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ABSTRACT
We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coeffi-
cients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict
one-another, allows for sparse modeling of covariance structures, and may highlight potential causal
relationships between observed variables. We describe the utility in three kinds of psychological data
sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), tem-
porally ordered data sets (e.g., n = 1time series), and a mixture of the 2(e.g., n > 1time series). In time-
series analysis, the GGM can be used to model the residual structure of a vector-autoregression anal-
ysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network
and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be
formed on the covariance structure of stationary means—the between-subjects network. We discuss
the interpretation of these models and propose estimation methods to obtain these networks, which
we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empir-
ical examples, and simulation studies on these methods are included in the supplementary materials.

There has been a surge of network models being applied
to psychological data sets in recent years. This is consis-
tent with a general call to conceptualize observed psy-
chological processes not merely as indicative of latent
common causes but rather as emergent behavior of com-
plex, dynamical systems in which psychological, biologi-
cal, and sociological components directly affect each other
(Borsboom, Cramer, Schmittmann, Epskamp, & Wal-
dorp, 2011; Cramer et al., 2012; Cramer, Waldorp, van
der Maas, & Borsboom, 2010; Schmittmann et al., 2013;
van der Maas et al., 2006). Such relationships are typically
not known, and probabilistic network models (Koller &
Friedman, 2009) are used to explore potential dynamical
relationships between observables (Epskamp,Maris,Wal-
dorp, & Borsboom, in press; van Borkulo et al., 2014). In
this paper, we aim to provide a methodological introduc-
tion to a powerful probabilistic network model applicable
in exploratory data analysis, theGaussian graphicalmodel
(GGM), and to propose how it can be used and inter-
preted in the analysis of both cross-sectional and time-
series data.

Two lines of network research in psychology. We
can currently distinguish two distinct and mostly sepa-
rate lines of research in which networks are utilized on
psychological data sets: the modeling of cross-sectional

CONTACT Sacha Epskamp sacha.epskamp@gmail.com Department of Psychological Methods, University of Amsterdam,  WX Amsterdam, Nether-
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Color versions of one or more of the figures in this article can be found online at www.tandfonline.com/hmbr.

Supplemental data for this article can be accessed on the publisher’s website.

data and the modeling of intensive repeated measures
in relatively short time frames (e.g., several times per
day during several weeks). In cross-sectional model-
ing, a model is applied to a data set in which multiple
subjects are measured only once. The most popularly
used methods estimate undirected network models—so-
called pairwise Markov random fields (Epskamp et al.,
in press; Murphy, 2012). When the data are continu-
ous and assumed normally distributed, the GGM can
be estimated. The GGM estimates a network of partial
correlation coefficients—the correlation between two
variables after conditioning on all other variables in the
data set (Epskamp, Borsboom, & Fried, 2017a). This
model is applied extensively to psychological data (e.g.,
Cramer et al., 2012; Fried, Epskamp, Nesse, Tuerlinckx, &
Borsboom, 2016; Isvoranu et al., 2017; Kossakowski et al.,
2015; McNally et al., 2015; van Borkulo et al., 2015).

Researchers can obtain time-series data by using the
experience samplingmethod (ESM;Myin-Germeys et al.,
2009), in which subjects are asked several times per day
to fill out a short questionnaire using a device or smart-
phone app. Also, time-series data can arise from diary
studies (e.g., a questionnaire completed at the end of
the day) or physiological measurements, among other
methods. Often, repeated measures of one or multiple
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participants are modeled through the use of (multilevel)
vector autoregressive (VAR) models, which estimate how
well each variable predicts the measured variables at the
next time point (Borsboom&Cramer, 2013). Thesemod-
els are increasingly popular in assessing intraindividual
dynamical structures (e.g., Bringmann et al., 2013; Bring-
mann, Lemmens, Huibers, Borsboom, & Tuerlinckx,
2015; Wigman et al., 2015).

Estimating the GGM is not limited to cross-sectional
data; the model merely does not take temporal informa-
tion into account. As such, the lines of research on net-
work modeling of cross-sectional data and time-series
data can naturally be combined. First, GGM models can
readily be estimated on repeated measures, if these can
be assumed to be temporally independent. Second, as the
VAR model can be seen as a generalization of the GGM
that takes violations of independence between consecu-
tive cases into account; the GGM can be used to model
the residual (innovation) structure of aVARmodel to gain
insight in the contemporaneous time level of a time-series
analysis. Finally, the between-subjects effects of n > 1
studies can also be modeled through the use of the GGM.

Outline.We show that in time-series modeling the
GGM allows researchers to extend the modeling frame-
work to incorporate contemporaneous and between-
subjects effects. We do this by building up the model
complexity in three steps: (1) when cases can be assumed
to be independent (e.g., cross-sectional data or repeated
measures in which no auto-regression is assumed), (2)
temporally ordered data (e.g., n = 1 time-series data or
n > 1 time-series data where no individual differences
are assumed), and (3) temporally ordered data from
multiple subjects (e.g., n > 1 time series). The final level
of model complexity leads to a novel contribution of
this paper: separation of variance into contemporane-
ous, temporal, and between-subjects network structures.
We propose novel estimation procedures to estimate
these models, which we have implemented in two free
software packages: mlVAR,1 and graphicalVAR.2 We
furthermore expand on existing literature by providing a
comprehensive methodological discussion of the GGM,
by comparing the GGM to structural equation model-
ing (SEM; Kaplan, 2000; Wright, 1921), by providing
overviews of estimation methods and software packages
useable in each kind of data set and by discussing the
interpretation of networks estimated at the contempora-
neous and between-subjects levels. We showcase network
models estimated from n > 1 time-series data in two
empirical examples by reanalyzing existing data sets

 CRAN link: http://cran.r-project.org/package=mlVAR Github link (develop-
mental): http://www.github.com/SachaEpskamp/mlVAR.

 CRAN link: http://cran.r-project.org/package=graphicalVAR Github link
(developmental): http://www.github.com/SachaEpskamp/graphicalVAR.

(Bringmann et al., 2013; Geschwind et al., 2011; Mõttus,
Epskamp, & Francis, 2017). In the supplementary mate-
rials, we provide codes to perform the analyses and we
assess the performance of these methods in large-scale
simulation studies. To aid the reader in the various differ-
ent terms used in this paper, we have included a glossary
of terms in the Appendix.

1. The Gaussian graphical model

Let yyy�C = [YC1 YC2 . . . YCm ] denote a random vector with
yyyc as its realization.3 We assume yyyC is centered4 and nor-
mally distributed with some variance-covariance matrix
���:

yyyC ∼ N(000,���). (1)

The subscriptC denotes a case (a row in the spreadsheet).
We currently do not define the nature of the observed
variables. Thus, yyyC can consist of variables relating to one
ormore subjects, could contain repeatedmeasures on one
or more variables, could contain variables of a single sub-
ject that do not vary within-subject, and so forth. Con-
sider three examples: (1) Y1 could represent the level of
anxiety of subject p on day 1 and Y2 the level of anxiety
of subject p on day 2, (2) Y1 could represent the length
of subject p and Y2 the number of times subject p bumps
his or her head, and (3)Y1 could represent the number of
cigarettes subject p smokes per day andY2 the number of
cigarettes another subject p+ 1 smokes per day (case C
then represents a dyadic pair).

Partial correlation networks. Assuming multivari-
ate normality, ��� encodes all the information necessary
to determine how the observed measures relate to one
another. However, we will not focus on ��� in this paper
but rather on its inverse—the precision matrix KKK:

KKK = ���−1.

Of particular importance is that the precision matrix can
be standardized to encode partial correlation coefficients
of two variables, given all other variables (dropping sub-
scriptC for notational clarity; Lauritzen 1996):5

Cor
(
Yi,Yj | yyy−(i, j)

) = − κi j√
κii
√

κ j j
, (2)

 We use capitalized subscripts to denote random variables and lower case
subscripts to denote fixed variables. A variable can potentially be fixed with
respect to one subscript but randomwith respect to another. Supplementary
materials’Section  contains a complete overview of the notation used in this
paper.

 Becauseweassumedata to be centered,wedonot need tomodel the (grand)
mean vector. This simplifies notation.

 This relationship can be traced back much further. For example, Heiser ()
traced this relationship back to the work of Guttman ().
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in which κi j denotes an element of KKK, and yyy−(i, j) denotes
the set of variables without i and j. These partial corre-
lations can be graphically displayed in a weighted net-
work, in which each variable Yi is represented as a node,
and connections (edges) between these nodes represent
the partial correlation between two variables. When the
partial correlation (thus the corresponding element inKKK)
equals zero, no edge is drawn. Thus, modeling the inverse
variance-covariance matrix, such that every nonzero ele-
ment is treated as a freely estimated parameter, allows for
a sparse model for ��� (i.e., every element in ��� may be
nonzero while some elements in KKK are zero; Epskamp,
Rhemtulla, & Borsboom 2017d). Such a model is termed
a GGM (Lauritzen, 1996). Of note, when the sample-
variance-covariance matrix is inverted and standardized,
no partial correlation will be exactly equal to zero and the
GGMwill therefore be saturated. To obtain a sparsemodel
with testable implications, in this paper partial correla-
tions are forced to zero either by using thresholding rules
or regularization techniques.

When drawing a GGM as a network (often termed a
partial correlation network), positive partial correlations
are typically visualized with blue or green edges and neg-
ative partial correlations with red edges,6 and the abso-
lute strength of a partial correlation is represented by
the width and saturation of an edge (Epskamp et al.,
2012).When a partial correlation is zero, we draw no edge
between two nodes. As such, the GGM can be seen as a
network model of conditional associations; no edge indi-
cates that two variables are independent after condition-
ing on all other variables in the data set. This allows us to
model conditional associations, which we might expect
to be zero, rather than marginal associations, which we
rarely expect to be zero (Meehl, 1990).

To exemplify the above, suppose for three variables
“fatigue,” “concentration problems,” and “insomnia,” the
true variance-covariance matrix is

��� =
⎡
⎣
1 −0.26 0.31
−0.26 1 −0.08
0.31 −0.08 1

⎤
⎦.

To model this matrix, we need six parameters (three
covariances and three variances). The corresponding true

 Many publications make use of the default color setup used in qgraph
(Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, ): green for pos-
itive edges and red for negative edges. A later version of qgraph includes the
option theme = ”colorblind” using a more colorblind friendly col-
oring scheme and setting the positive edge color to blue. This option has
beenused for all graphs in this paper. Note that somepublications (e.g., Schu-
urman, ) also use blue and red edges but use red to denote positive and
blue to denote negative effects akin to a heat map.

−0.25 0.3

Fatigue

InsomniaConcentration

Figure . A hypothetical example of a GGM on psychological
variables. Nodes represent someone’s ability to concentrate, some-
one’s level of fatigue, and someone’s level of insomnia. Connec-
tions between the nodes, termed edges, represent partial correla-
tion coefficients between two variables after conditioning on the
third. Blue edges indicate positive partial correlations, red edges
indicate negative partial correlations, and the width and satura-
tion of an edge corresponds to the absolute value of the partial
correlation.

precision matrix becomes

KKK = ���−1 =
⎡
⎣

1.18 0.28 −0.34
0.28 1.07 0
−0.34 0 1.11

⎤
⎦.

Similar to SEM, a model can be devised that perfectly
explains this pattern using only five parameters, because
one of the elements in KKK can be constrained to be zero
(Epskamp et al., 2017d). We can now standardize this
matrix and make the off-diagonal elements negative
(Equation (2)) to obtain the partial correlation matrix,
which we will denoteRRR:

RRR =
⎡
⎣
1 −0.25 0.3
−0.25 1 0
0.3 0 1

⎤
⎦.

This matrix can be used to draw a network as is shown
in Figure 1. This figure shows that someone who is tired
is also more likely to suffer from concentration problems
and insomnia. Furthermore, this network shows that the
correlation between insomnia and concentration prob-
lems can be explained by the relationships of both vari-
ables with fatigue: concentration problems and insomnia
are conditionally independent given the level of fatigue.

Interpreting GGMs. This paper concerns the
exploratory estimation of GGMs from various sources of
data, without prior knowledge on the model structure.
Such undirected network models can be interpreted
in strikingly different ways, ranging from a no causal
interpretation to a strong causal interpretation:

(1) Predictive effects. The GGM can be interpreted
without any causal interpretation and used merely

MULTIVARIATE BEHAVIORAL RESEARCH 455



as a tool to show which variables predict one-
another. Interpreting the parameters associ-
ated with the model A → B → C requires a 
causal interpretation, while the predictive quality  
between these nodes can directly be obtained from 
the equivalent GGM A–B–C: only information 
on node B is needed when predicting A or C. As  
such, the GGM can always be interpreted to show 
predictive effects and offers a powerful exploratory 
tool to map out multicollinearity.

(2) Indicative of causal effects. The GGM is closely
tied to causal modeling. If a causal model between
observed variables generated the data, then an
edge A – B appears in the GGM only if there is a
causal link between the variables (e.g., A→ B or
A← B), or if both variables cause a third variable
in the data (e.g., A→ C← B). Exploratory esti-
mation of such models relies on stringent assump-
tions (e.g., acyclicity), suffers from a problem of
many equivalent models, and may lead to over-
saturated models. The GGM, on the other hand,
is well identified and does not feature equivalent
models. Therefore, at the cost of losing informa-
tion on the direction of effect, exploratory search
algorithms perform well in identifying a GGM.
Because of this close tie to causal modeling, edges
in the GGM may be interpreted as indicative of
potential causal pathways.

(3) Causal generating model. Undirected network
models have a long history of being used as data-
generating models in diverse scientific fields such
as statistical physics (Murphy, 2012). For exam-
ple, in a simple ferromagnetic Ising model of two
particles that tend to be aligned (Epskamp et al.,
in press), A — B, intervening on A would impact
B and intervening on B would impact A. To this
end, undirected networkmodels allow for a unique
causal interpretation: one of genuine symmetric
effects. This interpretation is discussed often in the
literature on network psychometrics, and used in
complexity research demonstrating emergent phe-
nomena (e.g., the positive manifold or phase tran-
sitions) that may occur in such a network of cel-
lular automata (Cramer et al., 2016; Dalege et al.,
2016; Kruis & Maris, 2016; van der Maas et al.,
2006).

In addition, the GGM is closely tied to factor analy-
sis, allowing for extensions to factor modeling through
the use of networkmodeling (Epskamp et al., 2017d). The
main focus of this paper is discussing the second interpre-
tation, while also describing how the GGM may be used
to show predictive effects. We detail these first two points
below by first showing how partial correlation coefficients

correspond to multiple regression coefficients and next
discussing the relationships between the GGM and SEM.
Point 3 follows from observing that the GGM is directly
related to similar undirected models such as the Ising
model (Ising, 1925). A discussion on the causal interpre-
tation of such models is beyond the scope of this paper,
and we refer the reader for this topic to Epskamp et al. (in
press) and van Borkulo et al. (2014).

1.1. The Gaussian graphical model andmultiple
regressions

An edge in a GGM indicates that one node predicts a
connected node after controlling for all other nodes in
the network. This can also be shown in the relationship
between coefficients obtained from least-squares predic-
tion and the inverse variance-covariance matrix. Let ���

represent an k× kmatrix with zeros on the diagonal. Fur-
thermore, letγγγ i,−(i) represent the ith row of��� without the
ith element (as the diagonal is set to zero), which contains
the regression coefficients obtained in a multiple regres-
sion model:

yci = τ + γγγ i,−(i)yyyc,−(i) + εci.

As such, γi j encodes how well the jth variable predicts
the ith variable. This predictive effect is naturally sym-
metric; if knowing someone’s level of insomnia predicts
his or her level of fatigue, then conversely knowing some-
one’s level of fatigue allows us to predict his or her level of
insomnia. As a result, γi j is proportional to γ ji. There is
a direct relationship between these regression coefficients
and the inverse variance-covariancematrix (Meinshausen
& Bühlmann, 2006). Let DDD denote a diagonal matrix on
which the ith diagonal element is the inverse of the ith
residual variance: dii = 1/Var(εCi). It can then be shown
(Pourahmadi, 2011) that7

KKK = DDD (III −���) . (3)

Thus, κi j is proportional to both γi j and γ ji; a zero in
the inverse variance-covariance matrix indicates that one
variable does not predict another. Consequently, the net-
work tells us something about the extent to which vari-
ables predict each other. This predictive quality is the cor-
nerstone for how such network models are often applied
(Hastie, Tibshirani, &Wainwright, 2015), for example, in
recommender-systems that recommend users on prod-
ucts they might like depending on which products the
user already liked (Marsman, Waldorp, & Maris, 2017b).

 This expression may differ by a scalar, depending on the estimation method.
For example, by default R computes the variance-covariance matrix by using
n− 1 in the denominator, but computes Var(εCi) by using n−m in the
denominator. This denominator is cancelled out in Equation () when stan-
dardizing to partial correlation coefficients.
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In addition to these applications and aiding the interpre-
tation of GGMmodels, this relationship betweenmultiple
regression and undirected network edges plays a crucial
role in many network estimation procedures (Haslbeck
&Waldorp, 2016b; Meinshausen & Bühlmann, 2006; van
Borkulo et al., 2014), including the methods discussed
below in this paper.

1.2. The Gaussian graphical model and
structural equationmodeling

Let ηηηC represent a set of unobserved variables, which we
assume to be jointly normally distributed with yyyC. Then,
we can form an encompassing framework for several pos-
sible generating models:8

yyyc = BBByyyc +			ηηηc + εεεc

εεεC ∼ N(000,


)

ηηηC ∼ N(000,���), (4)

inwhich


 is a diagonalmatrix,9 indicating that after con-
ditioning on all causes the variables are independent, BBB
is a square matrix with zeros on the diagonal of causal
effects between observed variables, and 			 is a factor-
loadingmatrix. The variance-covariancematrix ofηηηCmay
in turn be modeled in various ways to achieve compli-
cated model setups. The expression above is well-known
in SEM, which allows for confirmatory testing of causal
models. In exploratory estimation, one could assume no
latent variables exist and aim estimate BBB (causal models),
or one could assume no relationships between observed
variables exist and aim to estimate			 (factor models). We
contrast both to the GGM below.

1.2.1. Causal models

Suppose there are no unobserved causes to any of the
variables in yyyC, and the variables in yyyC are only caused
by other variables in yyyC. The corresponding model for���

becomes:

��� = (III − BBB)−1


 (III − BBB)−1� . (5)

In this expression,BBB can now be seen to encode the causal
model (Pearl, 2000). Table 1 summarizes the comparison
between such causal models and GGMs. Although use-
ful for generating data and confirmatory testing, we can
see two problems in exploratory estimation of BBB without
any prior knowledge. First, if m variables are included,

 This expression should not be confused with Equation (), in which ��� is
obtained by performing univariate multiple regressions in which error terms
are not independent.

 This matrix is often denoted using the Greek letter��� instead of 


. We use



 here to avoid confusion with the contemporaneous variance-covariance
matrix used below, which is not diagonal.

��� contains m(m+ 1)/2 elements, while 


 contains m
parameters and BBB contains m(m− 1) parameters. As a
result, the model above is underidentified without strin-
gent restrictions on BBB. One assumption is that yyyC can
be ordered such that BBB is lower triangular, indicating
that if this matrix is used to draw a directed graph—a
graph in which A→ B indicates that A causes B—that
graph does not contain any cycles, meaning that directed
edges cannot be traced from any node back to itself (e.g.,
A→ B→ A). Such a graph is called a directed acyclic
graph (DAG; Kalisch & Bühlmann, 2007; Pearl, 2000). If
repeated measures are available at the correct time scale,
reciprocal effects and cycles can often be adequatelymod-
eled as acyclic effects unfolding over time. Without such
information, cycles can be modeled and can be identi-
fied when exogenous variables are present (such as the
weather, time, or, depending on themodeling framework,
lagged variables; Rigdon, 1995), but the interpretation
of such cycles is not without problems (Hayduk, 2009).
Several software packages exist that aim to find such a
DAG (e.g., pcalg, Kalisch,Mächler, Colombo,Maathuis, &
Bühlmann, 2012; bnlearn, Scutari, 2010). The assumption
of acyclicity, however, is debatable in the context of psy-
chological variables (Schmittmann et al., 2013) because
many effects can be plausibly assumed cyclic (e.g., fatigue
→ concentration problems→ stress→ fatigue).

Second, the same structure for ��� can be obtained
under various different specifications of BBB. Thus, many
equivalent models can lead to exactly the same fit. This
can be seen because several matrix decompositions of
���, such as a Cholesky decomposition or an eigendecom-
position, can be used to produce equivalently fitting BBB.
The problem of equivalent models is also well-known in
the literature on directed networks and SEM (MacCal-
lum,Wegener, Uchino, & Fabrigar, 1993; Pearl, 2000). For
example, the following three causal models are not statis-
tically distinguishable:

(1) Concentration→ Fatigue→ Insomnia
(2) Concentration← Fatigue→ Insomnia
(3) Concentration← Fatigue← Insomnia
All three models only imply that concentration and

insomnia are conditionally independent given fatigue.
With more variables, the number of potential equiva-
lent models increases drastically, making it evident that
model search is likely to fail. At best, exploratory esti-
mation can result in a set of equally plausible DAGs (an
equivalence class; Drton & Maathuis, 2017), each differ-
ently parameterized and each leading to different strong
causal hypotheses.

Causal modeling and the GGM. The undirected
GGM offers an attractive alternative to exploratory DAG
estimation: the GGM is saturated rather than overi-
dentified if all edges are present (KKK contains the same
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Table . Overview of causal models (directed networks) and Gaussian graphical models (undirected networks).

Causal model Gaussian graphical model

���−1= (III− BBB)�


−1(III− BBB) = KKK

A⊥⊥ C | B

+ +

A

B

C

+ +

A

B

C

A⊥⊥ C | B

+ +

A

B

C

+ +

A

B

C

A �⊥⊥ C | B

+ +

A

B

C

+ +

−A

B

C

R packages (confirmatory) Any SEM package lvnet (fit measures); qgraph (fit measures); ggm (estimation
only); GLASSO (estimation only)

R packages (exploratory) pcalg; bnlearn qgraph (EBICglasso function); GLASSO (no automatic
tuning parameter selection); huge; parcor; BDgraph;
lvnet (for GGM at latent or residual level of SEM)

Pros Causal interpretation; allows for confirmatory testing of
causal hypotheses; can detect common effect structures

No equivalent models; fast structure and parameter
estimation using LASSO; edges parameterizable as
partial correlation coefficients; edges interpretable as
predictive effects; latent variables result in clusters;
edges can be indicative of potential causal effects

Cons Exploratory estimation requires assumption of acyclicity;
many equivalent models; direction of effect poorly or
not identified; strongly depends on assumption of no
latent variables

No direction of effect; common effect structure can induce
spurious edge; LASSO estimation assumes true model is
sparse

number of unique elements as���), does not feature equiv-
alent models10 (there is only one unique inverse for ���),
does not suffer from a questionable direction of causal
effect, does not require the assumption of acyclicity, and is
easily parameterized using partial correlation coefficients
(Epskamp et al., 2017d). These benefits come, however, at
the cost of losing information on the direction of effect.
To investigate the structure of a GGM under the causal
model of Equation (5), in which observed variables can
only be caused by other observed variables, we can invert
that expression to obtain:

KKK = (III − BBB)�


−1 (III − BBB) , (6)

in which


−1 is still a diagonal matrix. It becomes evident
that there is no longer a matrix inversion needed and that
the sparsity inBBB directly corresponds to the sparsity inKKK;
the GGM thus acts on the same level as causal modeling.
We can derive that κi j equals zero if there is no directed

 Note that the uniqueness of the GGM relates to the psychometric model: for
every��� there is only one unique inverseKKK and vice versa.When estimating a
GGMfromdata, different estimationmethodsmay lead todifferent estimated
GGMs

edge between node i and j (e.g.,Yi→ Yj orYi← Yj) and
if there is no common effect of node i and node j (e.g.,
Yi→ Yk← Yj; Koller & Friedman, 2009).11 Thus, assum-
ing a causal model as in Equation (5) generated the data,
an edge in a GGM emerges as a result of a direct causal
effect between the variables, or as a result of the fact that
both variables have a common effect on a third variable.
Note that within the causal model of Equation (5), there
are no latent common causes by assumption. Edges in
the GGM can therefore be indicative of potential causal
effects.

A note on common effects. As mentioned above and
shown in Table 1, conditioning on a common effect may
induce a spurious edge in the GGM. In this case, the
sign of the edge can be informative: two positive causal
effects from two variables on a third lead to a negative
partial correlation. As such, when observing an edge of an
unexpected sign in the GGM, this may be indicative of a
common effect, especially when the marginal correlation

 A common effect node is also termed a “collider” in the literature on causal
modeling.
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coefficient between the two variables was of the different
sign. It should also be noted that conditioning on a com-
mon effect might cancel out a weak effect between two
variables. In addition, because edges may be induced due
to conditioning on a common effect, the GGM does not
estimate a skeleton graph, a causal network with arrow-
heads removed (an edge may be in the GGM that is not in
the causal model). Skeleton graphs can also be estimated
from data (e.g., Kalisch, Maechler, & Colombo, 2017), but
are not parameterized and rely on many separate con-
ditional independence tests, potentially leading to power
issues.

1.2.2. Factor models

Suppose that, instead of assuming no unobserved causes
as in (5), we take the generating model of (4) and
only allow for unobserved causes of the observed vari-
ables. Then, (4) reduces to the well-known factor model
(Brown, 2014). The corresponding model for ��� now
becomes:

��� =			���			� +


,

which can subsequently be inverted to obtain an expres-
sion for the equivalent GGM. Golino & Epskamp (2017)
provide a detailed derivation of this inverted expression
and show that a factor in the factor model will lead to its
indicators to cluster (all nodes connected to each other
with strong edges) in the GGM. This result is in line with
mathematical equivalences between factor models and
network models of binary variables (Epskamp et al., in
press; Kruis & Maris, 2016; Marsman et al., 2017a; Mars-
man, Maris, Bechger, & Glas, 2015). As there is only one
unique inverse to ���, there is only one unique GGM for
every factor model. Conversely, however, one GGM may
be equivalent to many different factor models (e.g., all
possible rotations of			).

Due to these equivalences, network modeling and fac-
tor modeling are closely connected. A natural first step
in performing an exploratory factor analysis would be to
estimate and draw a GGM model and investigate if the
nodes cluster as would be expected by a factor model.
Cluster-detection algorithms on the GGM could even be
performed to investigate the number of factors to extract
(Golino & Epskamp, 2017). Of note, however, is that
many GGM estimation methods will always aim to esti-
mate sparse GGM (i.e., KKK contains exact zeroes), which
is not expected given a factor model (except when latent
variables are orthogonal). As such, estimating a sparse
network does not provide evidence that a latent vari-
able model could not have generated the data (Epskamp,
Kruis, &Marsman, 2017c; Epskamp et al., in press). GGM

modeling can further be used to augment factor analy-
sis by modeling the latent variable variance-covariance
matrix ��� or the residual variance-covariance matrix 




as a GGM (Epskamp et al., 2017d). Modeling ��� as a
GGM leads to a latent network model, which can be
used in exploratory estimation of relationships between
latent variables. Modeling 


 as a GGM leads to a resid-
ual network model, which may be used to estimate factor
models while local independence is structurally violated
(Epskamp et al., 2017d; Pan, Ip, & Dubé, 2017).

A note on spurious edges. When interpreting edges
in the GGM as indicative of potential causal effects, it is
important to note that edges in a GGM may also result
from latent variables. Such edges are termed spurious,
and cannot be accounted for unless the latent variable
is explicitly modeled (e.g., by using the residual network
model described above). The same problem occurs in
exploratory DAG estimation, in which case a latent vari-
able may induce a directed edge in the causal network.
Furthermore, such spurious associations may arise in any
statistical model, to the extent that unmeasured latent
variables are involved.Here, the downside thatGGM loses
information on direction of effect turns into an upside:
when an edge is indicative of a causal effect, GGMs do not
retrieve the direction of effect, however, when an edge is
spurious due to the influence of a latent variable, theGGM
also does not introduce a strong causal hypothesis onwhat
would happen under intervention.

2. Estimating GGMs from different sources of
data

2.1. Datawith independent cases

A GGM can be estimated in data sets where cases can be
assumed to be independent. Three common examples of
such data are cross-sectional data, in which every subject
is only measured once on a set of response items, aggre-
gated data, in which only one mean score per variable per
subject is included in the data set, or n = 1 time-series
data that feature large intervals between measurement
occasions. In time-series data featuring shorter intervals,
a GGM can be estimated as well; in this case, the network
could be termed a contemporaneous network. However,
as we argue in the next section on temporally ordered
data, better methods exist that take temporal information
into account in addition to modeling the contemporane-
ous effects in a GGM.

... Estimation
In cross-sectional data analysis, only one observation per
subject is available; thus, we cannot expect to estimate
subject-specific means or GGM networks. It is typically

MULTIVARIATE BEHAVIORAL RESEARCH 459



assumed that the subjects all share the same distribution.
That is,

yyyP ∼ N (000,���) ,

in which yyyP denotes the random response of subject P on
all items. Similarly, in n = 1 time-series data we canmake
a similar assumption:

yyyT ∼ N (000,���) ,

in which yyyT denotes the random response of a subject
on all items at time point T . In both cases, the full
likelihood can be readily obtained, and the variance-
covariance matrix��� can reliably be estimated using max-
imum likelihood estimation (MLE), least-square estima-
tion, or Bayesian estimation.

Regularization. TheMLE solution ofKKK—the precision
matrix encoding a GGM—can be obtained by standard-
izing the inverse sample variance-covariance as per Equa-
tion (2). To obtain a sparse network, model search can be
performed by iteratively adding and removing edges and
fitting the corresponding GGM structure (Epskamp et al.,
2017d). In recent literature, it has become increasingly
popular to use regularization techniques, such as penal-
izedMLE, to jointly estimate model structure and param-
eter values (Costantini et al., 2015; van Borkulo et al.,
2014). The least absolute shrinkage and selection operator
(LASSO; Tibshirani, 1996) has been shown to perform
well in quickly estimating model structure and parame-
ter estimates of a sparse GGM (Friedman, Hastie, & Tib-
shirani, 2008; Meinshausen & Bühlmann, 2006; Yuan &
Lin, 2007). A particularly popular variant of LASSO is
the graphical LASSO (GLASSO; Friedman et al., 2008),
which directly penalizes elements of the inverse variance-
covariance matrix (Witten, Friedman, & Simon, 2011;
Yuan & Lin, 2007). The GLASSO algorithm is useful as it
is typically faster than other GGM estimation algorithms
(which conduct multiple separate regressions and then
combine the results using Equation (3)), and requires only
an estimate of the variance-covariance matrix rather than
raw data (Epskamp & Fried, in press). LASSO utilizes a
tuning parameter which can be chosen in a way that opti-
mizes cross-validated prediction accuracy or that mini-
mizes information criteria such as the extended Bayesian
information criterion (EBIC; Chen & Chen, 2008). Esti-
mating a GGM with the GLASSO algorithm in combina-
tion with EBIC model selection has been shown to work
well in retrieving the true network structure (Epskamp,
2016; Foygel & Drton, 2010). For an introduction to this
methodology aimed at empirical researchers, we refer the
reader to Epskamp & Fried (in press).

Software. Several software packages allow for GGM
estimation as described above. MLE can be performed in

any programming language and in many statistical pro-
grams by inverting and subsequently standardizing the
sample variance-covariance matrix. In the open-source
statistical programming language R (R Core Team, 2017),
automated procedures have been implemented in the
corpcor package (Schafer et al., 2017) and the qgraph
(Epskamp et al., 2012) package. The qgraph package
also supports thresholding via significance testing or
false discovery rates. The GLASSO algorithm is imple-
mented in the glasso (Friedman, Hastie, & Tibshirani,
2014) and huge (Zhao et al., 2015) packages. EBIC-
based tuning parameter selection using the glasso package
has been implemented in the qgraph package. The huge
package also allows for selection of the tuning parame-
ter using cross validation or EBIC. The parcor package
(Krämer, Schäfer, & Boulesteix, 2009) implements other
LASSO variants to estimate theGGM.TheBDgraph pack-
age (Mohammadi & Wit, 2015) implements a Bayesian
method to estimate the undirected structure. Finally, fit-
ting an estimated GGM to data can be done in the R pack-
ages ggm (Marchetti, Drton, & Sadeghi, 2015) and lvnet
(Epskamp et al., 2017d).

2.2. Temporally ordered data of a single subject

In line with a call for more intraindividual and person-
based research (Molenaar, 2004), an increasingly
popular form of data pertains to n = 1 time series,
in which a single individual is measured repeatedly over
a period of time. One such situation is in clinical prac-
tice (Epskamp et al., 2018; Kroeze et al., 2017), where
a patient can be measured several times per day over a
period of a few weeks. We will limit our discussion to
data obtained in a relatively short time-frame so that
we can reasonably assume the model will remain stable
over time. Then, we can apply the methodology above to
obtain a GGM for the n = 1 data. However, such an anal-
ysis does not take temporal ordering of data into account
(i.e., relationships between measurement occasions)
and only investigates contemporaneous relationships
between variables (e.g., within the same measurement
occasion). This is important for several reasons. First,
valuable information, especially in the context of dynam-
ical relationships, might be contained at the temporal
level rather than at the contemporaneous level. Second,
not taking temporal ordering into account might bias the
estimated contemporaneous relationships (see Section
4 of the supplementary materials). For example, if one
variable causes itself and another variable at the next time,
then not taking temporal ordering into account turns
that variable into a latent cause, which would produce
an edge in the GGM. Third, temporal information is
needed when constructing the joint likelihood over time
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(e.g., to obtain the information retained in a system over
time; Epskamp, 2017a; Quax, Kandhai, & Sloot, 2013).
Finally, temporal information can aide in distinguishing
reciprocal and cyclic effects by regarding these as acyclic
effects unfolding over time.

VectorAuto-regression. The simplest way to deal with
temporal ordering of cases is to incorporate the effect
between consecutive measurements (Chatfield, 2016;
Hamilton, 1994; Shumway & Stoffer, 2010). This is called
a Lag-1 model because it includes both measurements at
the current time point t as well as measurements from the
previous time point t − 1.Wewill focus our discussion on
Lag-1 models, noting that everything below also general-
izes to more complicated models (e.g., Lag-2 models). In
intraindividual analysis, VAR (Brandt & Williams, 2007;
Rosmalen, Wenting, Roest, de Jonge, & Bos, 2012) has
gained substantive footing in visualizing temporal infor-
mation through networks. The lag-1 VAR model can be
denoted as a regression model on the previous measure-
ment occasion:

yyyt = BBByyyt−1 + εεεt

εεεT ∼ N(000,���). (7)

The model matrix BBB encodes temporal predictive effects
fromvariables on variables in the nextmeasurement occa-
sion, and can be used to obtain a directed network, which
we term the temporal network. The variance-covariance
matrix��� can be inverted (KKK (���) =���−1) to obtain a GGM
modeling effect within the same measurement occasion,
after controlling for temporal effects. These can be dis-
played again as a network, which we term the contempo-
raneous network.

Temporal networks. Temporal networks, encoded by
BBB, have grown popular in recent psychological literature
(e.g., Bringmann et al., 2013, 2015; Bos et al., 2017; Klip-
pel et al., 2017; Snippe et al., 2017;Wigman et al., 2015). A
temporal network is formed by combining a lagged vari-
able yt−1 and current variable yt into a single node, con-
nected with directed edges which are weighted according
to the regression parameters contained in BBB.12 Thus, an
edge in the temporal network indicates that a node pre-
dicts another node (or itself in the common case of self-
loops) at the next measurement occasion, after control-
ling for all other variables at the previous measurement
occasion. Temporal prediction is central to the concept
of Granger causality in the economic literature (Eichler,
2007; Granger, 1969), and it satisfies at least the tempo-
ral requirement for causation (i.e., the causemust precede

 Note, in graph theory it is common to encode a network using a weights
matrix in which the row indicates the node of origin and the column indi-
cates the row of destination. As such, to obtain the directed weights matrix
to draw a temporal networkBBB needs to be transposed.

the effect). Temporal networks may thus highlight poten-
tial causal pathways. While temporal networks are typi-
cally cyclic, they can also be interpreted as summarizing
a DAG unfolding over time.

Contemporaneous networks. In addition to tempo-
ral effects, VAR analyses also include contemporaneous
effects, which can be modeled as a GGM. We will term
this modeling framework (a VAR model with contem-
poraneous effects explicitly modeled and portrayed as a
GGM) graphical VAR (GVAR; Wild et al., 2010).13 A use-
ful equivalent way to denote a GVAR model is by using a
conditional Gaussian distribution:

yyyT | yyyT−1 = yyyt−1 ∼ N
(
BBByyyt−1,���

)
.

Which is equivalent to Equation (7). Now, it becomes evi-
dent that if consecutive cases can be assumed to be inde-
pendent, and thus BBB = 000, the GVAR model is exactly the
same as theGGMmodel described above for independent
cases. Thus, the GVAR model can be seen as a general-
ization of the GGM model to temporally ordered data.
GVAR only differs from regular VAR in that the con-
temporaneous structure is modeled and represented as a
GGM, instead of being saturated. This leads to a strikingly
different interpretation of theVARmodel; theVARmodel
can be seen as an inclusion of temporal effects on a GGM.

Temporal and contemporaneous information.
Figure 2 shows a hypothetical example of the two net-
work structures obtained in a GVAR analysis and shows
how they might plausibly differ. The left panel shows the
temporal network. The self-loop shows that whenever the
subject in question felt energetic (or tired), this person
also felt more (or less) energetic in the next measurement.
The temporal network also shows us that after exercising,
this person felt less energetic. The contemporaneous
network in the right panel shows a plausible reverse
relationship: Whenever this person exercised, he or she
felt more energetic in the same measurement occasion.
In psychology, there will likely be many causal relation-
ships that occur much faster than the lag interval of a
typical ESM study; in this case, these pathways will be
captured in the contemporaneous network. For example,
if someone is experiencing bodily discomfort, that will
immediately negatively affect that person’s ability to enjoy
him or herself (Epskamp et al., 2018). Especially when
the measurement is on blocks of time (e.g., “since the last
measurement did you feel ...”), such effects are likely to be
caught in the contemporaneous network.

 Wild et al. () do not use the term graphical VAR in the exact same way
we do, and use it more to refer to graphical modeling in a VAR framework,
including structural VAR. We use the term here as described because having
an explicit term helps in contrasting GVAR from, e.g., structural VAR.
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Figure . A hypothetical example of two network structures obtained from a GVAR analysis. The network on the left indicates the tem-
poral network, demonstrating that a variable predicts another variable at the next time point. The network on the right indicates the
contemporaneous network, demonstrating that two variables predict each other at the same time point.

2.2.1. Estimation

Estimating saturated (fully connected temporal
and contemporaneous networks) GVAR models is
straightforward. First, one needs to estimate temporal
effects of a regular VAR model by performing multivari-
ate multiple regression of all variables on the previous
measurement occasion,

yyyt = BBByyyt−1 + εεεt ,

or by estimating univariate models for every variable,

yti = βββ iyyyt−1 + εti,

in which βββ i denotes the ith row of BBB. Next one can invert
the variance-covariancematrix of the residuals to obtain a
GVARmodel. Step-wisemodel selection in latent network
models (Epskamp et al., 2017d) can also be used to esti-
mate sparse GVAR models. Missing data can be handled
in default ways of SEM or regression models (e.g., listwise
deletion and full-information maximum likelihood), or
by using more sophisticated techniques such as Bayesian
estimation (Schuurman, Grasman, &Hamaker, 2016b) or
the Kalman filter (Harvey, 1990; Kim & Nelson, 1999).

Novel estimation methods. A promising recent
method for estimating VAR models is the Bayesian
dynamical SEM implementation in version 8 of Mplus
(Asparouhov, Hamaker, & Muthén, 2017; Muthén &
Muthén, 2017), which includes handling of missing data,
measurement invariance, and latent variables. Mplus
can be used to estimate saturated GVAR models, and to
perform model selection in the temporal network of a
GVAR model. Model selection in the contemporaneous
network of a GVAR model is not yet implemented, but
credibility intervals around contemporaneous effects can
be obtained by manually inverting each sampled residual

variance-covariance matrix (these can be stored using the
BPARAMETERS option).

When estimating GVAR models, regularization meth-
ods can be used similar to the estimation of GGMs on
nontemporally ordered data. Abegaz andWit (2013) pro-
posed to apply LASSO estimation to jointly estimate the
temporal and contemporaneous network structures using
themultivariate regressionwith the covariance estimation
(MRCE) algorithm described by Rothman, Levina, & Zhu
(2010). MRCE involves iteratively optimizing BBB, using
cyclical-coordinate descent, andKKK (���), using the GLASSO
algorithm (Friedman et al., 2008, Friedman et al., 2014).
EBIC model selection can be used to obtain the best per-
formingmodel. Thismethodology has been implemented
in two open source R packages: sparseTSCGM (Abegaz &
Wit, 2015), which aims to estimate the model on repeated
multivariate genetic data, and graphicalVAR (Epskamp,
2017c), which was designed to estimate the model on
the psychological data of a single subject. The graphical-
VAR package also allows for unregularized multivariate
estimation.

An alternative to estimating GVAR models is to esti-
mate structural VAR (SVAR; Chen et al., 2011) models,
also called unified SEM (Gates, Molenaar, Hillary, Ram,
& Rovine, 2010). In SVAR, the contemporaneous effects
are modeled using a directed network instead of an undi-
rected network. The sparsity of the undirected GVAR
contemporaneous network corresponds in the same way
to the sparsity of the directed contemporaneous network
in SVAR as how the GGM corresponds to causal models
(edges arise in the GGM due to edges in the causal net-
work or conditioning on common effects). The temporal
SVAR network is sparser than the temporal GVAR net-
work, as contemporaneous mediators can be controlled
for in SVAR but not in GVAR. A saturated SVAR model
can be obtained by using regressions on the previous
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time-point asmentioned above, followed by transforming
the contemporaneous variance-covariance matrix (e.g.,
by using a Cholesky decomposition on its inverse; Lütke-
pohl, 2005) and subsequently transforming the temporal
effects to take contemporaneous mediators into account.
This technique of obtaining an SVAR model leads to
multiple solutions (Beltz & Molenaar, 2016). Step-wise
model selection can also be used to estimate sparse SVAR,
for example, by using model selection in (unified) SEM
(Gates et al., 2010) or Bayesian dynamical SEM models
(Asparouhov et al., 2017; Muthén & Muthén, 2017).

2.3. Temporally ordered data of multiple
subjects

A type of data that is increasingly common due to the
emergence of ESM studies is time series of multiple sub-
jects (e.g., Bringmann et al., 2013, 2015; Mõttus et al.,
2017; Schmiedek, Lövdén, & Lindenberger, 2010; Wig-
man et al., 2015). Such data sets pose a promising gate-
way to study both intraindividual dynamics and between-
subjects overlap as well as their differences. Here, we
assume that the number of time points might differ per
person and that measurement occasions are nested in
people. We can model the temporal data of every person
with an individual GVAR model:

yyy[t,p] = μμμp + BBBp
(
yyy[t−1,p] −μμμp

)+ εεε[t,p]

εεε[T,p] ∼ N(000,���p)

���−1p = KKK (���)
p ,

in which μμμp indicates the stationary mean vector of sub-
ject p (which enters the model because we can no longer
assume within-subject means are zero without loss of
generality), BBBp encodes the person-specific temporal net-
work, andKKK (���)

p encodes the person-specific contempora-
neous GGM.

Multilevel modeling. To gain insight in the general
network structure over subjects, we can investigate the
individual networks at a second level. Doing so is termed
multilevel modeling, explained in more detail in Section
2.1 of the supplementary materials. Let BBB∗ and KKK (���)

∗
encode the expected temporal and contemporaneous net-
work when selecting a person at random. Furthermore,
we can assume without loss of generality that data are
grand-mean centered. We then obtain:

E (μμμP) = 000
E (BBBP) = BBB∗

E
(
KKK (���)

P

)
= KKK (���)

∗ .

Here, BBB∗ and KKK (���)
∗ now encode the average parame-

ters in the population: the fixed effects. Deviations from

these fixed effects, such as BBBp − BBB∗, are often called
random effects. Besides the individual network struc-
tures, researchers often aim to estimate the structure
and parameters of these fixed effects because these tell
us something about the average intraindividual effect.
Researchers also aim to estimate the variance-covariance
structure of the random effects because it tells us some-
thing about individual differences (Bringmann et al.,
2013).

The random effects can bemodeled by assuming a sec-
ond level normal distribution on all the parameters. This
can be complicated, however, especially when modeling
partial correlation coefficients in such a way (e.g., any
hierarchical model for KKK (���) needs to take into account
that this matrix must remain positive definite). The inter-
pretation of, for example, correlations between differ-
ent temporal or contemporaneous edges is also difficult.
Therefore, we only focus here on a subset of the parame-
ters where we can easily interpret the second-level model:
the mean structure. As a result, if a multivariate normal is
assumed for all parameters, then it is also assumed for the
marginal distribution of the means—regardless of other
parameters:

μμμP ∼ N (000,���) .

Again, we can invert the variance-covariance matrix to
obtain a GGM,

KKK (���) = ���−1,

which we will term the between-subjects network, a net-
work between stationary means of different subjects.14 As
such, estimating the GVAR model on n > 1 time-series
analysis allows for the separation of variance into three
distinct network structures: temporal networks, contem-
poraneous networks, and the between-subjects network.

2.3.1. Estimation

In this section, we outline several different ways in which
individual network structures as well as fixed effect net-
work structures may be estimated. We first discuss apply-
ing the methodology of estimating n = 1 GVARs dis-
cussed above to both pooled data as well as data of each
subject separately, followed by a discussion of different
multilevel estimation procedures that take clustering of

 Of note, it is also possible to invert and standardize the full random effects
variance-covariance matrix, which would lead to different between-subjects
relationships between the means as well (partial correlations after condi-
tioning on other means and all other between-subject parameters such as
edges). We do not do that here as (a) such a network is hard to interpret,
and (b) most estimation methods we mention do not return the full random
effects variance-covariance matrix (especially the correlations between tem-
poral and contemporaneous edges are hard to obtain).
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Table . Three methods of estimating GVAR models with n > 1subjects.

Pooled and individual LASSO estimation Bayesian multilevel Two-step frequentist multilevel

Software graphicalVAR (Epskamp, c);
sparseTSCGM (Abegaz & Wit, ).

MPlus  (Muthén & Muthén, ;
Asparouhov et al., );mlVAR
(wrapper around Mplus).

mlVAR (Epskamp, Deserno, & Bringmann,
b).

Estimation () Joint multivariate LASSO estimation
with EBIC model selection (Abegaz &
Wit, ) of within-subjects centered
data to obtain fixed effects temporal
and contemporaneous networks. ()
GLASSO algorithm with EBIC model
selection (Foygel & Drton, ) on
sample means of subjects to obtain
between-subject network. () Step ()
repeated for each individual data set to
obtain subject-specific networks.

MCMC sampling frommultivariate
hierarchical model (e.g., Schuurman
et al., b).

() Sequential univariate multilevel
regression models on previous
measurement (similar to Bringmann
et al., ), with within-subject
centered lagged variables as
within-subjects level predictors and
sample-means of all other variables as
between-subjects predictor. ()
Sequential multilevel regression
models using the residuals of ():
residuals of one variable are predicted
by residuals of all other variables in the
same measurement occasion.

Pros Fast estimation of fixed effects; scales up
well to large numbers of nodes; model
selection in individual networks;
temporal and contemporaneous
networks obtained in the same analysis.

Borrowing information in individual
network estimation from other
subjects; all model parameters and
random-effect (co)variances can be
estimated; credibility intervals can be
obtained for edges and descriptive
statistics (e.g., centrality; density);
advanced extensions such as
measurement error and latent variable
modeling possible; powerful handling
of missing values.

Borrowing information in individual
network estimation from other
subjects; scales up well to  nodes
(correlated random effects) or  nodes
(orthogonal random effects); many
random effect variances correlations
can be estimated; fast estimation of
individual networks.

Cons Fixed effects estimated on pooled data;
Subject specific networks estimated
without borrowing information from
other subjects (no multilevel structure);
between-subjects network estimated in
a different model; very slow to estimate
subject-specific networks; poor
handling of missing values.

Relatively slow estimation, especially in
higher dimensional models; no model
selection (thresholding possible via
credibility intervals); complicated to
estimate contemporaneous random
effects.

Slow estimation in larger data sets; no
model selection (fixed effects can be
thresholded using significance);
combination of many different models;
does not scale up well past  nodes;
poor handling of missing values.

Note: The software listed only concerns user-friendly automated software because all thesemodels could readily be implemented inmost programming languages
or Bayesian sampler packages.

the data into account. An overview of these methods is
also included in Table 2.

Pooled and individual LASSO estimation. First, we
can estimate a GVAR model for every subject to obtain
subject-specific estimates for the temporal and contem-
poraneous networks. Similarly, we can estimate fixed-
effects networks by estimating a GVAR model on the
entire within-subjects centered data set, using the sam-
ple means of every subject on every variable as a plug-in
for the within-subject means. Consequently, we can esti-
mate the between-subjects network by estimating a GGM
on the sample means of each subject on all variables.
We can readily apply the LASSO regularization meth-
ods described earlier for this purpose: the methodology
outlined by Abegaz and Wit (2013) to estimate tempo-
ral and contemporaneous networks and the methodol-
ogy outlined by Foygel & Drton (2010) to estimate the
between-subjects GGM. We term this framework pooled
and individual LASSO estimation and have implemented
it in the R package graphicalVAR (Epskamp, 2017c). The
performance of pooled and individual LASSO estimation
is assessed in simulations reported in Section 3 of the sup-
plementary materials.

Multilevel estimation. The second and third proce-
dures described in Table 2 make use of multilevel model-
ing (Hamaker, 2012). Two main benefits of this approach
are (1) instead of estimating the VAR model in each sub-
ject, only the fixed effects and variance-covariance of the
random effects need to be estimated, and (2) afterward,
estimates of subject-specific parameters can be obtained,
which are somewhat pulled together (termed shrinkage).
Shrinkage allows the estimation of the model for one sub-
ject to borrow information from other subjects. Multi-
level estimation can be performed by specifying the mul-
tivariate model using hierarchical Bayesian Monte Carlo
sampling methods or by integrating over the distribution
of the random effects (Gelman & Hill, 2006; Schuurman
et al., 2016b).

Multivariate Bayesianmultilevel. Bayesianmultivari-
ate estimation has proven to be powerful in estimat-
ing multivariate multilevel models, especially given its
flexibility in adding measurement error, latent variables,
and in handling missing data (Schuurman, Houtveen, &
Hamaker, 2015). Recently, the dynamic SEM methodol-
ogy implemented in Mplus version 8 (Asparouhov et al.,
2017; Muthén & Muthén, 2017) has made estimation
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of multivariate multilevel VAR models much faster and
more user-friendly than other Bayesian software routines.
Specifying a temporal VAR model with correlated ran-
dom effects is straightforward and relatively fast to com-
pute with a moderate number of variables (e.g., 6). At the
time of writing, Mplus does not return partial correla-
tions by default, but these can be obtained by using the
BPARAMETERS option and manually inverting the
sampled variance-covariance matrices. Mplus allows
for specifying random effects on the contemporaneous
covariances and thus, by extension, allows for estimating
random contemporaneous networks in addition to ran-
dom temporal networks. Specifying such a model can be
done by specifying dummy latent variables for the residual
covariance between each pair of variables (a prior guess
on the sign of the covariance is needed). Doing so, how-
ever, can significantly increase computation length espe-
cially when all random effects are allowed to correlate.
To facilitate estimation, we have implemented a function
generating Mplus code for a multilevel GVAR model and
subsequently running themodel using theMplusAutoma-
tion package (Hallquist & Wiley, 2017) in version 0.4 of
themlVAR package, which can be called using estima-
tor = ”Mplus” and requires the Mplus program to
be installed.

Two-step multilevel VAR. A downside of multivari-
ate estimation is that the number of random effect covari-
ances to be estimated increases quadratically with the
number of variables. Forcing random effects to be uncor-
related helps, but places strict assumptions on the model.
Bringmann et al. (2013) proposed to estimate multilevel
VARmodels using univariate models instead, using a fre-
quentist estimation procedure. In thiswork, themultilevel
VAR model is estimated by sequentially estimating uni-
variate multilevel regression models of one variable given
all lagged variables. Doing so ignores several correlations
of random effects because many parameters are not esti-
mated in the same model, simplifying the analysis: only
correlations between incoming edges to the same node
and the intercept of that node are included in an univari-
ate model. This method scales up well to approximately
eight variables when estimating correlated random effects
and around 20 variables when estimating orthogonal ran-
dom effects (or by using a moving window approach;
Bringmann et al., 2015). Of note, when specifying orthog-
onal random effects not all random effects are assumed to
be uncorrelated, merely the ones used in the same uni-
variate model.

The methodology of Bringmann et al. (2013) does
not estimate contemporaneous or between-subjects
networks. To this end, we extended the algorithm in a
framework we term two-step multilevel VAR. The details
of this estimation procedure are explained in Section

2 of the supplementary materials. In short, we extend
the methodology of Bringmann et al. (2013) by within-
subject centering and by adding subject sample means as
between-subjects predictors (as discussed by, e.g., Curran
& Bauer, 2011; Hoffman & Stawski, 2009; Hamaker &
Grasman, 2014). This allows us to estimate between-
subjects networks by collecting regression coefficients as
in Equation (3) and symmetrizing the resulting matrix.15

In a second step, we take the residuals of the first anal-
ysis and again perform sequential univariate multilevel
regression models to predict each residual from all other
residuals in the samemeasurement occasion. Again, these
can be collected, as in Equation (3), and symmetrized
to obtain contemporaneous networks. Networks can be
thresholded by removing all effects that are not signif-
icant. For the between-subjects and contemporaneous
networks, this results in two p-values for every edge—
either both can be required to be significant (“and”-rule)
or an edge can be included if one of the two p-values is
significant (“or”-rule). Using the “and”-rule means erring
more on the side of caution (sparser network), whereas
using the “or”-rule means erring more on the side of
discovery. We have implemented two-step multilevel
VAR in the mlVAR package, which can be called using
estimator = ”lmer” (the default).

Choosing the estimation method. The choice of
which estimator to use is not trivial and depends on
the interests of the researcher. In Table 2, we list some
pros and cons of each of the methodologies. In par-
ticular, multilevel estimation can be very complicated
and is harder in high-dimensional settings. Assuming
normally distributed parameters can also be problem-
atic because doing so imposes that subjects cannot
differ on the structure of the networks, merely on their
parameterization. When a parameter (e.g., a temporal
edge) is zero in some subjects but nonzero in others, then
this parameter cannot be normally distributed (the dis-
tribution would peak at 0). Therefore, it is currently hard
to estimate differently structured individual networks
(different edges set to be exactly 0 between subjects) in
multilevel estimation. Nonetheless, multilevel estimation
particularly shines in that when estimating an individual
network, researchers can borrow information from other
subjects. We have performed simulation studies to assess
the performance of the two proposed methods in this
paper: pooled and individual LASSO estimation and two-
stepmultilevel VAR.We report the results of these studies
in Section 3 of the supplementary materials, which shows
that both methods adequately detect the true fixed-effect

 Standardizing regression parameters from nodewise multilevel models to
partial correlation coefficients does not lead to perfectly identical estimates.
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network structures with increasing sample size. Hav-
ing more time points per subject helps to estimate the
contemporaneous and temporal networks, and having
more subjects helps to estimate the between-subject
networks. Two-step multilevel VAR performs well in
estimating intraindividual networks when the number of
observations is low, but does not perform subject-specific
model selection: all estimated intra-individual networks
are saturated and contain all edges. Pooled and aggre-
gated LASSO estimation does estimate the structure of
intraindividual networks, but performs poorer in intrain-
dividual parameter estimation with fewer observations as
no information is borrowed from other subjects.

GIMME. Finally, when analyzing n > 1 data, another
option is to estimate SVAR models instead. A promising
estimation procedure to estimate such models over many
individuals, while dealing with potential heterogeneity,
is “group iterative multiple model estimation” (GIMME;
Gates & Molenaar, 2012), which is implemented in R
using the gimme package (Lane, Gates, Molenaar, Hal-
lquist, & Pike, 2016). In GIMME, no multilevel structure
is imposed and subject-specific networks are allowed to
differ in structure. Information fromother subjects is bor-
rowed, however, in that the structure of individual net-
works can be based on other subjects (e.g., an edge can be
included because it is present in many other subjects). No
shrinkage is induced on the parameter estimates that are
nonzero (as would be the case inmultilevel or hierarchical
Bayesian modeling). A variant of GIMME that estimates
theGVARor a combination of structural andGVARmod-
els has not yet been developed, and we note that this may
be a promising avenue for further research.

3. Interpreting GGMs estimated from
between-subjects data

This paper describes the estimation of networkmodels on
data from different subjects (both cross-sectional as well
as person-wise average scores). Cross-sectional network
modeling is often criticized for inappropriately taking
cross-sectional results to be reflective of within-person
causal processes (e.g., Bos & Wanders, 2016; Bos et al.,
2017), as it can be shown that such results will not equal
within-person processes except under strong assump-
tions (Molenaar, 2004). To this end, this section discusses
the interpretation of GGMs estimated from data of differ-
ent subjects. We first argue that cross-sectional data may
be interpreted as a between-subjects analysis, assuming
that between-subjects variance is dominant, and next dis-
cuss the interpretation of potential causal effects at the
between-subjects level.

3.1. Cross-sectional data analysis

Within- and between-subjects variation. A type of data
to which the GGM is currently often applied is data
belonging to multiple subjects that are all measured only
once (e.g., Isvoranu et al., 2017; van Borkulo et al., 2015).
Such a data set is often termed cross-sectional data,
and such an analysis is often termed a between-subjects
analysis. However, the term between-subjects analysis
might not be warranted, as it is difficult to distinguish
between within-subject variation around an individual’s
stable mean and between-subject variation of such sta-
ble within-subject means using only cross-sectional data
(Hamaker, 2012). It is well known that subjects might
respond differently when measured multiple times (Lord,
Novick, & Birnbaum, 1968). As such, the single observa-
tion per subject leads to the time point and the subject
being random: yyy[T,P]. We might make the argument that
two distinct sources of variation cause the outcome (Bol-
ger & Laurenceau, 2013). Repeated measures of a sub-
ject (here p) are distributed according to a unique within-
subject model:

yyy[T,p] ∼ N(μμμp,��� p).

That is, of a particular response, the subject’s score is
a composite of the average stationary score μμμp and
random deviation.16 These average stationary scores also
differ in the population. Thus, we need to model the aver-
age stationary scores of a random subjectPwith a separate
distribution:

μμμP ∼ N(000,���),

in which we can assume, without loss of generality, an
overall mean of 000. We can invert the variance-covariance
matrix��� to obtain a GGM:

KKK (���) = ���−1.

This GGM corresponds to a between-subjects net-
work. The matrix ��� p can also be inverted and
standardized to a GGM to obtain a within-subject
network:

KKKp = ���−1p .

We will term this network a within-subjects network.
The value of a cross-sectional analysis. It is immedi-

ately clear that with only one response per subject we can-
not hope to estimate subject-specific variance-covariance
matrices ���p (and as a result individual GGMs). More-
over, even if we assume that within-subject effects are

 Section  of the supplementarymaterials shows thatwhen consecutive cases
(t and t + 1) are assumed dependent, such a zero-order network may result
fromamixtureof temporal andcontemporaneouseffects asdescribedabove.
The discussion here does not concern estimation of model parameters and
hence does not require an assumption of independence of cases.
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equal across subjects (denoted with ���∗ below), this still
leaves us without an estimable model because μμμ is also
assumed to be normally distributed. The co-variation
between responses thus becomes an unidentified blend
of ���∗ and ���: A and B may correlate in cross-sectional
data because people who score on average high on A also
score on average high on B (trait-level variation in ���),
or because when people deviate from their average on A
they also tend to deviate from their average on B (state-
level variation in ���∗). Even when within- and between-
subjects effects are assumed not to correlate, the GGM
estimated on such data becomes

KKK = (���∗ +���)−1 ,

which is not a simple function of the between-subjects
GGM and the within-subjects GGM. Only when no
short-term within-subject variation, ���∗ = 000, or no
between-subjects variation, ��� = 000, is assumed does the
cross-sectional GGMcorrespond exactly to one of the two
networks.

Cross-sectional data analysis thus cannot disentangle
between-subjects relationships from short-term within-
subjects relationships (Hamaker, 2012). For example,
cross-sectional analysis cannot distinguish whether or
not fatigue and concentration correlate because when-
ever people feel fatigued they also concentrate poorly (a
within-subjects effect) or because people who are on aver-
age fatigued also tend to concentrate poorly on average
(a between-subjects effect). However, preliminary sim-
ulation results show that the resulting cross-sectional
GGM generally does not contain edges that are not
present in either the within- or between-subjects net-
work (Epskamp, 2018). Depending on the ratio of within-
to-between person variance, the cross-sectional analysis
will pick up the within-subject network, the between-
subject network, or a mixture of the two. As such, if
one assumes between-subject variance to be dominant,
the cross-sectional results may be interpreted as mainly
reflecting between-subjects relations.

Cross-sectional analysis as between-subjects analy-
sis. An important consideration is that a typical cross-
sectional questionnaire or interview is vastly different
than a typical ESM questionnaire, and many cross-
sectional studies aim to measure variables that are more
stable over time and forwhich a time-series analysismight
notmake sense. Good examples of this are recent network
analyses in the area of schizophrenia (Isvoranu, Bors-
boom, van Os, & Guloksuz, 2016; Isvoranu et al., 2017),
in which the impact of environmental factors (e.g., child-
hood trauma, urbanization) on psychotic symptoms and
general psychopathology was studied. Such variables do

not varymuch over time; therefore, a cross-sectional anal-
ysis seems more suitable here. Other examples are ques-
tionnaires asking participants to rate symptoms over a
period of several weeks or to describe themselves as “I am
a personwho...” In such cases, the cross-sectional network
may be interpreted as a between-subjects network, of
whichwe discuss the interpretation below.Note that some
research indicates that state-level variance (how a person
feels at the moment) does influence self-reported scores
given trait-level (how a person feels on average) instruc-
tions (Brose, Lindenberger, & Schmiedek, 2013), indi-
cating that this interpretation of cross-sectional results
should be taken on a case-by-case basis depending on the
topic studied.

3.2. Within- and between-subjects effects

In contrast to prior work on multilevel VAR modeling
(e.g., Bringmann et al., 2013, 2015; Pe et al., 2015; Wig-
man et al., 2015), in this paper between-subjects effects
are conceptualized in addition to the within-subjects
effects in a separate GGM. Furthermore, in contrast to
prior work, cross-sectional networks are not interpreted
to be reflective of within-subject effects, but rather to
potentially reflect a between-subjects structure, assuming
that observed scores are not dominated by state-like vari-
ance (but see Brose et al., 2013). This raises the question
on how such models could be interpreted. In particular, if
edges in the GGM are interpreted as generating hypothe-
ses to potential causal pathways, the question is raised
how such causal effects can occur at the between-subjects
level. This section therefore discusses the topic of causa-
tion at the between-subjects level. Here, we interpret the
stationary means as being locally stationary: the average
of a subject in a relatively short time span of measure-
ment (e.g., a few weeks). As such, we do not interpret
the mean vector μμμP as a lifetime average. Instead, we
assume it could change, potentially due to experimental
intervention. As a result, we argue that the between-
subjects network can also be indicative of potential causal
pathways—regardless of whether it is estimated from a
cross-sectional interview concerning variables that are
not expected to vary much over time or obtained from
estimating the means from time-series data. To simplify
the argumentation below, we do not discuss separate tem-
poral and contemporaneous networks but only general
within-subjects networks (a GGM of within-subject data
without taking temporal ordering into account).

Simpson’s paradox. Hamaker (2012) described an
example of how within- and between-subject effects can
strongly differ from each other. Suppose we let peo-
ple write several texts, and we measure the number of
spelling errors they make and the number of words per
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Figure . Two hypothetical examples of differing within- and between-subject networks. The networks on the left indicates the within-
subject network, showing that personal deviations from the means predict each other at the same time point, and the networks on the
right indicates the between-subjects network, showing how themeans of different subjects relate to one another. (a) Example based on
Hamaker (). (b) Example based on Hoffman (); Hamaker ().

minute they type (typing speed). We would expect to see
the seemingly paradoxical network structures shown in
Figure 3, Panel (a). We would expect a positive relation-
ship in the within-subjects network (e.g., typing faster
than your average leads to making more errors). Con-
versely, we would expect a negative relationship in the
between-subject network (e.g., people who type fast, on
average, generally make fewer spelling errors). This is
because people who type fast, on average, are likely to be
more skilled in writing (e.g., a courtroom stenographer)
and are less prone to make a lot of spelling errors, com-
pared to someone who types infrequently. Panel (b) of
Figure 3 shows another example in which the structures
might differ (Hoffman 2015; provided by Hamaker 2017).
These network structures show that when people exert
more physical activity than their average they likely expe-
rience an elevated heart rate, while people who on average
are often physically active likely have a lower average heart
rate. Such a different effect depending on the level of anal-
ysis is well known in the statistical literature as Simpson’s
paradox (Simpson, 1951).

Interventionist accounts of causation. The different
ways of thinking about the effects of manipulations in
time-series models can be organized in terms recently
developed from interventionist accounts of causation
(Woodward, 2005). According toWoodward, causation is
fleshed out in terms of interventions: X is a cause of Y
if an intervention (natural or experimental) on X leads

to a change in Y . Statistically, the interventionist account
is compatible with, for example, Pearl’s 2000 semantics
in terms of a “do-operator.” Here, an intervention on X
is represented as Do(X = x), and the causal effect on Y
is formally expressed as E (Y | Do(X = x)). Pearl distin-
guished this from the classical statistical association, in
which no intervention is present, and we get the ordi-
nary regression E (Y | See(X = x)). This notation is use-
ful here, because it can be used to show how different
kinds of causal manipulations, each at the intraindividual
level, can produce a signal in either the between-subjects
or the within-subjects network.

Cashing out causal effects in terms of interventions
is useful for understanding the intervention Do(X = x).
We can think of this in terms of a random shock to the
system, which sets X to value x at a particular time point
and evaluates the effect on another variable Y shortly
afterward. If we want to gauge this type of causal relation-
ship, we might look at the within-subjects VAR model.
Consider Hamaker’s (2012) example regarding typing
errors: If a researcher forced a person to type very fast,
that researcher would need to evaluate the within-subject
data, which would show a positive association between
typing speed and the number of errors. In this example,
between-subjects data would be misleading because
individual differences would probably yield a negative
correlation between speed and accuracy—faster typists
are more likely to make less errors.
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Interventions at the mean level. However, we can
also think of a manipulation that sets X to value x
in a different way, for instance, by inducing a long-
term change in the system that leads it to converge on
X = x in expectation. To evaluate the effect of this type
of intervention, it is important to consider the behavior
of the system as it relates to the changes of the intercept
of X . When analyzing time-series data gathered in a rela-
tively short time-span, the within-subjects VAR network
as discussed here cannot represent the relevant effects,
because it assumes stationarity. However, such effects
will be visible in the between-subjects network, which
may thus contain important clues to the behavior of the
system under potential changes in the intercept of one
variable. In terms of Panel (b) of Figure 3, if we are inter-
ested in the effect of changing someone structurally—
reducing the heart rate of a person on average—our pre-
ferred source of hypothesis generation would likely stem
from the between-subjects model, as the corresponding
within-subject model using themethods described in this
paper only models deviations from the stationary mean.
Such hypotheses could then be further investigated by
using experimental design or lengthier longitudinal data
analysis.

Many such examples can be envisioned, especially in
the field of psychopathology. For instance, short-term
deviations from the mean in abusing a substance might
not immediately develop tolerance or lead to one suf-
fering from work or life inferences, but a subject who
abuses a substance on average over a long time period
might develop these problems (example based on vari-
ables used by Rhemtulla et al., 2016). A between-subjects
network could similarly show that loneliness mediates the
effect of losing a spouse on depressive symptoms (Fried
et al., 2015) or highlight the possible effects of child-
hood trauma and urbanization on psychotic symptoms
(Isvoranu et al., 2016, 2017)—both cases in which within-
subjects networks based on short-term deviations from
the average seem less applicable. This analysis is impor-
tant because it shows that, even though relevant causal
interventions in psychology will typically operate at the
intra-individual level, evidence for the effect of such inter-
ventions may arise at either the within- or the between-
subjects level depending on the nature of the intervention.

4. Empirical examples

4.1. Reanalysis of Mõttus et al. (2017)

We reanalyzed the data of Mõttus et al. (2017) to provide
an empirical example of the multilevel VAR methods
described above. These data consist of two independent
ESM samples, in which items tapping three of the five

Five-Factor Model (neuroticism, extraversion, and con-
scientiousness; McCrae & John, 1992) domains were
administered, as was an additional question that asked
participants how much they had exercised since the pre-
ceding measurement occasion. Sample 1 consisted of 26
people providing 1323 observations in total, and Sample 2
consisted of 62 people providing a total of 2193 obser-
vations. Participants in Sample 1 answered questions
three times per day, whereas participants in Sample 2
answered questions five times per day. In both samples,
the minimum time between measurements was 2 hours.
For more information about the samples and the specific
questions asked, we refer readers to Mõttus et al. (2017).

To obtain an easier and more interpretable example,
we first only analyzed questions aimed as measuring the
extraversion trait and the question measuring exercise.
This leads to five variables of interest: questions pertain-
ing to feeling outgoing, energetic, adventurous, or happy
and the question measuring participants’ exercise habits.
We analyzed the data using the two-step multilevel VAR
procedure as described in detail in the Section 2 of the
supplementary materials. We used the mlVAR package,
version 0.4, for the estimation of this model. Because the
number of variables was small, we estimated the model
using correlated temporal and contemporaneous random
effects. We ran the model separately for both samples and
computed the fixed effects for the temporal, contempo-
raneous, and between-subjects networks. Correlations of
the edge weights indicated that all three networks showed
high correspondence between the two samples (temporal
network: 0.82, contemporaneous network: 0.94, between-
subjects network: 0.70). Owing to the degree of replica-
bility, we combined the two samples and estimated the
model on the combined data.

Results. Figure 4 shows the estimated fixed effects
of the temporal, contemporaneous, and between-
subjects network. In these figures, only significant edges
(α = 0.05) are shown. In the contemporaneous and
between-subjects networks, an edge was retained if one
of the two regressions on which the partial correlation is
based was significant (the so-called “or” rule; van Borkulo
et al., 2014). These results are in line with the hypothetical
example shown in Figure 2: People who exercised were
more energetic while exercising and less energetic after
exercising. In the between-subjects network, no relation-
ship between exercising, feeling energetic, and feeling
adventurous was found. The between-subjects network,
however, showed a strong relationship between feeling
adventurous and exercising: People who, on average,
exercised more also felt, on average, more adventurous.
This relationship was not present in the temporal net-
work andmuchweaker in the contemporaneous network.
Also noteworthy is that people were less outgoing after
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Figure . The estimated fixed effects of the three network structures obtainable in multilevel VAR. The model is based on ESM data of 
people providing a total of  observations. Due to differences in the scale of the networks, the temporal network was drawn with a
different maximum value (i.e., the value indicating the strongest edge in the network) than the contemporaneous and between-subjects
networks. Edges that were not significantly different from zero were removed from the networks.
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Figure . The networks showing the standard deviation of random effects in the temporal and contemporaneous networks. Due to scale
differences, networks were plotted using different maximum values.

exercising. Figure 5 shows the standard deviation of the
random effects in the temporal and contemporaneous
networks. The largest individual differences in the tem-
poral network were found in the auto-regressions, and
the largest individual differences in the contemporaneous
network were found in relationship between exercising
and feeling energetic.

In addition to using only the extraversion and exer-
cise items, we also ran the model on all 17 administered
items in the data set. In this analysis, we used orthogo-
nal random effects to estimate the model because corre-
lated random effects cannot be estimatedwith such a large
number of variables. Figure 6 shows the estimated fixed
effects of the three network structures; it can be seen that
indicators of the three traits tend to cluster together in all
three networks. Regarding the node exercise, we found
the same relationships between exercise, energetic, and
adventurous (also found in the previous example) in the
larger networks. Furthermore, we noted that exercising
was connected to feeling angry in the between-subjects

network but not in the other networks. Finally, there was
a between-subjects connection between exercising and
feeling self-disciplined: People who, on average, exercised
more also felt, on average, more self-disciplined.

4.2. Reanalysis of Bringmann et al. (2013)

To showcase additional information that can be obtained
using the GGM model, we reanalyzed the data set used
and made publicly available by Bringmann et al. (2013),
which has been collected by Geschwind et al. (2011).
This data set contains ESM measures of 129 participants,
which was collected in two periods over 6 days each: a
baseline period and a posttreatment period (mindfulness
treatment and a control group). Participants answered
60 measurements per period. Similar to Figure 1 of
Bringmann et al. (2013), we analyzed only the baseline
data set on the six items selected by Bringmann et al.
(2013). We estimated the networks using three model-
ing frameworks discussed in Table 2. First, we analyze
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Figure . The estimated fixed effects of the three network structures based on all  variables administered. Only significant edges are
shown. Legend:  = “Worried”;  = “Organized”;  = “Ambitious”;  = “Depressed”;  = “Outgoing”;  = “Self-Conscious”;  = “Self-
Disciplined”;  = “Energetic”;  = “Frustrated”;  = “Focused”;  = “Guilty”;  = “Adventurous”;  = “Happy”;  = “Control”;  =
“Achieved”; = “Angry”; = “Exercise.”

data using multilevel Bayesian estimation using Mplus
version 8 (model generated using the mlVAR package).
We estimated correlated random effects for the temporal
effects but only fixed effects for the contemporaneous
effects (making these random led to slow convergence).
The model was estimated using three chains that ran
until convergence. Nights were handled by adding a row
of missing values between consecutive days. Second, we
analyzed the data using two-step multilevel VAR esti-
mation as implemented in the mlVAR package, using an
“and”-rule and estimating correlated random temporal
and contemporaneous effects. Finally, we estimated the
data using pooled and individual LASSO estimation
using the graphicalVAR package, using γ = 0.25. In the

final two analyses, we did not regress the first measure-
ment of the day on the last measurement of the previous
day, and removed all pairs of lagged and current variables
that contained missing responses. The final sample size
was 5927 observations. Edges were retained if they were
significant at the α = 0.05 level, or if 0 was not included
in the 95% credibility interval.

Results. Figure 7 shows the resulting network struc-
tures, and shows that all threemethods aremostly aligned.
Unsurprisingly, the temporal networks are very similar
to those reported by Bringmann et al. (2013).17 Both the

 The networks differ because the estimation of temporal effects differs in that
measures are within-subjects centered and subject means are included as
Level  predictors.
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Figure . Reanalysis of the Geschwind et al. () data set used by Bringmann et al. (). (a) Fixed effect network structures estimated via
multilevel Bayesian estimation. (b) Fixed effect network structures estimated via two-step multilevel estimation. (c) Fixed effect network
structures estimated via pooled and individual LASSO estimation.

temporal and contemporaneous network are in line with
what would be expected under a unidimensional auto-
correlated latent variable model (many edges selected,
low-rank structure, edges of expected sign) with the
exception of the positive temporal edge from “fearful”
to “pleasant” in the two-step multilevel network (which
was not selected by the other methods). Of note is that

Bayesian multilevel estimation resulted in a sparser tem-
poral network. This difference in sparsity is possibly
because the multivariate Bayesian multilevel approach
more accurately represents the uncertainties in parameter
estimation, while two-step multilevel VAR estimates the
model piecewise and pooled LASSO estimation does not
take the multilevel structure into account. Remarkable is

472 S. EPSKAMP ET AL.



the positive edge between “sad” and “relaxed” in the two-
step multilevel between-subjects network, which is based
on two significant positive Level 2 regression coefficients
(β = 0.202, p = 0.046 and β = 0.151, p = 0.036) where
the estimated between-subjects correlation is strongly
negative (−0.53). This edge is especially remarkable since
both nodes are strongly connected to other nodes in the
network. The Bayesian multilevel between-subjects net-
work showed a similar positive edge between “cheerful”
and “worry.” This is noteworthy because under a unidi-
mensional factor model, we would not expect partial cor-
relation coefficients to switch sign frommarginal correla-
tion coefficients (Holland & Rosenbaum, 1986; van Bork,
Grasman, & Waldorp, 2016). A possible way the partial
correlation coefficient switches sign is if it has been con-
ditioned on one or more common effects between the
two variables of interest (in this case, potentially “worry,”
“pleasant,” or “fearful”). Of course, these effects must be
interpreted with great care, especially given the high p-
values; we did not control for multiple comparisons, and
the same edges are not retained in the othermethods. Still,
it is noteworthy that if this edge is weak or nonexistent, the
between-subjects structure is still not in line with a unidi-
mensional factor model. In such a factormodel, “sad” and
“relaxed”(which feature the most connections) would be
expected to have a strong negative edge between them (a
depression factor would lead to “sad” having a strong pos-
itive factor loading and “relaxed” having a strong negative
factor loading).

5. Discussion

We discussed the Gaussian graphical model (GGM; Lau-
ritzen, 1996), an undirected network model of partial
correlation coefficients, and discussed its utility in the
analysis of psychological data sets. The GGM presents a
promising exploratory data analysis tool that allows for
different levels of interpretation: (1) Edges in the GGM
can be interpreted without reliance on a causal interpre-
tation and merely used to show which variables predict
each other. (2) Causal effects between variables result in
an edge, whereas the lack of a causal effect results in no
edge, except in the presence of latent variables or a com-
mon effect. The GGM can, therefore, be seen as hypoth-
esis generating structures that highlight potential causal
pathways. (3) Undirected models can be used and inter-
preted as causal data-generating process and have been
used as such in several fields of research.

The GGM can readily be estimated on any data set
that contains multiple observations of the same vari-
ables (e.g., multiple people in cross-sectional data or
multiple responses in time-series data). LASSO regular-
ization methods perform especially well in estimating
such a GGM structure. In temporally ordered data (e.g.,

n = 1 time series), the graphical VAR (GVAR;Wild et al.,
2010) model generalizes the GGM to incorporate tempo-
ral effects. We showed how two network structures can
be obtained: a temporal network, which is a directed net-
work of regression coefficients between lagged and cur-
rent variables, and a contemporaneous network, which is
aGGMdescribing the relationships that remain after con-
trolling for temporal effects. In temporally ordered data
of multiple subjects (e.g., n > 1 time series), the natural
combination of cross-sectional and time-series data came
by adding a third network structure: the between-subjects
network, which is a GGM that describes relationships
between the stationary means of subjects. We proposed
twomethods to estimate the three network structures: (1)
two-step multilevel estimation, which we implemented in
the open source R package mlVAR, and (2) pooled and
individual VAR model estimations using LASSO regu-
larization, which we implemented in the open source R
package graphicalVAR.

5.1. Limitations and challenges

Multilevel estimation. The presented methods are not
without problems and have several limitations. With
regard to multilevel estimation, first, multivariate estima-
tion of the multilevel VAR model is not yet feasible for
larger data sets. As such, the proposed two-step multi-
level VAR combines univariate models. Doing so, how-
ever, means that not all parameters are in the samemodel.
In addition, univariatemodels do not readily provide esti-
mates of the contemporaneous networks, which must be
estimated in a second step. Second, even when multivari-
ate estimation is possible, it is still challenging to estimate
a multilevel model on contemporaneous networks due to
the requirement of positive definitematrices. Third, when
more than approximately eight variables are measured,
estimating the multilevel models with correlated random
effects is no longer feasible in open source software. In
this case, orthogonal random effects can be used, which
induce a level of parsimony that may not be substan-
tively plausible. Finally, even when orthogonal estima-
tion is used, multilevel analysis runs very slowly in mod-
els with more than 20 variables. As such, multilevel VAR
analysis of high-dimensional data sets is not yet feasible.
To this end, we discussed pooling within-subject centered
data and estimating fixed-effects models using LASSO
regularization (Abegaz & Wit, 2013). This performed on
par with multilevel estimation in higher sample sizes and
allows researchers to scale up the analysis. However, indi-
vidual network estimation using separate VAR models
does not borrow information from other subjects and
performs poorly in low sample sizes. Promising devel-
opments are new LASSO methods in which shrinkage
from subject-specific parameters to their mean is attained
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through penalization rather than hierarchical modeling
(Hastie et al., 2015). Future research should investigate the
utility of such models in estimating individual network
structures that might differ in structure but borrow infor-
mation from other subjects in its estimation.

VAR modeling assumptions. These limitations on
the estimation methods come with more limitations in
the statistical models themselves. VAR modeling, espe-
cially, is not without problems and faces severe challenges
(Hamaker, Ceulemans, Grasman, & Tuerlinckx, 2015;
Hamaker & Wichers, 2017). We made several assump-
tions that can be problematic. For instance, in character-
izing the likelihood of time-series data, we need to assume
that the conditional distribution of variables at time t
given time t − 1 are the same for all t . That raises two
distinct assumptions: (1) The difference in time between
measurements are roughly equal, and (2) the parameters
do not change over time. Equidistance in time is espe-
cially important for the interpretation of temporal net-
works. Promising work is being done in this area where
VAR networks can be estimated on nonequidistant data
sets (Driver, Oud, & Voelkle, 2017; Oravecz, Tuerlinckx,
& Vandekerckhove, 2009; Oud & Jansen, 2000). The
assumption of stationarity is needed to estimate structures
when data are limited but might not be tenable especially
in longer time series (Rovine & Walls, 2006). Promising
time-varying estimation procedures are being developed
(Bringmann et al., 2016; Haslbeck &Waldorp, 2016a), but
are not yet extended to the GVAR framework. Further-
more, the interpretation of temporal coefficients when
represented as a network is not without discussion, and
several different methods for standardization exist (Bul-
teel, Tuerlinckx, Brose, & Ceulemans, 2016; Schuurman,
Ferrer, de Boer-Sonnenschein, & Hamaker, 2016a).18

Normality. Another particularly important assump-
tion made in this paper is that of multivariate normality.
Indeed, Equation (1) makes this assumption and all other
equations follow from this. The assumption of normality
is not without problems (Terluin, de Boer, & deVet, 2016).
However, it is not always straightforward to deal with
these issues, because violations of normality may arise for
many different reasons. When data are not normally dis-
tributed, then they cannot be represented properly using
only themeans vector and variance-covariancematrix. As
a result, the GGMdoes not properly characterize the joint
likelihood function. When data are measured on a differ-
ent scale (Stevens, 1946), a different graphical model can
be used, such as the Isingmodel for binary data (Epskamp
et al., in press; van Borkulo et al., 2014) or a mixed
graphical model for categorical and Poisson-distributed

We standardized every data set before analyzing and used the standardiza-
tion ofWild et al. () for temporal networks in n = 1 and pooled temporal
networks. GGMs are readily standardized by using partial correlation coeffi-
cients (Equation ()), which have been used in all GGMs shown in this paper.

variables as well as binary and Gaussian variables
(Haslbeck & Waldorp, 2016b). Such models have yet to
be extended to time-series analysis, especially in sep-
arating temporal and contemporaneous effects as the
GVAR model does. When data are continuous but not
normal, multiple reasons can (again) contribute to this.
When the underlying process is normal but the mea-
sured variables are on a transformed scale, transforming
data back to normal should offer a solution (Liu, Laf-
ferty, & Wasserman, 2009), but when the process itself
is nonnormal, such as skewed residuals, the entire mod-
eling framework does not correctly capture the likeli-
hood. Finally, multivariate normality assumes all rela-
tionships between variables are linear. When this is not
the case, the GGM and VAR model (which fit linear
effects) will not properly describe the data. We encour-
age future researchers to focus on the problem of nor-
mality and to develop new methods of overcoming these
challenges.

Interpretation. Finally, it should be noted that when
taking a causal interpretation of edges, all methods dis-
cussed in this paper are exploratory in nature and can only
generate hypotheses—they do not confirm causal rela-
tions. The analyses showcased in this paper can also be
used without relying on a causal interpretation and allow
researchers to obtain insights into the predictive rela-
tionships present in the data—regardless of theory with
respect to the data-generating model. Under the assump-
tions of multivariate normality, stationarity, and the Lag-
1 factorization, the networks show how variables predict
each other over time (temporal network), within time
(contemporaneous network), and on average (between-
subjects network). Furthermore, during the thresholding
of edges in the multilevel analyses, we did not apply a
correction for multiple testing by default. We deliberately
chose this because our aim was to present exploratory
hypothesis-generating structures, and not correcting for
multiple testing yields greater sensitivity.

6. Conclusion

This paper provides a methodological overview of how
the GGM can be used in various different kinds of
psychological data. The GGM can be used to map out
unique variance in cross-sectional data or at the con-
temporaneous and between-subjects levels of time-series
analysis. We contrasted this method to exploratory esti-
mation of causal models.While losing information on the
direction of effect, estimating GGMs offers an attractive
alternative in that these models are uniquely identified,
well parameterized, closely related to causal models
and also offer exploratory insight on predictive effects
between observed variables. When the aim is to discover
psychological dynamics, the GGM can be used as a

474 S. EPSKAMP ET AL.



hypothesis generating technique inspiring future research
or therapy directions (Epskamp et al., 2018; Kroeze et al.,
2017). For example, an effect found in a cross-sectional
analysis could inspire a time-series study, a contempora-
neous effect could inspire a shorter time-lag time-series
study and a between-subjects effect could inspire lengthy
longitudinal studies. All network structures may inspire
experimental design, or to gather a mixture of observa-
tional and experimental data (Magliacane et al., 2017).
The GGM thus provides a powerful addition to the
exploratory toolbox in behavioral research.
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Appendix: Glossary of terms

Term Explanation

Undirected network A network model in which nodes are connected by edges (also termed links) without arrowheads.
Directed network A network model in which nodes are connected by edges with arrowheads, assumed to display causal effects or

temporal prediction.
Gaussian graphical model An undirected network model in which observed variables are represented with nodes. Nodes are connected with

an edge if two variables are not independent after conditioning on all other observed variables. Edges are
parameterized by using partial correlation coefficients.

Causal model A causal model of observed and unobserved variables that is assumed to generate the data.
Directed acyclic graph A directed network in which one node does not eventually point to itself.
Within-subjects network A network model explaining within-subject (co)variation from the stationary mean.
Between-subjects network A network model explaining (co)variation between stationary means of different persons.
Cross-sectional network A network model estimated on cross-sectional data. Can be shown to be a blend of the within-subjects and

between-subjects networks. Can be interpreted as representative of within-subjects or between-subjects network
based on the way in which data are gathered.

Vector auto-regression (VAR) Multivariate regression of a set of variables on previous realizations of that set of variables.
Temporal network A within-subject network model of effects between different measurement occasions, showing temporal

prediction or potential causal pathways.
Contemporaneous network A within-subject undirected network model of effects between variables in the same measurement occasion, after

taking temporal effects into account.
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