

[0.039; 0.041]
17.16

[16.62; 17.72]
e Equal e covariances 410 5154 11413.6 0.943 0.042

[0.041; 0.044]
18.18

[17.62; 18.77]
2.3 a U¼C(UT

� � UV
�)C 242 5322 10486.0 0.953 0.038

[0.037; 0.039]
16.24

[15.71; 16.78]
b U¼UT

� UV 230 5334 10515.3 0.952 0.038
[0.037; 0.039]

16.24
[15.71; 16.79]

c Equal n variances 218 5346 10552.9 0.952 0.038
[0.037; 0.039]

16.25
[15.73; 16.80]

d Equal n correlations 166 5398 10820.4 0.950 0.038
[0.037; 0.040]

16.47
[15.93; 17.02]

e Equal n covariances 152 5412 10854.5 0.950 0.038
[0.037; 0.040]

16.47
[15.93; 17.02]

2.4 a j¼jT
� jV 218 5346 10579.3 0.952 0.038

[0.037; 0.039]
16.29

[15.76; 16.84]
b Linear trend j 208 5356 10611.4 0.952 0.038

[0.037; 0.039]
16.30

[15.77; 16.85]
c Equal j 206 5358 10637.2 0.952 0.038

[0.037; 0.039]
16.34

[15.80; 16.89]
Final Model
2.5 All tenable restrictions 184 5380 10664.7 0.951 0.038

[0.037; 0.039]
16.30

[15.77; 16.85]

Notes: N¼ 682; P¼ number of free parameters in the model; Df¼ degrees of freedom; j, U, and H are common factor means, common factor covarian-
ces, and residual factor covariances, respectively, and the subscripts “T” and “V” refer to matrices that contain relationships between different measure-
ment occasions or variables respectively, D and C are standard deviations of residual factors and common factors, and K and s are common factor
loadings and intercepts.
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comply with longitudinal measurement invariance; (2)
residual factor variances and covariances (H), (3)
common factor variances and covariances (U), and
(4) common factor means (j). Substantive hypotheses
were tested at each consecutive step. We illustrate
the application of each of the L3MMs that were
described above, and explain why each model could
be of substantive interest.

Longitudinal measurement invariance: Longitudinal
measurement invariance is required in order to test
substantive hypotheses about the common factors.
The model with both factor loadings and intercepts
restricted to be equal across occasions yielded
a chi-square test of exact fit that was significant,
but the RMSEA and CFI measures indicated close and
good fit respectively (Model 2.1, see Table 5). To test
whether the assumption of longitudinal measurement
invariance holds, the model fit of this model can
be compared to the model fit of the LFM without
restrictions. Both the chi-square difference test and
the ECVI difference test are significant (CHISQdiff

(156)¼ 658.8, p< .001; ECVIdiff¼ 0.43 95% CI:
0.29–0.59), indicating that the restrictions of invariant
factor loadings and intercepts across occasions may
not be tenable. However, the difference in CFI values
indicates that the hypothesis of invariance should not
be rejected (CFIdiff¼ 0.005). Moreover, overall model
fit of the measurement invariance model is considered
to be close (RMSEA ¼0.03). Inspection of parameter
estimates showed no obvious deviational pattern
between invariant factor loadings and intercepts
(Model 2.1) as compared with the free factor loadings
and intercepts (Model 1.1). As an example, the invari-
ant factor loading of MB was estimated to be 0.71 (SE
¼0.02), where some of the freely estimated factor
loadings were lower and others were higher, varying
between 0.67 and 0.78 (a full overview of estimated
factor loadings and intercepts of both models are pro-
vided in Appendix C). We therefore retain the model
with measurement invariance restrictions, also in view
of the overall model fit statistics. We consider the
measurements “practically invariant.” Nevertheless, it
may be of interest to investigate possible violations
of measurement invariance (i.e., measurement bias).
However, because the invariant factor loadings and
intercepts are a function of parameter estimates, the
detection of measurement bias in Kronecker product
restricted models requires alternative methods. A pro-
cedure for measurement bias detection in Kronecker
product restricted models has been proposed else-
where (Verdam & Oort, 2014). Here, we will retain
the model with measurement invariance restrictions

on both factor loadings and intercepts for practical
purposes. The invariance restrictions entail that
the interpretation of both common factors is stable
across time. The number of free parameters in the
longitudinal measurement invariance model is 1118.

Residual factor variances and covariances: In our
example of bone metastasis, it may be reasonable to
assume that the residual variances, and the covarian-
ces of the same observed indicators at different occa-
sions, change proportionately over time (e.g., patients
may show more or less variability and co-variability
over time, where this change is proportionally equal
for all observed variables). Moreover, the complete
matrix of residual factor variances and covariances
has dimensions 104� 104 and contains 728 free
parameters, thus adding a large number of parameters
to the model. Kronecker product restrictions on the
residual factor variances and covariances are therefore
most effective in increasing model parsimony and
will therefore facilitate parameter interpretation. The
imposition of the Kronecker product restriction on
the residual factor correlations (Model 2.2a, see Table
5) and residual factor standard deviations (Model
2.2b) yielded close fit according to the RMSEA and
CFI. Although the overall model fit is considered
to be good, the deterioration in model fit as compared
to the measurement invariance model (Model 2.1)
is significant (CHISQdiff (630)¼ 2168.8, p< .001;
ECVIdiff¼ 1.00 95% CI: 0.74–1.27; CFIdiff¼ 0.015).
The number of degrees of freedom that is gained with
these L3MM restrictions is considerable (630), with
a total number of 488 parameter estimates. Therefore,
in spite of the significant difference in fit, we will
retain these L3MM restrictions because the overall
model fit is good and the gain in model parsimony
is substantial, and use this model as the reference
model in subsequent model comparisons below. The
imposed structure indicates that residual variances
change proportionally over time, and that the longitu-
dinal covariances apply to all residual factors.

Substantive hypotheses: In our example of bone
metastases, it may be of interest to test whether the
variances of the residual factors are invariant across
time (i.e., showing equal reliability), and whether the
relations between residual variables are stable across
time. Models 2.2c, 2.2d, and 2.2e were used to test
hypotheses about equality of residual factor variances,
correlations and covariances, respectively. These
restrictions have been imposed, one at a time (see
Table 5). It appears that the residual factor variances
are invariant across occasions (CHISQdiff (12)¼ 16.2,
p¼ .18; ECVIdiff¼�0.02; CFIdiff< 0.001), but the
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hypotheses about equal correlations and thus cova-
riances across occasions must be rejected according to
the chi-square difference and ECVI difference tests
(CHISQdiff (66)¼ 860.4, p< .001; ECVIdiff¼ 1.05 95%
CI: 0.88–1.24). The CFI difference indicates that the

hypothesis of equal correlations might be tenable
(CFIdiff¼ 0.007), but that the hypothesis of equal
covariances must be rejected (CFIdiff¼ 0.014),
although the overall model fit for both models is not
considered to be good (CFI <0.95). Therefore, in our

Table 6. Three-mode model parameter estimates for the final model (Model 2.5).
Longitudinal measurement invariance, where K 5 I � K0, and s 5 u � s0
Invariant factor loadings (K0)

PF MB SF DP LS PA SI SY
FUNC 1.00 0.76 0.32
HEALTH 0.69 1.00 1.09 0.91 0.82 0.48

Invariant intercepts (s0)
PF MB SF DP LS PA SI SY
0.00 �0.19 �0.09 0.00 0.10 0.69 �0.03 0.51

Residual factor variances and covariances, where H ¼ D(HT
� � I)D, and D ¼ I � D0

Invariant standard deviations of residual factors (diag(D0))
PF MB SF DP LS PA SI SY
0.44 0.43 0.68 0.43 0.35 0.61 0.48 0.25

Correlations between measurement occasions (H�
T)

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
T0 1.00
T1 0.64 1.00
T2 0.57 0.71 1.00
T3 0.52 0.65 0.74 1.00
T4 0.49 0.61 0.67 0.76 1.00
T5 0.48 0.61 0.65 0.71 0.78 1.00
T6 0.48 0.60 0.63 0.68 0.73 0.80 1.00
T7 0.48 0.59 0.62 0.65 0.71 0.77 0.81 1.00
T8 0.47 0.56 0.59 0.62 0.67 0.72 0.75 0.81 1.00
T9 0.46 0.55 0.58 0.61 0.66 0.71 0.75 0.78 0.81 1.00
T10 0.43 0.53 0.56 0.60 0.64 0.68 0.72 0.74 0.77 0.81 1.00
T11 0.43 0.53 0.56 0.59 0.62 0.65 0.69 0.72 0.74 0.77 0.82 1.00
T12 0.43 0.51 0.54 0.58 0.61 0.63 0.66 0.69 0.71 0.74 0.77 0.82 1.00

Common factor variances and covariances, where U ¼ C(UT
� � UV

�)C, and C ¼ I � C0

Invariant standard deviations of common factors (diag(C0))
FUNC HEALTH
0.83 0.51

Correlations between common factors (UV
�)

FUNC HEALTH
FUNC 1.00
HEALTH 0.44 1.00

Correlations between measurement occasions (UT
�)

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
T0 1.00
T1 0.89 1.00
T2 0.86 0.93 1.00
T3 0.83 0.88 0.92 1.00
T4 0.80 0.86 0.89 0.93 1.00
T5 0.80 0.83 0.87 0.90 0.93 1.00
T6 0.77 0.80 0.85 0.87 0.90 0.93 1.00
T7 0.74 0.78 0.82 0.86 0.89 0.91 0.95 1.00
T8 0.73 0.78 0.81 0.84 0.87 0.90 0.92 0.94 1.00
T9 0.70 0.76 0.80 0.82 0.85 0.89 0.90 0.91 0.95 1.00
T10 0.68 0.74 0.76 0.80 0.82 0.86 0.88 0.90 0.93 0.95 1.00
T11 0.67 0.73 0.75 0.78 0.80 0.84 0.86 0.87 0.92 0.92 0.95 1.00
T12 0.64 0.72 0.74 0.76 0.79 0.81 0.83 0.85 0.89 0.90 0.92 0.95 1.00

Common factor means, where j ¼ u � a þ t � b
Intercept parameters common factor means (a)

FUNC HEALTH
2.58 1.80

Slope parameters common factor means (b)
FUNC HEALTH
0.04 �0.06

Notes: The variance-covariance structure of the final model, i.e., R¼K U K’ þ H, is modeled by imposing the following Kronecker product restrictions:
R ¼ (I � K0)( (I � C0) (UT

� � UV
�) (I � C0)) (I � K0)’ þ (I � D0)(HT

� � I) (I � D0).
The mean structure of the final model, i.e., l¼ sþK j, is modeled using: l ¼ (u � s0)þ (I � D0) (u � a þ t � b).
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example of bone metastases, only the hypothesis of
equal residual variances seems tenable. This indicates
that the unique variance of each indicator stays stable
across time.

Common factor variances and covariances:
Imposition of the Kronecker product restriction on
the matrix of common factor variances and covarian-
ces yields 94 estimates to compute 351 parameters
(i.e., the total number of common factor variances
and covariances), thus having a large impact on model
parsimony. Moreover, in our example of bone metas-
tasis, it might be interesting to investigate whether the
change in the variances and covariance of the under-
lying factors is proportionate over time. The model
with Kronecker product restrictions imposed on both
the common factor correlations and the common fac-
tor standard deviations yielded close fit according to
the RMSEA and CFI (Model 2.3 b, Table 5) and can
be considered to show equivalent approximate fit
compared to the model with free common factor var-
iances (CHISQdiff (258)¼ 685.3, p< .001;
ECVIdiff¼ 0.11 95% CI: �0.03 to 0.26; CFIdiff¼ 0.004).
Therefore, this model is retained and used as the ref-
erence model in subsequent model comparisons
below. This result indicates that the standard devia-
tions of the common factors functional limitations
and health impairments and their correlation, change
proportionately over time. The total number of free
parameters in this model is 230.

Substantive hypotheses: It might be of interest to
test whether the variances of functional limitations
and health impairments are invariant across time, or
whether the relationship between functional limita-
tions and health impairments is invariant across time.
Models 2.3c, 2.3d, and 2.3e are used to test equality of
common factor variances, correlations, and covarian-
ces, respectively. The hypothesis of equal common
factor variances across occasions should be rejected
based on the chi-square difference test, but based on
the ECVI difference test and the CFI difference the
model with equal common factor variances can be
retained (CHISQdiff (12)¼ 37.6, p < .001;
ECVIdiff¼ 0.01, 95% CI: �0.01 to 0.06;
CFIdiff< 0.001). Moreover, the overall model fit of this
model is still considered to be good. The hypotheses
about equal correlations and thus covariances across
occasions must be rejected based on the chi-square
difference and ECVI difference tests, but might be
retained based on the CFI difference (CHISQdiff

(64)¼ 305.2, p< .001; ECVIdiff¼ 0.23 95% CI:
0.13–0.34; CFIdiff¼ 0.002). Taken together, these
results indicate that only the hypothesis of equal

common factor variances is tenable. This entails that
both the individual variability in the common factors
and the covariance between the two common factors
are stable across time.

Common factor means: In order to investigate the
longitudinal development of the underlying factors
functional limitations and health impairments,
Kronecker product restrictions were imposed to test
(possible) changes in common factor means across
time. The model with Kronecker product restrictions
on the common factor means yielded close fit accord-
ing to the RMSEA, and good fit according to the CFI
(Model 2.4a, see Table 5). The model that imposes a
linear trend on the means of the common factors
(Model 2.4b) can be considered to show equivalent
approximate fit (CHISQdiff (10)¼ 32.1, p< .001;
ECVIdiff¼ 0.01 95% CI: �0.01 to 0.05; CFIdiff< 0.001),
whereas the model that imposes equality of common
factor means across occasions (Model 2.4c) shows a
significant deterioration in model fit according to the
chi-square difference and ECVI difference tests, but
should not be rejected based on the CFI difference
(CHISQdiff (12)¼ 57.9, p< .001; ECVIdiff¼ 0.04 95%
CI: 0.01–0.09; CFIdiff< 0.001). These results indicate
that there is a significant change in the common fac-
tor means across time, and that this change can be
described using a linear trend.

The final model: The model that includes all
Kronecker product restrictions deemed tenable based
on the results reported above would be a plausible
final model. The final L3MM thus includes Kronecker
product restrictions on the factor loadings and inter-
cepts to comply with measurement invariance (Model
2.1), on the residual variances and covariances (Model
2.2b), on the common factor variances and covarian-
ces (Model 2.3b), and on the common factor means
(Model 2.4a). In addition, the final model includes
equality restrictions on residual factor variances
(Model 2.2c) and common factor variances (Model
2.3c), and imposes a linear trend on the common fac-
tor means (Model 2.4b). The resulting final model
yielded close fit according to the RMSEA, and good
fit according to the CFI (Model 2.5, see Table 5). This
L3MM required only 184 parameter estimates, and
gained 1090 degrees of freedom as compared to the
measurement model (Model 1.1).

Interpretation of parameter estimates: To illustrate
the interpretation of L3MM parameters, we will exam-
ine the parameter estimates of the final model (Model
2.5) that are given in Table 6.

Factor loadings and intercepts: In the final L3MM,
the factor loadings and intercepts are invariant over
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time, i.e., K5 I � K0, and s5u � s0 respectively
(see Table 6). For example, the element k052 is the
estimated factor loading of the observed indicator list-
lessness, that applies to all measurement occasions
(i.e., k052¼ 1.09). The element s05 is the invariant
intercept value that was estimated for the
same indicator.

Residual factor variances and covariances: In the
final L3MM, the Kronecker product restrictions
imposed on H imply that residual factor variances are
equal across time, and that the correlations between
residual factors change proportionately, i.e.,
H¼D(HT

� � I)D, and D¼ I � D0 (see Table 6).
Thus, the first element of D0 is the estimate of the
invariant standard deviation of the residual factor of
physical functioning (D011¼ 0.44), that is used for the
computation of the residual variance of 0.20 (¼ 0.442)
for all indicators of physical functioning across time.
Estimates of HT

* are the correlations between meas-
urement occasions. The factor by which the relation-
ships between the residual factors change across
occasions is equal for all residual factors, but the
actual covariances between the residual factors across
occasions may differ because they are dependent on
the standard deviations of the indicators. Also, it is
now easy to see that correlations between measure-
ment occasions decrease as the lag between the occa-
sions becomes larger (i.e., the correlation between the
first and the second measurement occasion is larger
than the correlation between the first and third meas-
urement occasion, and so on). In addition, correla-
tions between measurement occasions of the same lag
increase over time, i.e., the correlation between the
first and the second measurement occasion is smaller
than the correlation between the second and the third
measurement occasion, and so on. This pattern of
correlations explains why the restriction of equal cor-
relations of the same lag (i.e., Model 2.2d) was not
tenable. It might be, for example, that patients get
used to the repeated assessments and therefore answer
the questions in a more homogenous way.

Common factor variances and covariances: In the
final L3MM, the imposed Kronecker product restric-
tions on U imply that common factor variances are
equal across time, that the covariance between the
common factors of the same measurement occasion is
equal across time, and that the correlations between
common factors of different measurement occasions
change proportionately, i.e., U¼C(UT

� � UV
�)C,

and C¼ I � C0 (see Table 6). The estimates of the
invariant standard deviations of the common factors
functional limitations and health impairments (C0) are

0.83 and 0.51, respectively, and the correlation
between the two common factors at the same meas-
urement occasion (UV

*) is 0.44. The invariant covari-
ance between the two common factors of one
measurement occasion is thus 0.19 (i.e., 0.44 � 0.83 �
0.51). Correlations between measurement occasions
(UT

*) show the change in correlations between meas-
urement occasions across time, e.g., correlation
between measurement occasions decrease as the lag
between measurement occasions becomes larger.
Although correlations between measurement occasions
apply to both common factors, actual covariances
between common factors across occasions differ as
they are dependent on the standard deviations of the
common factors. Similar to the pattern of correlations
between measurement occasions of residual factors,
the result of the common factors shows a decrease in
correlations between measurements as the lag between
the occasions becomes larger, while correlations
between measurement occasions of the same lag
increase over time. This indicates that patients become
more homogenous in their answers to the observed
variables of physical limitations and health impair-
ments over time.

Common factor means: In the final L3MM, the lon-
gitudinal development of common factor means is
described by a linear trend, i.e., j¼u � aþ t � b
(see Table 6). The intercept parameters (a1 and a2)
are equal to the common factor means at the first
measurement occasion. The slope parameters (b1 and
b2) represent the linear change in common factor
means across occasions, where the means of the com-
mon factor functional limitations increase across occa-
sions (b1¼ 0.04), while the means of the common
factor health impairments decrease across occasions
(b2¼�0.06). However, only the decrease in health
impairments was statistically significant based on the
associated standard error of the slope parameter. The
complete vector of common factor means is computed
as a function of time of measurement. These results
may indicate possible effects of patients’ coping strat-
egies, as the relatively objective indicators of func-
tional limitations remain stable (e.g., physical
functioning, mobility), whereas the more subjective
indicators of health impairments (e.g., depression,
pain) decrease over time.

Discussion

The L3MM is a valuable tool for the assessment of
change in situations where there are many measure-
ment occasions. Kronecker product restrictions yield
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very parsimonious models, enabling the application of
SEM to large longitudinal data sets. In the present
paper we explained and illustrated the imposition of
Kronecker product restrictions on the parameter
matrices of (1) factor loadings and intercepts to com-
ply with the assumption of longitudinal measurement
invariance; (2) residual factor covariances and correla-
tions, and additional restrictions to test equality of
variances, correlations and covariances across occa-
sions; (3) common factor covariances and correlations,
and additional restrictions to test equality of variances,
correlations, and covariances across occasions; and (4)
common factor means, and additional restrictions to
test a linear trend of common factor means. In add-
ition, we explained how the resulting parameter esti-
mates can be interpreted. This paper, therefore, serves
as an instructive description of L3MMs in order to
facilitate their applications for complex longitudinal
data and to enhance the substantive interpretation of
model parameters. However, the illustration in the
current tutorial also showed that model fit evaluation
is not straightforward for these types of parsimonious
models. Therefore, in the following, we address the
challenges with regard to evaluation of (differences) in
model fit in more detail, suggest areas for future
research, and provide recommendations for research-
ers and practitioners who wish to apply the L3MM in
an informative way.

The main benefit of the L3MM is that it enables
the modeling of multivariate longitudinal data from
many measurement occasions within the general and
versatile SEM framework. When applying L3MMs one
can thus profit from general SEM features and devel-
opments, such as methods for handling missing data
(e.g., using alternative estimators), and diagnostics of
possible misfit in (parts of) the model (e.g., using cor-
relation residuals or modification indices) (cf. Bollen,
1989; Kline, 2011). The L3MM is especially suited for
analyses of data from many measurement occasions
(i.e.,> 2) with fixed intervals between occasions.
However, the L3MM can become of unmanageable
size with very large numbers of occasions (e.g., with
50 occasions, the decomposition will yield a matrix of
dimensions 50� 50) and alternative modeling strat-
egies are more appropriate (cf. Hamaker, Ceulemans,
Grasman, & Tuerlinckx, 2015). Moreover, some gen-
eral SEM guidelines may not be applicable to the spe-
cific L3MM context, such as sample size requirements
or model fit evaluation, the latter of which we elabor-
ate on below.

L3MMs are applied to assess change in multivariate
longitudinal data with many measurement occasions.

The size of these types of models is usually large in
terms of observed variables and model parameters.
For example, in our sample of 682 patients with bone
metastases we modeled 104 observed variables meas-
ured over 13 measurement occasions, which resulted
in a measurement model that required estimation of
1274 model parameters with 4290 degrees of freedom.
Evaluation of model fit is complicated by the fact that
the chi-square test of exact fit is dependent on sample
size and number of degrees of freedom (i.e., with
increasing sample size and equal degrees of freedom
the chi-square value increases) and tends to favor
highly parameterized models (i.e., the chi-square value
decreases when parameters are added to the model).
The RMSEA and CFI indices of approximate fit are
less dependent on sample size and reward model par-
simony. In our illustration with the L3MMs the evalu-
ations of overall model fit indicated that none of the
models showed exact fit according to the chi-square
test, while all models showed close approximate fit
(RMSEA <0.05). The CFI index seemed to be some-
what more discriminative as not all models showed
good fit (CFI >0.95), but without confidence intervals
for these values the precision of the index is
unknown. Therefore, this raises the question of how
informative these overall model fit measures are in
the case of highly parsimonious (longitudinal) models.
Existing guidelines are based on simulation studies
that have addressed the performance of overall good-
ness of fit measures, with relatively simple, single-
occasion examples (cf. Hu & Bentler, 1999). It may be
the case that highly parsimonious models with large
numbers of degrees of freedom require alternative fit
indices or decision rules for an accurate evaluation of
overall goodness of fit. For example, the RMSEA may
not have enough discriminative power when models
are very parsimonious (i.e., have many degrees of
freedom). The CFI may not be informative with longi-
tudinal data analyses, as the null model (i.e., a model
without correlations between variables) is too unrealis-
tic in the case of repeated measures of the same varia-
bles across time. As complex longitudinal models will
only become more prevalent in the presence of large
data sets, it would be worthwhile to investigate the
behavior of overall model fit indices as a topic of
future research.

The imposition of Kronecker product restrictions
leads to more parsimonious models, and thus to
deterioration in model fit. To test whether the restric-
tions are tenable we can test differences in model fit.
As the imposition of Kronecker product restrictions
usually leads to a large gain in number of degrees of
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freedom, evaluation of difference in model fit is com-
plicated for the same reasons as described above. As
an alternative to the chi-square difference test, we
used the difference in ECVI and CFI values to evalu-
ate differences in model fit. An advantage of the
ECVI difference is that the associated confidence
interval provides information about the precision of
the estimate and allows to test the equivalence in
approximate model fit. In our application, the chi-
square difference test showed the highest power,
rejecting all the L3MM restrictions (i.e., Kronecker
product restrictions on parameter matrices), and all
but one of the additional restrictions on L3MM par-
ameter matrices to test substantive hypotheses. The
ECVI difference test showed that some of the L3MM
restrictions and substantive hypotheses could be
retained based on the evaluation of equivalence in
approximate fit, whereas the CFI difference showed
the least discriminative power as almost all models
could be retained based on the rule of thumb for this
index (CFIdiff¼ 0.01). Thus, our illustration seems to
indicate that the ECVI difference may be more
informative for the evaluation of differences in model
fit than the differences in chi-square or CFI values.
However, stringent evaluation of the performance of
the ECVI for the comparison of nested models has
not yet been performed. Future research is needed to
address the appropriateness of the ECVI difference in
various contexts. Although the Kronecker product
restrictions represent the data well and aid interpret-
ation, it is difficult to provide decision rules for when
the assumption of proportional change does not hold.
Simulation studies are required to provide guidelines
on how to address model fit evaluation in these
circumstances.

Due to the problems in evaluating overall model fit
and differences in model fit there is a risk of retaining
an incorrect solution. Although Kronecker product
restrictions lead to simpler – and thus more favorable
– models according to the parsimony principle, one
should be aware that very restrictive models may lead
to biased parameter estimates. A rigid adherence to
the parsimony principle could thus lead to bias and
misinterpretation in model evaluation and selection.
Unfortunately there is a lack of studies about when
and to what extent parameters may be biased when
the Kronecker product restrictions do not hold, thus
complicating decisions on model fit evaluation.
Therefore, we want to emphasize that statistics alone
are not sufficient to guide decisions regarding these
types of model evaluations, and that such decisions
require substantive guidance as well. For example, the

evaluation of difference in model fit can be used to
test the tradeoff between model fit and model parsi-
mony, but may also be affected by interpretability of
results. In our illustration we incorporated Kronecker
product restrictions on residual factor variances and
covariances, even though these restrictions yielded
deterioration in model fit. In part, we chose to incorp-
orate these restrictions in favor of model parsimony
and interpretability of results. Instead of yielding 104
estimates of residual factor variances and 624 esti-
mates of residual factor covariances, the L3MM
yielded eight estimates of residual factor variances,
and 90 estimates that represent the proportional
change in residual factor variances and covariances
over time. These restrictions thus facilitate the sub-
stantive interpretation of model parameters – not only
in terms of their number but also in terms of their
meaningfulness due to the specifics of the L3MM
decomposition. The argument to favor parsimonious
models only when they facilitate interpretation has
been made previously by others as well (e.g., Mulaik,
1998; McDonald & Marsh, 1990), and should help to
avoid rigid applications of the parsimony principle
(Raykov & Marcoulides, 1999). Therefore, the decision
of whether to incorporate Kronecker product
restrictions might not only be guided by evaluation
of differences in model fit, but also by the improved
substantive evaluation of findings. With regard to
the imposition of additional restrictions on L3MM
parameter matrices however, the decision of whether
to incorporate these restrictions might not be guided
by the same considerations of model parsimony and
interpretability of findings. As these restrictions are
imposed to test specific substantive hypotheses,
it might be more desirable to have a high power to
detect differences in parameter estimates. Therefore,
substantive decisions play an important role in the
evaluation of differences in model fit. As there is no
single fit-index that can be appropriately applied for
the evaluation of (differences) in model fit under these
different circumstances, this might even require the
use of different fit indices or different decision rules
that are guided to the purpose of the analysis.
This does not mean that one is free to apply the fit
index or decision rule that is most convenient, but
rather that fit indices and decisions rules should not
be applied without critical evaluation of both the
substantive and statistical considerations of the model
and hypotheses under investigation. Future research
may provide new fit indices or new guidelines that are
better suited for the different purposes of L3MMs.
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As a recommendation for researchers and practi-
tioners that apply these types of models, we would
suggest to (1) use several tests and indices of model
fit in order to find support for the robustness of the
result in their commonalities, (2) keep in mind that
some fit indices are more appropriate in certain cir-
cumstances than others (e.g., specifically developed to
take into account model parsimony), and (3) take into
account substantive considerations when making deci-
sions on model fit evaluation (e.g., using theory to
establish an appropriate measurement model in add-
ition to relying on model fit tests or indices to guide
the specification of a measurement model) (see also
Verdam, 2017).

To conclude, this paper provides an instructive
application of the L3MM for multivariate longitudinal
data from many measurement occasions. Kronecker
product restrictions are used to model the multivariate
longitudinal structure of the data, which yields models
that are more parsimonious and have attractive inter-
pretation. Application of the L3MM therefore facili-
tates the analysis of complex longitudinal data and
can provide meaningful interpretation of the dynamics
of change. However, future research is needed in
order to support statistical decision rules for the ten-
ability of Kronecker product restrictions and other
substantive hypotheses in general. Such research will
facilitate future applications of the L3MM and thus
further our understanding of longitudinal dynamics
within the life sciences.
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