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Metabolomics is a relatively new field that involves the study of metabolic 

responses that are occurring within a biological system.  Metabolite profiles of an 

organism, tissue extract, and biofluids are important indicators to determine the 

physiological state of a biological profile.  Comparison of such profiles from different 

phenotypes can be used to identify specific metabolic changes leading to the 

understanding of metabolic pathways, disease progression, drug toxicity and efficacy, 

and cellular responses to different intracellular and extracellular conditions.  

Metabolomics investigations often use sophisticated analytical techniques such as NMR 

spectroscopy to provide an unbiased and comprehensive approach to evaluate metabolic 

perturbation in different cell lysates.  

This dissertation will focus on the development and applications of NMR-based 

metabolomics methodologies to generate reliable and reproducible results. The protocol 

has been expanded greatly, optimizing all aspects of the metabolomics process including 

cell growth, sample preparation, sample handling, data collection, data processing, and 

data analysis.  There are two main approaches in the protocol to decipher NMR 

metabolomics data: pattern recognition, such as PCA and OPLS-DA, comparing 

numerous 1-dimensional 
1
H NMR datasets to analyze biofluids at a global scale, and 

quantitative profiling of 
13

C-labeled metabolites using 2-dimensional 
1
H-

13
C HSQC. As a 



result, our protocol provides a comprehensive analysis, describing unique characteristics 

and relationships between various samples that differ in their source or treatment.  

We applied our protocol to predict the in vivo mechanism of action for drug leads 

from NMR metabolomics data.  The NMR analysis resulted in distinct clustering which 

would be classified by an in vivo mechanism.  Also, we demonstrated the similarity of 

Staphylococcus epidermidis metabolomes resulting from exposure to divergent 

environmental stressors that are known to facilitate biofilm formation.  Our results 

suggest that the tricarboxlic acid cycle acts as a metabolic signaling mechanism for the 

activation of biofilm formation.   Also investigated was the mechanism of action of D-

cycloserine in M. smegmatis and M. tuberculosis. Our findings proved that D-alanine-D-

alanine ligase is the primary target as cell growth is inhibited when the production of D-

alanyl-D-alanine is halted.  Furthermore, we were able to identify an alternate path for the 

production of D-alanine via a possible transaminase mechanism. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Cells are complex systems involving numerous chemical, electrochemical, and 

mechanical processes which govern basic cellular activities and coordinate cell actions.  

It was once thought that the many processes occurring in cells display a hierarchal level 

of organization, transferring information from DNA to RNA to proteins [1-3].  However, 

a cell’s behavior is a result of the complex interactions and regulations between these 

chemical entities (e.g., DNA, RNA, proteins, small molecules).  For example, 

transcription factors, which are products of gene transcription, can inhibit or activate the 

transcription of mRNAs [4-7]. Proteins can interact with other proteins, forming new and 

larger complexes with different functions [8, 9].  Biochemical reactions in cellular 

metabolism can be integrated as large networks that are regulated by enzymes.  Likewise, 

small molecule interactions can also regulate gene transcription and protein function [10-

12].  It is important to note that biomolecular interactions and regulations are not at all 

static.  Instead, they change dynamically in response to changes in the environment and 

intercellular state.  The main aspect of these functional responses concerns perturbations 

in metabolic regulations where enzymes, which catalyze metabolite conversions, are 

subjected to multiple levels of regulations [13].  Also, transcriptional regulations may 

play important roles in metabolic responses [13]. This is where using genomic, 
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proteomic, and metabolomics approaches are beneficial to understand biological behavior 

with different conditional perturbations (Figure 1.1a) [14-18]. 

A key aspect to understanding a biological system is to study metabolism, as the 

concentration of the metabolites is sensitive to environmental and genetic changes [19]. 

Furthermore, a complete set of metabolites, which are products (molecular weight,  less 

than 1,500 daltons) of enzyme-catalyzed reactions in a cell, is referred to as the 

metabolome [20-22].  A comprehensive list of metabolites can be used to generate 

multiple metabolic networks (e.g., Glycolysis, TCA cycle, urea cycle, etc.), which can be 

visualized by databases such as KEGG and Metacyc [23, 24].  Since many metabolites 

are found in a wide range of organisms while others are family or species specific, it is 

likely that some metabolites will fulfill important biological functions [20]. Hence, 

analyzing the metabolome is well suited to determine perturbed network patterns or 

metabolite changes to address important biomarkers for specific diseases, mutation, or 

determining the function of drug candidates (Figure 1.1b) [18].   To understand the 

different set of conditions perturbing a biological system, a comprehensive analysis in 

which all metabolites are identified and quantified is performed.  This comprehensive 

approach is known as “ metabolomics” [20]. 

Metabolomics is one of the newest disciplines of the –omics cascade (genomics, 

transcriptomics, proteomics) that revolutionized the strategy of modern research.  

Hypothesis-based research has remained the golden rule of research [25].  However, 

devising a hypothesis can be difficult with the ever increasing complexity of a problem.  
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Figure 1.1. a) Schematic describing the downstream processes of the omics cascade.  b) 

A schematic of a metabolic pathway. Metabolites are represented as circles. An alteration 

in a single enzyme can lead to a cascade of metabolic perturbations. Here, metabolites 

whose levels are altered in each of three theoretical genotypes are shown by colored 

circles. Orange, light blue, and green circles represent metabolites altered in genotype 1, 

genotype 2 and genotype 3, respectively. Metabolites whose levels are similarly altered in 

multiple genotypes are represented by multi-colored circles. Reprinted with permission 

from [18] © MacMillan Publishers Limited, 2012. 
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Instead, metabolomics can be performed without any prior knowledge of the system. This 

means unique metabolic patterns and perturbed metabolites can be used toformulate a 

new hypothesis.  Hypothesis-based approaches and metabolomics are complementary in 

that the analysis of both approaches can lead to similar findings, thus strengthening our 

knowledge in the field [26]. Sometimes metabolomics can address unexpected findings 

that are not related to the original problems being investigated. This can lead to new areas 

to explore and a new hypothesis to be developed.   

Metabolomics offers collaborative opportunities, connecting biology centric 

research with high throughput analytical platforms and interpretation while applying 

computer generated models to answer specific questions or concerns [27].  Collaborative 

efforts using metabolomics have been advantageous for all aspects of science, where 

groups of researchers can work together with similar interests from the same or different 

institution.  It also brings together researchers with different viewpoints and approaches 

to solve a problem.  Diversity of experience and skill sets may increase the likelihood of 

a breakthrough or of successful research. Collaborations have become a popular trend, 

where national centers and international projects have been developed to understand and 

characterize different metabolomes [27]. It has been advantageous from a graduate 

student’s perspective as it can expand our horizons in multiple disciplines. 

 Although, metabolomics has been around for about a decade, it has grown quite 

rapidly and has become a widely-used approach with a broad field of applications, 

including plants [28-30], bacteria [31-33], eukaryotic cells [34], medicinal [35], and 

veterinary sciences [36].   For example, metabolomics research has been heavily used in 
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the discovery of biomarkers or patterns associated with diseases [37, 38].  Metabolomics 

has been applied in the study of drug toxicity and efficacy, which can lead to novel and 

potent drugs [39-41]. Metabolomics, along with the genomics and proteomics has the 

capability of providing diagnostics and prognostics of drug discovery clinical trials [42].  

Instead, metabolomics is able to identify biomarkers that are associated with 

hepatotoxicity and nephrotoxicity, which are the two major reason most drug candidates 

fail [43]. New metabolomics technologies can be developed to create non-invasive 

techniques that can be used to diagnose and monitor disease progression, recognize 

response to treatments, and identify the development of resistance to treatments.  

Metabolomics methodologies usually involve information rich analytical 

platforms including: nuclear magnetic resonance spectroscopy (NMR); mass 

spectroscopy (MS) coupled with separation techniques such as gas chromatography (GC) 

or liquid chromatography (LC); and Fourier transform-infrared spectroscopy (FT-IR) 

[44].  NMR is a popular tool because it provides a rapid, non-destructive, high-

throughput method that requires minimal sample-handling.  Typically, metabolites are 

detectable by 
1
H-NMR because they usually contain one or more protons in their 

molecular structure, and each proton produces one or more peaks.  However, a metabolite 

mixture from a given biological system may consist of thousands of metabolites, thereby 

producing thousands of proton signals in a given spectrum and providing a wealth of 

information on the nature of the biological system (Figure 1.2).   

NMR is somewhat of a universal platform as it can capture a wide range of 

metabolites with different chemical characteristics,  such as aromatic compounds,  
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Figure 1.2. A 1D 
1
H NMR spectrum, displaying hundreds of metabolites found in an 

E.coli metabolomics sample. The NMR spectrum can be divided into three regions 

describing the type of metabolites: aromatic, carbohydrates, and aliphatics. 
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carbohydrates, amino acids, and aliphatic compounds.  Unfortunately, analysis of every 

peak can be very challenging due to the limitation of the proton spectral width, leading to 

peak overlap.  

An accurate but qualitative approach involves the use of statistical analysis and 

pattern recognition.  Pattern recognition techniques such as principle component analysis 

(PCA) and orthogonal projection to latent structure discriminant analysis (OPLS-DA) are 

currently being employed to capture the global perturbations in a metabolome [45, 46].  

PCA is an unsupervised method that reduces a multivariate dataset to a single point and 

projects the major variations in the dataset into a few axes called principal components. 

In this way, spectral variations are captured in a model that can be easily visualized.  The 

overall underlying assumption is that similar metabolomic profiles will cluster closely 

together in PCA or OPLS-DA scores plots and that differing metabolomics profiles will 

cluster away from each other [47].  

OPLS-DA is a supervised method used to determine the variations within the data 

set that are correlated to classification labels (e.g., treatment, control, disease state) set by 

the investigators. If the variations within the data set are not correlated with the 

classification label, then the variations are filtered out, resulting in a single latent vector 

[46].  This is analogous to PCA because PCA captures all the intrinsic variations within 

the data set.  Since the classification labels are defined in OPLS-DA, the scores plot will 

create distinct clusters between classes regardless of their similarities. A separation 

between classes will even occur for randomly generated data [48].  Thus, it is essential 

that OPLS-DA models are properly validated. However, with proper validation using 
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both PCA and OPLS-DA methodologies, these tools are extremely powerful tools used to 

organize and classify different strains, drug treatments, or diseases. This also allows for 

the determination of the mechanisms of drugs with unknown actions, by comparing the 

results to those for classes of drugs with known mechanisms of action [49].  

A major problem with 1D-NMR metabolomics techniques is the inability to 

accurately quantitate metabolic perturbation due to overlapping peaks.  In addition, 

attempts to identify these metabolites present a great challenge.  Therefore, the use of a 

two-dimensional (2D) 
1
H-

13
C HSQC experiment leads to a dispersion of peaks along the 

1
H and 

13
C axes, increasing the resolution of the spectrum (Figure 1.3). More 

importantly, a 2D 
1
H-

13
C HSQC spectrum offers useful information for the identification 

of individual metabolites, since, multiple peaks comprising coupled 
1
H and 

13
C chemical 

shifts may be attributed to a single metabolite, providing several redundant data points for 

confirming an assignment. A number of databases have been developed to enable 

metabolite identification by matching the chemical shifts from a 2D 
1
H-

13
C HSQC 

spectrum obtained for a metabolomics sample to a collection of reference NMR spectra 

for numerous known metabolites. Such databases include the Human Metabolome 

Database (HMDB) [50], Madison Metabolomics Database (MMCD) [51], and Platform 

for Riken Metabolomics (PRIMe) [52].  These databases consist of hundreds to 

thousands of metabolites from a broad range of organisms; therefore, metabolite 

identification should be verified with KEGG and Metacyc databases [23, 24, 40].  

Metabolites can be quantified using time-zero 2D 
1
H-

13
C HSQC [53] or by quantitating  
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Figure 1.3. An example of a typical 2D 
1
H-

13
C HSQC spectrum obtained for a M. 

smegmatis culture grown in MADC media containing 
13

C-glycerol. The metabolites were 

identified using HMDB, MMCD, and Prime databases. 
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the relative difference in peak height [54].  Heat-maps, bar graphs or metabolic pathways 

can then be generated to compare concentrations or relative peak heights of different 

metabolites to identifying major perturbations associated with genetic or environmental 

changes.   

 

1.2 Overview of Thesis 

1.2.1 Development of Metabolomics Methodologies 

 Metabolomics is a relatively new field, but it has evolved into a powerful tool for 

understanding the global physiological and pathological states of a biological system.  

This dissertation will focus on the development of NMR-based metabolomics 

methodologies to ensure that the required information is obtained in a high throughput 

and reliable manner.  These NMR-based metabolomics methods were developed while 

applying the techniques to different organisms, such as Aspergillus nidulans, 

Mycobacterium tuberculosis, Mycobacterium smegmatis, Staphylococcus aureus, 

Staphylococcus epidermidis; biofluids (urine), and human cell lines (pancreatic cancer 

cells) were also examined [47, 54-58].  

 Chapter 2 will address the application of pattern recognition tools, such as PCA 

and OPLS-DA, which can be used to decipher global changes in large NMR datasets of 

cell lysates or biofluids.  The chapter will explain the importance of the validation 

process and the development of statistically meaningful plots.  Statistical tools such as 

PCAtoTree [59] and PCA/PLS-DA utilities [60] have been developed to quantify the 
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differential relationship between clustering patterns. S-Plots are then used to identify 

metabolite changes that are responsible for class separation. 

 Chapters 3 outlines the overall metabolomics protocol that was optimized in 

order to generate reliable and reproducible data.  Initially, the protocol was limited to 

only the use of PCA and the comparison of a control, mutant, and drug treated cell lines 

[47].  The protocol has been expanded greatly, optimizing all aspects of the 

metabolomics processes including cell growth, sample preparation, sample handling, data 

collection, data processing, and data analysis.  The protocol now includes the qualitative 

and quantitative analysis of 2D 
1
H-

13
C HSQC spectra.  Peak intensities and volumes 

within a 2D 
1
H-

13
C HSQC spectrum are directly proportional to the concentration of a 

given metabolite. However, conventional HSQCs are difficult to quantify because 

different spin dynamic properties, J-coupling, translational relaxation, and transverse 

relaxation for each atom in a metabolite also affect peak intensities and volumes [53].  

Therefore, the protocol incorporates two methods: quantifying metabolic perturbations 

comparing relative peak heights, and quantifying the concentrations of metabolites using 

time-zero HSQC [53]. 

 Chapter 4 discusses a new methodology to predict the in vivo mechanism of 

action for drug leads from NMR metabolomics data.  Initially, drugs were compared with 

mutant knockout strains to determine the mechanism of action. Drugs that clustered 

similar to the mutant strains in PCA or OPLS-DA scores plots were said to have a similar 

impact on the metabolome as the genetically inactivated protein  and, therefore, the 

genetically inactivated protein was identified as the likely drug target [47].  However, this 
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requires some general knowledge of the potential drug target in order to select an 

appropriate mutant knockout strain. Thus, this approach was further developed by 

comparing chemical leads with unknown mechanisms to reference drugs with known 

protein targets. We postulated that drugs targeting the same protein would likely cluster 

together in a PCA or OPLS-DA scores plot. Three chemical leads shown to inhibit M. 

tuberculosis and M. smegmatis, but with an unknown mechanism of action, were 

compared with known mycobacterial drugs. The NMR analysis resulted in multiple drugs 

with similar mechanisms of action clustering closely together in an OPLS-DA scores 

plot, allowing for the prediction of a mechanism of action for the three chemical leads 

with activity against M. tuberculosis and M. smegmatis. 

 

1.2.2 Biofilm Formation 

 Staphylococcus epidermidis and Staphylococcus aureus are the most prevalent 

bacteria found colonizing human skin and mucous membranes [61].  Despite their low 

virulence, they have been the leading causes of infections during medical care [62].  

These infections are most frequently a result of cuts, medical implants, dialysis catheters, 

and many other medical procedures.  The virulence and survivability of these bacterial 

species is associated with their ability to attach to surfaces and form a sticky residue 

called a biofilm, in which larger colonies of cells can be formed (Figure 1.4a) [63].  At a 

molecular level, polysaccharide intercellular adhesion (PIA) plays an essential role in 

bacterial adherence.  PIA is primarily composed of a mixture N-acetylglucosamine in β-

1,6-glycosidic linkages containing deacetylated amino groups, succinate, and phosphate   
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Figure 1.4. a) The process of biofilm formation.  The cells first attached to a polymer 

surface. As more cells are attached to the surface, they secrete out more PIA.  The 

biofilm matrix matures and then overtime, parts of the biofilm detaches forming new 

colonies. b) Molecular structure of PIA. Reprinted with permission from [63] © Annual 

Review of Medicine, 2013. 

 

a) 

b) 
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substitutions (Figure 1.4b) [64, 65]. Overtime, more bacterial cells adhere to the complex, 

secreting more PIA.  Channels are formed through the complex which allows for 

nutrients to flow deep within the complex community [66].  Parts of the complex colony 

can then break off and form new colonies [63].  Overall, biofilms allow bacterial cells to 

survive and grow through harsh environmental conditions.  Numerous antibiotics are 

ineffective or have diminished activity against a biofilm, because of the inability to 

penetrate through the sticky mass [65, 67]. Therefore, studies are being performed to find 

drugs that can detach biofilms from surfaces or prevent biofilm formation [68]. 

In this study, we demonstrated for the first time that a metabolic response, TCA 

cycle repression, can act as a signaling mechanism for the activation of PIA and biofilm 

formation.  In Chapter 5, S. epidermidis TCA cycle mutants were constructed, and the 

function of central metabolism was analyzed. The results showed that TCA cycle 

inactivation altered the metabolic status of S. epidermidis, resulting in a derepression of 

PIA biosynthetic genes and a redirection of carbon from growth into PIA biosynthesis.  

In Chapter 6, we demonstrate that environmental stressors (iron limitation and 

addition of ethanol) decrease TCA activity resulting in metabolic changes.  These 

metabolic changes are sensed by a metabolite-response regulator (catabolite control 

protein; CcpA) that affect PIA production.  

Chapter 7 describes a detailed NMR metabolomics analysis to investigate a 

diverse array of environmental stress factors associated with biofilm formation, such as 

5% NaCl, 2% glucose, 0.06 ug/ml tetracyclin, 400 nM autoinducer-2, 4% ethanol, and 

iron limitation.  A detailed quantitative NMR analysis describing the changes in 
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metabolite concentration using 2D 
1
H-

13
C HSQC and 2D 

1
H-

1
H TOCSY spectra was 

used to describe the perturbation of the metabolome associated with the environmental 

stresses. The results further demonstrate that different environmental stress conditions 

induce inactivation of the TCA cycle. Moreover, the TCA cycle inactivation plays a 

central role in the proposed signaling pathway that also involves the perturbation of other 

metabolites associated with PIA formations. Furthermore, our metabolomics analysis has 

shown that some environmental stresses such as the addition of NaCl and autoinducer-2 

did not affect the TCA cycle demonstrating that these factors may perturb other distant 

processes.  

Chapter 8 illustrates through genetic and biochemical approaches that S. aureus 

ccpA can synthesize arginine from proline via the urea cycle. This is the first report of 

bacteria utilizing proline for arginine biosynthesis. Ccpa is a known gene regulator for 

carbon catabolite repression, and can de-repress arginine biosynthesis via glutamate [56, 

69].  Ccpa can also repress TCA cycle activity which is important in biofilm formation 

[70]. 

 

1.2.3  Mechanism of action of DCS on Mycobacterium tuberculosis and Mycobacterium  

          smegmatis 

D-Cycloserine (DCS) is an effective second line antibiotic used to treat 

Mycobacterium tuberculosis. DCS is a cyclic analogue of D-alanine and interferes with 

the formation of peptidoglycan biosynthesis by the competitive inhibition of alanine 

racemase and D-alanyl-D-alanine ligase. Both enzymes are unique to bacteria and 
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valuable drug discovery targets for developing selective antibacterial agents [71].  

However, DCS is rarely used due to serious neurological side effects that result from an 

interaction with neuronal N-methyl aspartate receptors [72-74].  Therefore, understanding 

the in vivo mechanism of action for DCS and determining if alanine racemase or D-

alanine-D-alanine ligase is the lethal target of DCS could aid in the development of 

effective and safe antitubercular agents. 

 Although it is known that DCS can competitively bind to both alanine racemase 

and D-alanine ligase, it is unclear which enzyme is the lethal target of DCS [75].  Recent 

studies have shown that mutations leading to the overproduction of alanine racemase 

increased resistance to DCS [76]. Similarly, alanine racemase null mutants are 

susceptible to DCS [76].  Overall, the sensitivity of DCS to both overproduction strain 

and null mutants may suggest that alanine racemase plays an important role in the in vivo 

mechanism of DCS. However, the overproduction of D-alanine-D-alanine ligase has been 

shown to reduce susceptibility of DCS, suggesting that D-alanine-D-alanine ligase may 

also play an important role in  DCS activity [75].  Moreover, DCS mediated inhibition 

can be reversed by the presence of D-alanine in the medium, suggesting DCS might 

inhibit growth by alanine racemase alone [77]. However, our NMR metabolomics 

experiments show that the in vivo mechanism of inactivation of alanine racemase by 

mutation does not match the in vivo mechanism of action for DCS (Figure 1.5) [55].  This 

suggests that another enzyme, possibly D-alanine-D-alanine ligase, may be the lethal 

target. 
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Figure 1.5. a) PCA scores plot comparing wild-type mc
2
155( ), alanine racemase null 

mutant (TAM23) (●), alanine racemase over producing mutant (GPM14)  (  ), DCS 

resistant strain unrelated to alanine racemase mutations (GPM 16)  (   ), TAM23 

complemented with wild-type alanine racemase gene (TAM23 pTAMU3)  (   ), mc
2
155 

with DCS ( ), TAM23 with DCS (●), GPM14 with DCS (  ), GPM16 with DCS (   ) and 

TAM23pTAMu3 with DCS (   ).  Cultures that are clustered together displays similar 

metabolomes while distant clustering patterns have different metabolomes. Reprinted 

with permission [55] © American Chemical Society, 2007. 
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The essentiality of alanine racemase in mycobacteria is also a point of discussion 

because it is important in determining whether alanine racemase or D-alanine-D-alanine 

ligase is the lethal target of DCS [78, 79]. For example, if alanine racemase is essential, 

then it would be assumed that the inhibition of alanine racemase by DCS would be lethal.  

Therefore, developing effective and safer antibiotics would focus on alanine racemase as 

a drug target. On the other hand, if alanine racemase in not essential, meaning there is an 

alternate path for the production of D-alanine, then D-alanine-D-alanine ligase may 

assume the role as the potential lethal target of DCS.  In our previous study using NMR 

metabolomics, we were able to verify that there is a potential alternate pathway for the 

production of D-alanine, where an alanine racemase null mutant, an alanine racemase 

overproduction mutants,  and wild type cells were all able to grow in the absence of D-

alanine [55].  Furthermore, our 1D 
1
H NMR metabolomics analysis showed a decrease in 

glutamate in the alanine racemase null mutant cell lysate samples, suggesting glutamate 

is being utilized to produce D-alanine via a transaminase mechanism [55]. 

A previous NMR metabolomics study provided substantial insights regarding the 

role of alanine racemase to DCS activity [55].  Nevertheless, further studies were needed 

to determine the essentiality of alanine racemase and for defining the role of D-alanine-

D-alanine ligase in DCS activity. Chapter 9 describes further investigations of the 

essentiality of alanine racemase to M. smegmatis, and provides additional evidence for a 

possible alternate route for the production of D-alanine.  It also illustrates the importance 

of media selection in cell cultures, since the use of different media may generate 

contradictory results.  
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Chapter 10 describes further investigations into the identification of the M. 

tuberculosis and M. smegmatis in vivo lethal target of DCS.  A detailed NMR 

metabolomics analysis identified D-alanine-D-alanine ligase as the lethal target of DCS. 

Inhibition of cell growth by DCS was correlated with a halt in the production of D-

alanyl-D-alanine. Also, increasing the cellular pool of D-alanine was identified as a 

mechanism of DCS resistance. Thus, inhibition of alanine racemase may contribute 

indirectly to DCS activity by lowering the levels of D-alanine and allowing DCS to 

outcompete D-alanine for D-alanine-D-alanine ligase binding. 
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CHAPTER 2 

TOOLS FOR INTERPRETTING NMR MULTIVARIATE DATA 

 

2.1 Introduction 

The use of pattern recognition to analyze complex data sets has been one of the 

most important developments in the application of NMR to metabolomics.  NMR data are 

generally large and complex, consisting of thousands of signals corresponding to 

numerous metabolites in a biological sample.  Thus, the aim of multivariate statistical 

techniques is to maximize the interpretation of NMR datasets by identifying and 

quantifying all the metabolites that are perturbed by genetic alterations, disease 

processes, or drug treatment [1]. However, the numerous metabolite signals tend to result 

in a congested NMR spectrum, which hinders manual interpretation of the data.   

Pattern recognition tools, such as principal component analysis (PCA) and 

orthogonal projection of latent structures discriminant analysis (OPLS-DA), are routinely 

used to analyze NMR datasets collected on metabolomes extracted from various cell 

cultures.  The resulting PCA or OPLS-DA scores plots provide a means to identify 

biological relationships between the different cell cultures based on global differences or 

similarities between the cellular metabolomes [2, 3].  In general, pattern recognition tools 

are used to identify the spectral features that significantly contribute to a differentiation 

between the classes in an attempt to discover biomarkers or to construct a model to 

determine class membership [4, 5].  PCA is an unsupervised technique, which means that 

class designations are not used to generate a model [6].  Instead the model and the class 
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discrimination is based on identifying the largest variations in the data [6].  However, 

PCA is only applicable if variations in the experimental dataset are a consequence of 

differences in an underling biological process. In effect, differences in the NMR spectra 

must result from biologically relevant changes in the cellular metabolomes.  

Alternatively, a supervised technique, such as OPLS-DA, requires class 

designations in order to generate a model. Similar to unsupervised techniques, supervised 

methods only generate a validated model if a difference in the metabolome and 

associated NMR spectra actually exist. Unlike unsupervised techniques, supervised 

methods can also generate the appearance of class separation even for completely random 

data [7]. Thus, it is essential that the model generated by a supervised technique is 

properly validated [7]. Despite these added challenges, the advantage of supervised 

techniques is the ease of identifying the key spectral features (metabolites) that define the 

class separation.       

In this chapter, I present an overview, and describe the general application of 

PCA and OPLS-DA for the analysis of NMR metabolomics data as a tool for systems 

biology.  I will also highlight the importance of generating statistically meaningful 

OPLS-DA models using validations protocols. In addition, I will briefly describe the 

statistical tools PCAtoTree and PCA/PLS-DA utilities (http://bionmr.unl.edu/pca-

utils.php) that have been developed by Prof. Mark Werth and Bradley Worley, 

respectively, with the assistance of my NMR metabolomics datasets, to quantify the 

statistical significance of class separation in PCA and OPLS-DA scores plots. Finally, I 

http://bionmr.unl.edu/pca-utils.php
http://bionmr.unl.edu/pca-utils.php
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will describe the application of OPLS-DA S-plots to identify the significant metabolite 

changes that are responsible for class separation. 

 

2.2 Principal Component Analysis 

PCA is a well-established unsupervised statistical method for interpreting large 

multivariable datasets. PCA results in the reduction of an NMR spectrum into a single 

point in a Cartesian coordinate system in a K-dimensional space, where each dimension 

represents a chemical shift bin from the NMR spectra (Figure 2.1) [8]. The NMR data 

matrix X consists of n samples and m variables (chemical shift bins) which can be 

represented as an ensemble of n points in an m dimensional space. PCA transforms the 

NMR data matrix X by a partial linear least squares fit to a principal component vector    

(
1PC ) corresponding to the largest variation in the dataset. The data is then fit to a 

second orthogonal vector (
2PC ) corresponding to the second largest variation in the 

dataset. Each successive principal component vector describes a decreasing amount of the 

variability in the NMR data matrix X. A “weights” or “loadings” matrix (P) maps the 

NMR data matrix X onto these principal component vectors. Thus, the new transformed 

data will have a new set of axes which relates to each principal component through a 

scores matrix (T).  In essence, PCA performs an orthogonal linear transformation of a 

multivariate dataset into the latent (PC) coordinate space while maintaining most of the 

variability of the original data (Equation  2.1)[9].  

                     (2.1) 
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Figure 2.1. Diagram of 1D 
1
H NMR data being reduced into a PCA scores plot. Each 

spectrum is reduced to a single point along the k-dimensional variable space. Each 

dimensional variable represents a chemical shift bin. PC1 account for the largest 

variation, and PC2 is orthogonal to PC1 and describes the second largest variation. 

Reprinted with permission [8] © Future Medicinal Chemistry, 2012. 
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PCA can also be generally described as a method that decomposes the NMR data matrix 

(X) into two smaller matrices corresponding to the scores matrix (T) and a transposed 

loading matrix (P
T
) (Equation 2.2) [10, 11], 

                                                              (2.2) 

The scores matrix captures the systematic variation in the dataset with respect to the 

samples and variables. The loadings matrix captures the relative contribution of each 

chemical shift bin to this variance. The E matrix contains the residuals, the data in X that 

is not explained by the PCA model.  The principal components (PC) are a series of partial 

linear least squares fits of the original set of samples in X that captures the maximum 

amount of variance in the dataset.  Therefore equation 2.2 can be expanded as shown 

below [10, 11], 

                                            
       

       
        

      (2.3) 

where tK and   
  represent the scores vector and loadings vector for each successive 

principal component. The first principal component (    
 ) explains the largest amount of 

variance in the data. The second component (    
 ) is orthogonal to the first component 

and explains the second largest amount of variance in the data. Each subsequent PCK will 

capture a decreasing amount of variance. 

  

2.3 Orthogonal Projection of Latent Structure 

PCA can be advantageous for detecting outliers, finding patterns or trends, or the 

separation of groups that are not similar [12, 13].  This means PCA can be performed 

with little to no knowledge about the samples being studied.  However, PCA based 
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approaches are limited, because the unsupervised approach results in a separation based 

only on the maximum variations [3].  Thus, the principal components may not necessarily 

reflect differences between classes [14].  On the other hand, OPLS-DA is a supervised 

technique where the results in an OPLS-DA scores plot is driven by the class assignments 

[3, 15]. This means that the model is rotated based on the class assignments instead of the 

maximum variations in the data set (Figure 2.2). More specifically, the first (predictive) 

component of the OPLS-DA scores spectra contains information that distinguishes 

between class separations, while the second (orthogonal) component contains information 

relative to within class membership. 

 OPLS-DA is a supervised algorithm that uses an orthogonal signal correction 

(OSC) filter to remove any variation in data matrix X that is not correlated with a 

response matrix Y [3, 16].  The data matrix Y contains discrete classifications, such as 

wild-type, mutant, drugs, or disease. As an illustrative example, the wild-type cultures 

can be assigned a value of 0, whereas the mutant, drugs, or disease can be designated a 

value of 1.  However, the class designation can be used to compare any class 

combinations such as comparison between different mutants or drug treatments. Overall, 

OPLS-DA uses information of data matrix Y to decompose data matrix X into blocks of 

structured variations that are correlated to and orthogonal to Y, respectively using the 

following equation [3, 11], 

         
      

            (2.4) 

where Tp and   
  are the predictive scores and loadings that are correlated with Y. To and 

  
  are the scores and loadings, respectively, that are orthogonal to Y.  E is the residuals  
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Figure 2.2. Diagram of 1D 
1
H NMR data being reduced into an OPLSA-DA scores plot. 

The OPLS-DA scores plot is rotated based on the classification assignment where the 

predictive component (tp) represent between class variations and the orthogonal 

component (to) represents within class variation.   

  



33 
 

or variations in X that are not explained in the model. Also in the above expression, the 

Tp  
  block (predictive components) represents variations between class memberships. 

To  
  (orthogonal components) represents the within class variations. 

 

2.4 Interpretation of PCA and OPLS-DA models 

The use of PCA in NMR metabolomics is an effective strategy for obtaining 

useful information about efficacy, toxicity, and selectivity of chemical leads in the drug 

discovery process [17-19].  One simple approach to determine the selectivity and toxicity 

of a drug is through the comparison of the metabolome from a wild-type strain, a mutant 

strain, and wild-type and mutant strains treated with a chemical lead [18].  The mutant 

strain must consist of an inactivated or diminished activity for the protein hypothesized to 

be the target of the chemical lead. Also, the metabolome from the mutant strain must 

show good separation from the metabolome of the wild type cells in a PCA scores plot.  

The mutant and wild-type cultures are then treated with the chemical lead, resulting in a 

total of four groups (wild-type cells, drug-treated wild-type cells, mutant cells, and drug-

treated mutant cells). Depending on the drugs in vivo activity, four outcomes in the PCA 

scores plot are possible (Figure 2.3). If the PCA scores plot results in two separate 

clusters where the metabolomes from the drug-treated cells do not separate from the 

wild-type or mutant metabolomes, then the chemical lead is said to be inactive (Figure 

2.3a).  Conversely, the chemical lead is predicted to be active and selective if the 

metabolomes from both sets of drug-treated cultures are clustered together with the 

mutant metabolome in the PCA scores plot (Figure 2.3b). This means genetically or   
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Figure 2.3. Illustration demonstrating the hypothetical PCA scores plot for the following 

scenarios a) inactive compound, b) active and selective inhibitor, c) active, nonselective 

inhibition of target and secondary protein, and d) active, nonselective preferential 

inhibition of secondary protein. Reprinted with permission [18] © Journal of Proteome 

Research, 2006. 
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chemically inhibiting the same protein target leads to an essentially identical change in 

the metabolome.  If the PCA scores plots yields three sets of clusters where the 

metabolomes from both drug-treated cultures are clustered together but are separated 

from the metabolomes from both the mutant and wild-type cells (Figure 2.3c), the 

chemical lead is predicted to inhibit two or more protein targets. The drug is active, but 

not selective. Lastly, if four distinct clustering patterns are formed in the PCA scores plot, 

then the chemical lead is inhibiting a protein not related to the original, hypothesized 

protein target (Figure 2.3d). 

As an example, Figure 2.4 demonstrates the use of NMR metabolomics 

methodology to monitor the in vivo activity of 8-azaxanthine [18].  8-Azaxanthine is a 

well-known inhibitor of urate oxidase in Aspergillus nidulans [20, 21]. A comparison was 

made between the metabolome from uaZ14 mutant with an inactive urate oxidase, and 

the  wild-type metabolome [22].  Both strains were also treated with 8-azaxanthine,  

where the resulting PCA scores plot shows two distinct clustering patterns. Both 

metabolomes from wild-type and uaZ14 mutant mycelia treated with 8-azaxanthine 

cluster together with the metabolome from the untreated uaZ14 mutant  mycelia. The 

metabolome from the untreated wild-type mycelia form a separate cluster in the PCA 

scores plots.  This demonstrates that 8-azaxanthine is a selective inhibitor targeting urate 

oxidase. Importantly, the PCA can be related back to phenotype, where the wild type 

mycelia showed hyphal growth that was lacking in uaZ14 mutant mycelia or 8-

azaxanthine treated mycelia [18]. 
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Figure 2.4. PCA scores plot comparing A. nidulans uaz14 mutant (x), wild-type with 8-

azaxanthine ( ), uaZ14 mutant with 8-azaxanthine (●), and wild-type cells (  ).  The 

scores plot is then used to compare lectin stains of untreated A. nidulans fungus (left) vs. 

the fungus treated with 8-azaxanthine (right).  The lectin stains, which bind to growing 

chitin cell was, indicates the amount of hyphal growth that occurred after the stain. 

Reprinted with permission [18] © Journal of Proteome Research, 2006. 
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A common problem with the evaluation of a PCA model is the identification of 

classes or groups, such as the separation between a control group and a group being 

observed to have a specific disease or origin.  Replicate metabolomics samples tend to 

exhibit a significant variation between each sample due to differences in sample growth, 

sample handling, data collection, and the inherent variability in nature.  Although it is 

important to minimize these variations, it is impractical to maintain perfect consistency. 

Instead, OPLS-DA is able to improve class separation, because variations not correlated 

with a class separation are simply removed. As an illustration, Figure 2.5 displays a 

comparison between PCA and OPLS-DA scores plot used to discriminate between  

strains of Scutellana baicalensis bacteria isolated from different locales [23].  The PCA 

scores plot showed some class differences, but there is noticeable overlap due to within 

group variations. This makes classification a challenge because it is not clear if the two 

groups are statistically different. The separation of the NMR metabolomics data into 

predictive and orthogonal components in OPLS-DA scores plot allows for the 

identification of class discrimination (Figure 2.5b). This would enable verification of the 

statistical model by predicting the origins of other S. baicalensis isolates. However, 

extreme care must be taken because OPLS-DA has a tendency to over-fit the data [24].  

As a result, OPLS-DA can generate scores plots with an apparent class separation even 

for randomly generated data [7].  Thus, the validation of every OPLS-DA model is 

essential. 
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Figure 2.5. a) PCA and b) OPLS-DA scores plot comparing the metabolic fingerprints of 

Korean (  ) and Chinese S. baicalensis groups ( ). Reprinted with permission [23] © 

Journal of Agricultural and Food Chemistry, 2008. 
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2.5 Validation of PCA and OPLS-DA models 

One of the main objectives for PCA and OPLS-DA is to select a model that best 

represents the data.  Since the model is heavily simplified for the ease of visual 

inspection, the model might give rise to an unclear or false positive result [25]. Therefore, 

statistical analysis is needed in order to establish a valid and meaningful model.  For both 

PCA and OPLS-DA, a quantitative measure of the goodness of fit is given by the 

contribution score or the variance that is being explained by each component and is 

represented as R
2
.   The goodness of fit is calculated as follows [26, 27], 

     
   

      
         (2.5) 

where RSS is residual sum of squares and SSXTOT is the total variation in the data.  A R
2
 

of 1.0 represents a complete explanation of the model while a R
2
 of 0.0 represents no 

explanation of the model.  Typically, a good model is represented by high contribution 

scores for a few components, and lower contribution scores are usually attributed to noisy 

data. R
2
 is a good way of quantifying variables being explained for each component. For 

example, some variables can be explained well by either the first, second, or third 

component, while some variables may only be explained by multiple component. This 

allows for a qualitative determination of the variables important for each component.  

The goodness of prediction (Q
2
) is an estimate of the predictive ability of the 

model based on cross validation [27]. Cross validation is a predictive strategy of 

evaluating and comparing the models generated by dividing data into two parts, a training 

set and validation set [28]. More specifically a certain number of observations are 

removed from the original dataset and moved into a validation set while the remaining 
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observations are left in the training set.  During the process, a number of successive 

rounds are performed where the training set and validation set must cross-over so that 

each point has a chance to be evaluated. There are multiple strategies for cross validation 

including resubstitution validation, hold-out validation, k-fold cross validation, and leave-

one-out cross-validation, and repeated k-fold fold cross-validation [29].  The Simca P+ 

package uses a type of leave-n-out cross-validation, where 1/7
th

 of the data is left out and 

then examined [27].  The quality of the model can then be estimated using equation 2.6 

[26, 27]: 

     
     

      
     (2.6) 

where PRESS is the predictive residual sum of squares determined using the cross-

validation models. Overall Q
2
 renders a measure of the final model’s predictive 

capabilities.  If the Q
2
 of each successive component is roughly equal to its R

2
, then the 

components are said to be useful and predictive in the model. A Q
2
 score that is “small” 

compared to the R
2
 indicates the component is not predictable and is comparable to 

fitting a line through randomly generated data or noise.   

It is easy to get a relatively high R
2
-value in a model by simply adding more 

components until the value approaches one, since the R
2
 of the model is a summation of 

the R
2 

values for each component. However, this leads to an over-fitting of the model. 

Therefore, it raises the general question: how many components are relevant?  In 

contrast, the Q
2
 value for a model will reach a plateau and then begin to decrease for each 

successive additional component (Figure 2.6) [30].  The decrease in Q
2
 indicates that the  
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Figure 2.6. The relation between R
2
 (goodness of fit) and Q

2
 (goodness of prediction) 

when adding new components in a model. Reprinted with permission [30] © 

Scandinavian Journal of Psychology, 2001. 
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additional components are not predictive and are not used [30]. Hence, it is important to 

determine the optimal number of components by the relationship of the R
2
 and Q

2
 values. 

Although the R
2
 and Q

2
 values display the overall quality of the model, they do 

not validate if the class prediction between different groups used in an OPLS-DA model 

are statistically different.  OPLS-DA has a tendency to over-fit the data, where randomly 

generated groups can generate separate clusters in a scores plot [7].  A permutation test  

could be used to examine the degree of over-fitting [7].  The method scrambles the 

classification matrix Y while the original data matrix X remains intact. A new model is 

then calculated based on the permuted Y matrix, and the permuted model is examined 

based on the R
2
 and Q

2
 values. This procedure is repeated multiple times (generally more 

than 100 times), creating models with different correlations to the original model. 

Normally the R
2
 and Q

2
 values for the permuted models are lower than the 

original model as a consequence of the reduce correlation to the original Y matrix.  The 

degree of reduction of these values can be used to validate the significance of the group 

classification.  For example, Figure 2.7 is the permutation plot of the OPLS-DA scores 

plot shown in Figure 2.5b [23].  When examining the R
2
 and Q

2
 values, the models have 

been permuted so much that the values can be extrapolated to a zero correlation.  The R
2
 

value at zero correlation in the plot is lower, but does not approach zero, meaning that it 

is mathematically possible to reproduce any possible combinations of Y with an R
2
 of 

0.4.  The Q
2
 value, on the other hand, ended up with a negative value, meaning the 

predictive quality is extremely poor at a zero correlation. Thus, the original model is well  
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Figure 2.7. Permutation plot describing the results for 200 permutations.  The solid line 

represents the regression line for R
2
. The dashed line represents the regression line for Q

2
. 

Reprinted with permission [23] © Journal of Agricultural and Food Chemistry, 2008. 
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fit and the two groups are significantly different due to the loss of predictive power when 

the classification is randomly assigned.   

Cross Validated-Analysis of Variance (CV-ANOVA) is another method to test the 

significance between groups [31].  It is based on the cross-validated predictive residuals 

and predictive scores values, where the model is used to compare the variances of the 

residuals based on the F-test. The CV-ANOVA provides a wealth of information about 

the model including the corresponding mean squares, sum of squares, F-values, and  

p-values.  A common practice is to interpret a p-value lower than 0.05 to designated 

statistically different groups. 

 

2.6 Identifying metabolite perturbations using S-Plots 

One of the common goals in metabolomics is to pinpoint metabolite perturbations 

that are related to drug toxicity, diseases, genetic modifications, or environmental 

variations.  However, it is extremely difficult to summarize and interpret them by visually 

inspecting complex 1D-NMR data.  The S-plot provides an easier way to interpret the 

data by combining the covariance and correlation loadings resulting from the predictive 

component in an OPLS-DA scores plot.  The covariance loadings correspond to the 

magnitude or contribution to the scores.  The correlation loadings represent the 

consistency of the model variables.  The two vectors can be calculated as shown below 

[15]: 

   (    )  
    

   
     (2.7) 

    (    )  
   (    )

     
          (2.8) 
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Figure 2.8. Diagram of an S-plot for a given OPLS-DA scores plot. Each point in the S-

plot represents a chemical shift bin in a 1D NMR data set.  The blue box represents points 

of interest as they highly contribute to class separation. The red box represents data 

contributing very little to class separation. 
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where t is the scores vector in the OPLS-DA model, k is the centered variable in data 

matrix X, and s is the estimated standard deviations.  These two vectors are plotted as a 

scatter plot and usually form an “S” shape (Figure 2.8). The selection of potentially 

biochemical interesting compounds is dependent on the location of the point on the S-

plot, where each point represents a chemical shift bin, which in turn, can specify a 

specific or set of metabolites.  Points that show high correlation and covariance (blue 

box) are of interest as they are responsible for class separation.  Points that show low 

correlation are unreliable.  Points showing low covariance contribute little to no  

class separation (red box). One issue with the S-plot is that the magnitude of the 

contribution is relative, so there is no defined absolute value that designates a significant 

contribution to class separation.  As a conservative approach, points at the extreme 

regions along the covariance axis are considered points of interest. As an example, in 

Figure 2.8 points with a covariance greater than 0.1 or less than -0.1 would be of interest. 

However, identifying points within the high risk region (high correlation, low covariance) 

can be a daunting task as these metabolites may or may not be important.  Therefore, the 

use of loadings plots from PCA and quantitative analysis of 
13

C-metabolites using 2D 
1
H-

13
C HSQC’s is a good complement to identifying important metabolites. 

 

2.7 PCAtoTree and PCA Utilities 

PCA and OPLS-DA are able to decompose high-throughput data into qualitative 

visual representation, showing clustering patterns of biological samples into either similar 

or different groups.  In some cases, the clustering patterns in a scores plot are distinct and 
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well separated.  In other cases, the scores plot clustering patterns are not very well 

defined.  Also, as the number of different groups increases (i.e., different drug treatments 

or mutations) the scores plot becomes more complex and it becomes difficult to 

determine if the groups are significantly different. The simple visual inspection of a PCA 

and OPLS-DA scores plot does not imply the statistical significance of group separation. 

In turn, a visual inspection of a scores plot does not always provide a reliable 

interpretation of the biological significance of the group separation. OPLS-DA model 

validation methods, such as the permutation plot or CV-ANOVA, can only determine if 

two groups are significantly different. Therefore, PCAtoTree was designed to analyze 

clusters in a scores plot by generating tree diagrams with corresponding bootstrap 

numbers to provide a statistical significance to each group separation [32].  

 PCAtoTree [32] is an awk-based script written by Prof. Mark Werth that uses the 

data generated by the PCA scores plot and determines the average distance and standard 

deviation for each assigned group.  The program uses a bootstrapping method that 

generates 100 distance matrices based on the average position of each cluster. The Phylip 

software package (http://evolution.genetics.washington.edu) utilizes the 100 distance 

matrices to generate a consensus tree diagram with the corresponding bootstrap values for 

each node.  Bootstrap values below 50% indicate the separation between clusters is 

insignificant. Figure 2.9 is an example of a 2D PCA scores plot and associated 

metabolomics tree diagram, showing the relative similarities between the metabolomes 

from different Mycobacterium smegmatis mutants and wild type cells in the presence and 

absence of D-cycloserine treatment. 
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Figure 2.9. a) PCA scores plot comparing mc
2
155( ), TAM23  (●), GPM14 (  ), GPM 

16  (   ) TAM23 pTAMU3  (   ), mc
2
155 with DCS ( ), TAM23 with DCS (●), GPM14 

with DCS (  ), GPM16 with DCS (   ) and TAM23pTAMu3 with DCS (   ). Tree diagram 

corresponding to the PCA scores plot.  Bootstrapping numbers less than 50 are not 

displayed indicating similar clustering. Reprinted with permission [32] © Analytical 

Biochemistry, 2010. 
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Figure 2.10. (a) 2D OPLS-DA scores plot illustrating 95% confidence ellipses for data 

having one predictive and one orthogonal PLS component. The symbol shape and color 

of each point correspond to the groups in (b). Discrimination in the first component is 

between wild-type and antibiotic-treated Mycobacterium smegmatis, and separations 

along the second component indicate metabolic differences between various antibiotic 

treatments. The antibiotics cluster together based on a shared biological target (cell wall 

synthesis, mycolic acid biosynthesis, or transcription, translation and DNA supercoiling). 

Three compounds of unknown in vivo activity were shown to cluster together with 

inhibitors of cell wall synthesis, implying a potential biological target. Interestingly, the 

M. smegmatis strain is resistant to ampicillin resulting in the ampicillin-treated cells 

clustering closer to untreated cells. The ellipses define the statistical significance of class 

separation and provide an illustration where two groups actually belong to the same 

biological classification. (b) Dendrogram generated from scores in (a) using Mahalanobis 

distances, with p values for the null hypothesis reported at each branch. Reprinted with 

permission [33] © Analytical Biochemistry, 2013. 
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PCAtoTree has been recently updated to the PCA/PLS-DA utilities written by 

Bradley Worley [33].  In addition to using the bootstrapping, the program now uses a 

Mahalanobis distance matrix to generate a T
2
 Hotelling and F statistical values.  

Therefore, the statistical separations between clusters in a scores plot can now be 

quantified using a p-value. The PCA/PLS-DA utilities can now apply 95% confidence 

ellipses or ellipsoids around each cluster in a scores plot. Ellipses were previously hand 

drawn to show visual representations for each cluster, but did not have any statistical 

meaning and may lead to inaccurate interpretation.  Figure 2.10 is an example of the 2D  

OPLS-DA scores plot illustrating the 95% confidence ellipses defining the different 

mechanism of actions of 15 different drugs. The associated tree diagrams quantify the 

clustering pattern, where p-values of less than 0.05 identify statistically significant nodes 

or group separations. 

 

2.8 Conclusion 

Pattern recognition tools such as PCA and OPLS-DA are valuable for interpreting 

large data sets. This is important in systems biology as the metabolome for each organism 

is very complex and quite dynamic.  PCA and OPLS-DA are able to take advantage of 

the complexity of the data and reduce them down to simple plots that are easy to 

examine.  Nevertheless, the number of application is small as metabolomics is a 

relatively new field.  However, the potential of pattern recognition tools have yet to reach 

its full potential as new strategies continue to be developed.  The advantage of these tools 

is its relative simplicity; however, it can be easy to manipulate these plots to gain modest 
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separation, which may provide incorrect results about perturbation of the system as a 

whole. For example, relating systematic perturbation to only a few peaks and removing 

all biologically relevant data should be prohibited as this does not relate to the whole 

metabolomics system.  Hence, much of the information is lost. Especially since metabolic 

changes of one network may constitute passive alterations of other pathways to maintain 

metabolic homeostasis [34]. Instead loading plots and S-plots should be used to identify 

these metabolite perturbations.  More importantly, every model should be validated to 

give a statistical meaningful representation of the data.  There are tools such as CV-

ANOVA, permutation plots, PCAtoTree, and PCA/PLS-DA utilities that are able to 

statistically validate cluster separations in a scores plot to yield a reliable interpretation of 

the biological significance of the metabolome changes. 
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CHAPTER 3 

REVISITING PROTOCOLS FOR THE NMR ANALYSIS OF BACTERIAL 

METABOLOMES
§
 

 

3.1 Introduction 

Metabolomics is the study of small molecules in a biological system that 

participates in the metabolic reactions responsible for cell growth, survival, and other 

normal cellular functions [1-3]. Additionally, the metabolome responds to transcriptional 

and translational alterations associated with genotypical, epigenetic, or environmental 

perturbations [4-7]. Thus, metabolomics provides an assessment of global perturbations 

with respect to an altered genome, proteome, or environment [2, 8, 9]. The simultaneous 

integration of genomic, transcriptomic and proteomic data has enabled an in-depth 

analysis of the interplay, interaction, and regulation of DNA, RNA and proteins [10-12]. 

Along this line, monitoring the bacterial metabolome and integrating the results with 

other “omics” data has provided valuable insights into bacterial adaptability [13], 

biofilms [14], evolution [15], pathogenesis [16], and drug resistance [17].  

Depending on the organism and growth state, the total number of metabolites 

within a cell varies between several hundred to a few thousand, with a corresponding 

diversity in physical and chemical properties, such as size, stability, and concentration 

[18]. In addition to the challenge of the simultaneous study of all the metabolites within a 

                                                 
§
 Chapter 3 was adapted from Halouska.S., et. al., Revisiting Protocols for the NMR Analysis of 

Bacterial Metabolomes Journal of Integrated OMICS (2013). Reprinted with permission, copyright 

Proteomass 2013. 



56 

 

given biological system [19], the selection of an analytical technique will influence which 

metabolites are observed.  NMR and MS are commonly employed for metabolomics, 

where both instruments can be interfaced with LC, GC, and CE systems to select and 

emphasize specific components of the metabolome [20-24]. NMR has a number of 

advantages in analyzing the metabolome that includes minimal sample handling and that 

it is not reliant on chromatography to purify or separate metabolites. In addition, multiple 

resonances from a single molecule increase the accuracy of metabolite identification and 

quantitation. This accuracy can be further enhanced by the application of 
13

C- and 
15

N-

isotope labeling to enhance specific regions of the metabolome [25, 26]. Importantly, the 

choice of 
13

C- or 
15

N-labeled metabolite determines the region of the metabolome 

observed by NMR, providing significant flexibility in experimental design. In contrast to 

MS, NMR is a relatively insensitive technique and only observes the most abundant (≥ 1 

to 5 μM) metabolites. In addition, MS has the advantage of detecting a wider-range of the 

metabolome. However, because of the relatively low molecular-weight range of the 

metabolome, MS methods generally require chromatography to separate metabolites 

before analysis [27]. Additionally, variations in ionization and the occurrence of ion 

suppression in a complex mixture add uncertainty in detecting specific metabolites by 

MS [28]. Finally, quantitation by MS is typically more challenging than NMR. Taken 

together, NMR and MS each have strengths and weaknesses but should be viewed as 

complementary techniques [29].  

NMR-based metabolomics have been used to study a wide range of biological 

systems such as tissues [30], biofluids [31], mammalian cell cultures [32], plants [33] and 
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bacteria [34-36]. The overall procedure for an NMR-based metabolomics study includes 

the following general steps: cell growth and harvesting, metabolite extraction, NMR data 

collection and analysis, multivariate statistical analysis, metabolite identification and 

quantification [37]. Typically, one-dimensional (1D) 
1
H NMR spectra are used for a 

multivariate analysis such as principal component analysis (PCA) or orthogonal partial 

least squares projections discriminant analysis (OPLS-DA) [38, 39]. Both PCA and 

OPLS-DA provide global profiles of metabolome changes [40, 41]. Two-dimensional 

(2D) 
1
H,

13
C Heteronuclear Single Quantum Coherence (HSQC) or 

1
H,

1
H TOtal 

Correlated SpectroscopY (TOCSY) NMR experiments are used for the quantitative 

assessment of metabolite changes resulting from genetic modification or external stimuli 

[5, 14]. The ability to generate global profiles and quantitative differences coupled with 

the ease of applying NMR-based metabolomics has contributed to the rapid growth of the 

NMR metabolomics field. While NMR data acquisition and analysis methods are 

improving, care must be taken to ensure that the methods are appropriate to the task at 

hand and generate biologically relevant information. As an example, protocols to 

efficiently extract metabolites without inducing cellular changes are essential for success 

[32, 42]. In brief, the observed changes in the metabolome should reflect a change in the 

state of the system instead of how the cells are handled and processed. Similarly, 

variations in instrument performance, choice of procedures for data collection and 

processing, and invalidated models from multivariate analysis may induce unintended 

biases or incorrect interpretation of metabolomics data [43-46].  
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Since NMR-based metabolomics is a relatively new and still developing 

technology, improving and enhancing the experimental protocols is necessary to advance 

the field and ensure continued success. Toward this end, we describe our recently 

developed and optimized protocols for the application of NMR metabolomics to 

microbial samples. We present our current methodology and also discuss the challenges 

associated with each major step of the process: (i) sample preparation, (ii) NMR data 

collection and processing, (iii) multivariate statistical analysis, (vi) metabolite 

identification and network generation. Specifically, the overall methodology will be 

discussed in detail, where a number of key features will also be highlighted, such as 

automation, bioinformatics, experimental design, and harvesting the metabolome. The 

focus of our efforts has been to identify and minimize procedural steps that negatively 

influence the outcome of an NMR-based metabolomics experiment. 

The development of the metabolomics protocol was a group effort where Steven 

Halouska and Bo Zhang demonstrated significant and equal contributions to the project.  

Steven Halouska was responsible for the development and applications for the overall 

experimental design of the NMR metabolomics methods. This includes developing 

methods for both metabolomics fingerprint analysis and metabolomics profiling.  Bo 

Zhang demonstrated significant contributions to the development and optimization of the 

bacterial sample handling used for both fingerprint analysis and metabolomics profiling. 

This includes optimizing the strategy for sample growth, cell quenching, and extraction. 

Both Steven Halouska and Bo Zhang had equal contribution in the optimization in the 

data analysis. 
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3.2 Experimental Design 

A general protocol for the analysis of bacterial metabolomes using NMR is shown 

in Figure 3.1. The flow diagram illustrates procedures for both a global analysis of 

metabolome changes (metabolomics fingerprinting); and the identification and 

quantitation of specific metabolites correlated with the biological process (metabolomics 

profiling). The overall process consists of the following key steps: bacterial cultivation 

and harvesting, metabolite extraction, NMR data collection and analysis, multivariate 

statistical analysis, metabolite identification and quantification. Successful metabolomics 

sample preparation involves three steps: The first step is the simultaneous growth of all of  

the bacterial cultures or as many as is practical at a time. The bacteria are grown in a 

standard medium for fingerprint analysis, whereas the medium is supplemented with a 

13
C-labeled metabolite for metabolomics profiling [47, 48]. After the bacteria are grown 

for a defined time or they have achieved a specified cell density, bacteria are harvested 

and quenched to halt all enzymatic processes and washed to remove the medium. The 

third sample preparation step involves lysing the cells and extracting the metabolome. A 

variety of solvents are routinely employed depending on the solubility of the targeted 

metabolites (cytosolic metabolites, lipids, etc.). The metabolomics samples are then used 

to generate a series of NMR spectra, which are used for the multivariate statistical 

analysis, metabolite identification and quantification. The individual steps of the NMR-

based metabolomics protocol will be discussed in detail highlighting challenges 

associated with each step.  
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Figure 3.1. A flow chart of our protocol used for the NMR analysis of bacterial 

metabolomes.  
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3.2.1 Identification of an appropriate biological system for a metabolomics study  

NMR-based metabolomics is an important tool in systems biology research. The 

quantitative and qualitative measurement of metabolites from cytosolic extracts can be 

extremely valuable for investigating cellular processes, pathogenesis, and the effects of 

drugs or the environment on bacteria. Unfortunately, the bacterial metabolome is a 

complex mixture of metabolites and numerous interconnected metabolic and signaling 

pathways. This high interconnectivity may result in significant metabolite concentrations 

changes far from the origin of the perturbation (inhibited, inactivated or down-regulated 

protein). Correspondingly, it is easier to observe changes to the metabolome than deduce 

the primary source of the perturbation after its impact has rippled throughout the 

metabolome. As an illustration, treating a bacterial culture with a particular drug would 

be expected to lead to a global change in the metabolome, but interpreting these changes 

to identify the therapeutic target is extremely challenging. To address this challenge, the 

in vivo mechanism of action of a potential drug lead may be determined by comparing 

these metabolome changes to other drugs with known biological targets [49] or to a 

mutant bacteria where a specific protein target is ablated or modified by genetic 

inactivation [50, 51]. This example illustrates that the comparative analysis between two 

or more metabolomes is an effective application of metabolomics. In order to obtain 

reliable insights into the physiology of bacteria or any other organism, it is essential to 

identify and establish at least two reference metabolomes (wild-type vs. mutant, drug-

resistant vs. drug susceptible, nutrient-rich vs. nutrient-limited, etc.) for a comparative 

analysis. Once the reference conditions are established, bacteria can be exposed to any 
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range of experimental variables such as a drug treatment, environmental stimuli (pH, 

temperature, nutrient change), or gene knockout (mutants, RNAi, inhibitor) to determine 

if similarities exists with the reference metabolome. The similarity between metabolomes 

infers an overlap in the underlying physiological processes or responses that gave rise to 

the metabolome changes. We have used this approach to demonstrate the similarity of 

Staphylococcus epidermidis metabolomes resulting from exposure to divergent 

environmental stressors that are known to facilitate biofilm formation [5, 14]. Our results 

suggested that the tricarboxylic acid (TCA) cycle acts as a metabolic signaling network to 

transduce external stresses into internal metabolic signals. This conclusion was only 

possible because the experimental design was based on comparing the metabolomes of 

the S. epidermidis wild-type strain 1457 and an aconitase mutant strain 1457-acnA::tetM 

with and without the treatment of biofilm stressors. In summary, the successful outcome 

of a metabolomics study hinges on the experimental design and the proper choice of the 

cellular metabolomes to be compared. 

 

3.2.2 Minimization of unintended bias and biologically irrelevant variations 

In addition to the proper choice of bacterial strains to compare in a metabolomics 

study, the experimental protocols must be optimized to reduce unwanted variation or bias 

in the collection of cell-free lysates. It is essential to ensure that any metabolome changes 

are limited to biologically relevant factors and are not caused by the handling or 

processing of the samples. Thus, the key to metabolomics is establishing an efficient 

methodology that closely captures the true state of the metabolome [52]. Fundamental to 
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a successful metabolomics experiment is maximizing the uniformity of the preparation, 

handling, processing, and analysis of each replicate sample [35, 45, 53-56]. In instances 

where cultivation and/or processing variation is unavoidable (e.g., if multiple incubators 

are required to accommodate all the replicates), then the cultures should be randomly 

distributed between the incubators to minimize bias. Ideally, all of the metabolomics 

samples should be handled by the same person because subtle differences in individual 

techniques may influence the outcome. If multiple investigators are required to efficiently 

handle the samples, each researcher should be assigned a specific set of tasks that are 

consistently applied to each sample. For example, one investigator lyses all the bacterial 

cells while another performs the metabolome extraction procedure on every sample. 

As with sample cultivation and preparation methods, the NMR spectra generated 

from metabolomics samples need to accurately represent the state of the system. In other 

words, the NMR spectra must reflect the actual concentrations and identity of the 

metabolites present in the biological sample at the time of harvest. If the sample 

preparation and data acquisition represent the metabolic status at the time of harvest, then  

multivariate statistical techniques, such as PCA and OPLS-DA, will enhance the 

identification of similarities or differences in the NMR spectra, and, correspondingly, 

between the bacterial metabolomes [39]. These multivariate statistical techniques 

typically involve multiple replicates of 1D 
1
H NMR or 2D 

1
H,

13
C HSQC spectra for each 

bacterial class or group (e.g. wild-type, mutant, drug treated, etc.). The exact number of 

replicates is dependent on a number of factors: (i) the variance within a group, (ii) the 
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variance between groups, (iii) the number of variables, and (iv) type of statistical analysis 

performed [57, 58].  

In most metabolomics experiments, the number of biological samples is 

significantly smaller than the number of variables; in this case, the variables correspond 

to peaks in the NMR spectra or the detectable metabolites [58]. For this reason, a larger 

number of replicates (≥ 6) per class are required to obtain a statistically significant PCA 

or OPLS-DA model. While greater numbers of replicates are desirable, there are practical 

considerations to increasing the number of replicates, including increased experimental 

time, availability of incubator space, and practical limits on the number of samples that 

can be simultaneously prepared and processed within a reasonable time frame. The 

increased time, larger number of samples, and added complexity may be detrimental to 

maintaining consistency between samples, where metabolite stability may become more 

of an issue [59]. So the potential benefit in improving the reliability of the PCA or OPLS-

DA models may be negated by too large of a sample size if sample consistency is 

sacrificed. In general, 6 to 10 replicates per class can be routinely handled while 

providing a statistically significant PCA or OPLS-DA model. Lastly, to increase the 

sample consistency, the application of an automated sample changer or flow-probe can 

minimize variability by eliminating human involvement and providing a uniform and 

consistent protocol for NMR data collection. Nevertheless, instrument drift may still 

occur during the high-throughput experiment so it is also important to randomize the 

samples during data collection.  
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3.3 Sample Preparation 

3.3.1 Bacterial cultivation 

Consistency is critical to metabolomics, where variations in a bacterial 

metabolome may be introduced by cultivation protocols. To achieve the reproducible 

cultivation of bacteria requires consideration of three variables: bacterial strain, culture 

medium, and cultivation conditions. Strain selection is often driven by investigator 

preference, availability, or cultivability. The choice of culture medium will largely 

depend on which, if any, isotopically-labeled metabolite is being followed. For example, 

when using 
15

N-arginine, it is impractical to add labeled arginine to a complex medium 

containing an unknown concentration of unlabeled arginine. In this example, to achieve 

maximal labeling of the bacteria, it would be best to use a chemically defined medium 

lacking arginine. Importantly, the culture medium has to be consistently employed 

throughout the metabolomics study. A different culture medium cannot be used for 

metabolomics fingerprinting and profiling, it cannot vary based on the requirements of 

the bacterial strain or to accommodate an experimental variable. Different culture media 

will induce changes in the metabolome that will mask or complicate any analysis. 

Bacterial cultures also need to be properly handled in order to avoid inducing biologically 

irrelevant changes. For example, pre-warming the culture medium prevents temperature 

shock and minimizes variation between biological replicates. Similarly, randomizing the 

samples from each group and class also minimizes bias that may occur if all the samples 

are processed in a predefined order. Importantly, different cell types may require special 

care or different handling protocols. Cultivation conditions will also vary depending upon 
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the experiment; however, consideration must be given to each of the following: 

temperature, pH buffering (if used), % CO2 (if used), the flask-to-medium ratio, the 

revolutions per minute of agitation (if used), the use of baffled or non-baffled flasks, and 

the inoculum dose. In effect, one protocol does not necessarily “fit all” and a general 

metabolomics protocol needs to be optimized for each experiment and cell type.  

Deciding on the number of bacterial cultures needed for a metabolomics study 

and identifying the optimal culture size are important next steps. The volume of the 

bacterial culture should be large enough to provide a sufficient number of cells to 

maximize the NMR signal-to-noise, but small enough to simplify the handling of 

numerous replicate samples. An appropriate cell density must be determined empirically 

for each species and bacterial strain, which will also limit the culture size. Similarly, the 

growth phase chosen for harvesting bacteria will also contribute to defining the optimal 

culture size since cell density changes drastically between the lag, exponential and post-

exponential phases. In our experience with staphylococcal and mycobacteria cultures, 

media volumes between 15 to 50 mL are used to grow cells to an optical density at 600 

nm (O.D.600) of 1-2 for bacterial cultures collected during the exponential phase. 

Conversely, media volumes of between 3 to 5 mL are used to grow cells to an O.D.600 of 

3 to 7 for bacterial cultures collected during the post-exponential phase (e.g., 6 to 7 for 

Staphylococcus epidermidis, and 3 to 4 for Mycobacterium smegmatis). The overall goal 

is to have an O.D.600 of 10 to 20 after the bacterial cells have been concentrated to a final 

volume of 1 ml. This will ensure metabolite concentrations sufficient for detection by 

NMR. These culture volumes and O.D.600 values should be viewed as guidelines and 
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targeted goals that may require further optimization for different bacterial strains or 

species. As previously stated, the number of bacterial cultures determines the statistical 

significance of class differentiation or metabolite changes. In our experience, ten 

replicates are an optimal choice for metabolomics fingerprinting and only three replicates 

are needed for metabolomics profiling.    

Metabolomics profiling requires 
13

C- or 
15

N-labeled metabolites and defines the 

choice of culture media. In our laboratories, we typically label staphylococci using 
13

C-

glucose in the complex medium tryptic soy broth (TSB) that is devoid of unlabeled 

glucose [6, 7]. This medium allows for maximal biomass generation, while assuring that 

nearly all (~99%; 1.1% is due to naturally occurring 
13

C) of the 
13

C-labeled metabolites 

in the metabolome were derived from glucose. Similarly, we have labeled mycobacteria 

using 
13

C-glucose or 
13

C-glycerol in Middlebrook 7H9 Albumin Dextrose Complex 

(MADC; Becton-Dickinson) media. We have also supplemented culture media with 
13

C-

alanine, 
13

C-aspartate, 
13

C-glutamate, 
13

C-proline and 
13

C-pyruvate as a more targeted 

approach to the analysis of the metabolome. These metabolites are associated with a 

limited number of metabolic pathways. The analysis of the metabolome can be further 

focused by using a targeted metabolite where only one or a few specific carbons in the 

metabolite are 
13

C labeled. Only the metabolic pathways involving the specific 
13

C-

labeled carbon will be observable by NMR. The concentration of the 
15

N-, or 
13

C-labeled 

metabolite needs to be high enough (≥ 1 to 5 μM) to be detected by NMR. In our 

experience with staphylococcal and mycobacterial cultures, the volumes range from 25 

mL to 100 mL and the culture media should be supplemented with approximately 2.5 to 4 
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g/L of 
13

C6-glucose or ~10-15 mg/L of a targeted metabolite like 
13

C-D-alanine in order 

to acquire a 2D 
1
H-

13
C HSQC spectrum with acceptable signal-to-noise.  

Ideally, each bacterial culture should contain the same number of cells and be at 

the same growth phase when harvested. In reality, differences in cultivation conditions, 

media, and/or bacterial strains may substantially affect growth rates and/or growth yields. 

The two more common approaches to compensate for different bacterial growth rates are: 

collect the bacteria when they have reached the same cell density, but at different times to 

account for the different growth rates; and harvest the bacteria at the same time but 

harvest equivalent cell numbers. As examples, in staphylococci, the exponential and post-

exponential growth phases were typically analyzed at the 2 h and 6 h time points, 

respectively [5]. For our mycobacterial experiments, a consistent growth phase was 

achieved by harvesting bacteria at a uniform O.D.600 of 1.2. In practice, it is extremely 

difficult to harvest every bacterial culture with an identical O.D.600 value. To correct for 

this variability, all the bacterial cultures are normalized to the same number of cells. 

Simply, the cultures are suspended into a phosphate buffer until the O.D.600 values are 

equal. Typically the cultures are concentrated to an O.D.600 of 10 to 20 into a final 

volume of 1 mL prior to lysis. Alternatively, the bacterial cell cultures can be normalized 

based on colony-forming units (CFU) or total protein concentration.  

To ensure consistency, the experimental variable such as a drug treatment, 

environmental stimuli, or gene knockout needs to be uniformly applied to the “treatment” 

class. An additional consideration for treatment of cultures, is that the impact on the 

metabolome should be strong enough to detect [49]. In other words, a particular drug 
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dosage needs to be large enough to affect the cellular metabolome relative to untreated 

cells, but should not induce cell death. In our experience, a drug concentration that 

inhibits bacterial growth by 50% relative to untreated cultures is a desirable target [49, 

50]. The availability from the literature of a minimal inhibitory concentration for the 

strain (MIC), or otherwise for the population isolates (MIC50), provides a good starting 

point for optimizing a drug dosage, but the actual dosage must be determined empirically 

for each set of cultivation conditions. In our experience, literature MIC or MIC50 values 

tend to be too low for cultivation conditions used for metabolomics. We typically test 

drug concentration ranges at between 1 to 24 times the reported MIC or MIC50 values in 

order to identify an optimal drug dosage. Importantly, this also implies that drugs with a 

range of biological activity will require different drug concentrations in a metabolomics 

study; hence, the use of the 50% inhibition of growth is used as a metric as opposed to 

drug concentration. Typically, in our experiments the drug treatments are normally 

administered during the exponential phase and the bacteria are allowed to grow for at 

least one generation before harvesting. In our experience, this provides a sufficient 

amount of time for the drug to affect cell physiology and induce a perturbation in the 

metabolome. Administering a drug at an earlier time point can be problematic because of 

the inability to harvest enough bacteria.   

 

3.3.2 Quenching, washing and harvesting the bacterial cells 

Speed is critical to harvesting bacteria without inducing a change to the 

metabolome. Changes occur quickly because of different metabolite turnover-rates, 
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varying stabilities, and the induction of stress responses, among other factors [59-61].  As 

bacteria are being harvested, the environment is changing dramatically: (i) the bacteria 

are either adhered to the surface of filter paper or at the bottom of a centrifuge tube under 

anaerobic conditions, (ii) the temperature is changed from 37
o
C to ~ 0

o
 C, and (iii) the 

growth media is replaced with either double distilled water or a phosphate buffer. To 

prevent perturbations to the metabolome caused by handling of the cell samples, the 

bacteria need to be rapidly quenched in order to stop all cellular processes from 

responding to these changes. Quenching efficiency has been widely discussed in the 

literature [42, 62-64]. Importantly, the quenching technique employed also defines the 

washing protocol and the order that quenching, washing and cell separation takes place. 

Our quenching techniques consist of a filtered cells being quickly submerged into liquid 

nitrogen or the cells and media being directly added to -60
o
C cold ethanol or methanol 

solution while being vortexed. The media and ethanol/methanol volumes are at an equal 

1:1 ratio. After centrifugation, the supernatant is decanted and disposed of, and the cell 

pellet is ready for washing. Unfortunately, there is a possibility of cell leakage and loss of 

metabolites when the cells are directly added to the cold ethanol or methanol solution.  

Before intracellular metabolites can be analyzed, the bacteria need to be rapidly 

separated from the culture media. Filtration and centrifugation are both routinely used in 

our laboratory to separate bacterial cells from the media. Filtration has a definitive 

advantage because it is significantly faster than centrifugation, but challenges in 

removing and collecting intact cells from filter paper may lead to sample variability. 

Conversely, the variability between metabolome replicates is expected to be reduced with  
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centrifugation because of the ease in handling the cells. Nevertheless, our experience with 

washing bacterial cells using either filtration or centrifugation has resulted in essentially 

identical metabolomics fingerprints (Figure 3.2a); thus, any undesirable variation within a 

group likely occurs during sample preparation. Metabolome differences between replicate 

bacterial cultures likely arises from a combination of subtle variations in the number of 

cells, culture conditions, length of bacterial cultivation time, and sample handling.  

The use of centrifugation or filtration also determines the quenching protocol [36]. 

Harvesting bacteria using centrifugation requires quenching the bacteria using the direct 

addition to -60
o
C cold ethanol or methanol. The bacteria, culture media, and quenching 

solution are in a properly sized conical centrifuge tube that is centrifuged for 8 minutes at 

4,284 g (bucket rotor). Following centrifugation, the culture media and quenching 

solution are decanted and the bacteria are suspended in 30 mL of an ice cold wash. We 

routinely wash bacteria with ice cold double distilled water, phosphate buffer  (20 mM, 

pH 7.2), or phosphate buffered saline (PBS; 6 mM phosphate buffer, pH 7.4, 137 mM 

NaCl and 2.7 mM KCl) to remove residual media and avoid contamination of the 

metabolome. The bacteria are centrifuged again, the wash is decanted off and the process 

is repeated. After two washes, the cell pellet is suspended in 1 mL of the ice cold wash 

and transferred to a 2 mL vial for cell lysing. Additional washings provide an 

insignificant benefit in removing media contaminates, but results in an undesirable 

increase in time. Also, the buffered wash eliminates any impact on the cells from a pH 

change, but double distilled water eliminates the possibility of “salting-out” any  
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Figure 3.2.  Illustrations of the impact of a) filtration and centrifugation, b) number of 

extraction steps, c) type of wash buffer, and d) lyophilization on the composition of the 

metabolome. 
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metabolites that may occur from concentrating the buffer in subsequent steps [65]. The 

cells are kept on ice throughout this entire process. 

Harvesting bacteria by vacuum filtration collects the bacteria on sterile filter 

paper (0.45 μm pore size; Millipore), while simultaneously removing the media. The 

number of bacteria that can be harvested onto a filter must be empirically determined to 

prevent a filter blockage. Under proper conditions, removing the media should take less 

than a minute, and should never exceed two minutes. If this cannot be achieved, then the 

bacteria need to be harvested using centrifugation. After filtration, the filter paper 

containing the cells is then quickly placed into a 50 mL conical centrifuge tube and 

submerged into liquid nitrogen to freeze and quench the cells. The conical vial is then 

warmed by placing it into a bucket of ice for ~1 to 2 minutes. This prevents freezing of 

the 1 mL of wash that is added to the conical vial. The cells are gently removed from the 

filter paper with the wash and then transferred to a 1.5 mL microcentrifuge tube. The 

cells are centrifuged and washed twice (1 mL) as before. 

 

3.3.3 Cell lysing and metabolite extraction 

The cells need to be lysed in order to extract the cellular metabolome. Cells can 

be lysed by chemical or physical means, but the use of chemicals runs the added risk of 

contaminating the metabolome. Thus, the FAST-Prep bead beating method of lysing cells 

is our preferred approach. Before lysing, the samples are normalized to an O.D.600 value 

of between 10 to 20 units. This insures an equivalent number of cells, comparable 

metabolite concentrations, and a detectable NMR spectrum. Each sample is placed into a 
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2 mL micro-centrifuge tube with small glass beads (Lysinf Matrix B; MP Biomedical) 

and 1 mL of extraction buffer. The cells are crushed by bead beating for 40 to 60 seconds 

in the FAST-Prep instrument at a speed of 6.0 m/s. The sample is then centrifuged for 2 

minutes at 17,000 g to pellet the cell debris. The supernatant with the extracted 

metabolites is collected. The cell debris is washed 1 to 3 times with 1 mL of the 

extraction buffer to maximize the metabolome yield (Figure 3.2b). Also, double distilled 

water or a phosphate buffer are routinely used as the extraction buffer, since both 

approaches provide similar results (Figure 3.2c). All extracts per sample are combined for 

lyophilization, where the sample is then dissolved in 700 μL of a phosphate buffer in D2O 

at pH 7.2 (uncorrected). Lyophilization may negatively impact some volatile metabolites, 

but, in general, no effect is observed (Figure 3.2d). A major concern during the extraction 

step is maximizing the overall yield while minimizing any perturbation to the 

metabolome. In our experience, the cell lysing and metabolite extraction process will 

require approximately 45 minutes for 30 cultures. The metabolomics samples can be 

stored in a -80
o
C freezer or directly lyophilized overnight. 

 

3.4 NMR Spectroscopy 

3.4.1 One-dimensional 
1
H NMR methodology 

One-dimensional (1D) 
1
H (proton) NMR is an unbiased, nonselective, and 

nondestructive approach that requires no modification of the samples, where the data can 

be collected in a high-throughput manner. A 1D 
1
H NMR spectrum contains numerous 

proton signals generated from a complex metabolomics mixture, where the chemical shift 
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of each signal describes the structural characteristic of a specific metabolite. Moreover, 

the peak intensities or volumes are directly proportional to the concentration of each 

metabolite. Quantification of metabolites can be achieved by using an internal standard 

with a known concentration, where we routinely use 50 µM 3-(trimethylsilyl) propionic 

acid-2,2,3,3-d4 (TMSP-d4, Sigma). Thus, 1D 
1
H NMR experiments combined with 

multivariate statistics are commonly used for the global analysis of the metabolome. 

Collecting 1D 
1
H NMR data for metabolomics is fast and simple, and provides 

highly reproducible and accurate results. Importantly, the NMR experimental parameters 

need to be identical for each metabolomics sample in order to collect reliable 

metabolomics data. Any per sample variation will erroneously bias the resulting 

clustering patterns in the PCA and OPLS-DA scores plot. To avoid this and maintain 

sample consistency, we use a BACS-120 sample changer, Bruker ICON-NMR, an 

automatic tuning and matching (ATM) unit, and autoshim to automate the NMR data 

collection. Nevertheless, instrument drift may still occur during the high-throughput 

metabolomics screen, so it is also important to randomize the samples during NMR data 

collection. If an NMR spectrum is collected first for all the control samples followed 

subsequently by each treatment class, there is a significant potential of inducing a 

biologically irrelevant bias into the analysis. The clustering pattern in the PCA and 

OPLS-DA scores plot may be dominated by the order of data collection instead of the 

expected biological differences.      

In our laboratory, a typical 1D 
1
H NMR spectrum is collected using 128 scans and 

32k data points on a Bruker 500 MHz Avance DRX NMR spectrometer equipped with a   
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triple-resonance, Z-axis gradient cryoprobe. The acquisition time is approximately 10 

minutes per sample. The goal is to obtain optimal signal to noise while minimizing the 

total experimental time. We previously demonstrated that spectral noise is detrimental to 

the resulting PCA and OPLS-DA scores plot [53]. Random noise fluctuations results in 

large and irrelevant variations in the scores clustering. To avoid this problem, spectral 

noise needs to be removed prior to PCA and OPLS-DA. Correspondingly, the quality of 

the within class clustering in PCA and OPLS-DA scores plot is directly dependent on the 

spectral signal-to-noise (Figure 3.3). The within class variance decreases dramatically as 

the number of scans (signal-to-noise) is increased from right to left in the scores plot.  

Importantly, the spectral noise was still removed prior to PCA. Thus, the accuracy of 

identifying similarities or differences between multiple classes is dramatically improved 

by reducing within class variance, which is achieved by improving spectral sensitivity. 

Also, correctly identifying class differences improves with the number of replicates 

(Figure 3.4). The statistical significance of cluster separation as measured by p-values 

[66] is shown to decrease as both a function of group variance and the number of 

replicates. As a result, we prefer to use ten replicates per class and strive to achieve an 

average signal-to-noise ratio of > 100 to 200. This is achieved by simply increasing the 

number of scans or the number of cells, whichever is more practical. While signal-to-

noise has a dramatic impact on scores clustering, PCA and OPLS-DA is indifferent to 

changes in spectral resolution unless the number of data points is ≤ 2K.  

A D2O phosphate buffer is the typical solvent of choice for aqueous metabolomics 

samples in order to efficiently remove residual water signals and avoid interference from  
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Figure 3.3. Illustration of the impact of the NMR signal-to-noise on within class 

variation in a PCA scores plot. From right to left, the 1D 
1
H NMR spectra were collected 

with an increasing number of scans (1, 2, 4, 8, 16, and 32) resulting in a proportional 

increase in signal-to-noise. All other experimental parameters were kept constant. 
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Figure 3.4. Illustration of the impact of within group variation and the number of 

replicates on the p values calculated between clusters in a simulated PCA scores plot. 

From top to bottom, p values from the simulated PCA scores plot were calculated with an 

increasing number of replicates (6, 8, 10) resulting in a proportional decrease in p values. 

Similarly, increasing the group variation by increasing the standard deviation () per 

cluster resulted in a significant increase in p values.   
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buffer signals. Water and buffer signals are problematic since they can distort the NMR 

spectrum and may overlap and obscure important metabolite signals. Most NMR 

processing software can automatically remove the residual water peak, but extra data 

processing is required to correct for baseline distortions induced by the solvent.  

Unfortunately, simply applying a baseline correction changes the PCA and OPLS-DA 

clustering patterns [67]. Furthermore, different baseline correction protocols will induce 

variable changes into the scores plot. Also, removing the residual water peak may result 

in a potential loss of information by also removing metabolite peaks near the water 

signal. Instead, a water suppression technique that experimentally removes the water 

peak without inducing baseline distortions is the preferred alternative. 

There are a variety of NMR pulse sequences for water suppression that are 

available to the metabolomics community, such as WATERGATE, water pre-saturation, 

WET, and PURGE [68-72]. Our preferred choice for a water suppression pulse sequence 

is Solvent-Optimized Gradient-Gradient Spectroscopy (SOGGY). SOGGY does an 

outstanding job in eliminating the water signal without inducing any base line distortions 

(Figure 3.2) [72]. SOGGY is a variant of excitation sculpting that employs a pulsed field 

gradient with a simple phase-alternating composite pulse. SOGGY offers the flexibility to 

optimize the 180 degree hard pulse to achieve optimal excitation of the water signal, and 

adjusting the 180 degree soft pulse to optimize the range of the water frequency to be 

suppressed [72, 73]. As a result, SOGGY efficiently suppresses the water signal while 

removing any phase cycle artifacts. A flat baseline is obtained while also maintaining 
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metabolite signals near the water signal [72]. SOGGY completely eliminates the need to 

apply any baseline correction. 

 

3.4.2 Two-dimensional 
1
H-

13
C HSQC NMR methodology 

The severe overlap of signals in a 1D 
1
H NMR spectrum is a challenge for 

metabolite identification. The difficulty arises because hundreds to thousands of peaks 

occupy a small chemical shift range (~10 ppm), where multiple metabolites share similar 

chemical shifts. Thus, we typically do not use 1D 
1
H NMR spectra to assign metabolites. 

Instead, we routinely use 2D 
1
H-

13
C HSQC experiments for metabolite assignments. The 

2D 
1
H-

13
C HSQC experiment is a more reliable approach for metabolite identification 

because of the significantly higher resolution and the correlation between 
1
H and 

13
C 

chemical shifts for each C-H pair in a molecule
 
[74, 75]. Also, the 2D 

1
H-

13
C HSQC 

experiment simplifies the analysis of the metabolome because only compounds 

containing a 
13

C-carbon derived from the 
13

C-labeled metabolite added to the media will 

be detected.  

In our laboratory, we use a standard 2D 
1
H-

13
C HSQC pulse sequence on Bruker 

500 MHz Avance DRX NMR spectrometer equipped with a triple-resonance, Z-axis 

gradient cryoprobe. An acceptable signal-to-noise is achievable using 64 scans. Similarly, 

a reasonable digital resolution is achieved by collecting 2K and 128 data points in the 

direct and indirect direction, respectively, with a corresponding spectral width of 10 ppm 

and 140 ppm along the 
1
H and 

13
C axis, respectively. Since some aromatic C-H pairs 

have a 
13

C chemical shift greater than 140 ppm, the spectrum will contain folded peaks, 
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but the folded peaks will not interfere with or overlap with other metabolite peaks due to 

their unique position along the 
1
H axis (~ 7.0 ppm). In general, the 2D 

1
H-

13
C HSQC 

experiment requires approximately 4 hours per sample on our system. 

A conventional 2D 
1
H-

13
C HSQC spectrum is useful for detecting metabolite 

changes by overlaying multiple spectra to identify missing peaks or peaks with 

significant intensity changes. Unlike 1D 
1
H NMR spectra, obtaining metabolite 

concentrations is more difficult because peak intensities are dependent on J-couplings, 

dynamics and relaxation, in addition to metabolite concentrations [76, 77]. To quantify 

absolute metabolite concentrations, we use the Time-Zero HSQC (HSQC0) experiment 

[76]. This approach requires collecting a series of three HSQCs spectra (HSQC1, HSQC2, 

HSQC3) with an increased number of pulse sequence repetitions. A natural log plot of 

peak areas or intensities versus the increment number (1,2,3) allows for an extrapolation 

back to increment 0 or zero-time. The experimental parameters used in the HSQC0 

experiment is similar to the conventional method, but with some minor variations. The 

number of scans is increased to 128 due to the decrease in signal-to-noise in HSQC2 and 

HSQC3. To partially compensate for the increase in experimental time, the number of 

data points in the indirect dimension is reduced to 64. In general, the HSQC0 set of 

experiment requires approximately 6 hours per sample on our system. 
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3.5 Data analysis 

3.5.1 Preprocessing of 1D 
1
H NMR data 

The 1D 
1
H NMR spectra are minimally processed (Fourier transformed and phase 

corrected) using ACD/1D NMR Manager (Advanced Chemistry Development). Each 

NMR metabolomics sample contains 50 μM of TMSP-d4 as an internal standard, where 

each NMR spectrum is referenced to the TMSP-d4 peak and uniformly aligned to 0.00 

ppm. Also, all peak heights are normalized to the intensity of the TMSP-d4 peak. 

Intelligent bucketing within the ACD/1D NMR Manager is then used to integrate each 

spectral region with a bin size of 0.025 ppm. The spectra are normalized; noise regions 

and residual solvent and buffer resonances are removed, and then the remaining bins are 

scaled prior to PCA and OPLS-DA using SIMCA12.0+ (UMETRICS).  

 The need for data normalization and scaling prior to multivariate statistical 

analysis has been extensively discussed in the literature [78, 79]. Normalization adjusts 

for experimental variations between replicates, different number of cells, varying signal-

to-noise, etc., and minimizes these contributions to the clustering patterns in PCA and 

OPLS-DA scores plot. We have encountered significant success in using a Z-score or 

center averaging the spectrum,    

                                                     iX X
Z




                    (3.1) 

where X is the average signal intensity in a given spectrum, is the standard deviation in 

the signal intensity, and iX is the signal intensity within bin i  (Figure 3.5a). After 

normalization, all the noise bins are uniformly removed. This was initially accomplished 

by manually identifying a “reference” noise region above 10 ppm and below 0 ppm; and  



83 

 

 

 

 

 

 

 

Figure 3.5. Illustration of the impact of NMR preprocessing on within and between class 

variations in a PCA scores plot. a) The 1D 
1
H NMR spectra was not properly 

preprocessed. The spectra were not normalized and the noise was not removed. The 

spectra were only Fourier transformed, phased corrected, and the residual H2O resonance 

was removed.  b) The 1D 
1
H NMR spectra were processed as in (a) with the addition of 

normalization using center averaging, but without noise removal. c) The 1D 
1
H NMR 

spectra were processed as in (b) with the addition of noise removal. Each spectrum was 

binned using intelligent bucketing with a bin size of 0.025 ppm. The ellipses correspond 

to the 95% confidence limits from a normal distribution for each cluster. The PCA scores 

plots compare the metabolomes of S. aureus wild-type (wt) strain SA564 with an 

aconitase mutant (acna) strain SA564-acnA::tetM at either two hours (2h) or six hours 

(6h) of cell growth. Below each PCA scores plot is a corresponding dendrogram 

generated from the scores using Mahalanobis distances, with p values for the null 

hypothesis reported at each branch.      
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calculating an average noise value. If a bin across all replicates had an integral value of 

less than twice the average noise, it was also identified as noise and removed (Figure 

3.5b). The protocol for identifying noise regions has been recently improved upon and 

results in smaller within class variations (Figure 3.5c). This also results in an improved 

separation between truly distinct classes and removed erroneous separations. For 

example, the statistical significance between clusters 6hwt and 6hacna improved from a 

p-value of 3.1x10
-13

 to 8.1x10
-15

, while the small, but biologically irrelevant, separation 

between clusters 2hwt and 2hacna (p-value 2.5x10
-3

) was removed (Figure 3.5). Instead 

of using an average minimal signal intensity to define noise, we now define noise based 

on a relative standard deviation. This is based on the expectation that real NMR peaks 

from metabolites will have a higher intrinsic variability compared to the noise because of 

biological variations that naturally occur even between within class replicates.  

 Conversely, the variability of the noise should be effectively constant for a given 

spectrometer operating within normal parameters. Simply, the standard deviation and 

average is calculated for each bin, where the standard deviation is normalized by 

theaverage peak intensity. This avoids eliminating weak peaks with a relatively small 

standard deviation. The same is done for the reference noise region, which is then used to 

define noise, 

                                              Noise:        σi’≤σ0’                                                 (3.2) 

     Cutoff:    σ0’=avg(σn’)+2* sd(σn’)                                         (3.3)       

where σi’,σn’ are the relative standard deviations (absolute standard deviation divided by 

the mean) for the ith bin in the spectral region and nth bin in the reference noise region, 
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respectively, and avg(σn’) and sd(σn’) are the mean and standard deviation of σn’ 

respectively. In effect, any peak that falls within the normal distribution of the reference 

noise region is defined as a noise bin. This approach is better at defining noise peaks in 

crowded and overlapping regions of the NMR spectra.  

In addition to normalization, each bin or column in the data matrix also needs to 

be scaled to account for the large dynamic range in peak intensities. PCA and OPLS-DA 

emphasizes the absolute variation in bins between classes. Correspondingly, the relative 

variation of an intense peak may be insignificant compared to a weak peak, but the 

absolute changes in its intensity may completely mask biologically relevant changes in a 

small peak. Scaling increases the weight of the low intensity peaks so strong peaks do not 

dominate in PCA and OPLS-DA [78, 79]. In our experience, unit variance scaling, also 

known as autoscaling or a Z-score (see eqn. 3.1), has been shown to be effective in 

generating reliable clusters with the correct separation based on biologically relevant 

class distinctions. Also, within class variance is reduced using autoscaling, which is our 

default scaling method. 

 

3.5.2 Multivariate statistical analysis of 1D 
1
H NMR data 

We routinely apply PCA, a non-supervised technique, to determine if the 1D 
1
H 

NMR data can easily distinguish between the various test classes. PCA provides an 

unbiased view of group clustering in the resulting 2D scores plot. We only use a three-

dimensional (3D) scores plot if class separation in a 2D scores plot is insufficient and the 

PC3 contribution is significant (> 5 to 10%). OPLS-DA is only used if class separation is 
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observed in the PCA scores plot. OPLS-DA is a supervised technique and assesses a 

relationship between the NMR data class designations. We limit OPLS-DA to only two 

class designations that differentiate between the single control group (0) and the entire 

treatment group (1). As a supervised technique, OPLS-DA maximizes a separation 

between these two classified groups, while minimizing within class variations [39]. Thus, 

OPLS-DA identifies the important spectral features (metabolites) that primarily 

contribute to class separation. We routinely use an OPLS-DA S-plot or loading plot to 

readily identify the key metabolites that contribute to class separation. Since OPLS-DA is 

a supervised technique and can generate a class separation even for random data [80], it is 

essential to verify the model [46]. But this is also an advantage of OPLS-DA over PCA; 

the statistical significance of the model is quantified. We cross-validate OPLS-DA 

models using a modified leave-one-out method [81, 82] and CV-ANOVA [83]. The 

modified leave-one-out method provides a quality assessment score (Q
2
) and R

2
 values, 

where CV-ANOVA provides a standard p-value. The theoretical maximum for Q
2
 is 1, 

where a value of ≥ 0.4 is an empirically acceptable value for biological samples [84], but 

Q
2
 does not have a critical value for inferring significance. It is still possible for an 

invalid model to produce a large Q
2
 value. Similarly, the R

2
 values only provide a 

measure of the fit of the data to the model. But large differences between Q
2
 and R

2
 (R

2
 

>> Q
2
) does suggest an over-fit model. Conversely, a p-value << 0.05 from CV-ANOVA 

provides clear validation of the OPLS-DA model.   

In addition to validating the OPLS-DA model, it is also extremely important to 

verify the statistical significance of the clustering patterns in the PCA and OPLS-DA 
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scores plot. Is the between group difference larger than the within group variations? One 

key factor is the number of replicate samples. We have previously shown that increasing 

the number of replicates improves the statistical significance of cluster separation [85]. 

This finding is also supported by the increase in p-values seen with an increase in within 

class variations (Figure 3.4). Again, increasing the number of replicates improves the 

statistical significance of the class separation (lower p-value) even when within class 

variation increases. Correspondingly, we routinely use 10 replicates per group in our 

metabolomics study to improve the likelihood of observing statistical significant class 

separations.  

It is also important to visually define each group or class within the PCA and 

OPLS-DA scores plot and to classify the statistical significance of the class separation. 

We developed a PCA and OPLS-DA utilities software package [66] that draws ellipses or 

ellipsoids around each group cluster in a scores plot, where the ellipse corresponds to the 

95% confidence limits from a normal distribution for each cluster. Visual separation of 

the ellipses infers a class separation. The same software package is also used to generate 

a metabolomics tree diagram based on the group clusters in the scores plot [66, 85]. 

Simply, a centroid from each cluster is used to calculate a Mahalanobis distance between 

clusters, where dendrograms are then generated from the resulting distance metric. The 

significance of each node (cluster separation) is determined by using standard 

bootstrapping techniques and returning a bootstrap number [86], where a value above 50 

infers a significant separation; or from Hotelling’s T
2
 and F-distributions that returns a p-

value, where a number << 0.05 infers a statistically significant separation. 
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Observing a statistically significant difference in the global metabolome between 

two or more bacterial samples is typically the first objective of a metabolomics 

investigation. While this difference may infer some biological significance, the ultimate 

goal is to identify the underlying metabolites and associated pathways that are the 

primary contributors to the observed class separation in the PCA and OPLS-DA scores 

plot. One approach is to generate an S-plot (Figure 3.1) from the resulting OPLS-DA 

analysis. The S-plot identifies the key bins or 
1
H chemical shifts that are correlated or 

anti-correlated with the separation between the two classes in an OPLS-DA scores plot. 

The 
1
H chemical shifts can then be compared against a number of online NMR 

metabolomics databases [87-91] to assign the metabolites. Unfortunately, an 

unambiguous assignment is rarely possible because of the low chemical shift dispersion 

and the large number of potential metabolites. Instead, 2D NMR experiments combined 

with the biological knowledge of the system under investigation are required to improve 

the accuracy of metabolite identification.      

 

3.5.3 Metabolite Identification 

3.5.3.1 Automated peak picking of 2D NMR data  

2D 
1
H,

13
C HSQC and 

1
H,

1
H TOCSY spectra are commonly used for metabolite 

identification because of the increase in chemical shift resolution achieved by spreading 

the information out into two-dimensions. Also, the correlation between 
1
H chemical 

shifts for each J-coupled H pair; and the correlation between 
1
H and 

13
C chemical shifts 

for each C-H pair significantly reduces the assignment ambiguity. This occurs because 



89 

 

now both chemical shifts have to match a single metabolite in the database to make an 

assignment. Despite the advantages, peak picking and organizing a table of intensities 

from a 2D NMR experiment is a time consuming process, especially when multiple 

spectra are involved. Numerous software packages are available to automate the peak 

picking of 2D NMR spectra, however; it is extremely difficult, if not impossible, to align 

and match multiple sets of spectra with different peak patterns due to unique 

metabolomes.  

For example, three different sets of cell cultures (different cell types, treatments or 

environmental conditions, etc.) will each exhibit a distinct set of peaks in the NMR 

spectrum due to the presence of unique metabolites. These unique peaks will be mixed 

with other peaks common to all three groups, but the relative peak intensities are likely to 

vary due to different metabolite concentrations. Thus, if the control group is designated 

as the reference spectrum for automated peak picking, a peak list will be generated that 

only contains peaks observed in the control spectrum that are above the designated noise 

threshold. Correspondingly, peaks unique to the other two groups will be missed when 

this peak list is used to peak pick their spectrum. In addition, weak peaks may also be 

missed due to different noise levels between the spectra and a corresponding difference in 

the threshold setting for peak picking. Instead, a composite reference spectrum for 

automated peak picking needs to be generated that captures all the peaks present in the 

three separate groups. We accomplish this task by using the addNMR function in the 

NMRpipe software package [92]. As the name implies, addNMR mathematically sums 

all spectra together from the three groups to make a single spectrum. This resulting  
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 “master spectrum” contains all the peaks observed throughout the set of 2D experiments 

and is used to generate a peak list for automated peak picking of each individual 

spectrum. Critically, the 2D NMR spectra need to be collected and processed using 

identical experimental parameters (spectral width, data points, zero-filling, etc.) and 

needs to be aligned to an internal reference (TMSP-d4). In our experience, all the peaks 

from the complete set of NMR spectra are routinely matched to the reference list by using 

a chemical shift error-tolerance of 0.04 ppm and 0.25 ppm in the 
1
H and 

13
C dimensions, 

respectively. This approach has greatly simplified and increased the efficiency of a 

previously laborious procedure. The addNMR command can also be used to generate a 

difference spectrum that clearly highlights the major spectral changes between two 

classes (Figure 3.6). cultures. Positive peaks, increased metabolite concentration, are 

colored green and negative peaks, decreased metabolite concentration are colored red. 

 

3.5.3.2 Assignment of an NMR peak to a metabolite  

Metabolite identification is an extremely important component of the 

metabolomics process because it enables the determination of the key metabolites 

perturbed by the treatment or the metabolites primarily contributing to class distinction. 

This includes the discovery of important biomarkers associated with drug efficacy or 

drug resistance. Also, metabolite identification is important to the drug discovery process 

by either identifying metabolic pathways affected by a drug to evaluate efficacy or 

potential toxicity; or by identifying potentially new therapeutic targets. Nevertheless, 

accurate metabolite identification is very difficult and labor-intensive. The success of  
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Figure 3.6. a-c) Illustration of the procedure to generate a “master spectrum” and 

facilitate automated peak picking by creating a complete peak list. (a-b) Representative 

2D 
1
H-

13
C HSQC spectra obtained from two distinct bacterial cultures, where some 

major spectral differences are highlighted. c) The two 2D 
1
H-

13
C HSQC spectra from (a-

b) were added to yield a master spectrum that contains all the observed NMR peaks. d-f) 

Illustration of the procedure to generate a “difference spectrum” to facilitate metabolite 

identification by creating a signed (+, -, null) peak list. (d-e) Representative 2D 
1
H-

13
C 

HSQC spectra obtained from two distinct bacterial cultures. f) The two 2D 
1
H-

13
C HSQC 

spectra from (d-e) were subtracted to yield a difference spectrum that identifies the NMR 

peaks, and correspondingly metabolites, that differ between the two bacterial cell  
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metabolite spectral assignment relies largely on the completeness of metabolomics 

databases. We routinely use a combination of the following databases: Human 

Metabolome Database [87], Madison Metabolomics Consortium Database [88], Platform 

for RIKEN Metabolomics [89], BioMagResBank [90], and Metabominer [91], which 

provide both redundant and complementary NMR spectral data. Importantly, the 

reference NMR spectra in the various databases were obtained under different buffer 

condition and use different internal standards. This results in a range of potential 

chemical shifts for a given metabolite. Thus, the databases with sample conditions that 

closely match our experimental conditions are used for chemical shift matching. The 

overall goal is to identify a complete set of metabolites as quickly and accurately as 

possible without any bias, by matching the experimental chemical shifts from the 2D 

NMR spectra with the values in the database.  

For a 2D 
1
H-

13
C HSQC experiment, it is important to realize that metabolites may 

be heterogeneously labeled by the carbon-13 source present in the growth media. 

Correspondingly, all the peaks for a specific metabolite may not be detectable in the 2D 

1
H-

13
C HSQC experiment. Also, a reference spectrum for the metabolite may not be 

present in any of the available databases. The assignment of a particular peak might still 

be ambiguous because multiple metabolites may contain the same chemical shift or 

contain an identical substructure (i.e., ATP, ADP, AMP or NAD, NADPH). Therefore, a 

few automated filters are applied to overcome some of these ambiguities during the peak 

assignment process.  
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The first filter is to verify that the bacteria can actually produce the proposed 

metabolite. This is routinely accomplished by searching the Biocyc [93] and KEGG [94] 

database for metabolites known to exist in the bacteria under investigation. The second 

filter is based on a differential peak list. All the NMR peaks potentially assigned to a 

specific metabolite should have the same trend relative to the control. Obviously, the 

metabolite can only have one concentration and all the NMR peaks need to be consistent 

with this single concentration. Correspondingly, all the peaks have to be increased, 

decreased or the same relative to the same peaks in the control spectrum. This is easily 

and quickly visualized by subtracting the two sets of spectra and generating a signed (+, -

, null) peak list. Peaks assigned to the same metabolite have to have the same sign. The 

third filter is based on a biological relationship with other metabolites. Simply, the 

likelihood of a correct assignment increases if other metabolites in a specific metabolic 

pathway have also been assigned. It is more likely to observe multiple metabolites from 

the same pathway than various metabolites from unrelated pathways. Similarly, if there is 

a direct metabolic path between two or more metabolites, then their assignments are more 

likely to be correct. The final filter is the application of our biological knowledge of the 

bacterial system under investigation. The pathways or metabolites that are expected to be 

perturbed by the treatment would be given precedent in the assignment process. As a 

simple example, a comparison between wild-type and mutant bacterial strains where 

aconitase has been inactivated would reasonably be expected to lead to changes in 

metabolites associate with the TCA cycle. Likewise, a comparison between untreated and 
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drug-treated cells would be expected to lead to changes in metabolic pathways inhibited 

by the drug.  

 

3.5.3.3 Statistical analysis of the 2D 
1
H-

13
C HSQC data. 

After assigning the 2D 
1
H-

13
C HSQC spectra to a set of metabolites, the next goal 

is to determine metabolite concentration differences between the various bacterial culture 

conditions under investigation. Unfortunately, peak intensities in a standard 2D 
1
H-

13
C 

HSQC experiment are dependent on metabolite concentrations and J-couplings, 

dynamics, and relaxation properties [76]. Therefore, only a relative percent change in a 

metabolite concentration can be determined [5]. Alternatively, an absolute concentration 

can be determined using HSQC0, which requires a set of three HSQC experiments per 

sample. We routinely employ both approaches [76]. 

A relative difference in peak intensities is determined by using a triplicate set of a 

conventional 2D 
1
H-

13
C HSQC experiment for each bacterial culture condition. Prior to 

calculating a relative percent change in peak intensities, a detailed normalization process 

is required, which was previously described in detail [5]. First, the peak intensities within 

each spectrum are normalized by dividing each peak by the internal standard, the 

intensity of the TMSP-d4 peak. Each peak pertaining to a specific chemical shift across 

each triplicate data set is then normalized by the most intense peak in the set of three 

peaks. Specifically, the maximal intensity for each peak across all data sets would be set 

to 100 and all other intensities are scaled relative to this peak intensity. Then all the 

normalized intensity for a given metabolite for each triplicate set is averaged together,  
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and a relative percent error can be calculated between different cultures. A Student’s t-

test or ANOVA is then used to determine if the relative change in peak intensities is 

statistically significant at the 95% confidence limit. Calculating a relative difference in 

metabolite concentrations can be beneficial to understanding broader changes to the 

system, especially when a cluster of metabolites in a specific pathway exhibit a similar 

trend in concentration changes inferring an important role for the metabolic pathway. 

Nevertheless, this approach is rather cumbersome and does not allow for a direct 

comparison between different metabolites.  

Alternatively, we routinely use the HSQC0 experiment to determine absolute 

metabolite concentrations. The overall protocol for the extrapolation of peak intensities to 

time-zero and the determination of the associated concentration has been previously 

described in detail [76, 77]. As an example, Figure 3.7 shows a linear regression plot of 

the peak intensities for each carbon-hydrogen pair in fructose. This demonstrates that the 

average peak height can be extrapolated.  A distinct advantage of this method is that a  

single calibration curve can be made using multiple compounds with known 

concentrations to correlate the time-zero peak intensity with a concentration. Figure 3.8 

illustrates such a calibration curve using 5 different mixtures, each consisting of 9 

different 
13

C-labeled metabolites ranging in concentrations from 5 to 300 µM. Also, the 

concentration for each metabolite was randomized in each mixture. For example the 

concentration of 
13

C-D-alanine in the 5 mixtures is 300, 10, 25, 5, and 100 µM, 

respectively. The data was fitted using a weighted linear least squares calculation. 

Notably, the best-fit line (R
2
 0.997) has a y-intercept close to zero as expected for a  
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Figure 3.7. Extrapolation of 2D HSQCi (i=1,2,3)  peak intensities of fructose. Fructose 

consists of multiple peaks in the 2D spectrum where each symbol represents a different 

peak. The attenuation factors (spin dynamic properties) for each C-H pair represent the 

slope of the line. The lines converge to the same general region at the y-intercept, where 

the intensity is directly related to concentration. 
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Figure 3.8. A strong correlation between NMR peak volumes and metabolite 

concentrations (R
2
 0.997) is demonstrated by linear regression plot generated from 

HSQC0 data. HSQC0 NMR spectra were collected for five different metabolite mixtures 

containing nine 
13

C-labeled compounds with concentrations ranging from 5 µM to 300 

µM.  The relationship between peak volume and metabolite concentration is independent 

of the metabolite. 
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concentration of zero. Also, the correlation between peak volume and concentration is 

independent of the metabolite. Importantly, the accurate application of the calibration 

curve requires collecting and processing HSQC0 spectra identical to the parameters used 

to obtain the original calibration curve. Critically, the receiver gain must be the same for 

all samples, because any change in the receiver gain influences the slope of the 

calibration curve. Also, the addition of 500 µM TMSP-d4 as an internal standard is 

crucial, because both the calibration samples and experimental samples must both be 

similarly normalized to the TMSP-d4 peak. As an example, if the TMSP-d4 peak 

volumes for the calibration mixtures are 1000, 500, and 250 for each HSQCi (i = 1,2,3) 

spectrum, respectively, then the experimental results for all in vivo metabolite extracts 

must be normalized so that the internal standard (TMSP-d4) peak volumes are also 1000, 

500, and 250. The concentrations are measured in triplicate, where a Student’s t-test or 

ANOVA is used to determine if the concentration changes are statistically significant at 

the 95% confidence limit. 

 

3.5.4 Metabolomics Network Map 

Metabolites are highly interconnected through numerous metabolic pathways that 

form an extremely complex network [95]. Correspondingly, it is not uncommon to 

observe correlated changes between distantly connected metabolites. In effect, 

metabolomics depends on these complex interactions to understand the phenotype of a 

bacterial cell. Thus, a metabolomics network map provides an efficient approach to 

visualize and summarize the overall changes to the metabolome, to validate metabolite 
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assignments based on clear connections to other metabolites, and the identification of key 

metabolic pathways. 

 We have routinely used Cytoscape to easily and quickly generate metabolomics 

network maps. Cytoscape is a user-friendly software package with plug-ins related to 

metabolomics [96-99]. Cytoscape simply requires a list of the metabolites and their 

associated concentration changes as input. The connections between nodes (metabolites) 

in the map are based on metabolic pathways from the MetaCyc database [100]. An 

example of a typical Cytoscape map summarizing the observed changes in the S. 

epidermidis metabolome caused by environmental stimuli associated with biofilm 

formation is shown in Figure 3.1. The metabolomics network map can be easily modified 

to highlight specific features of the metabolome. Edges can be broadened to highlight 

specific pathways; and the color and size of nodes can be adjusted to reflect the direction 

and magnitude of the concentration changes, respectively [101]. Cytoscape also provides 

a range of map design choices. Unfortunately, the resulting network maps (Figure 3.1) do 

not resemble standard metabolic pathways. Thus, Cytoscape maps are simply used as a 

template to manually draw more traditional looking metabolic pathways. Since 

Cytoscape maps are so easily generated, we also use the software to assist in metabolite 

assignments. Potential lists of metabolite assignments are input into Cytoscape to identify 

metabolites that are isolated nodes excluded from the main network map. These 

metabolites are likely missed assigned and are reevaluated. In addition to Cytoscape, we 

also use the R statistics package to create heat maps from absolute metabolite 

concentrations or percent relative concentration changes. 
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3.6 Conclusion 

 NMR metabolomics is an invaluable tool for systems biology and its application 

is rapidly expanding. Global changes in the metabolic state of bacterial cells occur as a 

result of environmental stressors, genetic modifications, drug treatments, or numerous 

other factors. A detailed analysis of the differences in the NMR spectra is commonly 

used to identify the key metabolite changes that differentiate between these bacterial 

classes (i.e., controls versus treated). In addition, metabolite identification by NMR 

allows for the subsequent identification of the important metabolic pathways that are 

affected by the treatment, providing further insight into the underlying biological process. 

The appeal of NMR metabolomics is its simplicity, but unfortunately it is also easy to 

obtain unreliable results. The observed changes in the metabolome should be biologically 

relevant, but because the metabolome is so sensitive to any environmental change; it is 

also easily perturbed by the experimental protocol. This is clearly an undesirable 

outcome. To address this issue, we described in detail our optimized protocols for the 

NMR analysis of bacterial metabolomes. We also highlighted common problems and 

potential sources of mistakes. We discuss the entire process that includes growing and 

harvesting bacterial cells, extracting the metabolome, NMR data collection, processing 

and analysis, statistical analysis, metabolite and network identification. The protocols 

described have been successfully applied to a number of systems biology projects.   
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  CHAPTER 4 

PREDICTING THE IN VIVO MECHANISM OF ACTION FOR DRUG LEADS 

USING NMR METABOLOMICS
§
 

 

4.1 Introduction 

 Emerging and remerging infectious disease outbreaks from numerous gram-

negative and gram positive pathogens have increased dramatically over the past decade 

[1]. Further, we are facing the serious likelihood that these pathogens will soon become 

resistant to all known antibacterial treatments, which may lead to worldwide pandemics 

[2].  Unfortunately, the development and approval of antibiotics have not kept pace with 

the growing emergence of resistant pathogens [3].  Instead, there has been a decline in the 

approval of new antibiotics [4].  Twenty novel classes of marketable antibiotics were 

produced between 1930 and 1962 [5].  These classes of antibiotics inhibit a short list of 

cellular processes: cell wall biosynthesis, DNA supercoiling, transcription, translation 

and folate biosynthesis.  Since 1962, only two new antibiotic classes have received FDA 

approval: oxazolidinones, which inhibits protein synthesis, and cyclic lipopeptides, which 

destroys membrane potential.  Both compounds are used in the treatment of gram positive 

bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) [5].  However, 

additional antibiotics are needed to combat the prevalence of other multidrug resistant 

pathogens, such as Enterococcus faecium, Klebsiella pneumonia, Acinetobacter 

                                                           
§
 Chapter 4 was adapted from Halouska S., et. al., Predicting in vivo Mechanism of Action for Drug Leads 

using NMR Metabolomics, ACS Chemical Biology, 7(1), 166-171 (2012). Reprinted with permission, 

copyright 2011 by American Chemical Society. 
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baumanii, Pseudomonas aeruginosa, and Enterobacter species that are infecting the 

majority of U.S. hospitals [6].  Also extreme drug resistant strains of Mycobacterium 

tuberculosis are a rising threat in the world. 

 The Infectious Diseases Society of America (IDSA) has proposed an initiative to 

develop and approve 10 novel antibiotics by the year 2020 [7].  However, existing drug 

discovery strategies may not be able to meet these challenges.  Drug discovery programs 

rely heavily on target based high throughput screening (HTS) of large chemical libraries 

followed by lead optimization [8, 9].  Unfortunately, this approach has demonstrated an 

extremely high rate of failure and erroneous leads.  Even when a valid HTS hit is found, 

it is uncertain if this chemical lead can penetrate into the bacterial cell while 

demonstrating in vivo activity. 

 NMR Metabolomics is evolving as a significant component of the drug discovery 

process and offers an inexpensive route to help overcome the multiple challenges faced 

by researchers [10].  Metabolomics is a relatively new field and is based on the 

identification and quantification of small molecules found in living cells or biofluids [11].  

Since small molecules are downstream products of biomolecular process, the identity and 

concentration of metabolites provide biochemical signatures for tracking the 

physiological effects of antibiotic efficacy, selectivity, and toxicity.  Characterizing these 

biochemical signatures relies upon the global determination of numerous endogenous 

small molecule followed by pattern recognition using multivariate analysis [12].  Such 

comprehensive biochemical information can be readily obtained using 
1
H NMR 

spectroscopy with minimal sample handling while providing highly reproducible data in 
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an automated fashion [10].  Multivariate statistical analysis, such as orthogonal partial 

least-squares discriminant analysis (OPLS-DA), is typically employed to extract 

information from the large and complex NMR datasets [13].  Simply, OPLS-DA is used 

to identify clustering patterns from the major variations between NMR spectra [10]. 

 Herein, we describe a new method using 
1
H NMR and OPLS-DA to profile the in 

vivo mechanism of action of known antibiotics used to treat M. tuberculosis. More 

importantly, we aim to use the information to classify compounds with unknown 

mechanisms of action, but demonstrated anti-tubercular activity.  Our approach is 

predicated on the hypothesis that drugs with similar modes of activity or therapeutic 

targets will have a similar impact on the metabolome of M. smegmatis and will cluster 

together in an OPLS-DA scores plot.  Thus the mode of action of a novel chemical lead 

can be inferred from its clustering in an OPLS-DA scores plot relative to drugs with 

defined biological targets.  Importantly, if the chemical lead is separated from known 

drugs in the OPLS-DA scores plot, then this result would infer a new mechanism of 

action and a potentially valuable, new antibiotic. 

 

4.2 Methods 

4.2.1 Determining Optimal Drug Dosage for NMR Metabolomics Experiments 

M. smegmatis mc
2
155 cells were grown at 37 °C with shaking at 200 rpm in 50 

mL of Middlebrook 7H9 media until an average optical density at 600 nm (O.D.600) of 

0.6 was achieved. Each drug was titrated over a concentration range of 1 to 24 times the 

literature MIC values and the cells were grown for an additional 2 hours. The optical 
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density was recorded and the growth rate inhibition was calculated by comparing the 

optical density of the treated cells to the untreated cells in the 2 hour time period. The 

desired drug dosage was determined where a drug concentration inhibits cell growth by 

approximately 50% of the growth rate of untreated cells. 

 

4.2.2 Sample Preparation 

A total of 190 M. smegmatis mc
2
155 cultures were grown in 50 mL of 

Middlebrook 7H9 at 37 °C with shaking at 200 rpm until an O.D.600 of 0.6 was achieved. 

A total of 40 untreated cultures were used as a control and 10 cultures were inoculated 

with each antibiotics at the optimal dosage needed to inhibit cell growth by ~50% as 

described in Table 3.1. The cells were then grown for an additional 2 hours. The used 

media was removed and the cells were washed 3 times and re-suspended with 1 mL ice 

cold double distilled water. The cells were lysed using a FastPrep-24 instrument for 60 

seconds at 6 m/s, and the supernatant was extracted and frozen in a dry ice ethanol bath. 

The samples were lyophilized and then re-suspended with 700 μL of 99.8% D2O solution 

containing 50 mM phosphate buffer (pH 7.2, uncorrected) and 50 μM 3-

(trimethylsilyl)propionic acid-2,2,3,3-d
4
 (TMSP-d

4
) as an internal standard for chemical 

shift referencing. The samples were then centrifuged for 5 minutes to remove any 

insoluble material, and 600 μL of the supernatant was transferred to an NMR tube. 
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Compound Class Mechanism of Action MIC
a
 

(ug/mL) 

Dosage
b 

(ug/mL) 

Ampicillin Penillins Inhibits transpeptidation and prevents cell wall formation 16.0
c
 96.0 

Cloramphenicol Amphetamines Inhibits protein synthesis by binding to the 50S ribosomal subunit 6.0 6.0 

Ciprofloxacin Fluoroquinolones Inhibits DNA gyrase and prevents DNA supercoiling 0.2 2.0 

D-cycloserine Oxazolidinones Inhibits alanine racemase and alanine ligase and prevents cell wall formation 

(different from other oxazolidinones that inhibit protein synthesis) 

75.0 75.0 

Ethambutol Amino Alcohols Disrupts arabinogalactan formation by inhibiting arabinosyl transferase 10.0 100.0 

Ethionamide Pyridine 

Derivatives 

Inhibits mycolic acid formation similar to isoniazid 20.0 160.0 

Gentamicin Aminoglycosides Inhibits protein synthesis by binding to the 30S ribosomal protein S12 and 16S 

rRNA 

2.0 8.0 

Isoniazid Pyridine 

Derivatives 

A prodrug that inhibits InhA and prevent mycolic acid synthesis 2.0 48.0 

Kanamycin Aminoglycosides Inhibits protein synthesis by binding to the 30S ribosomal protein S12 and 16S 

rRNA 

4.0 4.0 

Rifampicin Rifampicins Inhibits RNA polymerase and prevent RNA synthesis 30.0 60.0 

Streptomycin Aminoglycosides Inhibits protein synthesis by binding to the 30S ribosomal protein S12 and 16S 

rRNA 

0.25 1.5 

Vancomycin Glycopeptides Binds to the D-alanyl-D-alanine dipeptide and prevents cell wall formation 50 450 

Amiodarone Benzofurans Unknown 26.6 212.8 

Clofazimine Anilines Unkown 0.32 3.84 

Chlorprothixene Thioxanthines Unknown 36.0 216.0 

 

  

a
Literature values of minimum inhibitory concentrations against M. smegmatis used as a starting point to determine an optimal 

dosage for the NMR metabolomics study. 
b
Actual dosage used to treat M. smegmatis cells to inhibit growth by ∼50% following drug 

treatment. 
c
Reported for M. smegmatis β-lactamase and ribosomal protein S12 mutants. 

Table 4.1. Description of Antimicrobial Compounds and Dosages Used in This Study 

  1
1
4
 

 



115 
 

4.2.3 NMR Data Collection and Processing 

The NMR spectra were collected on a Bruker 500 MHz Avance spectrometer 

equipped with a triple resonance and z axis gradient cryoprobe. A BACS-120 sample 

changer was used for automated data collection. 1D 
1
H NMR spectra were collected 

using excitation sculpting to remove the solvent signal and maintain a flat spectral  

baseline [14]. A total of 32K data points with a spectral width of 5482.5 Hz, 16 dummy 

scans and 128 scans were used to obtain each spectrum. The data was processed 

automatically using ACD/1D NMR Manager (Advanced Chemistry Development). 

Intelligent bucketing was used to integrate each spectral region with a bin size of 0.025 

ppm. Each NMR spectrum was center averaged to minimize any experimental variations 

between bacterial cultures as follows [15], 

                                                       iX X
Z




                                                            (4.1) 

where X   is the average signal intensity, σ is the standard deviation in the signal intensity, 

and Xi is the signal intensity within a bin. Noise regions of the spectra were omitted from 

the PCA analysis by setting the corresponding bins to zero [16]. OPLS-DA and PCA was 

performed using Simca-11.5+ (Umetrics), where each 
1
H NMR spectra was reduced to a 

single point in the 2D OPLS-DA and PCA scores plot. The OPLSDA was calculated with 

two classes, untreated versus drug treated cell cultures, for the Y matrix with the NMR 

data incorporated into the X matrix. The OPLS-DA model was cross validated using a 

modified version of the leave-one-out technique, where 1 out of every 7 samples (spectra) 

were left out to calculate a model and predict the left out data [17]. The procedure was 

sequentially repeated leaving out a different 1/7th of the data. The predicted data was 
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then compared to the original data, where the quality assessment (Q
2
) score provides a 

qualitative measure of the predictability of the model based on the consistency between 

the predicted and original data. An ideal value for Q
2
 is one, where a typical value 

for a biological model is ≥ 0.4. 

Metabolomic Tree diagrams with corresponding bootstrap values were created 

using our PCAtoTree program to interpret the OPLS-DA clustering pattern [18]. The 

metabolomics tree diagram is based on the Euclidean distances between the cluster 

centers from the 2D OPLS-DA scores plot. Standard bootstrapping techniques are used to 

generate a set of 100 distance matrices by randomly re-sampling the cluster centers and 

Euclidean distances. The set of 100 distance matrices are then used by PHYLIP 

(http://www.phylip.com) [19], phylogenetic software package, to generate 100 tree 

diagrams and a consensus tree diagram. The bootstrap numbers on the consensus tree 

diagram indicates the number of times each node was present in the set of 100 tree 

diagrams, where a bootstrap number below 50% indicates a generally insignificant node 

or insignificant separation between the clusters. 

Four additional OPLS-DA models were generated to identify specific metabolites 

associated with drug activity: (i) inhibition of translation, transcription or DNA 

supercoiling drug treated cells versus untreated cells, (ii) inhibition of mycolic acid 

synthesis drug treated cells versus untreated cells, (iii) inhibition of cell wall synthesis 

drug treated cells versus untreated cells, and (iv) the three TAACF compounds versus 

untreated cells. S-plots and loading plots were generated from each OPLS-DA model. 

Bins (chemical shift values) demonstrating a covariance of greater than 0.10 or less than  

-0.10 were identified as major contributors to the class separation. Metabolites were 

http://www.phylip.com/
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identified from this list of chemical shifts using the Human Metabolome Database 

(HMDB, http://www.hmdb.ca/) [20] with a chemical shift tolerance of 0.02 ppm. 

Metabolic network maps were then generated using Cytoscape 

(http://www.cytoscape.org/) [21] with the MetScape [22] plugin for the top 100 

metabolite predicted by HMDB. Metabolites were excluded if not part of a network or 

not present in M. smegmatis. 

 

4.3 Results and Discussion 

 Our methodology was demonstrated using 12 antibiotics known to inhibit the 

growth of M. tuberculosis and M. smegmatis (Table 4.1).  The mechanism of action for 

each antibiotic was identified from the Drug Bank Database [23], and the minimum 

inhibitory concentrations (MIC) were obtained from the scientific literature [24-32].  In 

addition three chemical leads were randomly selected from the Tuberculosis 

Antimicrobial Acquisition and Coordinating Facility (TAACF) library of compounds 

(http://www.TAACF.org).  The compounds were screened against M. tuberculosis and 

have comparable MICs to known TB drugs, but the biological target or mechanism of 

action was not reported by TAACF.  The non-pathogenic M. smegmatis was used as a 

model system for the NMR metabolomics study. 

 In order to analyze changes in the M. smegmatis metabolome, the drug dosage 

needs to be below lethal levels and only affect cell growth. Typically, a drug 

concentration that inhibits cell growth by approximately 50% of the growth rate of 

untreated cells is desirable.  While MIC values are available from the literature, these 

concentrations are based on standardized drug gradients, inoculum sizes, and readout 

http://www.hmdb.ca/
http://www.cytoscape.org/
http://www.taacf.org/
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endpoints.  Additionally, the reported MIC’s were obtained with different bacterial 

strains, at different growth stages or cell densities, and under a variety of experimental 

conditions that includes either broth or agar methods.  Further complicating the situation 

is the diversity of MIC’s values reported for a single drug.  Thus, the literature MIC 

values listed in Table 4.1 were simply used as a starting point to determine an optimal 

dosage for the NMR metabolomics study under our experimental conditions.  Each drug 

was titrated over a concentration range of 1 to 24 times the literature MIC values.  The 

individual drug concentrations needed to achieve ~50% growth inhibition are reported in 

Table 4.1.  An average growth inhibition of 43.1±10.5% was observed after the addition 

of each of the 15 drugs.  Preparation of the M. smegmatis cell cultures for metabolomics 

analysis was then performed using the optimal dosage for each drug. 

 Due to the inherit variability of biological samples and to provide a robust 

statistical analysis, 10 cultures inoculated with each antibiotic and 40 cultures of 

untreated cells were prepared for the NMR metabolomics study.  A 1D 
1
H NMR 

spectrum was collected for each biological sample, which were normalized using center 

averaging and analyzed using OPLS-DA.  A representative 2D OPLS-DA scores plot 

displaying a comparison between 6 antibiotics with known mechanisms of action is 

shown in Figure 4.1.  The OPLS-DA model was cross-validated using a modified leave-

one-out method. A quality assessment score (Q
2
) of 0.82 was obtained, which is an 

excellent result compared to an ideal score of 1.00.  The, the cross-validation indicates a 

highly reliable model.  Each point in the 2D OPLS-DA scores plot represents a single 1D 

1
H NMR spectrum of a specific drug treated or untreated cell culture.  The 2D OPLS-DA  
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Figure 4.1. 2D OPLS-DA scores plot demonstrating the clustering pattern obtained for 

six different antibiotics with known and distinct biological targets: untreated M. 

smegmatis cells, ciprofloxacin, streptomycin, ethambutol, isoniazid, D-cycloserine, and 

vancomycin treated M. smegmatis cells. Symbols and labels are indicated on the plot. The 

ellipses correspond to the 95% confidence limits from a normal distribution for each 

cluster. The untreated M. smegmatis cells were designated the control class, and the 

remainder of the cells was designated as treated. The OPLS-DA used one predictive 

component and three orthogonal components to yield a R
2
X of 0.610, R

2
Y of 0.893, and 

Q
2
 of 0.82. 
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scores plot consists of 4 separate clustering patterns, which demonstrates that each group 

has a considerably different impact on the metabolome of M. smegmatis. 

Importantly, all the drug-treated M. smegmatis cell cultures form distinct and 

separate clusters from the untreated cell cultures.  This is consistent with all the drugs 

being biologically active and inhibiting M. smegmatis cell growth.  Antibiotics that share  

a similar or identical biological target were observed to cluster together in the OPLS-DA 

scores plot. For example, ethambutol and isoniazid inhibit mycolic acid biosynthesis that 

prevents the formation of the arabinogalactan-mycolic acid matrix. Streptomycin and 

ciprofloxacin form the second cluster. Streptomycin prevents protein synthesis and 

ciprofloxacin inhibits DNA supercoiling that affects replication, transcription, and repair, 

leading to a similar disruption in protein synthesis. Since these two antibiotics cluster 

together, it implies that the inhibition of transcription or translation results in a similar 

impact on the metabolome. Vancomycin and D-cycloserine both affect cell wall 

formation and form the third cluster. In a principal component analysis (PCA) of the data 

(Figure 4.2) there is a more pronounced separation between vancomycin and D-

cycloserine along PC2. This reflects a fundamental difference between PCA and OPLS-

DA, where PCA is limited to a linear model and does not readily differentiate between 

within-class and between-class variations [13, 33].  Correspondingly, OPLS-DA is 

preferred as long as cross-validation verifies a reliable model. 

 The NMR metabolomics analysis was then expanded to include a total of 12 

drugs with known biological targets and 3 compounds randomly chosen from the TAACF 

library. Amiodorone, clofazamine and chlorprothixene are active against TB, but have 

unknown mechanisms of action according to the TAACF database. Nevertheless, the  
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Figure 4.2. PCA scores plot demonstrating the clustering pattern of 6 different classes of 

known antibiotics: untreated M. smegmatis cells (■), ciprofloxacin (♦), streptomycin (♦), 

ethambutol (▼), isoniazid (▼), D-cycloserine (▲), and vancomycin (▲) treated M. 

smegmatis cells. The ellipses correspond to the 95% confidence limits from a normal 

distribution for each cluster. 
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three compounds are known drugs, where amiodorone is an antiarrhythmic agent that 

affects potassium efflux, chlorprothixene is an antipsychotic drug that inhibits dopamine 

receptors, and clofazamine is a 40 year-old leprosy treatment with an ill-defined 

biological activity. The 2D OPLS-DA scores plot (Figure 4.3a) identified 4 distinct 

clusters and yielded a highly reliable cross validation Q
2
 score of 0.671. As before, the 

different clusters are correlated with distinct modes of action: inhibition of cell wall 

formation, inhibition of mycolic acid biosynthesis, and inhibition of transcription, 

translation or the overall effects of DNA supercoiling. 

The accompanying metabolomics tree diagram (Figure 4.3b) clearly visualizes the 

relative groupings of the three antibiotic classes [18]. The bootstrap numbers of 89 to 100 

indicate a statistically significant separation between the five clusters and the reliability 

of the general drug and TAACF classifications. The metabolic tree diagram also provides 

a finer separation between the drugs within each cluster. These separations may reflect 

actual differences in the specific drug targets. For example, D-cycloserine and 

vancomycin are on separate branches in the cell wall node potentially because D-

cycloserine inhibits alanine racemase and alanine ligase compared to vancomycin binding 

the D-alanyl-D-alanine dipeptide. Alternatively, the separation may result from 

differences in the relative activity of the drug. Streptomycin forms a separate branch in 

the transcription, translation or DNA supercoiling drug cluster despite having a similar 

target (binding to the 30S ribosomal protein S12 and 16S rRNA) relative to other 

members within the cluster. But, streptomycin is one of the most active compounds  



123 
 

 

 

Figure 4.3. a) 2D OPLS-DA scores plot demonstrating the clustering pattern for 12 

antibiotics with known biological targets and three compounds of unknown in vivo 

activity: untreated M. smegmatis cells, chloramphenicol, ciprofloxacin, gentamicin, 

kanamycin, rifampicin, streptomycin, ethambutol, ethionamide, isoniazid, ampicillin, D-

cycloserine, vancomycin, amiodorone, chlorprothixene, and clofazimine treated M. 

smegmatis cells. The symbols correspond with the coloring scheme and labeled symbols 

indicated on the tree diagram in (b). The ellipses correspond to the 95% confidence limits 

from a normal distribution for each cluster. The untreated M. smegmatis cells (black 

square) was designated the control class, and the remainder of the cells were designated 

as treated. The OPLS-DA used one predictive component and six orthogonal components 

to yield a R
2
X of 0.715, R

2
Y of 0.803, and Q

2
 of 0.671. b) Metabolomics tree diagram 

determined from the OPLS-DA scores plot. The coloring scheme and associated symbol 

for each compound in the tree diagram correlates with colored symbols in the OPLS-DA 

scores plot. The bootstrap numbers for each node are indicated on the tree diagram. 
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tested, requiring only a dosage of 1.5 μg/ml to inhibit M. smegmatis growth by 

approximately 50%. Also, over-interpreting these subtle separations may be erroneous 

since the within cluster differences may simply reflected experimental variability and 

may not be biologically relevant. For instance, an average growth inhibition of 43.1 ± 

10.5% was observed after the addition of each of the 15 drugs. This dosage variability 

may lead to unintended separations in the 2D OPLS-DA scores plot. Essentially, the 

reliability of these finer cluster differences is dependent on additional supportive 

biological data. 

Surprisingly, amiodorone, chlorprothixene, and clofazamine were found to cluster 

together in the 2D OPLS-DA scores plot and metabolic tree diagram. This was an 

unexpected result given that the three compounds were randomly selected from the large 

TAACF library and have diverse therapeutic usages. But, it also implies the three 

compounds share a similar mechanism of action in TB. Importantly, the three TAACF 

compounds also cluster with the antibiotics that disrupt cell wall formation, ampicillin, 

D-cycloserine and vancomycin. This infers a similar mode of action between the three 

TAACF compounds and the antibiotics that are known to interfere with bacterial cell 

walls. A subsequent literature search indicated that the three TAACF compounds have 

been previously shown to disrupt bacterial membranes in organisms distinct from TB 

[34-38]. Thus, the literature results are consistent with our NMR metabolomics analysis, 

which support our general classification of the TAACF compounds as interfering with 

bacterial cell walls. It is important to note that while ampicillin is a member of this class 

of antibiotics, it is also skewed toward the untreated cells in the 2D OPLS-DA scores 

plot. Presumably, this is because of M. smegmatis β-lactamase activity that provides  
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resistance to ampicillin [32, 39]. The impact of ampicillin on the metabolome of M. 

smegmatis is significantly diminished such that ampicillin M. smegmatis is similar to 

untreated cells. As described previously, there are some differences between the OPLS-

DA and PCA scores plot (Figure 4.4). There is less discrimination between the untreated 

and drug treated cells in the 2D PCA scores plot. This is not unexpected since PLS is 

preferred over PCA for discrimination been classes [33].  Also, there is a separation 

between the three TAACF compounds and the cell wall antibiotics in the PCA scores 

plot, but the TAACF compounds are still closer to the cell wall antibiotics in the 

associated metabolic tree diagram (Figure 4.4). In fact, the OPLS-DA and PCA 

metabolomic tree diagrams are quite similar despite these visible differences in the scores 

plots. Additionally, the quality of the OPLS-DA model is apparent from the fit to the 

data, R
2
X > 0.610 and R

2
Y > 0.803, and the reliability of the model is apparent from the 

cross-validation Q
2
 score > 0.617. Further validation of the OPLS-DA drug and TAACF 

classifications comes from the analysis of the metabolites identified as the major 

contributors to the OPLS-DA class separation (Figures 4.5-4.8 and Tables 4.2-4.5). 

The S-plots and loading plots determined from the OPLS-DA models identify the 

chemical shifts (and associated metabolites) that contribute to the observed separation 

between the untreated and treated cells in the 2D OPLS-DA scores plot. The metabolites 

and corresponding pathways predominately perturbed by the addition of each drug class 

are listed in supplemental Tables 4.2-4.5. While there are some broad similarities in the 

metabolites and pathways affected by the drugs because the comparisons are all made 

relative to untreated cells, there are also some distinct differences. For example, proline, 

cytidine, uridine and inosine (pyrimidine and purine pathways) are all uniquely decreased  
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Figure 4.4. a) PCA scores plot demonstrating clustering patterns of 12 antibiotics with 

known mechanisms and 3 compounds that are unknown: untreated M. smegmatis cells, 

chloramphenicol, ciprofloxacin, gentamicin, kanamycin, rifampicin, streptomycin, 

ethambutol, ethionamide, isoniazid, ampicillin, D-cycloserine, vancomycin, amiodorone, 

chlorprothixene, and clofazimine treated M. smegmatis cells. The symbols correspond 

with the coloring scheme and labeled symbols indicated on the tree diagram in (b). The 

ellipses correspond to the 95% confidence limits from a normal distribution for each 

cluster. b) Tree diagram of the PCA scores plot. The coloring scheme for each compound 

in the tree diagram represents the data points in the scores plot. The bootstrap numbers 

for each node are indicated on the tree diagram. 
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Figure 4.5: a) OPLS-DA S-plot comparing the M. smegmatis treated with antibiotics 

known to inhibit transcription or translation and untreated cell cultures. Each point in the 

S-plot represents a specific bin containing a chemical shift range of about 0.25ppm, and 

the range varied by 50% using intelligent binning in the ACD 1D NMR processor. b) 

OPLS-DA loading plot comparing the M. smegmatis treated with antibiotics known to 

inhibit transcription or translation and untreated cell cultures. 
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Pathway Metabolite HMDB Scorea Relative Changeb 

Glycolysis Glucose-6-phosphate 19/50 + 

 Fructose-6-phosphate 15/37 + 

 Glycerol-3-phosphate 18/34 + 

 Lactate 2/2 - 

Aminosugar N-acetyl-D-glucosamine 23/50 + 

 N-acetyl-Neuraminate 12/37 + 

Folate metabolism Folate 10/33 + 

Glycine,Serine,Threonine metabolism Serine 5/12 + 

Cysteine, Methionine metabolism Methionine 18/22 + 

TCA Citrate 2/4 + 

 Isocitrate 6/16 + 

 Acetoacetate 1/2 + 

Branched Chain Amino Acids Isoleucine 7/42 - 

 Leucine 5/25 - 

Alanine, Aspartate, Glutamate metabolism Alanine 2/6 - 

 Glutamate 12/30 + 

 Glutamine 16/28 + 

Lysine Biosynthesis Lysine 5/41 - 

Proline Metabolism Proline 8/44 - 

Pyrimidine Cytidine 7/25 - 

 Uridine 5/26 - 

Purine Inosine 4/21 - 
 

 a
Number of peaks in query that matches the number of peaks in the Human Metabolome Database. Peaks 

in the query can be matched multiple times. 
b
Relative change of metabolite concentration in drug treated 

cultures compared to untreated cultures. 
 

Table 4.2.  Metabolites perturbed from drugs affecting transcription, translation or DNA supercoiling. 
 

  1
2
8
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Figure 4.6. a) OPLS-DA S-plot comparing the M. smegmatis treated with antibiotics 

known to inhibit mycolic acid pathways and untreated cell cultures. b) OPLS-DA loading 

plot comparing the M.smegmatis treated with antibiotics known to inhibit mycolic acid 

pathways and untreated cell cultures. 
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Pathway Metabolite HMDB Scorea Relative Changeb 

Glycolysis Glucose-6-phosphate 16/50 + 

 Fructose-6-phosphate 15/37 + 

 Oxaloacetate 1/1 + 

 Lactate 2/6 + 

TCA Acetoacetate 1/2 + 

 2-Oxoglutarate 3/6 + 

 Isocitrate 6/16 + 

Aminosugar Arabinose 15/40 + 

Alanine, Aspartate, Glutamate metabolism GABA 6/11 + 

 Glutamate 12/30 + 

 Asparagine 5/12 - 

 Alanine 2/6 - 

Glycine, Serine, Threonine metabolism 2-Ketobutyrate 3/7 + 

 Homoserine 12/44 - 

Branched Chain metabolism Valine 2/16 + 

 Leucine 3/25 + 

Pyrimidine Orotate 1/1 + 

 Ureidopropionate 6/7 + 

Glycerophospholipid Choline phosphate 8/15 - 

Lysine Biosynthesis Lysine 15/47 - 

Arginine and Proline metabolism Spermidine 7/21 - 

 Citrulline 16/44 - 

Ascorbate metabolism Ascorbate 6/16 - 

 Dehydroascorbate 10/35 - 

 

 

a
Number of peaks in query that matches the number of peaks in the Human Metabolome Database. Peaks 

in the query can be matched multiple times. 
b
Relative change of metabolite concentration in drug treated 

cultures compared to untreated cultures. 
 

Table 4.3. Metabolites perturbed from drugs affecting mycolic acid pathways 

  1
3
0
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Figure 4.7. a) OPLS-DA S-plot comparing the M. smegmatis treated with antibiotics 

known to inhibit cell wall synthesis and untreated cell cultures. b) OPLS-DA loading plot 

comparing the M. smegmatis treated with antibiotics known to inhibit cell wall formation 

and untreated cell cultures. 
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Pathway Metabolite HMDB Scorea Relative Changeb 

Glycolysis Glucose-6-phosphate 19/50 + 

 Fructose-6-phosphate 20/37 + 

 Oxaloacetate 1/1 + 

Aminosugar N-acetyl-D-glucosamine 25/50 + 

 N-acetylneuraminate 12/37 + 

Alanine, Aspartate, Glutamate metabolism Alanine 2/6 + 

 GABA 8/11 + 

 Glutamine 18/28 + 

 Glutamate 18/30 + 

Branched Chain Amino Acids Valine 10/16 + 

 Isoleucine 31/42 - 

Glycine, Serine, Threonine metabolism Serine 7/12 - 

 2-ketobutyrate 3/7 + 

Cysteine, Methionine metabolism Methionine 15/22 - 

Lysine Biosynthesis Lysine 15/47 + 

Folate metabolism Folate 13/33 + 

 

 

  

Table 4.4. Metabolites perturbed from drugs affecting cell wall. 

a
Number of peaks in query that matches the number of peaks in the Human Metabolome Database. Peaks 

in the query can be matched multiple times. 
b
Relative change of metabolite concentration in drug treated 

cultures compared to untreated cultures. 
 

  1
3
2
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Figure 4.8: a) OPLS-DA S-plot comparing the M. smegmatis treated with antibiotics with 

unknown mechanism and untreated cell cultures. b) OPLS-DA loading plot comparing the M. 

smegmatis treated with antibiotics with unknown mechanism and untreated cell cultures.  
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Pathway Metabolite HMDB Scorea Relative Changeb 

Glycolysis Oxaloacetate 1/1 - 

Alanine, Aspartate, Glutamate metabolism Glutamine 20/28 - 

 Glutamate 25/30 - 

Branched Chain Amino Acids Isoleucine 20/42 + 

Cysteine, Methionine metabolism Methionine 15/22 - 

Folate metabolism Folate 24/33 - 

 

Table 4.5. Metabolites perturbed from drugs of unknown mechanism. 

a
Number of peaks in query that matches the number of peaks in the Human Metabolome Database. Peaks 

in the query can be matched multiple times. 
b
Relative change of metabolite concentration in drug treated 

cultures compared to untreated cultures. 
 

  1
3
4
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by drugs that affect transcription, translation or DNA supercoiling. Obviously, 

nucleotides are essential metabolic precursors to DNA and RNA synthesis. Alternatively, 

choline phosphate, lysine, spermidine, citrulline, ascorbate and dehydroascorbate 

(glycerophospholipid, lysine biosynthesis, arginine and proline metabolism, and 

ascorbate metabolism pathways) are decreased by drugs affecting the mycolic acid 

pathway. Ascorbate metabolism is directly linked to the mycolic acid pathway, where  

ascorbate leads to arabinose. Arabinose is the primary precursor for the arabinogalactan-

mycolic acid complex. Also, the inhibition of spermidine synthesis has been previously 

observed for drugs targeting the mycolic acid pathway in mycobacteria [40].  

Importantly, the set of metabolites affected by the TAACF compounds were identical to 

metabolites perturbed by D-cycloserine and vancomycin. Both show a decrease in 

oxaloacetate, glutamine, glutamate, methionine and folate and an increase in isoleucine. 

Clearly, amino acids and their precursors are important components in peptidoglycan, 

cell wall and cell membrane synthesis. There were some additional metabolites that are 

increased by the addition of D-cycloserine and vancomycin that were not observed with 

the TAACF compounds. These include other amino acids (alanine, lysine serine, valine) 

and other precursors to peptidoglycan synthesis (N-acetyl-D-glucosamine, N-

acetylneuraminate). Overall, the identity of the specific metabolites perturbed by each 

drug class is consistent with the 2D OPLS-DA scores plot clustering pattern and drug 

classifications. 

 

 

 



136 
 

4.4 Conclusion 

In conclusion, we have demonstrated that different classes of antibiotics uniquely 

affect the metabolome of M. smegmatis. These metabolomic changes are directly 

correlated with broad mechanisms of action that are associated with each TB class of 

antibiotics, disruption of cell walls or membranes, inhibition of transcription, translation 

or DNA supercoiling, or the inhibition of mycolic acid biosynthesis. Thus, NMR 

metabolomics provides an efficient, simple and unbiased approach for providing rapid 

classification of promising drugs leads that emerge from HTS. This is critical since HTS 

does not provide any information on mechanisms of action; only relative activity with a 

high-false positive rate. Instead, the in vivo biological activity of a novel lead can be 

inferred by its relative clustering to existing drug classes in an OPLS-DA scores plot 

derived from metabolomics data. Importantly, a chemical lead that forms a distinct 

cluster from known drugs infers a potential new mechanism of action and a reason to 

prioritize the chemical lead for a detailed follow-up investigation. Of course, the induced 

metabolomic changes relative to untreated cells provide further confirmation of in vivo 

efficacy, which was implied from the HTS results. While the technique was demonstrated 

with M. smegmatis, it is generally applicable to bacterial pathogens and the effect of 

therapeutic agents on human cell lines in addition to the analysis of biofluids. 
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CHAPTER 5 

TRICARBOXYLIC ACID CYCLE-DEPENDENT REGULATION OF 

STAPHYLOCOCCUS EPIDERMIS POLYSACCHARIDE INTERCELLULAR 

ADHESIN SYNTHESIS
§
 

 

5.1 Introduction 

Staphylococcus epidermidis is the most frequently isolated nosocomial pathogen 

from the blood cultures of adult and pediatric intensive care unit patients in the United 

States of America [1]. Frequently, S. epidermidis infections involve the formation of a 

biofilm on the surfaces of biomaterials (e.g., catheters) [2]. A biofilm is a complex 

aggregation of bacteria usually encapsulated by an adhesive exopolysaccharide matrix. 

The exopolysaccharide matrix provides structural stability to the biofilm, enhanced 

adhesion to surfaces, and protection from host defenses and antibiotics [3-5]. In S. 

epidermidis, the exopolysaccharide facilitating bacterial adherence in a biofilm is 

polysaccharide intercellular adhesin (PIA). PIA is an N-acetylglucosamine polymer [6] of 

at least 130 residues [7] whose synthesis requires the enzymes encoded by genes in the 

intercellular adhesin (ica) operon (icaADBC) [8]. The synthesis of PIA is required for the 

maturation of biofilms [8], important for evasion of the host innate immune system [5, 9], 

and critical in biomaterial-associated infections [10, 11]. 

                                                           
§
 Chapter 5 was adapted from Sadykov, M., et. al., Tricarboxylic Acid Cycle-Dependent Regulation of 

Staphylococcus epidermidis Polysaccharide  Intercellular Adhesin Synthesis, Journal of Bacteriology 

(2008), 190 (23), 7621-7642. Reprinted with permission, copyright 2008 American Society for 

Microbiology. 



141 
 

Bacteria live in environments subject to rapid changes in the availability of the 

nutrients necessary to provide energy and biosynthetic intermediates for the synthesis of 

macromolecules. Consequently, bacterial survival depends on the ability to regulate 

expression of genes coding for enzymes required for growth in the altered environment. 

In pathogenic bacteria, adaptation to an altered environment often includes activating 

transcription of virulence genes; hence, synthesis of many virulence determinants is 

regulated by environmental/nutritional signals (e.g., nitrogen, iron, and calcium) [12]. 

Because PIA is the most important virulence determinant of S. epidermidis [3, 11, 13-16], 

it is not surprising that PIA synthesis is regulated by environmental and nutritional 

signals [17-21].  

Regulation of the icaADBC operon is complex, involving at least two DNA 

binding proteins (IcaR and SarA) and the alternative sigma factor σ
B
             

               to the icaA transcriptional start site and represses transcription of the ica 

operon [22, 23]. SarA is an essential positive effector of icaADBC transcription that binds 

to the icaA promoter region [24, 25]  σ
B 

affects PIA synthesis indirectly by regulating the 

expression of icaR [26-28]. In addition, the luxS quorum-sensing system has a minimal 

effect on PIA synthesis and biofilm formation; however, the mechanism remains to be 

determined [29]. 

In Staphylococcus aureus, σ
B
 is activated during stress conditions and growth 

phase transitions [30, 31]. Because S. epidermidis icaADBC transcription and PIA 

synthesis are induced by environmental and nutritional stresses, stress-dependent 

activation of σ
B 

has been a focal point of research into the environmental regulation of 
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PIA synthesis and biofilm formation [24, 27, 32]. Importantly, σ
B
 does not respond 

directly to environmental signals; therefore, a second area of research interest has focused 

on identifying the regulatory network controlling σ
B
 activation, which is involved in 

responding to environmental signals. The activation of σ
B
 involves an anti-sigma factor 

(RsbW) and an anti-anti-sigma factor (RsbV) and resembles the process in the closely 

related organism Bacillus subtilis [27]. In the absence of environmental stimuli, σ
B
 is 

bound in a complex with RsbW. Stress-inducing stimuli are hypothesized to activate the 

RsbU phosphatase to dephosphorylate (activate) the anti-anti-sigma factor RsbV, which 

then binds RsbW in a competitive manner to increase the concentration of free σ
B 

 [26, 

27]. Based on several published studies, it seems likely that the σ
B
 posttranslational 

regulatory network is responsible for responding to some environmental stresses (i.e., 

osmotic stress) but is only minimally involved in responding to nutritional signals (e.g., 

glucose), suggesting that there are other means for S. epidermidis  o “     ” nutritional 

signals [19, 27, 28]. 

Previously, we observed the environmental and nutritional signals that enhance 

PIA synthesis also repress tricarboxylic acid (TCA) cycle activity, leading us to 

hypothesize that repression of TCA cycle activity would increase PIA accumulation [33]. 

To test this hypothesis, we incubated S. epidermidis strain 1457 with very low 

concentrations of fluorocitrate, which minimally inhibited TCA cycle activity, and 

determined the amount of cell-associated PIA. As the concentration of fluorocitrate in the 

culture medium was increased, the amount of PIA produced increased proportionally 

[33]. Fluorocitrate is a highly toxic compound when metabolized to 4-hydroxy-
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transaconitate by the TCA cycle enzyme aconitase, severely limiting the usable 

concentration range [34, 35]. In the present study, we overcame this limitation by 

genetically inactivating the aconitase gene in S. epidermidis strain 1457. The aconitase 

mutant and complemented strains permitted a detailed analysis of the function of central 

metabolism in PIA synthesis. 

 

5.2 Materials and Methods  

5.2.1 Bacterial strains, bacteriophage, plasmids, and growth conditions  

Bacterial strains, bacteriophage, and plasmids used in this study are listed in Table 

5.1. S. epidermidis strain 1457 [36] was used in these studies because it is a known PIA 

and biofilm-producing strain. Escherichia coli strains were grown in 2x YT broth or on 

2x YT agar [37]. S. aureus and S. epidermidis strains were grown in tryptic soy broth 

without dextrose (TSB; BD Biosciences) supplemented with 0.25% glucose or on TSB 

containing 1.5% (wt/vol) agar. S. epidermidis cultures were inoculated 1:200 from 

overnight cultures (normalized for growth) into TSB, incubated at 37°C, and aerated at 

225 rpm with a flask-to-medium ratio of 7:1. Bacterial growth was assessed by measuring 

the optical density at 600 nm or by determining the number of CFU mL
-1

. Antibiotics 

were purchased from Fisher Scientific or Sigma Chemical and were used at the following 

concentrations: ampicillin (100 μg/mL for E. coli), chloramphenicol (8 μg/mL), 

erythromycin (8 μg/mL), minocycline (2 μg/mL), and trimethoprim (10 μg/mL). 
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Bacterial strain, bacteriophage, 

or plasmid 
           Relevant properties

a
 

Source or 

reference 

Bacterial Strains   

DH5α E.coli cloning host Invitrogen 

RN4220 S. aureus restriction-deficient strain 8325-4 [38] 

1457 S. epidermidis biofilm-forming strain [36] 

1457-acnA Strain 1457 acnA inactivated mutant; Min
r
 This 

study 

1457-citZC Strain 1457 citCZ deletion mutant; Erm
r
 This 

study 

1457-∆ica Strain 1457 icaADBC deletion mutant; Tmp
r
 [24] 

1457-icaR Strain 1457 icaR inactivated mutant; Min
r
 [24] 

1457-sigB Strain 1457 sigB inactivated mutant; Tmp
r
 [24] 

1457-sarA Strain 1457 sarA inactivated mutant; Min
r
 [24] 

   

Bacteriophage 71 S. epidermidis transducing phage [39] 

   

Plasmids   

pCL15 Expression vector; derivative of pSI-1; Cam
r
 Chia Lee 

pEC4 pBluescript II KS(+) with ermB inserted into ClaI site; 

Amp
r
 Erm

r
 

[40] 

pJF12 Plasmid pCR2.1 containing tetM; Amp
r
 Min

r
 J. Finan 

and G. 

Archer 

pGEM-T E. coli TA cloning vector; Amp
r
 Promega 

pMRS2 pCL15 with acnA gene under the control of the Pspac 

promoter; Cam
r
 

This 

study 

pMRS5 Derivative of pTS1-d with citZC::ermB fragment; Amp
r
 

Cam
r
 Erm

r
 

This 

study 

pNF103 pUC19 with 1.7-kb internal fragment of acnA; Amp
r
 This 

study 

pNF117 pNF103 with tetM inserted into EcoRI site; Amp
r
 Min

r
 This 

study 

pNF118 pRO6448::pNF117; Amp
r
 Erm

r
 Min

r
 This 

study 

pRO6448 pE194(ts) with AluI fragment (oriT) of pC221 cloned into 

the unique ClaI site; Erm
r
 

[41] 

pTS1 Shuttle vector; pE194ori
ts
; ColE1; Amp

r
 Cam

r
 [42] 

pTS1-d            o                  o  o         -   o       

region of ermC 

This 

study 

pUC19 E. coli cloning vector; Amp
r
 [43] 

Table 5.1. Bacterial strains, bacteriophage, and plasmids used in this study 

a 
Amp

r
, ampicillin resistant; Cam

r
, chloramphenicol resistant; Ermr, erythromycin resistant; 

Min
r
, minocycline resistant; Tmp

r
, trimethoprim resistant; ts, temperature-sensitive origin of 

replication. 
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                                                                          o                          

663 

 o     ……………………… GCGCGCGGCGCCGGGA A AAAATGGCTTCTA 

664 

       ………………………   GCGCGCC GCAGACCAGCAAGCGCATAAGCTA 

SERP1762(glmM)- ……………… CACC GAA  GGC    AAACTAGG 

SERP1762(glmM)- ………………  CAACACGA A   G CAG CACTC 

SERP1760(glmS)- ………………  G G GGAA  G  GG  A A TGGC 

SERP1760(glmS)- ………………   GCTTCACGTGATAATGTTGAACC 

glmU- ……………………………  CGATTATTCTGGCAGCAGGTAAG 

glmU- ……………………………  CGATTGATACGTTGTTGCAAAGC 

     o   o    ……………………GACAGTCGCTACGAAAAG 

     o         …………………… CCGAATAATTTGTAAATTTCC 

icaR- ………………………………GGAGGCTCTAAAATACCAAGTCTC 

pgi- ………………………………  GCATGAACTAGATCAGCAAAAGGATATTG 

pgi- ………………………………  GCTGTAAGAACAGAATAACGACCTCC 

sarA- ………………………………GGCTATTTCAAAAATCAATGACTGCTTTG 

sarA- ………………………………GCTTCTGTGATACGGTTGTTTACTC 

sigB- ………………………………CGAAAGAGTCGAAATCAGCTAGTG 

sigB- ………………………………GTGAAACATGCATTTGACTAAGACC 

SalI-SD-acnA-f……………………CTAAGTCGACAATATCAAGGGGGATATAAAA 

                                                            TGGCTTC 

SacI-acnA- ………………………  CAAGAGCTCATGACTG 

CTTGTACTCAATAGTGAG 

pCL15-f……………………………GTTCTACATCCAGAACAACCTCTGC 

pCL15-r……………………………GAAATGATGACCTCGTTTCCACCG 

citC-r-

   B2………………………GACGTTCTGTACCTTCTTTAGGCGACTCATAGAAT 

                                                            TATTTCCTCCC 

citZ-f-

   B……………………  …CACTTTGAGGAGTATGTGACGAAGGAGGGATTCG 

                                                             TCATGTTG 

phoP-B  H ………………………GGAGGATCCACGTACAGTCTTTATCAATTTA 

                                                          GGTTGC 

ermB-citC-

 2………………………GGAAATAATTCTATGAGTCGCCTAAAGAAGGTA 

                                                             CAGAACGTCTAGTAAGAG 

ansP-

    …………………………  GCAGAGCTCACTAAGTGTCGATGTAAATTTTA 

                                                             TCGTGC 

ermB-citZ-

 …………………………GACGAATCCCTCCTTCGTCACATACTCCTCAAA 

                                                              GTGCTTGTATAC 

  

Table 5.2. Oligonucleotide primers used in this study 
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5.2.2 Staphylococcus epidermidis mutant construction. Aconitase (acnA) mutant  

A 1.7-kb internal PCR product of the acnA gene of S. epidermidis strain 1457 was 

amplified using primers 663 forward (contains a KasI restriction site) and 664 reverse  

 (contains a PstI restriction site) (Table 5.2) and cloned into pGEM-T (Promega). The 

1.7-kb PCR product was excised from pGEM-T by digestion with KasI and PstI and 

ligated into the KasI and PstI sites of pUC19 [43] to generate the plasmid pNF103. The 

tetM cassette from plasmid pJF12 (from J. Finan and G. Archer) was inserted into a 

unique EcoRI site of pNF103 at nucleotide position 856 of the 2,702-bp acnA gene to 

generate the pNF117 plasmid.  The temperature-sensitive plasmid pROJ6448 [41] was 

digested with PstI and ligated into the unique PstI site of pNF117. The resulting 

temperature sensitive plasmid pNF118 was passaged through S. aureus strain RN4220 

and introduced into S. epidermidis strain 1457 by electroporation [44]. Strain 1457 

containing plasmid pNF118 was used to construct an acnA::tetM mutant as described 

previously [45]. The resulting mutant was backcrossed into wild-type strain 1457 using 

transducing phage 71 [39]. Inactivation of the acnA gene by tetM cassette was verified by 

PCR, Southern blot analysis [46], and enzymatic assays [47]. 

 

5.2.3 Citrate synthase (citZ) and isocitrate dehydrogenase (citC) double mutant 

The genes coding for citrate synthase and isocitrate dehydrogenase are present in 

a two-gene operon and cotranscribed. To inactivate the citZC operon, a gene splicing by 

overlap extension technique was used to replace a 2-kb internal DNA region of citZC by 

the ermB gene. The ermB gene was amplified from pEC4 [40] using primers citC-r-
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ermB2 and citZ-f-ermB (Table 5.2), containing sequences homologous to the citC and 

citZ genes. Genomic DNA from S. epidermidis strain 1457 was used as a template for 

PCR amplification of the DNA flanking the internal citZC region. Primers ansP-SacI and 

ermB-citZ-r (Table 5.2) were used for amplification of a 1.9-kb region of the citZ 

upstream region. A 1.7-kb region of the citC downstream region was amplified using 

phoP-BamHI and ermBcitC-f2 primers (Table 5.2). The resulting 4.6-kb PCR product 

consisted of a 1-kb ermB gene with DNA flanking the internal citZC regions. The 4.6-kb 

PCR product contained SacI and BamHI sites that were used for ligation into pTS1-d 

digested with SacI and BamHI to generate pMRS5. The temperature-sensitive plasmid 

pTS1-d is a derivative of pTS1 [42] with deletion of the plasmid-encoded    region of the 

ermC gene. It was constructed by PCR amplification of pTS-1 DNA using primers 

pTS1dErm-f and pTS1dErm-r, and the resulting PCR product was self-ligated as 

described previously [48]. Plasmid pMRS5 was used to construct a strain 1457 citZC 

double mutant (1457-citZC::ermB) [45]. Allelic replacement of the internal region of 

citZC genes by the ermB cassette was verified by PCR and Southern blot analysis. 

 

5.2.4 Construction of the complementation plasmid  

Plasmid pCL15 (a kind gift of Chia Lee), containing a Pspac promoter, was used 

for the construction of an acnA complementation plasmid. The pMRS2 complementation 

plasmid was constructed by amplifying the 2.7-kb promoterless acnA gene from S. 

epidermidis strain 1457 using SalI-SD-acnA-f and SacI-acnA-r primers, followed by 

ligation of the PCR product into plasmid pCL15 digested with SalI and SacI. Plasmid 
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pMRS2 was isolated from S. aureus strain RN4220 and electroporated into S. epidermidis 

strain 1457 [44]. Plasmid pMRS2 was introduced into strain SE1457- acnA using 

transducing phage 71 [38]. Induction of expression from the Pspac promoter was 

performed by supplementing bacterial cultures with isopropyl-β-D-thiogalactopyranoside 

(IPTG) (1 mM). 

5.2.5 Measurement of acetic acid and glucose concentrations in culture medium 

Aliquots of bacteria (2 mL) were centrifuged for 3 min at 14,000 rpm at 4°C, and 

the supernatants were removed and stored at -20°C until use. Acetate and glucose 

concentrations were determined with kits purchased from R-Biopharm and used 

   o    g  o                 ’    o o o   

 

5.2.6 Determination of NAD
+
, NADH, and ATP concentrations  

Intracellular NAD
+
 and NADH concentrations were determined with an 

enzymatic cycling assay kit (Biovision). Briefly, aliquots (5 to 20 mL) were harvested at 

2, 3, 4, 5, and 6 h by centrifugation at 4°C for 10 min at 4,000 rpm. Bacterial pellets were 

suspended in 1 mL of extraction buffer (Biovision) and lysed using lysing matrix B tubes 

(Qbiogene) in a FastPrep instrument (Qbiogene). The lysate was centrifuged at 4°C for 5 

min at 14,000 rpm. NAD
+
 and NADH concentrations were determined according to the 

            ’    o ocol and normalized to the cell density. All assays were performed in 

duplicate for two independent experiments. 

Intracellular ATP concentrations were determined using the Enliten ATP assay 

(Promega). Briefly, 2x10
7
 bacteria were collected at 2, 3, 4, 5, and 6 h, washed three 
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times with 1 mL of phosphate-buffered saline, and suspended in 100 μL of phosphate-

buffered saline. Bacteria were lysed by the addition of 900 μL of dimethyl sulfoxide [49]. 

ATP concentrations were determined according to the manuf       ’    o o o      

normalized to the cell density. All assays were performed in duplicate for two 

independent experiments. 

 

5.2.7 Determination of aconitase activity  

Cell-free lysates of S. epidermidis were prepared as follows: aliquots of bacteria 

(2 mL) were harvested by centrifugation and suspended in 750 μL of lysis buffer 

containing 90 mM Tris (pH 8.0) and 100 μM fluorocitrate. The samples were lysed using 

lysing matrix B tubes (Qbiogene) in a FastPrep instrument (Qbiogene). The lysate was 

centrifuged for 5 min at 14,000 rpm and 4°C. Aconitase activity was assayed in the 

resulting cell-free lysate as previously described [50]. One unit of aconitase activity is 

defined as the amount of enzyme necessary to give a ∆A240 min
-1

 of 0.0033 [51]. Protein 

concentrations were determined by the method of Lowry [52]. 

 

5.2.8 PIA immunoblot assay 

PIA accumulation was determined as described previously [33]. Briefly, TSB 

medium containing 0.25% glucose was inoculated with equal numbers of bacteria from 

overnight cultures. The cultures were grown at 37°C, with a flask-to-medium ratio of 7:1, 

and aerated at 225 rpm. Every 2 h, equal numbers of bacteria (0.25 A600 unit) were 

harvested by centrifugation, and the PIA was extracted in 0.5 M EDTA (pH 8.0) by 
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boiling for 5 min. Aliquots of PIA were applied to a polyvinylidene difluoride membrane 

(Immobilon-P; Millipore) and blocked with 5% skim milk overnight. The polyvinylidene 

difluoride membrane was incubated for 2 h with PIA-specific antiserum (generously 

provided by Michael Otto), which was followed by a 2 h incubation with an antirabbit 

immunoglobulin G peroxidase conjugate. The presence of PIA was detected using Super 

Signal West Pico chemiluminescent substrate (Pierce). The integrated density values of 

bands on autoradiographs were determined with the TotalLab software (Nonlinear 

Dynamics Ltd.) 

 

5.2.9 Northern blot analysis  

Northern blot analysis of transcripts was performed as described previously [37], 

except that total RNA was isolated using the FastRNA Pro Blue kit (Qbiogene) and 

purified using an RNeasy kit (Qiagen). Oligonucleotide primers (Table 5.2) used in 

making DNA probes were designed using the S. epidermidis RP62A genome sequence 

(GenBank accession number CP000029). Probes for Northern blotting were generated by 

PCR amplification of unique internal regions of glmM, glmS, glmU, icaD, icaR, pgi, 

sarA, and sigB genes and labeled using the North2South random prime labeling kit 

(Pierce). Electrophoresis, transfer of the RNA to the Nytran SPC nylon membrane 

(Whatman), and hybridization were done using the NorthernMax kit (Ambion). Detection 

was performed using the chemiluminescent nucleic acid detection module (Pierce). When 

necessary, reprobing of blots was done according to the             ’    o o o   
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5.2.10 NMR data collection, processing, and analysis  

Nuclear magnetic resonance (NMR) samples were prepared from three 

independent cultures (50 mL) of S. epidermidis strains 1457 and 1457-acnA during the 

exponential growth phase (2 h) and post exponential growth phase (6 h) using 

[
13

C6]glucose (Cambridge Isotope Laboratories) in place of glucose in the growth 

medium. Bacteria were rapidly harvested, lysed using lysing matrix B tubes (Qbiogene) 

in a FastPrep instrument (Qbiogene), and centrifuged to remove the cell debris. Samples 

were lyophilized, suspended in a 99.8% D2O (Isotec) 50 mM phosphate buffer, and an 

aliquot (500 μL) was transferred to an NMR tube for analysis. 

The NMR spectra were collected on a Bruker 500-MHz Avance spectrometer 

equipped with a triple-resonance, z-axis gradient cryoprobe. A BACS-120 sample 

changer with Bruker Icon software was used to automate the NMR data collection. Two-

dimensional (2D) 
1
H-

13
C-heteronuclear single quantum coherence (

1
H-

13
C-HSQC) 

spectra were collected with a Bruker pulse sequence (HSQCETGP), solvent 

presaturation, and relaxation delay of 0.5 s. A total of 1,024 data points with a sweep 

width of 4734.85 Hz and 64 data points with a sweep width of 13834.26 Hz were 

collected in the 
1
H and 

13
C dimensions, respectively. A total of eight dummy scans and 

128 scans were used to obtain each of the 2D 
1
H-

13
C HSQC NMR spectra. Spectra were 

processed using the NMRPipe software package [53] and zero-filled with 2,048 and 

1,024 points in the 
1
H and 

13
C dimensions, respectively. Additionally, the spectra were 

Fourier transformed, manually phased, and baseline corrected. 
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Spectra were analyzed using Primitive Interactive Peak Picker (PIPP) [54] to 

determine chemical shifts and peak intensities. The chemical shifts were divided into 

three groups (Tables 5.3 and 5.4) based on the intensities of similar peaks between the 

wild-type and acnA mutant strains during the exponential and post exponential phases of 

growth. Peak intensities were normalized for each spectrum by dividing by the average 

peak intensity. The triplicate data sets were then used to calculate average peak intensities 

for each peak observed in the 2D 
1
H-

13
C HSQC spectra for the wild-type and acnA 

mutant. Similarly, a percent error was calculated for each peak by dividing the standard 

deviation by the average peak intensity. The average peak intensities were then used to 

calculate a percent difference between the wild-type and acnA mutant. Peaks with 

calculated percent differences greater than five times the average percent error were 

considered to have increased concentrations in the wild-type or acnA mutant strains. 

Peaks with less than a fivefold deviation were considered similar. The peaks assigned to 

the same metabolite were required to have the same relative change in intensity in order 

to be classified as a metabolite with an increase in concentration. 

NMR peaks were assigned to specific metabolites using the Madison 

Metabolomics Consortium Database [55] using a tolerance of 0.05 ppm and 0.50 ppm for 

1
H and 

13
C dimensions, respectively. The presence of metabolites and metabolic 

pathways were verified with the KEGG [56] and Metacyc [57] databases. NMR reference 

data available from the Madison Metabolomics Consortium Database is incomplete, so it 

is currently not feasible to assign every NMR resonance observed in the 2D 
1
H-

13
C 

HSQC NMR spectra to a S. epidermidis metabolite. It is also important to note that the  
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Increased intracellular conc. 

in the wild-type strain 1457
a
 

Increase intracellular conc. 

in strain 1457-acnA
a
 

Similar intracellular conc. 

in wild-type and 1457-

acnA strains 

Glutamine Ethanol Glucosamine-6-phosphate 

Glutamate Alanine Glucose 

Ornithine Lactate Ribose 

Succinate Acetaldehyde Glucose-6-phosphate 

Asparagine Citrate NAD 

Aspartate UDP-N-acetylglucosamine UDP-glucuronate 

γ-Aminobutanoate Uridine Ribose-5-phosphate 

Isocitrate  Inosine 

Fructose-6-phosphate  Adenosine 

  Xanthosine 

  

Increased intracellular 

conc. in the wild-type 

strain 1457
a
 

Increase intracellular conc. 

in strain 1457-acnA
a
 

Similar intracellular conc. in 

wild-type and 1457-acnA 

strains 

Lactic acid Valine Acetate 

Succinate Leucine Glucose 

Glutamate Lysine Glucosamine 

Glutamine Citrate Ethanol 

Asparagine Serine Glucose-6-phosphate 

Aspartate Arginine Inosine 

 Fructose-6-phosphate Adenosine 

 Glucono-1,5-lactone Xanthosine 

 Acetaldehyde N-Acetylglutamate 

 Isoleucine NAD 

 Ornithine Uridine 

 UDP-N-acetylglucosamine Alanine 

Table 5.3. Summary of metabolic differences identified in 

S. epidermidis strains by NMR after 2 h of growth 

Table 5.4. Summary of metabolic differences identified in 

S. epidermidis strains by NMR after 6 h of growth 

a
The intracellular concentration was considered to be increased when the percent 

difference in the NMR peak intensities was fivefold greater than the percent error 

observed in the peak intensities between the triplicate NMR spectra. 

a
The intracellular concentration was considered to be increased when the percent 

difference in the NMR peak intensities was fivefold greater than the percent error 

observed in the peak intensities between the triplicate NMR spectra. 
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combination of 2D 
1
H-

13
C HSQC NMR spectra with isotopically enriched (e.g., 

[
13

C6]glucose) cellular extracts enables the measurement of accurate metabolite 

concentration changes relative to one dimensional 
1
H NMR metabolomic methods alone. 

Generally, only compounds that are metabolic products of [
13

C6]glucose were detected. 

 

5.2.11 Statistical analysis  

The statistical significance of changes between wild-type and mutant strains (e.g., 

A    o         o                                 ’  t test. To determine whether a 

correlation existed between two physiological parameters, a correlation coefficient (ρ) 

was calculated. 

 

5.3 Results 

5.3.1 Construction and characterization of an S. epidermidis strain 1457 aconitase 

mutant  

Partial biochemical inhibition of TCA cycle activity in S. epidermidis increased 

the accumulation of PIA [33]. Because fluorocitrate is very toxic, we were unable to 

completely block TCA cycle activity without killing the bacteria. To overcome this 

obstacle, we inactivated the TCA cycle in S. epidermidis strain 1457 by insertion of a 

tetM cassette into the gene encoding aconitase (acnA; also known as citB) and then 

assessed the effect on PIA synthesis. In S. epidermidis, aconitase is present as a sole copy 

on the chromosome; hence, inactivation of aconitase results in a nonfunctional TCA 

cycle. Inactivation of the aconitase gene in S. epidermidis strain 1457 by allelic 
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replacement was genotypically verified by PCR and Southern blot analysis (data not 

shown) and phenotypically by aconitase enzymatic activity assays (Figure 5.1a). In 

addition, overall TCA cycle function was assessed by measuring the accumulation and 

depletion of acetic acid from the culture medium of the wild-type, mutant, and 

complemented strains (Figure 5.1d). (Acetic acid catabolism in staphylococci requires a 

fully functional TCA cycle [47, 57].) As expected, aconitase inactivation inhibited the 

post exponential oxidative catabolism of acetic acid (Figure 5.1d). Of importance, when 

the concentration of acetic acid in the culture medium was plotted as a function of 

growth, the exponential growth phase rates of acetic acid accumulation in strains 1457  

and 1457-acnA were equivalent (data not shown), suggesting that carbon utilization in 

both strains was proceeding through glycolysis and the acetate 

 kinase/phosphotransacetylase pathway at a similar rate. The equivalent rate of acetic acid 

accumulation in strains 1457 and 1457-acnA was also supported by NMR metabolomic 

analysis (Table 5.3). If carbon flow through glycolysis were equivalent, then it is 

reasonable to predict that the growth rate of the wild-type and aconitase mutant strains 

would also be equivalent. 

Surprisingly, the growth rate of strain 1457-acnA was lower than the growth rate 

of the isogenic wild-type strain, and this was reflected in the temporal depletion of 

glucose (Figure 5.1c).  This result was surprising because TCA cycle activity is repressed 

during the exponential growth phase when nutrients are abundant; thus, inactivating a 

repressed metabolic pathway should have minimal consequences. Restoration of the 

growth rate and the ability to catabolize acetate was accomplished by complementation of  
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Figure 5.1. Growth characteristics of the S. epidermidis strain 1457 aconitase mutant. a) 

Aconitase activity of S. epidermidis strains 1457, 1457-acnA, and 1457-acnA containing 

pMRS2 (1457-acnA _ pMRS2) was determined 6 h postinoculation. b) Growth curves of 

wild-type strain 1457, aconitase mutant strain 1457-acnA, and strain 1457-acnA 

containing the complementing plasmid pMRS2 grown in TSB containing 0.25% glucose. 

At the indicated times, aliquots were removed, and the optical density at 600 nm 

(O.D.600) was measured, and the pH of the culture medium was determined. c) Temporal 

depletion of glucose from the culture medium of strains 1457, 1457-acnA, and 1457-acnA 

containing pMRS2. d) Temporal accumulation and depletion of acetic acid in the culture 

medium of strains 1457, 1457-acnA, and 1457-acnA containing pMRS2. The results are 

representative of at least two independent experiments. 
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the strain 1457-acnA mutation with a plasmid (pMRS2) containing the acnA gene under 

the control of a Pspac promoter (Figure 5.1a to d). As a whole, these date demonstrate that 

acnA was inactivated, and this resulted in a metabolic block in the TCA cycle. 

 

5.3.2 TCA cycle inactivation redirects carbon from growth into UDP-N-

acetylglucosamine biosynthesis  

When grown in the presence of a rapidly catabolizable carbon source, gram-

positive bacteria repress the TCA cycle; hence, there is an accumulation of acidic 

secondary metabolites (e.g., acetate) in the culture medium. Derepression of the TCA 

cycle occurs upon depletion of the readily catabolizable carbon source(s) and coincides 

with the depletion of acetate from the culture medium. The processing of glucose through 

glycolysis and the resulting accumulation of acetate during substrate-level 

phosphorylation were equivalent in S. epidermidis strains 1457 and 1457-acnA; hence, 

the lower growth rate of strain 1457-acnA relative to the wild-type strain was likely due 

to a redirection of carbon and energy from growth into other cellular processes or 

metabolic pathways. If carbon and/or energy were diverted from growth to another 

metabolic pathway or process, then the number of bacteria produced per unit of glucose 

consumed should be lower in the aconitase mutant strain than in the wild-type strain. 

Plotting the glucose concentrations in the culture medium as a function of optical density 

at 600 nm for three independent experiments (Figure 5.2) confirmed that fewer bacteria 

are produced per unit of glucose consumed by strain 1457-acnA than by strain 1457. 

These data strongly suggest that carbon and/or energy were diverted from growth into   



158 
 
 

 

 

 

Figure 5.2. TCA cycle inactivation redirects glucose carbons away from growth. The 

concentrations of glucose in the culture medium of S. epidermidis strains 1457 and 1457-

acnA were plotted as a function of growth. The data are from three independent 

experiments, and the line is a linear regression of these data generated using SigmaPlot 

10.0. O.D.600, optical density at 600 nm. 
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other cellular processes. To determine the metabolic pathways into which carbon might 

be redirected, we utilized NMR metabolomics to assess the metabolic status of strains 

1457 and 1457-acnA in the exponential growth phase (2 h) and the postexponential 

growth phase (6 h) (Figure 5.3 and 5.4) (Tables 5.3 and 5.4). As expected, TCA cycle 

inactivation decreased the intracellular concentration of amino acids derived from TCA 

cycle intermediates (Asn, Asp, Gln, and Glu) and increased accumulation of the PIA 

biosynthetic precursor UDP-N-acetylglucosamine. Interestingly, TCA cycle inactivation 

resulted in an exponential-growth phase accumulation of branched-chain amino acids 

relative to the wild-type strain (Figure 5.3) (Table 5.3). In addition to increasing the 

carbon flow into branched-chain amino acid biosynthesis, the presence of a high 

concentration of glucono-1,5-lactone in strain 1457-acnA suggests that inactivation of the 

TCA cycle increased carbon flow into the pentose phosphate pathway. 

NMR metabolomics indicated that TCA cycle inactivation redirected carbon into 

UDP-N-acetylglucosamine biosynthesis (Tables 5.3 and 5.4). If carbon were being 

redirected into UDP-N-acetylglucosamine biosynthesis, then it is likely that transcription 

of genes coding for the UDP-N-acetylglucosamine biosynthetic enzymes would be 

increased. To determine whether TCA cycle inactivation altered the transcription of 

UDP-N-acetylglucosamine biosynthetic genes, we probed total RNA for pgi (glucose-6-

phosphate isomerase), glmS (glucosamine-6-phosphate synthase), glmM 

(phosphoglucosamine mutase), and glmU (UDP-N-acetylglucosamine 

pyrophosphorylase) (Figure 5.5). Consistent with metabolomic data indicating an 

increased intracellular concentration of fructose-6-phosphate, transcription of pgi was  
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Figure 5.3. NMR overlay spectra of S. epidermidis strain 1457 and strain 1457-acnA 

grown for 2 hours. The spectrum for strain 1457 is displayed in red and the spectrum for 

strain 1475-acnA is displayed in blue. Peaks of metabolites of interest are indicated 

within the figure. The data are representative of spectra collected from three independent 

cultures. 
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Figure 5.4. NMR overlay spectra of S. epidermidis strain 1457 and strain 1457-acnA 

grown for 6 hours. The spectrum for strain 1457 is displayed in red and the spectrum for 

strain 1475-acnA is displayed in blue. Peaks of metabolites of interest are indicated 

within the figure. The data are representative of spectra collected from three independent 

cultures. 
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Figure 5.5. Northern blot analysis of UDP-N-acetylglucosamine biosynthetic genes in S. 

epidermidis strains 1457 and 1457-acnA. At the indicated times during the growth cycle, 

total RNA was isolated from strains 1457 and 1457-acnA, and Northern blot analysis was 

performed using the indicated probes. To ensure that equivalent quantities of RNA were 

loaded, 23S and 16S rRNA were visualized by ethidium bromide staining and used as 

loading controls (bottom panel). The results are representative of at least two independent 

experiments. 
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slightly increased in S. epidermidis strain 1457-acnA relative to strain 1457 during the 

exponential growth phase. (Glucose-6-phosphate isomerase catalyzes the second step in 

glycolysis, specifically, the reversible isomerization of glucose-6-phosphate into fructose-

6-phosphate.) Fructose-6-phosphate is the biosynthetic precursor of UDP-N-

acetylglucosamine, whose biosynthesis is encoded within the genes glmS, glmM, and 

glmU. The exponential-growth-phase mRNA levels of glmS, glmM, and glmU were 

increased in strain 1457-acnA relative to strain 1457. Taken together, these data 

demonstrate that TCA cycle inactivation results in transcriptional changes that redirect 

carbon into N-acetylglucosamine biosynthesis. 

In addition to providing biosynthetic intermediates, the TCA cycle generates ATP 

and reducing potential; therefore, a metabolic block in the TCA cycle will alter the 

energy status of the bacterium. As an indicator of the energy status, the intracellular 

concentrations of NAD
+
, NADH, and ATP were determined for S. epidermidis strains 

1457 and 1457-acnA. The intracellular concentration of ATP was lower in the aconitase 

mutant strain relative to the wild-type strain during both the exponential and post 

exponential growth phases (Figure 5.6c). This decreased ATP concentration was likely 

due to decreased oxidative phosphorylation, as the intracellular concentrations of NAD
+
 

and NADH were significantly (P < 0.01) lower in the aconitase mutant strain than in the 

wild-type strain (Figure 5.6a and b). 

 

 

 



164 
 

 

 

Figure 5.6. Aconitase inactivation alters the redox and energy status of S. epidermidis.  

a) At the indicated times during the growth cycle, intracellular concentrations of NAD 

and NADH were determined in S. epidermidis strain 1457.  b) Similarly, the 

concentrations of reduced and oxidized NAD were determined for strain 1457-acnA. c) 

ATP concentrations were determined for strains 1457 and 1457-acnA. The results are 

presented as the means plus standard errors of the means (error bars) of duplicate 

determinations for at least two independent experiments. 
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5.3.3 TCA cycle inactivation increases PIA accumulation  

To determine whether TCA cycle inactivation resulted in increased synthesis of 

PIA, we assessed the relative amounts of cell associated PIA in the acnA mutant, the 

complemented acnA mutant, and the wild-type strains using a PIA immunoblot assay 

(Figure 5.7a and b). In addition, to facilitate comparison of the effect of TCA cycle 

inactivation on PIA accumulation with the inactivation of well-established regulators 

(i.e., IcaR, σ
B
, and SarA), we determined the relative amounts of cell-associated PIA for 

isogenic strains that had icaR, sarA, or sigB genetically inactivated. In agreement with 

previous studies [22, 24, 25, 27, 32], we observed that mutations in the genes of positive 

regulators sigB and sarA decreased PIA accumulation relative to the wild-type strain, 

while inactivation of icaR increased PIA accumulation (Figure 5.7a and b). Surprisingly, 

aconitase inactivation had a much greater effect on PIA synthesis than did inactivation of 

the well-studied repressor IcaR (Figure 5.7a and b). Complementation of the acnA 

mutation restores PIA accumulation to that seen in the parental strain (Figure 5.7a and b). 

In B. subtilis, aconitase inactivation results in the accumulation of citric acid, 

which is partially responsible for blocking sporulation and causing a slight decrease in 

the growth rate [58]. NMR metabolomics revealed an accumulation of citric acid in the 

aconitase mutant strain relative to the wild-type strain (Figure 5.3 and 5.4) (Tables 5.3 

and 5.4), raising the possibility that the increased accumulation of PIA and the decreased 

growth rate of S. epidermidis strain 1457-acnA relative to strain 1457 might be due to 

citric acid-induced stress. To address these possibilities, we inactivated both citrate 

synthase (citZ) and isocitrate dehydrogenase (citC) in S. epidermidis strain 1457 and  
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Figure 5.7.  TCA cycle inactivation increases PIA accumulation. a) Relative amounts of 

cell-associated PIA were determined using a PIA immunoblot assay for S. epidermidis 

strains 1457, 1457-acnA, 1457-sigB, 1457-sarA, 1457-icaR, and 1457-acnA containing 

pMRS2 (1457-acnA + pMRS2). To determine the relative amounts of PIA, we defined 

the amount of PIA produced by strain 1457 at 2 h in one experiment as 100% and 

expressed all other amounts as relative to the amount at this 2-h point. The results are 

presented as the means plus standard errors of the means (error bars) for three 

independent experiments. b) Representative immunoblot used for determining spot 

volumes. Strain 1457-∆ica, which does not synthesize PIA, was used to determine the 

background density. 
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assessed growth and assayed for PIA accumulation (data not shown). Similar to the 

aconitase mutant strain, the citCZ double mutant dramatically increased PIA 

accumulation. Additionally, the citCZ double mutant had a decreased growth rate relative 

to the wild-type strain, but the growth rate was increased relative to strain 1457-acnA 

(data not shown), suggesting that citric acid accumulation was partially responsible for 

the slower growth of the aconitase mutant. Taken together, these data demonstrate that 

TCA cycle activity represses S. epidermidis PIA accumulation and that this effect is 

independent of citric acid. 

 

5.3.4 TCA cycle activity represses icaADBC transcription  

TCA cycle inactivation alters the metabolic status of S. epidermidis (Figure 5.1a 

to d and 4.5 and Tables 5.3 and 5.4), raising the possibility that an icaADBC 

transcriptional regulator could respond to the altered metabolic environment to increase 

icaADBC transcription. To determine whether the increased accumulation of PIA by the 

acnA mutant strain was due to altered icaADBC transcription, we examined icaADBC 

mRNA levels in S. epidermidis strains 1457 and 1457-acnA. In addition, icaADBC 

mRNA levels were determined for strain 1457 with mutations in sigB, sarA, or icaR. 

Consistent with the PIA immunoblot data (Figure 5.7a and b), aconitase inactivation 

resulted in a very large increase in icaADBC transcription, or mRNA stability, relative to 

the isogenic wild-type strain (Figure 5.8a and b), demonstrating that TCA cycle activity 

represses icaADBC transcription. In agreement with previous results, we observed that 

sigB and sarA inactivation repressed icaADBC transcription and that icaR inactivation 
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derepressed icaADBC transcription [22, 24, 59]. Interestingly, the extent of derepression 

in the 1457-acnA mutant strain was dramatically higher than seen in an isogenic icaR 

mutant (Figure 5.8a and b), suggesting TCA cycle activity has a greater role in regulating 

icaADBC transcription than does IcaR. These data demonstrate that, like regulation of the 

lac operon, icaADBC transcription is regulated by a catabolic process, specifically, the 

TCA cycle. 

 

5.3.5 TCA cycle inactivation alters transcription of icaR, sarA, and sigB  

As stated, transcription of icaADBC requires at least two positive effectors, SarA 

and σ
B
, and one negative regulator, IcaR. The dramatic increase in icaADBC mRNA 

levels in the aconitase mutant strain relative to the wild-type strain could be due to an 

increased number of positive effectors or a decreased number of negative effectors. To 

determine whether aconitase inactivation altered transcription of the known regulators of 

icaADBC transcription, we probed total RNA isolated throughout the growth cycle for 

changes in the transcription of sigB, sarA, and icaR (Figure 5.9). 

Surprisingly, aconitase inactivation increased transcription or mRNA stability of 

both positive regulators sigB and sarA and the negative regulator icaR. These data 

suggest that TCA cycle inactivation can alter the mRNA levels of the known regulators  

of PIA synthesis; however,  they fail to establish that these regulators are involved in 

TCA cyclemediated regulation of PIA synthesis. To determine whether IcaR, SarA, or σ
B
 

is regulating PIA synthesis in response to TCA cycle-associated metabolic changes, icaR, 

sarA, and sigB regulatory mutants of strain 1457 were incubated with 400 μM of the 
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Figure 5.8. TCA cycle inactivation derepresses icaADBC transcription. Total RNA was 

isolated from S. epidermidis strains 1457 and 1457-acnA, 1457-sarA, 1457-icaR, and 

1457-sigB, and Northern blot analysis was performed using an icaD-specific probe. To 

make certain equivalent quantities of RNA were loaded, 23S and 16S rRNA were 

visualized by ethidium bromide staining and used as loading controls (bottom blots). To 

permit direct comparison of autoradiographs, total RNA from strains 1457-acnA and 

1457 isolated at 6 h and 4 h postinoculation, respectively, were used to normalize the 

exposure times. (To minimize variation, the same preparations of RNA were used as 

exposure controls in all experiments.) The results are representative of at least two 

independent experiments.                               
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Figure 5.9. Aconitase inactivation increases transcription of icaR, sarA, and sigB. 

Northern blot analysis with icaR, sarA, and sigB with DNA probes generated using 

primers shown in Table 5.2. To ensure that equivalent quantities of RNA were loaded, 

23S and 16S rRNA were visualized by ethidium bromide staining and used as loading 

controls (bottom blot). The results are representative of at least two independent 

experiments. 
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aconitase inhibitor fluorocitric acid, and PIA accumulation was assessed relative to the 

parental strain 1457 (Figure 5.10) The addition of fluorocitric acid to the culture medium 

of S. epidermidis strains 1457-sigB and 1457-icaR significantly (P < 0.01) increased the 

accumulation of PIA relative to the untreated control cultures. In strain 1457-sarA, the 

accumulation of PIA was similar irrespective of the presence of fluorocitric acid in the 

culture medium (P  > 0.05). Overall, these data suggest that TCA cycle-mediated 

derepression of ica transcription and PIA synthesis occur independently of IcaR and σB.  

Furthermore, these data confirm that PIA synthesis requires SarA (10, 74) and at least 

one additional TCA cycle responsive negative regulator. 

 

5.4 Discussion 

5.4.1 Metabolic effect of TCA cycle activity on PIA biosynthesis 

Glycolysis is the catabolic pathway that converts glucose into pyruvate, with the 

catabolic fate of pyruvate being determined by the availability of oxygen. Interestingly, 

the rate of glucose utilization by the wild-type S. epidermidis strain 1457 appears greater 

than the rate by strain 1457-acnA (Figure 5.1c); however, these data fail to account for 

the number of bacteria in the medium. When this is taken into account, glucose utilization 

was greater in strain 1457-acnA than in strain 1457 (Figure 5.2 c), suggesting that carbon 

flow through glycolysis might be greater in a TCA cycle mutant. If the amount of carbon 

flowing through glycolysis were greater in a TCA cycle mutant than in the parental 

strain, then the amount of acetate in the culture medium at the time when glucose was 

depleted should be greater in the mutant. Glucose was depleted in the wild-type and 
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 Figure 5.10. Partial biochemical inhibition of aconitase increases PIA synthesis in sigB 

and icaR mutants. Bacterial cultures were incubated with 400 μM fluorocitric acid and 

grown for 2 h, and the relative amounts of cell-associated PIA were determined by a PIA 

immunoblot assay. The data are presented as the means plus standard errors of the means 

(error bars) from three independent experiments. Values that were significantly different 

(P < 0.05) from the value for the isogenic untreated control (0 μM fluorocitrate) are 

indicated by an asterisk. 
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complemented strains after 5 h of growth; however, in strain 1457-acnA, glucose was 

depleted after 7 h of growth (Figure 5.1c). Upon depletion of glucose, the concentrations 

of acetate in the culture medium were similar (14 to 16 mM) for all strains (Figure 5.1d), 

suggesting that carbon flow through glycolysis was similar in the aconitase mutant and 

the wild-type strain. Additionally, because the concentrations of acetate were below 24 

mM (if all glucose is processed through the glycolytic pathway, then a 2:1 stoichiometry 

of acetate to glucose should be maintained), the data confirm that carbon are flowing into 

other pathways. Consistent with these data, NMR metabolomics indicated that the 

exponential-growth-phase concentrations of acetic acid in strains 1457 and 1457-acnA 

were similar (Table 5.3). In addition to glycolysis, another major pathway staphylococci 

use for glucose catabolism is the pentose phosphate pathway [60, 61]. The presence of 

glucono-1,5- lactone in the NMR metabolomic data (Table 5.3) suggests that carbon flow 

through the pentose phosphate pathway is increased in the TCA cycle mutant strain 

relative to the wild-type strain. One function of the pentose phosphate pathway is to 

provide the five-carbon intermediate for purine biosynthesis; hence, the increased carbon 

flow through the pentose phosphate pathway is likely linked to the decreased intracellular 

concentration of ATP in strain 1457-acnA relative to strain 1457 (Figure 5.5). (De novo 

biosynthesis of ATP requires 5-phosphoribosyl-1-pyrophosphate. An important function 

of the pentose phosphate pathway is to provide biosynthetic intermediates for purine 

biosynthesis, namely, ribose-5-phosphate that is converted into 5-phosphoribosyl-1-

pyrophosphate.) 
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NMR metabolomic data revealed an increased intracellular concentration of 

fructose-6-phosphate in the TCA cycle mutant relative to the wild-type strain (Table 5.3). 

Fructose-6-phosphate can undergo a transamination reaction to generate glucosamine-6-

phosphate, a reaction catalyzed by glucosamine-6-phosphate synthase (glmS; EC 

2.6.1.16). Phosphoglucosamine mutase (glmM; EC 5.4.2.10) catalyzes the reversible 

isomerization glucosamine-6-phosphate to glucosamine-1-phosphate. Glucosamine-1-

phophaste is the substrate for the bifunctional enzyme UDP-N-acetylglucosamine 

pyrophosphorylase (glmU; EC 2.7.7.23 and EC 2.3.1.157) that catalyzes the acetylation 

and UTP-dependent activation of glucosamine-1-phosphate to generate UDP-N-

acetylglucosamine. NMR metabolomics confirmed that S. epidermidis strain 1457-acnA 

has a greater intracellular concentration of UDP-N-acetylglucosamine than strain 1457 

does. In addition, transcription of glmS, glmM, and glmU is increased more during the 

exponential growth phase in the TCA cycle mutant than in the wildtype strain (Figure 

5.5). In total, these data demonstrate that TCA cycle inactivation increased the 

availability of the PIA monomer, UDP-activated N-acetylglucosamine and that this was 

partially due to transcriptional derepression of N-acetylglucosamine biosynthetic genes. 

In addition to PIA synthesis, UDP-N-acetylglucosamine is critical for biosynthesis 

of the cell wall components teichoic acid and peptidoglycan. Inactivation of aconitase in 

S. epidermidis decreased the growth rate (Figure 5.1b) and the number of bacteria 

produced per unit of glucose (Figure 5.2), suggesting that UDP-N-acetylglucosamine was 

redirected from cell wall biosynthesis to PIA synthesis (Figure 5.7a). Thus, the decreased 

growth rate of the aconitase mutant strain was likely due to a combination of increased 
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competition for substrate (i.e., UDP-N-acetylglucosamine) by PIA biosynthetic enzymes 

and an accumulation of citric acid. 

 

5.4.2 Regulatory effect of TCA cycle activity on PIA biosynthesis 

Two common mechanisms by which bacteria control carbon flow are feedback 

inhibition of enzyme activity and regulation of enzyme synthesis. Undoubtedly, some of 

the metabolic changes arising from TCA cycle inactivation are the result of feedback 

inhibition of enzyme activity; however, by definition, the derepression of icaADBC 

transcription (Figure 5.8a and b) must be at the regulatory level. Although the prospect 

that TCA cycle enzymes directly regulate icaADBC transcription is a possibility, it is 

more likely that regulation is being mediated by regulatory proteins responding to 

changes in the metabolic status of the bacteria. Metabolic regulation was one of the first 

bacterial regulatory modalities identified, resulting in thousands of studies addressing all 

aspects of regulation. This long history of research into metabolic regulation has 

identified a large number of regulatory proteins capable of responding to changes in the 

intracellular concentrations of molecules associated with TCA cycle activity, such as 

NADH (e.g., Rex [62], NmrA [63], and CcpA [64]), citric acid (CcpC [65, 66]), 

glutamate (GadX and GadW [67]), branched-chain amino acids (CodY [68]), and ATP 

(KinA [69]). These observations lead us to hypothesize that a regulatory protein or 

proteins respond to TCA cycle-associated metabolites and regulate icaADBC 

transcription and PIA synthesis. 
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TCA cycle inactivation increased the transcription or mRNA stability of the 

known regulators of icaADBC transcription, specifically, sigB, sarA, and icaR (Figure 

5.9). These data raise the possibility that TCA cycle-induced alterations in the metabolic 

       o                  g      “      ”    σ
B
, SarA, or IcaR. Incubation of S. 

epidermidis strain 1457-sigB with a low concentration of the TCA cycle inhibitor 

fluorocitric acid restored PIA synthesis to wild-type levels (Figure 5.10). This 

fluorocitrate- induced derepression of PIA synthesis in the sigB mutant strain is similar to 

that observed in an S. epidermidis rsbU mutant strain (RsbU is an activator of σ
B
) treated 

with a PIA synthesis-stimulating concentration of ethanol [26]. In that study, the authors 

found that ethanol could restore cell associated PIA accumulation in an rsbU mutant 

strain to a level equivalent to that of the nonstimulated wild-type strain. Because ethanol 

is an inhibitor of TCA cycle activity [70, 71], we hypothesize that the PIA synthesis-

stimulating properties of ethanol may be due to its TCA cycle inhibitory properties. 

Inactivation of sarA in S. epidermidis dramatically decreases icaADBC 

transcription [25] and PIA accumulation [24, 25] and results in a biofilm-negative 

phenotype [32]. Because SarA is thought to be essential for PIA synthesis [25], the more 

likely outcome of incubating S. epidermidis strain 1457-sarA with fluorocitric acid would 

be equivalent PIA accumulation between the wild-type and sarA mutant strains. As 

expected, the amount of PIA produced by strain 1457-sarA was similar irrespective of the 

presence of fluorocitric acid (Fig. 8). These data are consistent with SarA being essential 

for PIA synthesis and/or being required for responding to TCA cycle-associated signals. 
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TCA cycle inactivation increased transcription or mRNA stability of icaR relative 

to the wild-type strain (Figure 5.9). IcaR is a transcriptional repressor of icaADBC that 

was originally hypothesized to be involved in environmental regulation of PIA synthesis 

[22]. For these reasons, IcaR appeared to be a possible candidate for responding to TCA 

cycle-induced metabolic changes. If IcaR were responding to TCA cycle-associated 

metabolic changes, then in an icaR mutant background, the synthesis of PIA should be 

unaffected by the presence of fluorocitric acid. Growth of strain 1457-icaR in the 

presence of a low concentration of fluorocitric acid significantly increased the 

accumulation of PIA (Figure 5.10), demonstrating that a second repressor is involved in 

regulating PIA synthesis. It is likely that this second repressor is responding to TCA 

cycle-associated metabolic signals. 

NMR metabolomics (Table 5.3) indicated that the intracellular concentrations of 

branched-chain amino acids were greater in the aconitase mutant strain than in the wild-

type strain. In gram-positive bacteria, the intracellular concentrations of branched-chain 

amino acids control the expression of numerous genes, a mechanism requiring the CodY 

regulatory protein [68, 72, 73]. The affinity of CodY for its operator site is enhanced in 

response to high intracellular concentrations of GTP and branched-chain amino acids [68, 

74]. The more likely explanations for our data are that CodY is an activator of icaADBC 

transcription, CodY-mediated repression is not functioning in S. epidermidis during the 

exponential growth phase, or a positive effector, potentially SarA, can overcome CodY 

mediated repression. We recently demonstrated that CodY is a repressor of PIA synthesis 

in the closely related species S. aureus [48]; thus, it seems unlikely that CodY is an 
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activator of icaADBC transcription in S. epidermidis. Investigations are under way to 

determine the function of CodY in regulating S. epidermidis PIA synthesis. 

In gram-positive bacteria, carbon catabolite repression is primarily mediated by 

CcpA [75]. Recently, CcpA was shown to activate transcription of icaADBC and increase 

the accumulation of PIA in S. aureus [76]. In B. subtilis, CcpA regulatory activity is 

controlled by interactions with phosphorylated HPr or Crh and fructose-1,6-bisphosphate 

or glucose-6-phosphate [77]. NMR analysis indicated that TCA cycle inactivation 

increased the intracellular concentration of fructose-6-phosphate (Table 5.3). Fructose-6-

phosphate is the biosynthetic precursor of UDP-N-acetylglucosamine. In addition to its 

importance in PIA biosynthesis, fructose-6-phosphate can be reversibly isomerized to 

glucose-6-phosphate by glucose-6-phosphate isomerase, resulting in CcpA activation. 

Taken together, these data lead us to hypothesize that TCA cycle inactivation increases 

CcpA-mediated activation of icaADBC. 

 

5.5 Conclusion  

TCA cycle activity is repressed during the exponential growth phase; however, a 

basal level of activity is present. As evidenced by the data in this study, disruption of this 

basal activity can have pronounced metabolic consequences. TCA cycle activity is 

regulated by the availability of nutrients, oxygen, and iron [60, 78-81] and by certain 

stress-inducing stimuli, such as heat, ethanol, and antibiotics [70, 82, 83]; thus, numerous 

external conditions can interfere with the basal TCA cycle activity and produce metabolic 

changes. The linkage of TCA cycle activity and exopolysaccharide synthesis and the 
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susceptibility of the TCA cycle to environmental inactivation lead us to speculate that 

one mechanism by which staphylococci perceive external environmental change is 

through alterations in TCA cycle activity. Thus, we hypothesize that the TCA cycle acts 

as a novel signal transduction pathway to translate external stimuli/conditions into 

intracellular signals that can stimulate or repress the activity of regulatory proteins like 

CodY and CcpA. 
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CHAPTER 6 

USING NMR METABOLOMICS TO INVESTIGATE TRICARBOXYLIC 

ACID CYCLE-DEPENDENT SIGNAL TRANSDUCTION IN 

STAPHYLOCOCCUS EPIDERMIDIS
§
 

 

6.1 Introduction 

Staphylococcus epidermidis is a skin-resident, opportunistic pathogen that is the 

leading cause of hospital-associated infections [1]. Although the type and severity of 

diseases produced by this bacterium varies, its most common infectious manifestation is 

associated with implanted biomaterials. The dramatic environmental changes that occur 

during the transition from being skin-resident to residing on implanted biomaterials 

necessitates the need for changes in the expression of genes coding for enzymes required 

for growth in the new environment. This environmental adaptation often includes 

activating transcription of virulence genes; hence, most virulence genes are regulated by 

environmental and nutritional signals [2]. Accordingly, a major area of interest in 

microbiology is determining how bacteria “sense” and respond to environmental signals. 

Given the tremendous diversity of microbial life, it is not surprising that the mechanisms 

bacteria employ are equally diverse. These mechanisms include two-component 

regulatory systems, alternative σ factors, mechanosensors, small RNAs, riboswitches, and 

                                                           
§
 Chapter 6 was adapted from Sadykov, M., et. al., Using NMR Metabolomics to Investigate Tricarboxylic 

Acid Cycle-Dependent Signal Transduction in Staphylococcus epidermidis, Journal of Biological 

Chemistry (2010), 285, 36616-36624. Reprinted with permission, copyright 2010 American Society for 

Biochemistry and Molecular Biology. 
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many others. Although remarkable advances have been made in identifying the response 

regulators, our knowledge of signaling mechanisms has lagged behind, the exception 

being cell-density signaling. 

The tricarboxylic acid (TCA) cycle has been implicated as regulating or affecting 

staphylococcal virulence and/or virulence determinant biosynthesis [3-9]. The TCA cycle 

has three primary functions: (i) to provide biosynthetic intermediates, (ii) to generate 

reducing potential, and (iii) to directly produce a small amount of ATP. The availability 

of biosynthetic intermediates affects the availability of amino acids and nucleic acids. 

Increasing the reducing potential alters the bacterial redox balance, necessitating 

oxidation reactions via the electron transfer chain. The small amount of ATP produced 

directly by the TCA cycle is amplified many times when the ATP generated by oxidative 

phosphorylation is considered. In short, the TCA cycle has a central function in 

maintaining the bacterial metabolic status. Importantly, the activity of TCA cycle 

enzymes is affected by the availability of nutrients and a variety of stress inducing stimuli 

[9-12]; thus, the availability of biosynthetic intermediates, the redox status, and the 

energy status can be altered by nutritional and environmental stimuli. These observations 

led us to propose a fourth function for the TCA cycle, the transduction of external signals 

into intracellular metabolic signals that can be “sensed” by metabolite-responsive 

regulatory proteins [2]. Fundamental to this hypothesis are the predictions that disparate 

environmental stimuli will cause common metabolic changes and that these metabolic 

changes will precede regulatory changes. 
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Two of the more extensively studied environmental stimuli that influence S. 

epidermidis virulence determinant biosynthesis are iron limitation [13, 14] and ethanol 

stress [15, 16]. The effect of iron limitation on bacterial growth is primarily through 

preventing the activity of enzymes that require iron as a cofactor and altering 

transcription of iron-regulated genes [2]. As S. epidermidis has many iron-requiring 

enzymes (e.g. aconitase, serine dehydratase, peptide deformylase, iron-containing alcohol 

dehydrogenase, nitrate reductase, etc.), it is reasonable to expect that the metabolic 

effects of iron-limited growth are diverse and not restricted to the TCA cycle. Ethanol 

denatures proteins in the cytoplasmic membrane, causing changes in membrane 

permeability, which can lead to the loss of membrane integrity [17]. With the exception 

of the succinate dehydrogenase complex, most TCA cycle enzymes are not membrane-

associated; hence, it is reasonable to predict that the deleterious effects of ethanol stress 

are largely independent of the TCA cycle. Taken together, these observations suggest that 

disparate environmental conditions will cause divergent metabolomic changes. In 

contrast to this suggestion, our central hypothesis predicts that different stresses will 

cause common metabolomic changes that are dependent on the TCA cycle. To test our 

central hypothesis, we chose to induce environmental stress by growing bacteria in an 

iron-limited medium or in a medium containing ethanol and assessing the metabolic 

changes using NMR metabolomics. 
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6.2 Experimental Procedures  

6.2.1 Bacterial Strains, Media, and Growth Conditions 

S. epidermidis wild-type strain 1457 [18] and the isogenic aconitase mutant strain 

1457-acnA::tetM (tetM cassette inserted into position 856 of the 2,702-bp acnA gene) and 

σ
B
 mutant strain 1457-sigB::dhfr [7, 19] have been described. Strains 1457-codY, 1457-

ccpA, 1457-acnA-codY, and 1457-acnA-ccpA were constructed using the gene splicing by 

overlap extension (gene SOEing) technique [20] to replace the gene of interest with an 

antibiotic resistance marker (i.e. ermB or tetM). Primers were designed to amplify ~1-kb 

regions upstream and downstream of the gene of interest based on the genome sequence 

of S. epidermidis strain RP62A. Gene knockouts were confirmed by PCR and Southern 

blot hybridization. In addition, strains containing mutations in the single S. epidermidis 

aconitase gene were assayed to ensure that no aconitase activity was detected (data not 

shown). All strains were grown in tryptic soy broth without dextrose (TSB;4 BD 

Biosciences) supplemented with 0.25% glucose (Sigma) or 0.25% 
13

C6-glucose 

(Cambridge Isotope Laboratories). Deferrated TSB (DTSB) was prepared by adding 50 g 

of Chelex 100 (Sigma) to ~1 liter of TSB and stirring at 4 °C for 20 h. After 20 h, the 

Chelex resin was removed, 1mM MgSO4 was added, the volume was adjusted to 1 liter, 

and the medium was filter-sterilized. To induce ethanol stress and minimize growth 

defects, ethanol or deuterated ethanol (Isotec) was added to the medium at a final 

concentration of 4% (v/v). All cultures were inoculated 1:200 from overnight cultures 

(normalized for growth) into glucose supplemented TSB, incubated at 37 °C, and aerated 

at 225 rpm with a flask-to-medium ratio of 7:1. Bacterial growth was assessed by 
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measuring the optical density at 600 nm (A600). Antibiotics, when used, were purchased 

from Fisher Scientific or Sigma and used at the following concentrations: 

chloramphenicol (8 μg/mL), trimethoprim (10 μg/mL), and erythromycin (8 μg/mL). 

 

 

6.2.2 Aconitase Activity Assay 

Cell-free lysates of S. epidermidis were prepared as follows. Aliquots (3 mL) 

were harvested by centrifugation (1 min at 20,800 x g) at the indicated times, suspended 

in 1.5 mL of lysis buffer containing 90 mM Tris (pH 8.0) and 100 μM fluorocitrate. The 

samples were lysed in 2-mL screw cap tubes containing lysing matrix B using a FastPrep 

instrument (MP Biomedicals). The lysate was centrifuged for 5 min at 20,800 x g at 4 °C. 

Aconitase activity in the resulting cell-free lysate was assayed by the method described 

by Kennedy et al. [21]. One unit of aconitase activity is defined as the amount of enzyme 

necessary to give a ∆A240 min
-1

 of 0.0033 [22]. Protein concentrations were determined 

by the Lowry method [23]. 

 

6.2.3 Northern Blot Analysis 

Northern blot analysis of transcripts was performed as described [7]. 

Oligonucleotide primers used in making DNA probes were designed using the S. 

epidermidis RP62A genome sequence. Probes for Northern blotting were generated by 

PCR amplification of unique internal regions of RNAIII and glnA (femC) genes using the 

following primers: femC,  orward    -
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GATGTTTGATGGTTCATCTATTGAAGGTTTCG-     em   reverse    -

GCAGTATCAGTCAATTGTAAATCACCTTCAG-             orward    -

                            -  ; and RNAIII, reverse,   -

                              -  . DNA probes were labeled using the 

North2South random prime labeling kit (Pierce). Electrophoresis, transfer of the RNA to 

the Nytran SPC nylon membrane (Whatman), and hybridization were done using the 

NorthernMax kit (Ambion). Detection was performed using the chemiluminescent 

nucleic acid detection module (Pierce). 

 

6.2.4 PIA Immunoblot Assay 

PIA accumulation was determined as described [24]. 

 

6.2.5 NMR Sample Preparation 

NMR samples for one-dimensional 
1
H spectra were prepared from 10 

independent, 25mL S. epidermidis cultures. Two-dimensional 
1
H-

13
C HSQC [25, 26] and 

two-dimensional 
1
H-

1
H TOCSY [27] spectra were prepared from three independent 

50mL cultures. The TSB medium used in the two-dimensional 
1
H-

13
C HSQC analysis 

contained 0.25% 
13

C6-glucose (Cambridge Isotope Laboratories). For two-dimensional 

1
H-

13
C HSQC and two-dimensional 

1
H-

1
H TOCSY involving ethanol stress, deuterated 

ethanol (Isotec) was used to minimize the contribution of exogenous ethanol to the NMR 

spectra. For one-dimensional 
1
H NMR experiments, 2.74 A600 units were harvested at 

each time point, and for the two-dimensional 
1
H-

13
C HSQC and two-dimensional 

1
H-

1
H 
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TOCSY experiments, 5.48 A600 units were collected. Bacteria were harvested by 

centrifugation (4,000 rpm for 5 min), suspended in 50 mM phosphate buffer in 100% 

D2O at pH 7.2 (uncorrected), and lysed using lysing matrix B tubes and a FastPrep 

instrument. The lysates were centrifuged to remove cell debris and glass beads and then 

frozen in liquid nitrogen. All samples were kept at -80 °C until ready for analysis. At the 

time of use, a 600 μL aliquot of the cell-free lysate was transferred to each NMR tube. 

 

6.2.6 NMR Analysis 

The NMR spectra were collected on a Bruker 500 MHz Avance spectrometer 

equipped with a triple resonance, z axis gradient cryoprobe. A BACS-120 sample changer 

with Bruker Icon software was used to automate the NMR data collection. The one-

dimensional 
1
H NMR spectra collection and principal component analysis (PCA) were 

performed as described with minor modifications [28-30]. Briefly, each multidimensional 

NMR spectrum (chemical shifts and peak intensities) was converted to a single point in a 

multidimensional Cartesian space. Conceptually, each axis corresponds to a specific 

chemical shift, where the peak intensity is the value along the axis. PCA identifies a 

principal component vector (P1) corresponding to the largest variation in the data set 

within this multidimensional space. The second vector (P2) is orthogonal to the first and 

represents the next largest variation in the data set. Each successive vector describes a 

diminishing amount of the variability of the data set, where most of the variability is 

described by the first two principal components. The PC1 and PC2 scores (unitless 

values) are effectively the individual fit of each NMR spectrum to P1 and P2. The PC1 
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and PC2 scores are usually presented in a two-dimensional plot, where similar NMR 

spectra cluster together. 

Solvent presaturation used excitation sculpting to efficiently remove the solvent 

and maintain a flat baseline, eliminating any need for baseline collection that may induce 

artifacts in the two-dimensional scores plot [31]. Each NMR spectrum was center-

averaged for PCA to minimize any experimental variations between cultures [32]. 

Two-dimensional 
1
H-

13
C HSQC spectra were collected and processed as 

described previously [7]. Two-dimensional 
1
H-

1
H TOCSY spectra were collected with 

WATERGATE solvent presaturation [33] and a relaxation delay of 2 s. A total of 1,024 

data points with a sweep width of 5,000 Hz and 256 data points with a sweep width of 

5,001.324 Hz were collected in the direct and indirect 
1
H dimensions, respectively. A 

total of 16 dummy scans and 8 acquisition scans were used to obtain each of the two-

dimensional 
1
H-

1
H TOCSY NMR spectra. The two-dimensional 

1
H-

1
H TOCSY NMR 

spectra were processed similar to the two-dimensional 
1
H-

13
C HSQC spectra, and both 

spectra were analyzed using NMRView (One Moon Scientific [34]) and Sparky [35] to 

identify chemical shifts and assign peak intensities. 

The observed NMR peaks in the two-dimensional 
1
H-

13
C HSQC and 

1
H-

1
H 

TOCSY spectra were assigned to specific metabolites using 
1
H and 

13
C chemical shift 

tolerances of 0.05 and 0.50 ppm, respectively, and the Madison Metabolomics 

Consortium Database (MMCD) [36], the BioMagResBank [37], and the Human 

Metabolome Database [38]. The presence of metabolites and metabolic pathways were 
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verified with the Kyoto Encyclopedia of Genes and Genomes (KEGG) [39] and the 

MetaCyc [40] databases. 

Peak intensities were normalized for each two-dimensional NMR spectrum by 

dividing by the average peak intensity. The triplicate data sets were then used to calculate 

average intensities for each peak observed in the two-dimensional spectra for strain 1457, 

1457-acnA, ethanol stress, and iron limitation. A percentage of error was calculated for 

each peak by dividing the standard deviation by the average peak intensity. The average 

peak intensities were then used to calculate a percentage of difference relative to the 

wild-type bacteria in TSB medium. Peaks with calculated percentage of differences 

greater than five times the average percentage of error were considered to have either 

decreased or increased concentrations relative to the wild-type strain 1457. Peaks with 

less than a 5-fold deviation were considered similar. Secondary peaks assigned to the 

same metabolite were required to have the same relative change in intensity to be 

classified as a metabolite with an increase or decrease in concentration. 

 

6.2.7 Metabolomic Dendrogram 

The relative clustering patterns in the PCA two-dimensional scores plots were 

quantitatively analyzed using a tree diagram and bootstrapping technique [41]. The PC1 

and PC2 scores for each set of 10 duplicate NMR spectra representing a specific 

metabolic state (iron limitation, ethanol treatment, etc.) were used to calculate an average 

PC score and standard deviation. Any PC scores outside 2 standard deviations were 

removed, and a new average was calculated. The average PC scores represent the center 
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of a cluster of NMR spectra (metabolic state) in the two-dimensional scores plot. The 

process is repeated for each set of 10 duplicate NMR spectra. Distances between the 

average PC positions for each metabolic state are then calculated using the standard 

equation for a Euclidean distance to create a distance matrix. 

To assess the significance of the similarity (overlap) or difference (separation) 

observed between pairs of clusters in the two dimensional scores plot, standard 

bootstrapping methods were also applied [42, 43]. Briefly, the average PC scores were 

recalculated by randomly selecting points from the data set. Distances were recalculated 

between the clusters using the new average PC scores to create a new distance matrix. 

The process was repeated until 100 different distance matrices were created and 

transferred to version 3.68 of the PHYLIP [44] suite of software programs. PHYLIP 

calculates a tree for each distance matrix and then determines a consensus tree. The 

program calculates a bootstrap value for each node, which is simply the number of times 

the node appears in all 100 trees. Bootstrap values below 50% imply a statistically 

insignificant separation. Conversely, as the bootstrap number increases above 50%, the 

confidence in the tree branch or separation increases. 

 

6.3 Results  

6.3.1 Disparate Environmental Stresses Create a Metabolic Block in the TCA Cycle 

To determine whether ethanol stress and iron limitation alter TCA cycle activity, 

the specific activity of aconitase in S. epidermidis strain 1457 at 2 (exponential growth) 

and 6 h (post-exponential growth) after inoculation was assessed (Figure 6.1). As  
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Figure 6.1. The temporal induction of aconitase-specific activity is inhibited by 

dissimilar stressors. Aconitase activity was assessed during the exponential (2 and 4 h) 

and post-exponential (6 h) growth phases during growth in DTSB or TSB containing 4% 

ethanol. The data are presented as the mean and S.E. of two independent experiments 

each determined in triplicate. 
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 expected, iron-limited growth and ethanol stress prevented the post-exponential growth 

phase increase in the specific activity of the iron-requiring enzyme aconitase, creating a 

metabolic block in the TCA cycle (Figure 6.1). Although ethanol-stressed bacteria are in 

the post-exponential growth phase at 6 h after inoculation, their growth is slower, which 

slows the consumption of glucose, and excess glucose can repress transcription of TCA 

cycle genes. Irrespective of the mechanism by which ethanol repressed aconitase-specific 

activity, the normal post-exponential growth phase increase in TCA cycle activity did not 

occur. These data demonstrate that environmental stresses whose deleterious effects are 

substantially different from one another have a similar effect on TCA cycle function. 

 

6.3.2 Environmental Stimuli Elicit TCA Cycle-dependent Metabolic Changes 

The TCA cycle provides biosynthetic intermediates, ATP, and reducing potential; 

therefore, alteration of TCA cycle activity will alter the metabolic status of a bacterium. 

To determine the metabolic changes associated with iron limitation, ethanol stress, and 

TCA cycle inactivation, NMR metabolomic analysis (28, 29) was used to assess the 

stressed and non-stressed metabolomes of strains 1457 and the TCA cycle inactive strain 

1457-acnA. Specifically, S. epidermidis strains 1457 and 1457-acnA were grown for 2 or 

6 h in TSB, TSB with 4% ethanol, or DTSB. Following acquisition of the NMR spectra, 

the table of integrals was used for PCA (Figure 6.2a). As expected, during the 

exponential growth phase, PCA revealed that the effects of ethanol stress and iron 

limitation on the metabolome were largely independent of the TCA cycle (Figure 6.3). 

This was expected due to the normal repression of TCA cycle activity during nutrient-   
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Figure 6.2 Environmental stressors cause metabolomic perturbations similar to TCA 

cycle inactivation. a) PCA two-dimensional scores plot comparing non-stressed, ethanol-

stressed, or iron-limited cultures of strains 1457, 1457-acnA, and 1457-sigB::dhfr grown 

for 6 h. Symbols and colors are defined in the figure. The ovals are manually drawn to 

identify clusters of related samples and to guide the reader. They are not statistically 

relevant. The relative contribution of each principal component is indicated in the 

parentheses. b) metabolic tree generated using the PCA scores plot data demonstrating 

the relationship between stresses and strains. Bootstrap values are indicated on the 

dendrogram branches. Bootstrap values below 50% imply a statistically insignificant 

separation; conversely, as the bootstrap number increases above 50%, the confidence in 

the tree branch or separation increases. 



200 
 

 

 

 

 

 

 

 

Figure 6.3. PCA 2D scores plot comparing non-stressed, ethanol stressed, or iron-limited 

cultures of strains 1457, 1457-acnA, and 1457-sigB::dhfr grown for 2h. Symbols and 

colors are defined in the figure. 

  



201 
 

 

  

Strain 1457
a
 

(DTSB) 

Iron-limitation 

Strain 1457
a
 

(4% Ethanol) 

Ethanol stress 

Strain 1457-acnA
a
 

(TSB) 

TCA cycle inactivation 
Metabolites whose concentration is increased relative to strain 1457 grown in TSB medium. 

  Acetaldehyde 

Acetyl-phosphate Acetyl-phosphate Acetyl-phosphate 

  Citrate 

  Glyceraldehyde 
Metabolites whose concentration is decreased relative to strain 1457 grown in TSB medium. 

  Acetyl-glutamate
b
 

  Asparagine 

  Glutamate 

 Lactate Lactate 

Glutamine Glutamine Glutamine 

Succinate Succinate Succinate 

Table 6.1. Metabolites that have increased or decreased concentrations relative to the 

wild-type strain 1457 at 2 h after inoculation. 

a 
The intracellular concentration was considered to be increased or decreased when the 

percentage of difference in the NMR peak intensities was 5-fold greater than the 

percentage of error observed in the peak intensities between triplicate NMR spectra. 

 
b
 Due to peak overlap, we are unable to determine whether the metabolite is 

acetylglutamine or acetyl-glutamate; however, we note that acetyl-glutamine is 

uncommon in prokaryotes. 
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Strain 1457
a
 

(DTSB) 

Iron-limitation 

Strain 1457
a
 

(4% Ethanol) 

Ethanol stress 

Strain 1457-acnA
a
 

(TSB) 

TCA cycle inactivation 
Metabolites whose concentration is increased relative to strain 1457 grown in TSB medium 

Acetaldehyde Acetaldehyde Acetaldehyde 

Acetate Acetate Acetate 

Acetylalanine   

N-Acetyl-glucosamine N-Acetyl-glucosamine  

 
Aceytl-glucosamine 6-

phosphate 
 

N-Acetyl-mannosamine N-Acetyl-mannosamine N-Acetyl-mannosamine 

N-Acetyl-neuraminate N-Acetyl-neuraminate N-Acetyl-neuraminate 

Acetyl-phosphate Acetyl-phosphate Acetyl-phosphate 

  Arginine 

  Citrate 

Ethanol   

Glucosamine Glucosaminec Glucosamine 

  Galactose-1-phosphate 

GDP GDP  

Glucose Glucose Glucose 

Glucose-1-phosphate   

Glucose-6-phosphate Glucose-6-phosphate Glucose-6-phosphate 

Glyceraldehyde Glyceraldehyde Glyceraldehyde 

Lactate Lactate Lactate 

 Myo-inositol  

  Proline 

Ribose
c
 Ribose Ribose 

 UDP-N-acetyl-glucosamine  
Metabolites whose concentration is decreased relative to strain 1457 grown in TSB medium 

α-ketoglutarate α-ketoglutarate α-ketoglutarate 

γ-aminobutryate γ-aminobutyrate γ-aminobutyrate 

Acetyl-glutamate
b
 Acetyl-glutamate

b
 Acetyl-glutamate

b
 

  Acetyl-ornithine 

  Alanine 

Arginine   

Asparagine Asparagine Asparagine 

  Aspartate 

B-alanine B-alanine B-alanine 

Citrulline Citrulline Citrulline 

 Ethanol Ethanol 

Fructose-6-phosphate Fructose-6-phosphate Fructose-6-phosphate 

Glutamate Glutamate Glutamate 

Table 6.2. Metabolites that have increased or decreased concentrations relative to the 

wild-type strain 1457 at 6 h after inoculation. 
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Glutamine Glutamine Glutamine 

Isocitrate Isocitrate Isocitrate 

Methionine Methionine Methionine 

NAD+ NAD+  

Ornithine Ornithine Ornithine 

O-succinyl-L-homoserine O-succinyl-L-homoserine O-succinyl-L-homoserine 

Proline Proline  

S-Adenosyl-L-methionine S-Adenosyl-L-methionine 
S-Adenosyl-L-

methionine 

Sedheptulose   

Selenomethionine Selenomethionine Selenomethionine 

UDP-N-acetyl-

glucosamine 
  

a
 The intracellular concentration was considered to be increased or decreased when the 

percentage of difference in the NMR peak intensities was 5-fold greater than the 

percentage of error observed in the peak intensities between triplicate NMR spectra. 

 
b
 Due to peak overlap, we are unable to determine whether the metabolite is 

acetylglutamine or acetyl-glutamate; however, we note that acetyl-glutamine is 

uncommon in prokaryotes. 

 
c 
The percentage of difference in the NMR peak intensities of these metabolites fell just 

below the 5-fold cutoff in the percentage of error observed in the peak intensities 

between the triplicate NMR spectra. 

Table 6.2. Continued 
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rich growth (Figure 6.1) [8, 45]. Despite the TCA cycle being repressed during the 

exponential growth phase, the different stresses induced common metabolomic changes 

(Table 6.1). In contrast to the exponential growth phase, PCA of post-exponential growth 

phase metabolomes revealed that ethanol stress and iron limitation induced metabolomic 

changes very similar to TCA cycle inactivation (Figure 6.2a and Table 6.2). In addition, 

these data highlight the relative insensitivity of the metabolome of strain 1457-acnA to 

ethanol stress and iron-limited growth, confirming that the major effect of these stressors 

is dependent upon the TCA cycle. That being said, the more diffuse clustering of ethanol 

stressed metabolomes of both the wild-type and the aconitase mutant strains suggest that 

ethanol stress had TCA cycle-independent metabolomic effects (Figure 6.2a). The TCA 

cycle-independent effects are likely due to the denaturation of membrane proteins not 

related to electron transport or the TCA cycle.  Taken together, these data demonstrate 

that diverse environmental stimuli elicit common metabolic changes that require the TCA 

cycle. 

The common metabolomic response to environmental stimuli can be more easily 

observed by a recently developed method to visualize PCA data [41]. By calculating an 

average position for each data set, such that each PC value (PC1, PC2, etc.) is treated as 

an axis in a Cartesian coordinate system, a distance matrix can be generated. 

Correspondingly, methods developed for representing genetic distances in phylogenetic 

trees can be used to create a metabolomic dendrogram [44] (Figure 6.2b). Using this 

approach, it becomes clear that stress-induced metabolomics responses are very similar to 

the metabolome of the aconitase-deficient strain 1457-acnA. As with the two-dimensional 
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scores plot (Figure 6.2a), the higher bootstrap values in the dendrogram for ethanol-

stressed cultures also indicate that ethanol has TCA cycle-independent effects on the 

metabolome. 

S. epidermidis grown in TSB under aerobic conditions have two distinct 

metabolic states: the nutrient-rich exponential phase and the nutrient-limited post-

exponential phase. The transition from nutrient-rich conditions to nutrient-limited growth 

coincides with the transition from generating ATP by substrate-level phosphorylation to 

using oxidative phosphorylation. The reduced dinucleotides that drive oxidative 

phosphorylation are primarily derived from the TCA cycle; thus, inhibiting TCA cycle 

activity (Figure 6.1) hinders the transition to oxidative phosphorylation and the post-

exponential growth phase [8, 45]. Iron-limited growth of strain 1457 or aconitase 

inactivation did not significantly alter the growth rate, although aconitase inactivation did 

increase the lag phase (data not shown). Both aconitase inactivation and iron-limited 

growth caused an early entry into the stationary phase; as such, the growth yield was 

decreased. As stated, the addition of 4% ethanol decreased the growth rate; therefore, it 

slowed the consumption of glucose. Based on these observations, it was reasonable to 

hypothesize that post-exponential growth phase (6 h)-stressed metabolomes will be more 

similar to an unstressed exponential growth phase (2 h) metabolome than to the 

unstressed metabolome of post-exponential growth phase of cultures. As expected, PCAs 

of unstressed strain 1457 cultures, grown for 2 or 6 h, form separate subsets in a three-

dimensional scores plot (Figure 6.4). Consistent with our hypothesis, PCAs of post-

exponential growth phase-stressed and acnA mutant cultures were more closely  
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Figure 6.4. PCA three-dimensional scores plot comparing non-stressed, ethanol-stressed, 

or iron-limited cultures of strains 1457 grown for 6 h with that of strain 1457 grown for 

2h. Symbols and colors are defined in the figure. The ovals are manually drawn to 

identify clusters of related samples and to guide the reader. They are not statistically 

relevant. The relative contribution of each principal component is indicated within the 

parentheses. 
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associated with the unstressed exponential growth phase metabolome of strain 1457 than 

with the strain 1457 post-exponential growth phase metabolome (Figure 6.4). These data 

suggest that any stress that interferes with TCA cycle function results in a metabolome 

similar to an unstressed exponential phase culture. 

 

6.3.3 Metabolomic Changes Are Largely Independent of the σ
B
-mediated General Stress 

Response 

In staphylococci, σ
B
 controls the general stress response and as such is activated 

during stress conditions, growth phase transitions, and morphological changes [46, 47]. 

As stated previously, the regulation of many virulence determinants is affected by  

environmental stresses; therefore, the stress-dependent activation of σ
B
 has been an 

important area of research into the environmental regulation of staphylococcal virulence 

determinants [48-50]. Interestingly, σ
B
 does not directly respond to most environmental 

signals, suggesting another path to transduce stress signals that is independent of σ
B
. To 

test this possibility, an S. epidermidis  sigB mutant strain (1457-sigB::dhfr) [19] was 

grown for 2 or 6 h in TSB, TSB with 4% ethanol, or DTSB and the metabolomes were 

analyzed by NMR spectroscopy. The PCA scores plot demonstrates that the majority of 

metabolomics changes associated with iron limitation and ethanol stress occur largely 

independent of σ
B
 (Figure 6.2a). Additionally, the metabolomic dendrogram confirms 

that the stressor-induced metabolic changes observed in strain 1457-sigB::dhfr are most 

closely associated with those in the TCA cycle mutant strain 1457-acnA (Figure 6.2b). 

Taken together, these data demonstrate that environmental stresses can alter the 
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staphylococcal metabolome by a largely σ
B
-independent mechanism that requires the 

TCA cycle. 

 

6.3.4 Metabolomic Changes Precede Genetic Changes 

Metabolomic data demonstrate that ethanol stress, iron limitation, and TCA cycle 

inactivation decrease the intracellular concentration of Gln relative to the wild-type strain 

grown in TSB medium (Tables 6.1 and 6.2). The two more likely explanations for the 

decreased intracellular concentration of Gln are: (i) the stressors alter enzymatic activity, 

causing a decrease in the concentration of Gln; or (ii) the stressors decrease transcription 

of genes involved in the biosynthesis of Gln, resulting in a decreased concentration of 

Gln. If the first possibility is correct, then stressors will cause an increase in the 

transcription of Gln biosynthetic genes as bacteria attempt to compensate for the 

decreased availability of Gln. If the second possibility is correct, then stressors will cause 

a decrease in the transcription of Gln biosynthetic genes. To determine which of these 

two possibilities was correct, we performed Northern blot analysis on glutamine 

synthetase (femC; also known as glnA) (Figure 6.5). The data suggest that the first 

possibility is the more correct one; specifically, bacteria are responding to metabolomics 

changes by increasing transcription of genes necessary to counterbalance those changes. 

Interestingly, in untreated wild-type cultures, the post-exponential growth phase 

concentration of Glu and Gln increased between two and five times that of the 

exponential growth phase concentration (data not shown), and this increase correlated 

with a post-exponential growth phase decrease in glnA mRNA levels (Figure 6.5).  
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Figure 6.5. Northern blot analysis of RNAIII and glnA mRNA levels in the exponential 

(2 h) and post-exponential (6 h) phases of growth. To ensure that equivalent quantities of 

RNA were loaded in the gel, 23 S and 16 S rRNA were visualized by ethidium bromide 

staining and used as loading controls (bottom panel). The results are representative of at 

least two independent experiments. 
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Similarly, Gln and Glu were not detected in the NMR spectra of the aconitase mutant 

strain, and this correlated with a high level of glnA mRNA in both the exponential and 

the post-exponential growth phases. 

The correlation between Gln and Glu concentrations and glnA mRNA levels is 

consistent with a GlnR-dependent regulation of glnA transcription [2]. This correlation 

was maintained for Gln/Glu-sufficient or -insufficient conditions; however, the 

intermediate concentrations of Gln and Glu found during ethanol stress and iron-limited 

growth (data not shown) produce mixed glnA mRNA levels (Figure 6.5). These data 

suggest that for the concentrations of Gln and Glu to affect glnA transcription, the stress-

induced concentration change must be sufficiently large. 

 

6.3.5 CcpA Responds to TCA Cycle-associated Metabolomic Changes 

Ethanol stress, iron limitation, and TCA cycle inactivation increased the post-

exponential growth phase concentration of glucose-6-phosphate (Table 6.2). Glycolytic 

intermediates such as glucose-6-phosphate and fructose-1,6-bisphosphate increase the 

ATP-dependent phosphorylation of the histidine-containing protein (HPr) by enhancing 

the activity of the HPr kinase [51]. The increase in phosphorylated HPr enhances its 

interaction with the catabolite control protein A (CcpA) [52-54]. CcpA primarily 

functions as a repressor; however, it also activates transcription of genes involved in 

fermentation and overflow metabolism [53, 55]. In addition to the concentration of 

glucose-6-phosphate being increased by TCA cycle stress, the concentrations of several 

fermentation products or intermediates (i.e. lactate, acetate, and acetaldehyde) and the 
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small phosphordonor acetyl phosphate (an indicator of overflow metabolism) were also 

increased (Table 6.1), consistent with a change in CcpA-mediated regulation. The 

repressor CodY also contributes to the regulation of overflow metabolism [55]; however, 

CodY responds to the intracellular concentrations of branched chain amino acids [56]. 

TCA cycle stress did not alter the concentrations of branched chain amino acids beyond 

the 5-fold threshold (Table 6.1), suggesting that the increase in overflow metabolism was 

independent of CodY. 

In Staphylococcus aureus, CcpA enhances biofilm formation and PIA 

biosynthesis, whereas CodY represses PIA synthesis [57, 58]. In S. epidermidis, ethanol 

stress, iron limitation, and TCA cycle inactivation enhance biofilm formation and PIA 

synthesis [7, 13, 14, 16, 24, 59]. Based on the metabolomic data and published 

observations, it was reasonable to hypothesize that PIA biosynthesis was regulated in 

response to TCA cycle associated metabolomic changes by a CcpA-dependent and 

CodY-independent mechanism. To test this hypothesis, ccpA and codY deletion mutants 

were constructed in strains 1457 and 1457-acnA, and the amount of cell-associated PIA 

was determined after 6 h of growth (Figure 6.6). Consistent with previous observations 

(7), TCA cycle inactivation (strain 1457-acnA) dramatically increased the accumulation 

of PIA, whereas neither CodY nor CcpA had a dramatic effect on the post-exponential 

growth phase amount of PIA. When the codY mutation was introduced into an aconitase 

mutant background, PIA accumulation resembled the response in strain 1457-acnA, 

suggesting that TCA cycle-associated changes in PIA biosynthesis are independent of 

CodY. In contrast to the codY-acnA double mutant, the ccpA-acnA double mutant failed  
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Figure 6.6. CcpA is required for PIA synthesis during TCA cycle stress. PIA 

immunoblot assay of strain 1457 and isogenic mutants of acnA, codY, ccpA, codY/acnA, 

and ccpA/acnA grown for 6 h inTSB. The results are representative of three independent 

experiments. 
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to produce PIA, strongly suggesting that some TCA cycle-associated metabolomics 

changes (i.e. glucose-6 phosphate) are sensed by CcpA, which in turn activates PIA 

biosynthesis. 

 

6.3.6 TCA Cycle Stress Decreases RNAIII Transcription 

In S. aureus, inactivation of the TCA cycle increases the transcription or stability of the 

riboregulator RNAIII of the accessory gene regulator (Agr) system [8, 9]. Conversely, 

increasing TCA cycle activity decreases the transcription or stability of RNAIII [60]. The 

causal relationship between TCA cycle activity and RNAIII transcript levels in S. aureus 

led us to examine whether disparate environmental conditions would similarly affect 

RNAIII transcription or message stability in S. epidermidis. In contrast to S. aureus, TCA 

cycle inactivation decreased RNAIII transcription or stability during the exponential and 

post-exponential growth phases in S. epidermidis (Figure 6.5). Importantly, ethanol stress 

and iron limitation decreased RNAIII transcription or stability in a similar manner to 

TCA cycle inactivation (Figure 6.5). In total, these data suggest that environmental 

stresses act through the TCA cycle to elicit transcriptional changes to at least two of the 

major staphylococcal virulence regulators (i.e. CcpA and RNAIII). 

 

6.4 Discussion 

In the life cycle of S. epidermidis, the transition from a skin resident, commensal 

state to adhering on implanted biomaterials represents a dramatic environmental change. 

In most pathogenic bacteria, environmental changes are accompanied by changes in the  
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Figure 6.7. Summary of post-exponential growth phase metabolic changes associated 

with TCA cycle stress. Metabolites in green represent an increased concentration relative 

to the wild-type strain. Metabolites in red represent a decreased concentration relative to 

the wild-type strain. Metabolites and pathways in black are inferred from the data, but 

they are inconclusive. Glucose-6-P, glucose-6-phosphate; GlcN-6-P, GlcN-6-phosphate. 
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transcription of virulence genes; thus, environmental signals (e.g. nutrient replete, iron-

limiting, or oxygen-limiting growth conditions) commonly regulate virulence gene 

transcription [2, 61-65].  Although S. epidermidis has relatively few virulence 

determinants, one of its primary pathogenic effectors is the exopolysaccharide PIA [66-

69].  Previously, we demonstrated that PIA biosynthesis is regulated by TCA cycle 

activity; specifically, repression of TCA cycle activity dramatically enhances 

transcription of PIA biosynthetic genes (icaADBC) and PIA accumulation [7, 24, 60]. In 

this study, we demonstrate that dissimilar environmental signals decrease TCA cycle 

activity (Figure 6.1), resulting in common metabolomics changes (Figure 6.2 and Tables 

6.1 and 6.2; summarized in Figure 6.7) that alter the activity of metabolite-responsive 

regulators such as CcpA (Figure 6.6). These data lead us to propose that it is the TCA 

cycle itsel  that is “sensing” the environmental transition and transducing this in ormation 

into metabolic signals that activate or repress the activity of metabolite responsive 

regulators to modulate the expression of PIA and other virulence determinants. 

As S. epidermidis transitions from residing on the skin to being implanted in a 

host, it enters into an environment where free iron is present at a concentration of 10
-18

 M 

[62], a condition antagonistic to TCA cycle activity (Figure 6.1) [9, 11]. Similarly, this 

transition dramatically decreases the availability of free oxygen (the partial pressure of 

atmospheric O2 is 159mmHg at sea level, and this decreases to an estimated 3–5 mm Hg  

at the host cell level), a condition that is also antagonistic to TCA cycle activity. Taken 

together, this type of environmental transition is accompanied by conditions that are 

inhibitory to TCA cycle activity and stimulatory to PIA biosynthesis [7, 24]. In other 
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words, the transition from an external environment to an internal environment represses 

TCA cycle activity and primes S. epidermidis for PIA synthesis, which enhances biofilm 

formation and increases the likelihood of establishing a biomaterial-associated infection. 

The significance of the data presented here is 5-fold. First, it establishes a 

mechanism by which well-established regulators (e.g. CcpA) participate in responding to 

environmental stresses. Second, these data suggest how disparate environmental stimuli 

can cause common phenotypic changes (e.g. iron limitation and ethanol stress both 

increase PIA synthesis and biofilm formation [13, 70]). Third, these data suggest that a 

difficulty in attributing the effects of an environmental stimulus, such as iron limitation, 

to a specific regulator, such as the ferric uptake regulator (Fur) [71], is that many of the 

effects are due to metabolite-responsive regulators reacting to changes in the 

metabolome. Fourth, S. epidermidis has a second general stress response system that is 

largely independent of the σ
B
-controlled general stress response (Figure 6.2). 

Finally, in bacteria, three metabolic pathways (Embden-Meyerhof-Parnas, pentose 

phosphate, and TCA cycle) produce the 13 biosynthetic intermediates needed to 

synthesize all macromolecules in a bacterial cell. Therefore, by linking virulence factor 

synthesis to the TCA cycle, bacteria are connecting virulence to the availability of 

biosynthetic intermediates needed to synthesize virulence determinants. 

 

6.5 Conclusion  

TCA cycle stress alters the intracellular concentrations of metabolites (Tables 6.1 

and 5.2) relative to those of the wild-type strain 1457. If the change in the concentration 
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of a metabolite is sufficiently large, then the activity of a regulator that can respond to 

one of those metabolites may be altered. Therefore, these data present an exceptional 

opportunity to identify regulators that coordinate metabolism and virulence in S. 

epidermidis. Although a considerable amount of research needs to be done to determine 

which metabolite-responsive regulators are involved in responding to TCA cycle-

associated metabolomics changes, the work presented here sheds light on how 

environmental signals alter the bacterial metabolic status to regulate adaptation to a new 

environment. 
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CHAPTER 7 

NMR ANALYSIS OF A STRESS RESPONSE METABOLIC SIGNALING 

NETWORK
§
 

 

7.1 Introduction 

In eukaryotic organisms, signaling pathways are essential to the life-cycle of cells 

and are ubiquitous processes that regulate a variety of functions in response to both 

extracellular and intracellular environmental changes [1-4]. These signaling systems are 

spatially and temporarily organized, where the kinetic properties of these cycles depends 

on the cellular distribution of the activator and deactivator proteins. Protein activity is 

usually controlled through a variety of post-translational modifications (phosphorylation, 

acetylation, ubiquitylation, etc.), through protein complex formation, through 

transcription regulation, or any combination of these factors. A prototypical signaling 

cascade includes a membrane-bound receptor that binds a signal molecule which in turn 

activates a kinase proximal to the membrane. This activated kinase phosphorylates a 

second kinase, where the cascade continues and perpetuates the signal away from the 

membrane to the final target. Typically, the impact of a signaling network is the up- and 

down-regulation of a set of genes or proteins associated with a specific response 

(apoptosis, metabolic process, proliferation, stress responses, etc.). Correspondingly, the 

cell commits a significant amount of energy and resources to undergo such a phenotype 

change.  

                                                           
§
 Chapter 7 was adapted from Zhang, B., et. al., NMR Analysis of a Stress Response Metabolic Signaling 

Network, Journal of Proteome Research (2011), 10 (8), 3743-3754.  Reprinted with permission, copyright 

2011 American Chemical Society. 
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In prokaryotes, signal transduction frequently involves two-component regulatory 

systems that consist of a membrane-bound sensor histidine protein kinase and a response 

regulator [5]. These two-component signal transduction systems are activated when an 

external signaling molecule, peptide, metal ion, etc., is bound by the sensor kinase, which 

undergoes autophosphorylation at a conserved histidine. Transfer of the phosphoryl 

group to the receiver domain of a response regulator in the cytoplasm of a bacterium 

completes the activation and the response regulator is then competent to activate 

transcription of a limited set of genes. In staphylococci, there are numerous two-

component regulatory systems [6], with the best studied being the agr quorum sensing 

system [7]. In addition to two-component systems, bacteria use sigma factors as a means 

to detect environmental conditions that induce heat stress, envelope stress, nitrogen 

stress, etc [8].  In staphylococci, 
B
 is activated during stress conditions, growth phase 

transitions, and morphological changes [9, 10]. Most recently, the hypothesis that central 

metabolism can act as a signal transduction pathway to transduce external environmental 

signals (e.g., iron-limitation) into intracellular metabolic signals by altering the activity of 

the enzymes of central metabolism has been proposed [11]. 

The tricarboxylic acid (TCA) cycle is part of central metabolism and provides 

reducing potential, energy and biosynthetic intermediates necessary for other 

macromolecular synthesis [12]. Several studies have also shown that the TCA cycle is 

involved in regulating or affecting virulence or virulent determinant biosynthesis [13-15]. 

One specific example is the production of the exopolysaccharide, polysaccharide 

intercellular adhesion (PIA) [16], which is associated with virulence and biofilm 

formation [17-20]. PIA synthesis is regulated by nutrient availability and external stress 
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conditions [21, 22]. Importantly, TCA cycle activity has also been shown to be affected 

by changes in environmental stress factors [16, 22, 23]. A number of environmental stress 

factors have also been shown to influence biofilm formation: ethanol [24], oleic acid 

[25], glucose [26], UDP-N-acetylglucosamine [27], sub-inhibitory concentrations of 

some antibiotics [28], anaerobic conditions [29], Fe limitation [30-32], high osmolarity 

[33], and high temperature [33]. The diversity of these external stimuli suggests a 

versatile regulation system. Recently, we used NMR metabolomics to demonstrate that 

Fe limitation and ethanol decrease TCA activity [23]. These stressors cause a common 

metabolic change that can be sensed by metabolite responsive-regulators (e.g., catabolite 

control protein A; CcpA) that affect PIA production. We proposed that the TCA cycle 

plays a central role in a metabolic signaling network that senses disparate environmental 

stress conditions and regulates PIA biosynthesis, virulence determinants and biofilm 

formation (Figure 7.1). Herein, we report a further NMR analysis of the impact on the 

metabolome of S. epidermidis resulting from a diverse range of environmental stress 

factors associated with biofilm formation that include 5% NaCl [33], 2% glucose [26], 

0.06 µg/mL tetracycline [28], and  400 nM autoinducer-2 (AI-2, furanosyl borate diester) 

[34], in addition to our prior study [23] with 4% ethanol [24], and Fe limitation [30-32].   

Our differential NMR metabolomics methodology has been applied to the study 

of in vivo drug activity in Aspergillus nidulans [35] and Mycobacterium smegmatis [36]  
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Figure 7.1.  An illustration of the interrelationship of metabolic pathways associated with 

the TCA cycle and biofilm formation.  
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and is ideally suited to a systems biology analysis of the impact of environmental stress 

factors on the S. epidermidis metabolome and the corresponding role of the TCA cycle 

[23]. In the latter study, NMR was used to detect metabolic perturbations by following 

changes to S. epidermidis (strain 1457) cultured under environmental stress conditions 

that induce biofilm formation. These results were then compared to the metabolome of a 

S. epidermidis mutant (aconitase mutant strain SE1457-acnA::tetM) with an inactivated 

TCA cycle. If S. epidermidis senses environmental stress conditions by affecting TCA 

cycle activity as previously observed, then the impact on the metabolome caused by the 

aconitase mutant and the disparate external signals were expected to be equivalent. The 

overlapping clusters in principal component analysis (PCA) and orthogonal partial least 

squares discriminant analysis (OPLS-DA) two dimensional (2D) scores plot and the 

branch similarity on a metabolic tree diagram [37] indicate that external biofilm signals 

inactivate the TCA cycle. Furthermore, a detailed analysis of the relative concentration 

changes of 55 different metabolites from 2D 
1
H-

1
H TOCSY and 2D 

1
H-

13
C HSQC 

spectra implies the TCA cycle plays a central role in a metabolic signaling network [35, 

36, 38, 39]. A metabolic network created with Cytoscape [40] illustrates this metabolic 

signaling network and the interrelationship of the TCA cycle activity with alanine 

metabolism, amino sugar metabolism, glycolysis/gluconeogenesis and the urea cycle. 

 The investigation of the NMR Analysis of a stress response metabolic signaling 

method was a group effort where Steven Halouska and Bo Zhang demonstrated 

significant and equal contribution to the project.  Steven Halouska was involved in 

developing protocols to identify and quantify carbon-13 labeled metabolites derived from 

a 13C-Glucose.  Bo Zhang performed a comparative analysis of metabolite fingerprints to 
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show the relationships of the impact between different environmental stress factors.  Both 

Steven Halouska and Bo Zhang contributed equally in the analysis of the different stress 

responses. 

 

7.2 Methods and Materials 

7.2.1 Bacterial growth and NMR sample preparation. 

 Staphylococcus epidermidis wild-type strain 1457 and the isogenic aconitase 

mutant strain 1457-acnA::tetM were grown in tryptic soy broth (TSB; BD Biosciences) 

without dextrose and supplemented with 0.25% glucose (Sigma Chemical) or 0.25% 

13
C6-glucose (Cambridge Isotope Laboratories).  

All bacterial cultures were inoculated to an optical density at 600 nm (O.D.600) of 

0.06 and were grown for 2 hours or 6 hours at 37
o
C with 225 rpm aeration in TSB or TSB 

supplemented with a stressor know to induce biofilm formation. Either 10 or 12 replicate 

bacterial cultures were grown for each bacterial strain or environmental condition for the 

one-dimensional (1D) 
1
H NMR experiments. 3 replicate bacterial cultures were grown for 

each bacterial strain or environmental condition for both the two-dimensional (2D) 
1
H-

13
C HSQC and the 2D 

1
H-

1
H TOCSY experiments.  

In general, four different bacterial cultures were harvested per experiment: (1) 

wild-type S. epidermidis in TSB media, (2) wild-type S. epidermidis in TSB media with 

an environmental stress condition, (3) aconitase mutant of S. epidermidis in TSB, and (4) 

aconitase mutant of S. epidermidis in TSB with an environmental stress condition. The 

environmental stress conditions used in this study were 5% NaCl [33], 2% glucose [26], 

0.06 µg/mL tetracycline [28], 400 nM autoinducer-2 (AI-2, furanosyl borate diester) [34] 
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in TSB media. To facilitate integrating this current work with our recent study [23] 

control cultures containing 4% ethanol [24] in TSB or TSB medium depleted of iron 

(DTSB, defferated TSB) [30-32] were included for comparison. DTSB was prepared as 

described [23]. AI-2, furanosyl borate diester, was synthesized as previously described 

[41, 42].     

For the 1D 
1
H NMR experiments, 2.74 O.D.600 units were harvested for analysis 

and for both the 2D 
1
H-

13
C HSQC and 2D 

1
H-

1
H TOCSY experiments 5.48 O.D.600 units 

were harvested. Following harvest, the culture medium was removed and the bacteria 

were suspended in 1 mL portions of 50 mM phosphate buffer (PBS) in 99.8% D2O 

(Isotec) at pH 7.2 (uncorrected). The bacteria were lysed using a FAST-Prep instrument 

(MP Biomedicals) for 40 seconds, centrifuged for 5 min to remove the bacterial debris 

and glass beads, and frozen in liquid nitrogen.  

 

7.2.2 NMR Data Collection. 

The NMR spectra were collected on a Bruker 500 MHz Avance spectrometer 

equipped with a triple-resonance, Z-axis gradient cryoprobe. A BACS-120 sample 

changer with Bruker Icon software was used to automate the NMR data collection. 1D 
1
H 

NMR spectra were collected using excitation sculpting [43] to efficiently remove the 

solvent and maintain a flat baseline, eliminating any need for baseline collection that may 

induce artifacts in the PCA or OPLS-DA 2D or three-dimensional (3D) scores plot. 1D 

1
H NMR spectra were collected at 298K with a spectrum width of 5482.5 Hz and 32K 

data points. A total of 16 dummy scans and 64 scans were used to obtain each spectrum.  
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2D 
1
H-

13
C HSQC spectra were collected with solvent pre-saturation and 

relaxation delay of 0.5 seconds [44, 45]. A total of 1024 data points with a spectrum 

width of 4734.85 Hz, and 64 data points with a spectrum width of 13834.26 Hz were 

collected in the 
1
H and 

13
C dimensions, respectively. A total of 8 dummy scans and 128 

scans were used to obtain each of the 2D 
1
H-

13
C HSQC NMR spectra. 2D 

1
H-

1
H TOCSY 

spectra were collected with WATERGATE solvent pre-saturation, and a relaxation delay 

of 2 seconds [46, 47]. A total of 1024 data points with a spectrum width of 5000 Hz, and 

256 data points with a spectrum width of 5001.324 Hz were collected in the direct and 

indirect 
1
H dimensions, respectively. A total of 16 dummy scans and 8 acquisition scans 

were used to obtain each of the 2D 
1
H-

1
H TOCSY NMR spectra. 

 

7.2.3 NMR Data Analysis. 

 1D 
1
H NMR spectra were processed in the ACD/1D NMR manager version 12.0 

(Advanced Chemistry Development, Inc). The residual H2O NMR resonance was 

removed. Intelligent bucketing was used to integrate each region with a bin size of 0.025 

ppm. Each NMR spectrum was center averaged to minimize any experimental variations 

between bacterial cultures as follows: 

  
    ̅

 
          (6.1) 

where  ̅ is the average signal intensity, σ is the standard deviation in the signal intensity, 

and Xi is the signal intensity within a bin. Noise regions of the spectra were omitted from 

the PCA analysis by setting the corresponding bins to zero [47]. The table of integrals 

was imported into SIMCA11.0+ (UMETRICS) for PCA and OPLS-DA analysis using 
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the program’s standard parameters. The identification of the control group and treated 

group or groups for the OPLS-DA analysis was based on the PCA clustering pattern. 

2D NMR Spectra were analyzed using NMRView [48] and Sparky (T. D. 

Goddard and D. G. Kneller, SPARKY 3, University of California, San Francisco) to 

identify chemical shifts and assign peak intensities. Peak intensities were normalized for 

each 2D NMR spectrum by dividing by the average peak intensity for a given spectrum. 

Each peak for each metabolite from each specific triplicate data set was averaged and the 

intensity for each peak was further normalized across all data sets (i.e., wild-type, 

aconitase mutant, and each bacterial growth condition). Specifically, the maximal 

intensity for each peak across all data sets was set to 100. The peak intensities in the 

remaining data sets were all scaled relative to this peak intensity. Then, a normalized 

intensity for the metabolite within each data set was calculated by averaging the 

normalized intensity for each of the metabolite’s assigned peaks. In this manner, the 

relative percent difference in metabolite intensity (concentration) can be reported 

between different bacterial strains or bacterial growth conditions. As an illustrative 

example, consider a metabolite with thee assigned peaks (A, B, C) in a 2D 
1
H-

13
C HSQC 

spectrum. The 2D 
1
H-

13
C HSQC spectrum is collected in triplicate under three different 

bacterial growth conditions for a total of 9 spectra and 27 peak intensities, 3 peaks in 

each spectrum for the metabolite. Peak A has average intensities of 0.05, 0.10, and 0.20 in 

the three different bacterial growth conditions, respectively. The values would be 

normalized to 25, 50, and 100. Similarly, peaks B and C are normalized against their 

maximal peak intensities for values of 20, 60, 100 and 30, 65, 100, respectively. Thus, the 

average relative concentrations of the metabolite under the three bacterial growth 
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conditions would be the average of the three normalized peaks, yielding values of 25, 

58.3 and 100, respectively. The bacterial growth condition with the highest relative 

metabolite concentration (100) would have a corresponding concentration increase of 75 

and 41.7 relative to the two other bacterial growth conditions.  

The observed NMR peaks in the 2D 
1
H-

13
C HSQC and 2D 

1
H-

1
H TOCSY spectra 

were assigned to specific metabolites using 
1
H and 

13
C chemical shift tolerances of 0.05 

ppm and 0.50 ppm, respectively. Metabominer [49], Madison Metabolomics Consortium 

Database (MMCD) [50], the BioMagResBank [51], and Human Metabolome Database 

[52] were used to identify metabolites. The presence of metabolites and metabolic 

pathways were verified with the KEGG [53] and Metacyc [54] databases. A metabolic 

network map was generated using Cytoscape using a force directed layout [40].  

Metabolites identified with a percent concentration difference of ≥ ±10% relative to wild-

type S. epidermidis were manually color-coded to indicate either an up- or down-

regulated concentration change. 

 

7.3 Results and Discussion 

7.3.1 NMR metabolomics and principle component analysis.  

The elimination of experimental factors that may inadvertently influence PCA or 

OPLS-DA metabolomic data interpretation is essential. The observed variability in the 

PCA or OPLS-DA data should result from differences in the biological samples as 

opposed to changes in sample preparation, sample handling, data acquisitions, data 

processing or any number of experimental parameters (temperature, pH, time, 

concentration, etc.). In order to obtain accurate and reproducible metabolomic data, the 
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following general protocols were employed: (i) bacterial cultures of wild-type S. 

epidermidis were used as a reference metabolome and were prepared with all sets of 

bacterial cultures, (ii) equivalent bacterial numbers were used, so metabolite 

concentrations were independent of any bacterial growth variability, (iii) all NMR spectra 

were normalized using center averaging [55], so variability in sample concentration was 

minimized, (iv) noise regions [47] and solvents were removed from NMR spectra prior to 

PCA or OPLS-DA, and (v) minimal processing (no baseline correction or apodization 

functions) of the NMR spectra.  

 

7.3.2 Harvesting of S. epidermidis cultures.  

Bacteria grown in vitro undergo four different growth phases: (i) lag, (ii), 

exponential, (iii) stationary, and (iv) death. Throughout a typical growth cycle, the state 

of the bacteria and the environment are constantly changing. Clearly, there is a 

fundamental difference between the exponential phase, when cell density is relatively 

low, cells are rapidly dividing and the required nutrients are abundant; and the stationary 

phase when these characteristics are effectively reversed. Correspondingly, the 

metabolome is expected to reflect these differences. Therefore, exploring a biological 

system by monitoring changes in the metabolome necessitates the appropriate choice of 

the state of the system. In the case of S. epidermidis biofilm formation and the proposed 

role of the TCA cycle in a metabolic signaling network, the proper choice of the state of 

the system requires endogenous TCA cycle activity.    The TCA cycle is minimally active 

during the exponential phase (2 h growth) when nutrients (i.e., glucose or other rapidly 

catabolizable carbohydrates) are sufficient for bacteria to grow quickly [16, 56]. 
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Overflow metabolism results in an incomplete oxidation of glucose, leading to the 

accumulation of acetate, lactate, and other incompletely oxidized metabolites in the 

culture medium (Figure 7.2a). During the transition to the post-exponential growth phase 

(6 hours), the TCA cycle is de-repressed as the carbohydrate(s) are depleted from the 

culture medium. Concomitantly, the incompletely oxidized metabolites that accumulated 

in the medium are catabolized through the TCA cycle resulting in the depletion of 

secondary metabolites from the culture medium. 

The growth phase-dependent activity of the TCA cycle in S. epidermidis is also 

apparent from the PCA 2D scores plot generated from 1D 
1
H NMR spectra of S. 

epidermidis cell lysate (Figure 7.2b). The 2D PCA scores plot indicates that PC1 and PC2 

account for 20.6% and 10.7% of the variations in the NMR spectra, respectively. A 3D  

PCA scores plot (Figure 7.3) did not improve cluster separations. Each 1D 
1
H NMR 

spectrum obtained for each cell lysate is represented as a single point in the PCA 2D 

scores plot, where the 10 replicates form four distinct clusters for the wild-type and 

aconitase mutant strains grown for 2 hours and 6 hours, respectively. As expected and 

consistent with our prior study [23], the metabolomes of the S. epidermidis wild-type and 

aconitase mutant cells from the exponential growth phase (2 hours) were more similar to 

each other than the 6 hour cultures. This is apparent from the close clustering in the 2D 

scores plot for the 2 hour wild-type and aconitase mutant. This is consistent with the 

minimal activity of the TCA cycle at 2 hours and the loss of TCA cycle activity for the  
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Figure 7.2. a) A typical S. epidermidis growth curve superimposed on the cellular production of acetic acid. b) 2D PCA scores plot 

and c) 2D OPLS-DA scores plot comparing 2 h growth of wild-type S. epidermidis 1457 ( ), 2 h growth of aconitase mutant strain 

1457-acnA::tetM ( ), 6 h growth of wild-type S. epidermidis 1457 ( ), and  6 h growth of aconitase mutant strain 1457-acnA::tetM (

). The ellipses correspond to the 95% confidence limits from a normal distribution for each cluster. For the OPLS-DA scores plot, the 6 h 

growth of wild-type S. epidermidis 1457 ( ) was designated the control class and the remainder of the cells were designated as 

treated. The OPLS-DA used 1 predictive component and 3 orthogonal components to yield a R
2
X of 0.788, R

2
Y of 0.992 and Q

2
 of 

0.992.  
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Figure 7.3. Three dimensional versions of the 2D PCA scores presented in Figure 7.2b, Figure 7.5b, and Figure 7.7b, respectively. a) 

3D PCA scores plot comparing S. epidermis 1457 strain (circles) and aconitase mutant (triangles) grown for 2 hours (grey) and 6 

hours (black). The PCA model consists of 3 significant components where the contribution (R
2
) for each successive component is 

20.6%, 10.7%, and 6.8%. The overall cross validation (Q
2
) is 15.9%, 7.58%, and 2.7%, respectively.  b) 3D PCA scores plot 

comparing wild-type S. epidermidis 1457 cells grown 6 h in standard TSB media ( ), with S. epidermidis 1457 cells grown 6 h in 

iron-depleted media (DTSB) ( ), with the addition of 4% ethanol ( ),with the addition of 2% glucose ( ), with the addition of 0.06 

µg/mL tetracycline ( ), with the addition of 5% NaCl ( ), and 6 h growth of aconitase mutant strain 1457-acnA::tetM in standard 

TSB media ( ). The PCA model consists of 5 significant components where the contribution (R
2
) for each successive component is 

12.5%, 7.5%, 6.0%, 3.8%, and 3.3%. The overall cross validation (Q
2
) is 15.9%, 7.58%, and 2.7%, respectively.  c) 3D PCA scores 

plot comparing wild-type S. epidermidis 1457 cells grown 6 h in standard TSB media ( ), 6 h growth of aconitase mutant strain 1457-

acnA::tetM in standard TSB media ( ), aconitase mutant strain 1457-acnA::tetM in iron-depleted media (DTSB) ( ), with the 

addition of 4% ethanol ( ), with the addition of 2% glucose ( ), with the addition of 0.06 µg/mL tetracycline ( ), and with the 

addition of 5% NaCl ( ). The PCA model consists of 5 significant components where the contribution (R
2
) for each successive 

component is 12.3%, 8.1%, 6.7%, 3.8%, and 3.4%. The overall cross validation (Q
2
) is 10.1%, 6.8%, 6.0, 1.6%, and 2.3%, 

respectively. 

  2
3
8
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aconitase mutant. Conversely, there is a large separation in the 2D scores plot along the 

PC1 axis between the 6 hour wild-type and aconitase mutant. In fact, the 6 hour aconitase 

mutant cluster is closer to the 2 hour wild-type cluster. Again, this is consistent with an 

increase in TCA activity at 6 hours and the loss of TCA activity in the aconitase mutant. 

Correspondingly, the separation along PC1 reflects TCA cycle activity. Since the TCA 

cycle is minimally active during the exponential phase, the 2 hour wild-type cluster is 

slightly closer to the 6 hour wild-type cluster along PC1, compared to the aconitase 

mutants.      

Alternatively, the separation along PC2 axis may reflect the variability in 

nutrients available to the cells. Glucose is still present after 2 hours of bacterial growth, 

but is being depleted while acetate is being accumulated. After 6 hours of growth, the 

depletion of acetate is dependent on TCA cycle activity, resulting in the largest separation 

along PC2 between the 6 hour aconitase mutant and the 2 hour wild-type samples. These 

two samples correspond to the largest expected variation in glucose and acetate  

concentrations. From the detailed 2D NMR analysis (please see below), acetate is 

approximately twice as concentrated in the 6 hour wild-type sample compared to the 2 

hour aconitase mutant. The glucose concentration is effectively reversed. Glucose is 

twice as concentrated in the 2 hour aconitase mutant compared to the 6 hour wild type 

sample.   

The PCA results were used to guide a subsequent analysis using OPLS-DA 

(Figure 7.2c). The OPLS-DA yielded a reliable model (R
2
X 0.788, R

2
Y 0.992, Q

2
 0.992). 

The R
2
 and Q

2
 values represent the goodness of fit and predictability of the model, 

respectively. The OPLS-DA scores plot is similar to the PCA scores plot, except for the 
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limited separation between the 2 hour wild-type and aconitase mutant clusters. Again, 

this is consistent with the minimal TCA activity expected for the 2 hour wild-type and 

aconitase mutant. Also, OPLS-DA emphasizes the difference between the control group 

(6 hour wild-type) and the treated classes, while minimizing contributions from within 

group variations. Thus, OPLS-DA generates significantly tighter clusters than PCA. 

More importantly, the S-plot (Figure 7.4) generated from the OPLS-DA provides 

unambiguous identification of the major contributors to the class separation (i.e., 
1
H 

NMR bins and associated metabolites). Specifically, comparing the 6 hour aconitase 

mutant and the 6 hour wild-type samples, which had the largest separation along PC1 in 

the PCA 2D scores plot, identified citrate, isocitrate, and other TCA related metabolites. 

Similarly, comparing the 2 hour aconitase mutant and the 2 hour wild-type samples, 

which had the largest separation along PC2 in the PCA 2D scores plot, identified glucose, 

acetate and other nutrients required for cell growth. These results provide strong support 

for our subjective analysis of the trends in the 2D PCA scores plot and demonstrate that 

not only does PCA and OPLS-DA differentiate between metabolic profiles, but they also 

provide information about specific enzymatic activity and environmental conditions.  

 

7.3.3 Impact of environmental stress conditions on the S. epidermidis metabolome.  

Numerous genes and protein complexes are involved in the transformation of 

planktonic cells to a biofilm [57]. This process requires that S. epidermidis “sense” 

changes in its environment and the availability of nutrients, such as changes in 

temperature, O2 levels, osmorality, ethanol, glucose and iron [29, 31, 33, 58-62]. It is 

reasonable to expect that different external factors would trigger distinct signaling  



241 
 

 

  



242 
 

 

 

 

 

 

Figure 7.4.  a) OPLS-DA S-plots comparing the S. epidermidis 1457 and aconitase 

mutant strain 1457-acnA::tetM where both cell cultures were grown for 6 hours. The two 

cell cultures were shown be separated along the PC1 axis in Figure 7.2a. Each point in 

the S-plot represents a specific bin containing a chemical shift range of 0.025 ppm, where 

the points at the extreme ends of the S-plot are the major contributors to the class 

distinction. Each point was identified to a specific metabolite using the Human 

Metabolomics Database and Madison Metabolomics Database. All the identified 

metabolites are associated with TCA cycle inactivation.  b) OPLS-DA S-plot comparing 

the mutant strain 1457-acnA::tetM grown for 2 hours and 6 hours. The two conditions are 

shown to be separated along the PC2 axis in Figure 7.2a. The metabolites identified are 

associated with variations in the utilization of glucose for cell growth.  c) OPLS-DA 

loading plot comparing S. epidermidis 1457 and aconitase mutant strain 1457-acnA::tetM 

where both cell cultures were grown for 6 hours. Negative values indicate a decrease in 

peak intensity when comparing the wild type to the mutant, while positive values indicate 

an increase in peak intensity. These results are comparable to the bar graphs depicted in 

figure 7.9 from the analysis of 2D NMR data.  d) OPLS-DA loading plot comparing the 

mutant strain 1457-acnA::tetM grown for 2 hours and 6 hours. 
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pathways and mechanisms of biofilm regulation. Correspondingly, different biofilm 

formation pathways would presumably induce dissimilar metabolomic profiles. 

Alternatively, a versatile regulation system responsive to disparate signals would be 

significantly more efficient. A metabolic signaling pathway is one potential mechanism 

of rapidly responding to changing environmental stress conditions. Conceptually, the 

environmental flux of essential nutrients and metabolites would direct the up- or down- 

regulation of specific metabolic pathways in response to concentration changes (Le 

Chatelier’s principle) to initially reestablish equilibrium without affecting protein 

activity. Effectively, a limited or abundant metabolite would direct the metabolic flow 

through a specific pathway causing a cascade affect due to the high interrelationship of 

the metabolome. Eventually, gene and protein regulation processes would respond to the 

perturbed metabolic activity leading to the up- or down- regulation of specific genes and 

proteins.    

We have previously demonstrated that both Fe limitation and 4% ethanol decrease 

TCA cycle activity [23].  These environmental stress factors are known to induce S. 

epidermidis biofilm formation [24, 30-32].  We have also demonstrated that Fe limitation 

and 4% ethanol had a similar impact on the S. epidermidis metabolome and altered the 

activity of CcpA, a metabolite-responsive regulator. An important role for the TCA cycle 

in a staphylococcal biofilm metabolic signaling pathway seems apparent, especially since 

the TCA cycle is a central metabolic pathway that interacts with numerous other 

pathways (Figure 7.1). Thus, we proposed that the TCA cycle senses environmental 

stressors and transduces this signal through the metabolome to activate or repress the 

activity of metabolite-responsive regulators, which, in turn, modulates PIA production, 
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virulence factor synthesis, and biofilm formation [23]. To further support our hypothesis 

that the TCA cycle senses disparate environmental signals to regulate PIA synthesis and 

biofilm formation, we analyzed changes in the S. epidermidis metabolome caused by 

additional environmental stress factors also known to induce an S. epidermidis biofilm 

[26, 28, 34, 63].  

S. epidermidis cultures were treated with 5% NaCl, 2% glucose, 0.06 µg/mL 

tetracycline, and 400 nM of autoinducer-2 (AI-2, furanosyl borate diester). Glucose and 

NaCl were reported to induce biofilm formation by the regulation of the rbf gene [64], 

which has been shown to be  a regulator of icaR [65], a negative regulator of the 

icaADBC operon that is required for PIA synthesis and biofilm formation [66]. 

Subinhibitory concentrations of antibiotics enhance icaADBC gene expression [28, 67] 

by potentially inhibiting TcaR, a weak negative regulator of icaADBC gene expression 

[68]. AI-2 is an intercellular signaling molecule that has a modest effect on 

staphylococcal biofilms [63]. Conversely, if these additional environmental stress factors 

impact the S. epidermidis metabolome in a manner similar to Fe limitation and 4% 

ethanol, which is also correlated with TCA cycle inactivation, then these results would 

further support the hypothesis that the TCA cycle acts as a signal transducer as a part of a 

metabolic signaling network.  

 The PCA 2D scores plot (Figure 7.5a) and the associated metabolic tree (Figure 

7.5c) indicates that S. epidermidis wild-type cultures grown with the addition of the 

environmental stressors 4% ethanol, 0.06 µg/mL tetracycline or iron-limitation exhibited 

essentially identical metabolomes as the aconitase mutant. Both the aconitase mutant and 

wild-type cultures under these stress conditions formed a large cluster distinct from the
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Figure 7.5.  a) 2D PCA scores plot and b) 2D OPLS-DA comparing wild-type S. epidermidis 1457 cells grown 6 h in standard TSB 

media ( ), with S. epidermidis 1457 cells grown 6 h in iron-depleted media (DTSB) ( ), with the addition of 4% ethanol ( ),with the 

addition of 2% glucose ( ), with the addition of 0.06 µg/mL tetracycline ( ), with the addition of 5% NaCl ( ), and 6 h growth of 

aconitase mutant strain 1457-acnA::tetM in standard TSB media ( ). The ellipses correspond to the 95% confidence limits from a normal 

distribution for each cluster. For the OPLS-DA scores plot, the 6 h growth of wild-type S. epidermidis 1457 ( ) was designated the control 

class and the remainder of the cells were designated as treated. The OPLS-DA used 1 predictive component and 4 orthogonal 

components to yield a R
2
X of 0.637, R

2
Y of 0.966 and Q

2
 of 0.941. Metabolomic tree diagram generated from the c) 2D PCA scores 

plot depicted in (a) and (d) 2D OPLS-DA scores plot depicted in (b). The label colors match the symbol colors from the 2D scores 

plot. Each node is labeled with the boot-strap number, where a value above 50 indicates a statistically significant separation.    
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cluster of wild-type cells in standard growth media. These results further support our 

hypothesis that environmental stress factors influence biofilm formation by inactivating 

the TCA cycle and re-directing key metabolites into PIA synthesis. Conversely, growing 

S. epidermidis wild-type cells in the presence of 5% NaCl showed no significant effect on 

the metabolome since the wild-type cells in the presence and absence of 5% NaCl cluster 

together. Similarly, AI-2 did not affect the S. epidermidis metabolome since both the 

wild-type and aconitase mutant cells in the presence and absence of 400 nM AI-2 cluster 

together (Figure 7.6). Interestingly, S. epidermidis cells treated with 2% glucose were 

separated from both the wild-type and aconitase mutant clusters, implying a different 

impact on the metabolome and a unique mechanism of regulating biofilm formation. 

Alternatively, the addition of 2% glucose may be viewed as an intermediary effect, where 

the metabolome of the S. epidermidis cells grown with 2% glucose is moving toward the 

aconitase mutant cells. Effectively, the amount of glucose added to the bacterial culture 

was insufficient to completely inactivate the TCA cycle. It has been previously shown 

that different strains have different glucose uptake rates and different sensitivities to 

glucose-induced biofilm formation [69, 70].  

The PCA results were used to guide a subsequent analysis using OPLS-DA 

(Figure 7.5b) and the corresponding metabolomics tree diagram (Figure 7.5d). The 

OPLS-DA analysis yielded a reliable model (R
2
X 0.637, R

2
Y 0.966, Q

2
 0.941), and 

results identical to PCA. The wild-type cells in the presence and absence of 5% NaCl 

were defined as the controls and, as expected, formed a single cluster in the 2D scores 

plot. S. epidermidis wild-type cultures grown with the addition of the environmental 

stressors 4% ethanol, 0.06 µg/mL tetracycline or iron-limitation again formed a single 
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Figure 7.6. a) 2D PCA scores plot comparing wild-type S. epidermidis strain 1457 and aconitase mutant strain 1457-acnA::tetM with 

and without the addition of 400 nM of AI-2. Cells were grown for 2 h or 6 h in standard TSB media, 2 h growth of wild-type S. 

epidermidis strain 1457 with AI-2 ( ) and without AI-2 ( ); aconitase mutant strain 1457-acnA::tetM with AI-2 ( ) and without AI-

2 ( ); 6 h growth of wild-type S. epidermidis strain 1457 with AI-2 ( ) and without AI-2. ( ); and aconitase mutant strain 1457-

acnA::tetM with AI-2 ( ) and without AI-2 ( ). b) Metabolomic tree diagram generated from the 2D PCA scores plot depicted in (a). 

The label colors match the symbol colors from the 2D PCA scores plot. Each node is labeled with the boot-strap number, where a 

value above 50 indicates a statistically significant separation. c) 2D OPLS-DA scores plot comparing wild-type S. epidermidis strain 

1457 and aconitase mutant strain 1457-acnA::tetM with and without the addition of 400 nM of AI-2. Each pair of cell cultures treated 

with and without AI-2 were defined as a separate class for a total of four separate classes. The model consists of 1 predictive 

component and 3 orthogonal components that yielded an R
2
X of 0.774, R

2
Y of 0.970, and a Q

2
 of 0.954. 

  2
4
8
 

 



249 
 

cluster with the aconitase mutant in the 2D OPLS-DA scores plot. Also similar to the 

PCA results, the S. epidermidis cells grown with 2% glucose formed a unique cluster. 

Thus, the corresponding metabolomics tree diagram identified three distinct clusters with 

bootstrap values of 100. The OPLS-DA results further support our hypothesis that 

environmental stress factors influence biofilm formation by inactivating the TCA cycle 

and re-directing key metabolites into PIA synthesis.   

To verify the observed effect on the S. epidermidis metabolome is due to 

inactivating the TCA cycle as opposed to other potential factors, the S. epidermidis 

aconitase mutant strain was also grown with the addition of  4% ethanol, 0.06 µg/mL 

tetracycline, 2% glucose, 5% NaCl or under iron-limitation conditions. If the impact of 

these stress conditions is primarily through the inactivation of the TCA cycle, then the 

metabolome of the aconitase mutant strain should be unperturbed. Otherwise, if the stress 

conditions induce additional or alternative responses, then changes in the metabolome 

should be observed. The 2D PCA scores plot (Figure 7.7a) and metabolomic tree (Figure 

7.7c) indicate the stress conditions did not affect the metabolome of the aconitase mutant. 

The aconitase mutant with and without the stress conditions forms a large cluster distinct 

from the wild-type cluster. Importantly, this includes the addition of 2% glucose. This 

implies the addition of 2% glucose to wild-type S. epidermidis resulted in an incomplete 

inactivation of the TCA cycle instead of a novel mechanism of biofilm regulation. Again, 

the PCA results were used to guide a subsequent analysis using OPLS-DA (Figure 7.7b) 

and the corresponding metabolomics tree diagram (Figure 7.7d). The OPLS-DA analysis 

yielded an acceptable model (R
2
X 0.488, R

2
Y 0.976, Q

2
 0.961), and results very similar 

to PCA. The lower R
2
X is consistent with the larger spread observed within the two 
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Figure 7.7.  a) 2D PCA scores plot and b) 2D OPLS-DA comparing wild-type S. epidermidis 1457 cells grown 6 h in standard TSB 

media ( ), 6 h growth of aconitase mutant strain 1457-acnA::tetM in standard TSB media ( ), aconitase mutant strain 1457-

acnA::tetM in iron-depleted media (DTSB) ( ), with the addition of 4% ethanol ( ), with the addition of 2% glucose ( ), with the 

addition of 0.06 µg/mL tetracycline ( ), and with the addition of 5% NaCl ( ). The ellipses correspond to the 95% confidence limits 

from a normal distribution for each cluster. The four ellipses correspond to clusters formed by (i) wild-type S. epidermidis 1457 cells, 

(ii) aconitase mutant strain 1457-acnA::tetM in standard TSB media, (iii) aconitase mutant strain 1457-acnA::tetM in DTSB or with 

the addition of 4% ethanol, and (iv), aconitase mutant strain 1457-acnA::tetM with the addition of 2% glucose, 0.06 µg/mL 

tetracycline, or 5% NaCl. For the OPLS-DA scores plot, the 6 h growth of wild-type S. epidermidis 1457 ( ) was designated the control 

class and the remainder of the cells were designated as treated. The OPLS-DA used 1 predictive component and 2 orthogonal 

components to yield a R
2
X of 0.488, R

2
Y of 0.976 and Q

2
 of 0.961. Metabolomic tree diagram generated from the c) 2D PCA scores 

plot depicted in (a) and (d) 2D OPLS-DA scores plot depicted in (b). The label colors match the symbol colors from the 2D scores 

plot. Each node is labeled with the boot-strap number, where a value above 50 indicates a statistically significant separation.
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primary clusters. The wild-type cells were defined as the controls and, as expected, the 

aconitase mutant with and without the stress conditions formed a single large cluster. 

Consistent with the PCA analysis, the single cluster also contained the addition of 2% 

glucose. The OPLS-DA scores plot, along with the metabolomics tree diagram, suggests 

sub-clusters are present within the large aconitase mutant cluster. But, the aconitase 

mutant data is spread throughout this cluster, such that an ellipse that corresponds to the 

95% confidence limit for the aconitase mutant data encompasses the two other apparent 

sub-clusters. This result indicates that within the resolution of the PCA and OPLS-DA 

model, no statistical difference is observed between the metabolomes of the aconitase 

mutant with and without the stress conditions. Critically, the S-plot obtained from the 

comparison between the wild-type cells and the aconitase mutant treated with the stress 

conditions was identical to the S-plot generated from the comparison between the wild-

type cells and the untreated aconitase mutant cells. Again, this supports the conclusion 

that the addition of the stressors did not perturb the metabolome of the aconitase mutant 

cells. 

 

7.3.4 Detailed analysis of changes to the S. epidermidis metabolome caused by 

environmental stress.  

 An overall correlation between the metabolomes of S. epidermidis under stress 

and TCA cycle inactivation provides further support for our hypothesis that 

environmental conditions induce biofilm formation though the regulation of the TCA 

cycle [23]. Specifically, the disparate signals of 2% glucose, 4% ethanol, 0.06 µg/mL 

tetracycline and iron-limitation are all sensed by the TCA cycle. To further support our 
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hypothesis, a detailed analysis of changes to the S. epidermidis metabolome caused by 

these environmental stress factors was necessary. We previously reported an analysis of 

changes in the metabolome of S. epidermidis caused by TCA cycle inactivation that 

resulted in an increase in PIA production [16]. Among other observed changes, amino-

acids derived from TCA cycle intermediates (Asn, Asp, Gln, and Glu) exhibited a 

decrease in concentration. Correspondingly, an increase in concentrations was observed 

for the PIA biosynthetic precursors UDP-N-acetyl-glucosamine and fructose-6-

phosphate. A similar approach using 2D 
1
H-

13
C HSQC and 2D 

1
H-

1
H TOCSY NMR 

spectra was applied to quantitate metabolite changes in the S. epidermidis metabolome 

caused by Fe-limitation and 4% ethanol (Figure 7.8) [23]. 2D NMR spectra improve 

metabolite identification by reducing the complexity and congestion of 1D 
1
H NMR 

spectrum by spreading the information into two-dimensions. Additionally, the 2D 
1
H-

13
C 

HSQC experiment allows for monitoring the flow of carbon-13 through the metabolome 

from a specifically 
13

C-labeled metabolite. Alternatively, the 2D 
1
H-

1
H TOCSY spectrum 

monitors all detectable metabolites with a bias to metabolites with the highest  

concentration. This may include the carbon-13 labeled metabolites observed in the 2D 

1
H-

13
C HSQC spectrum in addition to non-isotope labeled metabolites produced from 

other carbon sources. Therefore, the 2D 
1
H-

13
C HSQC and 2D 

1
H-

1
H TOCSY NMR 

spectra are complementary experiments for metabolomics and allow for a more complete 

analysis of metabolite concentration changes. Specifically, S. epidermidis wild-type cells 

and the aconitase mutant cells were grown with and without stress factors and harvested 

during either the exponential or post-exponential phase with and without the addition of 

13
C-glucose. A total of 12 different bacterial culture conditions were prepared in triplicate
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Figure 7.8.  a) Overlay of 2D 
1
H-

13
C HSQC spectra comparing wild-type S. epidermidis strain 1457 (red) and aconitase mutant strain 

1457-acnA::tetM (black) grown for 6 h in standard TSB media augmented with 0.25% 
13

C-glucose. NMR resonances corresponding to 

specific metabolites are labeled, where citrate is circled. (b) Overlay of 2D 
1
H-

1
H TOCSY spectra comparing wild-type S. epidermidis 

strain 1457 (red) and aconitase mutant strain 1457-acnA::tetM (black) grown for 6 h in standard TSB media. 
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for both the 2D 
1
H-

13
C HSQC and 2D 

1
H-

1
H TOCSY NMR experiments for a minimum 

of 72 bacterial cultures or NMR experiments. To maintain consistency, S. epidermidis 

wild-type cells were used as a reference and prepared with each bacterial culture set.  

Differences in metabolite concentrations between the stresses, the bacterial 

growth phases, the aconitase mutant cells, and the wild-type cells was based strictly on 

detecting changes in peak intensities in the 2D 
1
H-

13
C HSQC and 2D 

1
H-

1
H TOCSY 

NMR experiments. To minimize contributions from experimental variability, three levels 

of normalization were used. First, metabolite concentrations were normalized based on 

the total number of cells grown for each culture. Second, the peak intensities in each 

NMR spectrum were normalized by the spectrum’s average peak intensity. Third, each 

individual peak was normalized by scaling by the largest intensity observed for that peak 

across the set of NMR spectra. The intensity of peaks assigned to each metabolite within 

a spectrum were averaged and then averaged across the triplicate NMR data set. Relative 

changes in peak intensities (metabolite concentrations) were compared to the S. 

epidermidis wild type metabolome and are displayed as bar graphs in Figure 7.9. 

Importantly, the metabolites identified from the 2D NMR experiments were also 

consistent with the metabolites identified as the major contributors to class distinction in 

the 2D OPLS-DA plots (Figures 7.5, 7.7). The OPLS-DA S-plots (Figure 7.10) identifies 

the relative contribution of each bin (
1
H NMR chemical shift) to the clustering in the 

corresponding 2D scores plot. Each NMR bin with a high reliability (p(corr)[1] ~ 1 or -1) 

and a high magnitude (p[1] > 0.1 or < -0.1) was assigned to a metabolite that was also 

found to be present in the Figure 7.9 bar graph.   
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Figure 7.9.  Bar graphs showing the percent change in metabolite concentrations relative to wild-type S. epidermidis strain 1457 

grown in standard TSB media. Metabolite concentration changes were measured after 2 h and 6 h bacterial growths for the aconitase 

mutant strain 1457-acnA::tetM in TSB media (■), aconitase mutant strain 1457-acnA::tetM with iron-depletion (■), aconitase mutant 

strain 1457-acnA::tetM with the addition of 4% ethanol (■), wild-type S. epidermidis strain 1457 with iron-depletion (■), and wild-

type S. epidermidis strain 1457 with the addition of 4% ethanol (■)  Positive values represent increased concentrations while negative 

values represent decreased concentrations with respect to S. epidermidis strain 1457 grown in standard TSB media. The metabolite 

names were abbreviated as follows: ACA (Acetaldehyde), ACE (Acetate), ACP (Acetyl-P), AKG (α-ketoglutarate), ALAAc (Acetyl-

alanine), AMI (4-Aminobutanoate), ARG (Arginine), ASN (Asparagine), ASP (Aspartate), CIR (Citrulline), CIT (Citrate), ETH 

(Ethanol), F6P (Fruc-6P), G1P (Gluc-1P), G6P (Gluc-6P), GAL (Galacturonic-acid), GAL1P (α-D-Gala-1P), GLN (Glutamine), GLR 

(Glucuronate),  GLS (D-glucosamine), GLS6P (Glucosamine-6P), GLSAc (N-Ac-D-glucosamine), GLSAc6P (Acetyl-glucosamine-

6P), GLU (Glutamate), GLUAc (Acetyl-glutamate), GLY (Glyceraldehyde), HIS (Histidine), ICI (Isocitrate), INO (Ino, Ade, Xan), 

LAC (Lactate), ALA (alanine), LEU (Leucine), LYS (Lysine), MANAc (N-acetyl-D-mannosamine), MET (Methionine), MIN (myo 

inositol), MSE (selenomethionine), NEUAc (N-Ac-neuraminate), ORN (Ornithine), ORNAc (Acetyl-ornithine), PEP 

(Phosphoenolpyruvic acid), PRO (Proline), RIB (D-ribose), SAM(S-adenosyl-methionine), SER (Homoserine), SUCSER (O-

Succinyl-L-homoserine), UDPGLR (UDP-glucoronate), UDPGLSAc (UDP-NAc-D-glucosamine), VAL (Valine) 
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Figure 7.10.  a) OPLS-DA S-plots comparing the S.epidermidis 1457 and the aconitase 

mutant 1457-acnA::tetM under the different stress conditions described in Figure 4. b) 

OPLS-DA loading plot showing the contribution of the identified metabolites from the S-

plot. These results are comparable to the bar graphs depicted in figure 7.9 from the 

analysis of 2D NMR data.  
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An inactivated TCA cycle caused concentration changes for 55 metabolites 

involved in the amino sugar pathway, glycolytic pathway, several amino acid pathways, 

and the TCA cycle. The NMR data shows the amount of cellular glucose in the 6 hour 

post-exponential wild-type strain was reduced by 80% compared to the 2 hour 

exponential phase. The amount of cellular acetate was increased by 25%. As expected, 

the inactivation of the TCA cycle in the aconitase mutant resulted in the accumulation of 

a large concentration of acetate. Acetate was the most intense peak in the 6 hour cultures 

for the wild-type and aconitase mutant strains shown in Figure 7.8. There were also 

noticeable differences in the aconitase mutant metabolome. Peaks corresponding to the 

amino acids derived from the TCA cycle intermediates such as Asn, Asp, Gln, and Glu 

were not present. Not surprisingly, a large amount of citrate was also seen, since the 

inactivated aconitase prevents the conversion of citrate to isocitrate. Other metabolites 

associated with the glycolytic pathway were up-regulated. Similarly, some amino sugar 

and aromatic metabolites were up-regulated except for the significant down-regulation of 

UDP-glucuronate.  

As expected from the clustering pattern in the 2D PCA scores plot, the direction 

of carbon flow in cells under stress were similar to the aconitase mutant cells, but 

dramatically different from wild-type cells during post exponential growth. A decrease in 

the concentration of amino acids derived from TCA cycle intermediates such as Asp, 

Asn, Glu, and Gln shows that the TCA cycle is still repressed when the cells are under 

stress. Instead the carbon flow is redirected back into the glycolytic pathway as indicated 

by an increase in concentrations for phosphoenolpyruvate (PEP), acetaldehyde, and 

fructose 6-phosphate. The carbon flow was also directed into the amino sugar pathway 
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with an increase in concentrations for UDP-N-acetylglucosamine, N-acetyl-neuraminate, 

and N-acetyl-D-mannosamine. UDP-N-acetylglucosamine is an important precursor to 

PIA formation. Again, the detailed analysis of changes in the metabolome of S. 

epidermidis provides additional support for the role of TCA cycle activity in a metabolic 

signaling pathway that transduces disparate external stimuli into internal metabolic 

signals that facilitate biofilm formation. Effectively, the observed changes in the 

metabolome caused by disparate external stimuli are consistently suppressing TCA cycle 

activity and inducing PIA synthesis required for biofilms.  

Conversely, the change of the carbon flow in the 2 hour growth is minimal. 

Again, this is consistent with the low TCA activity and the similar clustering in the 2D 

PCA scores plot between the aconitase mutant and wild-type 2 hour growth (Figure 

7.2b). Obviously, stress factors cannot suppress an already inactive TCA cycle. Instead, 

the catabolic conversion of glucose into intermediates throughout the glycolytic pathway 

proceeds as expected with a slight change since pyruvate is also produced. Much of the 

carbon-13 from glucose was still directed to the production of acetate. The NMR data 

indicates cellular acetate concentrations were similar across the 2 hour bacterial cultures, 

but an increased amount of acetyl-phosphate was accumulated under stress conditions. 

This confirms that when an abundant amount of glucose is present, it is processed by 

glycolysis and pyruvate dehydrogenase into acetyl-CoA and converted into acetyl-

phosphate for use in substrate level phosphorylation. The excretion of acetate into the 

culture medium helps pH homeostasis due to the large flux of acetate [71]. Aside from 

the glycolytic pathway, the NMR data indicates that wild-type bacteria tend to utilize 
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glucose more efficiency based on small decreases in amino sugar and aromatic 

metabolites. 

 

7.3.5 Metabolic rearrangements during TCA cycle stress. 

 The metabolome of S. epidermidis is not a series of independent isolated 

metabolic pathways, but instead is a complex inter-connected network. Thus, metabolic 

pathways connected to the TCA cycle are also affected by changes in TCA cycle activity. 

In order to visualize the cascade effect of inactivating the TCA cycle, a metabolic 

network was constructed using Cytoscape [40]. The metabolic network (Figure 7.11) was 

generated by manually associating each metabolite to its corresponding pathway from the 

KEGG [53] database and then using the automated biological network modules 

integrated into Cytoscape [72, 73]. The network connects the 37 metabolites identified by 

NMR whose concentrations are either increased (red) or decreased (green) by an 

inactivated TCA cycle. Only metabolites affected by a minimally active TCA cycle under 

all circumstances (aconitase mutant and stress factors) are highlighted on the network 

map. It is important to note that NMR is not able to identify every metabolite affected by 

perturbing the metabolome. The concentrations or stabilities of some metabolites are 

simply below the NMR detection limit. These intervening and undetected metabolites are 

colored grey in the metabolic network. The network shows the TCA cycle as the central 

pathway where common metabolites connect the urea cycle, alanine metabolism, and 

glycolysis/gluconeogenesis that then leads to amino sugar metabolism and other 

metabolites associated with PIA synthesis. 
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Figure 7.11.   Cytoscape [40] network depicting the metabolite concentration changes 

caused by the inactivation of the TCA cycle. Nodes colored red correspond to metabolites 

with an increase in concentration due to TCA inactivated. Nodes colored green 

correspond to metabolites with a decrease in concentration due to TCA inactivated. 

Nodes colored grey correspond to metabolites that are not observed in the NMR spectra, 

do not have a reference NMR spectrum (or assignment), or did not exhibit a significant 

concentration change. Metabolic pathways are labeled on the network. The metabolite 

names were abbreviated as described in the legend to Figure 7.9. 
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7.4 Conclusion 

The systematic analysis of the S. epidermidis metabolome using NMR provides 

further evidence for a metabolic signaling network for biofilm formation that involves the 

TCA cycle. Inactivation of the TCA cycle enables metabolic precursors to flow into 

pathways associated with PIA synthesis, an important component of S. epidermidis 

biofilm formation. Disparate environmental stress conditions known to induce biofilm 

formation were shown to perturb the metabolome of S. epidermidis in a manner similar to 

an aconitase mutant. Effectively, iron-depletion, and the addition of ethanol, tetracycline, 

and glucose resulted in the inactivation of the TCA cycle. Furthermore, a detailed 

analysis of the specific changes to the S. epidermidis metabolome indicates that 

essentially the same set of metabolites affected by TCA cycle inactivation are also 

affected by environmental stress conditions. A network map identified the TCA cycle as 

playing a central role in the proposed signaling pathway that also involves the urea cycle, 

alanine metabolism, glycolysis/gluconeogenesis, amino sugar metabolism and other 

metabolites associated with PIA synthesis. Interestingly, the addition of NaCl or 

autoinducer-2 did not induce any effect on the S. epidermidis metabolome or effect TCA 

cycle activity. Suggesting these factors must act through a distinct process from the other 

environmental factors.  
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CHAPTER 8 

CCPA REGULATES ARGININE BIOSYNTHESIS IN STAPHYLOCOCCUS 

AUREUS THROUGH REPRESSION OF PROLINE CATABOLISM
§
 

 

8.1 Introduction 

Staphylococcus aureus is a common cause of skin and soft tissue infections; 

however more serious complications such as bacteremia, osteomyelitis, endocarditis, and 

necrotizing pneumonia can occur [1]. During infection, S. aureus must catabolize diverse 

carbon sources including carbohydrates, proteins and lipids; therefore, multiple global 

regulators, including CcpA and CodY, subsequently regulate carbon flow [2-4]. Thus, 

regulation of carbon flow through central metabolism and other metabolic pathways has a 

direct link to expression and synthesis of virulence factors [5-7]. 

It has been known for over 70 years that S. aureus exhibits multiple amino acid 

auxotrophies, including arginine, valine, proline, cysteine, and leucine [8, 9]. 

Complicating the picture, in 1937, Gladstone demonstrated that multiple strains of S. 

aureus could be trained to grow in a chemically-defined broth lacking all twenty amino 

acids through extended incubation [9]. These data suggested that S. aureus was indeed a 

prototroph but repressed biosynthesis of certain amino acids. In support of this, 

bioinformatics analyses of the S. aureus genome revealed an apparently complete 

repertoire of biosynthetic operons needed to synthesize all 20 amino acids [10]. Included 

                                                           
§
 Chapter 8 was adapted from Nuxoll, A., et. al., CcpA Regulates Arginine Biosynthesis in Staphylococcus 

aureus through Repression of Proline Catabolism. PLoS Pathogens (2012), 8 (11). Reprinted with 

permission, copyright 2012 PLOS.  
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in these are the genes encoding the arginine biosynthetic pathway argJBCDFGH where 

arginine is synthesized from glutamate [11]. This pathway is highly conserved among a 

wide array of bacteria, including Escherichia coli, Salmonella enterica serotype 

Typhimurium, Proteus mirabilis, Bacillus subtilis, and Streptomyces clavuligerus among 

others [12-14]. 

Although B. subtilis synthesizes proline from glutamate [11, 15, 16], S. aureus 

preferentially utilizes arginine rather than glutamate as a precursor for proline 

biosynthesis via arginase (RocF), ornithine aminotransferase (RocD), and P5C reductase 

(ProC) [17]. Furthermore, Li and colleagues recently reported that proline biosynthesis is 

regulated through CcpA-mediated carbon catabolite repression at both rocF and rocD 

[18]. Carbon catabolite repression allows bacteria to preferentially utilize preferred 

carbon sources and therefore increase the organism’s fitness [19]. The trans-acting 

carbon catabolite protein CcpA in a complex with Hpr binds to cis-acting DNA 

sequences known as catabolite responsive elements (CRE) [20-23]. In the presence of a 

preferred carbon source, HprK phosphorylates the Ser-46 position of Hpr and once 

phosphorylated, Hpr binds to CcpA [23-25]. 

In this study, we utilized genetic and biochemical approaches to examine arginine 

auxotrophy in S. aureus. bursa aurealis transposon mutagenesis identified CcpA as a 

regulator of arginine biosynthesis. However, instead of de-repressing the conserved 

arginine biosynthesis pathway (ArgJBCDFGH) via glutamate, S. aureus JE2 ccpA 

synthesized arginine from proline via the urea cycle. To the best of our knowledge, this is 

the first report of bacteria utilizing proline for arginine biosynthesis, which may indicate 
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a predilection to degrade and utilize proteins rich in proline (i.e. collagen) during an S. 

aureus infection for use in arginine biosynthesis. Utilization of proline to synthesize 

arginine demonstrates the resourcefulness of S. aureus and its ability to rapidly evolve to 

utilize nutrients that are readily available in the environment. 

 

8.2 Materials and Methods 

8.2.1 Ethics 

The clinical S. aureus strains used in this study originated from the University of 

Nebraska Medical Center. The Institutional Review Board at the University of Nebraska 

Medical Center is charged with reviewing all research involving human subjects. The 

clinical S. aureus strains utilized in the study were de-identified and analyzed 

anonymously and were therefore exempt from human research committee approval. 

Animal experimentation was performed under a University of Nebraska Medical Center 

approved Institutional Animal Care and Use Committee (IACUC) Protocol to TK. The 

University of Nebraska Medical Center is accredited by the Association for Assessment 

and Accreditation of Laboratory Animal Care International (AALAC). In addition, all 

animals at the University of Nebraska Medical Center are maintained in accordance with 

the Animal Welfare Act and the DHHS ‘‘Guide for the Care and Use of Laboratory 

Animals.’’ 
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Bacterial Strain or 

Plasmid 
Relevant Phenotype Source 

pFA545 Encodes pBursa transposase; Tet
r
 [26] 

pBursa Encodes bursa aurealis transposon; Erm
r
, Cam

r
 [26] 

pNF266 

pCN51 (60) with ccpA cloned into the Sphl and 

BamHI site using primers 2250 and 2251 

removing cadA; Amp
r
, Erm

r
 

This 

study 

pMRS44 
Derivative of pTS1-d (58) with ccpA::ermB 

Amp
r
, Cam

r
, Erm

r
 

This 

study 

S. aureus RN4220 Restriction deficient NCTC8325-4 [27] 

S. aureus Newman S. aureus ATCC 25904 [28] 

S. aureus MST14 
Newman containing an allelic replacement 

mutation (tetL) in ccpA. Tet
r
 

[2] 

S. aureus LAC USA300 PFGE type; ST8. Erm
r
, Cam

r
, Tet

r
 [29] 

S. aureus JE2 Cam
s
, Tet

s
 LAC cured of all 3 native plasmids; Erm

s
 

This 

study 

S. aureus JE2 ccpA::tetL 
Allelic replacement mutation in ccpA; transduced 

from MST14; Tet
r
 

This 

study 

S. aureus SA564 

ccpA::ermB 
Allelic replacement mutation in ccpA Erm

r
 

This 

study 

S. aureus JE2 ccpA::ermB 
ccpA mutant; transduced from SA564 

ccpA::ermB; Erm
r
 

This 

study 

S. aureus RN4220 

ccpA::tetL 

Allelic replacement mutation in ccpA: transduced 

from MST14; Tet
r
 

This 

study 

JE2 ccpA::tetL/argJ::φNΣ 
bursa aurealis argJ mutation in ccpA::tetL 

background. 

This 

study 

JE2 

ccpA::tetL/argB::φNΣ 

bursa aurealis argB mutation in ccpA::tetL 

background. 

This 

study 

JE2 

ccpA::tetL/argC::φNΣ 

bursa aurealis argC mutation in ccpA::tetL 

background. 

This 

study 

Table 8.1. Bacterial Strains and Plasmids used in study 
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Bacterial Strain or 

Plasmid 
Relevant Phenotype Source 

JE2 

ccpA::tetL/argF::φNΣ 

bursa aurealis argF mutation in ccpA::tetL 

background. 

This 

study 

JE2 

ccpA::tetL/argG::φNΣ 

bursa aurealis argG mutation in ccpA::tetL 

background. 

This 

study 

JE2 

ccpA::tetL/argH::φNΣ 

bursa aurealis argH mutation in ccpA::tetL 

background. 

This 

study 

JE2 

ccpA::tetL/proC::φNΣ 

bursa aurealis proC mutation in ccpA::tetL 

background. 

This 

study 

JE2 ccpA::tetL/putA::φNΣ 
bursa aurealis putA mutation in ccpA::tetL 

background. 

This 

study 

JE2 

ccpA::tetL/rocD::φNΣ 

bursa aurealis rocD mutation in ccpA::tetL 

background. 

This 

study 

JE2 

ccpA::tetL/arcB1::φNΣ 

bursa aurealis arcB1 mutation in ccpA::tetL 

background. 

This 

study 

JE2 

ccpA::tetL/arcB2::φNΣ 

bursa aurealis arcB2 mutation in ccpA::tetL 

background. 

This 

study 

RN4220 argH::φNΣ bursa aurealis argH mutation 
This 

study 

RN4220 argF::φNΣ bursa aurealis argF mutation 
This 

study 

RN4220 

ccpA::tetL/argG::φNΣ 

bursa aurealis argG mutation in ccpA::tetL 

background 

This 

study 

RN4220 

ccpA::tetL/argH::φNΣ 

bursa aurealis argH mutation in ccpA::tetL 

background 

This 

study 

Newman 

ccpA::tetL/argG::φNΣ 

bursa aurealis argG mutation in ccpA::tetL 

background 

This 

study 

Newman 

ccpA::tetL/argH::φNΣ 

bursa aurealis argH mutation in ccpA::tetL 

background 

This 

study 

  

Table 8.1 (continued) 
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8.2.2 Bacterial Strains and Culture Conditions 

For determination of arginine auxotrophy, eighty-two S. aureus isolates were 

obtained from a previous collection testing the prevalence of heterogeneous vancomycin  

intermediate susceptibility [30]. Other bacterial strains used in the study are shown in 

Table 8.1. Defined bursa aurealis transposon mutants were acquired from the Nebraska 

transposon mutant library via the Network on Antimicrobial Resistance in  

Staphylococcus aureus (NARSA; http://www.narsa.net). Bacterial strains were grown in 

either Tryptic Soy Broth (TSB; Becton Dickinson, Franklin Lakes, NJ) or Complete 

Defined Medium (CDM) as previously described except containing 0.25% glucose [31]. 

Cultures were grown aerobically (1:10 volume to flask ratio) at 37
o
C, 250 rpm unless 

otherwise stated. To train JE2 to grow on media lacking arginine, cultures were grown in 

CDM-R broth for 6 days, at which point the bacteria were inoculated to CDM-R agar. To 

study the reversion frequency of JE2, Newman and RN4220, the bacteria were grown for 

20 hours in 3 mL of CDM. Cells were pelleted, resuspended in 0.9% NaCl, and diluted 

onto CDM, CDM-R, or CDM-P. After 72 hours the colonies were counted and reversion 

frequency was determined by taking the number of prototrophic revertants divided by 

total number of colonies plated on CDM. 

To determine the growth characteristics in CDM-R containing various alternative 

carbon sources, JE2 was grown in 3 mL of CDM overnight, pelleted and resuspended in 

0.9% NaCl. 3 mL of CDM and CDM-R supplemented with either 0.25% of glucose, 

fructose, glycerol, sucrose, mannitol, maltose, salicin, gluconic acid, arabinose, sorbitol, 

or ribose (all purchased from Sigma-Aldrich, St. Louis, MO) were inoculated in a 14 mL 
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polypropylene round-bottom tube (Becton Dickinson) to an OD600 of 0.05. Cultures were 

grown for 18 h at 37
o
C to stationary phase. 

 

8.2.3 Screening of Random bursa aurealis Transposon Mutant Library 

Random bursa aurealis transposon mutants were generated using plasmids 

pBursa and pFA545 and identified using inverse PCR as previously described [26]. 

Mutants were grown and collected in a 96 well format and pelleted and resuspended in 50 

uL of 0.9% NaCl. 2 uL were plated on CDM and CDM-R and incubated at 37
o
C for 72 

hours. Approximately 2700 mutants were screened; colonies that grew on CDM-R plates 

were confirmed by growing in CDM-R broth. 

 

8.2.4 Transduction, ccpA Mutant Construction and Complementation 

bursa aurealis transposon mutations were moved to other strain backgrounds 

through transduction using phage 80α or φ11 as previously described [32]. All primers 

(Table 8.2) used for construction and confirmation of the ccpA mutation were generated 

based on the sequence of S. aureus strain Mu50 (NC_002758.2). The ccpA mutant was 

constructed by replacing a 0.6 kb internal region of the ccpA gene with an erythromycin 

resistance cassette (ermB) using the gene splicing by overlap extension (gene SOEing) 

technique [33]. ermB was amplified from pEC4 [34] using primers SAV1736-ermB-f and 

SAV1736-ermB-r, which contain sequences homologous to the ccpA gene. Primers 

BamHI-SAV1737-f and ermBSAV1736-r were used for amplification of a 1.3 kb region 

upstream of the ccpA gene. Primers ermB-SAV1736-f and SacI-acuC-f were used to  
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Primer Name Sequence Relevant Characteristic 

1868 TCTACAAGAACGCGATGTGC Forward primer used to 

amplify argF 

1869 TTCACCCAATGTAGCAACCA Reverse primer used to 

amplify argF 

1872 CAAAATCTATGGGGCAGAGC Forward primer used to 

amplify argG 

1873 CCATGCAACATCGCATTTAC Reverse primer used to 

amplify argG 

1874 TGCAACTATGCTTGCGAATC Forward primer used to 

amplify argH 

1875 TGCTAGTTCCGTTGCATTTG Reverse primer used to 

amplify argH 

1876 ACCCCCTACTTCAAGGCACT Forward primer used to 

amplify argD 

1877 CGTCTTGAAAAGCTGCAACA Reverse primer used to 

amplify argD 

1878 TAGGTATCGTTGGCGGTAGC Forward primer used to 

amplify argC 

1879 CTCGATTTCCGGTTTGTGTT Reverse primer used to 

amplify argC 

1880 ACACAAACATGGGTTGCTCA Forward primer used to 

amplify argJ 

1881 GTTTCCCATTGTGGATGGTC Reverse primer used to 

amplify argJ 

1882 AACACACGCTCATTGCAGAC Forward primer used to 

amplify argB 

1883 AGGACAGCCATTTTCAATCG Reverse primer used to 

amplify argB 

1929 TTGCAGCGCATGATCAAGGT Forward qRT-PCR; argF 

1930 TTCCACACTGGTACGCCTGAA Reverse qRT-PCR; argF 

Table 8.2. Oligonucleotides used in study 
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Primer Name Sequence Relevant Characteristic 

1933 TGGGCATGGAGTCGTGAAGA Forward qRT-PCR; argG 

1934 CTCTGGTGGCGCAGCATAAG Reverse qRT-PCR: argG 

1935 ATCGAAGGCAGCATTGCACA Forward qRT-PCR; argH 

1936 CCACCAGCATCACCGATACG Reverse qRT-PCR; argH 

1937 TGGGAGCAAGTCGTTCCAGA Forward qRT-PCR; argD 

1938 CAAGCGCTGCCGTCGATATT Reverse qRT-PCR; argD 

1939 TCGTTGGCGGTAGCGGTTAT Forward qRT-PCR; argC 

1940 GGTGCTGGTGTCGCAAAGA Reverse qRT-PCR; argC 

1941 CATCGTCTTTGGCAAGTGCAG Forward qRT-PCR; argJ 

1942 CAGCTGTGCATCCAAACCACA Reverse qRT-PCR; argJ 

1943 TGGCGGTGGCCCATTTATTA Forward qRT-PCR; argB 

1944 CCCCAGTTGAAGCAACAGCA Reverse qRT-PCR; argB 

2250 CCCGGGGCATGCTGAATTCCA 

AGCATTTTATGATGA 
Forward ccpA; contains 

SphI* restriction site 

2251 CCCGGGGGATCCTGAATTTATT 

TTGTAGTTCCTCGGTA 
Reverse ccpA; contains 

BamH1* restriction site 

2186 TCGCTAAATTTTTCCAAACAAAA Forward ccpA 

2187 AAAGGCATTCTTCCAACACC Reverse ccpA 

Table 8.2 (continued) 
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Primer Name Sequence Relevant Characteristic 

1888 TTTGGGCATATGTTAACGACAG 

AAAAACTAGTT 

Forward hprK 

1889 GGGGGATCCCTACTCCTCACTC 

TTATGACTG 

Reverse hprK 

1886 AATGTACATATGGAACAAAATTC 

ATATGTAATC 

Forward ptsH 

1887 ACAGGATCCTTTAGTCAATCCTT 

CTTTTGATAAGAC 

Reverse ptsH 

BamHI-SAV1737F CCAGGATCCACGTATCACGTA 

AGTTGAAACCTGAAG 

ccpA SOEing 

ermB-SAV1736R CAACATGACGAATCCCTCCTTC 

GCGCTTCTCTTGCTACATCATAT 

ATAGTAAC 

ccpA SOEing 

SAV1736-ermBF CTATATATGATGTAGCAAGAG 

AAGCGCGAAGGAGGGATTCG 

TCATGTTGG 

ccpA SOEing 

SAV1736-ermBR CAATTCAATGTATCACCTAAT 

CAATTCAATGTATCACCTAAT 

ATTATTTCCTCCCG 

ccpA SOEing 

ermB-SAV1736F CGGGAGGAAATAATTCTATGA 

GTCGCGGCCTTCAATTAGGTG 

ATACATTGAATTG 

ccpA SOEing 

SacI-AcuC-F GCAGAGCTCAGCAACAAGCGT 

TTGATGATATTCG 
ccpA SOEing 

SAV1737F GCAACAAAGGACCATTTAACGA 

TAATAC 
ccpA mutant confirmation 

AcuC F GGTGGACTTGAAATATTCGCTA 

CAG 
ccpA mutant confirmation 

ermB F GGGTCAATCGAGAATATCGTCA 

ACTG 
ccpA mutant confirmation 

ermB R GCCCTTTACCTGTTCCAATTTCG ccpA mutant confirmation 

  

Table 8.2. (continued) 

*Restriction denotes in italics 
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amplify a 1.7 kb region downstream of the ccpA gene. The resulting 4.1-kb PCR product 

contained BamHI and SacI sites that were used for cloning into pTS1-d [35] to generate 

plasmid pMRS44. Plasmid pMRS44 was used to construct S. aureus SA564 ccpA::ermB  

using the temperature shift protocol as previously described [36]. Allelic replacement of 

the internal region of the ccpA gene by the ermB cassette was verified by PCR using 

primers ermB-f, ermB-r, SAV1737-f and acuC-f. The ccpA::ermB mutation was 

subsequently moved to JE2 through phage 80α transduction and confirmed using primers 

noted above. For the ccpA complementation plasmid pNF266, ccpA was amplified from 

JE2 using primers 2250 and 2251 (Table 8.2), digested with SphI and BamHI, and cloned 

into pCN51 [37]. Note that two ccpA mutants were constructed in this study, JE2 

ccpA::ermB and JE2 ccpA::tetL. JE2 ccpA::tetL was generated by phage 80α 

transduction of the ccpA::tetL allele from MST14 [2] so double mutants could be 

constructed using ermB as the second selectable marker. 

 

8.2.5 NMR Data Collection 

JE2 and JE2 ccpA::ermB were grown in 50 mL CDM to stationary phase. JE2 and 

JE2 ccpA::ermB were subsequently inoculated to an OD600 of 0.05 in CDM containing 

100 mM of either 
13

C5-glutamate or 
13

C5-proline (Isotec) and grown to stationary phase. 

Cultures were normalized to an OD600 of 2.0 and pelleted by centrifugation (3000 rpm, 20 

minutes, 4
o
C). Pellets were subsequently washed in 10 mL of cold sterile water and 

resuspended in 1 mL cold sterile water. The pellet was lysed using a bead beater (MP 

Biomedicals) and centrifuged for 15 minutes at 13,000 rpm at 4
o
C. This lysis step was 
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repeated two more times and the pellet frozen in an ethanol/dry ice bath. The samples 

were then lyophilized, suspended in 600 μL of 50 mM phosphate buffer (pH=7.2, 

uncorrected) in 99.8% D2O (Isotec), and transferred to 5 mm NMR tubes for analysis. 

The NMR spectra were collected on a Bruker 500 MHz Avance spectrometer equipped 

with a triple resonance, Z-axis gradient probe. A BACS-120 sample changer with Bruker 

Icon software was used to automate the NMR data collection. The 2D 
1
H-

13
C HSQC 

spectra were collected with a standard Bruker pulse sequence (HSQCETGP), solvent 

presaturation and a relaxation delay of 1.5s. Each 2D 
1
H-

13
C HSQC spectrum was 

collected with a spectrum width of 4734.85 Hz and 2048 data points in the direct (
1
H) 

dimension; and a spectrum width of 13834.26 Hz and 64 data points in the indirect (
13

C) 

dimension. A total of 16 dummy scans and 128 scans were used to obtain each 2D 
1
H-

13
C 

HSQC spectra. 

The spectra were processed using the NMRPipe software package [38]. The 

spectra were Fourier transformed, manually phased, and baseline corrected. The 

processed 2D 
1
H-

13
C HSQC spectra were then analyzed using NMRView [39] to assign 

chemical shifts and intensities to each peak. The chemical shift list were assigned to 

specific metabolites using the Human Metabalome Database [40], Madison 

Metabolomics Database [41], and Platform for Riken Metabolomics [42] with a tolerance 

level of 0.05 ppm and 0.40 ppm in the 
1
H and 

13
C chemical shifts respectively. The 

presence of metabolites and metabolomics pathways was verified using the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [43] and MetaCyc [44] databases. The 

quantification of metabolomic peak intensities were performed in a similar manner as 
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previously described [45]. The relative percent concentration difference was determined 

by subtracting averages from the two cultures. A student T-test was performed to verify 

the significance at a 95% confidence level, of the relative percent concentration 

differences. 

 

8.2.6 RNA Isolation and Northern Blot Analysis 

Cultures of S. aureus JE2 and JE2 ccpA::ermB were grown overnight in CDM, 

diluted to an OD600 of 0.05 into fresh CDM or CDM-R (1:10 volume to flask ratio, 250 

rpm), and grown at 37
o
C to an OD600 of 1.5 (mid-exponential growth). Cells were 

pelleted at 3000 x g for 20 minutes at 4
o
C and resuspended in RLT buffer with 1% b-

mercaptoethanol. Next, they were transferred to lysing matrix B tubes (MP Biomedicals) 

and processed in a FP120 FastPrep cell disrupter (MP Biomedicals) for 24 seconds at a 

setting of 6.0. The cells were pelleted at 13000 rpm at 4
o
C for 15 minutes; top-phase was 

combined with 500 μL of ethanol. The samples were then processed using an RNeasy 

mini kit, according to manufactures instructions (Qiagen, Inc.). Primers listed in Table 

8.2 were used to make DNA probes that were subsequently labeled with digoxigenin-

labeled dUTP (Roche). 5 μg of RNA was used for northern analysis that was performed 

using DIG buffers and washes (Roche). Anti-Digoxigenin-AP Fab fragments (Roche) 

was used with ECF substrate (GE Healthcare) for detection. Blots were visualized using 

the Typhoon FLA 7000 imaging system (GE Healthcare). 
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8.2.7 Amino Acid Analysis 

JE2 and JE2 ccpA::ermB were grown overnight in 50 mL (500 mL flask) of 

CDM. Cultures were inoculated to a starting OD600 of 0.05 in CDM (100 mL in 1 L flask, 

250 rpm, 37
o
C) and grown for 5 hours. 500 μL of media was collected and pelleted for 5 

minutes at maximum speed. Supernatant was collected and filtered through 3,000 

MWCO Amicon Ultra centrifugal filters (Millipore) according to manufactures 

instructions. Amino acid analysis was performed by the Protein Structure Core Facility, 

UNMC, using a Hitachi L-8800. 

 

8.2.8 Animal Models 

Mouse subcutaneous abscess model. Subcutaneous abscesses were established in 

C57BL/6 mice following the injection of 5 x 10
5
 CFU of S. aureus JE2. Tissues were 

collected at day 7 post infection and processed for immunofluorescence staining for 

either type I collagen (Millipore, Billerica, MA), inducible nitric oxide synthase (Abcam, 

Cambridge, MA), or arginase (Santa Cruz, San Diego, CA.) For type I collagen, tissues 

were incubated with the nuclear stain DAPI to accentuate the abscess core. Mouse kidney 

abscess model. C57BL/6 mice were anesthetized using ketamine and xylazine and 100 

μL containing 10
7
 CFU of S. aureus JE2, JE2 argH::φNΣ, or JE2 argF::φNΣ were 

inoculated retro-orbitally. On day 20 following inoculation, the animals were sacrificed 

and the kidneys were excised, homogenized, and subsequently plated for bacteriological 

analysis (CFU/g of tissue) on Trypticase soy agar (TSA). Only those kidneys containing 

greater than 100 CFU/g of tissue were statistically analyzed. Pairwise comparisons were 
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conducted and differences were adjusted for multiple comparisons using the Tukey-

Kramer method to maintain an overall alpha = .05 across all comparisons. 

 

8.3 Results 

8.3.1 Arginine Auxotrophy in Staphylococcus aureus 

To examine arginine auxotrophy in S. aureus, eighty-two clinical S. aureus 

isolates collected from positive blood cultures at the University of Nebraska Medical 

Center were grown on Complete Defined Medium (CDM) with and without arginine. 

Similar to observations by Emmett and Kloos, only one S. aureus isolate (SA2126) had 

the ability to grow on CDM lacking arginine (CDM-R) following 48 h incubation, 

whereas all isolates grew on CDM containing arginine further confirming the arginine 

auxotrophic nature of S. aureus [8]. Furthermore, a community-associated S. aureus 

USA300 strain JE2 (Table 8.1) was unable to grow on CDMR following 48 h incubation 

at 37
o
C. To extend these observations, JE2 was grown to stationary phase in CDM broth 

(5 x 10
9
 CFU) and plated on CDM-R and CDM lacking proline (CDM-P). Similar to the 

observations of Li and colleagues [18], S. aureus JE2 reverted to proline prototrophy at a 

rate of 1 x 10
-6

; however, no colonies were isolated on CDM-R following five 

experimental attempts. Nevertheless, similar to observations by Gladstone, slight growth 

of JE2 was observed following five days of incubation in CDM-R broth [9]. These 

observations suggest that S. aureus has the inherent ability to synthesize arginine upon 

extended selection; however, the phenotype is not easily selected during growth in 

medium replete with amino acids. 
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8.3.2 Regulation of Arginine Biosynthesis by Carbon Catabolite Repression 

Based on our observations that growth in CDM-R could be selected through 

extended incubation, we hypothesized that arginine biosynthesis was under 

transcriptional repression. Therefore, we screened a random bursa aurealis transposon 

library to isolate JE2 mutants able to grow on CDM-R. Two mutants were isolated that 

had the ability to grow on CDM-R; subsequent sequencing of the bursa aurealis 

insertions found they had inserted in hprK and ccpA. Both HprK and CcpA function to 

control carbon catabolite repression (CCR) in gram-positive bacteria [46]. Therefore, to 

completely eliminate CCR, a ccpA allelic replacement mutant was generated in JE2 

through 80α transduction of the ccpA::tetL allele from MST14 (kind gift of M. Bischoff). 

As predicted, growth analysis in CDM-R demonstrated that JE2 ccpA::tetL enters 

exponential phase between 7–12 h and reaches a maximum OD600 of 4.5 after 24 h, 

whereas no growth was observed with wild type JE2 in CDM-R (Figure 8.1). 

Importantly, introduction of the ccpA complementation plasmid pNF266 abrogated 

growth of JE2 ccpA::tetL. 

To further support the hypothesis that CCR functions to repress arginine 

biosynthesis, JE2 was grown in CDM-R lacking glucose but containing other, non-

preferred carbon sources (Figure 8.2). Since CCR is alleviated when S. aureus is grown 

in media containing a non-preferred carbon source, it was hypothesized that JE2 would 

grow in CDM-R when glucose was replaced with a secondary carbon source. These 

experiments demonstrated that arabinose, sorbitol and pyruvate were able to support 

growth of JE2 when added to CDM-R (Figure 8.2). In contrast, glucose, fructose,  



287 
 

 

 

 

 

 

Figure 8.1. Interruption of ccpA facilitates growth in CDM-R. Growth analysis of JE2, 

JE2 ccpA::tetL, and JE2 ccpA::tetL/pNF266 (ccpA complement) in complete defined 

medium lacking arginine (CDM-R). Isolates were grown aerobically using a 10:1 flask to 

volume ratio. S. aureus strains containing a functional ccpA are unable to grow in CDM-

R. Data represent means 6 SEM of three independent experiments. 
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Figure 8.2. Growth of JE2 in CDM containing non-preferred carbon sources. JE2 was 

grown in CDM or CDM-R with the indicated carbon source at 37
o
C for 18 hours. 

Significant growth in CDM-R was seen only when arabinose and sorbitol were used as 

carbon sources. Data represent means 6 SEM of five independent experiments. 
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glycerol, sucrose, mannitol, maltose, salicin, gluconic acid, and ribose were unable to 

support growth in CDM-R suggesting these carbohydrates do not derepress CcpA in JE2. 

In agreement with our results, Li and colleagues also determined that replacement of 

glucose with arabinose or sorbitol abrogated CcpA-mediated repression in S. aureus 

Newman and functioned to activate proline biosynthesis [18]. Overall, these data 

demonstrate that CCR functions to repress arginine biosynthesis, suggesting that arginine 

biosynthesis is linked to growth in niches where preferred carbon sources are limited. 

 

8.3.3 Northern Analysis of argJBCDFGH in JE2 ccpA::ermB 

Our preliminary data suggested that CCR functioned to repress an enzymatic step 

in the conserved arginine biosynthetic pathway via glutamate [47] (Figure 8.3). To 

further address this possibility, northern blot analysis was performed to address 

transcriptional expression of argJBCDFGH in JE2 ccpA::ermB in comparison to 

wildtype JE2. In S. aureus, argDCJB is arranged in an operon structure, whereas argF is 

transcribed as a monocistronic unit and argGH are co-transcribed. JE2 and JE2 

ccpA::ermB were grown in CDM and CDM-R, respectively, to mid-exponential phase 

and mRNA was isolated. Utilizing DNA probes specific for each gene within the 

conserved pathway, argDCJB and argF expression was not detected in either JE2 or JE2 

ccpA::ermB (Figure 8.4).  However, although argG and argH transcripts were not 

detected in JE2, both transcripts were detected in JE2 ccpA::ermB (Figure 8.4). 

Therefore, although JE2 ccpA::ermB has the ability to grow on media lacking arginine, 

this strain does not appear to utilize the conserved arginine biosynthetic operon to  
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Figure 8.3. Arginine biosynthetic pathway via glutamate and proline. Figure depicts 

highly conserved arginine biosynthetic pathway via glutamate and the proposed pathway 

from proline via PutA, RocD, ArcB1, ArgG and ArgH. Note the previously established 

reverse pathway from arginine to proline via RocF, RocD and ProC. 
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Figure 8.4. Northern analysis of arginine biosynthetic pathway in S. aureus JE2 and JE2 

ccpA::ermB. JE2 and JE2 ccpA::ermB total RNA was isolated in mid-exponential phase 

of growth in CDM and CDM-R, respectively. DNA probes specific for argJ, argB, argC, 

argD, argF, argG, and argH were labeled with digoxygenin and detected using 

antidigoxigenin-AP Fab fragments (a). (b) shows 16s and 23s rRNA depicting equal 

RNA loading. 
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synthesize arginine in CDM-R. These results suggested the existence of a novel arginine 

biosynthetic pathway in S. aureus. 

 

8.3.4 S. aureus Utilizes a Novel Proline Catabolic Pathway to Synthesize Arginine 

Since our data indicated that glutamate was not the precursor for arginine 

synthesis in JE2 ccpA::ermB, other potential pathways were examined in silico. Based on 

the northern blot data demonstrating the expression of argGH in JE2 ccpA::ermB, we 

hypothesized that arginine may be synthesized via the urea cycle (Figure 8.3). In silico 

analysis predicted that either glutamate or proline have the potential to feed into the urea 

cycle to serve as substrates for arginine biosynthesis. To address this hypothesis, we 

examined amino acid consumption by JE2 and JE2 ccpA::ermB grown in CDM and 

CDM-R, respectively (Figure 8.5). These results demonstrated that both JE2 and JE2 

ccpA::ermB consumed similar amounts of glutamate from the culture media following 24 

h of growth. In contrast, JE2 ccpA::ermB consumed all available free proline from the 

culture medium, whereas only approximately 50% of the available free proline was 

consumed by JE2. Taken together, these observations allowed us to speculate that JE2 

ccpA::ermB utilized proline via the urea cycle for arginine synthesis. 

To further investigate this hypothesis, φ11 transducing lysates were prepared from 

defined JE2 bursa aurealis mutants with insertions in the following genes: putA, proC, 

rocD, arcB1, arcB2, argF, argG, argH, argC, argB and argJ. These bursa aurealis 

mutations (conferring erythromycin resistance) were transduced into JE2 ccpA::tetL and 

subsequently grown in CDM-R (Figure 8.6). Mutations in argG, argH, putA, rocD, and  
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Figure 8.5. Amino acid analysis of JE2 and JE2 ccpA::ermB following growth in 

CDM. JE2 and JE2 ccpA::ermB were grown in CDM for 18 hours and supernatant was 

collected and analyzed for amino acid content. Percent of proline and arginine remaining 

is shown suggesting more efficient utilization of proline by JE2 ccpA::ermB in 

comparison to JE2. 
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Figure 8.6. Determination of arginine biosynthesis-dependent genes in S. aureus JE2 

ccpA::tetL. Defined bursa aurealis transposon mutants in argJ, argB, argC, argF, argG, 

argH, proC, putA, rocD, arcB1, and arcB2 were transduced into JE2 ccpA::tetL and 

assessed for growth in CDM-R for 18 hours. Data represent means 6 SEM of three 

independent experiments. 
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arcB1 abrogated growth of JE2 ccpA::tetL in CDM-R. However, mutations in argJ, 

argB, argC, argF, arcB2, or proC had no effect on growth consistent with the prediction 

that arginine is synthesized from proline and not glutamate (Figure 8.6). 

Two-dimensional (2D) 
1
H-

13
C heteronuclear single quantum coherence (HSQC) 

nuclear magnetic resonance (NMR) experiments were performed to confirm these data. 

JE2 and JE2 ccpA::ermB were grown in the presence of 
13

C5-glutamate or 
13

C5-proline in 

CDM and CDM-R, respectively. Based on our genetic studies, it was predicted that 
13

C-

labeled arginine would only be detected when JE2 ccpA::ermB was grown in CDM-R 

containing 
13

C5-proline. As expected, 
13

C-labeled arginine was detected when JE2 

ccpA::ermB was propagated in the presence of 
13

C5-proline but not with 
13

C5-glutamate 

(Figure 8.7). Collectively, these results provide strong evidence that proline is the 

substrate for arginine biosynthesis in a ccpA genetic background. Furthermore, it is 

demonstrated that the highly conserved arginine biosynthetic pathway via glutamate is 

inactive under the growth conditions utilized in the study. 

 

8.3.5 Arginine Auxotrophy in Other Staphylococcus aureus Strains 

To determine whether our data regarding arginine biosynthesis were specific to 

the JE2 background, φ11 transducing lysates were prepared from JE2 bursa aurealis 

argF and argH mutants and introduced into RN4220 and Newman ccpA backgrounds. As 

previously noted with JE2 ccpA::tetL, an argH mutation abolished the ability of both 

RN4220 ccpA::tetL and Newman ccpA::tetL to grow in CDM-R, whereas a mutation in 

argF had no effect (Figure 8.8). Interestingly, RN4220 has the ability to grow in CDM-R  
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Figure 8.7. Two-dimensional (2D) 
1
H-

13
C heteronuclear single quantum coherence 

(HSQC) nuclear magnetic resonance (NMR) analysis of JE2 and JE2 ccpA::ermB. JE2 

and JE2 ccpA::ermB were grown in the presence of 
13

C5-glutamate or 
13

C5-proline in 

CDM and CDM-R, respectively, and assayed using 2D 
13

C HSQC NMR. The differences 

in 
13

C-arginine relative intensity were determined by subtracting the average intensities 

between JE2 and JE2 ccpA::ermB, and a student’s t-test was utilized to determine 

significance. A positive relative intensity value is indicative of a greater intensity of 
13

C-

arginine in JE2 ccpA::ermB in comparison to JE2. JE2 ccpA::ermB accumulated 

significantly greater amounts of 
13

C-arginine when grown in CDM containing 
13

C5-

proline in comparison to JE2. Note that there was no significant difference in 
13

C-

arginine accumulation between JE2 and JE2 ccpA::ermB when grown in CDM and 

CDM-R, respectively, containing 
13

C5-glutamate. 
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Figure 8.8. Determination of arginine biosynthesis-dependent genes in S. aureus 

Newman and RN4220. Defined bursa aurealis transposon mutants in argF and argH 

were transduced into Newman ccpA::tetL and RN4220 ccpA::tetL and assessed for 

growth in CDM-R for 18 hours. Data represent means 6 SEM of three independent 

experiments. 
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broth. Subsequent studies demonstrated that RN4220 reverted to arginine prototrophy at a 

frequency of 1.6 x 10
-5

; however, sequence analysis of these mutants indicated they did 

not have mutations in ccpA, hprK or ptsH suggesting weak carbon catabolite repression 

in the RN4220 strain background. In addition, RN4220 argH::φNΣ was unable to grow 

in CDM-R broth whereas a bursa aurealis mutation in argF had no effect on growth 

suggesting RN4420 synthesizes arginine from proline but not from glutamate. 

Collectively, these data suggest that as a species, S. aureus has evolved to synthesize 

arginine via proline when growing in conditions lacking a preferred carbon source. 

 

8.3.6 Virulence in a mouse kidney abscess model  

C57BL/6 mice were inoculated retro-orbitally with 10
6
 CFU of JE2, JE2 

argH::φNΣ, JE2 argC::φNΣ, JE2 putA::φNΣ, or JE2 argF::φNΣ. The mice were 

harvested at 20 days and the kidneys were homogenized and CFU/gram of tissue 

determined (Figure 8.9). No statistical difference was determined between JE2 and JE2 

argF::φNΣ, JE2 argC::φNΣ, or JE2 putA::φNΣ. However, a significant difference was 

noted between JE2 (mean log10 CFU of 5.31) and JE2 argH::φNΣ (mean log10 CFU of  

4.21) indicating a potential function of argH and arginine biosynthesis in abscess 

development and persistence. 

 

8.4 Discussion 

The study of arginine biosynthesis has served as a paradigm for the regulon 

concept, originally coined by Maas and Clark, where the same transcriptional repressor  

  



299 
 

 

 

 

 

Figure 8.9. Mouse kidney abscess model. C57BL/6 mice were infected with 10
6
 CFU of 

JE2 (n = 16 mice), JE2 argF::φNΣ (n = 14 mice), JE2 argH::φNΣ (n = 15 mice), JE2 

argC::φNΣ (n = 13 mice), or JE2 putA::φNΣ (n = 18 mice). Kidneys were homogenized 

after 20 days and bacterial burden determined through viable count (CFU/gram tissue). 

Horizontal line represents median log10 CFU/gram; significant differences in bacterial 

burden were noted between JE2 and JE2 argH::φNΣ (**p<.01). Data were analyzed 

using two-way ANOVA. 
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regulates unlinked loci, ArgR [48]. Based on these studies and over 60 years of research, 

there are three established biochemical pathways, all utilizing glutamate as a substrate, 

that synthesize arginine in bacteria [47]. These three pathways primarily differ in the 

enzymes used to generate L-citrulline from N-acetyl-L-ornithine [47, 49]. All sequenced 

staphylococcal species analyzed to date encode the highly conserved ArgJBCDFGH on 

three separate unlinked transcriptional units; two operons (argDCJB and argGH) and one 

monocistronic gene (argF). Within the S. aureus USA300 FPR_3757 genome 

(NC_007793), the genes predicted to encode the arginine biosynthetic pathway are as 

follows: argJ (bifunctional ornithine acetyltransferase/glutamate N-acetyltransferase), 

SAUSA300_0185, EC 2.3.1.35/2.3.1.1; argB (acetylglutamate kinase), 

SAUSA300_0184, EC 2.7.2.8; argC (N-acetyl-gammaglutamyl-phosphate-reductase), 

SAUSA300_0186, EC 1.2.1.38; argD (acetylornithine transaminase), SAUSA300_0187, 

EC 2.6.1.11; argF (ornithine carbamoyl transferase), SAUSA300_1062, EC 2.1.3.3; 

argG (argininosuccinate synthase), SAUSA300_0864, EC 6.3.4.5; and argH 

(argininosuccinate lyase), SAUSA300_0863, EC 4.3.2.1. However, as previously 

reported and confirmed in this study, S. aureus is a functional arginine auxotroph when 

grown on complex laboratory media [8, 9]. In addition, no nonsense mutations or 

insertions were detected within the argJBCDFGH genes of the USA300 FPR_3757 

genome or any other sequenced staphylococcal genome, suggesting that arginine 

biosynthesis is not a decaying pathway in the staphylococci. As discussed by Somerville 

and Proctor, in some cases, amino acid auxotrophies in S. aureus may be linked to TCA 

cycle inactivity or feedback inhibition due to growth in amino acid and glucose replete 
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media [50]. Our results are in agreement with this hypothesis where inactivation of ccpA, 

which represses the TCA cycle [51] and other genes that function to metabolize 

secondary carbon sources, was linked to arginine biosynthesis in S. aureus. In the 

presence of a preferred carbon source, the CcpA/Hpr complex represses a multitude of 

genes linked to central metabolism, amino acid metabolism and virulence [2, 52-54]. 

Therefore, based on previous studies, bioinformatic analyses of the S. aureus genome, 

and the work by Li and colleagues demonstrating that proline biosynthesis was linked to 

ccpA regulation, it was not unexpected to discover that arginine biosynthesis was linked 

to carbon catabolite repression [5, 18, 50, 55]. However, it was remarkable to discover 

that S. aureus does not use the conserved argJBCDFGH pathway to synthesize arginine 

via glutamate. Rather, we provide both genetic and biochemical evidence in support of a 

novel biosynthetic pathway, whereby S. aureus utilizes proline as a substrate via the urea 

cycle. First, mutations within putA, rocD, arcB1, argG, and argH, but not argJ, argB, 

argC, or argF, abolished growth of a ccpA mutant on CDM-R, providing genetic 

evidence that proline serves as a precursor for arginine synthesis (Figure 8.6). It is 

important to note that inactivation of arcB1 abrogated growth of JE2 ccpA::tetL whereas 

a mutation in arcB2 did not. arcB1 (SAUSA300_2569) encodes the native ornithine 

carbamoyltransferase within the arginine deiminase operon whereas arcB2 

(SAUSA300_0062; ornithine carbamoyltransferase) is within the ACME pathogenicity 

island encoded arginine deiminase operon [56]. These data suggest that ArcB1 and ArcB2 

are not functionally redundant or are not expressed under the same growth conditions. 

arcB2 transcript is not detected using northern analysis (data not shown) under in vitro 



302 
 

growth conditions used in this study (CDM or CDM-R broth), however, it is unknown 

whether it is induced under other in vivo or in vitro growth conditions. Second, 2D 
1
H-

13
C HSQC NMR experiments provided compelling evidence that arginine is synthesized 

via proline and the urea cycle in a S. aureus ccpA mutant. Although there have been two 

reports demonstrating that proline is synthesized from arginine in S. aureus [17, 18], we 

are unaware of any reports demonstrating that arginine can be synthesized from proline. 

Li and colleagues demonstrated that CcpA binds to a cre site just upstream of rocD. 

Using the cre site from pckA as a consensus sequence [18], we identified potential cre 

sites upstream of putA, arcB1, and argGH (Figure 8.10). However, the function of these 

cre sites in regards to CcpA regulation has yet to be defined. 

Previous studies have demonstrated that a S. aureus ccpA mutant also synthesizes 

proline from arginine via RocF (arginase), RocD (ornithine aminotransferase), and ProC 

(P5C reductase) [17, 18].  Collectively, these data and our observations suggest that 

under carbon-limiting conditions (in vivo environment), S. aureus can synthesize proline 

from arginine and arginine from proline depending on which amino acid is limited. Based 

on our findings and the existing literature, we propose a hypothetical model whereby free 

arginine is limited in the host during infection causing competition between the host and 

bacteria for arginine. In humans, L-arginine is a non-essential amino acid under 

homeostatic conditions. However, arginine becomes a ‘‘conditionally essential’’ [57] 

amino acid during sepsis or trauma due to its use as a substrate for inducible nitric oxide 

synthase [58] and function in cell-mediated immunity [59], protein synthesis [60] and 

wound healing [61, 62]. Indeed, recent studies have shown significant iNOS and arginase  
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Figure 8.10. Putative cre sites in arginine biosynthesis-dependent genes. Using 

the cre site from pckA as a consensus sequence, putative cre sites were identified 

in rocD, arcB1, putA, and argGH. cre site from pckA is the top sequence whereas the 

putative cre site from the identified gene is the bottom sequence. 
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expression during S. aureus infection [63] (Figure 8.11), providing further support that a 

staphylococcal abscess may be an arginine-depleted environment based on the 

requirement of arginine for these host enzymes to function. In addition, low levels of L-

arginine have been reported in plasma during sepsis [57], causing some investigators to 

suggest the use of L-arginine as a treatment modality [64]. Furthermore, arginine can 

serve as a substrate for arginine deiminase and subsequent direct ATP generation in the 

staphylococci [47]. 

Although little information is available regarding the concentration of free proline 

in a staphylococcal abscess, proline is the predominant amino acid found in collagen. 

Collagen is the most abundant protein in animals and type I collagen is a major 

constituent of the fibrotic wall surrounding staphylococcal abscesses [65] (Figure 8.11). 

Furthermore, S. aureus encodes two proteases, SspB and ScpA, which possess the ability 

to degrade collagen [66-68]. Therefore, our model predicts that S. aureus utilizes specific 

proteases to degrade collagen, resulting in the liberation of free proline or proline-

containing peptides that are utilized to synthesize arginine via the urea cycle.  

Strengthening this argument, earlier work demonstrated that mutants lacking the 

high affinity proline permease PutP are less virulent in animal models of infection [69, 

70]. This proposed framework was initially tested using a mouse kidney abscess model 

previously utilized by Cheng and colleagues [71]. In this model, staphylococcal abscesses 

within the kidney are contained within a pseudocapsule-like structure; we hypothesized 

an argH and putA mutant would be attenuated in abscess persistence in comparison to 

wild type JE2, JE2 argC::φNΣ and JE2 argF::φNΣ due to the inability to utilize proline  
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Figure 8.11. Mouse subcutaneous abscess model. C57BL/6 flank abscesses caused by 

subcutaneous injection of 5 x 10
5
 CFU of S. aureus JE2. Tissues were processed for 

immunofluorescence staining for either type I collagen (red), inducible nitric oxide 

synthase (iNOS, red), or arginase (green). In addition to type I collagen, tissues were 

processed with the DAPI nuclear stain (blue) to accentuate the abscess core. 

Representative confocal microscopy images are presented for type I collagen (10 x 

magnification) and iNOS/arginase (20 x magnification). 
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from the pseudocapsule as a substrate for arginine synthesis. Supporting our model, in 

those kidneys containing staphylococcal abscesses, a significant 1 log10 difference was 

observed between JE2 and JE2 argH::φNΣ demonstrating the importance of arginine 

biosynthesis via the urea cycle in an in vivo infection model. As predicted, based on our 

in vitro data, no significant difference was observed between JE2, JE2 argC::φNΣ, and 

JE2 argF::φNΣ in the mouse kidney abscess model. However, in contrast to our predicted 

results, no significant difference in bacterial persistence was detected between JE2 and 

JE2 putA::φNΣ; PutA converts proline into pyrolline-5-carboxylate (Figure 8.3). It is 

known that the addition of either citrulline or ornithine to CDM-R can complement JE2 

ccpA::tetL putA::φNΣ allowing growth. Therefore, it is possible that generation of 

citrulline or ornithine by arginine deiminase and ornithine carbamoyltransferase [47], 

respectively, circumvents and complements the proline requirement and facilitates the 

synthesis of arginine. In addition, since argGH is common to both the glutamate and 

proline pathways leading to the synthesis of arginine, an alternative interpretation of the 

data is that both pathways are active in vivo and have the ability to complement each 

other. 

Finally, we have demonstrated that other S. aureus strains synthesize arginine 

from proline when CcpA activity is abolished, suggesting conservation of this pathway 

within the species. However, based on the conserved sequence analysis of the 

ArgJBCDFGH pathway within sequenced S. aureus isolates, we predict that this arginine 

biosynthetic pathway is active under growth conditions or niches that remain to be 

identified. Further work is required to dissect the evolving dogma regarding arginine 
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metabolism and the relationship between the host and S. aureus in the ‘‘war for arginine’’ 

during infection. 
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CHAPTER 9 

DISPENSABILITY OF D-ALANINE RACEMASE IN MYCOBACTERIUM 

SMEGMATIS AND MYCOBACTERIUM TUBERCULOSIS UNDERLIES A 

NOVEL PATHWAY OF D-ALANINE BIOSYNTHESIS 

 

9.1 Introduction 

Tuberculosis (TB) is a major global health problem and still the second 

worldwide cause of death from an infectious disease. Critical challenges to achieve the 

global targets for TB control and elimination include drug resistant TB, the co-epidemics 

of TB and HIV and the lack of more effective tools to prevent, diagnose and treat the 

disease [1].  The cell wall of Mycobacterium tuberculosis, the main etiological agent of 

human TB, plays an important role in mycobacterial pathogenesis and is a major source 

of targets for design of antimicrobial agents and attenuated mutants [2-4]. As in other 

bacteria, peptidoglycan strands and their crosslinks are critical components and 

stabilizers of the mycobacterial cell wall backbone. D-alanine is an essential building 

block of mycobacterial peptidoglycan and other eubacteria as it is involved in 

peptidoglycan crosslink formation [4-9].  

The main source of D-alanine is the conversion of L-alanine by D-alanine 

racemase (Alr), an enzyme encoded by the alr gene [4, 7, 9]. The critical role of D-

alanine in the cell wall peptidoglycan highlights the importance of its biosynthetic 

pathway(s) as targets for generation of new antimicrobial agents and attenuated mutants.  

Core to that design is the determination of alr essentiality and its role in the context of 

mycobacterial pathogenesis. Studies on alr in the fast growing species Mycobacterium 
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smegmatis, rendered apparently contradictory results.  In our initial report, we found that 

the M. smegmatis alr gene was not required in the absence of D-alanine in the 

recommended Middlebrook 7H9 mycobacterial medium [10]. Our data also supported the 

existence of an alternative pathway of D-alanine biosynthesis in this species. 

Contradictory results were reported as M. smegmatis growth was assessed in Luria-

Bertani or Middlebrook 7H11 media [11] since alr mutants were found to be auxotrophic 

for D-alanine. Moreover, recent reports in M. tuberculosis H37Rv suggest that alr 

mutants are also auxotrophic for D-alanine in both Middlebrook 7H9 and 7H11 [12]. 

Thus, according to these two reports, the alr gene is required in the absence of D-alanine 

in both M. smegmatis and M. tuberculosis. In that context, these latter results negate the 

existence of an alternative endogenous pathway of D-alanine biosynthesis in both 

species, as D-alanine would be an absolute requirement for growth of alr mutant strains.  

Resolution of the controversy surrounding alr essentiality in mycobacteria is 

important, not only in the context of the role of Alr in mycobacteria, but also for its 

implications in the design of more effective drugs and vaccines targeting the endogenous 

synthesis of D-alanine in  M. tuberculosis strains found in clinical settings. Moreover, 

evidence of horizontal gene transfer in mycobacteria [13, 14], highlights the impact that 

the potential transfer of genes involved in an alternative pathway of D-alanine 

biosynthesis might have in TB epidemiology and management.  Herein, we describe the 

results of our studies aiming at determining alr essentiality in M. smegmatis and M. 

tuberculosis and possible implications for future in vivo studies. 
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9.2 Materials and Methods  

9.2.1 Bacterial strains, plasmids, phages, culture conditions and nucleic acid 

manipulation.  

Bacterial strains, plasmids and phages used in this study are listed in Table 9.1.  

E. coli and, in some cases M. smegmatis strains, were grown at 37ºC in broth or agar 

(1.5%, Difco Laboratories, Detroit, Mich.) using LB broth base, containing Tryptone, a 

pancreatic digest of casein (BD, Franklin Lakes, NJ). For M. smegmatis strains, LBT 

medium was LB broth or agar supplemented with 0.05% Tween 80 (Fisher Scientific, 

Pittsburgh, PA). For routine growth, M. smegmatis strains were cultured at 37ºC in 

Middlebrook 7H9 base broth (BD) or agar (Fisher Scientific) supplemented with ADC 

(0.5% bovine serum albumin fraction V (Fisher Scientific), 0.01 M glucose, 0.015 M 

sodium chloride, 0.2% glycerol, and for broth media only 0.05% Tween-80 ; MADC). M. 

tuberculosis strains were grown in MADC broth or 7H9 based agar media supplemented 

with ADC or OADC (ADC plus 0.6 mg/mL oleic acid). In some experiments, the 

following supplements (Sigma Chemical Co., St. Louis, MO) were individually added at 

specified concentrations: L-serine, D-serine, L-glutamic acid, D-glutamic acid, L-

arginine, L-tryptophan, L-asparagine, L-aspartic acid and L-lysine, D-alanine, and 

pyruvate. Antimicrobial agents used were ampicillin (0.05 mg/mL); kanamycin A 

monosulfate (0.025 mg/mL), hygromycin B (0.075 to 0.1 mg/mL; Roche Molecular  
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Bacterial strains and 

vectors 
Description Reference 

E. coli DH5α F
-
 lacZDM15 endA1 hsdR17 supE44 gyrA96 relA1 Invitrogen Life 

Technologies 

M. smegmatis mc
2
155 Alr

+
; M. smegmatis ATCC 607 mutant, high transformation 

efficiency 

[15] 

M. smegmatis 

TAM23 

Alr
-
; Kan

r
; M. smegmatis alr insertion mutant derived from 

M. smegmatis mc
2
155 

[10] 

M. smegmatis 

TAM23-12 

Alr
-
; Kan

r
; Hig

r
; M. smegmatis alr and murI double mutant 

derived from M. smegmatis TAM23, D-alanine auxotroph 

This study 

M. smegmatis GPM 

292- GPM295 

Alr-
-
; Kan

r
; M. smegmatis alr deletion mutant derived from 

M. smegmatis mc
2
155 

This study 

E. coli DH5α 

pBUN307 

Kan
r
. E. coli DH5α transformed with pBUN307 This study 

M. tuberculosis 

H37Rv 

Laboratory reference strain. ATCC 25,618 

M. tuberculosis 

H37Rv (pBUN307) 

Kan
r
. alr merodiploid strain. M. tuberculosis H37Rv 

transformed with pBUN307   

This study 

TBcol1  Kan
r
, Hyg

r
 alr chromosomal mutant of M. tuberculosis 

H37Rv transformed with pBUN307   

 

pBUN73 Kan
r
 Tet

r
. pMV203 derivative Barletta lab. 

Unpublished 

pBUN82 Kan
r
. M. smegmatis wild type  alr gene cloned into 

 pMV262  

[16] 

pMV262 Replicating E. coli-Mycobacterium shuttle plasmid; carries 

Phsp60 promoter upstream 

from polylinker site 

[17] 

pBUN201 pCR2.1 derivative carrying  M. tuberculosis alr gene This study 

pBUN205 pET15b derivative carrying  M. tuberculosis alr gene This study 

pCR2.1 Original TA cloning vector Invitrogen Life 

Technologies 

pET15b Standard Expression vector Novagen 

 

pBUN307 

Kan
r
. Replicative shuttle plasmid carrying M. tuberculosis 

H37Rv alr transcribed under the control of its own 

promoter 

This study 

pBUN369 Tet
r
  Replicative shuttle plasmid. pBUN73 derivative. This study 

pBUN373 Tet
r
 Replicative shuttle plasmid, pBUN369 derivative 

carrying the M. smegmatis alr gene from pBUN82 

This study 

pBUN381 pBlueScript KS+ derivative carrying. M. tuberculosis alr 

gene flanking regions in a 3.8 kb fragment 

This study 

pTAMU3 Amp
r
 Hyg

r
; pYUB412 derivative carrying M. smegmatis 

alr gene 

[10] 

pYUB412 Amp
r
 Hyg

r
; E. coli-Mycobacterium integration-proficient 

vector 

 

[18] 

  

Table 9.1. Bacterial strains, plasmids and phages used in this study. 
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Bacterial strains and 

vectors 
Description Reference 

phAE159(Tn5371) Derivative of phAE159 carrying transposon Tn5371 with a Hyg
r
 

marker 

[19] 

phAE87 Thermosensitive phasmid. PH101 derivative carrying cosmid 

pYUB328 

[20] 

pYUB854 Hyg
r
 Cosmid. Designed for phasmid construction and directional 

cloning of homologous recombination substrates 

[21] 

pBUN287 Hyg
r
. pYUB854 derivative. Carries the 5’end of alr gene from M. 

tuberculosis H37Rv 

This study 

pBUN288 Hyg
r
. pBUN287 derivative. Carries the 5’and 3’ends of alr gene 

from M. tuberculosis H37Rv and its adjacent regions 

This study 

phBUN1 Hyg
r
 phasmid. phAE87 derivative  with pYUB328 replaced by  

pBUN288 

This study 

Table 9.1. (Continued) 
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Biochemicals, Indianapolis, Ind.); D-cycloserine (0.00117 to 0.150 mg/mL); and 

tetracycline (0.0125 mg/mL).  

M. smegmatis growth curves were determined in minimal broth medium as 

previously described [10]. M. smegmatis and E. coli broth cultures were incubated with 

shaking at 200 rpm in an Innova 4300 rotary incubator (New Brunswick Scientific Co. 

Inc., Edison, N.J.).  M. tuberculosis broth cultures were incubated horizontally in 

standing flasks. Phage stocks were prepared following standard procedures and stored in 

MP buffer made with 50 mM Tris-HCl pH 7.5 (MP Biomedicals, LLC. Aurora, OH, 

USA), 150 mM NaCl (Merck  KGaA, Danmstadt, Germany), 2 mM CaCl2 (Sigma-

Aldrich, CO. St. Louis, MO, USA), and 10 mM MgSO4-7H2O (MP Biomedicals, LLC. 

Aurora, OH, USA), following standard procedures [22]. Specific protocols are further 

described. 

Standard procedures were followed for nucleic acid purification, enzyme 

restriction digestions, ligations, and agarose gel electrophoreses [23]. Bacterial 

transformations and transfections were performed as described [22].  

 

9.2.2 Construction, verification and complementation of M. smegmatis alr deletion 

mutant.  

The alr flanking regions were amplified from 50 ng of M. smegmatis mc
2
155 

DNA using primer sets AlrK01/AlrK02 and AlrK03/AlrK04, as described [11] (Table 

9.2). The resulting fragments (1.2 kb and 1.3 kb respectively) were subcloned into 

pBluescript KS+ to generate pBUN381. A 3.8 kb fragment from pBUN381, carrying the 
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pUC18K aphA-3 kanamycin resistance marker outflanked by the alr uspstream and 

downstream regions, was used to transform M. smegmatis mc
2
155. Transformants GPM 

292, GPM293, GPM294 and GPM295 were selected on LBT supplemented with 5.0 mM 

D,L-alanine. Deletion of alr was verified by PCR and Southern blotting analysis. 

For PCR verification, M. smegmatis genomic DNA was amplified with the 

following primer sets: AlrInt1F/AlrInt1R and AlrIntF /AlrIntR, targeting the deleted alr 

region, as well as with primers 5alr2 and 3alr2, targeting the wild alr gene flanking 

sequences. For Southern blotting analysis, approximately 3.0 µg of SmaI digested M. 

smegmatis wild type and mutant genomic DNA were transferred to nylon membranes and 

hybridized with a radiolabelled DNA fragment amplified from wild type mc
2
155 DNA 

using primers AlrK01 and AlrK02. Prehybridization, hybridization and high-stringency 

washes were done at 65ºC.  

To complement the alr deletion mutant strain GPM292, cells were grown to mid-

exponential phase in LBT supplemented with 5.0 mM D,L-alanine. Cells were 

transformed by electroporation with pTAMU3 as previously described [10]. 

Transformants were selected on LBT agar supplemented with 5.0 mM D,L-alanine and 

0.1 mg/ml hygromycin B (A.G. Scientific, San Diego, CA) until normal sized colonies 

were visually observed at 37ºC. Individual transformant colonies were grown in 1.0 mL 

of LBT supplemented with 5.0 mM D,L-alanine and 0.1 mg/mL hygromycin B, and cells 

from 0.001 mL growing cultures were directly lysed in the thermocycler and subjected to 

PCR amplification to verify the presence of the hygromycin resistance gene from 

pTAMU3. Amplification was carried out under standard conditions with primers Hygro-
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2F and Hygro-2R, using the following settings: 95°C for 5 minutes, followed by 30 

cycles of 95°C for 30 sec, 55°C for 30 seconds, 72°C for 30 sec, and a final extension at 

72°C for 7 minutes.  

 

9.2.3 D-Alanine racemase enzymatic activity assays.  

M. smegmatis mc
2
155, TAM23 and GPM292 cells were grown to mid-

exponential phase (OD600nm ca. 0.6-0.7) in 200 mL LBT supplemented with 1.0 mM D-

alanine, harvested, and concentrated 20-fold in 50 mM Tris-HCl (pH 8.0). Cell extracts 

were prepared as described [16], except that a Centriprep YM10 (Millipore, Billerica, 

MA) concentration step was added prior to final filtration and dialysis. Protein 

concentrations were determined by a modified Lowry protein assay 

(http://www.ruf.rice.edu/~bioslabs/methods/protein/lowry.html). 

Alr reactions were performed in triplicate in a final volume of 50 μL containing 

50 mM Tris-HCl (pH 8.0), 0.1 mM pyridoxal phosphate, 15 mM D-alanine, 0.5 μCi 
14

C 

D-alanine, and approximately 100 μg of each cell extract. Reactions were incubated at 

37ºC and in a water bath for 15 min, and stopped by adding SDS to a final concentration 

of 0.25%. Parallel negative controls were performed with heat inactivated extracts 

otherwise processed in identical manner. Standards for 
14

C-D-alanine, 
14

C-L-alanine, and 

a 50% D, L-alanine mixture were prepared with the same reaction components, heat 

inactivated mc
2
155 extract, and 0.5 μCi of total 

14
C-alanine. Chiral plates (Macherey-

Nagel, Bethlehem, PA; 10 x 20 cm) were baked for 30 minutes at 100 ºC prior to sample 

loading. Reaction mixtures (5 μL) were spotted on the plate, 2.5 μL at a time, allowing 

http://www.ruf.rice.edu/~bioslabs/methods/protein/lowry.html
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the spots to dry between applications. Plates were developed by ascending 

chromatography in a chamber saturated with vapors of the running solvent 

(acetone:methanol:water 10:2:2) until the solvent front reached 0.5 cm from the top of the 

plate.  

Plates were dried, wrapped in plastic, and exposed to a Kodak Imaging Screen-K 

for 4 h, and analyzed using a Biorad Molecular Imager PharosFX and Quantity One 

Software.  To quantify spots, the rectangular volume analysis tool was used.  For 

overlapping oval spots (e.g., Alr activity in mc
2
155), the rectangular box for a particular 

spot was extended up to the inflection point in the spot images.  Global subtraction was 

used to reduce background. 

 

9.2.4 Growth of M. smegmatis alr mutants in liquid media.  

Minimal concentrations of D-alanine required for the mutant strains to yield 

significant growth were determined in both LBT and MADC broth, supplemented with 

0.1 mM – 1.0 mM D-alanine, to an initial OD600 ca. 0.01. The small inoculum was to 

mimic the conditions previously used in other alr deletion mutant study [11]. OD600 

values were taken at 48h after inoculation.  

To test D-alanine requirements in minimal media, M. smegmatis mc
2
155, TAM23 

and GPM292 were grown to an OD600  c.a. 1.0 in MADC supplemented with 50 mM D-

alanine, washed twice with PBS-Tween and inoculated into pre-warmed minimal media 

(5 mM ammonium chloride, 22 mM dibasic potassium phosphate, 16 mM monobasic 

potassium phosphate, 25 pM ferric chloride, 8.6 nM zinc sulfate, 0.84 nM cobalt 



323 

 

chloride, 10.1 nM manganese chloride, 68 nM calcium chloride, 2.4 mM magnesium 

sulfate, 4.9 nM pyridoxal hydrochloride, 21mM  glycerol, and 0.05 % Tween 80) at an 

initial concentration of approximately 1.2 x 10
6
 c.f.u. /ml. Cultures were grown at 37oC 

with shaking at 200 rpm in an Innova 4300 rotary incubator (New Brunswick Scientific 

Co.) and optical densities (OD600nm) were monitored for approximately 200 h.  

Generation and lag times were determined following described conceptual 

definitions [24]. To calculate generation times, logOD for each independent growth curve 

was plotted versus time during exponential growth. Linear regression lines were 

determined and from the slopes, generation times were calculated using the formula:  G 

(min) = [1/(3.33 * slope)] * 60.  Mean generation times with SEMs (n=3) were obtained 

from independent growth curves for each strain and condition.  For growth curves 

displaying a plateau followed by resumption of exponential growth resembling diauxic 

growth, additional generation times were determined for each exponential growth phase. 

Curves were compared by fitting individual nonlinear growth curves to each of 

the samples, followed by a MANOVA of the estimated growth curve parameters.  Data 

analysis was carried out using the NLIN and GLM procedures (SAS Institute Inc. 2009. 

SAS OnlineDoc® 9.2. Cary, NC: SAS Institute Inc.). Pair-wise comparisons of 

generation times were performed using the Mixed Procedure in SAS version 9.1.3 (SAS 

Institute).  P values were determined using least squares means and applying the Tukey 

adjustment.  The two lag times were compared using the two-tailed unpaired t-test SAS 

procedure. Graphs were constructed using DeltaGraph version 5.6.2 (Red Rock 

Software). 
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9.2.5 Growth of M. smegmatis alr mutants in solid media.  

To determine the effect of D-alanine on growth in solid media, M. smegmatis 

strains were streaked on agar media with and without 5.0 mM D, L-alanine (LBT), or 

with and without 50 mM D-alanine (MADC). A 1 μL disposable loop was used to streak 

cells taken from 50% glycerol stocks prepared from cultures grown in original stocking 

media (MADC for M. smegmatis wild type mc
2
155 and TAM23(pTAMU3); MADC with 

50 mM D-alanine for insertion mutant TAM23 and LBT with 5.0 mM D,L alanine for 

deletion mutant GPM292 and its complemented derivative GPM345. Plates were 

incubated for seven days at 37ºC and then imaged.  

To determine the overall effect of solid media components on growth, glycerol stocks of 

M. smegmatis wild type and M. smegmatis TAM23 and GPM292 alr mutants were 

streaked on LBT, MADC and MADC agar plates supplemented with: 1mg/mL tryptone 

(Difco); a mixture of 20 aminoacids (0.25 mM each); a mixture of glucogenic aminoacids 

including L-alanine, L-asparagine, L-aspartate, L-glutamic acid and L-glutamine (1mM 

each); a mixture of branched chain aminoacids including L-isoleucine, L-leucine and L-

valine (1.67 mM each); Middlebrook 7H10 and Midddlebrook 7H11. Growth patterns 

were determined after incubating for 7 days at 37ºC. Further testing was carried out 

streaking glycerol stocks of wild type mc
2
155, complemented strain GPM345, and alr 

mutants TAM23 and GPM292 on MADC agar with or without D-alanine, D-glutamate, 

L-glutamate, D-serine or L-serine (5.0 mM each), or a mixture of 5.0 mM D-glutamate 

with 18 mM pyruvate. Plates were incubated for 7 days at 37ºC, imaged and scored. 

Scores were generated for growth coverage and colony size, as shown in Figure 9.1.  



325 

 

 

            

 

 

 

 

 

                   

 

Figure 9.1.  Scoring growth of M. smegmatis strains on agar media.  To compare growth 

on solid agar media, the following scoring scheme was used, based on the following 

models: 1) GPM292 on LBT, -; 2) TAM23 on MADC,+; 3) GPM292 on LBT with 5.0 

mM D/L-alanine,++; and 4) GPM292 on MADC 50 mM D-alanine, +++. 

  

1 2 3 4 
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9.2.6 NMR Data Collection.  

The NMR spectra were collected on a Bruker 500 MHz Avance spectrometer 

equipped with a triple-resonance, Z-axis gradient probe. A BACS-120 sample changer 

with Bruker Icon software was used to automate the NMR data collection. For the  

comparison between wild-type cells and the racemase mutants without D-alanine 

supplementation, one-dimensional (1D) 
1
H NMR spectra were collected with a standard 

solvent presaturation sequence and a spectral width of 5482.5 Hz and 32k data points at 

298K. A total of 16 dummy scans and 128 scans were used. For the comparison between 

wild-type cells and the racemase mutants supplemented with 50 mM D-alanine, 1D 
1
H 

NMR spectra were collected using excitation sculpting to remove the solvent [25] with a 

sweep width of 5482.5 Hz and 32k data points at 298K. A total of 16 dummy scans and 

128 scans were used. 

The series of three time-zero two-dimensional (2D) 
1
H-

13
C HSQC spectra 

(HSQC0) were collected using the pulse sequence described by Hu et al. [26]. The spectra 

were collected with 2048 data points and a spectral width of 5000.0 Hz in the 
1
H 

dimension, and 64 data points and a spectral width of 17605.6 Hz in the 
13

C dimension. A 

total of 16 dummy scans and 64 scans with a relaxation delay of 1.5 s were used to obtain 

each 2D 
1
H-

13
C HSQC0 spectrum. 

 

9.2.7 1D NMR Data Analysis. 

 All 1D 
1
H NMR spectra were processed as previously described [27]. Data were 

processed automatically using ACD/1D NMR manager version 12.0 (Advanced 
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Chemistry Development, Inc). Intelligent bucketing was used to integrate each region 

with a bin size of 0.025 ppm and a looseness of 50%. The table of integrals was centered 

average and imported into SIMCA version 12.0 (Umetrics) for principal component 

analysis (PCA) or orthogonal partial least-squares discriminant analysis (OPLS-DA). 

Supervised classification for each group was arranged by cell type, with M. smegmatis 

mc
2
155 defined as the control (or assigned a value of 0), and M. smegmatis TAM23 and 

GPM292 defined as the mutant strains (or assigned a value of 1). Ellipses for each group 

or class in the PCA or OPLS-DA scores plot depict the 95% confidence level from a 

normal distribution. 

 

9.2.8 2D NMR Data Analysis.  

2D 
1
H-

13
C HSQC spectra were processed using the NMRPipe software package 

[28]. The spectra were Fourier transformed, manually phased, and baseline corrected. 

The processed 2D 
1
H-

13
C HSQC spectra were then analyzed using NMRView [29] to 

assign chemical shifts, intensities, and volumes to each peak. Chemical shift lists were 

assigned to specific metabolites using the Human Metabalome Database [30], Madison 

Metabolomics Database [31], and the Platform for Riken Metabolomics [32]. A chemical 

shift error-tolerance of 0.05 ppm and 0.40 ppm was used for 
1
H and 

13
C chemical shifts, 

respectively. The identification of metabolites and metabolomics pathways from the 

NMR metabolomics data were further verified using the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) [33] and MetaCyc [34] databases. 
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Metabolomic peak volumes from the HSQC0 experiment was calculated as 

previously described [26, 35]. The calibration of metabolite peak volumes from the 

HSQC0 experiments with an absolute concentration was performed using a series of 5 

external standards, each consisting of 9 
13

C-labeled compounds with concentrations 

ranging from 5 M to 300 M. All standard samples also included 500 M of TMSP as 

an internal standard for spectral referencing and normalization. A linear regression line 

was created to correlate the absolute concentrations with the average time-zero peak 

volume for each metabolite standard in order to create a standard calibration curve. The 

M. smegmatis mc2155, TAM23 and GPM292 metabolite concentrations were then 

calculated from the time-zero peak volumes obtained from the HSQC0 experiment and 

from this standard calibration curve. The HSQC0 experiment was obtained for a triplicate 

set of cultures for each M. smegmatis strain. The triplicate HSQC0 experiments were used 

to calculate averages and standard deviations for each metabolite concentration. 

 

9.2.9 Construction of TAM23 mutant library and isolation of D-alanine Dependent 

Mutants.  

Transposon mutagenesis was carried out as described [36]. 5 mL of MADC broth 

supplemented with 50 mM D-alanine and kanamycin (20 µg/mL) were inoculated with 

50 µL of a frozen stock of M. smegmatis TAM23. The culture was grown to an optical 

density OD620nm of c.a. 1.0 and centrifuged at room temperature for 10 minutes at 3,700 x 

g (Sorvall Legend
TM

 RT Kendro Laboratory products. Thermo Fisher Scientific Inc. 

Waltham, MA. USA). The pellet was washed twice in an equal volume of MP buffer and 
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resuspended in 5 mL of MP. This cell suspension was incubated at 37°C, standing, for 30 

minutes before phage infection, and 100 µL were used to make ten-fold dilutions (10
-1

 - 

10
-6

) in MADC. Titration was carried out plating in MADC agar supplemented with 50 

mM D-alanine and 20 g/mL kanamycin. For transfection, 2.0 mL of undiluted M. 

smegmatis TAM23 were transferred to 50-mL screw cap tubes and mixed with 2.0 mL of 

a high titer lysate of phAE87 (Tn5371) (Table 9.1), (1x10
9
 pfu/mL), to achieve a 

multiplicity of infection of 10:1. The mixture was incubated at 37°C, standing for 3 

hours. Two milliliters of M. smegmatis TAM23 were incubated with the same quantity of 

MP buffer as negative controls. After incubation, cells were centrifuged for 10 minutes at 

3,700 x g at room temperature (Sorvall Legend
TM

 RT Kendro Laboratory products. 

Thermo Fisher Scientific Inc. Waltham, MA. USA). The pellet was resuspended in 2.0 

mL of MADC broth and plated in MADC agar supplemented with 50mM D-alanine, 20 

g/mL kanamycin and 75 g/mL hygromycin. Negative controls were plated in MADC 

agar with and without antibiotics. Plates were incubated at 37°C for 48 - 72 hours and 

individual transductants were isolated. 

  Individual transductant colonies were checked for D-alanine dependence through 

a two-step process. For the first step, each isolated colony was replica plated in MADC 

agar media with 20 g/mL kanamycin and 75 g/mL hygromycin in the presence or 

absence of 50 mM D-alanine. Wild type M. smegmatis mc
2
155 and M. smegmatis 

TAM23 were used as controls in each inoculated plate. Plates were incubated for 7 days 

at 37°C before being replica plated once more in identical manner, to reconfirm D-

alanine auxotrophy. An individual auxotroph (TAM23-12) was further characterized. 
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Primer Sequence (5’-3’) 

AlrKO1 AAATTTGGATCCGACAAGAACATGATCGACAA 

AlrKO2 AAATTTGGTACCGGTCTGCATCGTCATAATCT 

AlrKO3 AAATTTAAGCTTGGCAGGACAACAAGATTGAG 

AlrKO4 AAATTTTCTAGAGCCCTCGACATCCATTGCTT 

AlrInt1F ATGACCTTGAAATGCCCGGTGG 

AlrInt1R ACCACGAACTGGTCCATGCAGAT 

AlrIntF CGGTCTGATGAGCCACCT 

AlrIntR CCTTGATCAGCACGTCGATA 

5alr2 AAATTTCCATGGTGGGGCAGTACTACAACTTC 

3alr2 AAATTTAAGCTTGTAGGGGTCTTCCTTGCTCA 

Hygro-2F AACACCTCGAAGTCGTGCAGGAAG 

Hygro-2R CTACCTGGTGATGAGCCGGATGAC 

Tn-Mar-Hyg-1 AGTGCCACCTAAATTGTAAGCGT 

RS6-4 GTAATACGACTCACTATAGGGCNNNNCATG 

Tn-Mar-Hyg-2 GACCGAGATAGGGTTGAGTGTTGT 

T7 TAATACGACTCACTATAGGG 

Tn-MAR-Hyg-2b CGAGATAGGGTTGAGTGTT 

MURISMEGF CCGGCCATATCTGACCTCATG 

MURISMEGR TGGCGACACAGATCATCT 

TBALRUF ACGGTACCGGCCTCATCCCTATTCGAC 

TBALRUR CGCTCTAGATGGCTTTCCGACATTCTCC 

TBALRDF GGCAAGCTTGAGGACGTATCACCAGGAC 

TBALRDR ATGCTCGAGCATGACGCCGCACGATAC 

EXTBALRF GTTAACGTGAAACGGTTCTGG 

TBALRR GGATACCCTCACGGCTCA 

 

  

Table 9.2. Primers used for gene cloning experiments 
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9.2.10 Identification of the Himar1 transposon insertion site and target gene in M. 

smegmatis TAM23-12.  

 M. smegmatis TAM23-12 cells (approx. 1-5 x 10
6
 from a concentrated 50% glycerol 

stock) were directly lysed in a thermocycler (Eppendorf Mastercycler Gradient, 

Eppendorf, Hauppauge, NY). Samples were subjected to a nested PCR method adapted 

from published procedures [37, 38] using two rounds of amplification. The first 

amplification round was carried out with an annealing temperature of 52°C, using the 

transposon specific primer Tn-Mar-Hyg-1 and the degenerate primer RS6-4 (Table 9.2).  

Reactions were carried out in a total volume of 50 L with 10 mM Tris-HCl (pH 8.3), 50 

mM KCl, 5% (v/v) dimethylsulfoxide (DMSO), 2 mM MgCl2, 0.2 mM deoxynucleoside 

triphosphates, 0.1 µM Tn-Mar-Hyg-1, 1.0 µM RS6-4, and 2.5 units of Promega GoTAQ 

DNA polymerase (Promega Corporation. Madison, WI). For the second round, 1 L of 

the first round PCR mixture was amplified using primers Tn-Mar-Hyg-2 and T7 (Table 

9.2) under the same conditions as for the first round, except that primers were used at 0.5 

µM. The mixture from the second nested PCR reaction was purified and concentrated 

using a batch column purification method (Promega Wizard PCR Preps) and run onto a 

1.5% agarose gel. DNA bands were excised and purified using a Qbiogene Geneclean III 

kit (MP Biomedicals, LLC. Aurora, OH) and corresponding DNA sequences were 

determined at the University of Nebraska-Lincoln sequencing facility by the Sanger 

method using the sequencing primer Tn-MAR-Hyg-2b (Table 9.2). The information from 

this sequence was combined with the himar1 transposon sequence and the Blastn suite 
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(http://blast.ncbi.nlm.nih.gov/) analysis to determine the exact location of the transposon 

insertion site within the target gene. 

  To confirm the identity of the target gene, PCR was carried out using primers 

specific to the target genes outflanking each transposon insertion site. Cells were lysed as 

described above. The Himar1 insertion within the gene of interest should yield in the 

mutant strain a fragment 2,217 bp longer than in the wild type strain mc
2
155. 

Amplification was carried out using a standard procedure in a 50 L reaction mixture 

containing 25 ng of each specific primer pair in the presence of 1x NH4-based Reaction 

Buffer (Bioline USA Inc., Taunton, MA), 2 mM MgCl2, 5% (v/v) DMSO, 0.3 mM 

deoxynucleoside triphosphates, and 2.5 units of Biolase™ DNA Polymerase (Bioline). 

M. smegmatis genomic DNA was amplified using primers MURISMEGF and 

MURISMEGR (Table 9.2), spanning the region external to the identified target gene. The 

reaction was carried out with thermocycler settings of 94°C for 5 minutes, followed by 30 

cycles of 94°C for 1 min, 50°C for 30 sec, 72°C for 1 min, and a final extension at 72°C 

for 7 min. 

 

9.2.11 Complementation and phenotypic characterization of M. smegmatis D-alanine 

auxotrophic strain TAM23-12.  

To construct the complementing vector pBUN373, the tetracycline resistance 

gene from pBR322 [39] was released by digestion with BsgI and EcoRI and ligated into 

the HpaI and EcoRI sites of the E. coli-Mycobacterium multi-copy shuttle plasmid 

pMV203 [16]. The corresponding recombinant clone (pBUN73) was digested with SpeI 
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and then partially digested with NheI to remove the kanamycin resistance gene, resulting 

in the 4,496 bp tetracycline resistant shuttle plasmid pBUN369. A 2,361 bp fragment 

containing the M. smegmatis alr gene was released from pBUN82 [16] by EcoRI and 

Acc65I digestion and the final step in pBUN373 construction was to ligate the fragment 

into EcoRI - Acc65I digested pBUN369 (Table 9.1). After transformation with pBUN373 

the recombinants were incubated at 37°C for 2-3 days on MADC agar supplemented with 

50 mM D-alanine and 12.5 µg/mL tetracycline as a mycobacterial selection marker [40]. 

Non-transformed M. smegmatis parent strains were used as controls. Tetracycline 

resistance was confirmed by culturing individual colonies in 5.0 mL of MADC broth 

supplemented with 50 mM D-alanine and 12.5 µg/mL tetracycline at 37°C in a shaker at 

250 r.p.m. (Unimax 1010. Heidolph Instruments GmbH&Co. KG. Schwabach. Germany) 

until the culture reached an OD620nm of c.a. 1.0. The cultures were mixed with seven 4 

mm glass beads (Paul Marienfeld GmbH & Co. KG, Am) before the optical densities 

were measured. Cells were concentrated by centrifugation at room temperature for 10 

minutes at 3,700 x g (Sorvall Legend
TM

 RT Kendro Laboratory products. Thermo Fisher 

Scientific Inc. Waltham, MA. USA). The supernatant was discarded and the pellet was 

washed twice in equal volume of MADC. The final pellet was resuspended in 4 mL of 

MADC and the OD600 was measured again in order to inoculate the same amount of cells 

in each culture. 100 µL of dilutions 10
-5

 and 10
-6

 were inoculated by triplicate in MADC 

agar supplemented with 50 mM D-alanine and 12,5 µg/mL tetracycline and in MADC 

agar supplemented only with 12,5 µg/mL tetracycline. Plates were incubated at 37°C for 

7 days and examined visually at day 3, 5 and 7. 
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  Phenotypic characterization included growth in media with and without D-

alanine, as well as macro and microscopic visualization of colonies. Strains were grown 

to an O.D.600nm c.a. 1.0 in MADC broth (M. smegmatis mc
2
155), MADC broth 

supplemented with 50 mM D-alanine and 10 µg/mL kanamycin (M. smegmatis TAM23), 

and MADC broth supplemented with 50 mM D-alanine, 10 µg/mL kanamycin and 75 

µg/mL hygromycin (M. smegmatis TAM23-12). Strains were sub-cultured in 5.0 mL of 

the same media as above and incubated at 37°C in shaker at 250 r.p.m. (Unimax 1010. 

Heidolph Instruments GmbH&Co. KG. Schwabach. Germany) until the culture reached 

an OD600nm c.a. 1.0. The cultures were mixed using seven 4 mm glass beads (Paul 

Marienfeld GmbH & Co. KG, Am) before the OD600nm was measured. Cells were 

concentrated by centrifugation at room temperature for 10 minutes at 3,700 x g (Sorvall 

Legend
TM

 RT Kendro Laboratory Products, Thermo Fisher Scientific Inc., Waltham, 

MA. USA). The supernatant was discarded and the pellet washed twice in equal volume 

of MADC. The final pellet was resuspended in 4.0 ml of MADC and the OD600nm was 

measured again in order to inoculate the same amount of cells in each culture. 100 µL of 

dilutions 10
-5

 and 10
-6

 were inoculated by triplicate in the follow media: MADC agar, 

MADC agar supplemented with D-alanine, MADC agar supplemented with kanamycin, 

MADC agar supplemented with D-alanine and kanamycin, MADC agar supplemented 

with hygromycin, MADC agar supplemented with D-alanine and hygromycin, MADC 

agar supplemented with kanamycin and hygromycin and MADC agar supplemented with 

D-alanine, kanamycin and hygromycin as above. Plates were incubated at 37°C for 7 

days and examined visually and microscopically at days 3, 5 and 7. 
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9.2.12 Vectors for M. tuberculosis alr inactivation and merodiploid constructions.  

To construct the vector for chromosomal alr inactivation, M. tuberculosis H37Rv 

genomic DNA was amplified with primer pairs TBALRUF / TBALRUR and TBALRDF 

/ TBALRDR (Table 9.2). The purified 613 bp PCR product, corresponding to the 

upstream region and 33 bp at the 5’ end of the alr gene, was digested with KpnI and 

XbaI. The fragment was cloned into pYUB854 digested with the same enzymes, 

generating plasmid pBUN287. The purified 625 bp PCR product, corresponding to the 

downstream region and 43 bp at the 3’ end of the alr gene, was digested with HindIII and 

XhoI and ligated to pBUN287 digested with the same enzymes. The resulting plasmid, 

pBUN288, was digested with PacI and ligated with phAE87 digested with the same 

enzyme. The resulting phasmid phBUN1, carrying the upstream and downstream regions 

of the M. tuberculosis alr gene flanking a hygromycin resistant marker, was used to 

inactivate the chromosomal copy of the alr gene in M. tuberculosis, as described [22].  

For the construction of recombinant plasmid pBUN307, the complete coding 

region of alr from M. tuberculosis H37Rv was amplified using the Expand High Fidelity 

PCR System (Roche). The 1,227 bp M. tuberculosis alr was amplified from genomic 

DNA as a 1248 bp fragment using primers EXTBALRF and TBALRR (Table 9.2). After 

purification with the Wizard PCR Prep Kit (Promega), the PCR fragment was cloned into 

the Original TA Cloning Kit vector pCR2.1 (Invitrogen). The corresponding recombinant 

clone (pBUN201) was digested with MseI and BamHI and ligated into the NdeI-BamHI 

sites of the vector pET15b (Novagen). The recombinant clone (pBUN205) was verified 

by restriction endonuclease digestion and DNA sequencing.  For the construction of 
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pBUN307, pBUN205 was linearized with XbaI and polished with Pfu polymerase. This 

blunt ended linear fragment containing the H37Rv alr was further digested with EcoRI 

and ligated into the PvuII and EcoRI sites of the E. coli-Mycobacterium multi-copy 

shuttle plasmid pMV203 [16]. In this construct, major recombinant plasmid transcripts 

are expressed in the same direction. 

 

9.2.13 Construction, verification and characterization of M. tuberculosis alr mutant 

strains.  

Standard procedures were used to transform wild type M. tuberculosis H37Rv 

with pBUN307, the multicopy plasmid carrying the M. tuberculosis wild type alr gene 

[22]. The resulting merodiploid strain H37Rv (pBUN307) was selected in media with 10 

g/mL kanamycin and the presence of the extrachromosmal alr copies was verified by 

PCR. Plasmid DNA isolation was used to confirm the generation of a M. tuberculosis 

H37Rv recombinant carrying the plasmid pBUN307. Inactivation of the alr gene in wild 

type and merodiploid M. tuberculosis strains was carried out by transduction with 

phBUN1 at M.O.I. 1:10, following standard procedures [22]. Transfectants were selected 

by incubating for 6 weeks at 37°C in the presence of 50, 125 or 225 mM D-alanine 

(Sigma-Aldrich, CO. St. Louis, MO, USA) and 75 µg/mL hygromycin (Alexis 

Biochemicals, San Diego, CA, USA).  

Inactivation of the chromosomal alr gene was confirmed by Southern blotting 

analysis. To this end, approximately 3.0 µg of SacII (New England Biolabs, Ipswich, 

MA) digested chromosomal M. tuberculosis H37Rv wild type and mutant genomic DNA 
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was transferred to a nylon membrane (Hybond-N+. Amersham Pharmacia Biotech, 

Buckinghamshire, England UK), prehibridized and hybridized at 56 ºC, following 

standard procedures [23, 41]. The 0.6 kb PCR fragment generated by pBUN288 DNA 

amplification with primers TBALRDF and TBALRDR  (Table 9.2) was used as 

hybridization probe. The fragment was radio labeled with [
32

P] dCTP (Easy Tides 32P 

dCTP 3000 Ci/mMol; Waltham, MA) using a commercial kit (Rediprime II Kit, 

Amersham Pharmacia Biotech, Buckinghamshire, England), following the 

manufacturer’s instructions. Washes were done under high-stringency conditions at 65ºC. 

The membrane was exposed for two hours at room temperature on a phosphor screen 

(Bio-Rad Laboratories; Hercules, CA). Radioactivity detection was carried out in a 

Molecular Imager PharosFX Plus system (BioRad Laboratories; Hercules, CA), 

following manufacturer’s instructions. 

Phenotypic studies included determination of acid-alcohol resistance by the 

Kinyoun stain [42] and, macro and microscopic visualization of colonies (Nikon 

Instruments, Inc.). Wild type M. tuberculosis H37Rv, merodiploid M. tuberculosis 

H37Rv pBUN307 and M. tuberculosis H37Rv TBcol-1 alr mutant were initially grown in 

MOADC broth, with or without supplements, to an OD620 nm of approximately 1.0. 10 µL 

(approximately 3x10
6
 cells) of each culture were inoculated in 7 mL MGIT® tubes 

(Becton, Dickinson and Company, Sparks, MD, USA) supplemented with OADC (for 

wild type M. tuberculosis H37Rv), OADC and kanamycin 10 µg/mL (for recombinant M. 

tuberculosis H37Rv pBUN307 strains) and OADC with or without 50 mM D-alanine and 

hygromycin 75 µg/mL (for M. tuberculosis H37Rv TBcol-1 alr mutant strain). The tubes 
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were incubated in MGIT® 960 System (Becton, Dickinson and Company, Sparks, MD) 

at 37°C until mycobacterial growth was detected. Positive tubes were centrifuged for 15 

minutes at 4000 r.p.m. at 4°C, 10 µL of sediment were plated in MADC agar plates with 

or without supplements, and incubated for 3 weeks at 37°C. Macro and microscopic 

examination were carried out weekly in these plates. Additionally, 20 µL of sediment 

were used to determine acid-alcohol resistance following standard methods [42]. 

 

9.3 Results  

9.3.1 Construction, verification and complementation of M. smegmatis alr deletion 

mutant.  

To solve the controversy surrounding the requirement for the M. smegmatis alr 

gene in the absence of D-alanine, we generated alr deletion mutants GPM292, GPM293, 

GPM294 and GPM295.  After conducting a preliminary characterization by Southern blot 

analysis (see below), one representative deletion mutant, M. smegmatis GPM292, was 

selected for further analysis. Deletion of 99% of the alr gene coding sequence was 

accomplished using an approach that was similar to that previously described for the 

construction of other M. smegmatis alr deletion mutant strains [11]. To that end, we 

transformed the wild type strain mc
2
155 with a pBUN381 (Table 9.2) fragment carrying 

the non-polar pUC18K aphA-3 kanamycin resistance marker outflanked by the M. 

smegmatis alr upstream and downstream regions. The inactivation was accomplished 

using a one-step strategy, since the lack of illegitimate recombination in this species 

makes this direct selection for a double cross-over feasible [40].  
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Our alr deletion mutants are in principle identical, except for polylinker site 

sequences introduced at the drug marker region, to the alr deletion mutants previously 

described, including the same non-polar aphA-3 marker [11]. A new deletion mutant was 

made to assure that both the deletion and insertion mutants to be analyzed were derived 

from the same parental strain, a low-passage isolate of mc
2
155 that was directly received 

from the original source [15]. Thus, any potential source of variability due to mc
2
155 

isolates kept at different laboratories was eliminated for the comparison of insertion and 

deletion alr mutant strains. Mutant strains were verified by PCR (data not shown) and 

Southern blotting analysis. The schematic display of M. smegmatis wild type and alr 

mutant patterns in Southern blotting analysis with a left flank probe upon SmaI digestion  

predicts the following approximate sizes for the band patterns: 1.63 kb and 1.56 kb for 

wild type mc2155; 1.97 kb and 1.6 kb for TAM23 and 1.56 kb and 0.6 kb for the deletion 

mutants (Figure 9.2a). M. smegmatis GPM 292 - 295 yielded the expected patterns and 

were confirmed to be true alr deletion mutants (Figure 9.2b). The complemented strain  

GPM345 was generated by transformation of M. smegmatis GPM292 with pTAMU3 

(Table 9.1) and verified by the presence of a 0.56 kb signature band corresponding to the 

amplification of the pTAMU3 hygromycin resistance gene (data not shown).  

 

9.3.2 Enzymatic activity of M. smegmatis alr mutants.  

Alr enzymatic activity was determined using a 1-step chiral plate assay, designed 

to directly measure the conversion of 
14

C-D-alanine into 
14

C-L-alanine without the need 

for further coupling steps that could diminish the sensitivity of the assay (Figure 9.3). The   
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Figure 9.2. a) Genomic comparison of M. smegmatis wild type and mutant alr loci. 

Location of left flank probe complementary sequences in relevant SmaI fragments for 

WT, TAM23, and GPM292 alr chromosomal loci.  Displayed features are: alr upstream 

and downstream sequences adjacent to the original chromosomal locus (open arrows), alr 

gene (filled arrows), probe sequences (striped boxes), and the kan markers aph2 

(checkered) and aphA-3 (dotted) arrows. b) Southern blotting analysis of M. smegmatis 

wild type and alr mutants.  Genomic DNA was digested with SmaI (lanes 2 to 7).  Lane 1 

contains the non-labeled 1,237 bp probe homologous to the alr upstream flanking 

sequence defined by amplification with primers AlrKO1 and AlrKO2.   Lane 2, mc2155; 

lane 3, TAM23; lanes 4-7, alr deletion mutants GPM292-GPM295. 
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Figure 9.3. Alr enzymatic assay using chiral separation of alanine enantiomers.  Protein 

extracts  were incubated at 37ºC for 15 min in the presence of 50 mM Tris HCl pH 8.0, 

15 mM D-alanine, 0.1 mM pyridoxal phosphate, and 
14

C-D-alanine (lower spot).  Control 

reactions were performed under the same conditions using WT-heat inactivated extracts 

with 
14

C-L-alanine, 
14

C-D-alanine or both radioactive alanine compounds present at a 1:1 

ratio.  Chiral plates were baked at 100ºC for 30 min, spotted with 5 μl of reaction 

mixture, air dried and developed in a saturated chamber with acetone, methanol and 

ddH2O in a ratio of 10:2:2.  Lane 1, 1:1 mixture of 
14

C-D and 
14

C-L-alanine; Lane 2, 

14
C-D-alanine; Lane 3, 

14
C-L-alanine; Lane 4, WT alr; Lane 5, TAM23; Lane 6, 

GPM292 & Lane 7, 1:1 mixture of 
14

C-D and 
14

C-L-alanine. Assays were performed in 

triplicate. Image was captured in BioRad Quantity One version 4.4.6, Contrast was 

adjusted uniformly and image cropped to remove excess space only. 
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test was able to resolve an equimolar mixture of D- and L-alanine (lanes 1 and 7), with 

each enantiomer generating a unique spot (lanes 2 and 3). In contrast to the wild type 

strain, able to convert D-alanine into an approximately equimolar mixture (44.4 ± 1.8 %) 

of both enantiomers upon 15 min incubation (lane 4),  both alr insertion (lane 5) and 

deletion (lane 6) mutants were unable to convert D-alanine into L-alanine. Overnight 

incubation resulted in enantiomeric equimolar equilibrium (50.7 ± 1.6 %) in the wild type 

strain, as expected from the predicted thermodynamic parameters [43], but was unable to 

detect any enzymatic activity in the alr mutant strains (data not shown). Alr specific 

activity in wild type M. smegmatis was 0.2 µmol min
-1

 per µg of protein, consistent with 

previous data [10].  

 

9.3.3 Growth of M. smegmatis alr mutants in different media.  

The pair of isogenic insertion (TAM23) and deletion (GPM292) alr mutants was 

tested under various conditions.  As expected, the composition of the media played a 

significant role in the ability of both mutant strains to grow with or without D-alanine.  

Minimal concentrations of D-alanine required for the mutant strains to yield significant 

growth were determined in duplicate using both LBT and MADC broth, with or without 

D-alanine supplementation. Upon incubation for 48 h., both alr mutants failed to grow in 

either media in the absence of D-alanine, supplementation with 0.1 mM D-alanine was 

sufficient for alr mutants to display some growth on MADC, and 0.3 mM D-alanine was 

required for growth in LBT (Figure 9.4). The results on LBT are basically identical to 

those previously reported for other alr deletion mutant [11]. In one experiment, CFUs  
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Figure 9.4.  Growth of M. smegmatis alr mutants in MADC-Tween and LBT at varying 

D-alanine concentrations. Mycobacterium smegmatis alr deletion mutant GPM292 

insertion mutant TAM23, and wild type mc
2
155 were grown in both MADC-Tween a) 

and LBT b) media with varying concentrations of D-alanine.  Cultures were inoculated to 

an initial OD600 ca. 0.01, and OD600 values were taken at 24h (not shown) and 48h 

(shown) after inoculation. Plotted data are means of two independent experiments (n=2). 

In one experiments, CFU were also determined and the results  followed closely the data 

from the OD600nm measurements depicted in this figure. Complemented strains TAM23 

(pTAMU3) and GPM345 exhibited the same growth as mc
2
155 (data not shown, n=1).  
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were also determined and the results followed closely the OD600nm measurements. 

Complemented strains TAM23 pTAMU3 and GPM345 exhibited the same growth as 

mc
2
155 (data not shown).  

Growth curves of both M. smegmatis alr mutants TAM23 and GPM292 in 

minimal media with and without D-alanine exhibited similar patterns to those we 

reported before for TAM23 [10], including a long lag time in the absence of D-alanine. 

The wild type growth pattern was restored by addition of 50 mM D-alanine. Statistical 

analysis indicated that each strain and condition resulted in a characteristic growth curve 

(P < 0.03 or lower), except for mc
2
155 and TAM23 grown in the presence of D-alanine 

that yielded similar growth patterns (P < 0.61). Most importantly, in medium without D-

alanine, both alr mutant strains were able to grow, but displayed a long lag time (Figure 

9.5).Thus, both M. smegmatis alr insertion and deletion mutants are not dependent on D-

alanine for growth.   

Observations in solid media confirmed similar growth patterns for M. smegmatis 

insertion (TAM23) and deletion (GPM292) mutants. Growth of the wild type and mutant 

strains was initially assessed on MADC and LBT agar with and without D-alanine. M. 

smegmatis mc
2
155 and the alr

+
 complemented strains displayed abundant growth on 

MADC and LBT agar both with and without D-alanine. Both TAM23 and GPM292 alr 

mutants were able to grow in MADC in the presence (more growth) or absence (poor 

growth) of D-alanine, while they grew on LBT only if supplemented with D-alanine, as it 

had been reported for other M. smegmatis alr deletion mutants [11]. Thus, these 

experiments conclusively demonstrate that D-alanine auxotrophy is conditional on the 
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Fig. 9.5.  Growth of M. smegmatis Alr mutant strains in minimal media with and without 

D-alanine.  Strains mc
2
155, TAM23, and GPM292 were grown in MADC-Tween with 

50mM D-alanine to an OD
600nm

 of 0.8 – 1.2. Cells were harvested, washed twice with 

phosphate-buffered saline (PBS)–0.05% Tween 80, and three independent cultures per 

strain were inoculated 1:50 (initial OD
600nm

 ca. 0.02) into minimal media (Chacon et al. 

2002) with 21 mM glycerol as the carbon source, 5.0 mM ammonium chloride, 

supplemented with or without 50 mM D-alanine. Growth was recorded for 200 h by 

monitoring the OD
600nm

. SEM (n=3) are indicated by the corresponding error bars.   
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growth medium (Figure 9.6). 

Plating on non-supplemented and supplemented LBT and MADC agar, revealed 

that the growth of alr mutants was inhibited by addition of Tryptone (LBT component 

absent in MADC), an equimolar mixture of 20 aminoacids or  a mixture of glucogenic 

aminoacids (L-alanine, L-glutamic acid, L-glutamine, L-aspartate and L-asparagine). 

Mutant growth was also inhibited in Middlebrook 7H11 but not in Middlebrook 7H10 

(Table 9.3). Further testing, using the plating score described in Figure 9.1, revealed 

abundant growth of M. smegmatis wild type mc
2
155 and the complemented strain 

GPM345 in all media. M. smegmatis TAM23 and GPM292 exhibited wild type growth 

levels in the presence of 5 mM D-alanine, as well as in the presence of a combination of 

5 mM D-glutamate and 18 mM pyruvate. Growth was observed with no D-alanine or any 

other supplementation, and with D-glutamate, L –glutamate, D-serine (Table 9.4), or 18 

mM pyruvate (see Supplemental material). Addition of L-alanine, L-asparagine, L-serine 

or L-glutamine did not affect the growth of the wild type strain while totally inhibited the 

growth of both alr mutants (data not shown).  

 

9.3.4 Global changes in the metabolome of alanine racemase mutants.  

The principal component analysis (PCA) 2D scores plot (Figure 9.7a) illustrates a 

comparison between the metabolomes of M. smegmatis wild-type mc
2
155 cells, and the 

alanine racemase insertion (TAM23) and deletion (GPM292) mutants grown in MADC 

without D-alanine. The 2D scores plot reduces the complex 1D 
1
H NMR spectrum that  
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Fig. 9.6.  Growth of M. smegmatis Alr mutant strains in minimal media with pyruvate as 

carbon source, supplemented with D-alanine or D-glutamate. Strains mc
2
155, TAM23, 

and GPM292 were grown in MADC-Tween with 50 mM D-alanine to an OD600nm of 0.8 

– 1.2. Cells were harvested, washed twice with PBS–0.05% Tween-80, and inoculated 

1:50 (initial OD600nm ca. 0.02) into minimal media (Chacon et al. 2002) with 18 mM 

pyruvate replacing 21 mM glycerol as carbon source, 5.0 mM ammonium chloride, and 

50 mM D-alanine (solid lines) or 5.0 mM D-glutamate (dotted lines). Growth was 

recorded for 200 h by monitoring the OD600nm.  SEM (n=3) are indicated by the 

corresponding error bars. 
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Media (Supplements)
a
 WT TAM23 GPM292 

LBT + - - 

MADC + + + 

+ Tryptone + - - 

+ 20 AA + - - 

+ Glucogenic AA + - - 

Middlebrook 7H10 + + + 

Middlebrook 7H11 + - - 

  

Table 9.3. Growth of alr mutants on selected agar media supplemented with various 

nutrients. 

a
 MADC agar plates (regular and supplemented with 5mM of the listed amino acid) were 

streaked from glycerol stocks with 1 μl loops in four directions (S->E->N->W) on duplicate 

plates.  Plates were incubated at 37 ºC and checked at day 7 for growth. ). Results were recorded 

as growth (+) or no growth (-). Media tested were LBT, MADC, Middlebrook 7H10, 

Middlebrook 7H11, and MADC with and without supplementation of 1g/L Tryptone (Difco); 

mixture of 20 individual amino acids (0.25 mM each), and glucogenic aminoacids (1.0 mM 

each), as described in the text. 
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Media (Supplements)
a
 mc2155 GPM292 TAM23 GPM345 

MADC +++ ++ ++ +++ 

MADC + 5.0 mM D-alanine  +++ +++ +++ +++ 

MADC + 5.0 mM D-glutamate +++ ++ ++ +++ 

MADC + 5.0 mM D-serine +++ ++ ++ +++ 

MADC + 5.0 mM D-glutamate + 18.1 

mM  pyruvate  

+++ +++ +++ +++ 

 

  

Table 9.4. Growth of M. smegmatis wild type and alr mutant strains on supplemented 

solid media. 

a
 MADC agar plates were streaked from glycerol stocks (S->E->N->W) on duplicate plates. Plates 

were incubated at 37 ºC and checked after 5 and 7 days.   Results reported are from day 7.  Scores 

were assigned following the scheme described in Figure 9.1. 
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Figure 9.7. a) PCA 2D scores plot and a) OPLS-DA 2D scores plot. Comparison of the 

1D 
1
H NMR spectra obtained from M. smegmatis TAM23, GPM292, and mc

2
155 cell 

lysates. The wild-type M. smegmatis mc
2
155 cells were designated the control class in 

the OPLS-DA, and the remainder of the cells was designated as the mutant class. The 

OPLS-DA used one predictive component and one orthogonal component to yield a R
2
X 

of 0.517, R
2
Y of 0.822, and a Q

2
 of 0.746. Cross validation using CV-Anova yielded a p-

value of 1.38e
-6

. The ellipses correspond to the 95% confidence limits from a normal 

distribution for each cluster. 
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captures the state of the cellular metabolome into a single point in principal component 

space (PC1, PC2, etc.). Correspondingly, the principal components represent the largest 

variations between the individual 1D 
1
H NMR spectra. The 2D scores plot indicates that 

PC1 and PC2 account for 18.1% and 11.5% of the variation in the NMR 

spectra,respectively. A total of 10 replicates for each of the mc
2
155, TAM23, and 

GPM292 strains formed three distinct clusters in the PCA 2D scores plot. It is interesting 

to note, that despite the fact that both TAM23 and GPM292 lack alanine racemase 

activity, the two M. smegmatis strains formed separate clusters in the PCA 2D scores plot 

indicating different changes in the metabolome. More specifically, the GPM292 cluster 

was primarily separated from the mc
2
155 and TAM23 clusters along PC1, the largest 

variation between the 1D 
1
H NMR spectra.  

The unsupervised PCA model effectively demonstrated class separation between 

the three M. smegmatis strains, which is generated based on the highest variations in the 

NMR data. To gather information about the discriminatory variations that maximize class 

separation, OPLS-DA was performed [44]. The OPLS-DA 2D scores plot exhibited a 

similar class separation between M. smegmatis mc
2
155 wild-type cells and the two 

alanine racemase mutants (Figure 9.7b). The OPLS-DA model yielded a reliable fit as 

evident by an R
2
X of 0.517, R

2
Y of 0.822, and a Q

2
 of 0.746. Importantly, cross 

validation using CV-Anova [45] yielded a statistically significant p-value of 1.38e
-6

, 

validating the class separation between the two alanine racemase mutants and the mc
2
155 

wild-type cells. More importantly, the alanine racemase mutant strains clustered at 

different locations along the orthogonal component of the 2D scores plot, demonstrating 
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a statistically significant class separation between the deletion and insertion alanine 

racemase mutants. This is consistent with the PCA 2D scores plot where three distinct 

clusters were formed, indicating differences between the three M. smegmatis strains. 

Furthermore, the S-plot generated by OPLS-DA identified the NMR spectral differences 

and, correspondingly the major metabolomic changes contributing to the class 

separations (Figure 9.8). The significant variables (chemical shifts) labeled on the S-plot 

had contributions of 0.1 or greater (correlated) or -0.1 or less (anti-correlated). The 

metabolites identified from TAM23 and GPM292 as major contributors to class 

separation are summarized (Table 9.5). Specifically, a pair wise comparison between the 

alanine racemase insertion mutant (TAM23) and the wild-type mc
2
155 cells identified an 

increase in TAM23 for serine, glycolate, phosphoserine, alanine, lysine, UDP, and ATP. 

Conversely, a decrease was observed for glutamate, isoleucine, lactate and TCA cycle 

intermediates in TAM23. The S-plot resulting from the pair wise comparison between the 

alanine racemase deletion mutant (GPM292) and the wild-type mc
2
155 cells identified a 

larger number of bins significantly contributing to the class separation. However, as in 

TAM23, serine, glycolate, phosphoserine, lysine, alanine and UDP were increased in 

GPM292. Similarly, TCA cycle intermediates and glutamate were also decreased in 

GPM292. Despite the general similarity between TAM23 and GPM292, there were some 

differences in specific metabolites (Table 9.5). For example, acetate was increased in 

TAM23, but decreased in GPM292. Conversely, lactate increased in GPM292, but 

decreased in TAM23.  
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Figure 9.8. OPLS-DA S-plots comparing the 1D 
1
H NMR spectra obtained from M. 

smegmatis a) TAM23 and mc
2
155, b) GPM292 and mc

2
155 cell lysates. Each point in 

the S-plot represents a specific bin of integrals for a chemical shift range of 0.025 ppm, 

where the points at the extreme ends of the S-plot are labeled and are major contributors 

to the class distinction. 
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Increase Decrease 

TAM23 GPM292 TAM23 GPM292 

Acetate Alanine 
Alpha-

ketoisovalerate 
Acetate 

Alanine Aspartate Ethanol Ethanol 

ATP ATP Fatty Acid Fatty Acid 

GABA Glycolate Glutamate Glutamate 

Glucarate Glucarate Glycerol Glycerol 

Glycolate Lactate Isoleucine Isoluecine 

Lysine Lysine Lactate 
NAc-glucosamine-6-

phosphate 

Phosphoserine Phosphoserine 
NAc-glucosamine-

6-phosphate 
Oxaloacetate 

Serine Serine Oxaloacetate Succinate 

Succinate Succinate Succinate Valerate 

Threonine Threonine Valerate 
 

UDP UDP 
  

 

  

Table 9.5. M. smegmatis alr mutants and wild type metabolites in absence of D-

alanine 
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The global NMR metabolomics experiment was repeated using M. smegmatis 

mc
2
155, TAM23, and GPM292 cells grown in MADC supplemented with 50 mM D-

alanine. Again, the PCA 2D scores plot contained three distinct clusters indicating a 

different metabolome between the M. smegmatis wild-type and alanine racemase mutant 

strains supplemented with D-alanine (Figure 9.9a). The scores plot indicated that PC1 

and PC2 corresponded to 26.1% and 14.7% of the variation in the data, respectively. 

More importantly the three clusters were primarily separated along PC1 suggesting the 

separation was dominated by the inactivation of alanine racemase, while inherent 

variations within each group contributed to the variations in PC2.  

Similarly, the OPLS-DA 2D scores plot exhibited a similar class separation 

between M. smegmatis mc
2
155 wild-type cells and the two alanine racemase mutants 

(Figure 9.9b). The OPLS-DA yielded a reliable fit as evident by R
2
X of 0.559, R

2
Y of 

0.926, and a Q
2
 of 0.862. Importantly, cross validation using CV-Anova yielded a 

statistically significant p-value of 2.05e
-10

, validating the class separation between the 

two alanine racemase mutants and the mc
2
155 wild-type cells. Again, TAM23 and 

GPM292 formed distinct clusters along the orthogonal component, indicating a different 

metabolome between the two strains in presence of D-alanine. The S-plot from OPLS-

DA was used to identify the bins (chemical shifts) that significantly contributed (0.1 or -

0.1) to the class separation (Figure 9.10). The assigned metabolites are summarized 

(Table 9.6). The pairwise comparison between the alanine racemase insertion (TAM23) 

and deletion (GPM292) mutants to wild-type mc
2
155 cells showed some remarkable   
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Figure 9.9. a) PCA 2D scores plot and b) OPLS-DA 2D scores plot comparing the 1D 
1
H 

NMR spectra obtained from lysates of M. smegmatis mc
2
155, TAM23, and GPM292cells 

grown in MADC media supplemented with 50 mM D-alanine. The wild-type M. 

smegmatis mc
2
155 cells were designated the control class in the OPLS-DA, and the 

remainder of the cells was designated as the mutant class. The OPLS-DA used one 

predictive component and one orthogonal component to yield a R
2
X of of 0.559, R

2
Y of 

0.926, and a Q
2
 of 0.862. Cross validation using CV-Anova yielded a p-value of 1.205e

-

10
. The ellipses correspond to the 95% confidence limits from a normal distribution for 

each cluster. 
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Figure 9.10. OPLS-DA S-plots comparing the 1D 
1
H NMR spectra obtained from M. 

smegmatis cell lysates a) TAM23 and mc
2
155 b) GPM292 and mc

2
155. All cells were 

grown in MADC supplemented with 50 mM D-alanine.  
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Increase Decrease 

TAM23 GPM292 TAM23 GPM292 

 

Citrulline 

 

Alanine 

 

Alanine 

 

Alpha-ketoglutarate 

Fatty Acid Citrulline 
Alpha-

ketoglutarate 
Glucose 

Glutamate Fatty Acid GABA GABA 

Isoleucine Glutamate Lysine Lysine 

Oxaloacetate Isoleucine Ornithine Ornithine 

Succinate Lactate Trehalose Trehalose 

Threonine Oxaloacetate Valine Valine 

 
Succinate 

  

 
Threonine 

  

 
Ureidopropionate 

 

  

   

Table 9.6. M. smegmatis alr mutants and wild type metabolites in presence of 50 

mM D-alanine. 
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similarities. Metabolites that were increased in TAM23 and GPM292 included glutamate, 

TCA cycle intermediates, isoleucine, threonine, and compounds with fatty acyl side 

chains. These metabolites were also identified in the absence of D-alanine (Table 9.5). 

Metabolites that were decreased in TAM23 and GPM292 included trehalose, lysine and 

valine. Importantly, the changes in alanine and glucose were different between the 

alanine racemase mutant strains, where alanine was increased in GPM292, but decreased 

in TAM23. Conversely, glucose was decreased in GPM292, but did not appear to change 

significantly in TAM23. Additionally, lactate and ureidopropionate were increased in 

GPM292, but unaffected in TAM23. 

 

9.3.5 Quantitative analysis of metabolite changes in alanine racemase mutants  

The NMR metabolomics experiment was repeated using M. smegmatis mc
2
155, 

TAM23, and GPM292 cells grown in MADC supplemented with 100 M of 
13

C-labeled 

D-alanine. 
13

C-labeled metabolite extracts from three sets of each strain, mc
2
155, 

TAM23, and GPM292 were analyzed using time-zero 
1
H-

13
C HSQC (HSQC0) 

experiments [35, 46]. The 2D 
1
H-

13
C HSQC NMR spectra allows for easier identification 

of metabolites because of the reduced complexity and spectral overlap compared to the 

1D 
1
H NMR spectra. Also, the coupled 

1
H and 

13
C chemical shifts obtained for each C-H 

pair in the 2D 
1
H-

13
C HSQC spectra increases the accuracy in metabolite assignments. 

The 2D 
1
H-

13
C HSQC experiment was performed to monitor the flow of carbon-13 

throughout the M. smegmatis metabolome, where only metabolites that originate from the   

supplemental 
13

C-D-alanine are observed (Figure 9.11). Each peak in the 2D 
1
H-

13
C  
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Figure 9.11. Overlay of 2D 
1
H-

13
C HSQC spectra. Comparison of cell lysates of M. 

smegmatis TAM23 (black) and GPM292 (red) supplemented with 100 µM 
13

C-D-alanine. 
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HSQC spectra represents a 
13

C-H pair for a specific metabolite that is labeled by 

matching the chemical shifts against NMR metabolomic databases. A total of 38 

metabolites were identified from the three M. smegmatis strains. Importantly, the 

distribution of carbon-13 throughout the M. smegmatis metabolome in the two alanine 

racemase mutants suggested that there is an alternate metabolic pathway involving D-

alanine. The metabolite concentrations derived from 
13

C-D-alanine were compared 

between the M. smegmatis mc
2
155 wilt-type cells and the two alanine racemase mutants. 

A concentration for each metabolite was determined by extrapolating peak volumes and 

intensities from a series of three 2D 
1
H-

13
C HSQC spectra at different time points to 

interpolate a time-zero peak volume or intensity. The spectra were collected in triplicate 

to determine the average and standard deviation. The average extrapolated peak volume 

for each metabolite is directly proportional to a concentration based on a calibration 

curve using 9 
13

C-labeled compounds of known concentration. These results permit a 

direct comparison of metabolite concentration changes between the three M. smegmatis 

strains (Figure 9.12). For example, an 8-fold increase in alanine was observed for 

GPM292 compared to mc
2
155, substantially larger than the increase observed in TAM23 

compared to the wild type strain. Peptidoglycan precursors such as glutamate, lysine, N-

acetyl-glucosamine all decreased significantly in the alanine racemase mutants, as well as 

the concentration of trehalose, an essential precursor for trehalose-containing glycolipids, 

which allows the attachment of glycolipids to arabinogalactan in the cell wall [47]. 
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Figure 9.12. Metabolite concentrations. Bar graphs showing the concentrations of 

metabolites identified in cell lysates from M. smegmatis  mc
2
155 (black), TAM23 (red), 

and GPM292 (blue) using the time-zero 2D 
1
H-

13
C HSQC experiment.  
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9.3.6 Construction, verification and characterization of a M. smegmatis D-alanine 

auxotroph.   

A total of 12,744 mutants were selected after 17 independent transductions of M. 

smegmatis TAM23 with mycobacteriophage phAE159::Tn53711 (Table 9.2). Initial D-

alanine dependence tests, carried out in 3,723 colonies, identified one colony absolutely 

dependent on D-alanine for growth: M. smegmatis TAM23-12. Growth of M. smegmatis 

mc
2
155, TAM23 and TAM23-12 in MADC agar with 50 mM D-alanine was detectable 

after 3 days of incubation. As expected, M. smegmatis mc
2
155 was able to grow in  

absence of D-alanine at day 3 of incubation. Similarly, M. smegmatis TAM23 was also 

able to grow in absence of D-alanine although at day 5 of incubation colonies were 

smaller when compared with the wild type strain (Figure 9.13). M. smegmatis TAM23-12 

was not able to grow in the absence of D-alanine. Bioinformatic analysis of the 

transposition insertion identified murI as the target gene in TAM23-12 (Figure 9.14). 

Identity of the gene in TAM23-12 was confirmed by PCR amplification using specific 

primers outflanking murI.  As expected, TAM23-12 yielded a 3.9 kb fragment that was 

2.2 kb longer than the 1.7 kb wild type mc
2
155 product. Complementation using 

pBUN373 restored M. smegmatis TAM23-12 growth in media without D-alanine (data 

not shown).  
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Figure 9.13. D-alanine dependency of M. smegmatis alr murI double mutant strain. M. 

smegmatis wild type mc
2
155 (1), alr mutant TAM23 (2) and double alr murI mutant 

TAM23-12 (3), grown in MADC agar in  absence (A) or presence (B) of 50mM D-

alanine.  
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Figure 9.14.  Strategy to determine transposon insertion sites.  Insertion of Tn5371 

within the murI gene is depicted (Panel A) with the corresponding transposon elements:  

inverted repeats (triangles), R6K origin of replication (open rectangle), and the 

hygromycin resistant gene (hyg).  Binding sites for the primers of the first round 

amplification are shown as vertical dashed (corresponding to various potential locations 

of the degenerate primer binding sites) or solid lines.  Panel B illustrates the location of 

the insertion site of Tn5371 identified in TAM23-12. 
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9.3.7 Construction, verification and characterization of M. tuberculosis strains with 

inactivation of the chromosomal alr gene.  

Our numerous attempts to inactivate the alr gene in M. tuberculosis H37Rv were 

unsuccessful. A different strategy was then implemented and extra copies of the alr were 

introduced in M. tuberculosis H37Rv before re-attempting the inactivation. The 

recombinant M. tuberculosis H37Rv(pBUN307) strain was confirmed by verifying the 

presence of pBUN307 plasmid DNA (data not shown), and transfected with phBUN1. 

Successful inactivation of the chromosomal alr gene was confirmed by Southern blot 

analysis comparing the expected bands (Figure 9.15a) with the observed patterns (Figure 

9.15b). The chromosomal alr mutant strain with extra copies of alr in pBUN307 was 

named TBcol1. The wild type strain M. tuberculosis H37Rv displayed a pattern of 2 

bands of 0.675 kb (also present in TBcol1) and 1,682 kb. Besides the 0.675 kb band, the 

pattern in TBcol1 included two more bands of 0.9 kb (also observed in pBUN288) and 

1.522 kb (also found, as a unique band, in pBUN307). The pattern in pBUN288 included 

another band of 2.634 kb. 

Kinyoun staining for acid-alcohol resistant bacilli revealed no differences 

between wild type, wild type merodiploid or alr merodiploid mutant bacilli. After two 

weeks incubation at 37°C, microscopic examination revealed more dense microcolonies 

in TBcol1 than in the wild type strains. Macroscopic morphology revealed that wild type 

colonies were irregular, raised and wrinkled with more dense growth at the center 

forming a classic cord and less dense and flat borders. In contrast, TBcol1 colonies were 

irregular, raised, wrinkled and compact (Figure 9.16). 
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Figure 9.15 . Southern blot analysis of M. tuberculosis (Mtb) alr mutant for strain 

H37Rv. a) Relevant SacII fragments for plasmid pBUN288, wild type Mtb H37Rv alr 

chromosomal locus, pBUN307, and Mtb alr deletion mutant chromosomal locus.  

Relevant features are alr downstream sequences adjacent to the alr chromosomal locus 

(open boxes), alr gene (black boxes), 624 bp MTBalrdown probe sequences (striped 

boxes), and the hyg marker (dotted boxes).  Different diagrams are not necessarily drawn 

to scale. b):  Southern blot.  DNA was digested with SacII.  MTBalrdown (624 bp) was 

radiolabelled and used as a probe. Lane 1, pBUN288; Lane 2, pBUN307; Lane 3, Mtb 

H37Rv; and Lane 4, Mtb H37Rvalr::hyg-pBUN307(alr+) (Tbcol1).  Fragment sizes 

(bp) are indicated. Bands of 2,634 and 900 were present in pBUN288 (Lane 1).  Plasmid 

pBUN307 displayed a band of 1,522 (Lane 2). Wild type Mtb H37Rv displays a pattern 

of two bands of 675 bp and 1,682 bp (Lane 3). Mtb H37Rv merodiploid strain infected 

with phBUN1 displays a pattern of three bands, the 1,522 bp band from pBUN307 and 

the 900 bp and 675 bp bands corresponding to the mutated chromosomal alr gene. (Lane 

4). 
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Figure 9.16. Colony morphology of M. tuberculosis alr wild type, alr merodiploid, and 

chromosomal alr mutant strains. M. tuberculosis H37Rv (1), H37Rv(pBUN307) 

merodiploid  (2) and alr mutant TBcol1 (3) strains were plated in MADC agar plates  

supplemented  with 50mM D-alanine and incubated at  37ºC.. Individual colonies were 

compared by microscopy at two weeks (A) and macroscopically at 4 weeks (B and C). 
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9.4 Discussion 

As expected, modifications of the mycobacterial cell wall have been associated 

with attenuation and increased vulnerability to external agents and conditions [9, 48]. 

Through the study of mutant strains, this structure has been recognized as an excellent 

target for antimicrobial agents and a rich source of potential vaccine strains. However, 

when designing mutant studies related to cell wall biosynthesis, care must be taken to 

avoid experimental conditions that may lead to inaccurate interpretations. It is known, for 

example, that in vitro conditions not always mimic the in vivo environment and that 

certain media components, such as Malachite Green, may have antimicrobial effects in 

the presence of an altered cell wall [48]. 

 Given the importance of D-alanine  in peptidoglycan biosynthesis [9], the unique 

alr gene in the M. smegmatis and M tuberculosis genomes was expected to be required in 

both species for growth in media devoid of D-alanine. However, our previous studies 

indicated that the M. smegmatis alr gene was not required in absence of D-alanine, 

supporting the existence of an alternative pathway of D-alanine biosynthesis in that 

species [10, 49]. Our findings were further supported by metabolomics analysis 

confirming significant differences between the wild type and the alr mutant metabolomes 

[50].  Controversy appeared when alr auxotrophy for D-alanine was reported by Milligan 

et al [11] in DM22, a cleverly designed M. smegmatis alr deletion mutant. We generated 

our own deletion mutant, M. smegmatis GPM292, in a similar fashion and found that, as 

our M. smegmatis insertional mutant (TAM23), exhibited D-alanine auxotrophy in LBT, 

but did not require D-alanine in MADC agar. These results indicate that the auxotrophy 
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conferred by the alr mutation depends on the testing media. The growth patterns 

observed in different solid media identified casein hydrolysate as the responsible 

component for growth inhibition in LBT and Middlebrook 7H11. Previous reports have 

associated susceptibility to Malachite Green, a synthetic dye and component of 7H10 and 

7H11, to cell wall defects [48].  However, Malachite Green did not inhibit growth of M. 

smegmatis alr mutants as both M. smegmatis TAM23 and GPM292 grew well in 7H10, a 

medium that contains the dye but lacks casein hydrolysate. Therefore, we concluded that 

the lack of growth observed in M. smegmatis alr mutants in 7H11 or LBT was likely due 

to the presence of free amino acids provided by the casein hydrolysate. Further testing 

attributed the inhibitory effect to the presence of L-alanine, L-serine, L-asparagine, or L-

glutamine. Additional studies are warranted to identify the role of these metabolites in 

growth inhibition.  

D-alanine can be synthesized in bacteria through a transamination reaction of the 

general type: D-amino acid + pyruvate  α-keto-acid + D-alanine, catalyzed by D-amino 

acid aminotransferase, encoded by the dat gene. In the case of the intracellular pathogen 

Listeria monocytogenes, inactivation of both alr and dat genes is required to achieve D-

alanine auxotrophy [51]. Unfortunately, a dat homologue has not been identified in 

mycobacteria. However, the existence of an unknown transaminase in M. smegmatis is 

supported by the growth of both M. smegmatis alr mutants to levels similar to the wild 

type strain in media with D-glutamic acid and pyruvate, but without D-alanine. Likewise, 

identification of the glutamate recemase (murI) mutation as responsible for complete D-

alanine auxotrophy in TAM23-12 further supports the involvement of D-glutamate in the 
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alternative pathway of D-alanine biosynthesis in M. smegmatis. Our NMR studies 

revealing decreased glutamate levels in absence of D-alanine and increased levels in its 

presence, compared to the wild type glutamate levels, further strengthens the case for this 

alternative D-alanine biosynthetic route. In summary, the M. smegmatis alr gene is non-

essential and its inactivation confers conditional D-alanine auxotrophy. Otherwise, the alr 

gene is dispensable in absence of D-alanine. Thus, a regulated pathway of D-alanine 

biosynthesis, dependent on MurI and a novel but still unknown D-amino acid 

aminotransferase, underlies this phenotype. 

For M. tuberculosis H37Rv, our study indicates that Alr is an essential function in 

H37Rv, as gene inactivation requires extra wild type copies of the alr gene in either the 

presence or absence of D-alanine in MADC media. These results differ from those of 

Awasthy et al. [12] that were able to obtain H37Rv alr mutants without providing extra 

copies of the gene, by selecting mutants on MADC media supplemented with D-alanine. 

Their results indicate that Alr is not essential in M. tuberculosis since its inactivation 

leads to auxotrophy that can be compensated by a low concentration of D-alanine (e. g., 

10 µg/ml, approx 0.1 mM).  There are several possibilities that could explain these 

seemingly contradictory results. The mutants isolated by Awasthy et al could have 

acquired, during the lengthy selection process in the sucrose selection media, a 

compensatory mutation that partially activates the putative alternative pathway of D-

alanine biosynthesis that we discovered in M. smegmatis. In that case, this activation 

would not be sufficient to allow for growth in complete absence of D-alanine, but allow 

the alr mutants to grow with very little D-alanine. Otherwise, this low requirement would 
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be counterintuitive as mycobacteria incorporate D-alanine in both peptidoglycan and 

glycolipids [49]. In that case, it could be further argued that additional compensatory 

mutations may occur both in vitro and in vivo that could lead to activation of the 

alternative pathway at sufficient levels so as to allow growth in complete absence of D-

alanine. Compensatory mutations leading to increased virulence in vivo have been 

reported for isoniazid resistant strains.  Moreover, Aswasthy et al., noted that alr mutants 

were able to persist at low levels in mice. 

Alternatively, the corresponding H37Rv laboratory strains used in the two studies 

may differ in genetic regions relevant to D-alanine biosynthesis and uptake. In this 

context, these isolates correspond to different American Type Culture Collection 

Catalogue numbers (ATCC 25,698 in our study versus ATCC 27,294 in Awasthy et al.). 

It is to be noted that genomic differences have been reported in H37Rv laboratory strains 

even among isolates derived from the same ATCC substrain. Lastly, it is also possible 

that the stringent selection used in our shuttle plasmid gene inactivation procedure, to 

select directly for double cross over events, inhibits the growth of any potential alr 

mutant strains at a critical time.  Discovery of all genes involved in the alternative 

pathway of D-alanine biosynthesis in M. smegmatis and the presence or absence of 

homologues in M. tuberculosis may help to sort out these alternative hypotheses. 

Regarding the lethal target(s) of DCS in mycobacteria, our studies suggest that 

Alr is not the lethal target in M. smegmatis, as alr mutants can grow in absence of D-

alanine. The inhibitory effect of DCS on M. smegmatis is likely due to another target 

such as D-alanine ligase [52]. Alternatively, DCS may be able to also inhibit the 
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alternative pathway of D-alanine biosynthesis and thus determine a complete shut-down 

of this biosynthetic process. A similar situation may or may not occur in M. tuberculosis, 

depending upon how these possibilities described above are sorted out.  In that case, if 

the genes required for the alternative pathway are partially or fully absent from M. 

tuberculosis, then Alr is likely to be the primary target of DCS. 

Our long term goal is to apply our studies to design novel therapeutic agents 

and/or attenuated vaccine strains that can be used to control human TB. Thus, our 

findings should be interpreted in the context of the in vivo interaction between the 

pathogen and its human host environment. The ability to survive inside human 

macrophages constitutes a major factor in M. tuberculosis pathogenesis. Therefore, 

understanding the dynamic interaction between M. tuberculosis and the host cell is of 

paramount importance in the development of new, more effective tools to prevent and 

control TB. Although this issue has been addressed using cleverly designed in vitro and 

in vivo models of infection, a major drawback is the lack of an appropriate matrix that 

permits their interpretation in the context of pathogen-cell interactomes.  Fortunately, 

completion of the M. tuberculosis and human genomes and recent bioinformatics 

advances have enabled the development of promising genome-wide metabolic 

reconstructions [30, 53-56] that represent important tools to achieve a comprehensive 

understanding of the dynamic interactions between M. tuberculosis and the host cell(s).  

In the context of our study, D-alanine has been identified in human tissues and a 

potential role in neurotransmission has been suggested [57-60].  Free D-alanine (9.52 

nmol/g) has been detected in the brain of normal subjects while higher levels (20.8 
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nmol/g) were detected in Alzheimer’s patients [60]. Moreover, D-alanine is the substrate 

for a human D-amino acid oxidase, an enzyme that has been associated with increased 

susceptibility to schizophrenia. The affinity of the enzyme for D-alanine is higher than 

for its putative substrate, D-serine (Km, approx.1.3 mM and 7.5 mM, respectively) [61]. 

Furthermore, oral administration of D-alanine (100 mg/kg/day) to schizophrenic patients 

resulted in significant clinical improvement without major side effects, making this 

amino acid a promising candidate for schizophrenia pharmacotherapy [62]. The high 

affinity of a human enzyme for D-alanine, coupled with the side effects of the D-alanine 

analog D-cycloserine on the nervous system, indicate that D-alanine may play an 

important role in normal subjects and in patients with certain neurological conditions 

[63]. Therefore, further studies on the specific role of D-alanine in humans are warranted 

in order to maximize the efficacy and safety of novel antimicobacterial tools based on alr 

inactivation. The use of those tools might be contraindicated in the presence of certain 

medical conditions or pharmacotherapy agents. Thus, the success of any application that 

is dependent on the inhibition of D-alanine biosynthesis in M. tuberculosis must be 

evaluated with the assumption that low concentrations of D-alanine are found in human 

tissues. In that context, the results of Awasthy et al. indicate that M. tuberculosis alr 

mutants may be inappropriate as TB vaccine candidates as they could grow to a 

considerable extent in human tissue regardless of the presence or absence of an 

alternative pathway of D-alanine biosynthesis in M. tuberculosis. Likewise, Alr inhibitors 

would not be effective to treat TB as the low concentrations of D-alanine could 

compensate for alr gene inactivation.  In summary, this study indicates that several 
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factors ranging from experimental design to result interpretation, and comprehensive 

knowledge and understanding of the specific interaction between the Mycobacterium and 

the host cell, are extremely important for a successful use of alr mutants in the design of 

novel tools urgently needed to control TB. 
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CHAPTER 10 

METABOLOMICS ANALYSIS IDENTIFIES D-ALANINE-D-ALANINE LIGASE 

AS THE PRIMARY LETHAL TARGET OF D-CYCLOSERINE IN 

MYCOBACTERIA 

 

10.1 Introduction 

Tuberculosis (TB) remains one of the leading causes of morbidity and mortality 

from a single infectious disease on a global perspective [1]. In 2011, 8.7 million people 

were infected with TB with over 1.8 million deaths world-wide. Moreover, the 

emergence of multiple- (MDR-TB) and extensively drug-resistant- (XDR-TB) 

Mycobacterium tuberculosis strains threaten to curtail efforts in disease control. 

Currently, about 3.7% of new TB patients are infected with MDR-TB. To achieve the 

WHO targeted goal of a successful treatment rate of 75% by 2015, a better understanding 

of the molecular mechanisms of action and resistance to existing antibiotics and the 

development of novel drugs that are more potent and safer is urgently needed.  

 D-Cycloserine (DCS) is a second line drug that is currently used as a last resort 

on MDR- and XDR-TB. DCS has been used to treat TB for over fifty years despite a lack 

of knowledge regarding the identity of its lethal target [2].  Although DCS inhibits 

bacterial cell growth, it has serious neurological side effects [3-5]. DCS treatment results 

in psychosis, depression, and convulsions, among other issues. In this context, DCS has 

also been tested in neurological studies and has been shown to act as a partial agonist of 

N-methyl-D-aspartate (NMDA) and glycine receptors [6]. Thus, understanding the source 
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of DCS antimicrobial activity would enable the development of next-generation 

antibiotics for TB that avoids these CNS side effects. DCS is a cyclic analogue of D-

alanine and has been shown to competitively inhibit Alanine racemase (Alr, EC 5.1.1.1) 

and D-alanine-D-alanine ligase (Ddl, 6.3.2.4) [7, 8]. Correspondingly, the current 

understanding of DCS activity against mycobacteria is through the inhibition of Alr 

and/or Ddl that halts the synthesis of peptidoglycan precursors. However, we previously 

demonstrated that Alr is not the lethal target of DCS, suggesting Ddl is the primary target 

in live mycobacteria [9]. This is also consistent with the observation by Takayama et al. 

that the UDP-MurNAc-tripeptide accumulates in M. tuberculosis upon treatment with 

DCS.[10] UDP-MurNAc-tripeptide is the product of the MurE meso-diaminopimelate-

adding enzyme (EC 6.3.2.13) in the peptidoglycan biosynthesis pathway, while  the next 

step involves the MurF D-alanyl-D-alanine adding enzyme (EC 6.3.2.10) ligating the 

UDP-MurNAc-tripeptide with D-alanyl-D-alanine, the product of Ddl [11]. Clearly, the 

inhibition of Ddl by DCS would decrease the production of D-alanyl-D-alanine and lead 

to the observed accumulation of the UDP-MurNAc-tripeptide, as the co-substrate of the 

MurF reaction is decreased.    

Peptidoglycan biosynthesis is an ideal target for drug design because the pathway 

is not present in mammalian cells [11]. Also, the resulting peptidoglycan-arabinogalactan 

complex gives the cell its structural integrity [11-13]. The peptidoglycan layer consists of 

an alternating N-acetylglucosamine and N-glycolated or N-acetylated muramic acid. 

Each N-glycolated or N-acetylated muramic acid is bound to a tetrapeptide consisting of 

an L-alanyl–D-isoglutaminyl–meso-diaminopimelyl–D-alanine (L-Ala–D-Glu–A2pm–D-
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Ala) moiety. The tetrapeptide forms a crosslink between adjacent alternating aminosugars 

where the side chain of meso-diaminopimelate of one group forms a peptide bond with a 

D-alanine or meso-diaminopimelate residue from the adjacent group. This large mycolyl-

arabinogalactan-peptidoglycan complex creates an impermeable barrier that is essential 

for the viability of the cell [14]. This metabolic route includes the D-alanine branch 

pathway consisting of three enzymes that contribute to the synthesis of the glycomuramyl 

pentapeptide involved in the crosslinking of mature peptidoglycan. Alr is a pyridoxal 

phosphate dependent enzyme that interconverts L-alanine and D-alanine [15, 16]. The 

ATP Ddl catalyzes the subsequent peptide bond between two D-alanine moieties [17]. 

The final step is the addition of this dipeptide to the glycomuramyl tripeptide cytoplasmic 

precursor by the ATP-dependent MurF adding enzyme to form the pentapeptide complex 

[18]. As a result, numerous enzymes within the peptidoglycan biosynthesis machinery 

recognize or bind a D-alanine moiety and are potentially inhibited by DCS. Herein, we 

describe our application of Nuclear Magnetic Resonance (NMR) based metabolomics and 

bioinformatics to determine the lethal target of DCS in mycobacteria and to investigate 

the effects of this drug  on central metabolic pathways related to peptidoglycan 

biosynthesis. Our analysis indicates that DCS is a promiscuous inhibitor targeting 

multiple enzymes within the peptidoglycan biosynthesis pathway, but Ddl is the primary 

target. Our results also support the prior observation by Caceres et al. [19] that D-alanine 

is a competitive inhibitor of DCS and its over-production is a primary mechanism of 

resistance. 
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10.2 Method and Materials 

10.2.1 Preparation of M. tuberculosis NMR metabolomics samples 

General procedures for the handling and preparation of  M. tuberculosis NMR 

samples for metabolomic analysis have been described elsewhere [20]. Six (3 for 
13

C-D-

alanine and 3 for 
13

C-D-alanine DCS) M. tuberculosis H37Rv 110 mL MADC broth 

(Middlebrook 7H9 complete media) cultures from glycerol stock were grown shaking at 

100 rpm at 37ºC for approximately 7 days (OD600 0.6-0.8). A 500 L sample was 

removed and kept at 4ºC for CFU determinations. 
13

C-D-alanine (0.1 mM final 

concentration; e.g.,100 μL of a 100 mM stock) was added to all cultures. DCS (50 μg/mL 

final concentration (500 μL of a 10 mg/mL stock)) was added to only 3 flasks. All 

cultures were incubated for an additional 18 hours, taking another OD600 reading and 

removing a 500 μL sample from each flask. Cultures were placed on ice for 5 minutes 

and left on ice throughout the rest of the processing. Cultures were harvested by spinning 

them down at 2000 g at 4ºC for 15 minutes in 50 mL tubes. The samples were washed 

two times (~25-30 mL) with ice-cold double distilled water (ddH2O). The cell pellets 

were re-suspended with 1 mL of ddH2O and transferred to a 2 mL vial consisting of 0.1 

mm silica beads (Lysing Matrix B). The cells were then lysed using a FastPrep-24 

instrument for 60 seconds at 6 m/s. The cellular mixture was centrifuged at 15,000 g at 

4ºC for 10 minutes and the supernatant was extracted to a 1.5 mL tube. 700 μL of ddH2O 

was added to the tube containing the lysing matrix B and briefly vortexed, followed by 

centrifugation, and then transferring and combining the supernatants in a 1.5 mL tube. 

The supernatant was syringe filtered (0.2 µm) into a sterile tube. A 100 µl of the sample 
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(10%) was plated on MADC to verify that there are no live cells. Samples were frozen in 

an EtOH-dry ice bath and stored at -80ºC for 2 months. After verification that the plates 

contained no viable cells (CFUs), the metabolomic samples were taken out of BSL3 

containment, lyophilized and prepared for analysis by NMR. 10 μL of the supernatant 

was used to determine protein concentration as described below for the M. smegmatis 

samples. 

  

10.2.2 Preparation of M. smegmatis NMR metabolomics samples 

NMR samples for 2D 
1
H-

13
C HSQC experiments were prepared from 6 groups of 

triplicate and independent M. smegmatis mc
2
155 cultures using 100 μM 

13
C2-D-alanine 

(
13

C and 
13

C labeled) or 
13

C3-pyruvate as a carbon-13 source. The following groups 

using 
13

C2-D-alanine are mc
2
155 as a control and mc

2
155 treated with 75, 300, or 1200 

μg/mL of DCS. The groups using 
13

C3-pyruvate are untreated mc
2
155 and mc

2
155 treated 

with 75 μg/mL DCS. The replicate cultures were grown at 37°C with shaking at 200 rpm 

in 110 mL of MADC (250 mL flask) until an OD600 of 0.6 was met. 
13

C2-D-alanine or 

13
C3-pyruvate was inoculated to the designated cultures for a final concentration of 100 

μM. The cultures were allowed to grow for 10 minutes and then were treated with DCS to 

a final concentration of 75, 300, or 1200 μg/mL. The cultures were then grown for an 

additional 2 hours before harvesting. Each culture was placed on ice for 5 minutes and 

then centrifuged for 10 minutes at 1500 g and 4ºC. The cell pellets were washed twice 

with 30 mL of ice-cold ddH2O. The cell pellets were re-suspended with 1 mL of ddH2O 

and transferred to a 2 mL vial consisting of 0.1 mm silica beads. The cells were then 
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lysed using a FastPrep-24 instrument for 40 seconds at 6 m/s. The cellular mixture was 

centrifuged for 10 minutes at 12,400 g and 4ºC and the supernatant was extracted. 10 μL 

of the supernatant was used to determine the protein concentration in the extracted 

metabolomics sample. Bio-Rad DC Protein Assay was used to obtain the total protein 

concentration for each sample using bovine serum albumin as standard. The supernatant 

was frozen in a dry ice ethanol bath and stored at -80
o
C until analyzed by NMR. 

Two groups of triplicate and independent M. smegmatis mc
2
155 cultures were 

also grown using 
13

C6-glucose as the carbon-13 source. The two groups are untreated 

mc
2
155 and mc

2
155 treated with 75 μg/mL DCS. The cell cultures were grown in 50 mL 

of minimal media containing 22 mM 
13

C6-glucose, 500 mM ammonium chloride, and 

essential salts. The pH of the minimal media was adjusted to 7.2. The cultures were 

grown as described above until an OD600 of 0.6 was achieved. DCS was then added to the 

selected cultures to a concentration of 75 μg/mL and the bacteria were allowed to grow 

for 2 more hours. The metabolome was extracted as described above.  

Prior to collecting the 2D 
1
H-

13
C HSQC spectra, all metabolomics samples are 

lyophilized and re-suspended in a 500 mM potassium phosphate buffer in 99.8% D2O at a 

pH of 7.2 (uncorrected) containing 500 μM of unlabeled 3-(trimethylsilyl)-propionic-

2,2,3,3-d4 acid sodium salt (TMSP) as an internal standard. The volume used for each 

sample was normalized based on the relative protein concentration determined for each 

sample. The sample with the lowest protein concentration was dissolved in 650 μL of the 

NMR buffer, where the other samples were dissolved in a proportionally larger buffer 

volume based on the relative protein concentrations. In this manner, the final 
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metabolomics sample concentrations were equivalent and directly comparable. 600 μL of 

the reconstituted metabolomics sample was then placed into a 5 mm NMR tube for data 

collection. 

 

10.2.3 2D
 1

H-
13

C HSQC NMR Data Collection 

The 2D 
1
H-

13
C HSQC NMR spectra were collected on a Bruker 500 MHz Avance 

DRX spectrometer equipped with a triple-resonance, Z-axis gradient cryoprobe. A 

BACS-120 sample changer with Bruker Icon software was used to automate the NMR 

data collection. All spectra were collected using the HSQC0 pulse sequence and followed 

the experimental protocol as previously described [21]. The 2D 
1
H-

13
C HSQC NMR 

spectra were collected with a total of 2048 data points and a spectrum width of 5000.0 

Hz, and 64 data points with a spectrum width of 17607.23 Hz in the 
1
H and 

13
C 

dimensions, respectively. A total of 16 dummy scans, 128 scans, a receiver gain of 

9195.2, and a relaxation delay of 1.5 seconds was used to obtain all spectra. 

 

10.2.4 2D
 1

H-
13

C HSQC NMR Data Analysis 

All 2D NMR spectra were processed using the NMRpipe software package [22]. 

A reference spectrum for peak picking was created by adding all spectra together. All 

spectra including the reference spectra was automatically peak picked and the peak 

intensities were organize by their chemical shifts using NMRviewJ  [23]. The observed 

NMR peaks were assigned to specific metabolites using 
1
H and 

13
C chemical shift 

tolerances of 0.05 and 0.40 ppm respectively. Metabominer [24], Madison Metabolomics 
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Consortium Database (MMCD) [25], Human Metabolome Database (HMDB) [26], and 

Platform for Riken Metabolomics (PRIME) [27, 28] were used to identify all metabolites. 

All identified metabolites were verified using KEGG [29] and MetaCyc [30] databases.  

The concentrations of all metabolites were calculated using an extrapolation 

procedure that has been previously described [21]. The concentration for each metabolite 

from the triplicate datasets are then averaged, standard deviation was calculated, and 

Student’s t-tests were used to test for statistical significant (p < 0.05) differences between 

each group. 

 

10.2.5 NMR ligand binding assay for D-alanyl-D-alanine Ligase 

M. tuberculosis D-alanyl-D-alanine ligase was obtained using protocols described 

previously [17]. Ligand binding assays were performed to determine if alanine, ATP, and 

DCS can bind to the ligase individually or in combination. Six combinations of each 

ligand were used: 1) ATP, 2) D-alanine 3) DCS, 4) ATP and D-alanine 5) ATP and DCS, 

and 6) ATP, D-alanine, and DCS. The final concentration for each ligand is 100 μM. A 

second set of the six combinations of ligands were prepared identically, but with the 

addition of 25 μM of  D-alanyl-D-alanine ligase.  NMR inhibition studies of the D-

alanyl-D-alanine ligase were performed using multiple concentrations of D-alanine and 

DCS. A total of 4 mixtures were prepared using 100 μM D-alanine with 0, 250, 500, or 

1000 μM DCS. ATP was kept at a high concentration of 6 mM to prevent any 

competitive inhibition by low ATP:ADP ratios. D-alanyl-D-alanine ligase was titrated 

into the solution for a final concentration of 25 μM. 
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Each of the NMR samples was dissolved in 600 μL of 50 mM Tris buffer (pH 8.0, 

uncorrected) consisting of 10 mM magnesium chloride, 11.1 μM TMSP, and 2% DMSO. 

1D 
1
H NMR spectra were collected using excitation sculpting to efficiently remove the 

solvent signal [31]. A total of 16k data points with a spectrum width of 5482.5 Hz were 

collected using 32 scans and 8 dummy scans. The 1D 
1
H NMR spectra were processed 

using ACD 1D NMR manager version 12.0. The peak area for D-alanine and D-alanyl-D-

alanine was determined and the concentration was calculated based on the TMSP peak.  

 

10.3 Results 

10.3.1 Overall Impact of DCS on Mycobacterium smegmatis and Mycobacterium 

tuberculosis Metabolomes 

In our previous studies, we found that M. smegmatis alr null mutants were able to 

grow on Middlebrook 7H9 medium without D-alanine supplementation [32, 33]. 

Furthermore, principal component analysis (PCA) of NMR metabolomics data revealed 

that M. smegmatis alr null mutants had different clustering patterns in PCA scores plots 

than the wild type and resistant strains indicating that Alr inactivation had a major impact 

on the metabolome [9]. However, the wild type and alr mutant cells treated with DCS 

cluster together in the PCA scores plot, but separate from untreated alr mutant cells, 

indicating that DCS acts on a common target different from Alr. Also, the one-

dimensional (1D) 
1
H NMR metabolomics data showed that glutamate and pyruvate may 

be a source for D-alanine synthesis, suggesting that a transaminase may convert D-(L-

)glutamate into D-alanine. This heterologous racemization of amino acids by a bacterial 
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transaminase has been previously observed [34]. Thus, Alr is not an essential function of 

mycobacteria and is not the lethal target of DCS. We hypothesized that the inhibition of a 

secondary target, possibly Ddl, may negatively impact cell survival and function as the 

lethal target. 

To analyze in depth the mechanism of action of DCS in both M. smegmatis and 

M. tuberculosis, a comparison of the impact of DCS on both microorganisms was 

performed using NMR metabolomics (Figure 10.1). Typically, metabolites from cell 

extracts are detectable by 
1
H-NMR where the intensities of each peak correlate with the 

concentrations of the metabolites. Therefore, any differences in peak intensity between 

organisms indicate a difference in the metabolomes. A spectral comparison between these 

two species indicates that there are few differences in the metabolomes (Figure 10.1a). 

More noticeable, the M. tuberculosis metabolome shows a higher concentration of 

carbohydrates and aminosugars (3.5-4.5 ppm). However, the impact of DCS is similar for 

both M. smegmatis and M. tuberculosis suggesting the mechanism of DCS inhibition is 

similar in both species. The 1D 
1
H-NMR spectrum indicates that alanine (1.43-1.45 ppm) 

showed a large increase while glutamate (2.00-2.45 ppm) had a dramatic decrease in 

concentration when both M. smegmatis and M. tuberculosis were treated with DCS 

(highlighted by blue boxes). In M. tuberculosis, there is an increase in the concentration 

of UDP, acetate, -ketoglutarate while there is a decrease in AMP, glutamine, and 

methionine (Figure. 10.1b). An increase in UDP would be expected because it is an 

important precursor for peptidoglycan synthesis by providing N-acetyl(glycolyl)-

glucosamine and the corresponding muramate UDP-derivatives.  
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Figure 10.1. a) 1D 
1
H NMR spectra comparing the metabolome of M. tuberculosis and 

M. smegmatis with (top) and without (bottom) treatment with DCS. The highlighted 

regions show the major differences between the extracted metabolomes when treated 

with DCS. b) The 1D 
1
H NMR spectra of M. tuberculosis with (top) and without 

(bottom) treatment with DCS. Key metabolite changes are labeled. Overlay of 2D 
1
H-

13
C 

HSQC spectra comparing metabolite extracts from c) M. tuberculosis (black) and M. 

tuberculosis treated with 50 μg/mL DCS (red), d) M. smegmatis (black) and M. 

smegmatis treated with 75 μg/mL DCS (red). The circled region highlights the major 

differences between the untreated and treated cultures. e) Highlighted region of the 2D 

1
H-

13
C HSQC spectra comparing M. tuberculosis (red) and M. smegmatis (blue) treated 

with DCS, with a reference spectrum of  D-alanyl-D-alanine (black). 
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To further quantify metabolite changes resulting from DCS treatment, we 

collected 2D 
1
H-

13
C HSQC spectra after supplementing the bacterial growth medium 

with a carbon-13 source. This procedure allows for monitoring the carbon-13 flow 

through the metabolome. Since the natural abundance of carbon-13 is 1.1%, only 

compounds derived from the 
13

C-labeled metabolite through enzymatic turnover will 

bedetected in the 2D 
1
H-

13
C HSQC spectrum. As the D-alanine pathway is the primary 

focus of our study, both M. smegmatis and M. tuberculosis cells were pulse labeled with 

13
C-D-alanine and treated with DCS shortly thereafter. Cells were further grown for 

approximately half to one generation and harvested. Not surprisingly, the resulting 2D 

1
H-

13
C HSQC spectrum of the metabolomes obtained from the two untreated 

mycobacterial species cells differed (Figure 10.1 c,d).  As observed in the 1D spectra, the 

M. tuberculosis peaks in the 2D 
1
H-

13
C HSQC spectrum appear to be more congested in 

the carbohydrate and aminosugar region (
13

C = 60-80 ppm, 
1
H = 3.0-4.5 ppm). Therefore, 

the carbon-13 flow for M. tuberculosis appears to be directed towards gluconeogenesis. 

This differs from M. smegmatis, where the peaks are well dispersed throughout the 2D 

1
H-

13
C HSQC HSQC spectrum and correspondingly in the metabolome. 

Again, the impact of DCS appears to be similar for both M. smegmatis and M. 

tuberculosis as three additional peaks clearly appeared in both 2D 
1
H-

13
C HSQC spectra 

upon drug treatment (circled region in Figure 10.1c,d). Using metabolomics databases 

containing reference NMR spectra, we were able to identify one of the peaks as alanine 

(
13

C 56.0 ppm, 
1
H 3.54 ppm). This is consistent with the inhibitory effect of DCS on 

Ddl that may lead to an accumulation of 
13

C-D-alanine. However, the two nearby peaks 
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were not identified from the NMR databases. Based on the peak intensities and chemical 

shifts, it was suspected to be a close derivative of D-alanine. To test this hypothesis, we 

collected the natural abundance spectrum of a solution of D-alanyl-D-alanine as a 

reference. The two unknown peaks were a perfect match to this D-alanyl-D-alanine 

reference spectrum (Figure 10.1e) indicating that D-alanyl-D-alanine is accumulated 

upon DCS treatment with supplemental 
13

C-D-alanine. This result was expected from Alr 

inhibition by DCS and the flow of the 
13

C label into D-alanyl-D-alanine [35] as Ddl 

activity is maintained because the supplemented 
13

C-D-alanine effectively competes with 

DCS for the Ddl active site [19]. Further inspection of cell growth curves confirmed that 

the DCS treated cultures when supplemented with 
13

C-D-alanine were growing similarly 

to untreated cells. Thus, 
13

C-D-alanine appears to compete very effectively with DCS and 

promote cell viability in the presence of DCS. This effect would readily explain the well-

known reversal of DCS inhibition by D-alanine [36].  

 

10.3.2 Impact of DCS on the Central Metabolism and Peptidoglycan Synthesis 

 To study the impact of DCS on M. smegmatis, a detailed analysis of changes to 

the metabolome was performed by measuring the 
13

C metabolite concentrations using 2D 

time-zero 
1
H-

13
C HSQC (HSQC0) experiments [21]. Two sets of triplicate cultures were 

grown in minimal media with 
13

C-glucose as the primary carbon source. Cells were 

grown to exponential phase, treated with 75 μg/mL of DCS and grown for one additional 

generation. Analysis of the corresponding cell extracts (Figure 10.2a) indicated that the 

variations in the metabolites identified from the HSQC0 experiment were similar to those   



395 

 

 

 

 

 

 

 

 

Figure 10.2. Bar graphs generated from the average of triplicate 2D 
1
H-

13
C HSQC 

spectra comparing the differences between untreated (black) and DCS treated (white) M. 

smegmatis cultures using a) 22 mM 
13

C-glucose or b) 100 μM 
13

C-pyruvate as the sole 

carbon-13 source. Metabolites having statistically significant perturbations (p < 0.05) 

upon treatment with DCS are displayed in the bar graph.  
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identified from the 1D 
1
H-NMR spectra (Figure 10.1a,b). This further confirms that 

carbohydrate precursors leading towards the biosynthesis of trehalose, glycogen, rhamose 

and UDP-galactose were significantly decreased upon DCS treatment. Moreover, the 

increase in fructose-1,6-bisphosphate highlights the switch to the catabolic route 

suggesting up-regulation of the glycolytic pathway. Glutamate is an important metabolite 

for energy generation, purine synthesis, peptidoglycan synthesis, and transfer of amino 

groups. Consistent with these roles, glutamate was greatly decreased in the presence of 

DCS suggesting the metabolite was catabolized. This same catabolic effect was observed 

on the pools of nucleotide precursors such as dUMP, dCMP, dTDP, and thymidine, 

which were all decreased significantly upon DCS treatment. There is also a significant 

decrease in the concentration of precursors in the oxidative branch of the pentose 

phosphate pathway such as D-glucono-1,5-lactone and 6-phosphogluconate. But, there is 

also an increase in the concentration of D-ribose-5-phosphate and D-ribose, suggesting a 

switch to the non-oxidative branch of the pentose phosphate pathway. 

-alanine is the precursor of important vitamins such as panthotenate via the 

conversion of aspartate to -alanine by the PanD enzyme. Moreover, pantothenate is a 

precursor of Coenzyme A, which is essential for the production of fatty acids and 

peptidoglycan. A significant decrease in the pool of -alanine was also observed, 

potentially suggesting DCS may inhibit the PanD enzyme. Instead, the carbon flow is 

rerouted towards the production of methionine and lysine, the terminal product of the 

pantothenate pathway immediately downstream from meso-2-6-diaminopimelate, a 

component of the peptidoglycan bridge. However, the increase in concentration of N-
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alpha-acetyl-lysine suggests that lysine is also being catabolized. Other peptidoglycan 

precursors such as alanine, UDP-N-acetyl-glucosamine, UDP, D-ribose, D-ribose-5-

phosphate, and carbamoyl-L-aspartate are all significantly increased, consistent with the 

inhibition of peptidoglycan biosynthesis.  

These results were confirmed by a second metabolomics study using 
13

C-pyruvate 

as a carbon-13 source (Figure 10.2b). Carbon flow was initially directed toward 

gluconeogenesis and glutamate production. However, trehalose, myoinositol, glucose-1-

phosphate and glutamate decreased significantly upon DCS treatment. Consistent with 

the inhibition of peptidoglycan synthesis, the carbon flow was also directed towards 

purine and lysine biosynthesis, as observed by the significant increase in UDP, N-

carbamoyl-L-aspartate, and N-alpha-acetyl-lysine. There was also a significant increase 

in proline concentration as the metabolism of this amino acid plays an important role in 

the detoxification of methylglyoxal, a toxic aldehyde generated from the cleavage of the 

phosphate group of dihydroxyactenone phosphate by the enzyme methylglyoxal synthase 

[37].  The over production of methylglyoxal has been associated with the imbalance in 

the anabolic and catabolic processes in the cell [38]. Although we were unable to identify 

methylglyoxal, the increase in proline levels suggests the existence of a mechanism to 

compensate for excessive activity in the catabolic pathways. 

 

10.3.3 The effect of D-alanine on DCS inhibitory activity 

To determine the effect of DCS on the D-alanine pathway, M. smegmatis cultures 

were grown in Middlebrook 7H9 media supplemented with 100 μM 
13

C-D-alanine at 



398 

 

 

 

mid-exponential phase. After 10 min incubation, cultures were treated with either 75, 

300, or 1200 μg/mL of DCS. To determine the uptake of 
13

C-D-alanine, the total area 

under the peaks observed in the 2D 
1
H-

13
C HSQC spectra was compared between treated 

and untreated samples. This is possible because all of the peaks in the 2D 
1
H-

13
C HSQC 

spectrum are derived from 
13

C-D-alanine. We observed that D-alanine was able to 

effectively compete with DCS for uptake. At 75 and 300 μg/mL the total carbon-13 

concentration was approximately 35% higher in the DCS-treated cultures. This indicated 

that D-alanine uptake was increased as needed to produce peptidoglycan precursors and 

increase the internal D-alanine pools to out-compete DCS from internal targets such as 

Alr and Ddl. However, a 15% decrease in D-alanine uptake was observed at 1200 μg/mL 

DCS, which represents a 100-fold molar excess of DCS. 

D-alanine readily reversed cell growth inhibition by DCS. For example, cell 

growth was inhibited when cultures were grown with 
13

C-pyruvate and 
13

C-glucose using 

75 μg/mL DCS. Upon addition of 100 μM 
13

C-D-alanine to the culture medium, growth 

inhibition was not observed even with 300 μg/mL DCS. Consistent cell growth inhibition 

only occurred when the DCS dosage was raised to 1200 μg/mL, a 100-fold molar excess 

of DCS to D-alanine (Figure 10.3a). Comparison between non-inhibitory and inhibitory 

conditions was important to assess the transient effect of DCS on the metabolome (Figure 

10.3b). At 75 or 300 μg/mL DCS, the overall impact on the metabolome was minimal, as 

indicated by the corresponding heat maps of metabolite concentrations derived from 
13

C-

D-alanine (Figure 10.3a). However, major changes were observed in cultures treated with  
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Figure 10.3.  a) Heat map generated from the average of triplicate HSQC0 spectra 

comparing the relative difference in metabolite concentrations between M. smegmatis and 

M. smegmatis treated with 75, 300, or 1200 μg/mL DCS using 100 μM 
13

C-D-alanine as 

the carbon-13 source. The relative differences between the untreated and treated cultures 

are plotted on a color scale from -100% to -25% (red), -25% to 25% (black), and 25% to 

1,200% (green). b) M. smegmatis growth curve comparing untreated (black) cultures to 

cultures treated with 75 (magenta), 300 (blue), 1200 μg/mL (red) DCS. O.D values were 

determined after the treatment of DCS with an initial O.D.600 of ~0.6. 
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1200 μg/mL DCS, a concentration resulting in inhibition of both D-alanine uptake and 

cell growth.  

Increasing the DCS concentration had a major impact on the pool of 
13

C-labeled 

metabolites originating from 
13

C-D-alanine (Figure 10.4). At 75 μg/mL DCS, the internal 

pool of D-alanine increased 12-fold with respect to untreated culture. Similarly, a 4-fold 

increase in D-alanyl-D-alanine and a slight 10% increase in glutamate were also 

observed. At 300 μg/mL DCS, the D-alanine concentration increased 4-fold compared to 

untreated cultures, while the D-alanyl-D-alanine and glutamate concentrations increased 

further by 5.5-fold and 50%, respectively. At 1200 μg/mL, both the D-alanine and D- 

alanyl-D-alanine concentrations were similar in both treated and untreated cultures, while 

the glutamate concentration decreased by 50%. Treatment with increasing DCS 

concentrations also leads to similar changes in other metabolite pools. For example, an 

increase in DCS concentration results in an increase in peptidoglycan precursors such as 

lysine and UDP. These results are consistent with the hypothesis that D-alanine can be 

metabolized by three pathways: i) direct stereospecific conversion into L-alanine by Alr, 

ii) dimerization into the peptidoglycan precursor D-alanyl-D-alanine by Ddl, and iii) 

transamination into pyruvate with concomitant formation of glutamate from -

ketoglutarate (Figure 10.5). As pyruvate turnover is extremely fast (Figure 10.2b), the 

rapid incorporation of the 
13

C-label into glutamate may proceed in three steps: i) 

conversion of D-alanine into pyruvate, ii) pyruvate turnover into -ketoglutarate, and 

finally iii) the incorporation of the 
13

C-label into glutamate by iteration of the first step as 

required by the principle of microscopic reversibility. Thus, in absence of DCS, D- 
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Figure 10.4.  Bar graphs depicting relative concentration differences in metabolite 

precursors a) alanine, b) D-alanyl-D-alanine, UDP, c) glutamate, d)UDP, and e) lysine 

that are involved in the biosynthesis of peptidoglycan. The observed metabolite 

concentration changes result from treating M. smegmatis and M. smegmatis with DCS. A 

positive value indicates an increase in the concentration of the metabolites when the 

cultures are treated with DCS, and a negative value indicates a decrease in the 

concentration of the metabolites when the cultures are treated with DCS.  
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Figure 10.5.  Schematic representation of pathways that may synthesize D-alanine. Alr 

(red path) is inhibited at a dose of 75 μg/mL of DCS, which inhibits the primary pathway 

of D-alanine production. However, inhibiting Alr is non-lethal as the transaminase 

pathway (green path) is hypothesized to remain unaffected upon DCS treatment. This 

reaction may lead to an alternative mechanism of D-alanine biosynthesis that antagonizes 

DCS activity through a competition for Ddl. Ddl (pink path) is inhibited at a dose of 1200 

μg/mL of DCS, inhibition of peptidoglycan biosynthesis initiates a cascade of events 

leading to cell death [39] TCA, tricarboxylic acid.  
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alanine is rapidly converted into L-alanine by Alr as well as other metabolites such as D-

alanyl-D-alanine and glutamate. As the concentration of DCS is increased, Alr inhibition 

leads to label accumulation in the alanine pool, while the D-alanyl-D-alanine pool 

remains constant only decreasing at the higher DCS concentrations (1200 μg/mL) 

reflecting the inhibition of Ddl. Moreover, though the conversion of D-alanine into L-

alanine is inhibited, the results indicate that part of this label is still converted into 

glutamate. These results suggest that DCS first inhibits Alr, but cell growth inhibition 

parallels the inhibitory effect of DCS on Ddl. Moreover, there is a conversion of D-

alanine into glutamate at all DCS concentrations, suggesting that a DCS-insensitive D-

alanine transaminase converts D-alanine into glutamate by steps described above. By the 

principle of microscopic reversibility, this enzyme may also convert glutamate into D-  

alanine. Nonetheless, the major conversion of alanine into glutamate depends on L-

alanine transaminase, as the
 13

C-label incorporated into glutamate decreases significantly 

upon Alr inhibition. Therefore, Ddl rather than Alr, is the main lethal target of DCS, 

while D-alanine transaminase is responsible for the alternative pathway of D-alanine 

biosynthesis (Figure 10.5). It is important to note that other enzymatic reactions that 

produce D-alanine are possible alternative explanations, such as the Strickland reaction in 

the ornithine fermentation pathway [40] or the decarboxylation of D-(L-)-aspartate by a 

D-amino transaminase [41]. Correspondingly, the observed PanD inhibition and decrease 

in -alanine caused by DCS may result from an increase in the production of CoA for the 

Strickland reaction. Of course, the ornithine fermentation pathway that is composed of 

nine enzymes has not been identified in mycobacteria. Alternatively, the observed 
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increase in aspartate upon DCS treatment may suggest D-aspartate is being converted 

into D-alanine through the activity of a D-amino transaminase. Nevertheless, this still 

requires invoking the activity of a transaminase to explain the production of D-alanine 

when Alr is inhibited by DCS. 

 

10.3.4 Impact of DCS on D-alanyl-D-alanine Ligase 

To further investigate the interaction of DCS and the Ddl lethal target, the binding 

of relevant potential ligands with Ddl were followed by NMR. Moreover, the influence of 

a given ligand on the simultaneous or consecutive binding of another ligand was followed 

as well. Previous studies have yielded dissimilar results regarding the dependency of D-

alanine binding on the presence of ATP in solution [8, 17]. To resolve this issue, purified 

Ddl was incubated with ATP, D-alanine, or both ATP and D-alanine and binding was 

analyzed by NMR (Figure 10.6-10.8). The observed NMR peak broadening for ATP 

upon the addition of Ddl indicates that ATP binds strongly to Ddl in the absence of D-

alanine. Conversely, the D-alanine NMR peaked is unaffected by the addition of Ddl in 

the absence of ATP, indicating that D-alanine cannot bind to Ddl without ATP. The 

addition of ATP induces the binding of D-alanine to Ddl and the conversion of D-alanine 

to D-alanyl-D-alanine and ATP to ADP (Figure 10.9). These results are consistent with 

the mechanism of ordered binding and the binding assays reported by Prosser [8]. Ddl 

NMR line-broadening binding assays were also carried out with DCS, DCS and ATP, 

and DCS with both ATP and D-alanine. The DCS NMR peaks broaden and incurred a 

chemical shift change in all three cases indicating that, in contrast to D-alanine, DCS can  
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Figure 10.6. Ligand binding assays comparing the intensities of the ATP peaks (8.28 and 

8.54ppm) in mixtures consisting of: a) 100 μM ATP, D-alanine, DCS and 25 μM Ddl; b) 

100 μM ATP and D-alanine and 25 μM Ddl; c) 100 μM ATP and 25 μM Ddl; and d) 100 

μM ATP as a control. 
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Figure 10.7. Ligand binding assays comparing the intensities of the D-alanine peaks 

(1.45-1.50) in mixtures consisting of: a) 100 μM ATP, D-alanine, DCS and 25 μM Ddl; 

b) 100 μM ATP and D-alanine and 25 μM Ddl; c) 100 μM D-alanine and 25 μM Ddl; and 

d) 100 μM D-alanine as a control.  Formation of D-alanyl-D-alanine (1.33-1.38ppm) is 

formed when ATP, D-alanine, and Ddl are in the same mixture. 
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Figure 10.8. Ligand binding assays comparing the intensities of the DCS peaks (3.95-

4.10 ppm) in mixtures consisting of: a) 100 μM ATP, D-alanine, DCS and 25 μM Ddl; b) 

100 μM ATP, DCS and 25 μM Ddl; c) 100 μM DCS and 25 μM Ddl; and d) 100 μM 

DCS as a control.  
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 bind Ddl independently of ATP. Nonetheless, DCS is a weak binding ligand as evident 

by the modest changes in line-width and chemical shifts consistent with reported Ki 

values of 14 M[8] to 0.9 mM.[42]. Furthermore, no additional peaks were observed 

suggesting that there was no chemical modification to DCS.  This suggests DCS is a 

competive inhibitor that binds to Ddl with no chemical modification. This observation is 

unique compared to inhibition to Alr and D-alanine transaminase.  Alr and D-alanine 

transaminase are pyridoxal-phosphate (PLP) dependent enzymes that are also inhibited 

by DCS. Unexpectedly, DCS and PLP forms a complex stable aromatic tautomer which 

then inhibits the PLP dependent enzymes [43]. 

To confirm these results, we followed the progression of the Ddl (25 μM) reaction 

at varying DCS concentrations and fixed amounts of D-alanine (100 μM) and ATP (100 

μM). Using NMR, the concentrations of the substrates (ATP and D-alanine) and two of 

the products (ADP and D-alanyl-D-alanine) were determined over time (Figure 10.9). In 

the absence of DCS, the conversion of ATP and D-alanine into ADP and D-alanyl-D-

alanine was stoichiometric, but followed a very slow kinetics, reaching a maximum 

conversion in the forward reaction at approximately 4 h (Figure 10.10a). Thereafter, the 

reaction was inhibited by accumulation of the ADP and D-alanyl-D-alanine products. To 

analyze the inhibitory effect of DCS, the reaction conditions were modified by adding  

saturating amounts of ATP at 6.0 mM. Under these conditions, the reaction proceeds to 

completion until D-alanine is exhausted (Figure 10.10b). At increasing DCS 

concentrations, the reaction is progressively inhibited, but never reaches full inhibition.  
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Figure 10.9. 1D 
1
H NMR was used to monitor the conversion of  a) ATP (blue) to ADP (red) and  b) D-alanine (red) to D-alanyl-D-

alanine (blue) by Ddl. The initial concentrations were fixed at Ddl (25 μM), D-alanine (100 μM), and ATP (100 μM).   
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Figure 10.10. NMR kinetic analysis of a) ADP and b) D-alanyl-D-alanine formation by 

Ddl. The 1D 
1
H spectrum were collected at one hour intervals after the addition of 25 M 

of Ddl into a mixture containing 100 μM D-alanine and 100 μM ATP. c) Plot of D-

alanyl-D-alanine formation as monitored by 1D 
1
H NMR that demonstrates a decrease in 

Ddl activity as a function of increasing DCS concentration: 0 (black), 250 (red), 500 

(blue), 1000 (green) μM of DCS. 
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This is as expected given that DCS binds weakly to Ddl and D-alanine is a competitor of 

DCS. 

 

10.4 Discussion 

DCS is known to inhibit peptidoglycan biosynthesis, but its primary target has 

been a point of controversy and extensive investigation for over fifty years. The effect of 

DCS has been attributed to the inhibition of Alr, Ddl or both [32, 33, 44, 45]. Both Alr 

and Ddl are known binding targets in mycobacteria and their enzymatic activities are 

inhibited by DCS in a concentration dependent manner [19, 35]. Alr is the only known 

enzyme to produce D-alanine in M. smegmatis and M. tuberuculosis. In addition,previous 

studies have shown that the overexpression of alr confers resistance to DCS while alr 

mutant strains are more susceptible [19, 33]. However, overexpression of ddl also leads 

to DCS resistance, but to lower levels [35]. Similarly, contradictory genetic studies have 

been presented that seem to indicate that Alr is required in the absence of D-alanine [44, 

45]. Nonetheless, as we have previously observed
 
[19] these seemingly contradictory 

results may occur because of the different experimental conditions employed by these 

various studies to analyze Alr conditional essentiality. Critically, alr mutants are still able 

to grow in the absence of D-alanine [32, 33]. Also, the NMR metabolomic profiles of alr 

mutants do not match the metabolome of wild type M. smegmatis treated with DCS, 

which indicates that Alr is not the main inhibitory target of DCS [9]. Thus, these studies 

taken together conclusively rule out Alr as the lethal target of DCS in mycobacteria.       
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Figure 10.11. Peptidoglycan biosynthesis pathway depicting the metabolites that were 

identified by 2D 
1
H-

13
C HSQC analysis or from literature results.[46, 47] The arrows 

correspond to metabolites with statistically significant (p < 0.05) concentration increases 

(up) or decreases (down) when comparing DCS treated cells to untreated cells. Circles 

indicate the metabolite concentration is similar (p > 0.05). The p values were calculated 

using the Student’s t-test. Hyphens indicate the metabolites were not identified for the 

specific carbon-13 source. Cells were incubated with 
13

C-glucose and treated with 75 

g/mL of DCS (black arrow), 
13

C-pyruvate and treated with 75 g/mL of DCS (red 

arrow), 
13

C-alanine and treated with 75 g/mL of DCS (grey arrow), 
13

C-alanine and 

treated with 300 g/mL of DCS (blue arrow), 
13

C-alanine and treated with 1200 g/mL 

of DCS (dark blue arrow), and literature data (pink arrows)     
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In this study, we found that DCS does not only inhibit peptidoglycan synthesis, 

but it also caused a cascade of effects on the central metabolism of the cell (Figure 

10.11). Our NMR metabolomics results using both 
13

C-glucose and 
13

C-pyruvate as  

carbon-13 sources showed a large increase in the accumulation of peptidoglycan 

precursors, as would be expected from DCS inhibition of peptidoglycan biosynthesis. 

Furthermore, DCS treatment of both M. smegmatis and M. tuberculosis resulted in a 

metabolic shift towards a catabolic state. We hypothesize that this catabolic shift occurs 

to compensate for the need to increase the synthesis of peptidoglycan precursors used to 

construct the cell wall. The shift towards the non-oxidative branch of the pentose 

phosphate pathway was evidenced by a decrease in oxidative branch metabolites with a 

concomitant increase in ribose-5-phosphate. This effect is most likely associated with the 

inhibition of peptidoglycan synthesis as ribose-5-phosphate is used in the synthesis of 

UTP needed to generate UDP-N-acetyl-glucosamine, which is the initial precursor in this 

biosynthetic step. This metabolic shift is also likely to result in a decrease in mycolic acid 

formation since the pentose phosphate oxidative branch is a major source of NADPH, 

which is required for the synthesis of mycolic and fatty acids. This would be expected to 

further weaken the cell wall and contribute to the bactericidal action of DCS. 

The demonstration that a decrease in the biosynthesis of D-alanyl-D-alanine 

occurs simultaneously with cell growth inhibition shows that Ddl is the primary target of 

DCS. However, inhibition of Alr may contribute indirectly to the effect of DCS by 

simply lowering the pools of D-alanine produced [32]. The lower levels of D-alanine 

glutamate as we report here and elsewhere [9, 19, 32, 33]. Other investigators proposed 
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that Alr, rather than Ddl, is the main target of DCS based on the reversal of growth 

inhibition by externally added D-alanine and the weak reversal activity of D-alanyl-D-

alanine [44]. However, our results clearly show that D-alanine and DCS are both 

competitors for Ddl binding, where a significant increase in D-alanine concentration can 

mitigate DCS activity by the intracellular protection of Ddl. Ddl is simply a kinetically 

alternative pathway by transamination from pyruvate with concomitant production of 

inefficient enzyme and, correspondingly, a bottle neck in peptidoglycan biosynthesis. The 

externally added D-alanine is simply increasing Ddl activity by outcompeting DCS.upon 

Alr inactivation may allow DCS to outcompete D-alanine for Ddl binding. However the 

inactivation of Alr would not prevent the cells from obtaining D-alanine from an Thus, 

increasing the intracellular pool of D-alanine is an effective mechanism of increasing 

DCS resistance. In conclusion, our combined analysis in this and previous studies 

indicate that DCS acts primarily on Ddl, an alternative pathway provides a source of D-

alanine when Alr activity is inhibited or deleted, and Alr plays an indirect role in 

protecting Ddl by maintaining a higher internal pool of D-alanine. 
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