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ABSTRACT 

Iron Acquisition in Rhodococcus erythropolis Strain IGTS8:  Characterization of a 

Mutant Strain that Over Produces Siderophore 

by 

Melanie A. Pratt 

 

Iron is an essential nutrient for most bacteria because enzymes like nitrate reductase and 

cytochromes use it as a cofactor.  However, in most aerobic, neutral pH environments, 

iron is essentially insoluble and not easily available for bacteria to use.  Many bacteria 

respond to this problem by releasing small organic compounds called siderophores that 

bind and effectively solubilize iron so that it can be transported into the cell for growth.  

The focus of this study was to learn more about the iron acquisition and especially the 

transport of iron by the soil bacterium Rhodococcus erythropolis.  To fulfill this aim, 

mutant strains of the bacteria were screened for those that overproduce siderophore.  

Often, a bacterium will over produce siderophore to compensate for a defect in transport.  

One such mutant, R187-12, was further analyzed by cloning the region of the 

chromosome containing the defective gene responsible for over production of 

siderophore into a plasmid vector.  The DNA sequence of this region was determined and 

analyzed for the presence of similar genes encoding transport proteins.  
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CHAPTER 1 
INTRODUCTION 

 
 

The Genus Rhodococcus 
 

The genus Rhodococcus encompasses a group of Gram positive, aerobic, non-

motile, mycolate-containing actinomycetes (Bell et al. 1998). The genus is closely related 

to the Mycobacteria, with both containing mycolic acids in the cell wall, although the 

rhodoccoci contain fewer numbers and are capable of being gram stained, unlike the 

mycobacteria.  Rhodococcus cells are described as norcardioform, which is a 

morphologically descriptive term referring to mycelial growth with fragmentation into 

rod-shaped or coccoid elements.  These bacteria do not form spores under adverse 

conditions, although the mycolic acids enable the cells to resist desiccation for a period of 

time. Rhodococcus, Norcardia, Mycobacteria, and Corynebacteria encompass a 

phylogenetic group of bacteria known as the Mycolata. This group of bacteria has a high 

GC content and contains a number of pathogens (Meijer and Prescott 2004). The 

mycolata are characterized by a unique cell envelope that contains mycolic acids linked 

to arabinogalactan wall polysaccharide and (glycol)lipids (Mejier and Prescott 2004).  

This unique cell envelope is vastly different from those of Gram positive and Gram-

negative bacteria and forms a permeability layer to hydrophilic compounds.  This cell 

wall is likely important for the survival of these bacteria under harsh environmental 

conditions. One species of Rhodococcus, R. equi, is extremely resistant to environmental 

stress and oxidative stress as well as low pH, likely because of the cell wall (Meijer and 

Prescott 2004).  The rhodococci form colonies with bright pigmentation, ranging from 

pink to orange to red (Figure 1), although colorless variants do exist. Colonies can be 
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smooth, rough, mucoid, or even mycobacterial like (Goodfellow and Alderson 1977). 

The type species of this genus is Rhodococcus rhodochrous. This species forms rough, 

orange to red colonies on most media and can grow at temperatures ranging from 10oC to 

40oC (Goodfellow and Alderson 1977).  

 
Figure 1: Characteristic Rhodococcus erythropolis IGTSS8 colonies on RM agar 
 

The Rhodococci have diverse metabolic activities, enabling them to degrade a 

wide range of environmental pollutants as well as giving these bacteria the ability to 

transform and synthesize compounds that may have useful applications. In recent years, 

the commercial potential of Rhodococcus species has been increasingly recognized. 

Rhodococci are able to transform or degrade a wide range of chemicals, making them 

actually or potentially useful in environmental and industrial biotechnology. These 

bacteria are also able to synthesize several products including surfactants, flocculants, 

amides, and polymers, increasing their potential usefulness in biotechnology (Bell et al. 

1998).  The usefulness of these bacteria can be seen in the number of patents relating to 

rhodococci.  
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Most species of rhodococci grow optimally at 30oC, although Rhodococcus equi, 

as an animal pathogen, grows optimally at 37oC. Rhodococci are able to use a variety of 

carbon sources, including, but not limited to, glucose and lactate. The rhodococci are 

generally considered to be soil bacteria, although some, including R. equi and R. fascians 

can also be pathogenic in animals and plants, respectively. Bacteria from this genus have 

been isolated from a variety of sources, encompassing soils, groundwater, animal dung, 

insect guts, and both healthy and diseased plants and animals (Bell et al. 1998). They are 

found from deep sea to coastal sediments and from the Arctic to Antarctic soil samples 

(de Caravalho and da Fonesca 2005). 

In 1998, there were 12 recognized species in the genus Rhodococcus. According 

to Bell et al (1998), the genus name of Rhodococcus was first used in 1891 and then 

redefined and revived in 1977 to accommodate the “rhodocrous” complex that comprised 

a number of strains of bacteria that resembled, but did not belong to the established 

genera Mycobacterium, Corynebacterium and Norcardia (Bell et al. 1998).  Several new 

species of Rhodococcus, including R. yunnanensis, R. kunmingensis, R. qingshengii and 

R. cercidiphylli have been described in the literature in recent years, and there are now 

over 40 described species of the genus (Zhang et al. 2005, Xu et al. 2007, Wang et al. 

2008, Li et al. 2008). 

Although most species of Rhodococci are soil bacteria, some are considered 

pathogens. R. fascians is considered a pathogen of plants. This bacterium is capable of 

colonizing Nicotiana tabacum, making it an agriculturally important bacterium. R. 

fascians causes malformations on aerial plant parts, causing leafy galls at the axillary 

meristems (Cornelis et al. 2001). Besides infecting tobacco plants, R. fascians infects 
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other plants, interfering with the development and growth of a wide variety of hosts. 

Infection with R. fascians results in malformations and stunted growth. Both the nature 

and the location of the malformations depend on the infected host species and the 

infection method (Cornelis et al. 2001). Outbreaks of R. fascians in ornamental plant 

species can cause serious financial losses for gardeners and garden centers.  R. fascians 

has been isolated from infected plants and was found on both the surface and epidermal 

cells of sweet pea seedlings, indicating this bacterium can colonize the interior of the 

plant (Cornelis et al. 2001).  

Rhodococcus equi is primarily a pathogen of horses but can also be a cause of 

pneumonia in humans, particularly in those with compromised immune systems such as 

HIV patients. Like Mycobacterium tuberculosis, R. equi is able to infect the alveolar 

macrophages and survive within these immune cells.  R. equi is an important cause of 

bronchopneumonia in foals up to 3 to 5 months old. Occasionally, this bacterium causes 

pneumonia in other farm animals such as pigs and goats but is rarely seen as a pathogen 

in other species unless an immunodeficiency exists. However, R. equi is an important 

cause of AIDS-associated pneumonia in HIV patients (Meijer and Prescott 2004).  The 

pathogenicity of this species is defined by its ability to survive within the macrophages of 

the lungs, and the basis of its pathogenicity is its ability to multiply in and eventually 

destroy the alveolar macrophages.  A large virulence plasmid containing a 27kb 

pathogenicity island that encodes for 7 related virulence associated proteins, or VAPs, is 

crucial to the virulence of R. equi.  The different genes on the pathogenicity island are 

regulated by changes in temperature, pH, iron, and oxidative stress, all of which are 

environmental changes experienced by R. equi when inhaled in dust and ingested by the 
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alveolar macrophages (Meijer and Prescott 2004). A partial genome sequencing of R. 

equi has shown that a majority of genes in this bacterium are most closely related to those 

of M. tuberculosis (Meijer and Prescott 2004).    

While R. equi in humans generally occurs in those that are immunosuppressed, 

infections occur rarely in healthy individuals. These infections may be associated with 

deep, penetrating wounds (Bell et al. 1998). Resistance to β−lactam antibiotics appears to 

be common (Bell et al. 1998).  

The importance of the rhodococci in bioremediation is now apparent.  The ability 

of these bacteria to degrade substituted hydrocarbons and other chemicals indicates they 

play a significant role in the natural degradation of compounds and in bioremediation. 

Bioremediation is the use of living organisms, particularly microorganisms, in the 

removal of contaminants from soil and water.  There have been few studies of 

bioremediation using the rhodococci in the field; however, these limited studies show 

promise. One study showed increased rates of the degradation of pentachlorophenol 

(PCP), a biocide that is found in pressure treated wood, in sandy soil that was inoculated 

with R. chlorophenolicus, which has now been reclassified as a Myocbacterium 

(Miethling and Karlson 1996). They also found that high numbers of the organism 

remained in the soil for months. Yet another study showed that inoculation with R. 

rubber increased the number of hydrocarbon-oxidizing bacteria persisting in composted 

soil that was contaminated with crude oil (Christofi et al. 1998). This finding indicates 

that R. rubber could be potentially useful in cleaning up oil spills. A 1996 study using R. 

erythropolis reported that introducing a hydrocarbon-degrading strain of this bacterium 

into artificially contaminated soil resulted in an increased number of hydrocarbon 
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degrading bacteria as well as an increased rate of hydrocarbon degradation (Bell et al. 

1998).  

Polychlorinated biphenyls (PCBs) are a mixture of chemicals containing up to 

209 individual chlorinated compounds. There are no known natural sources of PCBs. 

Until the 1970s, PCBs were manufactured in the United States. However, in 1977, after 

evidence arose that these compounds accumulated in the environment and could lead to 

harmful health effects, the manufacture of PCBs was halted in the United States. Though 

these compounds are no longer produced in the US, they are still present in the 

environment. PCBs were used as coolants and lubricants in electrical equipment because 

they do no easily burn and are considered to be good insulators. Older electrical 

equipment still contains these compounds. PCBs are released into the environment upon 

their disposal, and because they do not readily break down in the environment, they are 

present for a long time in the air, water and soil (Furukawa and Fujihara 2008). Because 

of their presence in the environment with potential harmful health effects, research into 

the degradation of PCBs has been extensive. It was shown that R. erythropolis, R. 

globerulus, and R. rhodochrous are able to degrade these compounds (Boyle et al. 1992; 

Asturias and Timmis 1993; Maeda et al. 1995; Seto et al. 1995).  The ability of these 

species of rhodococci to degrade PCBs makes them potentially useful in bioremediation 

and the cleanup of these potentially harmful compounds remaining in our environment.  

Biosurfactants are surface-active substances that are synthesized by living cells. 

These compounds can reduce surface tension, stabilize emulsions, and promote foaming. 

Generally, biosurfactants are nontoxic and biodegradable. The relevance of biosurfactants 

to the biodegradation of pollutants has 3 parts. Cellular surfactants like mycolic acids 
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cause the adherence of rhodococci to hydrophobic phases. Secondly, surfactants are 

capable of lowering the interfacial tension between the phases in a 2-phase system, thus 

making it easier for hydrophobic compounds to enter the microbial cells. Finally, 

extracellular surfactants disperse hydrophobic compounds that increase the surface area 

for microbial attack. It has been shown that some biosurfactants, including those 

produced by rhodococci, are more effective than many synthetic surfactants and are 

potentially less toxic and more biodegradable than the synthetic ones (Bell et al. 1998).  

The rhodococci are also useful in the chemical industry. One example is 

acrylamide that is used in coagulators, soil conditioners, and in stock additives for paper 

treatment and paper sizing and for adhesives, paints and petroleum recovering agents 

(Yamada and Kobayashi 1996). The Nitto Chemical Industry Company uses 

Rhodococcus rhodochrous J1 to produce around 30,000 tons of acrylamide annually 

using the nitrile hydratase (NHase) enzyme produced by this strain. This particular strain 

produces 2 types of nitrile converting enzymes, nitrilase and NHase, depending on the 

inducer used. Through studies, it was determined that the NHase was optimal for 

acrylamide production by the company (Yamada and Kobayashi 1996).  The production 

of acrylamide from acrylonitrile is an example of the industrial application of a nitrile 

hydrolase from a bacterial strain, R. rhodocrhous J1 (de Carvalho and da Fonseca 2005). 

Another potentially important use of the rhodococci is its ability to degrade the 

carbon-sulfur bonds in fossil fuels while leaving the carbon-carbon bonds intact. The 

removal of sulfur from coal and petroleum has been suggested as a way of preventing 

sulfur emissions caused by combustion and reducing the associated problems such as acid 

rain, as well as increasing fuel value.  However, the removal of organic sulfur from fossil 
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fuels is difficult. Several groups have researched the potential of different Rhodococcus 

species in the desulfurization of fossil fuels. The selectivity of breaking carbon-sulfur 

bonds while leaving carbon-carbon bonds unaffected seems to be unique to the 

rhodococci (Bell et al. 1998).  R. erythropolis IGTS8 is able to release inorganic sulfur. It 

has been shown that with this method of desulfurization of fossil fuels, the fuel calorific 

value of the crude oil is maintained. This is due to the release of sulfur without the 

degradation of the aromatic ring of carbons (de Carvalho and da Fonseca 2005).  

Continuing studies with this bacterium may prove to be useful in the biodesulfurization 

of fossil fuels, particularly as older methods of desulfurization are quickly becoming 

obsolete and there is increased interest in getting the most out of crude oil. 

The unique metabolic activities of the rhodococci may also be of use in detecting 

illicit drugs such as cocaine and heroin. Recently, a cocaine esterase was discovered in 

Rhodococcus sp. strain MB1. This species is capable of using cocaine as a sole source of 

carbon and nitrogen for growth. It was isolated from the soil surrounding the source of 

cocaine, Erythroxylum coca. Cocaine is naturally present in the leaves of this plant 

(Bresler et al. 2000). The cocaine esterase discovered in this bacterium is capable of 

initiating the degradation of cocaine. The cocaine is first hydrolyzed to ecgonine methyl 

ester and benzoate and then these compounds were further metabolized by the bacterium 

(Bresler et al. 2000). Previously, it was shown that another species of Rhodococcus, 

strain H1, was capable of producing a heroin esterase. This bacterium is capable of using 

heroin as a sole source of carbon as well as its sole energy source. The heroin esterase of 

Rhodococcus sp strain H1 was shown to catalyze the hyrolysis of both of the acetylester 

groups of heroin, yielding morphine (Cameron et al. 1994). Researchers have shown that 
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enzymes initiating heroin metabolism can be used in conjunction with bacterial luciferase 

to detect nanogram quantities of heroin. Similar research is being conducted to detect 

small quantities of cocaine (Bresler et al. 2000). The ability of these species of 

Rhodococccus to use cocaine and heroin as their sole carbon sources emphasizes the 

incredibly diverse metabolic activities of this genus.  

Currently, the genome of only 1 species of Rhodococcus has been sequenced, 

Rhodococcus sp RHA1. This bacterium was isolated from soil contaminated with lindane 

and is known for its ability to degrade polychlorinated biphenyls.  It has one of the largest 

bacterial genomes sequenced to date at 9,702,737 base pairs with a GC content of 67% 

(McLeod et al. 2006). The chromosome of Rhodococcus sp strain RHA1 is arranged into 

a linear chromosome and 3 linear plasmids.  The sequence of this bacterium is most 

similar to norcardial and mycobacterial strains (McLeod et al. 2006).  Using 16S RNA 

sequencing, it has been demonstrated that Rhodococcus sp strain RHA1 is closely related 

to R. opacus (McLeod et al. 2006).  

Getting Iron for Growth 

Iron is an essential element for nearly all microorganisms. Iron is required for 

amino acid and pyrimidine synthesis as well as in enzymes involved in the tricarboxylic 

acid cycle (TCA cycle), DNA synthesis, superoxide, photosynthesis, and nitrogen 

fixation (De Voss et al. 1999, Carronodo 2003).  Although iron is vitally important for 

cellular viability, bacteria generally require only trace amounts of the element.  

Although iron is one of the most abundant elements in the Earth’s crust, it is often 

difficult to obtain for microorganisms. The bacterium’s capacity to acquire iron from the 

environment is difficult, as most iron is not soluble in the presence of oxygen and at 
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neutral pH. In an environmental setting, iron is found in insoluble oxy-hydroxides. In the 

human host, iron is tightly bound in a complex with high affinity iron-binding proteins. 

To subvert this, pathogenic bacteria have evolved strategies enabling them to compete for 

iron in the host (Rodriguez 2006).  Iron is found in 2 common forms: Ferric iron (FeIII) 

and ferrous iron (FeII). Ferric iron is plentiful but highly insoluble, while ferrous iron is 

soluble and can freely diffuse across the cellular membrane but can produce toxic oxygen 

radicals when combined with the products of normal aerobic respiration. Under 

environmental conditions, ferrous iron is oxidized to form ferric iron. Ferric iron has an 

extremely low solubility under environmental conditions, found at a concentration of 

around 10-18 M . Within the bacterial cell, iron concentrations are found at around 10-3 to 

10-5 M (Carronodo 2003). Ferric iron is unable to freely diffuse across the cell membrane 

because it is largely insoluble.  Ferrous iron is able to diffuse across the cell membrane, 

but this does not generally occur as the ferrous iron is readily oxidized to ferric iron under 

environmental conditions. 

Iron acquisition in bacteria must be controlled, as too much iron is toxic to the 

cell. While iron is required by almost all bacteria for the activity of enzymes involved in 

vital cell functions, excess iron can harm the cell. Iron participates in reactions that 

generate toxic oxygen radicals, known as the Fenton reaction.  Ferrous iron complexes 

can act as electron reducing agents and ferric iron complexes can act as electron 

oxidizing agents (Pierre and Fontecave 1999).  These iron complexes can react with 

oxygen or reduced oxygen producing highly reactive iron-oxo species. A ferric complex 

can only catalyze the formation of hydroxyl radicals if 2 conditions are simultaneously 

met: the complex is reducible into its ferrous state and the ferrous complex has a redox 
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potential allowing the Fenton reaction (FeII +H2O2 à FeIII +OH- + OH). This reaction 

leads to the partial reduction of oxygen into hydroxyl radicals. These radicals are 

damaging to many macromolecules. Therefore, the bacterial cell must protect against 

damage by these toxic hydroxyl radicals (Wandersman and Delepelaire 2004) 

Thus, regulation of iron level is essential to the survival of the bacterial cell. 

Regulation of iron levels includes sensing cellular concentrations of iron and responding 

by modifying iron uptake, storage of excess iron for times of iron starvation, and possibly 

the efflux of iron (Rodriguez 2006).  Regulation can also take the form of binding iron in 

complexes such as lactoferrin and transferrin or binding the iron into protoporphyrin 

rings in hemoproteins as well as iron storage inside of ferritins. Because of the extremely 

tight iron homeostasis, there is virtually no free iron in a living bacterial cell 

(Wandersman and Delepelaire 2004).   

Iron Acquisition Systems 

In addition to ferrous and ferric iron as iron sources, pathogenic bacteria can use 

heme as an iron source. In mammalian hosts, the majority of iron is sequestered. Much of 

this iron is found in hemoglobin, a protein found in erythrocytes. Host cells also contain a 

storage form of iron known as ferritin. Any extracellular iron in the host is bound by 

transferrin and lactoferrin, high-affinity iron binding proteins (Mills and Payne 1995).  

Pathogens have several mechanisms to acquire this iron. One method of iron acquisition 

is for the bacteria to obtain iron directly from host iron sources. Ferrous iron can directly 

diffuse across the cellular membrane.  Some pathogenic bacteria use specific receptors to 

obtain iron from transferrin and lactoferrin.  Transferrin is generally found in the serum 

and functions both in iron transport as well as protecting the host from iron toxicity.  
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Lactoferrin is generally found in the lymph and mucosal secretions and protects the host 

by functioning as an iron chelator.  Both lactoferrin and transferrin have an extremely 

high affinity for FeIII and a much lower affinity for FeII.  Neisseria meningitidis and N. 

gonorrhoeae have transferrin and/or lactoferrin iron uptake systems.  In Gram negative 

bacteria, iron is extracted from siderophore-iron complexes at the cell surface by a 

mechanism that is not well understood, and then the iron is transported via an ABC 

transporter.  Gram positive bacteria also use transferrin but by less well characterized 

means (Wandersman and Delepelaire 2004).  Heme proteins also provide an iron source 

for some pathogens.  Heme is an iron protoporphyrin molecule present in many enzymes.  

Because of its high toxicity, heme is rarely found in a free form.  While micromolar 

concentrations of iron are required for bacteria, only nanomolar concentrations of heme 

are required.  Hemoglobin is found in red blood cells and functions as an oxygen 

transporter.  Some bacteria contain heme-hemoglobin uptake systems.  Some receptors 

such as HemR of Yersinia enterocolitica recognize both heme and hemoglobin.  Other 

receptors such as HmbR of N. meningitidis are more specific for hemoglobin 

(Wandersman and Delepelaire 2004). Some bacteria are known to possess heme transport 

systems and a number of bacteria are able to survive in media with heme as the sole iron 

source (Mills and Payne 1995).  

A common system for acquiring iron is through the use of siderophores. Bacteria 

and fungi produce siderophores in response to iron starvation conditions. These 

molecules are low molecular weight iron-chelating molecules that sequester ferric iron 

from the environment, enabling microorganisms to use this iron. Siderophores are 

nonribosomally synthesized and contain a functional group that binds the iron. The 
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majority of siderophores contain 1 or more of the following functional groups: 

hydroxamate, catecholate, hyroxy acid, or citric acid. A siderophore containing multiple 

functional groups is considered a mixed ligand siderophore (Mills and Payne 1995).  

Siderophores bind to iron with an extremely high affinity. Genes that control the 

synthesis of siderophores are often found clustered with the genes for siderophore uptake 

(Wandersman and Delepelaire 2004).   

Under low iron conditions regulatory proteins such as IdeR stimulate the 

production of siderophores.  Once synthesized, the siderophore is released into the 

environment surrounding the cell. It creates a siderophore-iron complex when it comes 

into contact with ferric iron, for which the siderophore has a high affinity, the complex 

then returns to the cell.  The siderophore-iron complex is first transported across the outer 

membrane (in a Gram negative bacteria like Escherichia coli) via a specific receptor and 

then utilizes an ATP-binding-cassette, or ABC type transporter, to cross the inner 

membrane.  Once the siderophore-iron complex is inside the cell, the iron is converted to 

ferrous iron via a ferric reductase which reduces the ferric iron to ferrous iron, for which 

the siderophore has a much lower affinity. This releases the iron from the siderophore, 

and the siderophore is then free to exit the cell and sequester additional iron.  Another 

possible method of release within the cell is the degradation of the siderophore, which 

also releases the ferrous iron within the cell. Once released from the siderophore, excess 

iron can be stored in structures such as bacterioferritins. Bacterioferritins are large, 

complex structures composed of approximately 24 individual protein subunits. These 

subunits form a ball like structure with a hollow center. The main function of a ferritin 

within a cell is to store iron in the ferric form.  A secondary function may be to detoxify 
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iron so as to protect against oxygen radicals. The bacterioferritin can store around 4500 

iron ions (Carronodo 2003).   Oxygen atoms in the bacteriferritin reoxidize ferrous iron to 

ferric iron, allowing for the storage of ferric iron within the bacterioferritin. 

Hundreds of siderophores have been isolated and purified.  Enterobactin, also 

known as enterochelin, is a catecholate type siderophore produced by Escherichia coli. 

This is one of the best studied siderophores. Enterobactin shows a very high affinity for 

iron (Ratledge and Dover 2000).  Another well studied siderophore is a cell associated 

siderophore, mycobactin, produced by the mycobacteria.  

It was discovered that R. erythropolis produces and releases a mixed ligand 

siderophore, Heterobactin A and the structurally similar Heterobactin B, Figure 2A 

(Carrano et al. 2001).  The Heterobactins contain both catecholate and hydroxamate 

groups.  The Heterobactins are synthesized and secreted in response to iron poor 

conditions.  Once bound to FeIII, the iron-siderophore complex returns to the 

Rhodococccus cell. Recently, it was discovered that R. rhodochrous produces a 

siderophore named Rhodobactin, Figure 2B. Rhodobactin is a mixed ligand siderophore 

containing 1 hydroxamate and 2 catecholate groups (Dhungana et al. 2006). A third 

species, R. equi, is known to produce a catecholate-type siderophore, although this 

siderophore has not yet been characterized (Miranda-CasoLuego et al. 2008).  
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Figure 2: Siderophores of R. erythropolis. (A) Heterobactin A and B of Rhodococcus 
erythropolis IGTS8 (Carrano et al. 2001) . (B) Rhodobactin produced by R. rhodochrous 
(Dhungana et al. 2007). 
 

These are true siderophores in that they relieve iron-limited growth in the 

producing strain. However, in some bacteria, even though they do not produce a 

particular siderophore, they are still able to transport siderophores produced by other 

organisms. Often, an organism will have a transport system for transporting siderophores 

produced by other organisms.  For example, Escherichia coli transports Heterobactin A 

and Heterobactin B while Arthrobacter flavescens is able to transport Heterobactin B, but 

neither synthesizes these siderophores (Carrano et al. 2001) 
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Iron Uptake in Mycobacteria 

 Iron uptake in the mycobacteria is thought to be similar to that of the rhodococci.  

Therefore, an examination of iron acquisition and uptake in the mycobacteria should be 

explored in order to explain that of the rhodococci.  Genes involved in iron acquisition 

are regulated by both iron rich and iron poor conditions.  Under iron poor conditions, 

both siderophore biosynthetic genes and transporter genes are upregulated (Rodriguez 

and Smith 2003).  Iron overload is toxic for bacterial cells.  Therefore, many of the genes 

involved in the assimilation of iron and in iron acquisition are only expressed under iron 

poor conditions.  Once the intracellular iron concentration rises, these genes are no longer 

expressed (Wandersman and Delepelaire 2004).  

Regulation by Ferric Iron Uptake Regulator 

 The ferric uptake regulator, Fur protein, was first identified in Salmonella and E. 

coli unable to repress siderophore receptors under iron rich conditions (Rodriguez and 

Smith 2003). Fur regulates iron acquisition in many different bacteria. Fur homologues 

can repress the expression of genes that are involved in iron acquisition when 

intracellular iron concentration increases, halting iron acquisition (Bereswill et al. 2000).  

Fur acts as a transcriptional repressor when bound to ferrous iron.  This Fur-iron complex 

binds to a particular sequence, the Fur box, in iron regulated promoter regions and then 

inhibits the transcription of genes downstream (Rodriguez and Smith 2003) 

Regulation by IdeR and DtxR 

Iron metabolism can also be regulated through the iron dependent regulator 

(IdeR), a 230-amino acid protein not related to Fur (Rodriguez 2006). IdeR functions as a 
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homodimer. Each monomer has three functional domains with two metal binding sites. 

The N-terminal region contains the DNA binding domain and the dimerization domain 

contains most of the metal-binding residues. A third domain is located in the C-terminal 

region (Rodriguez 2006). A IdeR homolog, the diphtheria toxin repressor (DtxR) of 

Corynybacterium diptheriae is found in some actinomycetes.  DtxR acts in the same way 

as Fur and IdeR (Figure 3).  

 
Figure 3: Regulation of the Diphtheria toxin repressor by DtxR 
 
 
The mycobacteria produce 2 siderophores: the cell associated mycobactin and the 

secreted exochelin.  When iron is present in the environment, the iron binds to the 

regulatory protein, IdeR.  This complex then binds to the promoter region of the 

biosynthetic genes for the siderophores and acts as a repressor, stopping the synthesis of 

siderophore products.  However, under iron limited conditions, iron does not bind to IdeR 

and, therefore, IdeR does not act to repress synthesis of siderophores.    
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Transport of Siderophores 

ATP binding cassette transport systems (ABC transport systems) are widespread 

among living organisms.  These transport systems are ATP dependent and couple the 

hydrolysis of ATP with the translocation of a solute across a biological membrane. In the 

case of siderophores, the hydrolysis of ATP is coupled with the translocation of the 

siderophore molecule plus ferric iron across the bacterial membrane.  ABC transport 

systems are characterized by a common modular organization and 2 sequence motifs that 

constitute a nucleotide binding fold. ABC transport systems are involved not only in the 

uptake of nutrients but also in processes such as signal transduction, drug resistance, 

protein secretion, antigen presentation, bacterial pathogenesis, and sporulation. Defective 

ABC transport systems are also the cause of some human inheritable diseases such as 

cystic fibrosis (Schneider and Hunke 1997).   

The mycobacteria contain a specific ABC transporter for the export of 

siderophores. Mycobacterium tuberculosis contains 2 ABC transporters, IrtA and IrtB.  It 

is believed that IrtA functions in the export of carboxymycobactin from the bacteria.  IrtB 

functions as an ABC transporter in conjunction with the protein Rv2895c.  IrtB-Rv2895c 

acts as a 2-component importer of the iron-carboxymactin complex (Farhana et al. 2008). 

Both IrtA and IrtB have the general characteristics of an ABC transporter.  They are 

localized in the membrane and are upregulated by IdeR iron stress.  Rv2895c facilitates 

the import of the iron-siderophore complex by specifically interacting with IrtB via a 

permease domain in Rv2895c (Farhana et al. 2008).   
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Iron uptake is tightly controlled, often by employing active transporter systems to 

maintain homeostatis, especially under hostile conditions.  IrtA is believed to export the 

siderophores to prevent a buildup of siderophores in the cell.  This could lead to the death 

of the cell either through the buildup of siderophores that leads to cell lysis or the binding 

of carboxymycobactin to iron inside of the cell.  IrtB then imports iron-siderophore 

complexes.  The 2 proteins function together to maintain a delicate balance between the 

import and export of siderophore to prevent their deleterious effect on the mycobacterial 

cells (Figure 4B) (Farhana et al. 2008).  

Another proposed method of action by the ABC transporter of M. tuberculosis 

states that IrtA and IrtB, together known as IrtAB, work together to transport ferrated 

carboxymycobactin into the bacterial cell (Figure 4A) (Rodriguez and Smith 2006).  

Because the mycobacteria produce both a membrane bound siderophore as well as 

a secreted siderophore, there has been interest as to why the bacteria produce 2 types of 

siderophores.  Carboxymycobactin, or exochelin, is able to remove iron from host iron 

binding proteins such as transferrin (Gobin and Horwitz 1996).  The current theory is that 

the membrane-bound mycobactin accepts iron from the secreted carboxymycobactin.  

The mycobactin is not essential for cell growth and survival, but it may increase the 

efficiency of iron transport into the cell by functioning as a cellular receptor for the FeIII 

that is captured by the carboxymycobactin.  The mycobactin could then serve as an 

ionophore for the transport of the FeIII across the lipid envelope.  It has also been 

suggested that the membrane-bound mycobactin might serve as a temporary iron storage 

molecule (Rodriguez 2006).  
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(A) 

 
(B) 

 
 
Figure 4: Mechanism of ABC Transporter in Mycobacterium tuberculosis. (A) Iron transport via 
ABC transporter, IrtAB in Mycobacterium tuberculosis adapted from Rodriguez and Smith, 2006. 
(B) Iron transport via an ABC transporter in M. tuberculosis adapted from Farhana et al, 2008.
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CHAPTER 2 
HYPOTHESIS 

 
 Recently, Jaishree Vellore isolated a mutant strain of IGTS8 that she designated 

R187-12.  R187-12 appears to over produce the siderophore heterobactin.   This mutant 

was created via insertional mutagenesis with a plasmid suicide vector known as pJCS506 

(Vellore 2001).   R187-12 is a potential tool to identify a gene(s) from IGTS8 that is 

responsible for either the uptake of ferri-siderophore complexes or regulate the 

production of siderophore.  My research hypothesis is as follows:  

1. Mutant bacteria that over produce siderophore often do so to compensate for a 

defect in the uptake of this compound; therefore, I hypothesize that the mutant 

strain R187-12 represents a defect in the gene(s), probably a transport protein, 

responsible for the uptake of iron-siderophore complexes.  

2. R187-12 chromosomal DNA flanking the insertional mutagen, pJCS506, can be 

used to identify wild type (IGTS8) DNA corresponding to DNA that is interrupted 

by the insertional mutation during generation of the mutant, R187-12. 

The aim of this research is to test the preceding hypotheses and to characterize the 

mutant R187-12.  The characterization of R187-12 will be accomplished through 

Southern blotting and DNA sequencing 
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CHAPTER 3 
MATERIALS AND METHODS 

 
Bacterial Strains, Plasmids and Growth Conditions 

 
 Rhodococcus erythropolis IGTS8 cells were grown on Rich Media (RM) (10 

grams (g) glucose, 8g nutrient broth, and 0.5g yeast extract  per liter of water) or Lauria-

Bertani (LB) (10 g tryptone, 5g yeast extract, and 5g sodium chloride per liter of distilled 

water)  at 30oC for 3 days.  Liquid cultures were grown under the same conditions with 

shaking.  Plasmid DNA (pTNR) was obtained from the National Institute of Advanced 

Industrial Sciences and Technology (AIST), Japan. Mutants arising from either pJCS506 

or pTNR were maintained on LB + Kanamycin or RM + Kanamycin (75µg/ml 

Kanamycin). The bacterial strains and plasmids used in this study are listed in Table 1. 

Table 1: Bacterial Strains and Plasmids Used in This Study 
Bacterial strains and 

plasmids 
Description Source 

pJCS506 Ampr, Kanr, E. coli 
propogated R. erythropolis 
suicide vector 

Schneider (1999) 

pUC18 Ampr, E. coli vector 
containing lacZα gene 

Yanisch-Perron et al.  
(1985) 

pTNR Rhodococcus insertional 
mutagen containing 
IS1415, E. coli ori, and 
Kanr 

Sallam (2006) 

R. erythropolis R187-12 Kmr siderophore 
overproducing mutant of 
IGTS8 

Vellore, 2001 

R. erythropolis R187-5 Kmr siderophore 
overproducing mutant of 
IGTS8 

Vellore, 2001 

R. erythropolis L51-10 Kmr siderophore 
overproducing mutant of 
IGTS8 

This study 

R. erythropolis IGTS8 Wild type Kilbane and Jackowski 
(1992) 
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Preparation of Competent Cells 

 The method for the preparation of electro-competent Rhodococcus cells is the 

same as that described by Vellore (MS thesis, 2001).   

 

Isolation of Plasmid DNA 

 Plasmid DNA was isolated using either the QIAprep kit (for sequencing) or the 

following method: 

A 10ml culture of transformed E. coli was grown overnight in LB with the addition of the 

required antibiotic.  The following day, the culture was transferred to an oak ridge 

centrifuge tube and centrifuged for 7 minutes at 4oC at maximum speed. The cell pellet 

was washed in 1ml of STE buffer (0.01M NaCl, 10mM Tris pH 8.0, 1mM EDTA).  The 

washed cells were transferred to a 1.5ml microfuge tube and centrifuged for 45 seconds 

at 13000 rpm at 4oC. All liquid was aspirated.  The cell pellet was then resuspended in 

200µl of solution I + fresh lysozyme (2mg/ml).  The cells were left in this solution for 10 

minutes at room temperature.  Then, 400µl of freshly made solution II (1N NaOH, 10% 

SDS) was added to the tubes and mixed thoroughly by inverting the tube many times. 

Care was taken not to expose DNA to this solution for more than 5 minutes.  Next, 300µl 

of Solution III (5M Potassium Acetate) was added and the tube was inverted several 

times until a white flocculant formed.  The tubes were then left to sit on ice for 10 to 15 

minutes.  The tubes were then centrifuged at 13000 rpm for 15 minutes.  Half of the clear 

supernatant (approximately 450 µl) was transferred to a 1.5ml microfuge tube and the 

other half of the supernatant was transferred to a second 1.5ml microfuge tube.  The 

supernatant was then phenol:chloroform extracted by adding 200 µl of TE saturated 
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phenol and 200 µl of chloroform:isoamyl alcohol (24:1).  The tubes were then 

centrifuged for 5 minutes at maximum speed.  The top layer was collected to a clean 

1.5ml microfuge tube and chloroform extracted with 400 µl of chloroform:isoamyl 

alcohol twice and centrifuged 2 minutes each time.  Following the second chloroform 

extraction, the top layer was transferred to a labeled microfuge tube and 1ml of cold 

ethanol was added.  The tube was cooled on ice for 5 minutes and centrifuged for 10 

minutes at maximum speed.  All ethanol was aspirated and the DNA pellet was washed 

with 400 µl of 70% ethanol.  The DNA was centrifuged at maximum speed for 1 to 2 

minutes and all ethanol was aspirated and the DNA pellet was allowed to briefly air dry.  

The DNA pellet was then redissolved in 30 µl/tube of 0.1TE + RNase.  

 
Transformation by Electroporation of Rhodococcus Cells 

 
The method for transformation of Rhodococcus cells using electroporation is the 

same as that described by Vellore (MS thesis, 2001). Transformed cells were transferred 

to sterile test tubes and incubated along with shaking at 30oC for 4 to 5 hours.  Following 

incubation, dilutions (100µl undiluted, 75µl undiluted, 50µl undiluted, 1:10 dilutions, 

1:100 dilutions, and 1:1,000 dilutions) of the transformed cells were plated onto LB + 

Kanamycin  (200µg/mL Kanamycin was used to select for Rhodococcus cells 

transformed with pTNR).  The control transformations with pJCS506 or no plasmid were 

plated in the same way.  Plates were incubated at 30oC for 3-4 days and the number of 

resulting colonies was noted. 

Fiss Minimal Medium for Rhodococcus  

 Fiss minimal medium used for Rhodococcus was prepared using the method 

described by Vellore (MS thesis 2001).  
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Preparation of Chrome Azurol S (CAS) Assay Medium 

 The method for the preparation of Chrome Azurol S (CAS) assay medium is the 

same as that described by Vellore (MS thesis 2001).  

 

Detection of Siderophore Production via CAS Assay 

 Following the transformation of the Rhodococcus cells, mutants were replica 

plated on both LB + Kanamycin and Fiss Minimal Media + Kanamycin (75 µg/ml) using 

numbered grids to indicate the location of each mutant strain. Sterile toothpicks were 

used to pick colonies from transformant plates to LB and Fiss minimal plates.  Colonies 

that were able to grow on the Fiss Minimal Media after 3 to 4 days were then plated onto 

CAS agar plates, using the same numerical grid system. A small, round spot of cells was 

placed in the center of each grid square.  The CAS plates were incubated at 30oC for 3 to 

4 days to allow for the detection of siderophore production.   

 
Isolation of Chromosomal DNA 

 Chromosomal DNA was isolated from Rhodococcus cells by the following 

method.  First, a 2ml LB + Kanamycin (75 µg/ml) seed culture was grown in a 30oC 

water bath overnight with shaking.  The following day, a 10ml LB + Kanamycin broth 

was inoculated with 150µl of the overnight grown seed culture and grown under the same 

conditions.  The following day, 6µg of ampicillin was added to the late log phase culture 

and allowed to incubate at 30oC with shaking for 3 hours.  The culture was then 

centrifuged in an oak ridge tube for 10 minutes at 4oC.  The cell pellet was rinsed with 

2ml of 1X TE buffer and centrifuged again under the same conditions.  The pellet was 

then resuspended in 1ml of TES + lysozyme (100mg lysozyme/ml) and split into two 
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1.5ml microfuge tubes.  The cells were incubated in the lyzozyme solution for 3 hours at 

37oC with periodic agitation.  Then, 20µl of 20% SDS, 160 µl 3M NaCl and 10 µl RNase 

were added and mixed by gently inverting the tube many times to avoid shearing the 

DNA.  The tubes were then incubated at 55oC for 15 minutes.  Following the time period, 

7.5µl of Proteinase K was added and gently mixed by inverting the tube and incubated at 

55oC for 15 minutes.  Following the incubations, 400-500µl of phenol was added to each 

tube and mixed.  The tubes were then centrifuged at maximum speed for 8 minutes.  The 

top aqueous layer was removed to a new tube and 400-500µl of chloroform:isoamyl 

alcohol was added and gently mixed and the tube was centrifuged for 2 to 3 minutes.  The 

top aqueous layer was removed to a new tube and a second chloroform extraction was 

performed.  The top aqueous layer was removed and transferred to a new tube and 

approximately 1ml of ice cold ethanol was added to each tube.  The tubes were gently 

inverted many times to precipitate the chromosomal DNA.  The chromosomal DNA was 

spooled on the end of a pipette tip, then transferred to 400µl of 70% ethanol and briefly 

centrifuged for 1 to 2 minutes.  The ethanol was then aspirated and the chromosomal 

DNA briefly air dried.  The chromosomal DNA was then resuspended in 50 to 100 µl of 

0.1TE + RNase and stored at 4oC overnight to re-hydrate.  The next day, a sample of the 

chromosomal DNA was loaded onto a 0.75% agarose gel to ensure the quality of the 

chromosomal DNA.  

Gel Electrophoresis and Electro-Elution 

 The method for gel electrophoresis and gel electro-elution is the same as that 

described by Moretz (MS thesis, 2003).  

 



 37

Southern Blotting 

Preparation and Transfer of DNA 

 The method for the preparation of DNA and the transfer of DNA to be used for 

Southern Blotting was the same as that described by Moretz (2003).   

 

Random Primed Labeling of Probe DNA with Dioxygenin-11-dUTP (DIG) 

 DNA that was to be used as a probe for Southern hybridization was first digested 

with restriction endonucleases to linearize the plasmid DNA, then ethanol precipitated 

and resuspended in 16µl of distilled water. The labeling reaction was begun by taking 

13µl of the digested plasmid DNA and placing it in a sterile 1.5ml microcentrifuge tube.  

The DNA was denatured by boiling in a hot water bath at 95oC for 10 minutes and then 

quick cooling the denatured DNA in ice with NaCl for 5 minutes.  The tube was then 

briefly centrifuged to pool all droplets.  Following centrifugation, the DNA was placed 

on ice and the following components were added: 2µl 10X EcoPol buffer (New England 

Biolabs); 2µl random heximer primers [pd(N)6 sodium salt]; 2µl 10X DIG DNA labeling 

mix and 1.5µl Klenow fragment. The mixture was incubated overnight at 37oC.  The 

following day, the mixture was briefly centrifuged at maximum speed to pool all 

droplets, and the volume was brought up to 100µl total volume with distilled water. The 

mixture was then phenol:chloroform (1:1) (90µl) extracted once and chloroform 

extracted once with 90µl chloroform:isoamyl alcohol (24:1).  The DIG labeled probe 

DNA was recovered by adding 1/10 the total volume of 10M ammonium acetate and 2 

volumes of ice cold 100% ethanol. The mixture was then cooled at -80oC for at least 30 

minutes and then centrifuged at maximum speed for 20 minutes.  The supernatant was 
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discarded and the DNA briefly air dried.  The DNA was then resuspended in 20µl of 

0.1X TE buffer.  

 

Hybridization 

 The method for the hybridization of Southern transfers was the same as that 

described by Moretz (2003).    

 

Preparation of Dephosphorylated Vector Plasmid 

 Vector plasmid, pUC18, was prepared for ligation with insert DNA by 

phosphatase treating in the following manner.  The vector plasmid was digested with the 

desired restriction endonuclease, Pst1, and then phenol:chloroform extracted and ethanol 

precipitated as previously described.  The vector plasmid was then resuspended in a small 

volume of 0.1 TE.  Approximately 1-2µg of DNA was phosphatase treated by adding 5µl 

of CIP dephosphorylation buffer (or 10X NEB #3, New England Biolabs) to the plasmid 

DNA, and water to bring the total volume to 48µl.  The appropriate amount (1µl) of calf 

intestinal phosphatase (CIP) was then added and the mixture was incubated for 30 

minutes at 37oC. A second aliquot of CIP was then added and the incubation continued 

for another 30 minutes at 37oC.  To inactive the CIP at the end of the incubation period, 

0.5% SDS and 5mM EDTA, pH 8.0 were added and thoroughly mixed.  Proteinase K 

was added to a final concentration of 100µg/ml and the mixture was incubated for 30 

minutes at 56oC.  The reaction was then cooled to room temperature and purified by 

twice extracting with phenol:chloroform (1:1) and twice extracting with 

chloforom:isoamyl alcohol (24:1).  The phosphatase treated DNA was then ethanol 
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precipitated by bringing the total volume to 100µl with sterile distilled water and then 

adding 1/10 of the total volume with 10M ammonium acetate and 2 volumes of ice cold 

100% ethanol.  The mixture was cooled at -20oC overnight. The following day, the 

mixture was centrifuged at maximum speed for 20 minutes.  The supernatant was 

discarded and the DNA was resuspended in 25µl of sterile distilled water.  

 

Plasmid Genomic Library 

 To create a plasmid genomic library, fractions of digested chromosomal DNA 

containing the insertional mutagen obtained through electro-elution were ligated into 

phosphatase treated vector plasmid.  Control ligations of phosphatase treated vector and 

nonphosphatase treated vector as well as ligations both with and without insert DNA 

were preformed in order to determine the quality of the vector plasmid as well as the 

number of background colonies to be expected upon transformation.  Following ligation, 

the ligated DNAs were transformed into electro-competent E. coli cells.  Dilutions (100µl 

undiluted, 75µl undiluted, 50µl undiluted, 1:10, dilutions and 1:100 dilutions) of the 

transformation were plated onto LB + Kanamycin (50µg/ml) or LB + Ampicillin 

(50µg/ml) plates and incubated overnight at 37oC. Colonies of phosphatase treated and 

untreated ligations were then counted to determine whether the phosphatase treatment 

was adequate.  Ligations with and without insert DNA were also counted to determine 

the number of background colonies. Colonies resulting from ligation with insert DNA 

and phosphatase treatment of the vector plasmid were then grown in liquid culture for 

plasmid preparation as previously described.  Following plasmid preparation, the 

plasmids were digested with Pst1 restriction endonuclease and run on a 0.75% agarose 
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gel.  Plasmids containing an insert the size of the insert DNA, which was determined by 

the size of the hybridizing band on the Southern blot (approximately 9kb) were then 

grown in liquid culture and used for plasmid isolation using the QIAprep system.  The 

purified DNA was used for sequencing.  

 

Colony Hybridization 

 Fixation of colony DNA and colony hybridization were conducted using the 

method described by Moretz (2003).  

DNA Sequencing 

DNA sequencing was performed at the ETSU Molecular Biology Core Facility.  

Custom made primers were ordered from Integrated DNA Technologies (IDT) and 

diluted to a concentration of 3µM.  A 10 to 15µl sample of primer as well as a 15µl 

sample of the desired plasmid DNA (concentration of DNA= 100ng/µl or greater) were 

sent to the Molecular Biology Core Facility for sequencing.  DNA sequencing at the 

ETSU Molecular Biology Core Facility was conducted using the Beckman Coulter 

GenomeLabTM Dye Terminator Cycle Sequencer.  Following sequencing, the DNA 

sequence was checked using the Chromas program to ensure the quality of the DNA 

sequence.  The sequence data was then subjected to a nucleotide BLAST search using the 

nucleotide collection database.  The resulting homologies were then noted.  New primers 

were developed using Primer3 (http://fokker.wi.mit.edu/primer3/input.htm).  This was 

done by subjecting the DNA sequence to a search using the Primer3 program choosing 

only right primers (reading from 5’ to 3’ on opposite strand) or left primers for 

sequencing in the opposite direction.  As new sequence data were received, overlaps were 
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found and the sequence data spliced together.  The spliced DNA sequence was subjected 

to nucleotide Blast searches as before.  The DNA sequence was also translated into a 

protein sequence using NEB cutter V2.0 and open reading frames (ORFs) subjected to a 

protein Blast search to determine protein homology.  
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

Generation of Mutant Strains Using pTNR 

Mutations were produced using the plasmid pTNR containing the IS element 

IS1415, as an insertional mutagen, with the Kanr marker region inserting into the 

genomic DNA. The insertion sequence (IS) element of the plasmid encodes for the 

transposase gene, which is necessary for the movement of the element from one site to 

another.  This gene allows the movement of the DNA segment carrying the kanamycin 

resistance marker from IR1 to IR2 (Figure 5).  The IS element does not contain any 

genetic material other than that required for the transposase.  Once mobilized, the 

transposon containing the kanamycin resistance marker is able to insert into the 

chromosomal DNA of Rhodococcus.  This transposon is only able to insert a single time 

because it does not carry the transposase genes and is unable to replicate in the 

Rhodococcus genome.  However, because the transposing sequence of DNA also carries 

an E. coli origin of replication region (ori) the transposon is able to replicate in E. coli 

cells, enabling the region of Rhodococcus DNA containing the transposon to be cloned in 

E. coli.  
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Figure 5: Map of pTNR plasmid (Sallam, 2006) 

 
Insertional mutagens insert a piece of DNA into a gene, thereby interrupting the 

gene’s reading frame and inactivating the gene’s function.  Electrotransformation was 

used to transform electro-competent Rhodococcus erythropolis cells with the plasmid 

pTNR carrying the IS1415 and kanamycin resistance marker (Figure 6).  

 
Figure 6: Mutagenesis with IS1415 of pTNR. The transposon randomly inserts into 
genomic DNA, interrupting chromosomal genes 
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Transformants resulting from pTNR were selected by plating them to LB agar 

plates containing 200 µg/ml of kanamycin.  The addition of kanamycin ensured that only 

cells transformed with pTNR and containing the mutagenic kanamycin resistance marker 

are selected. A total of 2,331 transformants were generated and screened (Table 2).  

 

 
 
 

Table 2: Mutants Generated by the Insertional Mutagen pTNR 
Mutant Type Total Kanr 

transformants 
Auxotrophic Pigment 

mutant 
No Halo Large halo 

Number of 
Transformants 

2,331 5 4 7 3 

 

Auxotrophic Mutants 

 The presence of auxotrophic mutants indicates that mutations are being generated 

within the genome of Rhodococcus erythropolis.  Auxotrophic mutants lack the ability to 

synthesize an essential nutrient such as an amino acid on a minimal growth medium.  In 

order to grow, the auxotrophic mutants must obtain these nutrients from an enriched 

medium.  A minimal medium contains only the basic salts and glucose as a carbon source 

but lacks other essential nutrients and cannot support the growth of auxotrophic mutants.  

However, a rich medium is a complex medium that contains the essential nutrients that a 

cell requires and can support the growth of auxotrophic mutants.  Mutants that are able to 

grow on the LB agar, but unable to grow on the minimal media agar are said to be 

auxotrophic mutants.  From a screen of 2,331 kanamycin resistance pTNR transformants, 

5 auxotrophic mutants were detected.  Vellore (2001) detected 5 auxotrophic mutants 

from a screen of only 250 pJCS506 transformants.  
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Screening for Mutants Defective in Siderophore Production 

 The 2,331 transformants on LB agar plates were screened on CAS agar plates to 

detect colonies that either did not produce siderophores or colonies that overproduced 

siderophores.  The CAS assay is a color-chemical assay for the detection of siderophore 

production (Schwyn and Neilands 1987).  Non siderophore producing mutants were 

identified by a lack of a halo or color change surrounding the colony while over-

producing mutants were identified by an oversized halo surrounding the colony (Figure 

7).  

 The CAS assay is based on the removal of ferric iron from a pigmented complex 

by a competing ligand such as a siderophore.  In the CAS agar plate, the ferric iron is 

initially bound to a dye, resulting in a bright blue color.  When the siderophore is released 

from the cell it binds to the ferric iron, resulting in free dye, which results in a yellow 

halo in areas where siderophores are produced (Figure 7).  Therefore, when a siderophore 

binds with the ferric iron, the release of the dye is indicated by a color change from blue 

to yellow (Schwyn and Neilands 1987).  The following equation explains the reaction 

between siderophores and the CAS assay:  

Fe-Dye (Blue media) + Ligand (siderophore) à Fe-Ligand + Free dye (Yellow color 

change) 
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Figure 7: Chrome Azurol S plate used to screen Rhodococcus mutants for over-production of 
siderophore (large halo) or no production (no halo) 
 

Characterization of L51-10: Large Halo Mutant 

 Of the 2,331 transformants generated using the insertional mutagen pTNR, 1 large 

halo mutant, designated L51-10 was investigated.  This mutant produced a large halo on 

CAS assay plates, but Southern Blot analysis with pTNR as a probe was not successful in 

indicating a hybridizing band in the mutant.  Other mutants generated from the insertional 

mutagen, pTNR, were studied and produced hybridizing bands on Southern blot analysis, 

but  attempts at self-ligating these mutants was unsuccessful and no plasmid clones 

containing Rhodococcus DNA were recovered. 

Generation of Mutants using pJCS506 

Large halo producing mutants, R187-12 and R187-5, using pJCS506 were 

obtained from a previous study (Vellore 2001).  Random mutations in the genome of R. 

erythropolis strain IGTS8 were generated using this plasmid as an insertional mutagen.  

The entire plasmid appears to insert into the Rhodococcus chromosome at random 

locations via illegitimate recombination (Figure 9) (Desomer et al. 1991).  The pJCS506 
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plasmid is 8390bp in length and has a kanamycin resistance marker as well as an E. coli 

origin of replication (Figure 8). 

 
Figure 8:  Map of pJCS506 plasmid adapted from Schneider, 1999 

 

 
Figure 9: Recombination of pJCS506 into R. erythropolis chromosome. 
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Characterization of R187-5: Large Halo Mutant 

 The mutant R187-5 that over produces siderophore, created by Jaishree Vellore 

using the insertional mutagen, pJCS506, was investigated.  It was determined through 

Southern blot analysis that R187-5 produced hybridizing bands when hybridized with 

DIG labeled pJCS506.  However, these bands were not of the expected size and Southern 

blot analysis indicated that R187-5 cut with various restriction enzymes was producing 

hybridizing bands that were either not of the expected size or 2 hybridizing bands, instead 

of a single band, as would be expected with this system (Data not shown).  Ligation into 

a plasmid vector of a single hybridizing band of R187-5 cut with PstI was attempted, but 

no kanamycin resistant transformant colonies were recovered.   

 

Identification of the Gene(s) Responsible for Siderophore Defect in R187-12 

 Chromosomal DNA was isolated from the R187-12 mutant and digested with 

various restriction enzymes.  The DNA samples were then loaded onto a 0.75% agarose 

gel and run at 18 volts overnight (Figure 10A).  The DNA was then transferred from the 

agarose gel to a nylon membrane and prepared for Southern blotting. DIG labeled 

pJCS506 was used as a hybridization probe in order to identify fragments of the 

chromosome containing the insertional mutagen, pJCS506 (Figure 10B).  The Southern 

blot indicated that R187-12 cut with PstI contained a hybridizing fragment of 

approximately 10kb, R187-12 cut with BamHI contained 2 hybridizing fragments of 

approximately 9kb and less than 2kb.  R187-12 cut with EcoRI showed 2 hybridizing 

fragments of approximately 6.5kb and 2.3kb.   
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(A)     (B)  

 

 
 
 
 
 
 
 
 
 
 
Figure 10:  Gel Electrophoresis of R187-12 chromosomal restriction digests. Southern 
hybridiziation of R187-12 chromosome cut with the following restriction enzymes: lane 1 
contains R187-12/PstI, lane 2 contains R187-12/BamHI, lane 3 contains R187-12/EcoRI, 
lane 4 contains R187-5/PstI and lane 5 contains IGTS8/PstI (as a negative control) were 
electrophoresed on an agarose gel (A) and transferred to a nylon membrane where they 
were hybridized with DIG labeled pJCS506 (B). 
 
In order to recover the chromosomal fragment containing pJCS506, a gel was 

loaded with R187-12 cut with PstI and run overnight.  The gel was then cut in 1cm 

fractions and electro-eluted to recover purified DNA fractions of different sizes.  The 

recovered fractions (fractions 1 through 4) were then loaded onto a 0.75% agarose gel 

(Figure 11A). The gel was then transferred to a nylon membrane and prepared for 

Southern blotting to confirm which size fragment contained the insertional mutagen.  The 

membrane was hybridized using DIG labeled pJCS506 as a probe DNA.  The Southern 

blot indicated that the hybridizing fragment containing the insertional mutagen, pJCS506 

was located in fraction 2 with a size range from 6.5 to 9.4 Kb (Figure 11B).   
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(A)      (B) 

 

 
 
 
 
 
 
 
 

Figure 11: Southern blot analysis of R187-12/PstI gel fractions. (A) Agarose gel 
electrophoresis of R187-12/Pst1 fractions and (B) Southern blot of gel fractions from A 
using DIG labeled pJCS506 probe.  Lane S contains λ/HindIII, lane 1 contains R187-
12/PstI fraction 1, lane 2 contains R187-12/PstI fraction 2, lane 3 contains R187-12/PstI 
fraction 3, lane 4 contains R187-12/PstI fraction 4.   

 
 

Phosphatase Treatment of pUC18 and Ligation 

 Vector plasmid, pUC18 cut with PstI was dephosphorylated with CIP to remove 

the 5’ phosphate groups, thus reducing the chance that pUC18 would recircularize instead 

of ligating with the insert DNA. It was determined that the phosphatase treated pUC18 

vector plasmid had very little background. The chromosomal DNA fraction containing 

the insertional mutagen from R187-12 cut with PstI, fraction 2, was then ligated into the 

dephosphorylated vector plasmid, pUC18 (Figure 12). Following ligation, the plasmid 

was transformed into electro-competent DH5α E. coli cells and grown on LB + 

Kanamycin (50µg/ml).   

Of the 10 kanamycin resistant colonies screened, all appeared to contain inserts of 

around 9kb in size, indicating these plasmids contained the chromosome fraction with 

part of the insertional mutagen, pJCS506.   
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Figure 12: Postulated map of R187-12 flanking DNA adjacent to the pJCS506 insertion 
 

DNA Sequence Analysis 

DNA sequence analysis of flanking DNA adjacent to the pJCS506 insertion was 

accomplished through primer walking.  DNA was sequenced and new primers were 

designed.  This process of primer walking was repeated for each DNA sequencing 

reaction. The primers used for DNA sequencing are shown in Figure 13.  
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Figure 13: Primer walking of R187-12 flanking DNA to determine the DNA sequence 
 
  

Once DNA sequences were received and spliced into the previous sequence reads, 

the DNA sequence was translated to look for large open reading frames (ORFs) using 

NCBI ORF finder.  Translation of the DNA sequence revealed 3 large open reading 

frames of 300 amino acids or more. These ORFs were investigated and subjected to 

protein BLAST searches to determine homology to known protein sequences and to 

determine if these ORFs contained significant homology to known transport proteins. The 

results of the protein translation are shown in Figure 14. 
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Figure 14: Open Reading Frames (ORFs) from NCBI ORF Finder 
 

 Analysis revealed 3 large ORFs of 300 amino acids or larger, designated ORF  

93-1472, ORF 1343-3082, and ORF 2971-4560.  Analysis of these ORFs indicated 

homology with a larger protein of Rhodococcus RHA1. This protein, designated ro00141, 

is a nonribosomal peptide synthetase.  This gene, ro00141, is a cytoplasmic nonribosomal 

peptide synthetase with functions similar to EntF, involved in enterobactin synthesis. 

This gene is nearly 9,000 amino acids in size (or nearly 27Kb in size), an extremely large 

gene.  However, it is known that Rhodococcus sp. RHA1 produces 24 nonribosomal 

peptide synthetases, with 6 of those being larger than 25kb in size (McLeod et al. 2006).  

Matches to this protein occurred for ORFs 93-1472, ORF 1343-3082, and ORF 2971-

4560.  However, each ORF match was close in sequence (Figure 15).  It appears that the 

DNA sequence of R187-12 is similar to the end of the nonribosomal peptide synthetase 

gene of Rhodococcus sp RHA1.  
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Figure 15: Amino acid alignment between R187-12 and ro00141 of RHA1, ORF 93-1472.  

 

Conclusions 

DNA and protein analysis indicates that the DNA sequence of R187-12 contains 

genes involved in the synthesis of secondary metabolites, likely siderophore biosynthesis.  

Both DNA and protein analysis reveal similarities with nonribosomal peptide synthetases 

of Rhodococcus sp RHA1. Although similarities with the ro00141 gene of Rhodococcus 

sp RHA1 are homologous to the very end of this very large ORF, this does indicate 

homology with this protein. This gene encodes for a nonribosomal peptide synthetase, 

indicating it is involved in the biosynthesis of a secondary metabolite.  In the case of 

Rhodococcus erythropolis R187-12, this is likely to be a siderophore.   The ro00141 gene 

likely only extends to 6kb of the R187-12 DNA (Figure 15).  If the plasmid junction is at 

approximately 7.5 to 8kb, as predicted by the size of the hybridizing band on Southern 

blot analysis, there could be another gene before the plasmid junction, potentially a 

transport protein.  If the transport gene is interrupted by the insertional mutagen, 
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pJCS506, this would cause the inactivation of the transport protein, thereby inactivating 

the function of this protein.  

 

Figure 16: Schematic of R187-12 DNA with ORFs homologous with ro00141 of Rhodococcus 
RHA1.   
 
 

In the RHA1 genome, there are 2 small hypothetical proteins, designated ro00142 

and ro00143 immediately following ro00141.  This could indicate a potential transport 

protein and could be indicative of a siderophore transport protein in R. erythropolis 

R187-12 immediately following the currently sequenced DNA.  The hypothetical 

proteins designated ro00142 and ro00143 in RHA1 are cytoplasmic.  The first, ro00142, 

is believed to have electron transport chain activity, while the activity of ro00143 is 

unknown.  As biosynthetic genes are usually found clustered with transport proteins, 

there is a possibility that a small transport protein exists here.    

However, DNA sequencing has not yet reached the plasmid junction.  Reverse 

primers at the junction could not be designed because the plasmid, pJCS506, inserts into 

the chromosome through illegitimate recombination. Therefore, the location of 

recombination cross-over with the chromosome is unknown in the plasmid DNA and thus 
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a primer cannot be designed from this area.  Protein analysis also reveals conserved 

domains that are involved in biosynthesis. However, continued DNA sequencing until the 

plasmid junction is reached may reveal more information about the mutation in R187-12 

and possibly homologies with genes involved in siderophore transport.  Another method 

of determining whether a transport protein is present in this DNA sample is to do an 

SDS-PAGE comparing the mutant R187-12 and wild-type IGTS8 under both low and 

high iron conditions.  SDS PAGE separates the proteins based on molecular size.  By 

analyzing both the wild type and R187-12 under high and low iron conditions, any 

differences in protein expression would be shown.  Under low iron conditions, genes 

involved in siderophore transport and biosynthesis should be expressed in the wild type.  

By comparing the proteins expressed in the wild type to the proteins expressed in R187-

12,  this could show a difference in membrane proteins expressed in the 2 samples and 

could aid in determining whether a transport protein exists in the R187-12 strain.  It is 

also possible that the insertional mutagen interrupted a regulatory region of the 

biosynthetic gene, causing the over production of the siderophore.  Future studies should 

focus on the completion of the DNA sequencing as well as investigating other over-

producing mutants of Rhodococcus erythropolis IGTS8 in order to better understand iron 

acquisition in this bacteria.  
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