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Density functional study of non-isothermal hard sphere fluids
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ABSTRACT
Using a version of dynamical density functional theory, we explore a microscopic structure of hard-
sphere fluids in the presence of a temperature gradient. When combined with the assumption of
local equilibrium, this approach predicts the density profile in confinement and in bulk both in very
good overall agreement with the results from the reverse non-equilibriummolecular dynamics sim-
ulation, which we used to impose a temperature gradient. Thus, the assumption of local equilibrium
is found to be surprisingly accurate down to a microscopic scale even under a large temperature
gradient. An oscillatory density profile, indicating the layering of particles, was observed in bulk as
well as in confinement. This behaviour in the latter is well known and results from packing of hard
spheres next to awall. In the former, theoscillation is seen to emanate from thepoint of sharp change
in temperature. However, our theoretical predictions greatly exaggerate the amplitude of oscillation
when the temperature exhibits a sharp change over a very small distance.
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1. Introduction

Since its inception, statistical mechanical density func-
tional theory (DFT) [1] has been applied successfully to
probe phase behaviour andmicroscopic structures of flu-
ids [2] from amolecular level perspective while requiring
a fraction of a typical computational cost of molecular-
level simulations. DFT provides much easier access to
an activated state (in unstable equilibrium) involved in
a rare event such as nucleation [3,4]. It can also offer
deep insights that are otherwise unavailable into physics
of inhomogeneous systems.

While the original DFT is applicable only to systems
in equilibrium, a considerable progress has been made in
recent years to extend DFT to non-equilibrium systems.

CONTACT I. Kusaka kusaka.2@osu.edu William G. Lowrie Department of Chemical and Biomolecular Engineering, Koffolt Laboratories, The Ohio
State University, CBEC, 151 W. Woodruff Avenue, Columbus, OH 43210-1350, USA

The earliest of such attempts focused on the time evolu-
tion of the density profile, [5,6] resulting in a dynamical
density functional theory (DDFT) suitable for describ-
ing diffusion processes only. The scope of DDFT has
since been expanded by including additional fields in its
formulation.

Broadly speaking, DDFT has been developed fol-
lowing two distinct approaches. The starting point for
the first approach [7–17] is the lowest order equation
in the Bogoliubov–Born–Green–Kirkwood–Yvon hier-
archy [18], which dictates the time evolution of the sin-
gle particle distribution function f1(r, v, t), expressing
the probability density of finding a particle at r with
velocity v at time t. The equations of motion for the
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density, momentum, and energy (or temperature) fields
are obtained by averaging proper microscopic expres-
sions for these quantities with respect to f1(r, v, t). This
is essentially the Irving–Kirkwood procedure [19] and
gives rise to integrals involving the pair distribution
function f2(r, v, r′, v′, t), the probability density of find-
ing a pair of particles, one at (r, v) and the other at
(r′, v′) at time t. To evaluate these integrals, one must
introduce various approximations typically informed by
recent techniques from the kinetic theory [20–23].

The second approach [24–26] is based on the time-
dependent projection operator method [27]. Here, one
must first specify a set of relevant macrovariables based
on physics. For transport phenomena, they are par-
ticle number (or mass) density, velocity, and energy
density fields. Specification of these fields does not
uniquely determine the actual phase-space distribution
�(rN , pN , t) for a system in a non-equilibrium state. Nev-
ertheless, the least biased distribution �(rN , pN , t) com-
patible with the given fields can be determined by max-
imising the Gibbs entropy associated with � under the
constraint that �(rN , pN , t) gives rise to the specified
fields [28]. The end result is a time-dependent gener-
alised canonical distribution, from which one obtains
the entropy functional and the transport equations that
dictate the time evolution of the fields. The difference
between � and � is reflected in the equations of motion
for fluctuations of the fields. This method also yields
molecular level expressions for transport coefficients in
the form of the Green–Kubo formula. These results are
formally exact.

The explicit connection to the entropy functional
established in the second formulation may allow for a
wealth of knowledge accumulated in the equilibrium
DFT to bemost easily incorporated intoDDFT, thus lead-
ing to a systematic generalisation of DDFT to complex
fluids. In this scenario, hard-sphere fluids will serve
almost exclusively as a reference system. Thus, it is
important thatDDFTbe capable of describing their prop-
erties and microstructure accurately under various non-
equilibrium conditions.

As with the equilibrium DFT, the generalised DDFT
showed its ability to predict accurately the density profiles
in confined fluids for isothermal systems [6,10]. To our
knowledge, however, a similar verification is lacking for
non-isothermal systems. As an initial step toward DDFT
of complex fluids, we explored microstructures of non-
isothermal hard-sphere fluids using a version of DDFT
put forward by Anero et al. [26].

Combining the entropy functional of hard spheres
derived in [26] with the assumption of local equilibrium,
which is routinely invoked in arriving at the govern-
ing equations of macroscopic hydrodynamics [29,30],

we predict the density profile across a hard-sphere fluid
both in a confined space defined by two parallel plates
and in bulk in the presence of a temperature gradient.
As expected, packing of hard spheres in strong con-
finement produces an oscillatory density profile (indi-
cating a layering of the particles). When temperature
gradient is generated by the method called the reverse
non-equilibrium molecular dynamics (RNEMD) [31], a
strongly oscillatory density profile was observed in the
bulk system without any confinement. In a separate sim-
ulation, we used RNEMD to impose a simple shear flow,
which resulted in a non-uniform temperature profile. In
all cases, our theoretical predictions are in very good
overall agreement with the results of molecular simula-
tion, thus providing a strong indication in favour of the
local equilibrium assumption at the microscopic length
scale. However, DDFT was seen to greatly exaggerate the
oscillatory behaviour when the temperature exhibits a
sharp change over a very small distance.

The remainder of this article is structured as fol-
lows. Section 2 summarises the relevant results from
[26]. The equation for the density profile is derived in
Section 3, while details of RNEMD simulation is given in
Section 4. The results of our computations are reported in
Section 5 and the article concludes with a brief summary
in Section 6. Appendix 1 records a set of key equations
from Rosenfeld’s fundamental measure theory [32–34],
which we used to estimate the excess Helmholtz free
energy of a hard-sphere fluid. Appendix 2 establishes
the formula we used to construct the temperature profile
from a simulation in the presence of a convectivemotion.

2. Dynamical density functional theory

Assuming that density and energy density profiles, to be
denoted by ρ(r, t) and e(r, t), respectively, are the only
relevant fields, Anero et al. developed a version of DDFT
[26] bymeans of the time-dependent projection operator
method [27]. Their key results pertaining to the current
work are as follows.

The entropy of a system consisting of hard spheres of
radius σ andmassm is given as a functional of ρ(r, t) and
e(r, t) by

S/kB[ρ, e] = −
∫

ρ(r)
[
5
2
ln ρ(r, t) − 3

2
ln e(r, t)

+ lnα3 − 5
2

]
dr −

∫
�[ρ; r, t) dr, (1)

where α is related to the thermal wavelength � by

α :=
(

3h2

4πm

)1/2

=
(

3
2kBT(r, t)

)1/2
�(r, t), (2)
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in which h and kB denote the Planck and Boltzmann con-
stants, respectively, and�[ρ; r, t) is the excess Helmholtz
free energy per unit volume of the hard-sphere fluid in
kBT units.

As the notation suggests, � is a functional of the
density profile ρ(r, t) and a function of r and t. This func-
tional dependence arises when we use (r and t depen-
dent) weighted densities to compute �.

The time evolution of ρ and e are governed by the
following transport equations [26]:

∂ρ(r, t)
∂t

+ ∇ · Jρ = 0,

∂e(r, t)
∂t

+ ∇ · Je = 0.
(3)

where Jρ and Je are given by

Jρ := D(r, t)∇ δS/kB
δρ(r, t)

+ C(r, t)∇ δS/kB
δe(r, t)

,

Je := C(r, t)∇ δS/kB
δρ(r, t)

+ K(r, t)∇ δS/kB
δe(r, t)

(4)

and represent particle and energy flux vectors, respec-
tively. The functionsC,D, andK are transport coefficients
that need to be determined bymolecular dynamics (MD)
simulations.

As shown in [26],

δS/kB
δe(r, t)

= β(r, t) := 1
kBT(r)

(5)

in general. For the entropy functional given by Equation
(1), this leads to

3ρ(r, t)
2e(r, t)

= β(r, t), (6)

which is expected since the internal energy of a hard-
sphere fluid consists only of the kinetic energy. Carrying
out the functional derivative with respect to ρ(r, t),

− δS/kB
δρ(r, t)

= 5
2
ln ρ(r, t) − 3

2
ln e(r, t) + lnα3

+ δ

δρ(r, t)

∫
�[ρ; r, t) dr

= ln
[
�3(r, t)ρ(r, t)

]
+ δ

δρ(r, t)

∫
�[ρ; r, t) dr

= λ(r, t), (7)

where we defined λ by the expression preceding it. More
accurately, −λ arises as a field conjugate to ρ when one
employs the generalised canonical ensemble for the rel-
evant phase distribution of a non-equilibrium system

[26,27]. The same comment applies to the pair of fields β

and e. We observe that λ(r, t) reduces to βμ (a constant)
with μ denoting the chemical potential if the system is
in equilibrium.

3. One-dimensional problems

In what follows, we shall limit ourselves to a steady-
state one-dimensional problem in a rectangular coor-
dinate system and consider, initially, a stationary fluid.
Taking the z-axis in the direction of the temperature
gradient, ρ and e are now functions only of z. In this
case, Equation (3) indicates that the z-components Jρz
and Jez are both constant. Even then, the solution of the
resulting equations requires knowledge of the transport
coefficients C, D, and K, which are in general functions
of position and their evaluation even by a computer sim-
ulation is possible only with further simplifying assump-
tions. In the problem under consideration, however, the
issue can be circumvented as we now discuss.

First, in the formulation of [26], the velocity profile is
not included in the list of relevant variables. In the case of
a stationary fluid, however, the velocity field being iden-
tically zero carries an important information, which a
more general formulation of DDFT is expected to pro-
vide. For the problems under consideration here, we shall
take it for granted that the lack of convective motion
implies the uniformity of the pressure field p(r):

∇p ≡ 0. (8)

Note that this identity is certainly violated if a spherical
interface separates two fluid phases as is evident from the
Laplace equation.

Second, we assume that the local equilibrium pre-
vails everywhere in the system. This implies that λ(r, t)
defined by Equation (7) may be identified as βμ at posi-
tion r and that theGibbs–Duhem relationmay be applied
at every r even though the system under consideration is
not in equilibrium. Thus,

e
dβ
dz

+ d(βp)
dz

− ρ
dλ
dz

= 0. (9)

Using Equation (8),

χ
dβ
dz

− ρ
dλ
dz

= 0. (10)

whereχ := e + p is the enthalpy density. Bymeans of this
equation, we rewrite Equation (4) as

Jρz =
(
C − D

χ

ρ

)
dβ
dz

,

Jez =
(
K − C

χ

ρ

)
dβ
dz

,
(11)
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Finally, Jρz ≡ 0 in a stationary single component sys-
tem. In the presence of non-zero temperature gradient,
dβ/dz �= 0 and hence

C − D
χ

ρ
= 0. (12)

This can be used in Equation (11) to give

jez = − 1
kBT2

[
K − D

(
χ

ρ

)2
]
dT
dz

, (13)

in which we recognise

κ := 1
kBT2

[
K − D

(
χ

ρ

)2
]

(14)

as the thermal conductivity.
In many situations, κ may be regarded as constant

and Equation (13) can be integrated to give a linear tem-
perature profile. As we shall see below, our simulation
indicates that the temperature profile is indeed linear over
a large section of the system even though the system as a
whole is inhomogeneous.

In any event, let us now proceed under the assumption
that T(z) is known. From Equation (10),

dλ
dz

= χ

ρ

dβ
dz

= − χ

ρkBT2
dT
dz

, (15)

Upon integration from z = 0, which we shall take at the
centre of the system, we arrive at

λ(z) = λ(0) −
∫ T(z)

T(0)

χ

ρkBT2 dT, (16)

Using Equation (7), we may rewrite (16) as

ρ(z) =
[
T(z)
T(0)

]3/2
ρ0 e−B[ρ;z), (17)

which may be solved by iteration. Here, we defined

B[ρ; z) :=
[

δ

δρ(z)

∫
�[ρ; z) dz

]z
0
+

∫ T(z)

T(0)

χ

ρkBT2 dT.

(18)
Equation (1) implies the interpretation of the quantity

(s/kB)[ρ; r, t) = −ρ(r, t)
[
5
2
ln ρ(r, t) − 3

2
ln e(r, t)

+ lnα3 − 5
2

]
− �[ρ; r, t) (19)

as the entropy density. Using Equations (7) and (19), and
the Euler relation,

βχ = s/kB + λρ

= ρ

[
5
2

+ δ

δρ(z)

∫
�[ρ; z) dz

]
− �[ρ; z). (20)

To capture the microstructure of hard-sphere fluids as
accurately as possible, we evaluate � and the functional
derivative of its integral using the dimensional interpola-
tion version [33] of the fundamental measure theory [32]
specialised to one-dimensional problems. Key formulas
are listed in Appendix 1.

The notion of local equilibrium is distinct from that of
the local density approximation. In the latter, the entropy
density at r is given as a function of density evaluated at
the same position r. In the fundamental measure theory,
� is expressed as a function of three weighted densities,
making� at r dependent on the density profile within the
sphere of radius σ centred around r. Oscillatory density
profiles shown in Section 5 could not be predicted with
the local density approximation.

4. Simulation

In what follows, we adopt a system of units in which
m = 1 and σ = 0.5. As is customary in MD simulations,
the total linear momentum of the system is set to zero.
Motivated by the equipartition theorem for an isother-
mal system in equilibrium, we define the overall system
temperature kBT by

N∑
i=1

1
2
||vi||2 = 3

2
(N − 1)kBT, (21)

whereN is the number of particles in the system and vi is
the velocity of the ith particle. Since a hard-sphere fluid
does not have potential energy, the total kinetic energy is
conserved exactly in molecular dynamics. Accordingly,
we have written Equation (21) without time or ensem-
ble averaging. We set kBT = 1 and this determines the
energy scale.

Our simulation box is a rectangular block of a square
base of area A and height 2H. To simulate a confined
fluid, we placed hard walls as shown in Figure 1(a). In the
coordinate system with its origin at the centre of the sim-
ulation box and the z-axis perpendicular to the opposing
square faces of the box, they are at |z| = H, thus restrict-
ing the centres of hard spheres to |z| ≤ H − 0.5. The
parameter values specifying the simulation condition are
listed in Table 1.

Periodic boundary conditions were imposed in all
three directions for bulk simulations, while the same con-
ditions were imposed only in x- and y-directions for
fluids in confinement.

Particles were placed randomly in the system and the
system was equilibrated using Monte Carlo simulation
first. To remove any overlap among particles, we replaced
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Table 1. Specification of simulation conditions. Exceptions are noted explicitly in the main text.

A H N fe fp �c �h �s

Confined fluids 100 5.5 800a 0.5–40 – z ≤ −H + 0.7 z ≥ H − 0.7 |z| ≤ H − 2
Bulk fluids 100 12 1920a 0.5–40 0.5–80 |z| ≤ 0.1 |z| ≥ H − 0.1 2 ≤ |z| ≤ H − 2
aThis gives overall density n = 0.8 based on the volume accessible to the centres of hard spheres.

Figure 1. Swap regions (�h for heating and �c for cooling) and
the sampling regions (�s) in the simulation box.

the hard sphere interaction by

u(r) =
{

109 + 1/r12 if r ≤ 1,
0 otherwise. (22)

A similar potential was used for interaction between par-
ticles and the walls. After we ensured the absence of
overlap among particles and with the walls, we equi-
librated the system further by MD. A single MD step
consists of three elements [35]: (1) Search for the next
pair of colliding particles, (2) advance the time and posi-
tions of all particles till the collision occurs, (3) assign the
post-collision velocity vectors to the colliding particles,
which are obtained from conservation laws of energy and
momentum. For fluids in confinement, a minor modifi-
cation was made to include an elastic collision with the
hard walls.

A temperature gradient was imposed using RNEMD
method [31], which was developed originally to compute
viscosity and thermal conductivity. In this method, we
choose two thin parallel swap regions �h and �c in the
simulation box as illustrated in Figure 1(a ,b). The heat-
ing and cooling are achieved not through a contact with
thermal baths, but by exchanging, with a fixed frequency
fe, the velocity vectors of a suitably chosen pair of par-
ticles: one with the lowest kinetic energy in �h and the
otherwith the highest kinetic energy in�c.We attempted
a single swap move right after the step (3) described

above with the probability given by the increment in time
during step (2) multiplied by the set frequency fe.

The swap move of RNEMD conserves the system
energy exactly. Thus, even with the temperature gradi-
ent in the system, the total energy remains unaffected and
kBT determined by Equation (21) remains unity.

After a short MD run with the swap moves, the sys-
tem reached a steady state and we sampled the density
and the temperature profiles using the formulas given
in Appendix 2. At least within the sampling regions �s,
which we chose to avoid the immediate vicinity of the
swap regions, the temperature profile kBTmd from the
simulation was well represented by a linear function

kBTfit1(z) = a1z + a0 (23)

for fluid in confinement and

kBTfit1(z) = a1|z| + a0 (24)

for a bulk fluid. We determined a0 and a1 by the least
square fit to kBTmd within�s. The resulting linear profile
was extrapolated to all z values and used in Equation (16)
to generate the DDFT prediction of the density profile.

Equation (16) is a consequence only of the local equi-
libriumassumption and∇p ≡ 0. It follows that it remains
valid even in the presence of a convective flow that does
not involve a pressure gradient. To see if this is the
case, we considered another type of RNEMD swap move
in place of the energy swap move described above. In
this case, the x-component vx of the velocity vector was
swapped with frequency fp between a pair of particles:
one in �c with the largest vx and the other in �h with
the smallest (i.e. closest to −∞) vx, resulting in a linear
velocity profile (vx ∝ z).

This RNEMD move conserves both total energy and
linear momentum of the system. However, since it gen-
erates a convective motion from the thermal fluctuation
of particles, it leads to a loss of thermal energy in the
swap regions. As a consequence, a non-uniform tem-
perature field develops with its maximum located in �s,
causing the heat to flow into the swap regions, where
it is converted into the convective motion. Because the
energy associated with this motion dissipates into ther-
mal energy throughout the system, a non-isothermal
steady-state is maintained [31].

Finally, we note that the width of swap regions used
in this work (0.2 as shown in Table 1) is much smaller
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Figure 2. Density profiles of a hard-sphere fluid between two
parallel hard walls at |z| = 5.5. From an isothermal Monte Carlo
simulation (ρmc) and an isothermal DFT calculation (ρdft) at kBT =
1. The system contains N = 870 particles resulting in the overall
density n = 0.87 (based on the volume accessible to the cen-
tres of the spheres). The inset provides an expanded view of the
profiles near z = −5.

than in typical RNEMD. Our choice leads to much more
drastic temperature variations near the swap regions, and
hence provides a more stringent test for our approach,
which invokes local equilibrium assumption.

5. Results

Let us consider hard spheres in confinement first. In Fig-
ures 2 and 3, we show density profiles fromMonte Carlo
simulation (ρmc) and isothermal DFT (ρdft), to which
DDFT reduces if the temperature is uniform throughout
the system. Twooverall density values,n = 0.87 and 0.95,
were selected since ρmc near the walls (z<−3) are very
similar to those observed in MD (ρmd) to be presented
below but at n = 0.8 and with a temperature gradient.
Except in |z| > 3, the DFT predictions are in excellent
agreement with the simulation. The discrepancy we do
see for |z| > 3 is larger for larger n.

Next, we introduced the energy exchange RNEMD
moves. The temperature gradient dkBTmd/dz was 0.0613
and 0.123 for the swap rates fe = 10 and 40, respectively.
In other words, the temperature changes involved are
6 to 12 per cent of kBT within a distance of a single
hard-sphere diameter. This is by no means small.

From Figures 4 and 5, we see a small discrepancy
between ρmd and the DDFT prediction (ρddft) for z<−3
at these swap rates. At fe = 40, ρddft in z<−4.2 shows a

Figure 3. Same as Figure 2 but with N = 950 and n = 0.95.
kBT = 1.

Figure 4. Density and temperature profiles of a hard-sphere fluid
between two parallel hard walls at |z| = 5.5. From a RNEMD sim-
ulation (ρmd and kBTmd) and DDFT calculation (ρddft). The swap
frequency fe = 10, theoverall temperature kBT = 1, and theover-
all density n = 0.8. The inset provides an expanded view of the
density profiles near z = −5.

somewhat larger deviation than the corresponding por-
tion in the isothermal system in Figure 3. Aside from this,
the discrepancy between ρmd and ρddft is similar in mag-
nitude to what we saw in the isothermal systems having
similar density values in this region. Thus, very little inac-
curacy was incurred when these highly non-isothermal
systems are described by assuming local equilibrium.
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Figure 5. Same as Figure 4 but with fe = 40. kBT = 1 and
n = 0.8.

As expected, the fluid density is higher in the lower
temperature region. With increasing fe, the temperature
decreases in the left half (z<0) of the system. Simultane-
ously, the discrepancy we are discussing is seen to grow.
In contrast, ρddft is in good agreement with ρmd in the
right half (z>0) of the system except at the immedi-
ate vicinity of the wall, where one of the swap region is
located and the actual temperature (kBTmd) is noticeably
larger than kBTfit1. For swap rates smaller than 10, ρmd
and ρddft were nearly indistinguishable.

The results for bulk simulations are shown in Figures 6
and 7. Since the system is symmetric about the xy-plane,
ρmd(z) and kBTmd(z) in these figures actually represent
the arithmetic means of the data obtained from the sim-
ulations, i.e. (ρmd(−z) + ρmd(z))/2 and (kBTmd(−z) +
kBTmd(z))/2, respectively. The same remark applies to
Figures 12 and 13.

The temperature gradient dkBT/dz was 0.0216 and
0.0514 for fe = 10 and 40, respectively. Interestingly, we
observe a noticeable oscillation in the density profile,
indicating layering of particles along the planes perpen-
dicular to the heat flux. This is observed in both simula-
tion and in theDDFT calculation. These twomethods are
in very good agreement except near z = 0 and 12, where
the swap regions are located and kBTmd shows a large
deviation from kBTfit1 assumed in the DDFT calculation.

We emphasise that these oscillatory profiles are found
in a bulk fluid without any walls. Because of the swap
regions in the case of RNEMD and the imposed non-
uniform temperature profile in the case of DDFT, our
bulk system has lost the translational invariance in the
z-direction. Thus, the observed behaviour is consistent

Figure 6. Density and temperature profiles of a bulk hard-sphere
fluid. The swap frequency fe = 10, the overall temperature kBT =
1, and the overall density n = 0.8.

Figure 7. Same as Figure 7 but with fe = 40. kBT = 1 and
n = 0.8.

with the symmetry principle. To understand the origin
of this behaviour beyond this general observation, we
considered the temperature profile of the form

T(z) = T0 + (Th − T0)
∣∣∣ z
H

∣∣∣ν , (|z| ≤ H) (25)

in additional DDFT calculations, where we set kBT0 =
0.5 and kBTh = 1.5. This assumed temperature profile is
shown in Figure 8 for several values of ν. Beyond |z| = H,
the system is subject to the periodic boundary condition
in the z-direction. Under the assumption of constant κ ,
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Figure 8. The temperature profiles across a bulk system as given
by Equation (25). The periodic boundary condition is imposed to
determine the profile beyond |z| = 12.

only the linear temperature profile is physically sensible
at a steady state. Nevertheless, the corresponding density
profile can be found for other temperature profiles using
Equation (16) since, as mentioned earlier, its validity is
based only on the assumptions that ∇p ≡ 0 and that the
local equilibrium prevails.

The result of this set of calculation is shown in
Figure 9. The oscillatory behaviour is observed near
z = 0 for all ν values except ν = 2. At z = 0, dT/dz and
d2T/dz2 are discontinuous for ν = 1 and for 1 < ν <

2, respectively. The amplitude of oscillation near z = 0
is seen to decrease with increasing ν and the oscilla-
tion disappears completely at ν = 2. Under the periodic
boundary condition, dT/dz is discontinuous at z = ±H
irrespective of the value of ν and the oscillatory density
profile is observed near |z| = H for all ν.

In DDFT, the oscillatory density profile arises only
from the imposed temperature profile and the assump-
tion of local equilibrium. This strongly indicates that the
same behaviour observed in RNEMD simulation is not
some artefact of the swap moves, which interfere with
the natural evolution of the system governed byNewton’s
equations of motion. Instead, it is a physical response of
the system to the temperature profile generated by the
RNEMDmoves.

One possible scenario that can lead to the observed
layering of particles is as follows. Since the density is
higher in the lower temperature region, the particles tend
to accumulate near z = 0. For a smooth temperature pro-
file, fluctuations that displace these particles leave the
temperature surrounding them relatively unaffected. For
less smooth profiles, this is not the case, thus requiring

Figure 9. The density profiles corresponding to the temperature
profiles shown in Figure 8. DDFT calculation.

a larger density change. As a result, the accumulation of
particles may be sufficiently persistent and this prevents
other particles from occupying the nearby space. On the
other hand, particles near z = 12, having larger kinetic
energies, may also serve to repel other particles from this
region.

For the purpose of determining κ by RNEMD, the
observed oscillatory density profile is undesirable. How-
ever, the issue can be minimised by using a smaller fe or
a larger width for the swap regions.

Within and near the swap regions of RNEMD, a dis-
crepancy of varying degree exists between kBTmd and
kBTfit1. To see how this discrepancy impacts the DDFT
predictions, we used kBTmd directly in Equation (16).

In the case of confined fluids (corresponding to the
results shown in Figures 4 and 5), this did not notice-
ably affect the predicted density profiles away from the
walls. As seen from Figure 10, the prediction improved
markedly in the vicinity of the cold wall but only
between z ≈ −4.95 ∼ −4.85. (Below z ≈ −4.95, ρmd
was between twoDDFTpredictions, but somewhat closer
to ρddft obtained with kBTmd.) The accuracy worsened
somewhat at around z ≈ −4. The situation on the hot
wall is also mixed. We see from Figure 11 that the den-
sity at contact (z = 5) is more accurately predicted when
kBTmd is used directly. The density profile also captures
a small decrease in dρ/dz due to the sudden increase in
temperature at the edge of the swap region (at z = 4.8,
where dkBTmd/dz = 5.0 for fe = 40). However, DDFT is
seen to over-predict the change in dρ/dz and, as a result,
its prediction away from the wall deviates from ρmd, with
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Figure 10. Density and temperature profiles of a hard-sphere
fluid near the cold wall. Swap frequency fe = 40, the overall tem-
perature kBT = 1, and the overall density n = 0.8.

Figure 11. Density and temperature profiles of a hard-sphere
fluid near the hot wall. Swap frequency fe = 40, the overall tem-
perature kBT = 1, and overall density n = 0.8.

the latter nearly perfectly interpolating the two separate
DDFT predictions.

In the case of bulk fluids (corresponding to the results
in Figures 6 and 7), however, the DDFT prediction was
much worse when kBTmd was used directly and showed
an oscillatory profile with much larger amplitudes than
were observed in simulations. In the energy exchange
RNEMD, a sharp temperature change occurs at each edge
of the swap regions. The largest temperature gradient
observed at these edges was 1.8 for fe = 10 and 6.6 for
fe = 40. As a result, kBTmd acquires a very narrow peak

Figure 12. The temperature profiles across a bulk system with
momentum exchanging RNEMDmoves. The swap frequency fp =
80, the apparent overall temperature kBT

app = 1, and the overall
density n = 0.8.

Figure 13. A comparison of density profiles corresponding to the
temperature profiles shown in Figure 12.

or valley within a distance of 0.2 (the thickness of the
swap regions in this study), and this leads to the consid-
erable over-prediction by DDFT. In fact, the amplitude of
oscillation decreased significantly when the width of the
sampling regions was increased to 1.

Introducing the momentum exchange move of
RNEMD, we also examined the effect of a shear flow, but
focusing only on the bulk system. The frequency fp for
the momentum exchange move was set to 80, resulting
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in the velocity gradient dvx/dz = 0.133 . The apparent
temperature kBT

app, as given by Equation (A14), was set
to unity. Smaller fp values were also examined, but they
do not alter the conclusion to be presented below.

As already mentioned, this RNEMD move also
induces a temperature variation in the system. The
resulting temperature profile kBTmd was computed using
Equations (A16) and (A17), and is shown in Figure 12.

Within the sampling region �s, kBTmd is well
described by a quadratic function centred around |z| =
H/2. However, kBTmd exhibits a very sharp decrease near
|z| = 0 andH. We recall that kBTmd is symmetric around
z = 0 and repeats itself under the periodic boundary
conditions. To suppress the over-prediction of the oscilla-
tory behaviour, we replaced this rapidly changing portion
of the temperature profile by a quartic equation in our
DDFT calculation. That is, we represent kBTmd by

kBTfit2

=
⎧⎨
⎩
b4|z|4 + b2|z|2 + b0, if z ∈ �w

c ,
b4(H − |z|)4 + b2(H − |z|)2 + b0, if z ∈ �w

h ,
−c2(|z| − H/2)2 + c0, otherwise,

(26)

where �w
c and �w

h are defined by |z| ≤ w and |z| > H −
w, respectively. We determined c0 and c2 by fitting the
quadratic equation to kBTmd in �s, while b0, b2, and b4
were determined to ensure continuity of kBTfit2 and its
first and second derivatives at |z| = w.

As seen from Figure 13, ρddft is in good agreement
with ρmd. The DDFT prediction can be improved if c0
and c2 are determined using kBTmd from a wider range
of z to better represent it near the swap regions. Thus,
our approach to supplementDDFTwith the local equilib-
rium assumption remains applicable even in the presence
of a shear flow provided that the temperature profile is
accurately represented and it has no sharp peak or val-
ley. Consistent with the observation made above, ρddft
develops the oscillatory behaviour as valleys of kBTfit2 (at
|z| = 0 and 12) becomes sharper with decreasing w.

6. Concluding remarks

Using a version of DDFT, we explored microstructure
of non-isothermal hard-sphere fluids both in confine-
ment and in bulk. Combined with the assumption of
local equilibrium, the entropy functional developed in
[26] led to predictions of the density profiles in very
good overall agreement with the simulation results, in
which a temperature gradientwas created by theRNEMD
method.

In formulatingDDFT, Anero et al. [26] did not include
velocity field in the set of relevant variables, thus focusing

on systems without a convective motion. Nevertheless,
we showed that their DDFT can be used to predict den-
sity profile in the presence of a shear flow at least in the
case of a one-dimensional steady-state problem in rect-
angular coordinates provided that the pressure gradient
is zero throughout the system.

Because RNEMD depends on the availability of a suit-
able pair of particles in the swap regions, there is a limit
to the temperature gradient that can be achieved. While
a larger temperature gradient can be generated using
thicker swap regions, the temperature gradient we con-
sidered in this work was by no means trivial, in some
cases, leading to the temperature variation comparable to
the overall system temperature itself within the distance
of 10 times the hard sphere diameter.

Interestingly, the energy exchanging RNEMD moves
induces an oscillatory density profile even in bulk, and
this behaviour was predicted correctly by our approach.
However, DDFT over-predicts the amplitude of oscilla-
tion if the temperature exhibits a sharp change over a very
small distance. Thismay point to a breakdownof the local
equilibrium assumption under such extreme conditions.
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Appendices

Appendix 1. Key formulas from fundamental
measure theory

In this appendix, we summarise the key results of Rosenfeld’s
fundamental measure theory from [32,33], which gives �

as a function of three weighted densities. In one-dimensional
problems (of a three-dimensional system and in rectangular
coordinates), they are given by [34]

ρk(z) := 1
2σ k+1

∫ σ

−σ

ρ(z + ζ )ζ k dζ (k = 0, 1, 2). (A1)

Then,

� =
3∑

i=1
φi(ρ0, ρ1, ρ2), (A2)

in which

φ0 = −ρ0 ln(1 − η), (A3)

φ1 = 4πσ 3 ρ0
2 − ρ1

2

1 − η
, (A4)

φ2 = 3π2σ 6 (ρ0 − ρ2)(ρ0
2 − 4ρ12 + 3ρ22)

(1 − η)2
, (A5)

and
η = 2πσ 3(ρ0 − ρ2). (A6)

The functional derivative involved in the expressions for λ and
βχ can now be evaluated:

δ

δρ(z)

∫
�[ρ; z) dz =

2∑
k=0

1
2σ k+1

∫ σ

−σ

∂�

∂ρk

∣∣∣∣
z−ζ

ζ kdζ . (A7)

Appendix 2. Temperature and convection

In this appendix, we list several key equations pertaining to pro-
files of density, temperature, and velocity. Corrections to the
overall system temperature and the temperature field due to a
convective motion will also be considered. As in the main text,
m = 1 and no explicit reference will be made tom.

Let u(z) = u(z)ex be the velocity profile of the convective
motion in the system, where ex is the unit vector pointing in the
positive x-direction.Needless to say,u(z) cannot be determined
as a continuous function of z in simulation. Instead, we slice the
system into thin layers of thickness δ in the direction perpen-
dicular to the z-axis. In this work, we set δ = 0.01. Using a to
label the layers, we define the density and the velocity profiles
by

ρ(z) = ρa(z) := 1
Aδ

〈Na〉 (A8)

and

u(z) = ua(z) := 1
〈Na〉

〈∑
i∈a

vix

〉
, (A9)
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respectively, where a(z) refers to the layer containing the posi-
tion z,Na is the instantaneous number of particles in this layer,
and vix is the x-component of the velocity vector vi of particle
i. As indicated by i ∈ a, the sum is only over the ath layer.

Subtracting the contribution from the bulk motion, we
define the overall system temperature kBT by

3
2
(N − 1)kBT = 1

2

〈 N∑
i=1

||vi − u(zi)||2
〉

= 1
2

〈 N∑
i=1

[||vi||2 − 2uivix + ui2
]〉

(A10)

where ui := ua(zi).
We can carry out the sum over all particles i in the system

in two steps, summing over particles in the ath layer first and
summing over all layers next. This gives∑

i
uivix =

∑
a

∑
i∈a

uivix =
∑
a

ua
∑
i∈a

vix. (A11)

Upon averaging,〈∑
i
uivix

〉
=

∑
a

ua

〈∑
i∈a

vix

〉
=

∑
a

ρaua2Aδ. (A12)

A similar process for
∑

i ui
2 leads to the identical result. Thus,

3
2
(N − 1)kBT = 3

2
(N − 1)kBT

app − 1
2

∑
a

ρaua2Aδ, (A13)

where
3
2
(N − 1)kBT

app := 1
2

∑
i

||vi||2 (A14)

defines the apparent overall system temperature. We dropped
the time averaging 〈·〉 since the molecular dynamics of hard
spheres conserves the total kinetic energy. The second term of
Equation (A13) is the correction due to the convective motion.

We now define the temperature profile by

kBT(z) = kBTa(z) := N
3(N − 1)

1
〈Na〉

〈∑
i∈a

||vi − u(zi)||2
〉
.

(A15)
For a reasonably large system, the factor N/(N − 1) is very
nearly equal to unity and it can be omitted. Proceeding as
before, we arrive at

kBTa = kBT
app
a − N

3(N − 1)
ua2, (A16)

in which

kBT
app
a := N

3(N − 1)
1

〈Na〉

〈∑
i∈a

||vi||2
〉
. (A17)

If ua ≡ 0 for all a, then kBTa = kBT
app
a . If in addition kBTa =

kBT, a constant independent of a, Equation (A17) reduces to

3
2
(N − 1)〈Na〉kBT = N

2

〈∑
i∈a

||vi||2
〉
. (A18)

Upon summation over all layers a, we recover Equation (21).
This points to the need for the N/(N − 1) factor at least in
principle, if not in practice.
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