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ABSTRACT 

Vitis Seeds (Vitaceae) from the Late Neogene Gray Fossil Site, Northeastern Tennessee, USA 

by 

Fade Gong 

This study focuses on the morphometric and systematic studies of fossil vitaceous seeds recently 

recovered from the Gray Fossil Site (7-4.5 Ma, latest Miocene-earliest Pliocene) northeastern 

Tennessee. Morphologically, all fossil seeds correspond to the extant subgenus Vitis (genus Vitis) 

of the Vitaceae based on the smooth dorsal surface with a centrally positioned chalaza connected 

with a conspicuous chalaza-apex groove and short linear ventral infolds that are slightly diverged 

apically. A multivariate analysis based on 11 measured characters from 76 complete seeds 

identified three types of seeds, each representing a distinct morphotaxon. Based on comparison 

with modern and fossil vitaceous specimens, three new species were recognized: Vitis grayana 

sp. nov., Vitis lanatoides sp. nov., and Vitis latisulcata sp.nov. The close resemblance between 

the first two fossil grapes (Vitis grayana and Vitis lanatoides) with extant eastern Asian Vitis 

provides further evidence that the eastern Asian floristic elements existing in the southeastern 

North American flora continued to as late as late Neogene. 
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CHAPTER 1 

INTRODUCTION 

The Gray Fossil Site 

The Gray Fossil Site was discovered during highway construction in Washington County, 

northeastern Tennessee (36.58°N, 82.58°W, elevation 490-510m) in May 2000 (Figure 1). Its 

deposits extend laterally ~2.6 ha (150 m N–S by 175 m E–W) and up to 40m thick (Smith 2003; 

Wallace and Wang 2004; Clark et al. 2005; Shunk et al. 2006). The Gray Fossil Site is now 

interpreted as the fill of a paleosinkhole whose deposits consist of finely laminated clays, silts, 

and fine sands with intermixed gravel lenses buried beneath >5m of alluvium and colluviums 

(Wallace and Wang 2004; Shunk et al. 2006; DeSantis and Wallace 2008). The predominant 

bedrock lithologies in the fossil site area are limestones and dolostones of the Cambrian-

Ordovician Knox Group (Wallace and Wang 2004; Clark et al. 2005, p84, Fig. 2; Shunk et al. 

2006, p267, Fig. 1). The high-resolution gravity study of the Gray Fossil Site indicates that the 

overall sinkhole basin consists of 11 deep sinkholes formed within the Knox Group carbonates, 

which range between 20 and 44m in depth and are aligned northwest and northeast trending 

linear features that correlate to structural features formed during the Appalachian orogenies 

(Whitelaw et al. 2008). According to Shunk et al. (2006), the lacustrine sediments include two 

parts: the basal graded facies, a 15m-thick section of lacustrine sediments below 496m elevation 

that consists of millimeter to centimeter-thick, normally graded layers of primarily locally 

derived terrigenous silts and fine sands with low organic content; the laminated facies, between 

501.5 and 504.8 m elevation that is characterized by millimeter thick, non-graded “A–B couplets” 

of abundant macerated terrestrial organic matter and fine to coarse quartz sand (A), alternating 
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with quartz and carbonate silt (B). The laminated facies is the fossil-bearing horizon, and all the 

fossil plant materials were collected from this layer. The 5m-thick transitional interval between 

496.5 and 501.5m elevation is marked by quasi-rhythmic alternation between laminated and 

graded facies depositional patterns (Shunk et al. 2006).  The laminated facies is capped by a 

subaerial suite of sediment that consists of greater than 5m of dominantly gravelly alluvium and 

colluviums within which multiple paleosols are developed (Smith 2003). The uniform sediment 

composition and grain size for both the laminated and graded facies suggest that the sources of 

sediment did not change significantly through time, and chert and dolostone rock fragments both 

indicate local derivation from the Cambrian-Ordovician Knox Group. The presence of 

monocrystalline quartz grains with resorption rims and metamorphic polycrystalline quartz 

grains indicate that the Gray Fossil Site sediment was also derived from crystalline basement 

bedrock sources >50km to the east in southwestern Virginia or northwestern North Carolina 

(Smith 2003; Shunk et al. 2006). All these geological studies indicate that the provenance for the 

Gray Fossil Site sediment was both intrabasinal and extrabasinal.  

 

Figure 1 Location of the Gray Fossil Site, Washington County, Northeastern Tennessee, USA 

(36.5 °N, 82.5°W). 
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The biochronology data suggest the geological age of the Gray Fossil Site is latest 

Miocene to earliest Pliocene (4.5-7 Ma) (Wallace and Wang 2004; Shunk et al. 2006). Firstly, 

occurrences of Tapirus (cf. T. polkensis), Teleoceras sp., a small Megalonyx sp. (or 

Plimetanastes sp.), and cf. Catagonus sp. from the site indicate that the mammals can be 

assigned to the Hemphillian Land Mammal Age (late Miocene-early Pliocene; >4.5Ma) 

(Parmalee et al. 2002; Shunk et al. 2006). Secondly, the stratigraphic range of a short-faced bear 

Plionarctos sp. uncovered from the site suggests that the site is Late Hemphillian, with a 

maximum age of 7 Ma (Hunt 1998; Wallace and Wang 2004). Furthermore, one feature of the 

rhino Teleoceras sp. from the Gray Fossil Site, the presence of a medial projection on the 

posterior processes of the unciforms, also supports the Late Hemphillian age (7-4.5 Ma) of this 

site, because this feature is only common at the end of the Teleoceras lineage in the latest 

Miocene to earliest Pliocene (Harrison and Manning 1983; Shunk et al. 2006). In addition, 

paleomagnetic investigations were also used to secure an absolute date for the site and concluded 

that the lacustrine sediments of the site contain both normal and reverse polarities (Smith 2003). 

The interpretations of the paleomagnetic data indicate that the reverse polarity component as 

confirmation that the lacustrine sediments of the Gray Fossil Site are older than 1.0 Ma (Smith 

2003; Whitelaw 2005). The reversal cannot be further constrained in time (Shunk et al. 2006). 

Therefore, the age of latest Miocene –earliest Pliocene (7-4.5 Ma) appears more acceptable and 

is used in this study.  

A diverse, well preserved biota has been discovered from the Gray Fossil Site (Table 1). 

Abundant terrestrial animal bone and teeth fossils (tapirs, rhinos, red panda, badger, etc.) and 

aquatic vertebrate fossils (fish, turtles, crocodilians, etc.) uncovered from the site suggest the 

Gray Fossil Site was formally an open lacustrine environment (Wallace and Wang 2004; Shunk 
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et al. 2006).  Furthermore, abundant plant remains including leaves, stems, seeds, fruits, and 

pollen were also uncovered from the laminated facies. Pollen records indicate that Quercus and 

Carya were the dominant plants, which constitute about 70% of initial pollen samples (Wallace 

and Wang 2004). Both the animal fossil such as the red panda (Pristinailurus bristoli) (Wallace 

and Wang 2004) and plant fossils such as Sinomenium (Menispermaceae) and Sargentodoxa 

(Lardizabalaceae) (Liu et al. 2007) show elements of extant eastern Asian biota. As the only late 

Miocene-early Pliocene fossil site in the south Appalachian Mountains (Boardman 2009), the 

discovery of the Gray Fossil Site has important significance for the study of the late Neogene 

fauna and flora of southeastern North America. 

Table 1 Biota from the Gray Fossil Site (compiled from Clark et al. 2005; Liu et al. 2007; 

DeSantis and Wallace 2008). 

Fauna Flora 

Osteichthyes Mammalia Conifers Herbs 

Amphibia     Soricidae      Tsuga     Ambrosia-type 

    Anura     Talpidae     Pinus     Cyperaceae 

    Plethodontidae     Lagomorpha Deciduous     Gramineae 

    Ambystoma sp.     Rodentia     Quercus     Umbelliferae 

Reptilia     Xenarthra     Carya     Caryophyllaceae 

    Chrysemys sp.     Gomphotheriidae     Ulmus     Ephedra 

    Trachemys sp.    Tapirus polkensis    Betula Vines 

    Terrapene sp.      Teleoceras cf. T. hicksi     Fraxinus     Vitis 

    Chelydridae     Tayassuidae     Celtis     Sinomenium 

    Alligator sp.     cf. Megatylopus sp.     Corylus     Sargentadoxa 

    Viperidae     Canidae Shrubs  

    Colubridae     Mustelidae     Alnus  

Aves      cf. Machairodus sp.     Salix  

    Passeriformes     Pristinailurus bristoli   

     Plionarctos sp.   

     Arctomeles dimolodontus   

 

Taxonomy of Vitaceae 

Vitaceae (the grape family) contains approximately 14 genera and 900 species (Table 2) 

(Soejima and Wen 2006; Wen 2007; Wen et al. 2007). The precise phylogenetic position of 
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Vitaceae within the Eudicots is uncertain (Judd and Olmstead 2004; Soltis and Soltis 2004). A 

recent study based on the complete chloroplast genome sequence, as represented by Vitis vinifera 

L., strongly supports the position of Vitaceae as the earliest diverging lineage of rosids (Jansen et 

al. 2006). APG II (2003) added Vitaceae to the rosids but left it unassigned to order. 

Traditionally, the Vitaceae was placed in the order Rhamnales along with Rhamnaceae (e.g., 

Cronquist 1981, 1988). But, some recent studies have considered it as one family of the order 

Vitales (e.g. Takhtajan 1997; Wen 2007).  

Species of the Vitaceae are usually woody climbers or herbaceous vines, rarely small 

succulent trees (Wen 2007). Other important diagnostic characters include leaf-opposed tendrils, 

which are considered to be modified shoots or inflorescences (Tucker and Hoefert 1968; Gerrath 

et al. 2001), “pearl” glands on leaves, which are multicellular, stalked, caduceus spherical 

structures (Wen 2007; Wen et al. 2007), and a suite of unique seed morphological characters 

(Tiffney and Barghoon 1976; Soejima and Wen 2006; Chen and Manchester 2007; Wen 2007; 

Wen et al. 2007). Vitaceous seeds have a thin sarcotesta that are composed of several layers of 

parenchyma cells and an inner lignified endotesta composed of columnar cells (Periasamy 1962; 

Corner 1976; Chen and Manchester 2007). The endosperm is ruminate with a pair of infolds of 

the endotesta on the ventral face of the seed. The vascular strand of the raphe extends from the 

hilum passing medially along the ventral face and over the apex terminating as an enlarged 

lignified chalaza on the dorsal face of the seed (Chen and Manchester 2007).  Usually, the 

sarcotesta and the vascular strand are not preserved in fossil seeds, and the external fossil seed 

morphology is mirrored in the underlying endotesta, the surface of which varies from smooth to 

rugose (Chen and Manchester 2007). The combination of a pair of ventral infolds and the dorsal 

chalaza is unique to the grape family, and it is commonly applied in recognizing the family and 
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component genera (Tiffney and Barghoorn 1976; Chen and Manchester 2007). Some species of 

Menispermaceae, tribe Tinosporeae possess a pair of cup-shaped indentations on the ventral face 

of a compressed seed, but they never show a chalaza on the dorsal face (Chen and Manchester 

2007). 

The grape family is mostly distributed in the pantropical areas in Asia, Africa, Australia, 

the neotropics, and the Pacific islands, with a few genera in temperate regions (Vitis L., 

Parthenocissus Planch., and Ampelopsis Michx.) (Table 2) (Soejima and Wen 2006; Wen 2007; 

Wen et al. 2007). The distribution of Vitaceae illustrates important phytogeographical 

significance. Species of Ampelopsis (~25 spp.), Parthenocissus (~15 spp.), and Vitis (~60 spp.) 

show disjunct distributions between eastern Asia and eastern North America (Soejima and Wen 

2006; Chen and Manchester 2007).  

Table 2 Generic Diversity and Distribution of Vitaceae (adapted from Soejima and Wen 2006). 

Genus No. of species Distribution 

Acareosperma Gagnepain 1 Laos 

Ampelocissus Planch. 95 Africa, tropical Asia, and Australia with only four species in Central America 

and the Caribbean 

Ampelopsis Michx. 25 Temperate to subtropical Asia (ca. 20 spp.) and North and Central America (3 

spp.) and 2 in West Asia 

Cayratia Juss. 63 Tropical and subtropical Asia, Africa, Australia, and the Pacific Islands 

Cissus L. 350 All tropical regions with a few extending into the temperate zone 

Clematicissus Planch. 1 Western Australia 

Cyphostemnia (Planch.) 

Alston 

200 Mainly in Africa and Madagascar with a few species in India and Sri Lanka 

extending into Thailand 

Nothocissus (Miq.) Latiff 5 Peninsular Malaysia, Sumatra, Bangka, Borneo, and Papua New Guinea. 

Parthenocissus Planch. 15 12 in East Asia with one species extending into the western Ghats, India and 

three in North America 

Pterisanthes Blume 20 Malay Peninsula, Borneo, Sumatra, Java, Philippines, and peninsular 

Thailand. 

Rhocissus Planch. 12 Tropical and South Africa 

Tetrastigma (Miq.) Planch. 95 Primarily in tropical and subtropical Asia with five species in Australia 

Vitis L. 60 Mostly temperate regions of the northern hemisphere, 1 sp. extending into 

South America. 

Yua C. L. Li 3 Subtropical China, India (Assam) and central Nepal 

 

Vitis L. including about 60 species is one of the 14 genera of Vitaceae. A molecular 

phylogenetic analysis of plastid rbcL DNA sequences found that Vitis to be paraphyletic with 
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Cyphostemma and Parthenocissus nested within it (Ingrouille et al. 2002). However, a recent 

phylogenetic study based on three chloroplast markers (the trnL-F region, the atpB-rbcL spacer, 

and the rps16 intron) supports Vitis as a monophyletic group within a clade that includes 

Ampelocissus Planch., Pterisanthes Blume, and Nothocissus Latiff. (Figure 2) (Soejima and Wen 

2006). Furthermore, the study based on the nuclear GAI1 gene sequences confirms the 

monophyly of Vitis; however, Nothocissus is not placed within its sister (Wen et al. 2007). 

Morphologically, in addition to the morphological synapomorphies of Vitaceae, species of Vitis 

are also defined by their polygamodioecious reproductive biology, calyptrate petals, and five-

merous flowers (Soejima and Wen 2006; Wen et al. 2007). Two subgenera are commonly 

accepted in Vitis. The subgenus Vitis is recognized by the shreddy bark on old stem, lenticels 

inconspicuous, pith interrupted by diaphragms within the nodes, and 2-3 forked tendrils. The 

subgenus Muscadinia possesses prominent lenticels, pith continuous through nodes, and simple 

tendrils (Soejima and Wen 2006).This genus occurs mainly in temperate to warm regions of the 

Northern Hemisphere (Table 1) (Soejima and Wen 2006). About 40 species of Vitis occur in 

eastern to southern Asia (Chen et al. 2007), and about 20 species are native to North America 

(Rogers and Rogers 1978; Moore 1991), with only one species (V. tifiifolia) extends into South 

America (Lombardi 2007). Only the cultivated grape (V. vinifera) exists in Europe (Webb 1968; 

Punt et al. 2003). In addition, about 5 species from 2 subgenera of Vitis (subgenus Vitis: V. 

aestivalis, V. cinerea, V. labrusca, and V. vulpina; subgenus Muscadinia: V. rotundifolia) occur 

in the northeastern Tennessee area (Chester et al. 1997). Fossil records of vitaceous seeds, the 

most common species and the highest number of seeds belonging to Vitis, have been commonly 

discovered from the Paleogene and Neogene floras of the Northern Hemisphere as reviewed by 

Kirchemimer (1939, 1957) and Tiffney and Barghoon (1976). The fossil vitaceous seed from 
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Gray Fossil Site is the first discovery of this family from latest Miocene to earliest Pliocene of 

southeastern North America due to the general absence of late Neogene fossil records in this 

region (Liu et al. 2007). 

 

Figure 2 The Combined Chloroplast (the trnL-F Region, the atpB-rbcL Spacer, and the rps16 

Intron) Strict Consensus Tree of Vitaceae (adapted from Soejima and Wen 2006). It shows Vitis 

as a monophyletic group and forming a clade with Ampelocissus, Pterisanthes, and Nothocissus 

(Rectangle C). 
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Morphometerics in Paleobotany 

In the present work, I chose morphometrics as part of the research methods. 

Morphometrics are the quantitative description, analysis, and interpretation of shape variance in 

biology (Rohlf 1990). In paleobotanical research it has been commonly used on the foliar 

morphological study (Hill 1982; Thiebaut 2000, 2002; Hably and Thiebaut 2002; Tamas and 

Hably 2005) and woody fragments study (Oakley and Falcon-Lang 2009).  Morphometrics also 

have been used in the morphological study of vitaceous seeds such as the study on cultivated and 

wild Vitis seeds (Rivera et al. 2007) and the study on modern and fossil Ampelocissus seeds 

(Chen and Manchester 2007). These two studies mainly used morphometrics to examine the 

variation of seed characters for specimens already determined to species (Rivera et al. 2007; 

Chen and Manchester 2007). Here, morphometrics are used to distinguish taxonomically 

undetermined vitaceous seeds from the Gray Fossil Site. 

Objectives 

The first objective of this study was to identify the fossil vitaceous seeds from the Gray 

Fossil Site at the generic level using original observations along with previous vitaceous seed 

morphology studies (Tiffney and Barghoon 1976; Chen and Manchester 2007). 

A second objective is to use multivariate analyses to group the vitaceous seed remains 

from the Gray Fossil Site into morphospecies. 

 A systematic morphological study focusing on modern Vitis seeds was also performed to 

investigate the seed morphological variance at the interspecific and intraspecific level.  
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Lastly, I examined the biogeographical patterns associated with distribution of fossil and 

modern Vitis species and the possible relationship of the Gray fossil Vitis specimens.  
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CHAPTER 2 

MATERIALS AND METHODS 

Fossil and Extant Materials and Preparation 

Fossil seed materials used in present study were collected from the laminated facies 

horizon of the Gray Fossil Site (see Introduction). The preparation of the fossil materials follows 

Tiffney (1990).  The organic-rich blocks of matrix were collected from the Gray Fossil Site and 

returned to the laboratory of the on-site East Tennessee State University and General Shale Brick 

Nature History Museum (ETMNH). Then the matrix was soaked under water to disaggregate. 

Next, the 1.7mm mesh box screen (Boardman 2009) was used to separate the organic materials 

and the fine clays. After that, the vitaceous seeds were picked out from the fossil plant remains 

based on the unique characters (a pair of infolds on ventral face and the chalaza on dorsal face) 

and stocked in Paleobotany lab of Department of Biological Sciences, ETSU for the subsequent 

studies. Seventy-six complete fossil seeds were measured for the morphometric study. 

Seed specimens from extant species were obtained for comparative studies. Seeds 

representing 95 species from 9 genera of the Vitaceae were loaned from the Herbaria of Arnold 

Arboretum (A) and Gray Herbarium (GH) of Harvard University, John C. Warden Herbarium of 

East Tennessee State University (ETSU), and Missouri Botanical Garden (MO). Preparation of 

the extant seeds follows Tiffney and Baeghoon (1976) by boiling in 10% NaOH for 5-10 min to 

remove the outer membrane and adherent pieces of berry.  

Digital images of both dorsal and ventral views of the fossil and extant seeds were 

recorded with a MicroFire (Optronics) camera attached to the OLYMPUS-SZX12 

18



stereomicroscope. Measurements of the digital images were taken using the program ImageJ 

(version 1.40g) (Rasband 1997-2009). 

Measurements and Morphometric Analysis 

Eleven continuous variables were chosen for morphometric analysis and were measured 

from the digital images (Table 3 and Figure 3).  

 

Figure 3 Morphological Terminology of Vitaceous Seed (compiled from Tiffney and Barghoorn, 

1976; revised by Manchester 1994) and Seed Characters Measured for Morphmetrics (See Table 

3 for Character Descriptions).  

 

Table 3 List of Morphometric Characters (M= Measurement) Used in the Present Study. The 

measurement points for the characters (M1-M11) are shown in Figure 3. 

Character (mm) Description 

M1 Seed length with beak  

M2 Seed length without beak 

M3 Seed width 

M4 Beak width at the juncture with seed body 

M5 Chalaza length  

M6 Chalaza width 

M7 Distance from chalaza base to seed apex 

M8 Ventral infold length 

M9 Distance between apexes of the two infolds 

M10 Distance between bases of the two infolds 

M11 Vertical distance from infold apexes to seed apex 

 

Data processing was performed using SPSS 16.0 (SPSS Inc. 2008). Frequency 

histograms were used to examine the variation and normal distribution of the measured 
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characters. The Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO Test) and Bartlett’s 

Test of Sphericity were applied to test the condition of principal component analysis (PCA) that 

was used to study the relationships among the measured characters. In PCA, eigenvalues were 

computed from the raw data and data after Varimax rotation with Kaiser Normalization, and then 

eigenvectors and component score coefficient for each principal component were calculated after 

rotation. PCA enables us to describe the relationship of the measured variables in the 

multidimensional space. Although PCA is also a common method for grouping specimens, 

Thiébaut (2002) proposed that PCA is a good tool when it keeps a maximum of total variability; 

on the other hand, cluster analysis is more appropriate with many taxa. In this study hierarchical 

cluster analysis was carried out to calculate and graph the multidimensional distance among the 

specimens studied. Similarities of specimens were calculated by squared euclidean distances. 

These computed distances were graphed on a dendrogram using furthest neighbor cluster method 

that calculates the distance between two clusters as the distance between their two furthest points 

and standardizes the measured characters in the range 0 to 1. Box’s M value test was performed 

to check the condition of  canonical discriminant analysis, and then discriminant analysis using 

all 11 characters was performed to find the linear combinations of characters that are shown as 

canonical discriminant functions from which discriminant scores for each specimen are also 

calculated. Statistic descriptive and independent sample t-test were also performed to examine 

variance between difference clusters.  

Terminology 

The terminology of vitaceous seed characters (Figure 3) is after Tiffney and Barghoorn 

(1976) with the exception that the terms chalaza-apex and chalaza-base grooves are reversed 

(Manchester 1994). 
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CHAPTER 3 

RESULTS 

Seed Morphology of Vitaceae 

The vitaceous seeds are distinguished from seeds of other families by the combination of 

paired ventral infolds and the dorsal chalaza (Figure 3) (Chen and Manchester 2007). For better 

understanding the seed morphological range of all genera of the Vitaceae, I examined vitaceous 

seeds representing 95 species from 9 genera of the Vitaceae by myself (Table 4; Figure 4; Figure 

5) and consulted the previous studies (Tiffney and Barghoon 1976; Chen and Manchester 2007; 

Wen 2007). In general, the vitaceous seeds can be distinguished to at least the generic level by a 

combination of certain morphological characters, especially seed surface characters, chalaza 

shape and position, and shape of ventral infolds. Based upon these examinations, I have prepared 

a new dichotomous key to the genera of Vitaceae based upon seed morphology. 

Taxonomic key to 12 genera of the Vitaceae based on seed morphology: 

1a. Chalaza central on dorsal surface, chalaza-apex groove slightly or obviously visible............. 2  

2a. Ventral infolds cup-shape or long linear, extending from the seed base to the  

seed apex……………………………………………... Ampelocissus (Nothocissus) 

2b. Ventral infolds linear, not extending to the seed apex……………………………….. 3  

3a. Dorsal and ventral surfaces obviously rugose with deep furrow………….. Yua 

3b. Dorsal and ventral surface extremely smooth or furrowed to striated…….Vitis 

1b. Chalaza near the apical notch or starting from apical notch and central on dorsal  

surface, chalaza-apex groove not visible………………………………………………… 4  

4a. Ventral infolds cup-shape……………………………………………………………. 5 
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5a. Chalaza linear to elongate…………...……………………………….. Cayratia 

5b. Chalaza oval……………………………………………………… Pterisanthes  

4b. Ventral infolds linear………………………………………………………………… 6 

6a. Chalaza starting from the ventral face and crossing the apical notch  

…………………………………………………… Cissus or Cyphostemma 

6b. Chalaza starting or near the apical notch…………………………………….. 7 

7a. Ventral infolds short linear or small pit, not extending to the 

 seed apex……………………………………………. Ampelopsis  

7b. Ventral infolds long linear, extending from the seed base to the 

seed apex……………………………………………………….. 8 

8a. Seed surface smooth...……………………….... Parthenocissus  

8b. Seed surface rugose…………………………………………... 9 

   9a. Pattern of the rugose surface marked by  

horizontal furrows…………………... Tetrastigma  

9b. Pattern of the rugose surface irregular…… Rhoicissus 

Among of the 14 genera of Vitaceae, Acareosperma Gagnepain comprises only one 

species from Laos (Table 2). Because no specimen collections or data on seed morphology were 

available for Acareosperma, I exclude it here. Clematicissus Planch. is another genus represented 

by only one species. Although I could not obtain specimen for direct observation, Chen and 

Manchester (2007) indicate that seeds of Clematicissus possess only one linear long infold on 

ventral surface, which is totally different from other vitaceous seeds. In addition, Nothocissus 

(Miq.) Latiff is another small genus including only 5 species, which was usually considered as 

one section of Ampelocissus (reviewed by Chen and Manchester 2007). Seeds of Nothocissus 
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also show some close similarity with seeds of some Ampelocissus species that is consistent with 

the inclusion of Nothocissus with Ampelocissus. I do not separate these two genera in the basis of 

seed characteristics. Cyphostemnia (Planch.) Alston (~200 spp.) is the second largest genus in 

the Vitaceae. I was unable to obtain specimens of Cyphostemnia. According to Chen and 

Manchester (2007), seeds of Cyphostemnia share some characteristics with Cissus L. (~300 spp.), 

the largest genus of Vitaceae. Considering the range of these two genera and lacking more data 

on seed morphology, I put them together in the taxonomy key as well.  
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Figure 4 Representative Seeds for Genera of  Vitaceae. Scale bar =1mm. A-B. Dorsal and ventral 

views of Ampelocissus acapulcensis; C-D. Dorsal and ventral views of Ampelopsis 

brevipedunculata; E-F. Dorsal and ventral views of Cayratia japonica; G-H. Dorsal and ventral 

views of Cissus incisa; I-J. Dorsal and ventral views of Nothocissus spicifera, (adapted from 

Chen and Manchester 2007); K-L. Dorsal and ventral views of Parthenocissus quinquefolius. 
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Figure 5 Representative Seeds for Genera of Vitaceae (Continued). Scale bar = 1mm. A-B. 

Dorsal and ventral views of Pterisanthes cissoides; C-D. Dorsal and ventral views of Rhoicissus 

tridentata; E-F. Dorsal and ventral views Terastigma kwangsiensis, (adapted from Chen and 

Manchester 2007); G-H. Dorsal and ventral views of Vitis labrusca; I-J. Dorsal and ventral views 

of Yua austro-orientalis, (adapted from Chen and Manchester 2007); K-L. Dorsal and ventral 

views of Vitis rotundifolia, (adapted from Chen and Manchester 2007). 
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Table 4 Some Important Morphological Characters Distinguishing Seeds of Genera of Vitaceae. Data from my observation and 

complied from Tiffney and Barghoon (1976); Chen and Manchester (2007); Wen (2007).  
 
Genus Surface Shape and position of ventral Infolds shape and position of Chalaza Chalaza-apex 

groove 

representative species 

Acareisperma no data     

Ampelocissus finely to 

obvious 

rugose 

long linear, cup-shaped, or dish like; 

parallel to slight diverged apically 

round to oval; central on dorsal surface obvious visible Ampelocissus acapulcensis (Figure 4, 

A-B) 

Ampelopsis smooth to 

rugose 

short, broad, linear; parallel to slight 

diverged apically 

variance; near the shallow apical notch not existence Ampelopsis brevipedunculata (Figure 

4, C-D) 

Cayratia smooth to 

rugose 

short, small pit to cup-shaped; central linear to elongate; starting from apical 

notch and central on dorsal surface 

not existence Cayratia japonica (Figure 4, E-F) 

Cissus smooth to 

rugose 

short, linear, closely spaced and 

parallel 

linear to elongate; starting from apical 

end of ventral infolds; central on 

dorsal surface 

not existence Cissus incisa (Figure 4, G-H) 

Clematicissus no data only one infold; central  pyriform; central on dorsal surface no data no specimen observed 

Cyphostemma rugose short, linear, covered by extra lignified 

testa; closely spaced and parallel,  

continuous from ventral side and central 

on dorsal surface 

not existence no specimen observed 

Nothocissus rugose long, linear; parallel linear to oval; central on dorsal surface slight visible Nothocissus spicifera (Figure 4, I-J) 

Parthenocissus smooth long, linear, extending from base to 

apex; diverged apically 

variance; near the deep apical notch not existence Panthenocissus quinquefolius (Figure 

4. K-L) 

Pterisanthes smooth   long, cup-shaped; central oval; central on dorsal surface not existence Pterisanthes cissoides (Figure 5,A-B) 

Rhoicissus rugose long, linear; diverged apically linear to elongate; starting from apical 

notch and central on dorsal surface 

not existence Rhoicissus tridentata ((Figure 5, C-D) 

Terastigma rugose long, linear;closely spaced and 

parallel, or divergent in Y-or U- 

shape 

linear to elongate; starting from apical 

notch and central on dorsal surface 

not existence Terastigma  Kwangsiense (Figure 5, 

E-F) 

Vitis slight rugose 

or smooth 

short, linear; parallel to diverged 

apically 

variance; central on dorsal surface obvious visible Vitis labrusca (Figure 5, G-H); V. 

rotundifolia (Figure 5,K-L) 

Yua rugose long, linear; parallel oval; central on dorsal surface obvious visible Yua austro-orientalis(Figure 5, I-J)  
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Seed Morphology of Vitis L. 

All fossil vitaceous seeds from the Gray Fossil Site that are characterized by the 

combination of the central positioned chalaza on dorsal surface, obvious visible chalaza-apex 

groove, and short linear ventral infolds correspond to the genus Vitis. Moreover, all the fossil 

seeds collected from the Gray Fossil Site show a smooth surface, which is one common character 

of the subgenus Vitis; while seeds of the other subgenus Muscadinia (Figure 5, K-L) show 

furrowed to striated dorsal surface (Tiffney and Baghoon 1976). For better understanding of the 

seed morphological variance at the interspecific and intraspecific levels, a systematic study on 

Vitis seed morphology based on 57 specimen collections representing by 41 extant species of 

subgenus Vitis was performed (Table 5). These species include all North and South American 

species and about half of the Asian species. Names used in this study are those currently 

accepted by the USDA PLANTS Database (USDA NRCS 2009) and Germplasm Resources 

Information Network (GRIN) (USDA ARS National Genetic Resources Program 2009). Besides 

the chalaza position and shape and ventral infolds shape (important characters for identification 

of vitaceous seeds at the generic level, Table 4), I also considered other characters including 

beak shape and size, chalaza-apex and -base grooves, ventral infold position on ventral surface, 

apical notch, etc. to describe the seed morphology at the specific level. Although only a few 

species (V. palmata, V. riparia, V. novae-angliae etc.) could be easily identified by one or two 

distinct characters (listed in bold on Table 5), seeds of majority of Vitis species could be 

identified to specific level by a combination of several seed morphological characters especially 

beak shape and size, chalza-base groove, ventral infold length and position on ventral face. 

Nevertheless, seed morphology of several species (Figure 6, V. candicans, V. palmata, V. 

labrusca, V. lanata, etc.) is morphologically indistinguishable with the exception of the 
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cultivated grape V. vinifera. This result means that most species of Vitis could be identified at the 

specific level based only on seed morphological characters. This result is very important for the 

study of fossil Vitis because fossil seeds are the most common remains of this genus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

28



 
Figure 6 Vitis Seeds Showing Intraspecific Morphological Uniformity Based on Same Species 

Possessing Different Collections. Scale bar = 1mm. A-B. Dorsal and ventral views of Vitis 

candicans (GH, Munson 1891, North Texas); C-D. Dorsal and ventral views of V. candicans 

(GH, Goodman 5858, Oklahoma); E-F. Dorsal and ventral views of V. palmata (AA, C.C. Deam 

33065, Indiana); G-H. Dorsal and ventral views of V. palmata (MO, W. J. Faircloth 4646, 

Georgia); I-J. Dorsal and ventral views of V. labrusca (MO, J. R. Churchill S.N., Pennsylvania); 

K-L. Dorsal and ventral views of V. labrusca (GH, M. L. Femald & Bayard Long 9876, 

Massachusetts); M-N. Dorsal and ventral views of V. lanata (AA, S.Sasaki 21614, Taiwan); O-P. 

Dorsal and ventral views of V. lanata (AA, R. N. Parner, no num, India). Specimen organization 

of information is as follow: Herbarium, Voucher specimen, Locality. 
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Table 5 Some Important Seed Characters Distinguishing Extant Species of Subgenus Vitis (Only Showing Distinct Characters to Identify Each 

Species). Bold descriptions show the only one character to identify seeds of the relative Vitis species. (N.S. = number of specimen collection) 

 Species  Synonyms Distribution N.S. Beak Chalaza Chalaza-apex 

groove 

Chalaza- base 

groove 

Ventral infolds Apical 

notch 

V. labrusca   North America 3 cylindrical, extremely 

prominent 

pyriform to 

spatulate 

broad deep faint   distinct 

V. cinerea var. 

baileyana 

V. baileyana Eastern USA 1   elongate to 

elliptical 

  no    

V. cinerea var. 

cinerea 

  USA 1 small triangle round  deep no broad, deep  

V. cinerea var. 

floridana 

V. simpsonii southeastern 

USA 

1       obviously 

visible  

very close to seed base   

V. riparia   North America 1   narrow 

spatulate 

to linear 

        

V. palmata   USA 2 slightly prominent       Broad to semicircle   

V. rupestria   USA 1 slightly prominent   faint no   no 

V. vulpina V. cordifolia USA 2 slightly prominent round     close to seed base   

V. monticola   south-central 

USA 

1       no short, close to seed base   

v. acerifolia V. solonis; V. longii central USA 2 prominent, triangular           

V. mustangensis V. candicans central USA 2 trapezoidal           

V. virginiana   Eastern USA 1 round deep  broad deep   obviously apical 

divergent, close to seed 

base 

  

V. aestivalia var 

aestivalia 

V. smalliana, 

V. rufotomentosa 

USA 3 cylindrical pyriform to 

round 

broad deep no slightly curved, broad distinct 

V. aestivalia var. 

lincecumii 

V. lincecumii USA 1   small round     long, extending to seed 

base 

  

V. aestivalia var. 

bicolor 

V. argentifolia North America 2       obviously 

visible 

long, extending to seed 

base 

  

V. novae-angliae    northeastern 

USA 

1   very small 

round 

        

V. californica   Western USA 1 small, triangle  stilliform         

V.girdiana   Western USA 

Mexico 

1   elongate to 

elliptical 

  visible wrinkle margin    
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Table 5 Continued 

 Species Synonyms Distribution N.S. Beak Chalaza Chalaza-apex 

groove 

Chalaza- base 

groove 

Ventral infolds Apical 

notch 

V. arizonica   Western USA, 

Mexico 

1   small round broad deep obviously 

visible  

obviously apical 

divergent, close to seed 

base 

  

V. blancoi   Mexico 1 slightly prominent Small round, 

concave 

deep no obviously apical divergent   

V. amurensis   eastern Asia 1 slightly prominent elongate    deep obviously 

visible  

    

 V. balanseana   south China, 

southeastern 

Asia 

1 cylindrical, extremely 

prominent 

          

V. betulifolia   south China   1 slightly prominent big round      very broad   

v. piasezkii   China 1 obviously prominent big round      very broad   

V. wilsonae   China 1 obviously prominent big elliptical    no     

V. thunbergii  V. ficifolia, 

V. kaempferi  

eastern Asia 2 triangular, prominent  elliptical    slightly 

visible 

    

V. araneosa   southeastern 

Asia 

1 prominent  big round    slightly 

visible 

    

V. flexuosa V. parvifolia eastern, 

southeastern 

south Asia 

1 extremely prominent elliptical    no     

V. lanata   eastern to 

southern Asia 

2 prominent  round    slightly 

visible 

short    

V. heyneana V.quinquangularis eastern, 

southeastern, 

south Asia 

1 slightly prominent  elongate     short no 

V. chungii   China  1 short, cylindrical   deep   short broad deep 

V. chunganensis   China 1 prominent   close to seed 

apex 

        

V. saccharifera   Japan 1 prominent, triangle elliptical    no obviously apical divergent   

V. sinensis   China 1   big elongate    no     

V. tiliifolia V. tiliaefolia; 

V. caribaea 

southern 

America 

4 prominent             
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Table 5 Continued 

 Species Synonyms Distribution N.S. Beak Chalaza Chalaza-apex 

groove 

Chalaza- base 

groove 

Ventral infolds Apical 

notch 

Questionable specimens 

V.  vinifera V. sylvestris western Asia 3 cultivated all over the world, seed morphology variance 

 V. retordii   China 1 seed specimens checked in this study showing morphology not corresponding to Vitis 

V. boorquiniana   1 cultivated 

Vitis sicyoides 
    

1 transferred to Cissus 

Vitis capensis 
    

1 transferred to Rhoicissus 

Vitis japonica 
    

1 transferred to Cayratia 
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Morphometric Study 

Relationships of Variables 

Principal component analysis (PCA) using a correlation matrix was performed to 

examine the relationships between each pair of measured characters and among all the characters. 

Correlation coefficients between each pair of measured characters were calculated on the raw 

data matrix (Table 6). With the exception of M9 and M10 (see Table 3), all the other nine 

characters show significant correlations with each other.  

Table 6 Correlation of the Measured Characters. Correlation coefficients are shown in bold if 

p<0.05. 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 

M1  0.934 0.551 0.661 0.497 0.426 0.735 0.753 0.304 0.272 0.759 

M2   0.543 0.479 0.427 0.402 0.713 0.813 0.238 0.177 0.717 

M3    0.564 0.361 0.529 0.365 0.277 0.505 0.409 0.654 

M4     0.329 0.382 0.412 0.287 0.375 0.446 0.624 

M5      0.481 0.609 0.357 0.289 0.296 0.385 

M6       0.347 0.26 0.31 0.336 0.423 

M7        0.636 0.194 0.147 0.49 

M8         0.08 -0.107 0.338 

M9          0.656 0.476 

M10           0.428 

M11            

 

KMO Test gives a value 0.776, which indicates that the data from the measured 

characters are acceptable for PCA (Kaiser 1974). The Bartlett’s Test of Sphericity showed a P-

value less than 0.001, which rejects the hypothesis that the correlation matrix from the raw data 

is an identifying matrix and supports that the data structure fulfills the conditions of PCA. Three 

principal components were extracted from the data after rotation that explain 75.78% of total 

variance (Table 7). The rotated component matrix after rotation demonstrates important 
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characters for each component, and the component score coefficient matrix displays the most 

important characters for each component (Table 7).  

Table 7 The Rotated Component Matrix (Bold Numbers Showing Characters Significantly 

Loaded to Principal Components) and the Component Score Coefficient Matrix (Bold Numbers 

Indicating the Most Important Character for Each Principal Component) for the First Three 

Principal Components (PCs). Percentages (%) of variance explained by each PC are listed on the 

rotated component Matrix. 

Characters Rotated Component Matrix Component Score 

Coefficient Matrix 

PC1(33.89 % ) PC2 (26.92 %) PC3 (14.97 %) PC1 PC2 PC3 

M2 .914 .235 .180 .297 -.022 -.121 

M1 .885 .346 .207 .267 .027 -.111 

M8 .870 -.125 .201 .310 -.189 -.011 

M7 .709 .068 .495 .147 -.147 .274 

M10 -.114 .823 .231 -.190 .344 .075 

M9 .004 .788 .193 -.129 .324 .015 

M3 .388 .678 .192 .037 .234 -.065 

M11 .592 .651 .078 .153 .226 -.223 

M4 .471 .643 .043 .114 .242 -.224 

M5 .281 .165 .851 -.131 -.136 .712 

M6 .190 .380 .652 -.136 .016 .497 

 

The first principal component (PC1) accounts for 33.89% of variance after rotation and is 

highly weighted on four characters that are characters to reflect seed length (M1, M2), ventral 

infold length (M8), distance from seed apex to chalaza base (M7). According to the component 

score coefficients, ventral infold length (M8) contributes the highest coefficient score for PC1, 

which indicates that it is the most important character for PC1. The second principal component 

(PC2) accounts for 26.92% of variance after rotation and is highly weighted on five characters 

that are the characters focusing on seed width (M3), beak width (M4), distances between apexs 

of the two infolds (M9), distance between bases of the two infolds (M10) and vertical distance 

from infold apexes to seed apex (M11). Distance between bases of the two infolds (M10) 

contributes the highest coefficient score, while distance between apexes of the two infolds (M9) 

also show a coefficient score close to the score of distance between bases of the two infolds 
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(M10), which indicated that distances between two ventral infolds (M9, M10) are important 

characters for PC2. The third principal component (PC3) accounts for 14.97% of the variance 

after rotation. The chalaza length (M5) and width (M6) are the most important characters for 

PC3, and component score shows chalaza length (M5) is more important than chalaza width (M6) 

for PC3.  

Hierarchical Cluster Analysis 

The hierarchical cluster analysis was carried out to group specimens into morphotaxa. 

The result was shown as a dendrogram (Figure 7), which was built following the agglomeration 

schedule table (Table 8). There are two different ways to define the different clusters of the 

dendrogram: firstly, looking for "gaps" between joinings along the horizontal axis of the 

dendragram; secondly, finding the sudden jump (gap) in the distance coefficient from the 

agglomeration schedule table (SPSS Inc. 2008). The dendrogram (Figure 7) shows a large gap 

between rescaled distance 10 and 15, which suggests 3 distinctive clusters at the rescaled 

distance of about 15. Then, the sudden jump (gap) in the distance coefficient firstly appears as 

stage 74 of the agglomeration schedule table (Table 8), which suggests that the two clusters 

represented by specimen 1 and 4 could be considered as different clusters. Following that, three 

clusters are also showed on the dendrogram. According to these analyses hierarchical cluster 

analysis suggests three distinctive clusters each of which can be considered as a morphotaxon.  
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Table 8 Agglomeration Schedule Table for Hierarchical Cluster Analysis. The bold numbers 

show the sudden jump (gap) of the distance coefficient from stage 73 to stage 74. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stage Cluster Combined Coefficie

nts 

 Continued. 

Cluster 1 Cluster 2  Stage Cluster Combined Coefficie

nts Cluster 1 Cluster 2 

1 21 56 0.075  39 1 17 0.345 

2 47 61 0.101  40 42 63 0.348 

3 19 26 0.118  41 35 41 0.352 

4 32 38 0.118  42 4 6 0.355 

5 68 73 0.121  43 67 74 0.372 

6 13 50 0.128  44 3 5 0.372 

7 8 36 0.129  45 7 8 0.379 

8 49 51 0.138  46 15 53 0.392 

9 6 47 0.144  47 59 68 0.422 

10 24 30 0.148  48 10 20 0.437 

11 4 18 0.151  49 4 34 0.477 

12 27 66 0.155  50 27 58 0.488 

13 12 33 0.157  51 1 25 0.500 

14 45 65 0.168  52 19 67 0.501 

15 58 76 0.171  53 45 60 0.519 

16 37 55 0.180  54 4 16 0.548 

17 17 31 0.183  55 37 39 0.553 

18 5 75 0.190  56 2 32 0.556 

19 10 46 0.191  57 12 59 0.566 

20 69 72 0.198  58 35 43 0.626 

21 42 48 0.201  59 3 7 0.638 

22 7 23 0.208  60 11 27 0.664 

23 25 44 0.213  61 9 45 0.705 

24 35 62 0.230  62 4 35 0.839 

25 21 70 0.230  63 3 10 0.844 

26 6 40 0.251  64 1 42 0.897 

27 34 49 0.253  65 9 12 1.007 

28 22 29 0.255  66 19 71 1.011 

29 9 21 0.263  67 1 11 1.019 

30 19 24 0.264  68 3 19 1.180 

31 11 57 0.281  69 2 54 1.214 

32 8 14 0.294  70 4 15 1.327 

33 32 64 0.300  71 1 9 1.396 

34 68 69 0.331  72 4 37 1.759 

35 12 52 0.332  73 2 3 2.176 

36 9 13 0.333  74 1 4 3.652 

37 20 22 0.337  75 1 2 5.753 

38 2 28 0.344      
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Figure 7 Dendrogram of Fossil Seeds from Hierarchical Cluster Analysis. Three clusters are 

clearly separated at the rescaled distance of 15 each of which would be considered as one 

morphotaxon. The specimen label number (SLN) is given by this study (Appendenix). 
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Figure 8 Dendrogram of Fossil and Extant Seeds from Hierarchical Cluster Analysis. 
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Figure 8 Dendrogram of Fossil and Extant Seeds from Hierarchical Cluster Analysis. The three 

clusters correspond to the morphotaxa in Figure 7. The red rectangles (SLN 83, 84, 85) indicate 

extant Vitis labrusca: SLN 83, 84 (V. labrusca: MO, J. R. Churchill S.N., Pennsylvania), SLN 85 

(V. labrusca: GH, M. L. Femald & Bayard Long 9876, Massachusetts); the red ellipses (SLN 77, 

78, 79) indicate extant Vitis thunbergii: A, A. Muroi 6706, Japan; and the red circles (SLN 80, 81, 

82) indicate extant Vitis lanata: SLN 80,81 (V. lanata: A, S.Sasaki 21614, Taiwan), SLN 82 (V. 

lanata: A, R. N. Parner, no num, India). The blue rectangles (SLN 11, 37, 52, 55) indicate the 4 

fossil seeds positioned in different clusters of Figure 7. Specimen organization of information is 

as follow: Herbarium, Voucher specimen, Locality. 
 

Based on the morphological characters of these three morphotaxa, we chose three extant 

Vitis species (V. thunbergii, V. lanata, and V. labrusca) that separately show closest 

morphological characters (seed size and shape, chalaza position and shape, chalaza grooves, 

beak shape, ventral infolds position, length, etc.) with the three morphotaxa to perform the 

second hierarchical cluster analysis using modern and fossil specimens together.  Besides four 

fossil seeds (SLN 11, 37, 52, 55), the three clusters resulted from the dendrogram of the first step 

(Figure 7) are also distinct separated on this dendrogram (Figure 8). The specimens of the three 

extant Vitis species are also separately distributed into the three clusters that are coincident with 

the morphological observation: Vitis thunbergii with Cluster 1; V. lanata with Cluster 2; V. 

labrusca with Cluster 3.   

Canonical Discriminant Analysis 

In this step canonical discrimimant analysis were performed to find linear combinations 

of characters that best summarize the differences among the three morphotaxa and calculate 

probabilities of misclassification in each morphotaxon. The Box’s M value test results a p-

value >0.05 that meets the condition of discriminant analysis. Canonical discriminant analysis 

presents two canonical discriminant functions. Function 1 explains 79.8% of variance, and 

function 2 explains 20.2% of variance. Two discriminant scores for each specimen are also 
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calculated from those two functions. A plot based on discriminant scores of the 76 fossil seeds 

was built (Figure 9). Except a few seeds showing transitional distribution, the three morphotaxa 

recognized from the cluster analysis are separated from the discriminant analysis plot, which 

supports the three morphotaxa are successfully distinguishable based on the 11 characters (Table 

3). Next, discriminant analysis was performed to calculate probabilities of misclassification in 

each morphotaxon. Its result shows 93.4% of specimens were originally classified correctly. 

According to the classification result, two seeds (SLN 68, 76) of the morphotaxon 1 from the 

cluster analysis are classified into predicted group 2 (groups described in the discriminant 

analysis are equal to clusters indicated by the cluster analysis), and three seeds (SLN 4, 37, 55) 

of the morphotaxon 1 from the cluster analysis are classified into predicted group 3. Probabilities 

of these five misclassified specimens being placed in the predicted groups and original groups 

are listed (Table 9). After further checking morphological characters of these five seeds, we 

followed their position in the dendrogram (Figure 7) of cluster analysis.  

 

Table 9 The Five Misclassified Specimens Indicated by the Canonical Discriminant Analysis. 

Percentages of each specimen in the highest group (predicted group) and the second highest 

group (original group) are listed. 

 
Specimen label number 

(SLN) 

Original group Highest group Second highest group 

Predicted group % Group % 

4 2 3’ 0.517 2 0.423 

37 2 3’ 0.679 2 0.319 

55 2 3’ 0.462 2 0.459 

68 1 2’ 0.556 1 0.437 

76 1 2’ 0.790 1 0.210 
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Figure 9 Score Plot of the Two Canonical Discriminant Functions of Discriminant Analysis. 

Specimen label number (SLN) of each specimen as in Figure 7 is shown.  

 

Descriptive Statistics and Independent Sample t-test 

Descriptive statistics of all 11 characters were calculated separately for those 3 clusters 

(Table 10, Figure 10). Then independent sample t-test for equality of means was performed to 

test the difference of the 11 characters for each cluster pair (Table 11). During the t-test, 

Levene’s Test for equality of variances was used to examine the conditions of t-test. Based on 

the t-test result, 9 characters are different significantly between cluster 1 and 2, and all 11 

characters are different significantly between cluster 1 and 3 at the level p<0.05, which means 

that cluster 1 is clearly distinguishable from the other two clusters.  Six characters from 

measurements of seed size and ventral infolds show significant difference between clusters 2 and 
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3 at the level p<0.05, while the chalaza size and beak width are indistinguishable between these 

two clusters. However, considering the previous analysis and morphological characters, I still 

can identify these two clusters as distinct morphotaxa.  

Table 10 Descriptive Statistics of the Eleven Characters and Six Ratios for the Three Clusters 

from Hierarchical Cluster Analysis.  
 
Character Cluster1 (N=31)  Cluster 2 (N=19)  Cluster 3 (N=26) 

 Min Max Mean S.D. Min Max Mean S.D. Min Max Mean S.D. 

M1 3.390 4.580 3.992 0.337     3.904 5.187 4.363 0.315    4.534 5.700 5.082 0.361 

M2 2.916 4.059 3.489 0.318 3.320 4.083 3.739 0.212 4.020 5.288 4.389 0.318 

M3 2.317 3.686 3.030 0.307 2.729 3.896 3.470 0.287 2.869 4.324 3.484 0.297 

M4 0.600 1.065 0.774 0.101 0.614 1.252 0.882 0.172 0.607 1.222 0.979 0.153 

M5 0.828 1.314 1.069 0.126 0.980 1.447 1.208 0.129 1.012 1.493 1.215 0.135 

M6 0.484 0.817 0.619 0.101 0.669 1.081 0.801 0.092 0.584 1.089 0.806 0.112 

M7 1.703 2.729 2.173 0.264 1.905 2.667 2.300 0.221 2.193 3.180 2.633 0.224 

M8 1.262 2.224 1.719 0.204 1.206 2.115 1.710 0.208 1.774 2.520 2.095 0.178 

M9 0.801 1.525 1.158 0.186 1.140 1.956 1.481 0.209 0.927 1.828 1.337 0.240 

M10 0.482 0.887 0.669 0.105 0.669 1.353 0.878 0.170 0.436 1.089 0.781 0.157 

M11 0.902 1.602 1.213 0.175 1.081 1.859 1.455 0.201 1.213 2.038 1.617 0.209 

R1(M3/M1) 0.567 0.995 0.764 0.095 0.650 0.981 0.798 0.079 0.578 0.783 0.687 0.051 

R2(M5/M6) 0.425 0.807 0.583 0.094 0.498 0.902 0.673 0.123 0.472 0.829 0.667 0.087 

R3(M7/M2) 0.518 0.820 0.624 0.069 0.512 0.724 0.616 0.055 0.480 0.737 0.602 0.055 

R4(M10/M9) 0.381 0.981 0.590 0.127 0.441 0.866 0.597 0.105 0.428 0.764 0.585 0.073 

R5(M11/M2) 0.264 0.429 0.348 0.040 0.293 0.547 0.390 0.061 0.286 0.474 0.368 0.040 

R6(M8/M2) 0.418 0.576 0.493 0.044 0.355 0.542 0.456 0.416 0.430 0.551 0.478 0.339 

 

Table 11 Independent Sample t-test for Equality of Means between Each Cluster Pair. The bold 

numbers show significant difference between cluster pairs at p<0.05. 
 

 Cluster 1-2 Cluster 1-3 Cluster 2-3 

Variables t p-value t p-value t p-value 

M1 -3.940 0.000 -11.776 0.000 6.961 0.000 

M2 -3.029 0.004 -10.631 0.000 7.723 0.000 

M3 -5.033 0.000 -5.633 0.000 0.157 0.876 

M4 -2.492 0.019 -5.835 0.000 1.995 0.052 

M5 -3.782 0.000 -4.248 0.000 0.174 0.862

M6 -6.406 0.000 -6.635 0.000 0.156 0.877 

M7 -1.756 0.085 -7.072 0.000 4.963 0.000 

M8 0.156 0.877 -7.345 0.002 6.676 0.000 

M9 -5.677 0.000 -3.170 0.003 -2.086 0.043 

M10 -4.848 0.000 -3.101 0.000 -1.986 0.053 

M11 -4.481 0.000 -7.392 0.001 2.610 0.012 
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Lastly, the morphological characters of the three clusters, which could be reflected by 

relative morphometric characters used in this study, were compared (Table 12). Based on my 

analysis, the three morphotaxa are characterized both quantitatively (Table 10) and qualitatively 

(Table 12). 

Table 12 Comparison of the Morphological Characters of the Three Clusters Based on Relative 

Morphometric Characters Used in This Study. 
 
Characters Relative morphometric 

characters 

Cluster1  

(morphotaxon 1) 

Cluster2 

(morphotaxon 2) 

Cluster 3  

(morphotaxon 3) 

Seed size M1, M2, M3 Small Medium Big 

Seed shape R1 (=M3/M1) Narrow Close to round Narrow 

Beak M4 Narrow Medium Broad 

Chalaza size M5, M6 Small Big Big 

Chalaza shape R2 (=M6/M5) Narrow Nearly round Nearly round 

Chalaza position R3 (=M7/M2) Center of dorsal face Center of dorsal face Center of dorsal face 

Ventral infolds 

length 

M8, R6 (=M8/M2 ) About 2/5-3/5 seed 

length 

About 1/3-1/2 seed 

length 

About 2/5-1/2 seed 

length 

Ventral infolds 

position 

R5 (=M11/M2) About 1/3-2/5 to seed 

apex 

About 1/3-1/2 to seed 

apex 

About 1/3-2/5 to seed 

apex 

Ventral infolds 

shape 

R4 (=M10/M9) Broaden toward seed 

apex 

Broaden toward seed 

apex 

Broaden toward seed 

apex 

Raphe ridge width M9, M10 Narrow Medium Broad 
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Figure 10 Boxplots Showing Variation in the Eleven Characters (Table 1) Based on the Three 

Clusters (Morphotaxa) from the Dendragram of Hierarchical Cluster Analysis (Figure 7).   
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Systematic Description 

Based on my survey of seed morphology at the general level based on 95 extant species 

representing 9 genera of the Vitaceae from HUH and MO (Table 4) with additional information 

from published studies on extant vitaceous seed morphology (Tiffney and Barghoorn 1976; Chen 

and Manchester 2007), I conclude that the fossil vitaceous seeds from the Gray Fossil Site that 

are characterized by the combination of the central positioned chalaza on dorsal surface, obvious 

visible chalaza-apex groove, and short linear ventral infolds correspond to the genus Vitis. On the 

basis of the smooth surface of these fossil seeds, I further place them in the subgenus Vitis. Seeds 

of another subgenus Muscadinia show furrowed to striated dorsal surface (Tiffney and Baghoon 

1976). Furthermore, morphometric study identifies three morphotaxa (Figure 7). Here, I 

considere them as three new Vitis species. 

Order: Vitales Burnett 

Family: Vitaceae Jussieu 

Genus: Vitis Linnaeus 

Subgenus: Vitis Planchon 

Taxonomic key to the fossil seed of the three Vitis species from the Gray Fossil Site: 

1a. Seed size >5x4mm, chalaza pyriform to spatulate, chalaza-apex groove broad and 

deep…………………………………………………………….......... Vitis latisulcata sp. nov.  

1b. Seed size <5x4mm, chalaza round, elongate to elliptical, chalaza-apex groove narrow and 

shallow to deep…………………………………………………………………..…………... 2 

2a. Seed shape outline subglobose, chalaza round….………...….. Vitis lanatoides sp. nov. 
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2b. Seed shape outline on dorsal and ventral views obovoid, chalaza elongate 

to elliptical…………………………………………...…………… Vitis grayana sp. nov. 

Species: Vitis grayana Gong et Liu, sp. nov. (Figure 11 A-H) 

Specific diagnosis (The following are specific charactertics of Vitis grayana): Seed shape 

outline on dorsal and ventral views obovoid; surface smooth; beak trapezoidal, outline on dorsal 

and ventral views of the beak continuing the general outline of the seed; chalaza narrow elongate 

to elliptical, centrally positioned on the dorsal face; chalaza-apex groove narrow, obviously 

visible; chalaza-base groove narrow, slightly visiable to faint; ventral infolds linear, straight, 

short, about 2/5-3/5 seed length, apically divergent; raphe ridge narrow. 

Description:  

The seed shape outline on both dorsal and ventral views is obovoid. Seed surface is 

smooth. The mean length of the 31 complete specimens is 3.99mm (range 3.39-4.58mm), while 

the mean width is 3.03mm (range 2.32-3.67mm). The outline on dorsal and ventral views of the 

obviously trapezoidal-shape beak continues the outline of the seed. The narrow elongate to 

elliptical chalaza is centrally positioned on the dorsal face and slightly or not concave to the seed 

surface. The narrow and shallow chalaza-apex groove is obviously visible forming a shallow to 

deep apical notch in its passage to the ventral face. Some specimens maintain a raphe in the 

chalaza-apex groove extending from the chalaza apex to the apical notch. The narrow chalaza-

base groove is slightly visible to faint. The linear, straight ventral infolds are short and about 2/5-

3/5 length of the seed extending to the apical 1/3-2/5 of seed and slightly or noticeably diverging 

apically. The shallow infold cavities show a clear boundary from the raphe ridge and a faint 
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boundary from the ventral surface. The narrow raphe ridge rises slightly from the ventral surface 

and slightly or markedly narrows towards the seed base. 

Holotype: ETMNH-8144 (Figure11, A- B). 

Paratypes: ETMNH-8089 (Figure 11, C- D); ETMNH-8115 (Figure 11, E-F); ETMNH-

8122 (Figure 11, G-H). 

Etymology: The specific epithet grayana refers to the Gray Fossil Site where specimens 

were collected. 

Type locality: The Gray Fossil Site, Washington County, northeastern Tennessee, USA 

(36.58°N, 82.58°W). 

Horizon: Near the top layer of the laminated facies.  

Age: Late Hemphillian (7-4.5 Ma, latest Miocene to earliest Pliocene). 

Material: ETMNH-8073, ETMNH-8081, ETMNH-8083, ETMNH-8084, ETMNH-8085, 

ETMNH-8089, ETMNH-8093, ETMNH-8097, ETMNH-8099, ETMNH-8103, ETMNH-8105, 

ETMNH-8114, ETMNH-8116, ETMNH-8117, ETMNH-8120, ETMNH-8122, ETMNH-8124, 

ETMNH-8128, ETMNH-8129, ETMNH-8130, ETMNH-8131, ETMNH-8132, ETMNH-8135, 

ETMNH-8137, ETMNH-8138, ETMNH-8140, ETMNH-8141, ETMNH-8142, ETMNH-8144, 

ETMNH-8145, ETMNH-8148. 

Comparison:  

This present species is characterized by the obovoid seed shape outline at both the dorsal 

and ventral views and narrow elongate to elliptical chalaza. The seed size, outline views, narrow 
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chalaza shape, obvious narrow chalaza-apex groove, and slightly visible to faint chalaza-base 

groove are closely comparable to two modern species Vitis balanseana and V. thunbergii. 

Differences exist in the triangular beak shape of V. thunbergii and cylindrical beak shape of V. 

balanseana and much deep infold cavities of these two modern species that show clear 

boundaries between infold cavities and ventral surface. Both of these two modern species show 

deep infold cavities that differ from V. grayana; however, considering the taphonomy, one would 

not suggest the depth of infold cavities as important characters to identify vitaceous seeds. The 

outline on dorsal and ventral views of the triangular beak of V. thunbergii continues the general 

outline of the seed, while the prominent cylindrical beak of V. balanseana shows clear boundary 

with the seed body on ventral face-view, which implies that the beak shapes should be useful 

characters to identity species of Vitis. Considering the relationship between the outline of the 

beak and the seed body and that the trapezoidal beak of our fossil species might be formed from 

one triangular beak destroyed during the fossilization, Vitis grayana could be most similar to the 

modern species V. thunbergii than V. balanseana. 

Vitis thunbergii is currently distributed in warm to temperate regions of East Asia (Chen 

et al. 2007). Its fossil seeds were reported from the late Neogene in Japan (Miki 1956, p.265, fig. 

15) and the Pliocene of France (Reid 1923, pp.338-339, plate 11, figs.3-4). Furthermore, one 

fossil species V. teutonica (Czeczott 1959, p.102, plate 16, figs.3, 6-7) also shows similar 

features with V. grayana except for the wedge-shaped basis of this European fossil species. All 

this evidence suggests that this kind of V. thunbergii-like fossil species possessed a wide 

distribution in the Neogene of North Hemisphere.  
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Species: Vitis lanatoides Gong et. Liu sp. nov. (Figure11 I-L; Figure12 A-D) 

Specific diagnosis (The following are specific charactertics of Vitis lanatoides): Seed 

shape outline on both dorsal and ventral views round; surface smooth; beak cylindrical, 

prominent; chalaza round, positioned centrally on the dorsal face; chalaza-apex grooves narrow, 

shallow; chalaza-base groove narrow slightly visible to faint; apical notch not distinct; ventral 

infolds straight, short, about 1/3-1/2 length of the seed, divergent apically; ventral infold cavities 

narrow, deep, with clear boundaries from the ventral surface. 

Description:  

The seed shape outline on both dorsal and ventral views is round. Seed surface is smooth. 

Some seeds have subglobose shape, while the other are flattened to a certain extent. The mean 

length of the 19 complete seeds is 4.36mm (range 3.9-5.19mm). The mean width is 3.47mm 

(range 2.73-3.9mm). The cylindrical beak is prominent from the seed base. The round chalaza is 

positioned centrally on the dorsal face and slightly concave to the seed surface. A few seeds 

possess chalaza much closer to the seed apex. The narrow chalaza-apex groove is shallow, linear, 

and slightly to obviously visible. The narrow chalaza-base groove is faintly visible. The apical 

notch is not distinct. The straight narrow linear ventral infolds are short and about 1/3-1/2 of the 

seed length extending to the apical 1/3-1/2 of seed and diverging apically. The ventral infold 

cavities are deep with clear boundaries from the ventral surface. The raphe ridge faintly or 

slightly rises from the ventral surface and narrows towards the seed base. 

Holotype: ETMNH-8088 (Figure 11, I- J). 

Paratypes: ETMNH-8111 (Figure 11, K- L), ETMNH-8113 (Figure 12, A- B), ETMNH-

8121 (Figure 11, C-D).  

49



Etymology: The specific epithet lanatoides refers to a close resemblance of this fossil 

seed to seeds of the extant V. lanata Roxburgh. 

Type locality: The Gray Fossil Site, Washington County, northeastern Tennessee, USA 

(36.58°N, 82.58°W). 

Horizon: Near the top layer of the laminated facies.  

Age: Late Hemphillian (7-4.5Ma, latest Miocene to Earliest Pliocene).  

Material: ETMNH-8076, ETMNH-8078, ETMNH-8087, ETMNH-8088, ETMNH-8090, 

ETMNH-8106, ETMNH-8107, ETMNH-8109, ETMNH-8111, ETMNH-8112, ETMNH-8113, 

ETMNH-8115, ETMNH-8119, ETMNH-8121, ETMNH-8123, ETMNH-8125, ETMNH-8127, 

ETMNH-8133, ETMNH-8134. 

Comparison: 

This present species is distinguished by the subglobose seed shape and the round chalaza. 

Some modern and fossil species from Parthenocissus and Ampelopsis, e.g. P. angustisucata 

(Scott 1954, p.81, plate 16, fig. 14; Manchester 1994, p.95, plate 45, figs. 6-7), A. rooseae 

(Manchester 1994, p.94, plate 44, figs. 6-10), A. rotundata (Reid and Chandler 1933, p.386, plate 

19, figs. 13-17), and A. crenulata (Reid and Chandler 1933, p.385, plate 19, figs. 11-12) are also 

subglobose in shape. However, Parthenocissus can be distinguished by its long ventral infolds 

extending from the base to apex of seed, and Ampelopsis can be distinguished by the lack of a 

chalaza-apex groove, which excludes my current fossil species from those two genera. Among 

the species of Vitis subglobose shape with a prominent cylindrical beak, dorsal centrally 

positioned round chalaza, and short apical divergent ventral infolds of V. lanatoides are 
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essentially the same as in the modern species V. lanata, which is distributed in the subtropical 

regions of East to South Asia (Chen et al. 2007). That species differs in the much wider raphe 

ridge and broader infold cavities than in the fossil species. Chandler (1962) described that one 

fossil species V. glabra from the lower Tertiary floras of southern England (Chandler 1962, 

p.103, plate 14, figs.49-53) and compared it with the extant V. lanata. Judging from the seed 

shape and chalaza of V. glabra illustrated by Chandler (1962), we tend to believe that V. glabra 

is more comparable with another extant V. labrusca than V. lanata.  

One fossil species Vitis tiffneyi (Manchester 1994) from the Nut beds, Clarno Formation, 

Oregon, also shows similar characters with V. lanatoides including subglobose shape, round 

central chalaza, and short straight ventral infolds. But the dorsal surface of V. tiffneyi is concave 

on the position of chalaza and chalaza grooves. In addition, other characters of V. tiffneyi such as 

the parallel ventral infolds, much narrower raphe ridge, and obvious groove on surface of raphe 

ridge are also different from V. lanatoides. Another fossil species possessing subglobose shape 

and similar size with V. lanatoides is V. subglobosa from London Clay (Reid and Chandler 1933, 

p.379, plate 18, figs.34-37; Chandler 1961 p.245, plate 24, figs.14-17). Tiffney and Barghoorn 

(1976) concluded that some vitaceous fossil species with short and wide deep ventral infolds 

including V. rostrata, (Tiffney and Barghoorn 1976), V. subglobosa, Ampelopsis crenulata, A. 

rotundata (Reid and Chandler 1933; Chandler 1961), V. platyformis, V. rectisulcata, Palaeovitis 

paradoxa, and V. obovoidea (Chandler 1960) should be considered as an unrecognized modern 

form or an extinct lineage in the genus Vitis. Vitis lanatoides possess similar ventral infolds 

characters with those fossil species, but infold cavities are narrower. It should be considered 

another member of this fossil group. 
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Species: Vitis latisulcata Gong et. Liu sp. nov. (Figure12 E- L) 

Specific diagnosis (The following are specific charactertics of Vitis latisulcata): Seed 

shape outline on both dorsal and ventral views ovate-elliptical to rectangular; surface smooth; 

beak cylindrical, extremely prominent from the seed base; chalaza pyriform to spatulate; 

chalaza-apex groove broad and deep; chalaza-base groove broad, slightly visible to faint; ventral 

infolds linear, straight to slightly curved, short, about 2/5-1/2 seed length, apically divergent; 

infold cavities broad, shallow; apical notch deep, forming a “V-shape” groove at top of the raphe 

ridge.  

Description: 

The seed shape outline on both dorsal and ventral views of this species is ovate-elliptical 

to rectangular. The surface of the seed is smooth. The mean length of 26 complete seeds is 

5.08mm (range 4.53-5.7mm) and the mean width is 3.48mm (range 2.87-4.32mm). A cylindrical 

beak projects from the seed base and shows clear boundary with the seed body. Some seeds 

possess beak with a flared tip. The pyriform to spatulate chalaza is positioned centrally on the 

dorsal face. In some seeds, the chalaza was lost to form a hole on the center of chalaza position. 

The broad deep chalaza-apex groove obviously extends from the chalaza apex to the seed apex 

and then forms the obvious deep apical notch that extends to the ventral face and forms a narrow 

“V-shape” groove at top of the raphe ridge. The broad chalaza-base groove is slightly visible to 

faint. The straight or slightly curved ventral infolds are short and about 2/5-1/2 of the seed length 

extending to the apical1/3-2/5 of seed and diverging apically. The shallow infold cavities are 

broad linear on face-view, with clear to faint boundaries from the ventral surface. The raphe 

ridge slightly rises from the ventral surface and narrows towards the seed base.  
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Holotype: ETMNH-8079 (Figure 12, E-F) 

Paratypes: ETMNH-8074 (Figure 12, G-H), ETMNH-8077 (Figure 12, I-J), ETMNH-

8100 (Figure 12, K-L). 

Etymology: The specific epithet latisulcata refers to the broad chalaza grooves of this 

species. 

Type locality: The Gray Fossil Site, Washington County, northeastern Tennessee, USA 

(36.58°N, 82.58°W). 

Horizon: Near the top layer of the laminated facies. 

Age: Late Hemphillian (7-4.5 Ma, latest Miocene to Earliest Pliocene). 

Material: ETMNH-8074, ETMNH-8075, ETMNH-8077, ETMNH-8079, ETMNH-8080, 

ETMNH-8082, ETMNH-8086, ETMNH-8091, ETMNH-8092, ETMNH-8094, ETMNH-8095, 

ETMNH-8096, ETMNH-8098, ETMNH-8100, ETMNH-8101, ETMNH-8102, ETMNH-8104, 

ETMNH-8108, ETMNH-8110, ETMNH-8118, ETMNH-8126, ETMNH-8136, ETMNH-8139, 

ETMNH-8143, ETMNH-8145, ETMNH-8147. 

Comparison: 

The large size of Vitis latisulcata, the pyriform to spatulate chalaza shape, the deep broad 

chalaza-apex groove, and the “V-shape” groove at top of the raphe ridge distinguish this species 

from other vitaceous seeds of the Gray Fossil Site. The pyriform to spatulate chalaza, broad deep 

chalaza-apex groove, and the short apically divergent ventral infolds of this fossil species are 

closely comparable to two modern North American species V. candicans and V. labrusca. 

Another character of V. latisulcata similar with that of V. candicans is the slightly to obviously 
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shallow chalaza-base groove that could often not be found in V. labrusca. The cylindrical beak 

and the flared tip on the beak of V. latisulcata are very close to the beak of V. labrusca, although 

the latter is somewhat broader than the former. Furthermore, both the beak characters of the 

fossil V. latisulcata and the modern V. labrusca are different to the triangular to trapezoidal beak 

of V. candicans. However, both of these two modern species are much bigger in size (about 6 X 

4mm) than the present fossil species. This size differences is too great to be an effect of 

desiccation or tapophomy. The “V-shape” groove at top of the raphe ridge of the fossil V. 

latisulcata is also not distinct in these two modern species. Both Vitis candicans and V. labrusa 

have been classified into the same series Labruscae based on many other morphological 

characters (Moore 1991). The Gray Fossil Site is located in about the southern limit of the 

present geographic range of V. labrusca and close to the eastern limit of the present geographic 

range of V. candicans (Moore 1991). The similar seed characters among these 3 species, 

taxonomic close relationship between V. candicans and V. labrusca, and relative geographic 

ranges of the three species suggest their close relationships.  

One fossil species named Vitis eolabrusca (Tiffney and Barghoorn 1976, p.179, plate 2, 

figs. A and C) from the early Miocene Brandon Lignite shares many features with V. labrusca. 

Vitis eolabrusca also shares some characteristics with V. latisulcata including these for seed and 

beak shape, seed size, and ventral infolds features. Differences are mainly in the round chalaza, 

narrow chalaza-apex groove, and faint chalaza-base groove of V. eolabrusca. Miki (1956) 

described one species from the Miocene and Pliocene of Japan named V. labruscoidae (Miki 

1956, pp.262-263, fig.12 A-D) that shared some similar features with V. labrusca, but that 

species was suggested to be much closed to V. coignetiae, an Asian species, by Tiffney and 

Barghoorn (1976). In the same paper Miki (1956) described another species named V. rotundata 
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showing a small hole in the central chalaza. But Vitis rotundata shows many different characters 

from our fossil species. The chalaza hole should be excluded as an important character to 

identify fossil vitaceous seeds because those holes may be formed during fossilization.  

On the study of Vitis eolabrusca, Tiffney and Barghoorn (1976) listed other fossil species 

possessing similar characters such as Vitis cf. silverstris (Czeczott 1959, p.102, plate 16, figs. 1-

2), V. silvestris (Szafer 1961, p.72, plate 18, figs. 18-20), V. glabra (Chandler 1962, p.103, plate 

14, figs.49-53), and V. tomskiana (Dorofeev 1963, pp.214-215, plate 38, figs.11-12). All those 

fossil species show some characters that could be comparable to V. latisulcata. Tiffney and 

Barghoorn (1976) indicated that all these species show similar characters with modern species V. 

coignetiae and V. labrusca and then suggested that they would represent the Tertiary parental 

stock of both V. coignetiae and V. labrusca. Vitis latisulcata presented at a later geological age 

than V. eolabrusca; however, the similar features might suggest the continuation of this lineage. 
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Figure 11 A-H. Fossil seeds of Vitis grayana sp. nov., I-L. Fossil seeds of Vitis lanatoides sp. nov. 
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Figure 11 A-H. Fossil seeds of Vitis grayana sp. nov., I-L. Fossil seeds of Vitis lanatoides sp. 

nov. Scale bar =1 mm. A. Dorsal view of specimen no. ETMNH-8144. B. Ventral view of 

specimen no. ETMNH-8144. C. Dorsal view of specimen no. ETMNH-8089. D. Ventral view of 

specimen no. ETMNH-8089. E. Dorsal view of specimen no. ETMNH-8115. F. Ventral view of 

specimen no. ETMNH-8115. G. Dorsal view of specimen no. ETMNH-8122. H. Ventral view of 

specimen no. ETMNH-8122. I. Dorsal view of specimen no. ETMNH-8088. J. Ventral view of 

specimen no. ETMNH-8088. K. Dorsal view of specimen no. ETMNH-8111. L. Ventral view of 

specimen no. ETMNH-8111. 
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Figure 12 A-D. Fossil seeds of Vitis lanatoides sp. nov., E-L. Fossil seeds of Vitis latisulcata sp. nov. 
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Figure 12 A-D. Fossil seeds of Vitis lanatoides sp. nov., E-L. Fossil seeds of Vitis latisulcata sp. 

nov. Scale bar =1 mm. A. Dorsal view of specimen no. ETMNH-8113. B. Ventral view of 

specimen no. ETMNH-8113. C. Dorsal view of specimen no. ETMNH-8121. D. Ventral view of 

specimen no. ETMNH-8121. E. Dorsal view of specimen no. ETMNH-8079. F. Ventral view of 

specimen no. ETMNH-8079. G. Dorsal view of specimen no. ETMNH-8074. H. Ventral view of 

specimen no. ETMNH-8074. I. Dorsal view of specimen no. ETMNH-8077. J. Ventral view of 

specimen no. ETMNH-8077. K. Dorsal view of specimen no. ETMNH-8100. L. Ventral view of 

specimen no. ETMNH-8100. 
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CHAPTER 4 

DISCUSSION 

Morphometrics on Vitis Seed Study 

To avoid the subjective error from the morphological observation and improve the 

classification for these fossil seeds, I chose 11 size characters for a morphometric analysis that 

could help me to study the seed morphological variance with objective statistical method. The 

characters that were chosen for this analysis mainly focus on the dimensions of seed body, beak, 

chalaza, and ventral infolds, all of which are important characters in the study of fossil vitaceous 

seeds (Tiffney and Barghoorn 1976; Chen and Manchester 2007). According to the study of the 

relationships among these characters, the correlation analysis (Table 6) shows that several 

variables are highly correlated with each other, and PCA results distinguish the most important 

variables among them (Table 7). 

In the specimen grouping study both the large rescaled distance gap between 10 and 15 

among the three clusters in the dendrogram of hierarchical cluster analysis (Figure 7; Figure 8) 

and the separation of majority of fossil seeds from the three clusters in the discriminant plot 

(Figure 9) support conclusion that three Vitis morphotaxa exist in the Gray fossil flora. 

Furthermore, the diagnostic differences among the three species investigated in the systematic 

description also support this conclusion. However, the discriminant analysis show that five 

specimens were misclassified (Table 9). Three of the five specimens (SLN 4, 55, 68) possess 

close probabilities in their predicted groups and the original groups, which indicate that these 

seeds might be transitional forms. After further checking their morphological characters, the first 

two specimens (SLN 4 and 55) follow the diagnostic characters of their original group V. 
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lanatoides, and SLN 68 specimen follows the diagnostic characters of its original group V. 

grayana, so the classification of these 3 speciemens follows the results of the cluster dendrogram 

(Figure 7). With the exception of these three specimens, the other two (SLN 37 and 76) show 

much higher probabilities in predicted groups than in original groups. The morphology of the 

SLN 37 specimen corresponds extremely closely to its original group V. lanatoides, and it is 

probable that its much bigger size, which lies in the size range of its predicted group V. 

latisulcata, caused its misclassification. Considering its morphological characters, I still maintain 

its position in the dendrogram and consider it as V. lanatoides. Some characters of the SLN 76 

specimen such as the subglobose shape, round chalaza, and cylindrical beak are much closer to 

its predicted groups V. lanatoides and this is coincident with its high probability of placement in 

V. lanatoides in the discriminant analysis. However, characters of its ventral infold accord with 

its original group V. grayana in the dendrogram. This seed displays distortion to a certain extent, 

which might lead to the conflict in its classified position. Here, I still consider the result of the 

cluster analysis correct and consider this specimen as one seed of V. grayana. 

Most of the characters included in the descriptive statistics are listed in the comparsion 

among the three species (Table 12), and these characters are all important for studies of vitaceous 

seed morphology in the same genus. On the other hand, the quantitative results of chalaza 

position and the ventral infold length relative to seed length appear similar for the three species, 

which should suggests that they are diagnostic characters for the genus Vitis.  

Lastly, some characters that are also used as important characters in the study of fossil 

vitaceous seeds but could not be measured directly and were excluded from morphometrics 

present little intraspecific variation. Those characters include seed shape, beak shape, chalaza 

shape, and ventral infold shape among others. Although seed shape shows some variation among 
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Vitis latisulcata (such as ETMNH-8079 and ETMHN-8100, Figure 12, E-F, J-L), the chalaza, 

chalaza-apex groove, apical notch, and ventral infolds show consistent characters, which 

suggests that Vitis latisulcata is a reliable and well marked species. Considering this result and 

the morphological study of extant Vitis species (Table5, Figure 6), I concluded that the seed 

shape is less important than the chalaza and ventral infold characters to identify vitaceous seeds.  

Ecological Consideration 

Considering the fossil Vitis species would have similar ecological habits with their 

nearest living relatives, one can make some inferences on the ecology of the Gray Fossil Site 

based on the three extant Vitis species similar with the fossil Vitis species discovered from the 

site. One of the fossil Vitis species from the Gray Fossil Site, V. latisulcata, shows close seed 

morphological similarity with one extant North American species V. labrusca. The Gray Fossil 

Site is located near the southern limit of the present geographic range of V. labrusca (Moore 

1991). Vitis labrusca inhabits a very wide variety of sites: both upland, well drained areas and 

lowland, poorly drained areas including intermittently flooded bottomland (Moore 1991). This 

does not exclude the previous interpretation of the Gray Fossil Site as a lacustrine environment; 

however, the wild variation of the habitat and environment of V. labrusca precludes any clear 

interpretation of ecological environment of the Gray Fossil Site area in latest Miocene-earliest 

Pliocene. The other two fossil Vitis species from the Gray Fossil Site also show resemblance to 

two modern Asian Vitis species: V. thunbergii and V. lanata. Vitis thunbergii inhabits in forests, 

shrublands, and hillsides (elevation 100-1300m) of east China, extending to Japan, while Vitis 

lanata inhabits in forests, shrublands, hillsides, valleys (elevation 100-3200m) of East and South 

Asia (southeastern China, Taiwan, Bhutan, India, Nepal) (Chen et al. 2007). According to the 

habitats of these two Asian Vitis species, the ecological environment may be consistent with 
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forests, shrublands, and hillsides. The areas of cooccurrence of V. thunbergii and V. lanata lie in 

the warm-temperate zone to subtropics of southeastern China that are located in a lower latitude 

than the Gray Fossil Site. The alliance of parts of Vitis species from the Gray Fossil Site with 

these two extant Vitis species of eastern Asia support to the previous suggestion that the climate 

of the Gray Fossil Site was warm-temperature during the Late Neogeone (Shunk et al. 2006; Liu 

and Zavada 2009).  

Phytogeographical Significance 

The seed fossil record of Vitaceae appears to start in the late Paleocene and is diverse and 

widespread by the early Eocene (Chen and Manchester 2007). Among the fossil vitaceous seeds, 

the commonest species and the highest number of seeds belong to Vitis. The Paleogene Vitis seed 

records show a wide distribution in both North America (e.g. Manchester 1994; Manchester 

McIntosh 2007) and Europe to West Siberia (e.g. Reid and Chandler 1933; Chandler 1957, 1960, 

1961, 1962, 1963, 1964; Dorofeev 1957, 1963). Chen and Manchester (2007) mentioned that the 

North Atlanta Land Bridges should play the key role for expanding of Vitis and other genera of 

Vitaceae between these two continents. In the Neogene, while fossil Vitis seeds were still 

commonly uncovered from floras of North America (e.g. Tiffney and Barghoorn 1976; Tiffney 

1979) and Europe (e.g. Reid 1923; Czeczott et al. 1959; Dorofeev 1957, 1963; Fairon-Domaret 

and Smith 2002), the fossil Vitis seeds were also described from the Miocene and Pliocene floras 

of eastern Asia (Miki 1956) indicating that the distribution of Vitis expanded to the whole North 

Hemisphere during the Neogene. The absence of Paleogene Vitis records in eastern Asia may 

have resulted from either the lacking of fossil Vitis records in Paleogene floras of this area or the 

later occurrence of Vitis in eastern Asia than in North America and Europe. However, lacking 

evidence from phylogenetic analysis based on molecular data, it would be biased to deduce the 
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evolution of Vitis only according to its fossil records. Nowadays, the Vitis is still commonly 

distributed in North America and East to South Asia and dispalys a disjunct distribution between 

these two continents (Chen and Manchester 2007); however, it has no wild records from Europe 

(Webb 1968; Punt et al. 2003). The distribution change of Vitis in present Europe could be the 

result of the climatic changes of the Pleiostocene (Manchester 1999; Wen 1999). 

Among the three fossil Vitis species from the Gray Fossil Site, only V. latisulcata shows 

much close morphological characters with the local species V. labrusca in North America. Vitis 

grayana shows a close relationship with one modern and late Neogene species V. thunbergii 

(Miki 1956) from East Asia and two Pliocene species V. thunbergii and V. teutonica from 

Europe (Reid 1923; Cezeczott et al. 1959). Vitis lanatoides shows similar characters to one East 

to South Asian species, V. lanata. Although present day Vitis show a disjunct distribution 

between eastern Asia and North America, the similarity and close relationships of fossil and 

modern Vitis between eastern Asia and eastern North America has been mentioned by previous 

studies (Mike 1956; Tiffney and Barghoon 1976). Together with the fossil red panda (Wallace 

and Wang 2004) and other plant fossils such as Sinomenium (Menispermaceae) and 

Sargentodoxa (Lardizabalaceae) (Liu et al. 2007) from the Gray Fossil Site, the Vitis species 

uncovered from the Gray Fossil Site provides further evidence that the eastern Asian floristic 

elements existing in the southeastern North American flora continued to as late as the late 

Neogene.  

The disjunct distribution between eastern Asia and eastern North America of many 

flowering plants (about 65 genera) represents one of the most prominent intercontinental 

disjunctions of closely related species and has been comprehensively studied based on evidence 

from paleobotany, geology, climate, and molecular phylogenetic analysis (e.g. Tiffney 1985a, 
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1985b; Tiffney and Manchester 2001; Manchester 1999; Manchester and Tiffney 2001; Wen 

1999, 2001; Xiang and Soltis 2001; Xiang et al. 1998, 2000). In general these disjunct plants are 

interpreted as relicts of the continuous mesosphytic forests in the Northern Hemisphere during 

the Paleogene and Neogene, with both the North Atlantic and Bering land Bridges involved 

(Tiffney 1985a, 1985b; Wen 1999) and with the forests subsequently reduced as the climatic and 

geological changes occurred through the late Neogene and Quaternary (Graham 1972; Wen 1999; 

Xiang et al. 2000). With the North Atlantic Land Bridges broken in the early Eocene (Tiffney 

1985b, 2000; Tiffeny and Manchester 2001), the Bering Land Bridge became the primary 

connection between eastern Asia and North America in the Neogene until its closure in the late 

Neogene (about 7.4 to 4.8 Ma) (Tiffney and Manchester 2001). However, the disjucnt plants 

between these two continents show a complicated array of divergence times. Tiffney (1985b) 

proposed two major disjunct periods/patterns (Miocene and late Neogene-Quaternary) in the 

Neogene. Based on molecular data from 11 eastern Asian-eastern North American disjunct 

species pairs, Xiang et al. (2000) estimated divergence times of these species pairs with a range 

from less than 0.31 to 12.40 (± 4.30 Ma) coinciding to the mid-Miocene to Quaternary periods. 

After considering a factor of 1/2 in calculating the divergence times (Li 1997), these results 

(Xiang et al. 2000) shorten by about half the previously estimated range of divergence times 

(about 2-25 Ma, early Miocene to Quaternary) reviewed by Wen (1999).   

The geological age of the Gray Fossil Site is about latest Miocene to earliest Pliocene(7-

4.5 Ma) (Wallace and Wang 2004; Shunk et al. 2006), which falls within or a little earlier than 

the divergence time ranges of the majority of the disjunct species pairs studied by Xiang et al. 

(2000). Examples include Campsis (Bignoniaceae, 3.62 ± 2.10 Ma), Caulophyllum 

(Berberidaceae, 2.38 ± 2.07 Ma), Cornus (Cornaceae, 4.88±2.46 Ma), Decumaria 
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(Hydrangeaceae, 2.38±1.69 Ma), Liriodendron (Magnoliaceae, 4.19±2.26Ma), Mitchella 

(Rubiaceae, 5.89±2.38Ma), Penthorum (Penthoraceae, 4.88± 2.46Ma), and Podophyllum 

(Berberidaceae, 6.71±3.08Ma). In addition the divergence time of Symplocarpus and Lysichiton 

(Araceae, the former 4.49±1.69 or 6.88±4.18 Ma, and the latter 4.02±1.60 or 7.18±4.33 Ma) (Nie 

et al. 2006a), Phryma (Phrymaceae, 3.68±2.25 or 5.23±1.37 Ma) (Nie et al. 2006b), also 

correspond to the range of the divergence time mentioned above and to the geological time of the 

Gray Fossil Site. These validated the conclusion that many migrations still occurred between 

eastern Asia and eastern North America during the latest Miocene and earliest Pliocene via the 

Bering Land Bridge. This could explain the eastern Asian elements of the Gray fossil flora, and 

the close resemblance of parts of Vitis species from the Gray Fossil Site with extant East Asian 

Vitis.  
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CHAPTER 5 

CONCLUSION 

Numerous vitaceous seeds were uncovered from the late Neogene Gray Fossil Site. 

Based on morphological study, all the vitaceous seeds were identified into the genus Vitis, 

subgenus Vitis. 

Eleven characters measured from 76 complete fossil seed were chosen for a 

morphometric study. Two seperate multivariate analyses support the recognition of three 

different morphotaxa of Vitis occurring in the Gray fossil flora. 

Ninety-five extant species from 11 genera of Vitaceae were used for comparative 

morphological study. A systematic study on 41 species of subgenus Vitis indicated that Vitis seed 

morphology show same intraspecific consistency, which is important for studies of the fossil 

Vitis seeds at the specific level. 

After comparison with modern and fossil vitaceous specimens, the three morphotaxa 

recognized by the morphometric study were defined into three new taxa: Vitis grayana sp. nov., 

Vitis lanatoides sp.nov., and Vitis latisulcata sp. nov. A systematic treatment for these three 

species was presented. 

The broad range of the ecological conditions for the modern Vitis specimens closed to the 

Gray fossil Vitis species suggest that vegetational conditions at the Gray Fossil Site may be 

consistent with forest, shrublands, and hillsides. The alliance of two Vitis species from the Gray 

Fossil Site with two extant eastern Asian Vitis species supports the previous suggestion that the 

climate of the Gray Fossil Site was warm-temperature during the Late Neogeone. 
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The close resemblance between parts of the fossil Vitis from the Gray Fossil Site with 

extant eastern Asian Vitis provides further evidence of the eastern Asian floristic elements of the 

flora from southeastern North America continued to as late as the late Neogene. The dates for the 

Vitis seeds from the Gray Fossil Site coincide well with established biogeographical time 

windows for plant migrations between North America, Europe, and Asia.  
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APPENDIX 

Specimen Label Number and Catalogue Number 

The Specimen Label Number (SLN) for each fossil specimen used in this study and the corresponding 

specimen catalogue number (Catalogue No.) in the East Tennessee State University and General Shale 

Brick Natural History Museum (ETMNH) are listed. 

 

 

 

 

 

 

 

 

 

 

 

SLN Catalogue No. SLN Catalogue No. SLN Catalogue No. SLN Catalogue No. 

Vitis grayana nov. sp. Vitis grayana sp. nov. 

(continued) 

Vitis lanatoides sp. nov. 

(continued) 

Vitis latisulcata sp. nov. 

(continued) 

1 ETMNH-8073 59 ETMNH-8131 39 ETMNH-8111 20 ETMNH-8092 

9 ETMNH-8081 60 ETMNH-8132 40 ETMNH-8112 22 ETMNH-8094 

11 ETMNH-8083 63 ETMNH-8135 41 ETMNH-8113 23 ETMNH-8095 

12 ETMNH-8084 65 ETMNH-8137 43 ETMNH-8115 24 ETMNH-8096 

13 ETMNH-8085 66 ETMNH-8138 47 ETMNH-8119 26 ETMNH-8098 

17 ETMNH-8089 68 ETMNH-8140 49 ETMNH-8121 28 ETMNH-8100 

21 ETMNH-8093 69 ETMNH-8141 51 ETMNH-8123 29 ETMNH-8101 

25 ETMNH-8097 70 ETMNH-8142 53 ETMNH-8125 30 ETMNH-8102 

27 ETMNH-8099 72 ETMNH-8144 55 ETMNH-8127 32 ETMNH-8104 

31 ETMNH-8103 73 ETMNH-8145 61 ETMNH-8133 36 ETMNH-8108 

33 ETMNH-8105 76 ETMNH-8148 62 ETMNH-8134 38 ETMNH-8110 

42 ETMNH-8114 Vitis lanatoides sp. nov. Vitis latisulcata sp. nov. 46 ETMNH-8118 

44 ETMNH-8116 4 ETMNH-8076 2 ETMNH-8074 54 ETMNH-8126 

45 ETMNH-8117 6 ETMNH-8078 3 ETMNH-8075 64 ETMNH-8136 

48 ETMNH-8120 15 ETMNH-8087 5 ETMNH-8077 67 ETMNH-8139 

50 ETMNH-8122 16 ETMNH-8088 7 ETMNH-8079 71 ETMNH-8143 

52 ETMNH-8124 18 ETMNH-8090 8 ETMNH-8080 74 ETMNH-8145 

56 ETMNH-8128 34 ETMNH-8106 10 ETMNH-8082 75 ETMNH-8147 

57 ETMNH-8129 35 ETMNH-8107 14 ETMNH-8086   

58 ETMNH-8130 37 ETMNH-8109 19 ETMNH-8091   
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