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ABSTRACT  

 

Characterization of the Genes Involved in Biosynthesis and Transport of Schizokinen, a 

Siderophore Produced by Rhizobium leguminosarum IARI 917 

 

 

by 

 

David Hammond, Jr.  

 

 

Iron is the 4th most abundant metal on the earth’s crust and is required by most 

organisms as a cofactor for many enzymes; however, at physiological pH and aerobic 

conditions iron forms insoluble ferric oxyhydroxide polymers.  Siderophores are low 

molecular weight compounds that scavenge ferric ions, bind with high affinity, and 

transport it into the cell via multicomponent transport systems.  Rhizobia are soil 

dwelling organisms that form symbiotic relationships with host plants and fix 

atmospheric nitrogen, while the bacteria receive nutrients.  R. leguminosarum IARI 917 

produces a siderophore characterized as ‘schizokinen’.  In the present study, we have 

characterized the binding and transport kinetics of ‘schizokinen’ and have also attempted 

to identify the genes involved in its biosynthesis using mini Tn5 random mutagenesis.  

DNA sequence analysis of a non siderophore producing transconjugant revealed a gene 

involved in PAC/PAS signal transduction systems that respond to many extracellular 

cues. 
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CHAPTER 1 

INTRODUCTION 

 

Genus of Rhizobia 

 The Rhizobia are a collective group of soil dwelling microorganisms known to 

nodulate leguminous plants.  Leguminous plants are defined as herbaceous woody plants 

that produce seeds enclosed within a pod. Most of the plants colonized by the bacteria are 

agriculturally important crops including soy beans, peas, peanuts, alfalfa, and chick peas.  

The nodules are produced in the roots and rarely the stems of these plants.  Within the 

nodule, the bacteria convert relatively nonreactive or inert atmospheric nitrogen (N2) into 

ammonia for the plant’s use for this essential nutrient for growth.  The bacteria receive 

nutrients in the form of simple sugars produced by the plant during photosynthesis in a 

mutual symbiotic relationship.  Nodulation requirements are different for each species of 

bacteria within the rhizobial group.  One factor affecting nodulation is the species of the 

host plant because the bacteria have a narrow host range in they infect.  

 At present, there are many different organic fertilizers in the market containing 

Rhizobia species to effectively provide ammonia for the plant’s consumption.  Many 

previous studies have shown that the bacterial presence will increase the yield of the crop 

per acre (Carter et al., 2000; Zahran, 1999) but each inoculum must be coordinated with 

the crop to be nodulated effectively.   

 The rhizobial group are classified into five different genera or species including 

Rhizobium, Mesorhizobium, Azorhizobium, Bradyrhizobium, and Sinorhizobium.  Within 
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each of these genera of bacteria, the species and strains of bacteria determine the plants 

nodulated resulting in predictable sizes and shapes of nodules.  Nodules formed by 

Rhizobium trifolii in clover roots are small, round, or oval nodules.  The cowpea 

(nodulated by Rhizobium trifolii), common bean (Phaseolus vulgaris), and soybeans 

(Rhizobium fredii, Bradyrhizobium japonicum, and Bradyrhizobium elkanii) nodules are 

round, large, and firmly attached to the roots.  Crops such as alfalfa (Rhizobium meliloti), 

peas (Rhizobium leguminosarum), and vetch (Rhizobium leguminosarum biovar viciae) 

have long, finger-like nodules.  The mechanism for this bacterium-plant host specificity 

is due to the biochemical interactions between the bacteria and the plant prior to 

nodulation.  The biochemical interactions are discussed later in more detail. 

 Many rhizobial species have extremely large genomes (~8Mb) and interestingly 

50% of their genome does not resemble other rhizobial species, noting the diversity of 

this family (Johnston, 2004).  With the recent sequencing of the genome of Rhizobium 

leguminosarum biovar viciae strain 3841, the inclusion of many genes involved in 

nutrient scavenging (Young et al., 2006) were noted.  The incorporation of many 

different genes involved in substrate transport for a wide range of catabolic systems using 

many different nutrients (Boussau, Karlberg, Frank, Legault, & Andersson, 2004) 

increases the organism’s ability to survive in the nutrient deplete environment of the soil.  

For example, rhizobia have ~170 ATP binding cassette (ABC) transport systems 

compared to 47 in Escherichia coli.  The ABC type transport systems enable rhizobia to 

use a far greater range of nutrients present at low concentrations in soil and the plant 

rhizosphere (Prell & Poole, 2006) as they are functionally similar to other genes involved 

in transport systems of other organisms (Young et al.).  Rhizobia are also known to 
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contain many plasmids (Rhizobium leguminosarum biovar viciae strain 3841 contains 6 

plasmids, Young et al.) used for such reactions as nitrogen fixation and nutrient 

scavenging that are externally received via conjugation (Young et al.).   

 Despite the diversity seen in the group, some general characteristics are shared.  

Rhizobia are aerobic, mostly motile, non-sporulating, Gram negative bacilli that are 

classified as diazotrophs (or nitrogen fixers).  Many are surrounded by a slimy, thick 

exopolysaccharide layer that is thought to facilitate attachment to root hairs.  The optimal 

temperature for growth of the bacteria is 25-30°C and mannitol is the preferred carbon 

source (Bergerson, 1961).  All of the species have the ability to produce the enzyme 

nitrogenase, responsible for nitrogen fixation.  More detail on the nitrogen fixation and 

symbiosis of plants is discussed in a later section.  The rhizobia are maintained on a 

modified media called Congo red.  Rhizobia take up the Congo red dye weakly while 

many other microorganisms will more strongly absorb the dye.  Once the dye is absorbed, 

the bacterial colony will appear red that helped identification of contamination of pure 

cultures (Kneen & Larue, 1983).  The rhizobial colonies will appear white, while 

contaminants will appear red in color resulting from the ability or inability to uptake or 

absorption of the Congo red dye.  A picture of a streak plate in Figure 1 shows the colony 

color of a pure culture of IARI 917. 
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Figure 1:  Rhizobium leguminosarum IARI 917 grown on a Congo red plate (adapted from 

Storey, 2005). 

Nodulation and Effect on Host Plant 

 Rhizobia are well known for converting atmospheric dinitrogen (N2), that is 

chemically inert, into ammonia.  The reaction is conducted by bacteriods in the nodule at 

30°C at 1 atmosphere of pressure by the enzyme nitrogenase.  Bacteroids are defined as 

functionally and metabolically different forms as compared to their active free dwelling 

form outside the plant host.  The bacteroids are less metabolically active while most of 

their energy is used for fixing atmospheric nitrogen.  In contrast to bacterial nitrogen 

fixation, industrial conversion by humans is achieved at 300-400°C at 500 atmospheres 

of pressure.  By comparing the two reactions, it is an astonishing fact that bacteria can 

perform such a reaction under “normal” conditions.  Nitrogenase is produced by the 

bacteroids in the nodule that performs the reaction of converting dinitrogen to ammonia.  

Nitrogenase catalyzes the six electron reduction of dinitrogen to ammonium that is 

associated with the reduction of 2H
+ 

to H2 that uses 16-18 molecules of ATP per mole of 

dinitrogen (Dixon, 2004).  The enzyme is oxygen labile and is housed in an anaerobic 
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environment within the aerobic cell.  Oxygen is buffered between the bacterial cell and 

the plant via the plant protein leghemoglobin.  Figure 2 shows the interaction between the 

bacteroid and the plant during nitrogen fixation and how various compounds are shared 

in the symbiotic relationship. 

 Before nitrogen fixation can begin, nodulation of the plant by the bacteria must 

occur.  The nodulation process is initiated by biochemical signaling between the plant 

and the bacteria.  To initiate the symbiosis, plants are known to produce compounds that 

will attract soil dwelling bacteria, including rhizobia, to their roots.  Once in close contact 

to plant roots, other biochemical signals such as flavonoids (some example structures are 

in Figure 3) are produced by the plant to induce the expression of nod (nodulation) genes 

of the rhizobia located in the chromosomal DNA (Peters, Frost, & Long, 1986).  

 

 

Figure 2:  Interactions Between Rhizobia and the Host Plant During Nodulation. NH3 produced 

by nitrogenase (Ntase) diffuses freely through the BT membrane (BM) that is then converted into 

NH4
+
, thatcannot be assimilated into glutamate (GLT) and glutamine (GLN) through glutamine 
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synthetase (GS) so it is excreted probably by an active mechanism (EXCR) into the peribacteroid 

space (PBS), where an ATPase present on the symbiosome membrane (SM) pumps protons and 

keeps a high NH4
+
/NH3 ratio, and a transport system for NH4

+
 uptake (AMT) moves NH4

+
 to the 

plant cytoplasm, where it is assimilated.  AMTB (NH4
+
 transporter) is not expressed by the 

bacteroid forcing the use of EXCR.  (adapted from Patriarca, Tate, & Iaccarino, 2002).  

 

When the biochemical signal is received by the bacteria, secretion of 

lipochitooligosaccharides (or nodulation factors, Nod factors) is thought to bind to 

specific plant receptor kinases.  The nodulation factors secreted by the bacteria are host 

plant specific and induce many changes in plant cells and tissues.  The changes include 

formation and deformation of root hairs, intra- and extracellular alkalinization, membrane 

potential depolarization, changes in ion fluxes, early nodulin gene expression, and the 

formation of the nodule primordia (D’Haeze & Holsters, 2002).  Nodulins are molecules              

 

Figure 3:  Structures of plant produced flavonoids (adapted from Watanabe, 2000). 

         

involved in nodulation and primordia is a term used to explain the first developmental 

stage of a organ or tissue.  For more detail on nod factors (structures and functions), see 
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the review of D’Haeze and Holsters from Glycobiology in 2002. The factors are effective 

at even nano- to picomolar concentrations (D’Haeze & Holsters) and initiate a complex 

signaling pathway involving calcium spiking in root hairs (Mitra et al., 2004).  The end 

result of this pathway is the curling of root hairs thus trapping the rhizobia (formation is 

called a shepherd’s crook). The bacteria enter the root hair through tubular structures 

known as inward growing infection threads formed by the plant.  The invading bacteria 

are internalized into the plant cell lumen by endocytosis. The newly formed structure, 

consists of bacteria differentiating into bacteroids enclosed in a plant cell membrane, is 

called a symbiosome.  The infection threads finally grow into the developing nodule 

tissue (Gage, 2004).  Development of the nodule and interaction of the plant and bacteria 

can be seen in Figure 4.  Figure 5 provides pictures showing nodules formed in the roots 

of leguminous plants.   

 Once the bacteria are enclosed in the plant tissue, many metabolic changes in both 

organisms are seen (Mylona, Pawlowski, & Bisseling, 1995; Zahran, 1999).  Bacteriods 

are less metabolically active as compared to free-living rhizobia.  Research performed on 

mature bacteroids compared with free-living cultures show that transcription of 342 

genes was upregulated and transcription of 640 genes was downregulated (Becker et al., 

2004).  Many of the downregulated genes, including the genes essential for purine 

biosynthesis, DNA metabolism, and the two main sigma factors rpoE1 and sigA, are 

explained by the physiological state of the bacteroids that are not actively replicating 

(Prell & Poole, 2006).   
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Figure 4:  General schematic of nodulation of root hairs by rhizobia (adapted from Pennsylvania 

State University, 1986). 

  

  

 

Figure 5:  Nodules formed in the roots of leguminous plants (adapted from European Association 

for Grain Legume Research (AEP), 2008).  Note the red color of the nodule indicating the 

presence of leghemoglobin and nitrogen fixation is occurring. 
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 Some systems of nutrient acquisition by the invading bacteria are known, but 

many questions remain.  The bacterial carbon storage compound polyhydroxybutyrate 

(PHB) accumulates in the rhizobial cells in infection threads (Lodwig et al., 2005).  

However, during the differentiation of bacteria to bacteroids in indeterminate nodules, the 

PHB granules are broken down.  This fact provides an explanation of how the bacteria 

acquire an essential nutrient, carbon, by breaking down PHB aiding in growth in 

infection threads.  Oxygen is another limited molecule in the nodule.  Nitrogenase is 

oxygen labile; thus it must be enclosed in an anaerobic or microaerophilic environment.  

Leghemoglobin is a plant compound seen in the nodule to facilitate buffering of oxygen 

by binding oxygen and limiting its availability.  Leghemoglobin is an iron rich protein 

and estimated by some to comprise up to 30% of the soluble protein in the nodule 

(Appleby, 1984).  The reddish color seen in some nodules is due to an accumulation of 

leghemoglobin indicating nitrogen fixation is occurring; the red color of leghemoglobin 

is due to the large amount of iron present in the protein.  Another nutrient in high demand 

in the nodule is iron.  Iron is important in many redox reactions and is an important atom 

in the structure of many different proteins or enzymes located within the bacterial cell.  

Within the anaerobic nodules, ferrous iron has been suggested as the iron source for the 

bacteroids (Payne, 2004).  Other requirements for iron and iron acquisition by bacteria 

are discussed in more detail in a later section.   

 Rhizopines are compounds (inositol derivatives) produced by bacteroids that are 

released from the root nodule and are catabolised to provide a source of carbon by free-

living rhizobia of the same strain (Bahar et al., 1998).  This could provide a competitive 

advantage for similar strains of bacteria that can use these compounds to nodulate the 
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same plant.  When the bacteroids are enclosed in the nodule, they release ammonia for 

the plant’s consumption.  The plants incorporate the ammonia into the amides (glutamine 

and asparagine), into ureides, or the molecules directly enter into the Entner-Doudoroff 

(ED) pathway, Pentose Phosphate Pathway (PPP), or tricarboxylic acid cycle (TCA) for 

the majority of central metabolism.  In turn, the plant provides carbon and energy sources 

to the bacteroids in the form of dicarboxylic acids, particularly malate and succinate 

(Lodwig & Poole, 2003) that feed directly into the TCA for the bacteria’s central 

metabolism.  It has been determined that as the concentration of these dicarboxylic acids 

decrease, nitrogen fixation is stimulated as the plant limits nutrients until more nitrogen is 

fixed by the bacteria.  Even at modest amounts the compounds are inhibitory on nitrogen 

fixation (Lodwig & Poole).  The controlled release of these compounds is due to the 

biochemical interactions between the plant and the bacteria signaling their requirements 

for nutrients.  The nodulation process has been reviewed in detail by D’ Haeze (2002), 

Mylona et al. (1995), and Zahran, (1999). 

 

Global and Agricultural Significance of Nitrogen Fixation 

 Nitrogen fixation is essential in many ways.  The atmospheric content of 

dinitrogen (N2) is approximately 10
15

 tons and roughly 3 X 10
9
 tons are converted by 

nitrogen fixation back into a usable form for use in the global ecosystem, that is 60% of 

production of fixed nitrogen from dinitrogen (Postgate, 1982).  The vast majority of the 

atmosphere is nitrogen (78%) that was released and lost from many different reactions 

from the earth’s surface.  Global consumption or application of nitrogenous fertilizers is 

on the rise, doubling in the weight sold during a 15-year period dating from 1973-1988 
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(Food and Agriculture Organization of the United Nations or FAO, 1990).  With the 

world’s increasing population, consumption of nitrogenous fertilizers is expected to 

increase even more than previously projected.   

For approximately 100 years, biological nitrogen fixation has been exploited by 

agriculture (Burris, 1994).  At the present, more experimental and practical manipulation 

of nitrogen fixation by bacteria is being examined for their possible use as a source of 

nitrogen for crops.  The increased use of bacteria producing nitrogen for crops could help 

many ecosystems by decreasing the amount of nitrogenous fertilizers used.  It could 

reduce the use of fossil fuels, help in reforestation, and restoration of nutrient-stripped 

lands (Burris, 1994; Sprent & Sprent, 1990).  The reason nitrogen fixation should be 

investigated and applied is due to its relatively benign presence.  In comparison, 

nitrogenous fertilizers can lead to unacceptable water pollution by increasing the amount 

of toxic nitrates located within bodies of water.  An increase in nitrogen and other 

nutrients contained within the fertilizer load can lead to eutrophication of lakes and rivers 

(Al-Sherif, 1998).  Eutrophication is defined as a decrease in the productivity of an 

ecosystem (usually aquatic) due to an increase in chemical compounds containing 

nitrogen and phosphorus entering the ecosystem.  The increase of these chemicals leads 

to an increase in plant growth and decay plus an increase in plankton growth that 

exhausts the oxygen supply in the water.  The removal of oxygen results in the death of 

many fish and other animals.  Also, the bacterial amount introduced can be “tailor” made 

or designed specifically for the species of agriculturally important plants growing while 

most of the applied nitrogenous fertilizer (up to 50%) ends up being leached in the soil 

(Sprent & Sprent, 1990).  While the position of farmers is to produce the highest yield of 
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crop possible, they end up wasting money, energy, and time by over using nitrogenous 

fertilizers that in turn lead to the destruction of habitats and contamination of drinking 

water. 

 With all of these aspects in consideration, many different studies have focused on 

the ability of nodulated plants to persist in areas of harsh conditions as compared to 

uninoculated plants.  Harsh conditions are identified as being high temperature (low 

moisture), limited nutrients, high salt and osmotic pressure, and soil acidity or alkalinity 

(Zahran, 1999).  According to much published data, the nodulating bacteria are versatile 

while the plants are fastidious.  The studies show the plants are attenuated or killed by 

these harsh environmental parameters while the bacteria continue to grow.  The studies 

also suggest plants can be crossbred for resistance or the ability to grow under these harsh 

conditions (Zahran).  If the plants can grow normally (or close to normal), the bacteria 

can nodulate and aid in the plants’ survival.  This could be a great asset for many 

countries considering how many have one or more of these harsh conditions present at 

different locations.  If this symbiotic fertilization system can be manipulated to increase 

crop production, food could be made available to many citizens of undeveloped nations 

as well as developed ones whose climate or environment limits crop cultivation.   

 

Iron and Bacteria 

 Iron is the fourth most abundant metal ion on the earth’s surface.  Iron is a vital 

element for nearly all organisms, eukaryotic and prokaryotic, with only a few exceptions 

in the genera of Lactobacillus and Streptococcus (Archibald, 1983; Guiseppi, 1982).   But 



 22 

a problem arises at physiological pH (neutral) and aerobic conditions, ferric iron (Fe
3+

) 

ions form insoluble oxyhydroxide polymers.  In this state, iron is unusable for any 

organism.  The maximum amount of soluble ferric iron in the environment is around 10-18 

M while most bacteria keep an internal concentration of iron at 10
-6 

M (Raymond, Dertz, 

& Kim, 2003).  For pathogenic organisms, the iron concentration inside their mammalian 

host is lowered to 10
-24 

M due to host iron binding proteins (Raymond et al.).  The war 

between the host’s defense system and the invading pathogen illustrates the importance 

of iron in the onset of disease (discussed more in a later section).  Most bacteria and fungi 

that grow in aerobic conditions at approximately neutral pH are known to produce 

siderophores that can solubilize the oxyhydroxide polymers.  The organisms produce 

these molecules under iron limiting conditions and the molecules serve as iron scavengers 

for the cells.     

 Other sources of iron for bacteria whether internally (in a host) or externally (in a 

free-dwelling environment) includes ferrous iron, heme, and host proteins like transferrin 

and lactoferrin.  Ferrous ions (Fe
2+

) are plentiful in a reduced or anaerobic environment.  

This form of iron can diffuse across the outer membrane and can be directly used for the 

production of iron containing proteins by bacteria or oxidized and stored as ferric iron.  

But ferrous ions can also be harmful (see Fenton reaction below).  Once ferrous ions 

enter the outer membrane via simple diffusion, an active transporter is required to 

facilitate entry through the cytoplasmic membrane.  Some bacteria can actually produce 

extracellular ferric reductases that reduce Fe
3+

 to Fe
2+

 and internalize this form by the 

above mechanism.  For methods on iron acquisition from sources containing heme 
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groups and host proteins see the section “Uses of Iron and Means of Iron Acquisition in 

Bacteria” below.  

 Excess iron in the body of humans is toxic due to the formation of oxidizing 

radicals.  More recent research has discussed the role of iron in degenerative diseases 

such as cancer, arthritis, and circulatory disease (Neilands, 1993) and as a contributing 

factor to diseases like Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis (ALS) 

(Kaur et al., 2003; Youdim & Buccafesco, 2005; Zecca, Youdim, Riederer, Connor, & 

Crichton, 2004; Zheng, Gal, Fridkin, Weiner, & Youdim, 2005).  As previously 

mentioned iron, when oxidized, is insoluble but in its reduced form is highly toxic.  The 

reduced form’s toxicity is due to the formation of hydroxyl radicals by the Fenton 

reaction.  The Fenton reaction is as shown: 

Fe
2+

 + H2O2 � Fe
3+ 

+ OH
-
 + OH 

The Fenton reaction products are deleterious for many macromolecules such as proteins, 

DNA, and cellular membranes.      

 

Requirements for Iron and Iron Acquisition by Bacteria 

 As discussed previously, iron homeostasis is very important for most organisms.   

Excess iron is toxic and too little prevents growth, so it is vital for cells to maintain a 

constant concentration.  Excess is stored in a nonreactive form (ferritin).  Bacteria store 

iron in a molecule called bacterioferritin.  Bacterioferritin is a protein with 24 subunits 

that assemble to form a hollow ball-like complex.  Oxygen atoms bind the iron that is 

then reoxygenized to di-ferric iron (insoluble).  The insoluble form is then stored in the 

hollow center of the complex where approximately 5000 iron atoms can be stored.   
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Iron is important for cells to serve as a cofactor for many different enzymes and is 

required for many redox reactions within the cell.  These enzymes are central to many 

different functions including: electron transport for energy production via aerobic 

respiration, activation of oxygen, peroxide reduction, amino acid synthesis, nucleotide 

synthesis, DNA synthesis, and photosynthesis (Wandersmann & Delepelaire, 2004).  

Additionally, some of the signaling factors in nodule development and nitrogenase 

contain iron (Loh & Stacey, 2003).  In some bacteroids, it is estimated that nitrogenase 

comprises 10%-12% of the total protein inside the cell (Verma & Long, 1983).  

Leghemoglobin is an iron rich plant protein that buffers oxygen levels to the bacteroids 

within the nodule and is estimated by some to comprise up to 30% of the soluble protein 

in the nodule (Appleby, 1984).  The protein is postulated to serve as an iron source if 

necessary.  Several other regulatory proteins and molecules inside the cell also contain 

iron.  In total, there are more than 100 enzymes catalyzing reactions in primary and 

secondary metabolism that use iron as a cofactor (iron-sulfur clusters or heme groups) 

(Miethke & Marahiel, 2007).  Noting how many molecules of iron are necessary for 

growth, it is essential for the cell to acquire iron and it is known that iron acquisition 

increases the virulence of pathogenic organisms (Miethke & Marahiel).   

 To acquire iron from the environment, many bacteria and fungi produce small 

organic molecules known as siderophores.  Siderophore mediated iron transport is the 

topic of this research.  As mentioned before, when a pathogenic organism invades a 

mammalian host some of the initial immune response is aimed at curbing the bacteria’s 

ability to acquire iron.  Two of these proteins, lactoferrin and transferrin, are released into 

the circulation to chelate any free iron to prevent acquisition by the pathogen.  
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Lactoferrin and transferrin have two sites for binding iron and deliver the atom to host 

cells through receptor mediated endocytosis (especially transferrin).  Lactoferrin is 

mainly found in breast milk as well as other bodily fluids but the two proteins are similar 

in structure and function.  Other hemoproteins, like hemoglobin, contain about two thirds 

of the body’s available iron in a heme bound state (Miethke & Marahiel, 2007).  The host 

defenses can counter siderophore production by some pathogens for example lipocalin 2.  

Lipocalin 2 is a host protein that chelates iron bound siderophore (an example is 

enterobactin produced by E.coli) and prevent its return to the pathogen.  Without this iron 

acquisition system, the bacterial growth and the pathogenesis of this organism is limited 

(Flo et al., 2004).  Additional results have shown lipocalin 2 can bind 

carboxymycobactins that could be helpful in prevention of disease against mycobacterial 

pathogens like Mycobacterium tuberculosis.  With these defenses present, iron 

concentration in the mammalian host is limited to approximately10
-24

M (Raymond, 

Dertz, & Kim, 2003).    

 There are two main divisions to describe how an organism can acquire iron from 

the host, direct and indirect.  Direct iron acquisition is seen when bacteria directly uptake 

the iron sequestering molecules or hemoproteins like transferrin, lactoferrin, and heme 

(Wandersmann & Delepelaire, 2004).  The disadvantage of the direct method is that the 

bacteria must contain a specific receptor to internalize the specific iron containing 

molecules.  One of the best studied species of bacteria that can use transferrin and 

lactoferrin directly by binding these proteins and removing the iron are the human 

pathogens, Neisseria gonorrhoeae and Neisseria meningitides (Guerinot, 1994).   
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 Within the indirect method of iron acquisition, much diversity is seen.  Some 

Gram negative organisms produce molecules called hemophores (Miethke & Marahiel, 

2007; Wandersmann & Delepelaire, 2004).  These molecules are produced to acquire iron 

from different heme sources.  The iron is removed from the bound state of heme by 

various mechanisms.  There are two systems well studied in this method of acquisition.  

The first of these systems is hxu of Haemophilus influenzae that uses a heme-loaded host 

protein hemopexin as an iron source (Cope, Yogev, Muller-Eberhard, & Hansen, 1995; 

Hanson, Pelzel, Latimer, Muller-Eberhard, & Hansen, 1992).  This organism also has an 

outer membrane receptor protein for use of hemoglobin (Hickman, Morton, & Stull, 

1993) in iron acquisition.  Some other nonpathogenic organisms (examples include 

Rhizobium) are known to use heme compounds as sources for iron (Noya, Arias, & 

Fabiano, 1997).  The second method is the has system that uses a hemophore to scavenge 

iron and is a more widely used system in Gram negative organisms such as Escherichia 

coli and Serratia marcenes for using heme for iron from many different sources (see 

Rossi et al., 2001 for more details on the has system).  By far the most widely used 

system categorized as an indirect method for iron acquisition is based on a low molecular 

weight iron chelating compound termed siderophores.  Siderophores scavenge the ferric 

ion from many different sources.  Organisms produce ferric siderophore specific 

receptors for internalization once the ferric siderophore complex returns to the cell.  With 

these facts known, siderophore iron acquisition is a much more versatile system for 

scavenging ferric ions. 
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Introduction to Siderophores 

 Siderophores are defined as low molecular weight (400-1500 Da) organic 

compounds secreted by bacteria, fungi, and plants in response to low iron conditions.  

Siderophores have extremely high affinity and specificity for ferric ions (Fe
3+

).  The 

compounds are classified on the basis of the functional groups used to bind iron.  The 

chelators are classified into four main groups, the catecholates, hydroxamates, hydroxy 

acid, and mixed types.  Catecholates are molecules with hydroxyl side groups of catechol 

rings that bind ferric ions (example is enterobactin produced by Escherichia coli).  

Hydroxamates are designed with n-hydroxy side groups with oxygen atoms that ligate to 

ferric ions (example is ferrichrome produced by Ustilago maydis).  Hydroxy acid or 

phenolate based siderophores contain nitrogen atoms on thiazoline rings that chelate 

ferric ion (example is pyochelin produced by Pseudomonas aeruginosa).  Mixed types 

contain some combination of the previously mentioned groups to chelate iron (example is 

mycobactin produced by Mycobacterium tuberculosis).  Figure 6 illustrates the different 

functional groups of siderophores and also provides one or more examples of each.  E. 

coli’s ability to chelate iron via an endogenously produced siderophore, enterobactin, is 

very well studied.  Enterobactin is a model system for catecholate-type siderophores and 

is one of the strongest chelators known.   
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Figure 6:  Structural comparison showing an example of siderophore(s) within each type based on 

their functional groups (adapted from Miethke & Marahiel, 2007). 
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 Once the complex is internalized via a specific outer membrane receptor protein, 

it is postulated that cleavage of this complex by the bacteria is required to release the 

bound iron.  This system relies on catalytic hydrolytic cleavage by enterobactin esterase 

of the ferric-enterobactin complex to release the iron intracellularly (Raymond, Dertz, & 

Kim, 2003).  The second method to remove ferric iron bound to siderophore is by 

reducing it from Fe
3+

 to Fe
2+

 facilitated by ferric-chelate reductases located either 

intracellularly or extracellularly in a membrane-bound form.  These enzymes reduce the 

siderophore-bound ferric ion to ferrous that is then released from the siderophore due to 

reduced binding affinity.  The ferric reductase enzymes located in the periplasm and 

cytoplasm are similar in structure and function.  The enzymes will use many different 

electron donors to reduce ferric to ferrous ion (example of electron donor is NADPH) and 

have a broad range of substrate specificity (Schroder, Johnson, & Vries, 2003).   

 Also several of these reductases are associated with the cytoplasmic membrane 

that can also facilitate internalization and uptake of iron.  The extracellular reductases can 

be surface bound or secreted into the surrounding environment.  These enzymes are 

known to reduce ferric ions from many different sources including ferritin.  They 

resemble the periplasmic and cytoplasmic reductases by also having broad substrate 

specificity and require flavins for optimal activity (Schroder, Johnson, & Vries, 2003).  

Currently, all of the periplasmic and extracellular reductases are produced by 

opportunistic or obligate pathogens including E.coli, Pseudomonas aeruginosa, and 

Salmonella typhimurium indicating this method of iron acquisition may be an important 

virulence factor (Barchini & Cowart, 1996).  Membrane-bound ferric reductases are 



 30 

found in E.coli and Staphylococcus aureus but no enzymes have been purified or 

characterized.  

 

General Characteristics of Siderophores 

 As mentioned in the previous section, siderophores are extracellular, secreted 

organic molecules.  Some siderophores, however, are attached to the cells and displayed 

to the external environment.  Mycobactins are the best example of siderophores that 

remain tightly bound to the cell wall of Mycobacteria.  Mycobactins are lipophilic 

molecules postulated to receive iron from other secreted siderophores, such as 

carboxymycobactins and exochelins, also produced by these bacteria.  The transfer of the 

iron from exochelin or carboxymycobactin to the cell wall bound mycobactin is 

unknown.  Aquatic organisms are known to produce membrane bound siderophores in 

response to the dilution of hydrophilic siderophores throughout their habitat.  So to 

acquire iron, the aquatic bacteria surround themselves with membrane-bound 

siderophores with a range of hydrophobicity creating a siderophore gradient (Martinez et 

al., 2003). 

 Presently, there are more than 500 different siderophores known to be produced 

by bacteria and fungi.  The genes for the biosynthesis and transport of the siderophore are 

inversely regulated by the availability of ferrous ions (mechanism discussed in a later 

section).  Transport systems also exist for the use of exogenous siderophores.  These 

systems allow an organism to use chelators produced by other organisms as well as their 

endogenous systems.  E.coli is known to produce fhuA, a receptor for ferric ferrichrome 

complex, but itself does not produce this siderophore.  Siderophores have very high 
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affinity and specificity for ferric iron because the molecules have oxygen atoms forming 

coordination bonds with ferric ions contributing to the strength of the chelation.  Some 

examples of model siderophores are seen in Figure 7.  Quantification methods exist to 

evaluate the siderophore’s ability to chelate ferric iron by enumeration of the stability 

constant (Ks) ranging in values from 10
22

 to 10
52

 (Ratledge & Dover, 2000).  The higher 

the stability constant, the stronger the coordination bond between the siderophore’s  

 

     

     

      

Figure 7:  (Clockwise from top left) Structures of model siderophores: ferric-enterobactin 

(adapted from Neilands, 1995), ferric-ferrichrome (adapted from Neilands, 1995), pyochelin 

(adapted from Crosa & Walsh, 2002), and mycobactin (adapted from Crosa & Walsh, 2002). 

 

oxygen atoms and the ferric ion.  Once the siderophore binds iron, it returns to the cell for  

internalization.  After internalization, the ferric ion is reduced to the usable form of  
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ferrous iron or stored in the ferric form.  

 The size of the ferric siderophore complex is too large to enter the bacterial cell 

through nonspecific porins (less than 400 Da to enter through porins) thus requiring a 

specific, dedicated transport system.  To internalize the complex, a system must be in 

place to provide energy and facilitate the entry into the cell for use.  The most common 

system for the active transport of such molecules is the Ton system.  The Ton system 

presumably provides electrochemical potential in the form of the proton motive force to 

provide the energy for the internalization process (Guerinot, 1994).  The system is 

composed of three inner membrane proteins known as TonB, ExbB, and ExbD.  TonB 

spans the entire periplasmic space and is anchored to the inner membrane by its amino 

terminal end.  TonB interacts with the outer membrane ferric-siderophore receptor 

protein to provide energy and facilitate internalization (Letain & Postle, 1997).  ExbB 

and ExbD are proteins thought to be involved in the confirmation change of TonB from 

its inactive form to its active form.  The definite functions of ExbB and ExbD are 

unknown, but all three proteins (ExbB, ExbD, and TonB) are required for energy 

transduction (Ratledge & Dover, 2000).  

 

Siderophores of Escherichia coli 

 Siderophore mediated iron transport systems have been studied the most in E.  

coli.  There are two siderophores known to be produced by E. coli, enterobactin and 

aerobactin.  The stability constants for enterobactin and aerobactin are 10
52

 and 10
23

, 

respectively.  The biosynthesis and transport operon of aerobactin has also been seen as a 

virulence determinant for some clinical isolates of E. coli (Bagg & Neilands, 1987).  It is 
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also interesting to note that E. coli expresses many other receptors to transport exogenous 

siderophores, as shown in Figure 8.   

 

 

Figure 8:  Siderophores used by E. coli (adapted from Bagg & Neiland, 1987). 

 

Siderophores of the Rhizobia 

 Due to their genetic diversity, many different siderophores are known to be 

produced by the rhizobia.  At least one example of each functional group or class of 

siderophore is produced by rhizobia.  When metabolic changes occur in the bacteria 

transforming into bacteroids, the expression of some siderophore systems were repressed, 

and this had no effect on nitrogen fixation (Carter et al., 2002; Lynch et al., 2001; Stevens 

et al., 1999; Yeoman et al., 2000). When siderophore acquisition systems are repressed in 

bacteroids, iron must be attained by other means.  As previously mentioned, ferrous iron 

is available in the nodule, or some have suggested that there are bacteroid-specific 
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siderophores (Wittenberg, Wittenberg, Day, Udvardi, & Appleby, 1996) produced in the 

nodule.   

 The best studied siderophores in the rhizobia are rhizobactin 1021 and vicibactin 

(structures seen in Figure 9).  Rhizobactin 1021 is a hydroxamate type siderophore 

produced by the bacterium Sinorhizobium meliloti 1021.  Rhizobactin 1021 is similar in 

structure to other citrate based siderophores like aerobactin (made by some enteric 

bacteria) and schizokinen (produced by Rhizobium leguminosarum IARI 917 and 

Bacillus megaterium), but it is distinguishable due to the addition of a fatty acid or lipid 

group (Johnston, 2004).  The fatty acid group located on rhizobactin 1021 structure is 

postulated to induce micelle formation (Johnston).  Micelles are structures that protect the 

siderophore from extracellular damage.   

 

     

Figure 9: Structures of two siderophores seen in rhizobia.  On the right is vicibactin (adapted 

from Carter et al., 2002) and on the left is rhizobactin 1021 (adapted from Storey, 2005). 

  

 Vicibactin is a trihydroxamate type siderophore produced by some strains of  

Rhizobium leguminosarum biovar viciae.  The siderophore is a cyclic molecule 

comprising three groups each of D-3-hydroxybutyric acid and N
2
-acetyl-N

5
-hydroxy-D-

ornithine linked by alternating amide and ester bonds.   
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Siderophores as Drug Delivery Agents or Drug Targets 

 Siderophore-antibiotic conjugates are natural or synthetic siderophores conjugated 

with established antibiotics for specific delivery to the bacterial pathogen.  The 

introduced complex of siderophore-antibiotic will chelate iron and return to the bacterial 

cell with both iron and the antibiotic.  Once the complex enters the cell, the antibiotic can 

reach its target without being pumped out thus killing the cell or arresting the cell’s 

growth.  Figure 10 below shows some examples of how an antibiotic is conjugated to 

siderophore and the resulting structure that would be used in treatment.  Because 

siderophore transport systems are high affinity, there is a faster accumulation of antibiotic 

in the cells that could reduce the amount of antibiotic required for effective treatments.  

Tests using many bacteria, including E.coli (Miethke & Marahiel, 2007) and 

Pseudomonas aeruginosa (Budzikiewicz, 2001), have been successful in in vitro studies 

but require more rigorous testing before use in humans is possible. 

 Another option is to design drugs to attack siderophore systems by disrupting or 

halting the siderophore biosynthetic pathways or the transport mechanism.  Iron 

acquisition is essential for some pathogens to establish disease in humans and can 

increase the virulence of others.  An example is Mycobacterium tuberculosis that has 

been shown to have decreased virulence and decreased ability to grow within 

macrophages when starved for iron (Cronje & Bornman, 2005).   Other examples of iron 

removal as therapy for important, deadly transmissible diseases include Mycobacterium 

avium (Gomes, Dom, Pedrosa, Boelaert, & Appelberg, 1999), Plasmodium falciparum 

(Mabeza, Loyevsky, Gordeuk, & Weiss, 1999), hepatitis C (Sartori, Andorno, Rigamonti, 

& Boldorini, 2001), and human immunodeficiency virus (HIV) (Georgiou et al., 2000).  



 36 

The treatments include synthetic or semisynthetic molecules to scavenge any available 

iron from the body preventing acquisition by the pathogen.  Once the complex is bound, 

it is filtered out of the blood by the kidneys, thus limiting iron more with the addition of 

the chelator along with the host’s immune defenses. 

 The use of iron chelators is not reserved to the treatment of infectious disease.  It 

is also being tested for the ability to treat many other noninfectious diseases.  Currently, 

there is a synthetic iron chelator used in the treatment of hemochromatosis called 

Desferal
®

.   

 

Figure 10:  Structures of siderophores complexed with antibiotics for a more efficient delivery 

mechanism (adapted from Miller, 1995). 

 

Desferal
® 

is a synthetic iron chelator with a mechanism of action similar to a siderophore.  

Hemochromatosis is defined as an overload of iron in the blood due to excessive amounts 

absorbed in the body.  The disease can cause many different symptoms including 
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impaired immune system functioning (especially macrophages), increased pathogenesis 

of many organisms, free radical tissue damage, organ failure, cirrhosis of the liver or liver 

cancer, diabetes mellitus, arthritis, and hypothyroidism (Berkow, Beers, & Fletcher, 

1997).  Until now, the only treatment for the disease was bloodletting.  Desferal
®

, 

produced and sold by Novartis pharmaceuticals, is a synthetic iron chelator that can bind 

free iron.  The chelator binds to free iron with the complex being filtered out of the blood 

by the kidneys and excreted in the urine.  Other compounds used for similar treatments 

are summarized in Figure 11 and Figure 12.  These molecules have one trait in common 

with siderophores in that all form stable molecules after binding to ferric iron.  

 Other ailments associated with increased levels of iron are neurodegenerative 

diseases such as Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis 

(ALS), multiple sclerosis, and Huntington’s disease (Kaur et al., 2003; Zheng et al., 

2005).  These diseases are shown in new experimental data to respond to iron chelation.  

Two of these diseases examined in a mouse model used iron chelation as treatment are 

Parkinson’s and Alzheimer’s diseases.  Results of mouse model studies have shown to 

delay or to prevent these diseases with iron chelation treatment (Kaur et al.; Zheng et al.).  

Excessive iron accumulation is seen in the brains of patients with these diseases and can 

lead to some of their classical symptoms.  Excess of iron in the brain can lead to 

oxidative stress and free hydroxyl radical formation, both of damage proteins, nucleic 

acids, and membrane phospholipids, thus leading to cell death.  When cells located in the 

brain are destroyed, many symptoms of the respective diseases are seen including 

involuntary movement, sluggish muscle movement, delayed cell signaling in the brain 

(affects memory and movement), and muscle rigidity.  The research is mainly focusing 
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on chelators like ferritin and cliquinol to bind and convert the free iron into a nonreactive 

form (Fe3+), thus preventing free radical formation without interfering with normal iron 

levels.  Some promising results have been noted that administration of cliquinol prevents 

plaque formation and behavioral declines seen in Alzheimer’s disease. The treatments 

were in a mouse model and did not disrupt normal iron levels (Cherny et al., 2001).  

Also, the use of cliquinol can slow or prevent the onset of Parkinson’s disease by halting 

the free radical damage seen in patients’ brains without interfering with the normal 

functions of iron in the central nervous system (Kaur et al.).   
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Figure 11:  Iron chelators used as therapy for iron overload and other diseases (Figure modified 

from Cronje & Bornman, 2005). 
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Figure 12:  Diagram of the possible roles for treatment using siderophores or siderophore-like 

compounds (adapted by Miethke & Marahiel, 2007).  DFO stands for desferrioxamine thatis an 

iron chelating molecule. 

 

General Genetic Regulation of Siderophore Systems 

 As previously mentioned, iron homeostasis is very important in many organisms.  

In environments replete with iron, siderophore systems are not required to obtain the 

metal thus must be repressed.  The repression of these systems takes place at a 
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transcriptional level and prevents the loss of energy and resources used to acquire iron.  

When the environment is depleted of iron, siderophore systems are required and are 

transcribed.  Regulation of both the biosynthesis and transport genes of siderophore 

systems can be controlled at a local level or at a global level.  Local level is a term used 

to describe regulation that controls transcription of a few genes.  While global level 

transcription describes regulation of many different genes simultaneously in response to 

environmental stimuli.  Siderophore systems can be controlled at a local or global level or 

both.  Sigma (σ) factors are a subunit of RNA polymerase that will bind to promoter 

regions and engage the enzyme for initiation of transcription.  Sigma factors can regulate 

siderophore systems at a local level by turning on or off the genes involved.  Other 

mechanisms, such as ferric uptake regulator (Fur), RirA, and DtxR, regulate genes 

involved in siderophore biosynthesis and transport on a global scale.  

 Ferric uptake regulator or Fur is a major global controller of iron response genes 

in many Gram negative bacteria.  Fur is a negative regulator of the iron response genes 

involved in iron processing whether acquisition, use, or signaling.  Fur becomes an active 

repressor when ferrous (Fe
2+

) iron (acting as a corepressor) binds to the Fur sequence.  

When Fe2+ binds to Fur thus activating it, the complex binds tightly to a common highly 

conserved sequence of DNA called the Fur box (Guerinot, 1994) preventing transcription 

of the genes downstream usually involved in siderophore systems.  When Fe
2+

 is not 

present or at low concentrations, Fur only binds weakly if at all to Fur boxes.  If a weak 

or nonexistent interaction is present, genes for siderophore systems are transcribed 

because the repressor no longer binds to the Fur box (derepression).  Fur regulation 

controls over 90 different genes involved in the iron response of E. coli (Hantke, 2001).  
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Genome analysis shows “binding boxes” are absent at the promoter regions of rhizobial 

iron regulated genes (Johnston, 2004).  The Fur sequence is present and functional but is 

not the only regulator of these genes in the rhizobia (Rudolph, Hennecke, & Fischer, 

2006; Wexler et al., 2003).  In rhizobia, Fur also functions as a regulator for manganese 

(Mn
2+

).  With the genetic diversity seen in the rhizobia, it is not surprising that one 

regulation mechanism does not encompass the whole group.    

 Another mechanism of siderophore regulation seen in rhizobia is RirA.  RirA has 

no similarity to Fur and may be confined to the rhizobia and a few close relatives 

(Johnston, 2004).  The regulator is seen in Mesorhizobium, Sinorhizobium, and other 

relatives including Brucella and Agrobacterium (Johnston, 2004).  In this method of 

regulation, there is no common, highly conserved region proximal to promoters 

suggesting that simple binding to a DNA sequence near iron-responsive promoters is not 

present.  Modeling of the N-terminal end of the RirA protein predicted a similar structure 

to another iron response regulator, DtxR, but no sequence homology is present (Johnston, 

2004).  Data do suggest RirA is a DNA binding metalloprotein. 

 DtxR regulation mechanism is similar to Fur but the proteins are structurally 

distinct.  A structural change in DtxR is induced when bound by Fe2+ activating the 

repressor thus blocking the genes involved in siderophore acquisition.  When intracellular 

iron levels are low, the repressor will leave the promoter region thus facilitating the 

transcription of the siderophore genes.  The major organism that uses this regulation is 

Corynebacterium diphtheriae, the causative agent of diphtheria.   
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Methods of Siderophore Transport 

 Transport of the ferric-siderophore complex into the bacterial cell is a 

complicated process.  Loops of the outer membrane receptor extend into the external 

environment and facilitate ferric-siderophore binding.  When this occurs according to one 

hypothesis, the plug region in the center of the receptor protein (see Figure 14) undergoes 

conformational changes that allow the complex to enter the cell (Raymond, Dertz, & 

Kim, 2003) in an energy dependent manner facilitated by the TonB-ExbB-ExbD proteins.  

After the complex has entered the outer membrane, a common method of transport is 

seen.  First, the complex enters the periplasm where a periplasmic binding protein binds 

to the substrate and transports it to the inner membrane via an ABC type transporter.  

When this interaction takes place, ATP hydrolysis of the ABC-type transporter occurs to 

facilitate entry into the cytoplasm (Raymond et al.).  An example of enterobactin 

transport via membrane transport systems is seen in Figure 13 in E. coli.   

 

Figure 13:  Diagram showing the interaction of enterobactin and its internalization mechanism 

from E. coli (adapted from Raymond et al.). 
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Figure 14: Crystal structure of FepA receptor (for enterobactin) with plug region intact (adapted 

from Raymond et al.). 

 

 

Methods of Siderophore Biosynthesis 

 Most siderophores are synthesized by nonribosomal peptide synthetases but some 

are independent of this mechanism.  Several siderophores are not polypeptides but 

contain alternating dicarboxylic acid and diamine or amino alcohol building blocks 

linked by amide or ester bonds (Challis, 2005).  Two of the non-polypeptide siderophores 

are aerobactin and rhizobactin 1021.  Both of these siderophores are structurally similar 

to schizokinen, a siderophore produced by Rhizobium leguminosarum IARI 917. Due to 

the structural similarities it is possible that they may also share similarities in their 

biosynthetic pathways.   

 Rhizobactin 1021 is a siderophore produced by the symbiont of alfalfa 

Sinorhizobium meliloti (Lynch et al., 2001).  The genes involved in the biosynthesis of 

the siderophore are designated as rhbABCDEF, rhrA is assigned a role in regulation, and 

rhtA is assigned to transport (proposed pathway in Figure 15).  The final structure of 

rhizobactin 1021 is identical to schizokinen except for the addition of a fatty acid chain.  
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Rhizobactin 1021 and its synthesis are shown in Figure 15.   The genes involved in 

aerobactin and rhizobactin 1021 synthesis are seen in Figure 17 for comparison purposes.  

 Aerobactin is a siderophore produced by some strains of E. coli and can be a 

virulence determinant (Neilands, 1995).  There are five genes identified in the operon for 

aerobactin biosynthesis and transport designated as iucABCD and iutA.  The genes 

designated iucABCD are involved in the biosynthesis of the siderophore and iutA gene 

encodes for the transporter protein (Challis, 2005).  Aerobactin synthesis is also seen in 

many other organisms including the Shigella species and increases the virulence of these 

organisms.  The genes and molecules involved in aerobactin synthesis are shown in 

Figure 16 to compare with rhizobactin 1021 synthesis shown in Figure 15.           
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Figure 15:  Proposed biosynthetic pathway for rhizobactin 1021 produced by Sinorhizobium 

meliloti (adapted from Lynch et al., 2001). 
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Figure 16:  Proposed biosynthetic pathway of aerobactin (adapted from Challis, 2005). 

 

 

 

Figure 17: Genetic maps of rhizobactin 1021 and aerobactin synthesis, transport, and regulation 

(adapted from Challis, 2005).  The shaded arrows denote similarity in functions of the gene 

products. 

 

Rhizobactin 1021 and Schizokinen 

 With the siderophore rhizobactin 1021 so structurally similar to schizokinen, it 

seems likely there would be some similarities in their biosynthetic pathways.  The 

structure of the dihydroxamate type siderophore produced by Rhizobium leguminosarum 

IARI 917 was identified by Erin Storey in our lab in 2005 as schizokinen.  Schizokinen is 

a siderophore produced by Bacillus megaterium (Mullis, Pollack, & Neilands, 1971).  

Given such striking structural similarities to rhizobactin 1021 (see Figure 18); the next 
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step is to determine if the biosynthetic pathway for the synthesis of schizokinen is similar 

to rhizobactin 1021 or if it is synthesized via a unique pathway.     

             

Figure 18: Structures of rhizobactin 1021 (left) and schizokinen (right) (adapted from Lynch et 

al., 2001; adapted from Storey, 2005). 

 

Present Research 

 A previous graduate student, Erin Storey, isolated and characterized a siderophore 

produced by Rhizobium leguminosarum IARI 917 identified as schizokinen.  As 

mentioned in the previous sections, this siderophore is not produced by any other known 

rhizobial species.  The biosynthetic pathway or genes involved in the biosynthesis of 

schizokinen have not been determined.  The biosynthetic operon for rhizobactin 1021 has 

been characterized with assignments given to the enzymes and to the genes involved in 

transport and could thus serve as a means of comparison between the two bacteria due to 

their structural similarities.  Also, the kinetics of schizokinen system has not been 

previously reported with its ability to bind and transport iron into the bacterial cell.  The 

present work was aimed at identifying the genes involved in siderophore production and 

transport of the siderophore, schizokinen, produced by R. leguminosarum IARI 917. 
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CHAPTER 2 

DEVELOPMENT OF HYPOTHESES 

 

Hypothesis 1 

 When the structure of the siderophore produced by Rhizobium leguminosarum 

IARI 917 was determined by Erin Storey, a strikingly similarity was seen.  The 

siderophore produced, schizokinen, was structurally identical to another siderophore, 

rhizobactin 1021 produced by another member of the rhizobia group, Sinorhizobium 

meliloti.  The only structural difference is the addition of a fatty acid chain to rhizobactin 

1021.  With the similarity seen between the two siderophores, a logical approach was to 

hypothesize the two siderophores may share a common genetic pathway for synthesizing 

the molecule.  With this in mind, the first hypothesis for this research states that given the 

structural similarities between schizokinen and rhizobactin 1021, the two siderophores 

are synthesized via an identical biosynthetic pathway. 

 

Hypothesis 2 

 Structural similarities between molecules do not always mean genetic similarities 

must be present for their biosynthesis.  The two siderophores could be structurally similar 

without a genetic link.  So the alternative hypothesis for this research is that schizokinen 

is synthesized by a unique or modified pathway as compared to rhizobactin 1021 despite 

their similar structures.   
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CHAPTER 3 

MATERIALS AND METHODS 

 

Bacterial Strains and Growth Conditions 

 Rhizobium leguminosarum IARI 917 (IARI 917) was the bacterium used in this 

study.  The culture was obtained from the Indian Agricultural Research Institute (IARI) 

in New Delhi, India.  The organism was grown at 28-30°C for 24-48 hours.  E. coli was 

grown at 37°C in Luria-Bertani (LB) broth.  Other strains used in this study are listed in 

Table 1.   

Table 1: Bacterial strains used in this study 

Strain                _______           _Description_______                     Reference or Source 

E.coli strains 
 
 C118λpir  pUT Tn5 LacZ1, Amp

R
, Km

R 
                de Lorenzo (1990) 

 

 MM294 pRK2013 Helper of CC118 λpir, NeoR        Alice (2005) 

 

 pPOC1   Rhizobactin 1021 regulon of                  Cuiv (2005) 

    Sinorhizobium meliloti 2011,  

    pLAFR1 based cosmid, Tet 
R
  

 

 pRK600  Helper of pPOC1, Cm
R        

Cuiv (2005) 

 

 pRL27 (BW20767)
K 

Hyperactive Tn5, Km
R       

Welch (2005) 

 

 DH5αλpir
+  

Insertional cloning vector     Welch (2005) 

 

 
Rhizobium leguminosarum  IARI 917 wild type  Indian Agricultural  

              Research Institute  
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Modified Fiss-Glucose Minimal Media 

 

 The minimal media, with no added iron, was a modified version of Fiss-glucose  

(Vellore, 2001) to induce siderophore production.  The medium was standardized for 

optimal siderophore production by strain IARI 917 by Storey, Boghozian, Little, 

Lowman, and Chakraborty, in 2007.  The medium was stored in acid treated bottles and 

ingredients were dissolved in deionized distilled water (ddH20) to prevent iron 

contamination.  The culture flasks used for growth of the bacteria were also acid treated 

to prevent the introduction of iron.  The optimized minimal medium composition was 2.5 

g potassium phosphate (KH2PO4), 2.5 g L-asparagine, and 0.5 g of ammonium sulfate in 

400 ml of ddH20.  The pH of the solution was adjusted to 6.8 with 6 M NaOH.  Once the 

pH was adjusted, the volume was adjusted by adding ddH20 to 485 ml.  The medium was 

autoclaved and stored in an acid treated bottle.  After autoclaving and cooling, more 

sterile ingredients were added including 10 µl of zinc sulfate (50 mg/ml), 10 µl of 

manganese chloride (25 mg/ml), 5 ml glucose (50%), 5 ml magnesium sulfate (0.4%), 

and 5 ml maltose (50%) were added to the medium (Storey, Boghozian, Little, Lowman, 

& Chakraborty, 2007).  To make plates (except for Congo red, requires more agar), 1.5% 

of agar was added to the medium before autoclaving.  After autoclaving and cooling, ~25 

ml were dispensed into sterile Petri dishes and allowed to solidify. 

 

MOPS Minimal Media   

 MOPS minimal media (lacking iron) was used for the binding and transport 

assays in E. coli KDF-541 (Neidhardt, Bloch, & Smith, 1974).  The components of 

MOPS minimal media were prepared individually and filter sterilized.  All of the stock 
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solutions were stored at 4°C.  The final medium was made by combining individual 

sterile stock solutions in an acid treated bottle.  The composition of the medium can be 

found in Neidhardt et al. 

 

Luria-Bertani (LB) Complex Media 

 Luria-Bertani (LB) broth (Sambrook, Fritsch, & Maniatis, 1989) was a complex 

media used for optimal growth of the E. coli strains.  All E. coli strains are grown at 37° 

C for 24 hours.  LB broth contained 5.0 g of NaCl, 5.0 g tryptone, and 2.5 g yeast extract 

dissolved in 500 ml distilled water (dH20).  Once it was dissolved fully, the pH was 

adjusted to 7.5 before autoclaving.   

 

Tryptone-Yeast (TY) Complex Media 

 Tryptone-Yeast (TY) broth was used to cultivate IARI 917 wild type and 

transconjugant strains (Beringer, 1974) for optimal growth.  The composition of TY broth 

was 5 g tryptone, 3 g of yeast extract, and 0.9 g of calcium chloride dihydrate per liter of 

dH20.   

 

Congo Red Media 

 Congo red media was used for the maintenance of IARI 917 because the Rhizobia 

in general take up the dye (Kneen & Larue, 1983) weakly from the medium appearing as 

white, glistening colonies.  Rhizobial colonies appear shiny due to the production of an 

exopolysaccharide layer.  Because most other organisms readily absorb the dye, 

contaminant colonies appear red.  The composition of Congo red agar was 4 g of 
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mannitol, 0.2 g of potassium phosphate (KH2PO4), 0.08 g magnesium sulfate 

heptahydrate, 0.04 g NaCl, and 0.4 g of yeast extract dissolved in 500 ml ddH20.  The pH 

was adjusted to 6.8 and 1 ml of a 1% Congo red dye solution was added to the medium.  

Lastly, 12 g of agar were added to prepare plating media, then it was autoclaved.   

 

Antibiotic Concentrations 

 Antibiotics, if required, were added to the media at the following concentrations 

unless otherwise indicated:  kanamycin 50 µg/ml, carbenicillin or ampicillin 100 µg/ml, 

tetracycline 10 µg/ml, rifampicin 100 µg/ml, and chloramphenicol 20 µg/ml.   

 

Glycerol Stock Cultures 

 The glycerol stocks were made with the addition of 0.2 ml of 75% glycerol to 2 

ml vials and sterilized.  Bacterial cultures were grown in complex media until the optical 

density at 600 nm (OD600) wavelength equaled 0.5-0.8 indicating exponential growth.  

After this OD600 was achieved, 0.8 ml of the culture was placed into the 2 ml vial that 

contained the sterile glycerol.  The vial was vortexed to coat the bacterial cells with 

glycerol to prevent ice crystal rupture of the cells and stored at -80°C. 

 

Seed Inoculum 

 The seed cultures were grown in complex media to obtain maximum growth.  A 

seed inoculum of IARI 917 was grown on a rotary shaker for 18-20 hours at 30°C.  The 

overnight culture, if used to seed a larger minimal media, must be washed to prevent 

residual iron from entering the restricted environment.  To wash the cells, the seed culture 
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was placed into a 2 ml tube and centrifuged for 4 minutes at 13,000 rpm to harvest the 

cells.  The supernatant was discarded and the pellet was resuspended in 2 ml of fresh iron 

free media.   The wash step was repeated two additional times to ensure removal of 

residual iron.  The pellet was resuspended a final time in a fresh 2 ml of iron-free Fiss-

glucose media.  For inoculating 50 ml of media, 0.5 ml of the resuspended cells was 

added (or 1% of total media volume).  The 50 ml culture was grown with shaking for 15-

18 hours at 30°C for IARI 917.  Because E.coli grow faster, the 50 ml culture of iron 

restricted medium was only allowed to grow 3-4 hours on a rotary shaker at 37°C.  The 

cultures were grown to an OD600 of 0.5-0.8 to obtain cultures in the exponential growth 

phase. 

 

Chrom Azurol Sulphonate (CAS) Plate Assay 

 The chrom azurol sulphonate (CAS) assay, described by Schwynn and Neilands 

in 1987, is a generalized test used to detect the presence of siderophores with no 

discretion of the functional groups the molecule may contain.  The assay is based on a 

complex formed when the chrom azurol sulphonate dye is chelated to ferric iron 

producing a dark blue color.  When the organism produces siderophores, the siderophore 

strips the ferric ions from the CAS dye producing a color change from blue to orange.  

The CAS assay was preformed by first growing IARI 917 in low iron Fiss-glucose as 

previously described to induce siderophore production.  The bacterial cells were 

harvested (centrifuged at 13,000 rpm for 4 minutes) and the supernatant was used for the 

siderophore assays.  A #2 cork borer was flame sterilized and used to form wells in the 

CAS agar to that60 µl of culture supernatant was added.  The reaction was allowed to 
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proceed at room temperature for 24 hours for maximum visualization of the color change.  

Another method used to determine siderophore production was inoculating the bacteria 

onto a CAS plate. 

 Preparation of CAS medium consists of two parts, beginning with the preparation 

of the indicator solution.  The indicator solution for CAS plates was composed of two 

solutions, solution A and solution B.  Solution A was made by dissolving 60.5 mg of 

chrom azurol S in 50 ml of ddH2O.  A 10 ml volume of iron III solution (27 mg iron 

chloride hexahydrate in 83.3 µl of 12 M HCl in 100 ml ddH2O) was added to solution A 

producing a final volume of 60 ml.  Next, solution B was made by dissolving 72.9 mg of 

hexadecyltrimethyl ammonium bromide (HDTMA) in 40ml of ddH2O.  After both 

solutions A and B were dissolved, solution B was slowly added to a stirring solution A to 

yield 100 ml of CAS indicator solution.  The indicator solution was autoclaved and stored 

in an acid treated bottle. 

 The second part of composing CAS plates was compiling the basal agar medium.  

The medium was made by dissolving the following in 415 ml ddH2O: 15 g of 3-(N-

morpholino) propane sulfonic acid (MOPS), 0.25g of NaCl, 0.15 g potassium phosphate, 

0.05 g of ammonium chloride, and 2.5 g of L-asparagine.  Once the components were 

dissolved, the pH was adjusted to 6.8 with 5 M NaOH.  The final volume was adjusted to 

440 ml with the addition of ddH2O.  7.5 g of agar was added to the medium then 

autoclaved with a stir bar left in the flask.     

 After sterilization of the indicator solution and the basal media, the solutions were 

cooled for 1-1.5 hours in a 50°C water bath.  During the cooling process, a bottle 

containing 50% dextrose (filter sterilized) was also placed in the water bath to warm to 
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the same temperature.  After the agar and indicator solution has cooled, the basal medium 

was placed on a stir plate.  Ten ml of the 50% dextrose solution was added while the 

basal medium was slowly stirred to prevent bubble formation.  After the addition of 

dextrose, 50 ml of CAS indicator solution was added down the glass walls of the flask at 

a rate of 0.5 ml per second to prevent precipitation of the dye.  After the addition of 

dextrose and indicator solution, ~25 ml of the final CAS agar medium was dispensed into 

each sterile Petri dish and allowed to solidify.   

 

Arnow’s Assay for Catechol-Type Siderophores 

 Once the presence of siderophore was detected by the CAS assay, other more 

specific assays were performed to determine the molecule’s functional group.  One 

specific assay used was Arnow’s assay (Arnow, 1936) that detects the presence of 

catechol functional groups.  The assay is based on the reaction of catechol functional 

groups with nitrous acid yielding a yellow color.  The yellow color produced becomes an 

intense red wine color in the presence of excessive amounts of sodium hydroxide 

(Arnow).  The test is a colorimetric assay using culture supernatant from a low iron 

culture, thus the more intense the color formed the higher the concentration of the 

catechol functional group as compared to high iron culture supernatant.   

 The assay was performed by adding the following reagents in order:  1 ml of 

culture supernatant, 1 ml of 0.5 M HCl, 1 ml nitrite-molybdate reagent (made by 

dissolving 10 g sodium nitrite and 10 g sodium molybdate in 100 ml ddH2O), and 1ml of 

1 M NaOH.  The mixture was incubated at room temperature for 5 minutes to allow the 

reaction to proceed.  The absorbance was taken using a spectrophotometer at 500 nm 
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wavelength using uninoculated medium as a blank.  Any OD500 reading above 0.03 for 

this assay was considered positive for the presence of catechol functional groups.   

 

Atkin’s Assay for Hydroxamate-Type Siderophores 

  Another specific test used to chemically characterize siderophores was the Atkin’s 

assay to detect the presence of hydroxamate functional groups (Atkin, Neilands, & Phaff, 

1970).  Atkin’s assay was performed by combining 0.5 ml of low iron culture supernatant 

with 2.5 ml Atkin’s reagent (0.1771 g Fe (ClO4)3 in 100 ml ddH2O and 1.43 ml 

perchloric acid).  The blank used in this assay was uninoculated media replacing culture 

supernatant.  After the reagents were mixed, the tube was incubated at room temperature 

for 5 minutes.  Once the reaction had taken place, a pink color indicated a positive 

reaction for the presence of hydroxamate functional groups.  Following the 5 minute 

incubation, the absorbance was measured at 480 nm wavelength in a spectrophotometer.  

An absorbance reading above 0.03 was considered a positive reaction for the presence of 

hydroxamate functional groups in the siderophore.   

 

Methods for Testing Hypothesis 1 

Isolation of Plasmid DNA 

 Plasmid DNA used in this study was isolated using the protocol provided by the 

QIAprep spin miniprep kit
®
 from Qiagen

®
 or the alkaline lysis method described by 

Sambrook, Fritsch, and Maniatis in 1989.  The method was performed according to the 

manufacturer’s protocol and the alkaline lysis (Sambrook et al.) method was modified as 

described below. 
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 Extraction of plasmid DNA from E. coli harboring the pPOC1 plasmid began 

with growing the bacteria in 2 ml of LB broth with appropriate antibiotic.  After 

overnight incubation, the 2 ml culture was harvested by centrifugation at 13,000 rpm for 

4 minutes.  The supernatant was discarded and the cells were resuspended in 0.5 ml of 50 

mM Tris[hydroxymethyl]aminomethane adjusted to pH 7.8 with HCl (Tris-HCl), 

centrifuged at 13,000 rpm for 4 minutes, and the supernatant was discarded.  The cells 

were resuspended in 100 �l of solution I (50 mM glucose, 10 mM 

ethylenediaminetetraacetate or EDTA, 25 mM Tris-HCl, pH 8.0) containing 2 mg/ml of 

fresh lysozyme and incubated at room temperature for 15 minutes.  Upon completion of 

this step, the solution became cloudy then 200 �l of freshly made solution II (0.2 M 

NaOH, 1% sodium dodecyl sulfate or SDS) was added.  The tube was mixed gently by 

inverting with hands several times and incubated at room temperature for no more than 5 

minutes.  After this step, the solution became clear as lysis of the bacterial cell had 

occurred.  Following cell lysis, 150 �l of solution III (5 M potassium acetate, 17.4 M 

acetate, pH 6.0) was added, mixed gently with hands several times, and incubated on ice 

for 15 minutes.  After incubation, the tube was centrifuged for 10 minutes at 13,000 rpm 

to pellet the precipitates of proteins, chromosomal DNA, and other cell metabolites 

released upon lysis leaving the plasmid DNA in the clear supernatant.  Next, the clear 

supernatant was transferred to a new 1.5 ml centrifuge tube and 1 ml of ice cold 100% 

ethanol was added.  The tube was mixed by inverting then incubated on ice for 5 minutes.  

The mixture was centrifuged at 13,000 rpm for 10 minutes to pellet the DNA then all 

ethanol was aspirated off using a Pasteur pipette.  The DNA pellet was redissolved in 400 

�l of solution IV (0.1 M sodium acetate, 50 mM Tris-HCl, pH 7.5) and vortexed until 
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completely dissolved.  Once the pellet was dissolved, 1 ml of ice cold 100% ethanol was 

added, mixed by inverting, and incubated on ice for 5 minutes.  The tubes were 

centrifuged for 10 minutes at 13,000 rpm and all ethanol was aspirated off.  The tubes 

were air dried for 5 minutes and the DNA pellet was dissolved in 30 �l of 0.1x TE buffer 

(10 mM Tris-HCl, 1 mM EDTA, pH 8.0) with RNase (20 mg/ml).  Plasmid DNA was 

stored at -20°C. 

 

Isolation of Genomic DNA 

 Two methods were used to isolate genomic DNA from IARI 917 that were the 

alkaline lysis method (Sambrook et al., 1989) and QIAamp DNA mini kit® from 

Qiagen®.  The SDS lysis method was performed according to Sambrook et al. with some 

modifications to the protocol as described below.  The QIAamp DNA mini kit
®
 from 

Qiagen
®

 isolation was performed according to the manufacturer’s protocol.   

 The bacterial culture used for chromosomal DNA isolation was either from a 

fresh streaked plate or from a liquid overnight 2 ml culture.  If cells were taken from a 

plate, two or three loopfuls were removed from the plate and placed into a 1.5 ml 

centrifuge tube containing 500 �l of 50 mM Tris pH 8.0 that was vortexed to wash the 

cells.  The tube was centrifuged for 45 seconds at 13,000 rpm to pellet the cells and the 

supernatant was discarded.  The cells were resuspended in 350 �l of TES buffer (50 mM 

Tris, 1 mM EDTA, 25 mM sucrose) and 50 �l of fresh lysozyme (100 mg/ml in TES 

buffer) was added to partially degrade the cell wall.  The mixture was incubated for 30 

minutes at 37°C in a water bath and vortexed to disperse sample every 10 minutes.  After 

incubation, 20 �l of a 20% SDS solution was added along with 7.5 �l proteinase K (20 
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mg/ml).  The mixture was incubated for 30 minutes at 37°C in a water bath and vortexed 

to disperse the sample every 10 minutes.  After the second incubation, the tube was 

placed on ice and 400 �l of TE saturated phenol pH 8.0 was added to remove proteins 

and other cellular material.  The tube was mixed gently then centrifuged for 5 minutes at 

13,000 rpm to separate the mixture into two layers.  The top layer of the mixture was 

retrieved with a pipette with care taken not to disturb the interface and placed it into a 

fresh 1.5 ml tube on ice.  To the aqueous phase or top layer, 400 �l of chloroform: 

isoamyl alcohol (24:1) was added to remove trace amounts of phenol.  The tube was 

centrifuged at 13,000 rpm for 5 minutes to separate the mixture into two layers.  The top 

layer again was taken and placed into another centrifuge tube on ice.  The chloroform: 

isoamyl alcohol (24:1) step was repeated to ensure removal of all phenol.  After the 

second extraction with chloroform:isoamyl alcohol, the aqueous layer was removed and 

placed into another 1.5 ml centrifuge tube on ice containing 1 ml ice cold 100% ethanol.  

Upon addition of ice cold ethanol, the chromosomal DNA was precipitated out of 

solution by inverting the tube several times.  The precipitated DNA was spooled onto a 

pipette tip and transferred to another 1.5 ml tube containing 400 �l of 70% ethanol to 

rinse the molecule by inverting the tube several times.  After rinsing, the tube was 

centrifuged for 25 seconds at 13,000 rpm to pellet the DNA and all ethanol was removed 

with a Pasteur pipette.  The tube was air dried to remove all traces of ethanol then the 

DNA pellet was rehydrated in 50-75 �l of 0.1x TE plus RNase.  The DNA solution was 

refrigerated overnight to allow time for rehydration and chromosomal DNA was stored at 

4°C. 
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Estimation and Size Determination of DNA Samples  

 Agarose gels used for size determination and estimation of DNA concentration 

were composed of 0.75% agarose in 1X TAE buffer (40 mM Tris, 20 mM Acetic acid, 1 

mM EDTA, pH 7.6).  DNA ladders were used as controls to estimate the size and 

concentration of DNA.  The ladder routinely used in this research was HindIII digested λ 

DNA.  The DNA samples used were mixed with 6X loading dye at a ratio of 5:1 unless 

noted otherwise.  After electrophoresis, the gel was stained in 100 ml of ethidium 

bromide solution (0.5 �g/mL) for 15-20 minutes in the dark.  The gel was destained in 

water for 10-15 minutes with slow agitation.     

 

Design Primers for Amplification of Specific Genes via Polymerase Chain Reaction 

 The primers used in this study (see Table 2 and Table 3) were designed using the 

Primer3 program available online (http://fokker.wi.mit.edu/primer3/input.htm).  The 

names of the primers indicated the gene being amplified and the position of the primer in 

relation to the base pair number in the target gene.  For example, rhbC4795 is a primer at 

base pair 4795 in the rhizobactin 1021 cosmid for the rhbC gene.  Or another method of 

naming included the name of the target gene and the base pair number where the primer 

begins to bind to the target gene.  Given the two primers and their binding positions, it 

was quick to know the size of the desired PCR product, so the second method of naming 

was used on all genes except rhbC. 
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Table 2: Primers used in this study, designed with Primer3 program online using known DNA 

sequence (Lynch et al., 2001). The numbers represent the position of the primer in the denoted 

gene. 

Primer Name               Primer Sequence 5’ to 3’ 

rhbA21                           CCG AAC GTC ATC GAA AAT AT 

rhbA1373                 AGA GCG CCA GAG ACC TGA T 

rhbB21                ATT CAG AAC TCC ACC GAC CA 

rhbB1478        GCA TGA TGG GTC TCC AGT TC 

rhbC4795                             TAT CAA GCT TGC GAT GAG GTC TCT TTC GTC 

rhbC5736           AGT TCT GCA GCC CTG ATT GTC ACG GTA G 

rhbD2                           GAC ACT GCC TTG GCC TAT TC 

rhbD562      CC GGT AGC AGA ACA TCA GT 

rhbE1         ATG ACG GAT TTC GAT CTG G 

rhbE302                  ACC GAA CTT CTG GAA CGA TG 

rhbF6                 CAT GCA TCA TGA TCC GCT AC 

rhbF1775        ACC AGT GGA TTG TTC ACC A  

rhrA49                  CGG CTC CTA AAG GTT CGA TT 

rhrA766      CCG TCT ATT TCC CCA GAA CA 

rhtA107               TGA CGA GCC TGG AAG AAA TC 

rhtA2236      AA CCT TTG TCA GCG AGA CC 

________________________________________________________________________ 
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Table 3:  Primers used for sequencing (tpnRL27-1 and 2 are from Larsen, Wilson, Guss, & 

Metcalf, 2002). 

 

Primer Name                            Primer Sequence (5’ to 3’)__ 

 

tpnRL27-1     AAC AAG CCA GGG ATG TAA CG 

 

tpnRL27-2     CAG CAA CAC CTT CTT CAC GA 

 

tpnRL27-3     CAG CAA GAC AGG AAC GAC AA 

 

tpnRL27-4     AAC CCT TAC CGC CTG AAA GTC 

 

________________________________________________________________________ 

 

 

 

Preparation of Probe DNA using Digoxygenin-11-dUTP (DIG) Labeling 

 

 Each primer was dissolved in distilled water to a final stock concentration of 200 

�M.  The stock solution was diluted to 20 �M for further use and denoted as working 

stock solutions.  A primer was designed for each gene in the rhizobactin 1021 operon 

individually for amplification and isolation of the target gene.  PCR was used to amplify 

the target gene using the inward directed primers with bacterial DNA serving as a 

template.  The whole bacterial cells were prepared by first adding an isolated colony from 

a fresh streak plate into 10 �l of ddH20 and were mixed thoroughly to prevent clumps.  

PCR was performed by adding 37 �l of ddH20, 1 �l DNA or bacterial cells, 1.25 �l of 

each primer at 20 �M, 1 �l of dNTP mix, 5 �l of 10X Taq buffer (without magnesium 

chloride), 3 �l of magnesium chloride at 25 �M, and 0.5 �l Taq polymerase.  The tube 

was placed in a thermocycler at appropriate cycle according to manufacturer’s 

instructions.  The cycle included 1 cycle 95°C for 2 minutes, 1 cycle at 95°C for 1 

minute, cycles at 50°C for 2 minutes, and 2 minute cycles at 72°C (cycle called 
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KNNAMED).  After the reaction was complete, agarose gel electrophoresis was 

employed to visualize the DNA.    

 Once the gel was electrophoresed, the DNA was isolated from the agarose by 

using the GENECLEAN turbo elution kit
®
 from Qbiogene Inc

®
 according to the 

manufacturer’s protocol.  The kit removes agarose from the sample leaving the purified 

DNA.  To initiate the digoxygenin-11-dUTP (DIG) labeling reaction, 10 �l of the target 

gene was mixed with 3 �l of sterile ddH2O in a 0.5 ml or 1.5 ml tube.  The DNA was heat 

denatured by placing the tube in a 95°C water bath for 10 minutes to separate the double 

stranded DNA into single strands.  Following heat denaturation, the tube was quickly 

cooled in a -10°C bath containing a sodium chloride and ice slurry to prevent recoiling of 

the helix.  The temperature was monitored with a thermometer to maintain -10°C.  The 

quick cooled tube was centrifuged at 13,000 rpm for 15 seconds to pool the DNA sample 

and placed on ice.  The following components were added in order to the tube:  2 �l of 

10x EcoPol buffer, 2 �l of random heximer primers [pd (N)6 sodium salts], 2 �l of 10x 

DIG DNA mix, and 1.5 �l of Klenow fragment.  The reaction mixture was incubated at 

37°C for 20 hours to facilitate the labeling reaction.   

 After incubation, the tube was centrifuge at 13,000 rpm for 15 seconds to pool the 

reaction mixture.  The total volume was adjusted to 100 �l with sterile ddH20.  Next, 50 

�l of TE saturated phenol (pH 8.0) and 50 �l of chloroform (results in a 1:1 ratio) was 

added to the mixture (Sambrook et al., 1989).  The mixture was hand mixed, centrifuged 

for 5 minutes to separate the aqueous phase from the organic phase at 13,000 rpm, and 

the top layer (aqueous) was transferred to another 1.5 ml tube.  The top layer underwent 

chloroform: isoamyl alcohol (24:1) extraction with the addition of 90 �l of the solution.  
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After 90 �l of chloroform:isoamyl alcohol (24:1) was added, the mixture was hand 

mixed, centrifuged for 5 minutes to separate the two layers at 13,000 rpm, and the top 

layer (aqueous) was drawn out and placed into another 1.5 ml tube.  This step was 

repeated to ensure all phenol and proteins were removed from the sample.  The final step 

to recover the labeled probe DNA was to add 10 �l of 10 �M ammonium acetate and 220 

�l of 100% ice cold ethanol to precipitate the DNA.  The mixture was chilled at -80°C for 

30 minutes.  After incubation, the tube was centrifuged at 13,000 rpm for 25 minutes in a 

cold centrifuge to pellet the DNA and the supernatant was removed by a Pasteur pipette.  

The pellet was air dried to remove traces of ethanol and finally resuspended in 20 �l of 

0.1x TE buffer.  The recovered probe DNA was stored at -20°C.    

 Once the DNA had been recovered, an estimation of the concentration was 

performed to determine the amount of probe present.  A serial dilution was set up using a 

DIG labeling kit from Roche
®

.  The kit contained DNA detection buffer and control 

DNA used to compare to the unknown probe.  The comparison of the unknown DNA to 

the known DNA provided a standard for the estimation of DNA concentration of the 

newly made probe.  A serial dilution was set up with 5 tubes labeled A-E.  Tube A 

contained 8 �l of DNA detection buffer and 2 �l of control DNA.  From tube A, 2 �l was 

taken and added to tube B containing 18 �l of DNA detection buffer.  From tube B, 2 �l 

was taken and added to tube C that contained 18 �l of DNA detection buffer.  This was 

continued until all tubes had been serially diluted.  The same diluting procedure 

performed was repeated for the experimental DNA.  Once all dilutions were made, a 

small piece of Maximum Strength Nytran Plus
®

 membrane was soaked in water and air 

dried on filter paper.  After the membrane dried, sections were labeled on the membrane 
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with a pencil to denote each samples position.  Once the sections were labeled, 1 �l of 

each tube A-E (control and experimental) was spotted onto the membrane in its 

corresponding area.  The DNA was fixed to the membrane by baking at 80°C in vacuo 

for 30 minutes.   

 Once the DNA was fixed to the membrane, detection and estimation was the next 

step.  The membrane was first incubated in washing buffer (0.1 M maleic acid, 0.15 M 

NaCl) at room temperature for 5 minutes with slow shaking.  The wash buffer was 

discarded and replaced with blocking solution (dilute stock blocking reagent 1:10 in 

maleic acid or 20 g blocking reagent and 200 ml of maleic acid buffer) and was incubated 

at room temperature for 5 minutes with slow shaking.  While this was incubating, a 

dilution of anti-DIG alkaline phosphatase antibody in blocking solution was made by 

adding 3 �l of antibody to 15 ml of blocking solution (1: 5,000).  Once the incubation 

was completed, the blocking solution was discarded and replaced with the diluted 

antibody for 15 minutes at room temperature with slow shaking.  The diluted antibody 

was discarded and the membrane was washed twice (100 ml per wash) in washing buffer 

for 15 minutes per wash at room temperature with slow shaking.  While the second wash 

was performed, a color solution was made with the addition of 200 �l of NBT-BCIP 

stock solution (provided in the DIG labeling kit) to 10 ml of detection buffer (0.1 M Tris-

HCl, 0.1 M NaCl).  The color solution was made fresh each time and stored protected 

from light.  After the second incubation in washing buffer, the used solution was 

discarded and the membrane was incubated in detection buffer for 2 minutes at room 

temperature with slow shaking.  The detection buffer was discarded and replaced with the 

color solution.  The membrane, when incubated in the color solution, was placed in the 
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dark and color development occurred within 20-60 minutes.  After incubation, the color 

solution was discarded and 1x TE buffer was added to stop the reaction.  When the 

reaction had occurred, the membrane was air dried on filter paper.  The dried membrane 

was analyzed by matching the intensity of color development of the experimental probe 

DNA with the control DNA providing an estimation of the recovered probe DNA.  The 

membrane was dried on blotting paper and stored between two blotting papers wrapped 

in aluminum foil at room temperature. 

 

Preparation of Chromosomal DNA for Southern Transfer 

 Once the DIG-labeled probe DNA was made, the next step was to probe 

chromosomal DNA from IARI 917 for determining the homology to the probe.  In 

Southern transfers, the probe only binds to sequence with 75%-80% homology with 

binding detected in the same manner as the probe estimation.  Before probing occurred, 

the chromosomal DNA was digested with restriction enzymes that did not cut within each 

specific gene to be probed ensuring that digestion would not fragment the target gene.  

The chromosomal DNA of bacteria is large thus detection of one gene would be difficult 

so the DNA must first be digested into smaller fragments for hybridization to occur.  

Chromosomal DNA was restriction digested with PstI and HindIII because they do not 

cut within the rhbC gene.  This gene was chosen because it codes for an enzyme that 

attaches citric acid groups to the siderophore that rhizobactin 1021 and schizokinen both 

contain.  On this basis, the thought was the rhbC gene may be shared due to the 

siderophore’s structural similarities.        

 The digested chromosomal DNA was electrophoresed on a 0.75% agarose gel  
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overnight (~16 hours) at 12-13 volts to separate all fragments.  The gel was stained with 

100 ml of ethidium bromide solution (0.5 �g/ml) for 15-20 minutes in the dark.  The 

ethidium bromide solution was discarded and the gel was destained in 200 ml of water 

for 10 minutes with slow shaking.  The bottom left corner and the top of the gel (leaving 

well bridges intact) were cut to ensure correct orientation of the gel and its lanes during 

transfer.  The trimmed gel was used as a template to label the positions of the wells on 

the transfer membrane.  The gel was photographed with a ruler along side to aid in 

analysis after the transfer has occurred.  Once the gel was photographed, the DNA was 

prepared for transfer to the nylon membrane.  The gel was rinsed with water between the 

removal of one solution and the addition of the next in the following preparation.  The gel 

was soaked in 0.25 N HCl for 5 minutes with slow shaking at room temperature.  After 

incubation in HCl, the solution was discarded and replaced with denaturing buffer (0.5 M 

NaOH, 1.5 M NaCl) and the gel was incubated in denaturing buffer for 30 minutes with 

slow shaking at room temperature.  Next, the denaturing buffer was removed and the gel 

was soaked in neutralizing buffer (1.5 M NaCl, 0.5 M Tris-HCl, pH 7.0) with slow 

shaking for 30 minutes.  The neutralizing buffer was discarded then the gel was soaked in 

20x SSC transfer buffer (3 M NaCl, 0.3 M sodium citrate, pH 7.0) for 30 minutes with 

slow shaking. 

 

Southern Transfer of DNA 

 After the incubations, the gel and the DNA were prepared for transfer to the nylon 

membrane. Schleicher and Schuell TurboBlotter
®

 rapid downward transfer system was 

used for the transfer of DNA.  A Nytran
®

 SuPer Charge nylon membrane, receiver of the 
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transferred DNA, was cut to 0.5 cm larger than the gel.  To begin the transfer of DNA, 

the membrane was soaked in 20x SSC transfer buffer for 5 minutes at room temperature 

with slow shaking.  While the membrane was soaking, the stack tray of the turbo blotter 

unit was placed on a level surface and 20 sheets of dry GB004 (thick) blotting paper were 

placed in the stack tray.  To this stack, 4 sheets of dry GB002 (thin) blotting paper were 

placed on top.  On the stack of 24 dry papers, one GB002 (thin) blotting paper was pre 

wetted in 20X SSC then placed on the top.  The nylon membrane was removed after the 5 

minute incubation period and placed on the pre wetted GB002 blotting paper.  The 

membrane and the stack of blotting papers were covered with Saran
® 

wrap containing an 

open window over the nylon membrane.  The gel was placed on top of the nylon 

membrane preventing the formation of air bubbles between the two.  The wells and the 

bottom left corner of the gel were marked on the membrane with a pencil to denote their 

positions.  A small amount of 20x SSC was pipetted on top of the gel and three sheets of 

GB002 blotting paper pre wetted in 20x SSC were placed on top of the gel.  The turbo 

blotter buffer tray was placed on top of the stack tray and filled with 20x SSC transfer 

buffer.  The transfer of DNA began by placing the center of a 20x SSC pre soaked wick 

across the transfer stack with the ends of the wick in the 20x SSC buffer located in the 

buffer tray.  A light weight object was placed on the center of the wick to keep it in 

contact with the transfer stack to prevent drying out during transfer.  The assembled unit 

and the transfer stack was allowed to transfer overnight for 16-18 hours at room 

temperature.   

 After the overnight transfer, the tray was disassembled and the gel was removed 

with tweezers.  The gel was back stained in the ethidium bromide solution to determine if 
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the DNA transferred properly.  The membrane was removed and washed with 2x SSC 

(300 mM NaCl, 30 mM sodium citrate, pH 7.0) for 5 minutes with slow shaking at room 

temperature.  After the 5 minute incubation, the membrane was air dried on a dry sheet of 

blotting paper.  The dry membrane was baked between two dry blotting papers at 80°C in 

vacuo for 1 hour.  The membrane was stored between the two blotting papers wrapped in 

aluminum foil at room temperature. 

 

Hybridization of Southern Blots 

 After the DNA was baked to the nylon membrane, hybridization was the next 

step.  Hybridization solution (50% formamide, 5X SSPE, 5X Denhardt’s solution, 10% 

SDS) was prepared fresh before each reaction with the composition of 10 ml of 

formamide, 5 ml of 20x SSPE (3 M NaCl, 230 mM sodium phosphate, 20 mM EDTA, 

pH 7.4), 2 ml 50x Dehardt’s solution, 2 ml water, and 1 ml of 10% SDS.  The 50X 

Denhardt’s solution was made by preparing 1 g/20 ml dH20 solutions of 

polyvinylpyrrolodone and Ficoll.  The Ficoll and polyvinylpyrrolodone solutions were 

autoclaved separately then mixed together.  Sterile bovine serum albumin (1 g in 7.5 ml 

dH20) and 2 ml of sterile 0.25 M EDTA were added to the combined Ficoll/ 

polyvinylpyrrolodone mixture and sterile water was used to bring the volume of the 50X 

Denhardt’s solution to 100 ml.  The hybridization solution was divided into two tubes, 

with one tube containing 12 ml used for prehybridization and the second containing 8 ml 

used for hybridization.  Both were warmed to 42°C before use.  The membrane was pre 

wetted in a small volume of 2X SSC then placed into a hybridization tube pre warmed to 

42°C.  Prehybridization solution was added to the hybridization tube and allowed to 
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prehybridize at 42°C for 1-2 hours with rotation in the Fisher Biotech
®

 hybridization 

incubator.  Once the incubation was complete, the prehybridization solution was 

discarded and replaced with 8 ml of hybridization solution supplemented with 18 �l of 

heat denatured DIG-labeled probe DNA.  Heat denatured DNA was achieved by 

incubation in a 95°C water bath for 5 minutes, then quick cooled in a -10°C sodium 

chloride and ice slurry.  The membrane was incubated in the hybridization solution 

supplemented with DIG-labeled probe DNA for 18 hours at 42°C with rotation.   

 When hybridization was completed, posthybridization washes were required.  The 

hybridization solution plus probe DNA was kept and stored at -20°C and could be reused 

for further blotting reactions.  The membrane was washed first with an incubation in 

wash solution A (2x SSC, 0.1% SDS) for 5 minutes at room temperature with shaking.  

Wash solution A was discarded and replaced with wash solution B (0.1x SSC, 0.1% 

SDS).  The membrane was washed twice with wash solution B for 5 minutes at 55°C 

with shaking.  Finally, the membrane was rinsed briefly with 1x TBS (100 mM Tris-HCl, 

150 mM NaCl, pH 7.5) and developed according to hybridization development protocol 

as previously described. 

 

Methods for Testing Hypothesis 2 

Determination of Minimal Inhibitory Concentration and Isolation of Spontaneous 

Antibiotic Resistant Mutants 

 Before conjugation could be performed, it was essential to determine a minimal 

inhibitory antibiotic concentration (MIC) of each bacterium.  MIC determination was 

performed to identify the minimal amount of antibiotic required to inhibit the bacteria.  
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Conjugation was a method employed in this research to transfer plasmid DNA from one 

organism (donor) to another (recipient).  The recipient bacteria containing transferred 

plasmid DNA were then called transconjugants.  In this research, the plasmid transferred 

to IARI 917 contains a mobile DNA element called a transposon.  The transpositional 

element moves from the transferred plasmid DNA and integrates into the chromosomal 

DNA of IARI 917, thus interrupting certain genes.  The transconjugants were screened 

for their ability to either over produce or not produce siderophore compared to the wild 

type strain due to the random insertion of the transposon.   

 To determine the MIC of each bacterium (Clinical and Laboratories Standards 

Institute, 2005), 2 fold serial dilutions were set up with LB broth containing different 

concentrations of antibiotics.  To standardize the bacterial inoculum, 4 or 5 colonies from 

a fresh streak plate were suspended into 1 ml of LB broth to match the 0.5 McFarland 

standards for turbidity that represents 10
8
 colony forming units per ml (CFU/ml).  A 

portion of this standardized suspension was diluted 1:100 to 10
6
 CFU/ml with LB broth.  

When 1 ml of this diluted inoculum was added to each tube containing 1 ml of the 

antibiotic diluted in 1 ml of LB broth, the final inoculum was 5 X 10
5
 CFU/ml.  Each 

tube for the 2 fold serial dilution had a decrease in half of the concentration of antibiotic 

present.  A growth control was set up with 2 ml of LB broth without antibiotic.  The 

bacteria were incubated at appropriate temperatures for 16-20 hours before determining 

MIC.  The tubes were aligned in such a way that comparison of all could be performed.  

The MIC was determined as the lowest concentration of antibiotic that effectively 

inhibited the growth of the organism.  The inhibitory antibiotic concentration was used 
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during further experiments to effectively kill the donor and helper strains (if required) 

while leaving only the recipient strain. 

 Once an MIC was defined for the donor and helper strains, a spontaneous 

antibiotic resistant mutant of IARI 917 (recipient) to the rifampicin was isolated.  These 

spontaneous resistant recipients were used in conjugation for proper selection.  The 

transferred plasmid contained a kanamycin resistance marker and a second antibiotic was 

required to inhibit the donor and helper while the recipient was resistant to both 

antibiotics.  The method used to isolate spontaneous antibiotic resistant mutants was the 

gradient plate method (Szybalski & Bryson, 1952). 

 Gradient plates are large culture dishes made by pouring two wedges of agar.  The 

wedges were poured one at a time by elevating the plate on an object to form an agar 

wedge.  The bottom wedge (55 ml of media) contained no antibiotic and was solidified 

with one side elevated thus forming a wedge.  After the bottom wedge solidified, another 

55 ml of media containing antibiotic was added to the existing wedge resulting in a 

second wedge.  When the second wedge was poured, the plates were not elevated to 

allow the formation of a level agar surface.  The top wedge has a higher concentration of 

antibiotic at its thicker portion that thins as the two wedges meet.  Bacterial cultures 

grown fresh as seed cultures overnight were spread out on a gradient plate using a sterile 

glass spreader.  The plates were incubated for 48-72 hours at 30°C.  The spontaneous 

antibiotic resistant mutants were harvested and their respective MICs were determined as 

previously described.   
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Triparental Conjugation and Transposon Induced Random Mutagenesis 

 Once an antibiotic was determined to inhibit the donor bacteria and not affect the  

recipient strain, the next step was introduction of a plasmid containing the transposon.  

The transposon element, Tn5, was harbored in a plasmid maintained in E. coli strain 

cc118λ.  This strain must have a helper strain, E. coli pRK2013, for conjugation to occur.  

The two E. coli strains plus the recipient, IARI 917, were required for the triparental 

conjugation. Once the plasmid was transferred, expression of the transposon occurs in the 

recipient.  The expression results in the random insertion of transposon DNA into the 

chromosome of IARI 917 thus interrupting genes.   

 The triparental conjugation experiment was started by growing the three strains in 

10 ml of LB broth or TY broth plus antibiotic if necessary.  The cultures were incubated 

overnight at appropriate temperatures with shaking.  After incubation, the cultures were 

centrifuged for 10 minutes at 10,000 rpm and the supernatant was discarded.  Each of the 

cell pellets was thoroughly resuspended in 100 �l of 0.85% NaCl and the entire 100 �l of 

each strain were mixed together.  After the cells were mixed, 150-200 �l of the mixture 

was pipetted onto a 0.22 �m sterile cellulose nitrate membrane filter placed on the surface 

of a prewarmed LB plate.  The plates were incubated filter up at appropriate temperature 

overnight to facilitate conjugation.  After incubation, the filter was removed from the 

plate and placed into a tube containing 1 ml of 0.85% NaCl used to wash off the cells 

from the surface of the membrane.  Once the cells were removed, 150 �l of the re-

suspended cell mixture was spread onto LB plates containing kanamycin along with 

rifampicin that inhibits the donor strains.  The plates were incubated at 30°C for 24-48 

hours and the colonies present were now called transconjugants.  All colonies were 
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picked from the transformation plates and patched onto another for maintenance.  The 

patch plate was called a master plate as it contained 52 transconjugants arranged in a grid 

pattern aided by a template for orientation.  The master plates were used for maintaining 

the large numbers of transconjugants. 

 

Biparental Conjugation 

 The process of biparental conjugation was performed to the same protocol as 

triparental conjugation described above.  The only exception was the strain used, pRL27, 

has the ability to transfer the plasmid to a recipient without the need for a helper strain.  

The transposon, mini Tn5, contained a high frequency mobile element that transposes at a 

higher frequency than Tn5.  The transconjugants were isolated and inoculated onto a 

master plate for growth and were further characterized. 

 

Screen for Non-Siderophore Transconjugants 

 Once many master plates were patched, characterization of each organism’s 

ability to produce siderophore was required before further analysis.  The transconjugants 

were first patched onto a minimal media plate (Fiss-Glucose) with antibiotics to starve 

the bacteria for iron to induced siderophore production.  Once the bacteria had grown 

sufficiently, the colonies were patched onto CAS agar to determine the transconjugants’ 

ability to produce siderophore.  During each screening of the transconjugants, a wild type 

IARI 917 colony was also transferred for comparison to determine if the transconjugants 

overproduced or underproduced siderophore.  Another method used to characterize 

siderophore production was growth in a liquid minimal media with antibiotics.  IARI 917 
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was used for comparison throughout the characterization of the transconjugant’s ability to 

produce siderophore.  Minimal broth cultures were grown and pelleted while the 

supernatant was saved.  A sterile #2 cork borer was used to create wells in a CAS plate to 

that70 �l of supernatant was added.  The presence of siderophore resulted in the 

production of an orange halo around the well.  The remaining supernatant was used to 

perform the Atkin’s and Arnow’s assays as previously described.  These three assays 

characterized the transconjugants’ ability to produce siderophore as compared to the wild 

type strain.  The transconjugants were described as siderophore nonproducers and 

overproducers as compared to the wild type. 

 

Preparation of DH5αλpir+Competent Cells for Cloning 

 The preparation of DH5αλpir
+
competent cells (calcium competent for heat shock 

transformation) was carried out using established protocol (Ausubel et al., 1994).  The 

prepared competent cells were stored at -80°C.   

 

Determination of Interrupted Sequence by Transposon Insertion 

 The next step to determine the sequence of DNA interrupted by the transposon 

insertion was to isolate transconjugant chromosomal DNA.  The isolated chromosomal 

DNA was digested with BamHI restriction enzyme or any enzyme that doesn’t cut within 

the transposon sequence.  When the DNA was digested, the many fragments produced 

were separated on an agarose gel then subjected to Southern blotting.  The plasmid, 

pRL27, was DIG-labeled and served as a hybridization probe against each 

transconjugant’s digested chromosomal DNA to detect the presence of the transposon.  
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The digested DNA of 7 different nonsiderophore producing transconjugants were 

separated on an agarose gel and transferred via Southern blotting as previously described.  

After the blots were completed, the transconjugants with the transposon insertion were 

used for further analysis.   

 Once the transposon’s insertion was detected, the transconjugants’ digested 

chromosomal DNA was religated to form a plasmid.  The newly formed plasmid 

contained transposon sequence with flanking chromosomal DNA of the transconjugant.  

The newly formed plasmid was transformed into E. coli strain DH5αλpir
+
 by the heat 

shock method for propagation of the DNA (Ausubel et al., 1994).  The plasmid DNA was 

extracted and purified.  When the DNA was determined to be pure and concentrated, the 

plasmid was sent for sequencing using primers denoted in Table 3.  The primers were 

designed to sequence outwardly from the ends of the transposon sequence into the 

flanking chromosomal DNA of the transconjugants to determine what gene or open 

reading frame may have been interrupted by the transposon insertion.  The sequence was 

subjected to BLAST searches to determine the protein product of the DNA code.  Next, 

the product was analyzed to determine if it had any role in siderophore regulation, 

biosynthesis, or transport by comparison to known proteins. 

 

Concentration Dependent Binding of 
55

Fe-Schizokinen  

 The method to detect ferric siderophore binding to a specific receptor was set up 

using a radioactive isotope of iron, iron-55 or 
55 

Fe bound to purified schizokinen (
55

Fe-

SK).  The binding assay was performed by diluting different concentrations of 
55 

Fe -SK 

ranging from 5 nM to 200 nM in Fiss-Glucose minimal media or 0.1 M MOPS, pH 7.4.  
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Each concentration was done in triplicate and the three readings were averaged to get a 

better representation of the data and to increase the accuracy of the assay.  A lithium 

chloride solution of 0.9% was made and stored at 4°C.  A seed culture was inoculated 

and incubated overnight at appropriate temperature (30°C for rhizobia and 37°C for E. 

coli) with shaking in LB or TY broth with antibiotics if necessary.   

 The next day after incubation of the seed culture, the seed was subcultured into 50 

ml of Fiss-Glucose minimal media in a 1:100 ratio for IARI 917 wild type and 

transconjugant 3-17.  The Rhizobial cultures were allowed to grow for 13-16 hours until 

the OD600 reached 0.5-0.9 at 30°C with shaking.  The E. coli strain KDF-541 seed culture 

was sub cultured into MOPS minimal media and was incubated for 3-4 hours at 37°C 

with shaking.   

 After the optical densities were achieved, the culture was placed on ice for 1 hour 

prior to performing the binding assay.  While the culture was on ice, 27-30 nitrocellulose 

membranes were placed in a small Petri dish with ddH20.  The membranes were left to 

soak for 30 minutes prior to use.  All the experimental equipment was kept on ice during 

binding assays to prevent the transport of bound Fe
55

-SK but still allowed binding of 

ferric siderophore complex to the specific outer membrane receptor.   

 After incubation, the assay began by placing tubes in racks with four 

concentrations with six tubes per concentration were done at a time.  Three of the tubes 

per concentration contained 1 ml of diluted 
55 

Fe-SK while the other three tubes contained 

100 �l of culture.  The two tubes were mixed together and incubated on ice for 5 minutes 

to facilitate binding to the bacterial cell.  While the tubes were incubating, a vacuum 

manifold was set up with one membrane filter per well with 12 wells in total.  After 
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incubation was completed, the contents of each tube were vacuum filtered to separate the 

cells from the reaction mixture.  The membrane filter was washed with 20 ml of ice cold 

0.9% lithium chloride to remove all nonspecifically bound or excess 55 Fe-SK.  The 

membranes were moved to plastic scintillation vials and 10 ml of scintillation fluid was 

added.  This process was repeated for each concentration and the membranes were 

incubated in scintillation fluid at room temperature for at least 24 hours before counting. 

 

Concentration Dependent Transport of 
55 

Fe-Schizokinen 

 Preparation for concentration dependent transport of 
55 

Fe-SK was similar to 

concentration dependent binding.  A two ml seed culture was inoculated and grown 

overnight at appropriate temperature with shaking for IARI 917 wild type, transconjugant 

3-17, and E.coli KDF-541.  The two ml seeds of rhizobial cultures were used to 

subculture a 50 ml Fiss-Glucose minimal media that was grown for 13-16 hours or until 

OD600 reaches 0.5-0.9.  The E. coli strain KDF-541 seed culture was subcultured into 

MOPS minimal media and was allowed to grow for 3-4 hours until the OD600 was 

reached.  In contrast to the binding assay, the transport experiments must be performed at 

the organism’s optimal growth temperatures to facilitate the transport of the 55 Fe-SK 

complexes into the cell.  The transport experiment was performed with the same 

concentrations as the binding assay in triplicate and was then averaged.   

 For the transport assay, 48-50 membranes were soaked in ddH20 for 30 minutes 

prior to use.  Each concentration had 12 tubes; three tubes contained 100 µl of cells and 

three tubes contained the desired concentration of 
55 

Fe-SK. The tubes with the culture 

and the diluted 
55 

Fe-SK were mixed together and incubated for 2 minutes.  The same 
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concentration was also performed for three minutes.  While the tubes were incubated, a 

vacuum manifold was set up with one membrane filter per well with 12 wells in total.  

After the incubation time was completed, a 100 fold excess of purified schizokinen was 

added to stop the transport.  The contents of each tube was quickly poured into 

corresponding well and vacuumed to remove all excess liquid.  The membrane filter was 

washed with 20 ml of ice cold 0.9% lithium chloride to remove all nonspecifically bound 

or excess 
55 

Fe-SK.   

 The membranes were moved to plastic scintillation vials to that10 ml of 

scintillation fluid was added.  This process was repeated for each concentration and the 

membranes were incubated in scintillation fluid at room temperature for at least 24 hours 

prior to counting.  Once the vials were counted, averages were taken for each time 

observed.  The 3 minute average was subtracted from the 2 minute average to yield the 

transport of 
55 

Fe-SK per minute.   
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

Hypothesis 1 

 When the siderophore produced by Rhizobium leguminosarum IARI 917 was 

isolated and chemically characterized (Storey, Boghozian, Little, Lowman, & 

Chakraborty, 2007) as schizokinen, many questions arose.  What genes are involved in 

the biosynthesis and transport of schizokinen, a siderophore previously not described in 

rhizobia?  With no previous research describing the genetic pathway or the mechanism of 

iron binding and transport by schizokinen, this was a difficult task to undertake.  When 

the structure was identified, more questions were presented.  With a striking structural 

similarity to another siderophore, rhizobactin 1021, could these molecules be synthesized 

via a common genetic pathway?  Or could the molecules be synthesized via a completely 

new and different pathway?  Because schizokinen is very similar in structure to 

rhizobactin 1021, I hypothesized that the two siderophores are synthesized via an 

identical biosynthetic pathway. 

   

Amplification of rhb Genes via PCR 

 Primers previously reported by Lynch et al. (2001) were ordered through the 

Microbiology Core Facility located within the James H. Quillen College of Medicine.  

The primers were used to amplify each gene within the rhizobactin 1021 synthesis and 

transport operon via PCR using a positive control plasmid, pPOC1.  pPOC1 was used as 

a template because it contains all the genes (rhbA-F, rhtA, and rhrA) required for the 



 82 

synthesis, regulation, and transport of rhizobactin 1021 (Lynch et al.).  A test reaction 

was also performed using IARI 917 chromosomal DNA as a template.  PCR is a stringent 

experiment because primers must be exactly complementary to the DNA sequence.  If a 

single base pair in the template are not complementary to the primer sequence, annealing 

will not take place thus there will be no amplification.  Amplified DNA (PCR products) 

products were visualized by electrophoresis.  The amplified corresponding DNA(s) to 

known gene(s) with known sizes described in the literature (Lynch et al.) were purified 

from the agarose gel.  λ DNA digested with HindIII (λ/HindIII) was used as a size and 

concentration marker.   

 The results of the PCR show the presence of all rhb genes within the pPOC1 

plasmid as expected (Table 4) and it was used in further analysis as the positive control.  

Use of plasmid DNA as a positive control was technically not correct when comparing to 

chromosomal DNA.  When the genes were used as probes in Southern blotting, 75%-

80% homology was not detected.  This implies that the origin of the gene probes was not 

essential to the experiment. The rhb genes amplified in the pPOC1 were of the size noted 

in the literature while amplification, using IARI 917 chromosomal DNA as a template, 

produced no traceable product (data not shown).  The results indicate the possibility of no 

similarity in the operons for rhizobactin 1021 and schizokinen regulation, biosynthesis, 

and transport.  Another interpretation could be the flanks of the genes were different thus 

annealing of the primers to the template DNA was not attainable.  
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Table 4:  Rhizobactin 1021 genes and their base pair content 

Lane Gene bp content 

A rhbA 1352 

B rhbB 1457 

C rhbC 941 

D rhbD 540 

E rhbE 1301 

F rhbF 1769 

G rhtA 2129 

H rhrA 717 

 

 

Results of Southern Blot 

 Once all the genes were amplified and electrophoresed from pPOC1, the bands 

were purified individually and DIG labeled to make probe DNA.  The probes were 

hybridized to chromosomal DNA under conditions to detect sequence with 75%-80% 

homology to it located within IARI 917 chromosomal DNA.  The hybridization of the 

probe to homologous DNA was visualized via a color reaction on a nylon membrane.  

The digested chromosomal DNA of IARI 917 was electrophoresed, along with a positive 

control, slowly to facilitate proper separation of the fragments before Southern transfer.  

The nylon membrane, containing the transferred DNA, was probed to determine 

homology.  The results (Figure 19 and 20 below) detected no binding to any of the rhb 

genes (rhbA-F, rhrA, and rhtA) in the IARI 917 chromosomal DNA.  The interpretation 
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of these results was that the genes for regulation, biosynthesis, and transport of 

schizokinen and rhizobactin 1021 do not share at least 75%-80% homology.  The genes 

in the two operons could share less than 70%, homology that may not be detected by the 

Southern blot method.  This experiment shows the two pathways are not highly 

conserved despite the products’ structural similarities.  Hypothesis 1 stated that the two 

operons for the production of the entire siderophore systems, both IARI 917 and 

rhizobactin 1021, were identical or highly homologous.  The results of Southern blot 

(Figure 19 and Figure 20) and PCR experiments performed indicated that this was not the 

case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19:  Agarose gel electrophoresis and Southern blot of IARI 917 chromosomal DNA using  

the DIG-labeled rhbC gene as a probe. 
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        A                   B                      C                  D                      E                   F                 G 

Figure 20:  Southern blot analysis of digested chromosomal DNA from IARI 917 wild type with 

the genes involved in rhizobactin 1021 biosynthesis, transport, and regulation.  The binding 

detected on each membrane were the respective probe’s positive control DNA.  The digested 

chromosomal DNA of IARI 917 was located adjacent to the positive control (no binding 

detected).  (A) Probe was DIG-labeled rhbA gene.  (B) Probe was DIG-labeled rhbB gene.  (C) 

Probe was DIG-labeled rhbD gene.  (D) Probe was DIG-labeled rhbE gene.  (E) Probe was DIG-

labeled rhbF gene.  (F) Probe was DIG-labeled rhrA (regulation) gene.  (G) Probe was DIG-

labeled rhtA (transport) gene. 

 

Hypothesis 2 

 Once it was determined the operons of schizokinen and rhizobactin 1021  

biosynthesis are not homologous, we decided to use random mutagenesis that employs 

transposon insertions for the detection of the genes involved in the biosynthesis and 

transport of schizokinen.  Transposon induced random mutagenesis was used to create 

mutant strains of IARI 917 to aid in the identification of genes responsible for 

siderophore regulation, biosynthesis, or transport.  Mutagenesis is a tool used to remove 

the functionality of unknown gene(s) producing a desirable phenotype.  The mutagenesis 
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experiment was performed by introduction of a plasmid containing a transposase gene via 

conjugation.  The donor organism contains the plasmid and the recipient will receive the 

DNA after transfer.  When the plasmid was introduced and expressed in the recipient 

organism, random insertions of the transposon created interruptions or mutations in the 

recipient DNA.  The transconjugants were screened to determine their phenotype and 

were classified as nonproducing or overproducing siderophore transconjugants as 

compared to the wild type strain. The chromosomal DNA of the transconjugant was then 

isolated, restriction digested, religated, cloned, and sequenced for the identification of the 

gene(s) involved.  All of these methods were employed to test the second hypothesis that 

states that schizokinen is produced by a unique or modified pathway as rhizobactin 1021 

despite their similar structures.   

 

Isolation of Spontaneous Antibiotic Resistant Mutants and MIC Determination 

 Before mutagenesis could occur, other steps must be completed to ensure proper 

selection of mutant strains.  Antibiotic cassettes are routinely used to select for desired 

bacteria while excluding others, and this method was used for selection of mutants.  The 

first step in this process was to identify an antibiotic capable of inhibiting the growth of 

the donor strains.  Conjugation is an experiment that uses a donor strain that transfers 

plasmid DNA to a recipient.  The recipient, following conjugation, is transformed with 

the addition of the new exogenous DNA (i.e. transconjugants).  Many genes can also be 

transferred in this process that could provide an advantage for the recipient organism over 

their wild type competitors. 
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 Streptomycin was the first antibiotic chosen to eliminate the donor and helper 

strains in triparental conjugation.  The strains used in conjugation (CC118λpir, pRK2013, 

and IARI 917) were grown in the presence of 2-fold serially diluted streptomycin and the 

strains grew in the presence of concentrations up to 37.5 �g/ml.  Spontaneous resistant 

mutants, isolated using the gradient plate method, of IARI 917 were able to grow in the 

presence of streptomycin up to a concentration of 150 �g/ml.  The plates used for 

selection of transconjugants were TY with streptomycin at a concentration of 150 �g/ml 

and kanamycin at a concentration of 50 �g/ml.  The streptomycin was used to inhibit the 

donor and helper strains (CC118λpir and pRK2013), while kanamycin was used to select 

for the transconjugants of IARI 917 with the transposon insertion.  The resulting 

transconjugants were resistant to both antibiotics.  A positive control was setup using 

E.coli DH5α that was also selected for spontaneous resistance to streptomycin at the 

same concentrations. 

 

Results of Conjugation   

 After multiple attempts at triparental conjugation, only 28 transconjugants were 

isolated.  The positive control reaction resulted in only 58 colonies indicating triparental 

conjugation method was not very effective in production of transconjugants for this 

research.  The plasmid containing Tn5 transposes at a low frequency creating a low 

number of transconjugants.  Another method with a higher transposing frequency must be 

found to create more transconjugants.  Biparental conjugation using a Tn5 derivative, 

mini Tn5, was employed that transposes at a higher frequency. 
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 After the triparental experiment resulted in such low numbers of colonies, 

biparental conjugation was used to create more transconjugants.  The plasmid harboring a 

mini Tn5 transposon, pRL27, was received from Tim Welch of the United States 

Department of Agriculture (Larsen et al., 2002).  The Tn5 derivative was constructed by 

Larsen et al. to transpose at a high frequency thus producing more transconjugants per 

conjugation experiment.  The mini Tn5 transposon was created to transpose at a higher 

frequency (~1000 fold greater than wild type Tn5) and theoretically would create more 

transconjugants (Larsen et al.).  The genes encoded by the plasmid are important to 

understanding the mechanism of transposition.  The oriT gene facilitates the transfer of 

the plasmid via conjugation.  The tetAp gene is a promoter from the plasmid RP4 

controlling the expression of the tnp gene coding for the transposase enzyme.  The 

special origin of replication, oriR6K, allowed for cloning of transposon insertions.  The 

aph gene provided kanamycin resistance. 

 Another strain, E.coli DH5αλpir
+
, was used for the insertional cloning of the 

resulting transconjugant chromosomal DNA digested with BamHI.  The increased 

efficiency of the mini Tn5 biparental conjugation system was apparent after the first 

conjugation experiment.  The results can be seen in Table 5.  There were 1687 

transconjugant colonies isolated from biparental conjugation.  The characterization of 

siderophore production by the transconjugants as compared to the wild type was the next 

step to be performed. 
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Table 5:  Results of biparental conjugation 

Biparental Conjugation Samples Transconjugant Colonies 

DH5α (mock conjugation, negative control) 0 

pRL27 (mock conjugation, negative control) 50 

DH5α Rif
r
, pRL27 conjugation (positive control) >2,000 (to many to count) 

pRL27, IARI 917 Rif
r
 #1 conjugation 322 

pRL27, IARI 917 Rif
r
 #1 conjugation 235 

pRL27, IARI 917 Rifr #1 conjugation 326 

pRL27, IARI 917 Rif
r
 #1 conjugation 253 

pRL27, IARI 917 Rif
r
 #1 conjugation 256 

 

Screen of Transconjugants for Ability to Produce Siderophores 

 The transconjugants were patched onto a minimal media plate to starve them of 

iron thus induce siderophore production.  The transconjugants were then transferred to 

CAS agar to determine their ability to produce siderophore.  The transconjugants were 

also grown in a minimal broth to induce siderophore production.  The broth cultures were 

harvested by centrifugation and the supernatant was added to wells bored into the CAS 

agar.  The halo produced was compared to the wild type to characterize the 

transconjugants’ ability (or inability) to synthesize and secrete siderophore.  Some of the 

results are seen in Figures 21 and Table 6.  Transconjugants defective in siderophore 

production were used for further analysis in this research. 
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Figure 21:  CAS agar plate with bored wells containing culture supernatant.  (A) Wells A-H 

contain various supernatants from nonproducing siderophore transconjugants grown in the 

absence of iron.  The center well contains supernatant from IARI 917 wild type culture grown in 

broth in the absence of iron for comparison.   

 

 

Table 6:  Results of conjugation and CAS screening of transconjugants 

Number from 

conjugation 

Number screened 

with CAS 

Large halo colonies 

(Sid
+
) 

No halo colonies (Sid
-
) 

1687 ~624 76 60 

 

 

Determination of Interrupted DNA Sequence by Transposon Insertion 

 Once the transconjugants were characterized based on their ability or inability to 

produce siderophore, the chromosomal DNA was probed to ensure the integration of the 

transposon.  The next step was to determine what gene was interrupted or affected by the 

transposon insertion.  Siderophore overproducing transconjugants (Sid+) were thought to 

have interruptions in genes or open reading frames involving the repressor mechanism of 
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the siderophore system, transport of siderophore, retrieval of ferric ions from the 

siderophore, or enzymes involved in intermediate steps that are critical for internalization 

of the complex.  Siderophore nonproducing transconjugants (Sid-) were hypothesized to 

have interruptions in the biosynthetic genes, assembly of the siderophore, signal 

transduction involved in expression of siderophore biosynthetic genes, or exportation of 

the siderophore molecule.  As in any pathway within a bacterial cell, some intermediate 

steps that are essential but unidentified could also be affected thus producing the mutant’s 

phenotype.    

 After ensuring the insertion of the transposon into the chromosome of 

transconjugants via Southern blotting using pRL27 as the probe DNA (data not shown), 

the digested chromosomal DNA of the transconjugants were treated with T4 DNA ligase.  

The chromosomal DNA was digested with either BamHI or PstI restriction enzyme that 

does not cut within the transposon sequence.  The T4 DNA ligase treatment religated the 

fragmented chromosomal DNA of the transconjugants forming self replicating plasmids.  

The newly formed plasmids containing an origin of replication provided by the 

transposon and fragmented genomic DNA were transformed into E.coli DH5αλpir
+
 

where subcloning and propagation could occur.  The plasmid DNA of a nonproducing 

mutant, called Mutant 3-17, was isolated and was subjected to sequencing to identify 

interrupted genes by comparison to a protein sequence database (GenBank) using BlastX 

algorithm (Altschul, Gish, Miller, Myers, & Lipman, 1990) with comparison to known 

proteins as shown in Figure 30.   

 The first sequencing reaction was performed with the primers indicated in the 

literature to sequence outwardly into the interrupted chromosomal DNA of the 
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transconjugant (Sid
-
, Mutant 3-17).  The results did not highly match significantly with 

any known protein and the results were very random.  So to increase confidence in 

matching to known proteins, new primers were designed to facilitate another sequencing 

reaction (primer walking).  The second sequencing reaction was performed with primers 

(Table 3) tpnRL27-3 and tpnRL27-4.  The primers were designed to extend the sequence 

already received further could in turn help with matching to known proteins.  Primers 

tpnRL27-3 and tpnRL27-4 followed tpnRL27-1 and tpnRL27-2 respectively as shown in 

Figure 31.  The entire sequencing reaction was then subjected to a BLAST search.   

 With such a large amount of amino acid matches to a known protein (Figure 22), 

the interrupted DNA seems to code for a domain of a signal transduction molecule.  The 

open reading frame interrupted was sequence by outward directed primers extending 

from the end of the transposon sequence (Figure 23).  PAS/PAC is a system of signal 

transduction that responds to external cues for bacteria to respond to environmental 

stimuli, to maintain the proper gene expression, and to control homeostasis (Crosa, 1997; 

Etzkorn et al., 2008; Hoch, 2000; Hoch & Silhavy, 1995; Schmitt, 1999; Taylor & 

Zhulin, 1999).  The proper gene expression is vital for internalizing nutrients that are 

available in the bacteria’s immediate environment.  E.coli and Bacillus subtilis genomic 

DNA contain over 30 two-component regulatory systems responding to different stimuli 

and controlling the expression of many genes (Etzkorn et al.; Fabret, Feher, & Hoch, 

1999; Mizuno, 1997; Taylor & Zhulin).  Two-component regulatory systems consist of a 

transmembrane sensor protein that responds to an inducer signal by modifying the 

phosphorylated state of a second component, usually a transcriptional regulator, whose 

affinity for the promoters it regulates is controlled by phosphorylation (Crosa, 1997; 
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Wosten, Kox, Chamnongpol, Soncini, & Groisman, 2000).  PAS/PAC domains are an 

example of a two component regulatory system with a function similar to the one just 

described.  With such a large amount of energy and cellular metabolites required for 

expression of siderophore-mediated iron transport systems, the genes involved are 

controlled in a negative (repressed, high Fe conditions) or in a positive (derepressed, low 

Fe conditions) manner depending on the physiological and external environments 

(Crosa).  When iron limiting conditions are seen, the external cue of low iron conditions 

is transduced into the cytosol and positively regulates gene expression of siderophore-

mediated iron transport systems.  Ferric ions have been noted to bind directly to a 

periplasmic region of a signal transduction molecule, PmrB in Salmonella species, 

providing the first example of a signal transduction system that responds to extracellular 

Fe
3+

 (Wosten, Kox, Chamnongpol, Soncini, & Groisman, 2000) controlling gene 

expression.  Siderophore molecules have been noted to be a signal inducing molecule in 

Pseudomonas species, E.coli, and Vibrio anguillarium (Crosa) that can induce expression 

of uptake systems via two component regulatory systems.  To test this method of 

induction by schizokinen, binding and transport assays with a radioactively labeled iron-

schizokinen complex (55Fe-SK) were employed.  These methods should provide an 

indication if schizokinen could induce the expression of the dedicated outer membrane 

receptor protein because the mutant used for analysis was unable to produce siderophore 

under iron limiting conditions.  With 
55

Fe-SK present, the environment could stimulate 

siderophore binding and uptake.   
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Qu.      FAITDHGPDMEDAPHHWHF   I NRIWPRVDGGILQIKTSSGAETSAFIERVADISQH 

            +A +   HG +++      A                    I     R                  GILQIKTSSGAETSAFIERVADISQH 

Sbjct  WASSSHGAEIQN AQSWSAT    IRQR-----GPA--GILQIKTSSGAETSAFIERVADISQH           

 

Qu.    MAALALEQEKSRQHIEQLIQFDPMTGLPNRNNLHNYLDDLVDKAVSPVVYLIGVDHIQDV              

          MAALALEQEKSRQHIEQLIQFDPMTGLPNRNNLHNYLDDLVDKAVSPVVYLIGVDHIQDV 

Sbjct  MAALALEQEKSRQHIEQLIQFDPMTGLPNRNNLHNYLDDLVDKAVSPVVYLIGVDHIQDV   

 

Qu.    IDSLGYAWADQALLEVVNRFREKLKPDQYLCRIEGTQFVLVSLENDVSNITQIADELRNV                

          IDSLGYAWADQALLEVVNRFREKLKPDQYLCRIEGTQFVLVSLENDVSNITQIADELRNV 

Sbjct  IDSLGYAWADQALLEVVNRFREKLKPDQYLCRIEGTQFVLVSLENDVSNITQIADELRNV   

 

Qu.    VSKPIMIDDKPFPLTLSIGISYDLSKNRDYLLSTAHNAMDYIRKNGGNGWQFFSPAMNEM                  

          VSKPIMIDDKPFPLTLSIGISYDL KNRDYLLSTAHNAMDYIRKNGGNGWQFFSPAMNEM 

Sbjct  VSKPIMIDDKPFPLTLSIGISYDLGKNRDYLLSTAHNAMDYIRKNGGNGWQFFSPAMNEM   

 

Qu.    VKERWFRS- A----ERSDSIP--LKLV--TA---QIFAE   

          VKER    +      A      E   +          LKLV             QIFAE 

Sbjct  VKERLVLG ALK-E AISNNQLKLV--YQP- QIFAE   

 

 

Figure 22:  BLAST alignment showing homology between the sequence of a nonproducing 

mutant (query) and a sensory kinase domain from E. coli (subject). The matched protein product 

was a PAS/PAC domain (sensory kinase) from E. coli with identities = 228/271 (84%) and 

positives = 236/271 (87%).  The boxed regions indicate amino acid matches of the query and 

subject sequence. 

 

Figure 23:  Diagram of primer walking to illustrate how the open reading frame was sequenced.   

 

  
Tpn-RL2 Tpn-RL1 

4 3 Kan oriR6
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The primers used for the first sequencing reaction were Tpn-RL2 and Tpn-RL1 and they anneal 

to the ends of the transposon thus sequencing into the interrupted chromosomal DNA of a 

transconjugant.  Mutant used here for sequencing was Mutant 3-17. 

 

Results of Concentration Dependent Binding of 
55 

Fe -Schizokinen 

 The binding assay was employed to answer two questions:  did the transposon 

insertion affect the ability of the mutant to efficiently induce expression of the outer 

membrane receptor protein (OMRP) dedicated to siderophore internalization and also, 

what is the dissociation constant (KD) of the wild type receptor that has not been 

determined?   The OMRP faces the external environment and the loops of the protein 

facilitate the binding of the ferric-siderophore complex.  The low temperatures 

maintained during the experiment prevented internalization of the complex and binding 

was detected by using a radioactive isotope of iron, 
55 

Fe.  The isotope was bound to 

purified, iron free schizokinen (
55 

Fe-SK) and applied to iron starved cultures.  The 

binding capacity of the cultures is based on the number of receptors present on the cells’ 

surface.  Theoretically, once all receptors are bound with the 
55 

Fe-SK complexes a 

plateau will be seen in the graphical representation of the data indicating saturation of all 

OMRPs.   

 The binding capability of the OMRP for schizokinen has not been previously 

defined, so it was important to evaluate this ability.  The experiment was setup using a 

sid
-
 mutant, mut 3-17, as a comparison to determine if the mutation present affected the 

organism’s ability to bind the siderophore.  Also, an E.coli strain KDF-541 was used to 

determine if a dedicated transporter was required for binding of the siderophore.  KDF-
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541 is a modified strain containing no iron transport system, so in theory the strain should 

not bind the siderophore (negative control).   

 The graph in Figure 24 shows a decrease in the binding ability of Mutant 3-17 as 

compared to the wild type strain.  The transposon interruption, if in a transduction 

molecule, could prevent proper induction of a specific OMRP resulting in a decreased 

ability to bind the Fe
55

-SK complex as compared to the wild type strain.  With a decrease 

in induction present, less OMRPs could contribute to the decreased ability of mutant 3-17 

(Sid
-
) to bind the 

55 
Fe-SK complex properly.  The dissociation complex or KD is the 

concentration of ligand that occupies half of the receptors at equilibrium.  In relation to 

siderophore receptors, the smaller the KD value the higher the affinity of the receptor to 

the ligand.  The approximate KD of IARI 917 receptor for 55 Fe-SK is 54 nM.  The 

relatively high value indicates the system is low affinity when compared to the OMRP, 

FepA in E.coli, whose KD is in the range of 0.1-1 nM when tested under the same 

experimental conditions.  The KD of FepA is considered a very high affinity system. 
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Figure 24:  Concentration dependent binding of 
55 

Fe-SK by IARI 917 wild type, Mutant 3-17 

(Sid
-
), and KDF-541. 

 

Results of Concentration Dependent Transport of 
55 

Fe -Schizokinen 

 The transport assay was performed to answer two questions:  what is the Km value 

of the OMRP for schizokinen and did the transposon insertion affect the transport of the 

Mutant 3-17 (Sid
-
)?  Similar to the binding of 

55 
Fe-SK, the transport of the complex has 

not been described in IARI 917.  The transport assay is setup similar to the binding but 

optimal growth (30°C for rhizobia and 37°C for E. coli) conditions were present to 

facilitate internalization.  If the bacteria were incubated at optimal growth conditions, 

internalization of the ferric-siderophore complex should occur as normal. 

Concentration (nM)

0 20 40 60 80 100 120 140 160 180 200

C
P

M

0

2000

4000

6000

8000

10000

12000

IARI 917 WT

Mut 3-17

KDF-541



 98 

 The graph in Figure 25 for the transport of 
55

Fe-SK indicates the transposon 

insertion strongly affected the mutant’s ability to transport siderophore.  The KM value is 

a kinetic parameter used to characterize an enzyme and is defined as a concentration of 

substrate that permits half the maximum velocity or rate of the reaction.  The KM value of 

IARI 917 wild type is approximately 48 nM that is also low when compared to FepA in 

E.coli whose KM is in the range of 0.1-1 nM.  The comparison of the two kinetic values 

are valid because both were determined using the same experimental conditions.  The 

insertion could have affected a signal transduction molecule thus the signal is not 

received by the cell that iron limiting conditions are present.  If the signal is not 

processed correctly by the cell, the proper gene expression will not be seen.  

 

Figure 25:  Concentration dependent transport of 
55 

Fe-SK by IARI 917 wild type, Mutant 3-17 

(Sid
-
), and KDF-541. 
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Conclusion 

 Siderophores are produced by a number of microorganisms under iron limiting 

conditions.  Most research focuses on pathogenic bacteria that produce siderophore in the 

host environment is known to increase an organism’s virulence (Fischbach, Lin, Liu, & 

Walsh, 2006; Flo et al., 2004; Miethke & Marahiel, 2007; Ratledge & Dover, 2000).  

Most siderophore production and transport research has focused on E.coli as a model 

organism with minimal research devoted to rhizobial production of siderophore.  With 

the agricultural significance of the rhizobial group, more research should focus on the 

physiology and metabolism of these important organisms.  Nitrogen fixation by rhizobial 

root nodulation has been known to increase the overall health and yield of many 

agriculturally important crops.  The presence of these organisms also increases the 

overall fertility and productivity of the soil with a relatively benign presence. 

 The focus of this research was to identify gene(s) located in the operon for the 

production and transport of schizokinen.  A gene was identified with a high percentage of 

similarity to a signal transduction molecule in E.coli.  The interrupted gene had an effect 

on the binding and the transport of 
55 

Fe-schizokinen.  Some explanations for the 

mutation were discussed previously but more research should be performed to determine 

the exact mechanism of this interruption and its relevance to schizokinen biosynthesis or 

transport.  Also, more research should focus on elucidating the complete biosynthesis, 

regulation, and transport operon of schizokinen in Rhizobium leguminosarum IARI 917. 
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