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The amount of information collected and analyzed in biochemical and bioanalytical research has

exploded over the last few decades, due in large part to the increasing availability of analytical

instrumentation that yields information-rich spectra. Datasets from Nuclear Magnetic Resonance

(NMR), Mass Spectrometry (MS), infrared (IR) or Raman spectroscopy may easily carry tens to

hundreds of thousands of potentially correlated variables observed from only a few samples, making

the application of classical statistical methods inappropriate, if not impossible. Drawing useful bio-

chemical conclusions from these unique sources of data requires the use of specialized multivariate

data handling techniques.

Unfortunately, proper implementation of many new multivariate algorithms requires domain knowl-

edge in mathematics, statistics, digital signal processing, and software engineering in addition to

analytical chemical and biochemical expertise. As a consequence, analysts using multivariate statis-

tical methods were routinely required to chain together multiple commercial software packages and

fashion small ad hoc software solutions to interpret a single dataset. This has been especially true in

the field of NMR metabolomics, where no single software package, free or otherwise, was capable of

completing all operations required to transform raw instrumental data into a set of validated, infor-

mative multivariate models. Therefore, while many powerful methods exist in published literature

to statistically treat and model multivariate spectral data, few are readily available for immediate

use by the community as a whole.

This dissertation describes the development of an end-to-end software solution for the handling

and multivariate statistical modeling of spectroscopic data, called MVAPACK, and a set of novel

spectral data acquisition, processing and treatment algorithms whose creation was expedited by

MVAPACK. A final foray into the potential existence of n− π∗ interactions within proteins is also

presented.
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Chapter 1

Introduction

As soon as the Analytical Engine exists, it will necessarily guide the future of science.
Whenever any result is then sought by its aid, the question will then arise – by what
course of calculation can these results be arrived at ... in the shortest time?

– Charles Babbage

1.1 Data Handling in Chemometrics

In analogy to biometrics, econometrics and psychometrics, the practice of chemometrics involves the

extraction of chemically relevant information from measurements taken from chemical systems [33].

Naturally, this process of information extraction relies on the construction of mathematical models

that describe a set of experimentally observed data, as well as statistical frameworks that assign

degrees of belief (probabilities) to models, data, and their combinations:

D = f(D) + E

In this highly generalized equation describing chemometric modeling, D is an experimentally mea-

sured dataset, f(D) is a mathematical model that recapitulates D, and E is the model “error”, or

information in the measured data that is not captured or described by the model. The ultimate

goal of the analyst is to generate a set of measured data D and construct a model f(D) that best

describes that data (i.e. such that ||f(D)|| � ||E||). The above general equation describes a case of

“unsupervised” chemometric modeling of the dataset D, but analysts may also choose to construct

a supervised model, where the data are used to predict a set of known responses R:

R = g(D | R) + E′

where the model g(D | R) extracts information from the dataset that best describes R, and the

model error E′ holds the differences between the known and modeled responses. Chemometrics is

intimately connected with the chemical systems it aims to describe, and thus the exact choice of
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mathematical model and statistical framework depends heavily on the particular problem, the data

at hand, and the specific chemical information desired by the analyst.

As chemical systems under investigation increase in complexity, their chemometric description re-

quires a proportionally increasing amount of measured data [33]. Biochemical systems at the levels

of cellular metabolism and protein structure and function are arguably some of the most complex

systems available for study by bioanalytical techniques, and demand vast amounts of spectral data

in order to be suitably described by chemometric models [38, 18, 21, 5, 13, 3, 2, 24]. Proper handling

of these large datasets requires novel tools and algorithms at each stage of the experimental process

(Figure 1.1) in order to ensure maximal information extraction and minimal analyst errors.

Figure 1.1: General Data Flow in Metabolomics.
Data in chemometric analyses of metabolism flows through this general graph, beginning at spectral
data acquisition (0), through to loading and processing of instrumental data (1-3), further data
treatment (4-5), mathematical modeling (6-7) and model validation (8), and terminating on ex-
traction of chemical information (9). In practice, this graph would be completely connected, and
thus cyclic.

1.1.1 Acquisition

Nuclear Magnetic Resonance (NMR) spectroscopy is a popular analytical platform for chemometric

analyses of protein structure and cellular metabolism, due to its ability to simultaneously report

atomic-level details of the chemical environments and motional dynamics of 1H, 13C and 15N nuclei

in biomolecules [1, 20]. While the amount of information contained within one-dimensional (1D)

NMR spectra is high, it is commonly held in a relatively narrow spectral width (e.g. −2.0 – 16 ppm

for 1H spectra). As a result, 1D 1H NMR spectra of complex metabolite mixtures or biomacro-

molecules suffer from severe signal overlap that confounds analysis and interpretation.
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Figure 1.2: Example Nonuniform
Sampling Schedules on a 2D Nyquist
Grid.
Nonuniform sampling schedules produced
by (A) stochastic and (B) deterministic
subsampling of a two-dimensional Nyquist
sampling grid. Comparisons of the perfor-
mance of such schedules are made in Chap-
ter 2.

Ever since the introduction of two-dimensional NMR methods by Jeener and Ernst [10, 25] and the

popularization of three-dimensional methods for studying proteins by Bax and colleagues [23, 19],

NMR spectroscopists have been leveraging 1H–13C and 1H–15N connectivities to spread biomolecular

information from 1D 1H spectra into two or more dimensions. While multidimensional experiments

alleviate signal overlap, they require significantly more time to acquire than 1D spectra, as any

D-dimensional experiment is effectively a (D−1)-dimensional array of 2D−1 one-dimensional exper-

iments.1 Time constraints imposed by throughput requirements, sample stability and instrumental

maintenance have historically forced spectroscopists to harshly undersample their multidimensional

datasets in the time domain, resulting in frequency domain digital resolutions much lower than the

intrinsic line width of their samples [31, 28].

In order to move from this “sampling-limited” regime of data acquisition, the indirect dimensions of

multidimensional NMR experiments may be nonuniformly sparsely sampled (Figure 1.2), reducing

the time required for data collection while simultaneously enabling increased digital resolution [27].

When combined with non-Fourier reconstruction algorithms such as Maximum Entropy, `1-norm

Minimization, and Multidimensional Decomposition [26], this technique of nonuniform sampling

(NUS) is capable of producing high-quality, high-resolution multidimensional spectra in a fraction

of the time required by traditional uniform sampling. However, the choice of which data points

to subsample from a uniform Nyquist grid is nontrivial and has typically been made by random

sampling methods [15, 22].

1The factor of 2D−1 arises from the fact that each dimension is collected in hypercomplex quadrature, as discussed
in more detail in Chapter 3.
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1.1.2 Processing and Treatment

More often than not, effective chemometric modeling of raw experimental data requires the data

to be slightly modified from its original form. As an example, two commonly utilized soft bilin-

ear modeling algorithms, principal component analysis (PCA, [17]) and partial least squares (PLS,

[34]), analyze the eigenstructure of one or more data matrices, and require subtraction of the sample

mean and scaling by the sample standard deviation in order to operate most effectively. When this

modification is instrumentation-specific, it is referred to as processing; otherwise, it is considered a

form of statistical treatment. The choice of which processing and treatment methods to apply to a

given dataset D varies, depending on how the data were collected, which model f(D) is used, and

what information is sought from the model by the analyst.

Processing of NMR spectral datasets presents unique challenges to the analyst, as each spectrum is

collected in hypercomplex quadrature [29] without absolute phase information. As a result, NMR

spectra must be phase-corrected to maximize the real spectral component (cf. Chapter 3). When

multiple spectra are processed as part of a statistical ensemble, any differences in phase between

spectra become a contributing factor to undesirable within-group variation that inflates model er-

rors. Thus, methods of phase-correcting multiple spectral observations are required when those

observations will become inputs into multivariate modeling algorithms [36].

Once instrument-specific processing has been performed on a dataset D, general statistical treat-

ment operations may then be necessary, depending on the model function f(D) being utilized. One

commonly practiced method of preconditioning the eigenstructure of D for PCA and PLS, known

as binning or bucketing, involves partitioning D into smaller signal-containing spectral regions and

integrating or vectorizing those regions in order to achieve reduced data dimensionality. Multiple

methods of binning one-dimensional datasets have been developed, ranging from näıve uniform sub-

division algorithms [14, 30] to high-performance recursive methods [6, 8]. However, at the time

of this writing, no methods of intelligently (non-uniformly) binning multidimensional datasets have

been developed, essentially restricting bilinear PCA and PLS modeling to using 1D 1H NMR spectral

data in NMR chemometric studies of metabolism.
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Figure 1.3: Example Binning Result from a 1D 1H NMR Dataset.
Full-resolution (A) and adaptively intelligently binned (B) 1D 1H NMR spectra from a chemometric
study of brewed coffee roasts. Spectral color indicates the observation index, and dashed lines
indicate bin boundaries. Further discussion of binning may be found in Chapters 3 and 6.

1.1.3 Modeling and Validation

Once a dataset D has been suitably processed and treated, a model f(D) may be trained on its con-

tents. Within chemometrics, principal component analysis (PCA) is undoubtedly the most routinely

used modeling algorithm for describing relationships between multivariate spectral observations [4],

because it provides an unbiased, simplified picture of the data in a low-dimensional “scores” space.

The scores obtained from PCA models of spectral data are useful for determining statistical dis-

tances between experimental groups [7, 35], which are effective predictors of the reliability of any

regression models that may be trained on the same data.

Another multivariate algorithm of equal popularity to PCA in chemometrics is partial least squares

(PLS), which is used for solving regression and class discrimination problems on multivariate data

[34]. While PLS provides a similar low-dimensional scores-space view of spectral observations, its

true power in chemometrics lies in its ability to report “loadings”, which are spectral contributions

that predict a set of chemical properties.

The combination of PCA and PLS as a methodology for studying complex spectral datasets has

proven highly useful in chemometrics, most notably so in the field of metabolomics [21]. However,

analysts must take care when using models produced by these methods, as they have not been

determined using standard (over-determined) least-squares methods and may over-fit a dataset at

the expense of generality, which is required for broad inference [32]. Rigorous application of cross-
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validation methods, including internal and external cross-validation [39, 11], response permutation

testing [12] and CV-ANOVA [9], is required in order to ensure that trained multivariate models are

reliable and generalizable to later measurements.

1.1.4 Inference

Once multivariate models have been trained and validated on a given dataset, they may finally be

utilized for the extraction of chemical information from that dataset. Often, this process of inference

revolves around the analysis of separations between one or more experimental groups in PCA or

PLS scores space. Because scores-space separations are often used as justification for further costly

experimentation, it is important to quantitatively measure these separations using proper statistical

tools [35].

1.2 Summary of Work

By and large, this dissertation follows the logical flow of a data analyst in the field of NMR

metabolomics, working from methods in compressed data acquisition, through a description of multi-

variate analysis techniques, to processing, treatment and validation of multivariate modeling results,

and ending with a solution to a bioinformatics data handling problem: the correlation between high-

resolution protein structure and backbone chemical shifts.

Chapter 2 begins by introducing a gap-based nonuniform sampling framework that provides sev-

eral attractive advantages over traditional probability density-based nonuniform sampling methods.

While most methods of generating nonuniform sampling schedules rely on randomly sampling from

a specified weighting function that is defined over a Nyquist grid, this new method of gap sam-

pling builds up schedules based on the value of a “gap equation” that specifies the spacing between

sampled Nyquist grid points. The gap sampling framework is first defined, and comparisons in per-

formance are made between specific forms of gap sampling and the stochastic Poisson-gap sampling

method from Hyberts and Wagner [16].

A comprehensive description of the required data handling tasks – steps (1-9) in Figure 1.1 –

in metabolic fingerprinting and untargeted metabolic profiling studies is provided within Chapter 3.

Additional practical guidelines on the relationship between class separations in PCA scores space
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and reliability of OPLS-DA models on the same data are also presented. Examples of applied mul-

tivariate analysis in metabolomics are given in Chapter 4.

Chapter 5 introduces the MVAPACK toolbox for chemometrics as a complete solution to the data

handling problem in NMR- and MS-based metabolomics studies. Beginning with a set of raw free in-

duction decays from an NMR spectrometer, analysts may now rapidly and easily generate validated

multivariate models using rigorously tested and peer-reviewed routines in MVAPACK. As a result,

both the turnaround time between data collection and interpretation and the likelihood of analyst

error are dramatically reduced when using MVAPACK. The architecture and design rationale of the

MVAPACK toolbox are discussed in this chapter.

Chapter 6 and Chapter 7 focus on a novel method of data processing (Phase-scatter Correction)

and describe its application on datasets acquired from both metabolomics and high-throughput

protein-ligand affinity screens. Chapter 8 introduces a novel method of data treatment (General-

ized Adaptive Intelligent Binning) that enables the direct use of multidimensional data tensors in

PCA and PLS modeling. Both phase-scatter correction and GAI-binning were developed within the

MVAPACK toolbox, which was specifically designed for efficient management of NMR spectral data.

Chapter 9 introduces the multiblock orthogonal projections to latent structures (MB-OPLS) model-

ing method for handling predictive and non-predictive variation in a set of observed data matrices.

Moving from modeling to inference, Chapter 10 describes a small set of portable utilities that gen-

erate statistically sound dendrograms of scores-space class relationships using both bootstrap-based

and parametric methods.

Chapter 11 outlines the generation of a set of bioinformatic tools to analyze the relationship be-

tween the geometry of interacting pairs of carbonyls in protein backbones and their 13C chemical shift

values [37]. These tools, combined with quantum chemical computations, provide strong evidence

for the nonexistence of n−π∗ interactions between these carbonyl groups in native protein structures.

Finally, Chapter 12 summarizes the solutions provided herein to a set of chemometrics and bioinfor-

matics data handling problems and discusses challenges and avenues of effort that will be required

to solve future problems of the same kind.
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Chapter 2

Multidimensional Nonuniform Gap Sampling

Anyone who considers arithmetical methods of producing random digits is, of course, in
a state of sin.

– John von Neumann

2.1 Introduction

The use of nonuniform sampling in multidimensional NMR is rapidly becoming standard practice

in most biomolecular solution-state experiments, thanks in large part to recent developments in fast

reconstruction algorithms, novel sampling schemes, and the continually declining cost of computing

power [18]. The potential benefits of collecting a subset of the full Nyquist grid – including increased

sensitivity and signal-to-noise, improved resolution, and reduced experiment time – have received

significant attention [21, 22, 13, 10, 20] in recent years as a consequence.

One intriguing result of recent investigations into the parameters of NUS experiments is the use

of random deviates for generating sampling schedules [5]. In fully random sampling schemes, a

subset of Nyquist grid points is drawn from a probability density function that varies over the grid,

producing a sampling schedule with a desired distribution of points. Common fully random sampling

schemes utilize uniform, exponential, Gaussian and envelope-matched probability densities [20, 23].

While randomization is a simple means of reducing the artifacts due to aliasing of nonuniformly

spaced samples, it turns the already complex task of schedule generation into that of selecting a

schedule from an ensemble of possibilities, each of which performs differently in practice [11, 17].

Several ad hoc metrics have been proposed to assess the relative performance sampling schedules, but

no universally accepted metric exists to guide the selection of a stochastic schedule from its ensemble

[17, 1]. Without a priori knowledge of the frequency and decay rate distributions of the signals to

be measured, it is difficult to reliably quantify sampling schedule performance [18, 23]. As a re-

sult, numerous recent attempts have been made to reduce or remove pseudorandom seed-dependent

variability from nonuniform sampling algorithms [14, 11, 4, 17]. Such efforts are an important step to-
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wards increasing the practical utility of nonuniform sampling in everyday spectroscopic experiments.

One prominent method designed to reduce seed-dependent variability in pseudorandomly constructed

schedules in Poisson-gap sampling. Through an empirical analysis of Forward Maximum Entropy

(FM) reconstructions of randomly sampled data, Hyberts et al. proposed the use of constrained

Poisson random deviates to define the gaps between sampled points in a Nyquist grid [11]. The FM

reconstruction residuals of these so-named Poisson-gap schedules exhibited a markedly lower depen-

dence on seed value than unconstrained random sampling methods. While Poisson-gap sampling

yields high-quality reconstructions of NUS spectral data, its average behavior is not well-understood,

its implementation for multidimensional Nyquist grids is unclear [8, 9, 7], and its relationship – if any

– to fully random sampling is unknown. To meet this need, this work describes in detail the deter-

ministic generation of sinusoidally weighted multidimensional gap schedules that model the average

behavior of stochastic Poisson-gap (PG) sampling. An expectation sampling probability distribu-

tion is also derived that reflects the average weighting obtained using one-dimensional Poisson-gap

sampling schedules.

Among the myriad of different sampling schemes proposed for NUS data collection [15], burst-

mode sampling similarly concerns itself with gaps between sampled grid points. Unlike Poisson-gap

sampling, which aims to minimize the length of gaps, burst-mode sampling aims to minimize the

number of gaps while keeping the effective dwell time low [16]. We leverage the complementarity

of burst-mode and Poisson-gap sampling in our deterministic gap sampling algorithm to describe a

novel sampling scheme that simultaneously seeks to bias sample collection to early times, minimize

the number of long gaps between densely sampled regions, and minimize the largest gap length in

the schedule. The resulting method, called sine-burst (SB) sampling, exhibits the high performance

of Poisson-gap sampling while retaining the bijective mapping between inputs and outputs offered

by deterministic methods.
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2.2 Theory

2.2.1 Poisson-gap Sequences

Gap schedules on a one-dimensional Nyquist grid are effectively finite integer sequences, computed

from the following recurrence relation:

xi+1 = xi + bg(xi)c+ 1 (2.1)

where xi is the grid index of the i-th term in the sequence and g(xi) is the “gap equation” that

defines the distance between terms. The first term in the sequence, x1, is set to 1 and subsequent

terms are computed until their value exceeds N , the size of the grid. The gap equation g(x) may be

any non-negative function, and may be loosely interpreted as inversely related to the local sampling

density at the grid index xi. Thus, when the gap equation equals zero for all grid indices, gap

sampling will yield a uniformly sampled grid.

Poisson-gap sequences treat the gap equation as a Poisson random deviate having a rate parameter

that varies as either a quarter- or half-sinusoid over the grid indices:

gPG(xi) ∼ Pois
{

Λ sin
(π

2
θi

)}
(2.2)

where Λ is a scaling factor that determines the global sampling density and θi is the fractional grid

index that varies from 0 to 1 over the grid extents:

θi =
xi
N

(2.3)

In all following descriptions of Poisson-gap methods, we shall restrict our attention to rate param-

eters which vary as quarter-sinusoids, where the fractional grid index is multiplied by a factor of

one-half π. This choice of sinusoidal weight produces schedules that are heavily biased to earlier grid

points. Using a factor of π produces half-sinusoidal rate parameters and schedules that are more

densely sampled at both early and late grid points.

Because the expected value of a Poisson distribution is equal to its rate parameter, one may triv-

ially construct a deterministic sinusoidally weighted gap sampler (sine-gap; SG) by setting the gap
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equation equal to the scaled quarter-sinusoid from equation 2.2, as follows:

gSG = Λ sin
(π

2
θi

)
(2.4)

By construction, gap sampling schedules computed according to gSG will describe the average be-

havior of gPG. This is readily verified in one dimension by generating a sufficiently large set of

stochastic Poisson-gap schedules and comparing the mean value of each sequence term to that of

a sine-gap schedule (Figure 2.1). Sine-gap schedules lie centrally within the Poisson-gap ensemble,

while other schedules unrelated to Poisson-gap deviate substantially from the confidence region of

the ensemble.

Figure 2.1: Agreement between Poisson-gap and sine-gap Sequences.
Relative errors between sine-gap (blue lines) and deterministic exponential (red lines) schedules
with respect to the average Poisson-gap schedule at (A) 30% density, (B) 10% density and (C) 5%
density. Confidence intervals indicating plus or minus one standard deviation of the Poisson-gap
ensemble are shown as gray shaded regions. The vertical axes of all inset plots range from −0.2 to
0.2. Because the sine-gap schedules describe the average behavior of the Poisson-gap equation, they
lie centrally within the Poisson-gap ensemble, while any other schedule unrelated to Poisson-gap
(e.g. exponential) does not.

2.2.2 Multidimensional Gap Sampling

Gap schedules on a Nyquist grid having at least two dimensions are generated by placing multiple

one-dimensional sub-schedules onto the grid, each with a different direction and offset from the

grid origin. In practice, this process is accomplished recursively, with planes built up from vectors,

cubes built up from planes, and so forth. Initially, recursion begins on the entire grid. At each

level of recursion, sub-grids are constructed by “masking off” each available grid direction in turn

and constructing the remaining unmasked directions. For example, a three-dimensional xyz cube

will be constructed from repeated sequences of yz, xz and xy planes, and each xy plane will be
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constructed from repeated sequences of y and x vectors. Once a round of sub-grid construction has

been performed along each direction, the sub-grid offset is incremented and the process is repeated

until no more sub-grids remain at the current level of recursion. The following executable pseudocode

provides a more precise definition of the recursive gap sampling algorithm:

Algorithm 2.1 Multidimensional Gap Sampling Algorithm

def build(N, origin, mask):
D = len(N)
if sum(mask) == 1:
direction = mask.index(1)

dirstring = [’x’, ’y’, ’z’][direction]

print(’sequence along ’ + dirstring + ’ at origin ’ + origin)
return

suborigin = [0,] ∗ D
submask = [0,] ∗ D
done = False

offset = 0

while not done:
done = True

for direction in range(D):
if mask[direction] != 1 or offset >= N[direction]:
continue

done = False

for d in range(D):
if d != direction and mask[d] == 1:
submask[d] = 1

else:
submask[d] = 0

if d == direction:
suborigin[d] = offset

else:
suborigin[d] = origin[d]

build(N, suborigin , submask)

offset = offset + 1

build([8, 4, 4], [0, 0, 0], [1, 1, 1])

Creation of multidimensional gap schedules requires a slight modification to the fractional index,

which now assumes the following form:

θi =
xi +

∑D
d=1Od∑D

d=1Nd
(2.5)
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where Od and Nd are the origin and grid size along direction d, respectively. The above equation is

referred to as “ADD” mode in the context of stochastic Poisson-gap sampling, and effectively results

in multidimensional schedules that exhibit triangular forms [7]. It is worthy of mention that, in the

one-dimensional case, equation 2.5 reduces to equation 2.3.

Finally, whether the Nyquist grid is one- or many-dimensional, a value of the global scaling fac-

tor Λ must be determined that yields the desired number of sampled grid points. Our gap sampling

implementation, like the existing Poisson-gap method, iteratively rebuilds new schedules until Λ has

been suitably optimized. The published implementation uses a heuristic search method that adjusts

Λ based on the relative difference between the desired and obtained global sampling density at each

iteration.

2.2.3 Burst Augmentation

Recent statistical descriptions of the discrete Fourier transform have shown that the bandwidth of a

nonuniformly sampled signal is related to the greatest common factor of the gaps between sampled

grid points [2]. One proposed method of increasing bandwidth and reducing artifacts in NUS data

is to sample in multiple short bursts having zero gap length [16]. Using gap sampling, this may be

accomplished by modulating the gap equation between zero and its maximum value several times

over the Nyquist grid, like so:

gSB(xi; d) = Λ sin
(π

2
θi

)
sin2

(π
4
Ndθi

)
(2.6)

The sine-burst gap equation gSB combines the sinusoidal forward-biasing and minimized gap lengths

of Poisson-gap sampling with the minimized effective dwell time of burst-mode sampling, and does

not require the use of random deviates to achieve reasonable artifact suppression.

2.2.4 Expectation Sampling Distributions

One disadvantage of stochastic gap equations is that they provide no direct measure of how likely each

Nyquist grid point is to be sampled. While one may speculate on the approximate weighting obtained

by a given gap equation, quantitation of the expectation of the sampling distribution requires the

construction and averaging of a large number of sampling schedules (cf. Figures 2.2, 2.3 and 2.4).

Fortunately, the expectation sampling distribution of a given gap equation may be analytically
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Figure 2.2: Poisson-gap 1D Expectation Sampling Distributions.
Expectation sampling distributions computed by averaging 50,000 one-dimensional Poisson-gap
schedules of varying densities, with quarter-sinusoidal (A) and half-sinusoidal (B) weightings. The
lighter blue, green and red points were computed from schedules having 30%, 10% and 5% sampling
density, respectively. The dashed lines overlaid on each set of points correspond to the analytic
sampling distribution (equation 2.11) derived from gPG. Values of Λ were 5.0, 25.4 and 62.9 for
30%, 10% and 5% sampling density, respectively.

obtained by computing the probability of sampling each point on the grid using a recursive formula.

We define an expectation sampling distribution p(i) that varies over a one-dimensional Nyquist grid

of N points as follows:

p(i) =

i−1∑
k=1

p(i | i− k)p(i− k) (2.7)
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where p(i | i−k) is the probability of grid point i being emitted from grid point i−k, which requires

a gap size of k − 1:

p(i | i− k) = Pr {bg(i− k)c = k − 1} (2.8)

Figure 2.3: Poisson-gap 2D Expectation Sampling Distributions.
Expectation sampling distributions of two-dimensional Poisson-gap schedules computed in strict
accordance to Algorithm 2.1. Top panels were produced by averaging 50,000 two-dimensional sched-
ules, and bottom panels were computed using equation 2.12 with appropriate substitutions of the
Poisson probability mass function. Sampling densities of 30%, 10% and 5% are shown in panels (A,
D), (B, E) and (C, F), respectively.

In other words, the probability of sampling any given grid point is the weighted sum of the proba-

bilities of arriving at that point from all prior points. In the case of Poisson-gap sampling, the gap

equation is a Poisson random deviate:

Pr {bg(xi)c = k − 1} =
λ(xi)

k−1

(k − 1)!
e−λ(xi) (2.9)

where the rate parameter λ(xi) varies sinusoidally over the Nyquist grid:

λ(m) = Λ sin
(πm

2N

)
(2.10)

By combining the above four equations, we arrive at the sampling distribution of a one-dimensional
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Poisson-gap sequence:

p(i) =

i−1∑
k=1

Λk−1

(k − 1)!
sink−1

(
π[i− k]

2N

)
exp

{
−Λ sin

(
π[i− k]

2N

)}
p(i− k) (2.11)

As in the case of gap sampling, the sampling distribution produced by equation 2.11 is parameterized

only by the scaling factor Λ, where larger values yield more forward-biased schedules (Figure 2.2).

We refer to this equation as the “expectation” Poisson-gap sampling distribution because it describes

the expected value of the probability of sampling any Nyquist grid point, and is not itself useful for

generating schedules that obey gPG.

Figure 2.4: Poisson-gap 2D Expectation Sampling Distributions.
Expectation sampling distributions computed by averaging 50,000 two-dimensional Poisson-gap
schedules generated using code provided by Hyberts and Wagner. Sampling densities of 30%, 10%
and 5% are shown in panels (A), (B) and (C), respectively.

2.2.5 Multidimensional Expectation Sampling Distributions

Extension of equation 2.11 to compute the expectation sampling distributions of stochastic gap

equations in two or more dimensions follows from the fact that sampling along each direction is

essentially independent of other directions within the presented gap sampling framework. As a

consequence, the probability of sampling any multidimensional grid point is therefore the sum of

sampling that point along each grid direction. For a two-dimensional grid (i1, i2), the expectation

19



sampling distribution is the sum of the probability matrices p1(i1, i2) and p2(i1, i2):

p1(i1, i2) =

i1−1∑
k=1

p(i1, i2 | i1 − k, i2)p1(i1 − k, i2)

p2(i1, i2) =

i2−1∑
k=1

p(i1, i2 | i1, i2 − k)p2(i1, i2 − k)

p(i1, i2) = p1(i1, i2) + p2(i1, i2) (2.12)

Figure 2.3 illustrates the expectation Poisson-gap sampling distribution on two-dimensional Nyquist

grids. It is important to note that the Poisson-gap sampler originally proposed by Hyberts et al. does

not strictly follow Algorithm 2.1, because its sampling of each dimension is dependent upon which

points in other dimensions have been previously sampled. This divergence between multidimensional

Poisson-gap and Poisson-gap constructed using Algorithm 2.1 is observed by comparison of Figures

2.3 and 2.4, and is only truly apparent at very low sampling densities.

2.3 Materials and Methods

2.3.1 Generation of Deterministic Schedules

Deterministic sine-gap and sine-burst schedules were constructed using a small C program that

implements the presented gap sampling algorithm described above. Schedules were generated at 30%,

10% and 5% sampling densities on one-dimensional grids having 1,024 points and two-dimensional

grids having 64×64 and 128×128 points. The first and third rows of Figure 2.5 show the deterministic

schedules resulting from gSG and gSB at 30% density on 128×128 grids, respectively.

2.3.2 Generation of Stochastic Schedules

Poisson-gap schedules were constructed using Java source code authored and provided by Hyberts

et al. for generating multidimensional schedules (http://gwagner.med.harvard.edu/intranet/

hmsIST/gensched_old.html). A small command-line wrapper was written to provide direct access

to the core schedule generation functions without use of the graphical interface. Fifty thousand

schedules were computed at each of the sampling densities and grid sizes listed in Subsection 2.3.1.

Each schedule was generated with a unique, large, odd-valued seed number to ensure the broadest

possible sampling of the PG ensemble. The second row of Figure 2.5 shows a representative two-

dimensional Poisson-gap schedule at 30% sampling density.
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Figure 2.5: Comparison of Gap Sampling Schedules.
Comparison of sine-gap, Poisson-gap and sine-burst sampling schedules and their resulting point-
spread functions at varying sampling densities, indicating close agreement between all methods.
The increased artifact intensity in the sine-gap schedule at 5% sampling density is likely due to
slightly increased regularity of sampled grid points, which is reduced by Poisson-gap and sine-burst
sampling. Grid sizes and point spread function colorings are the log-scaled versions of those found
in Figure 1 of [6] in order to emphasize low-intensity sampling artifacts.

2.3.3 Spectral Data Collection

A high-resolution 2D 1H–15N HSQC NMR spectrum was collected at a temperature of 298.0 K on

a sample of uniformly [15N, 13C]-labeled ubiquitin in aqueous phosphate buffer at pH 6.5. Data

were acquired on a Bruker Avance III HD 700 MHz spectrometer equipped with a 5 mm inverse

quadruple-resonance (1H, 13C, 15N, 31P) cryoprobe with cooled 1H and 13C channels and a z-axis

gradient. A 2D gradient-enhanced 1H–15N HSQC spectrum with improved sensitivity [12, 19] was

collected with 16 scans and 32 dummy scans over a uniform grid of 2,048 and 1,024 hypercomplex

points along the 1H and 15N dimensions, respectively. Spectral widths were set to 3,293±4,209 Hz

along 1H and 8,514±1,419 Hz along 15N. The spectrum was windowed with a squared-cosine func-

tion, Fourier-transformed and phase-corrected along 1H to produce a half-transformed spectrum for
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Figure 2.6: Comparison of HSQC Spectral Reconstructions.
Uniformly sampled (A) and IST reconstructed (B–D) 2D 1H–15N HSQC spectra of ubiquitin,
indicating nearly equivalent performance of all three gap sampling methods at low (5%) sampling
density. Spectra shown in (B) through (D) were reconstructed from nonuniformly subsampled copies
of (A) using Poisson-gap (B), sine-gap (C), and sine-burst (D) schedules, respectively. All spectra
are plotted with identical contour levels.

IST reconstruction analysis (vide infra), and subsequently windowed and Fourier-transformed along

15N to yield the “true” uniformly sampled 2D 1H–15N HSQC spectrum. Figure 2.6 compares the

true HSQC spectrum with representative IST reconstructions after subsampling by Poisson-gap,

sine-gap and sine-burst schedules.

In addition, a 3D HNCA NMR spectrum was collected on the same uniformly [15N, 13C]-labeled

ubiquitin sample. The spectrum was collected at 298.0 K with 16 scans and 32 dummy scans over

a uniform grid of 1,024×64×64 hypercomplex points along the 1H, 15N and 13C dimensions, re-

spectively. Spectral windows were set to 3,293±4,209 Hz along 1H, 8,514±1,419 Hz along 15N, and

9,508±2,818 Hz along 13C. The spectrum was windowed with a squared-cosine, Fourier-transformed

and phase-corrected along 1H to produce an F3-transformed spectrum for IST reconstruction anal-
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Figure 2.7: Comparison of HNCA Spectral Reconstructions.
Uniformly sampled (A) and IST reconstructed (B–D) 3D HNCA spectra of ubiquitin at low (5%)
sampling density, projected along the 15N dimension. Spectra shown in (B) through (D) were
reconstructed from nonuniformly subsampled copies of (A) using Poisson-gap (B), sine-gap (C), and
sine-burst (D) schedules, respectively. While sine-gap sampling (C) fails to adequately reproduce
the spectrum due to its high sampling coherence, sine-burst sampling yields an essentially identical
result to Poisson-gap sampling. All spectra are plotted with identical contour levels.

ysis, and subsequently windowed and Fourier transformed along 15N and 13C to yield the “true”

uniformly sampled 3D HNCA spectrum. Figure 2.7 compares 1H–13C projections of the true HNCA

with those of representative IST reconstructions after subsampling by Poisson-gap, sine-gap and

sine-burst schedules.

2.3.4 Computation of Performance Metrics

All computational analyses were performed using in-house developed C programs. An implementa-

tion of the hypercomplex algebra described by Schuyler et al. [24] was used to perform all spectral

data processing. Iterative soft thresholding (IST) reconstructions of subsampled spectra were per-

formed using the algorithm described by Stern et al. [25, 26]. Impulse sets were generated for each
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Figure 2.8: Convergence of IST Reconstruction Residuals.
Convergence analysis of IST reconstructions of (A) 1H–15N HSQC F1 traces and (B) HNCA F2−F1

planes. Both spectra were nonuniformly subsampled with a 5% density sine-gap schedule prior to
IST. Relative `2 reconstruction errors computed from all data points are shown by blue lines, and
errors computed only from initially sampled data points are shown by red lines. Grey dashed lines
indicate the iteration count at which all IST reconstructions were performed to generate histograms
of `2 errors.

Figure 2.9: Relative IST Reconstruction Residuals.
Iterative soft thresholding reconstruction `2 residuals of (A) 192 1H–15N HSQC F1 traces and (B)
10 HNCA F2 − F1 planes from Poisson-gap schedules having sampling densities of 30% (blue), 10%
(green) and 5% (red). Residuals of sine-gap and sine-burst schedules are shown as solid and dashed
vertical lines, respectively.

constructed schedule by setting sampled grid points to one and skipped grid points to zero. At each

sampling density and grid size for which schedules were created, point-spread functions were calcu-

lated by hypercomplex discrete Fourier transformation of each schedule’s impulse set. Point-spread

functions for schedules built on two-dimensional grids are shown for each sampling density in Figure

2.5. For one-dimensional schedules, reconstruction residuals were computed from a subset of 192

F1 traces of the half-transformed HSQC spectrum. The traces were nonuniformly subsampled using
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sine-gap, sine-burst and Poisson-gap (N = 10,000) schedules and reconstructed with 400 iterations

of IST at a threshold level of 98%. After reconstruction, the residual was calculated using the `2-

norm of the differences between the true and reconstructed signals. A convergence analysis was also

performed (cf. Figure 2.8) to ensure convergence of IST to a stationary point, as measured by a

lack of decrease in the `2 error. Figure 2.9A shows the distributions of IST reconstruction residuals

from the HSQC traces. Reconstructions of 10 F2 − F1 planes of the F3-transformed HNCA were

also performed after nonuniformly subsampling using sine-gap schedules, sine-burst schedules, and

a subset (N = 10,000) of the generated Poisson-gap schedules. Figure 2.9B shows IST reconstruc-

tion residuals computed from the HNCA planes, and example reconstructions from each sampling

schedule at 5% density are illustrated in Figure 2.7.

Table 2.1: Peak-picking Performances from IST-reconstructed HSQC Spectra.

Method Matched Lost Gained ρ dH dN

30% 99/99 0/99 2 0.9994 0.000724 0.004459
PG 10% 99/99 0/99 4 0.9983 0.001208 0.008316

5% 98/99 1/99 8 0.9920 0.001430 0.009398
30% 99/99 0/99 0 0.9996 0.000580 0.005957

SG 10% 98/99 1/99 6 0.9983 0.001546 0.007809
5% 98/99 1/99 7 0.9939 0.001660 0.011393
30% 99/99 0/99 1 0.9996 0.000534 0.008977

SB 10% 98/99 1/99 5 0.9981 0.001071 0.010007
5% 98/99 1/99 7 0.9699 0.001482 0.013357

Table 2.2: Peak-picking Performances from IST-reconstructed HNCA Spectra.

Method Matched Lost Gained ρ dH dN

30% 73/74 1/74 0 0.9978 0.000532 0.007556
PG 10% 70/74 4/74 0 0.9905 0.001176 0.015378

5% 66/74 8/74 0 0.9745 0.001488 0.015092
30% 73/74 1/74 0 0.9955 0.000585 0.010554

SG 10% 66/74 8/74 1 0.9864 0.001793 0.016878
5% 64/74 10/74 0 0.9638 0.001903 0.020252
30% 73/74 1/74 0 0.9977 0.000560 0.010475

SB 10% 69/74 5/74 0 0.9883 0.001311 0.015739
5% 66/74 8/74 1 0.9781 0.001852 0.017306

2.3.5 Generation of Peak-picking Statistics

A summary of the relative HSQC peak-picking performance for the IST reconstructions from each

sampling schedule and at each sampling density is listed in Table 2.1. For each 2D 1H–15N HSQC
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Figure 2.10: Gap Length Histograms from Rejection Sampling.
(A) Normalized histograms of gap lengths at various points in an ensemble of 10,000,000 sampling
schedules generated by rejection sampling from the Poisson-gap expectation sampling distribution
(equation 2.11). (B) Normalized histograms of gap lengths produced by true Poisson-gap sampling.
Examination of these histograms clearly indicates that the schedules generated by rejection sampling
are not Poisson-gap schedules.

spectrum of ubiquitin reconstructed via IST at each sampling density and each sampling method,

a set of quality statistics was computed. Peak lists were generated using the peakHN.tcl utility

provided by NMRPipe [3], with a minimum intensity threshold of 3.0 × 107. Then, a greedy al-

gorithm was used to generate a maximum-cardinality bipartite matching between the peak list of

each reconstructed spectrum and the peak list of the true spectrum. Chemical shift windows of

0.015 ppm and 0.08 ppm were used along the 1H and 15N dimensions, respectively, during match-

ing. The numbers of peaks matched, lost and gained in the reconstructed spectra, relative to the

true spectrum, were all counted. Lost peaks were any picked peaks in the true spectrum that had

no match in the reconstruction. Gained peaks were any picked peaks in the reconstruction with

no partner in the true spectrum. The intensities of all matched peaks in each reconstruction were

then compared against their true intensities through the computation of a Pearson correlation coef-

ficient, ρ, which effectively summarizes the linearity of the reconstruction algorithm as a function of

sampling schedule. Finally, root-mean-square chemical shift deviations of all matched peaks along

the 1H dimension (dH) and the 15N dimension (dN ) were also computed. Identical procedures and

parameters, with the exception of an intensity threshold of 6.0 × 108, were used to peak-pick the

1H–15N projections of the uniform and reconstructed HNCA spectra (cf. Table 2.2).
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2.3.6 Analysis of Sampling Distributions

Expectation sampling distributions were also generated from the set of Poisson-gap schedules by

averaging their resulting impulse sets. Figure 2.2 shows the expectation sampling distributions for

one-dimensional schedules having different sampling densities, and Figures 2.3 and 2.4 show the

distributions for two-dimensional schedules having the same densities. The heavy bias towards early

time points in Poisson-gap sampling is reaffirmed in all figures. Sampling distributions were also

computed via equations 2.11 and 2.12 for comparison to the distributions obtained by averaging

multiple impulse sets (Figures 2.2 and 2.3). To verify that fully random sampling from equation

2.11 and gap sampling from gPG are not equivalent, 10,000,000 sampling schedules were generated

by rejection sampling 51 grid points from equation 2.11 at Λ = 62.9 and N = 1024, and histograms

of the gap lengths at each grid point were computed (Figure 2.10). If the two methods were indeed

equivalent, one would expect the histograms in Figure 2.10A to resemble Poisson distributions

(2.10B).

2.3.7 Average Poisson-gap Sequences

For Figure 2.1, each schedule {x(m)
1 , x

(m)
2 , . . . , x

(m)
n } in the generated ensemble of M (here, M =

50,000) one-dimensional Poisson-gap schedules was averaged on a term-by-term basis:

〈xi〉 =
1

M

M∑
m=1

x
(m)
i (2.13)

to produce the average Poisson-gap schedule {〈x1〉, 〈x2〉, . . . , 〈xn〉}. Similar procedures were per-

formed to compute the standard deviation of the Poisson-gap ensemble. Deterministic sampling

schedules with a 1x exponential bias were computed according to procedures outlined by Eddy et

al. [4]. Relative errors (Figure 2.1) between a given sine-gap schedule {y1, y2, . . . , yn} and average

Poisson-gap schedule were computed by a term-by-term subtraction of one schedule from the other,

followed by a division by the average Poisson-gap terms:

∆i =
yi − 〈xi〉
〈xi〉

∀i ∈ {1, 2, . . . , n} (2.14)

Relative errors between the deterministic exponential schedules and the average Poisson-gap se-

quence were similarly computed.
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Figure 2.11: Introduction of Spurs
by Squared-sine Modulation.
Impulse response functions (IRFs) of sine-
gap (blue) and sine-burst (red) sampling
schedules at 5% density, demonstrating the
appearance of low-frequency spurs induced
by burst augmentation of the gap equation.

2.4 Results

While at first glance, the deterministic schedule constructed using gSG in Figure 2.5 may appear

unrelated to the Poisson-gap schedule, it is in fact a realization of Poisson-gap sampling in which all

random draws from the underlying Poisson distribution have resulted in the expected value. This

fact is corroborated by the corresponding point-spread functions, which closely resemble those of

the stochastic example at 30% and 10% sampling density. Reconstruction residuals from IST (Fig-

ure 2.7) also reveal a high similarity between the deterministic sine-gap and stochastic Poisson-gap

schedules at 30% and 10% density. However, the sine-gap PSF becomes less comparable to that of

Poisson-gap at low sampling densities, where the benefits of incoherent sampling are more apparent.

It is worth noting that the striking appearance of sampling artifacts in the sine-gap PSF is a conse-

quence of the log-scaled color gradient used in Figure 2.5, which was necessary in order to visually

expose very low-intensity artifacts.

The addition of burst augmentation in the form of gSB does not substantially alter IST recon-

struction residuals relative to gSG and gPG. However, artifacts arising from regularity in gSG-based

schedules at low sampling densities are diminished by burst augmentation, resulting in point-spread

functions that more closely resemble those from stochastic Poisson-gap sampling. This reduction of

artifacts by burst augmentation comes at a small cost, at low-frequency spurs are introduced into

the sine-burst point-spread function (Figure 2.11) by modulating the gap equation. However, these

spurs are low in magnitude and only readily apparent at very low (5%) sampling density. These

spurs could potentially be reduced by burst-modulating each dimension in the schedule by a different

factor.
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IST residuals of sine-burst schedules (Figure 2.9, dashed lines) are slightly greater than those of

one-dimensional sine-gap schedules and dense two-dimensional sine-gap schedules, but they improve

relative to sine-gap as sampling density is decreased. Therefore, while sine-gap sampling is a valuable

tool for understanding the nature of Poisson-gap sampling, it is clearly bested in performance by

multidimensional sine-burst sampling as global sampling density is decreased. Burst augmentation

re-introduces sampling incoherence into highly coherent sine-gap schedules to produce sine-burst

schedules that more closely resemble Poisson-gap sampling schedules. This added incoherence is

clearly evident in the 1H–13C projections of reconstructed HNCA spectra (Figure 2.7), where the

more incoherent sine-burst schedule yields a more faithful spectral reconstruction than the sine-gap

schedule can.

2.5 Discussion and Conclusions

This chapter has shown that Poisson-gap sampling is a single instance in a class of gap sampling

methods, which may or may not be defined stochastically. Using the well-defined gap sampling

algorithm, two novel deterministic sampling methods have been described: sine-gap and sine-burst

sampling. Neither of these new methods relies on random deviates, and both have comparable

performance to Poisson-gap sampling according to IST reconstruction residuals. From a practi-

cal perspective, Poisson-gap, sine-gap and sine-burst sampling methods produced nearly equivalent

HSQC spectral reconstructions (Figure 2.6) that yielded essentially identical information (chemical

shifts, peak intensities) as highlighted in Table 2.1. Poisson-gap and sine-burst sampling also pro-

duced nearly equivalent HNCA spectra (Figure 2.7) after IST reconstruction, even at low sampling

density. Table 2.2 also summarizes the peak-picking statistics collected on 1H–15N projections of

the reconstructed HNCA spectra. For the practicing spectroscopist, this equates to the ability to

nonuniformly sample at the performance level of Poisson-gap, without specifying a pseudorandom

seed. Gap sampling is a flexible and attractive alternative to traditional probabilistic sampling

methods that use probability densities to define the local sampling density over a Nyquist grid. In

effect, gap sampling approaches the problem of local sampling density from the opposite direction

of probabilistic sampling by defining the distances between samples on the grid. This chapter also

holds a brief derivation of the mathematical connection between stochastic gap equations and their

expectation sampling distributions, which allows for direct visualization of the grid-point weighting

produced by a given gap equation. While these expectation sampling distributions are useful in

describing the sampling behavior of a stochastic gap equation, they do not provide a means of con-
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verting a gap-based sampling method into a fully random sampling method. In other words, it has

been shown that any method of constrained random sampling using a gap equation is inequivalent

to fully random sampling from its corresponding expectation sampling distribution.

Finally, burst augmentation provides a concrete example of how deterministic gap sampling may

be tuned to behave in a similar fashion to pseudorandom numbers. At first glance, the third row

of Figure 2.5 would appear to have been generated stochastically, but it is a consequence of the

squared-sine modulation term in gSB . It has historically been true that stochastically generated

sampling schedules produced fewer prominent artifacts than deterministic methods such as radial

or spiral sampling, due to high regularity (i.e. coherence) of the latter schemes. However, burst

augmentation demonstrates that pseudorandom variates are not strictly required for producing in-

coherent sampling methods. Furthermore, while most pseudorandom number generators are indeed

deterministic for a given seed value, this determinism is inherently different from the determinism

offered by sine-gap and sine-burst sampling. By design, any parameters (e.g. reconstruction resid-

uals) measured from pseudorandomly generated sampling schedules will not be smoothly varying –

and therefore optimizable – functions of their random seed value. As a consequence, no absolute

guarantee of spectral quality is provided to the spectroscopist employing pseudorandom sampling

schedules, even if the relative difference in quality between the best- and worst-performing Poisson-

gap seed values is small at sampling densities above 30%. This problem with seeds has already

been recognized: Poisson-gap and jittered sampling methods are, in fact, two separate attempts

at minimizing – but not removing – the effect of seed values on schedule performance [11, 14, 17].

Deterministic gap sampling completely frees the user from specifying an arbitrary seed value, and

provides a highly general framework that enables further investigation into which features of NUS

schedules yield higher-quality reconstruction results.

The C implementations of Poisson-gap, sine-gap and sine-burst sampling are free and open source

software, and are available for download at http://bionmr.unl.edu/dgs.php. The programs are

highly portable and C99 compliant, so they may be compiled on any modern operating system. An

online schedule generation tool is also provided at the same address for rapid generation of one-, two-

and three-dimensional NUS schedules suitable for direct use on Bruker or Agilent spectrometers. As

defined and implemented, the recursive schedule generation algorithm is not limited to any number

of grid dimensions. However, the online tool has been hard-limited to 3D grids to minimize server

load.
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Chapter 3

Multivariate Analysis in Metabolomics

Essentially, all models are wrong, but some are useful.

– George E. P. Box

3.1 Introduction

The applications of chemometrics are as broad as the field of chemistry itself, but one particu-

larly challenging subdiscipline of bioanalytical chemistry – known as “metabolomics” – has recently

renewed interest in the use of chemometrics [107]. Indeed, the chemical complexity of systems stud-

ied by metabolomics necessitates the use of chemometric techniques: if metabolomics were a nail,

chemometrics would surely be a hammer.

Metabolomics is defined [59] as “the quantitative measurement of the multiparametric metabolic

response of living systems to pathophysiological stimuli or genetic modification.” Such a definition

implies that metabolomics studies offer the finest-grained detail available in the nascent field of sys-

tems biology: a molecular-level convolution of all upstream genomic, transcriptomic and proteomic

responses of an organism to a given stimulus or change [52, 87, 95]. Metabolites are the end product

of all cellular processes, and their in vivo concentrations are a direct result of enzymatic activity.

While a change in the expression level of a protein or its coding gene may not necessarily correlate

directly with the activity of that protein, alterations in metabolite concentrations are the conse-

quence of altered activity [84]. Thus, metabolites are more proximal to a phenotype or disease state

than either genetic or proteomic information. The richness of phenotypic information offered by

metabolomics has been leveraged to identify disease biomarkers [41, 93], to aid in the drug discovery

process [69, 101], and to study plants [45], bacteria [111, 82], nutrition [66], and the environment

[12], among numerous other applications [3].

The rich information promised by metabolomics does not come without a price, and metabolomics

experiments are plagued with difficulty. The number of small-molecule metabolites in a biofluid,
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cell lysate, tissue or organ differs wildly depending on the organism studied, ranging from several

hundred to hundreds of thousands [32]. While databases of commonly encountered metabolites have

been compiled [102, 24, 53], they are by no means complete. Therefore, it is common to encounter

unknown signals during data analysis, complicating the interpretation of metabolic changes between

experimental groups. Metabolite identification is further complicated by a lack of NMR or mass

spectral reference information for known metabolites. Finally, the diversity of chemical and phys-

ical properties of metabolites makes true simultaneous quantitation of all metabolites present in a

system unattainable with current instrumental capabilities [59, 32, 29]. As an illustration, due to

the limited molecular mass distribution of the metabolome, comprehensive metabolomic analyses by

mass spectrometry generally require the prefixing of one or more chromatographic separations prior

to analyte ionization [52, 94].

The extraction of information from data in metabolomics experiments is further complicated by

the inherent variability present within each sample. Every single cell, tissue, organ or organism is

fundamentally unique [71], despite any features (disease state, drug treatment, etc.) it may have

in common with others of its kind. Thus, the differentiation between two experimental groups in

a metabolomics experiment requires the identification of relatively few defining or discriminating

chemical features against a large, complex background of metabolites [102]. Ideally, these few chem-

ical features may be identified as a unique set of metabolites that are directly related to the defining

biochemical states of each experimental group. Unfortunately, all biological systems are easily per-

turbed by experimental or environmental factors, including age, gender, diet, cell growth phase,

nutrient availability, pH and temperature [90, 111]. Variations in sample handling procedures, in-

cluding cell lysis, metabolic quenching, metabolite extraction and sample storage can also introduce

further variability into the measured data. Finally, variations in signal position, intensity and shape

may manifest from instrumental instabilities on a per-sample basis. Each of these numerous sources

of sample variability increases the magnitude of E in any chemometric model that may be applied to

the data (cf. Section 1.1), which decreases the statistical validity of f(D). Therefore, the design of

experiments and analysis of data in metabolomics requires robust methodologies in order to expose

underlying chemical trends from highly complex systems in the form of statistically valid mathemat-

ical models. This chapter describes the theory and best practices of chemometric analyses of data

produced by metabolomics experiments, with a focus on 1D 1H and 2D 1H–13C NMR datasets.
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Figure 3.1: Canonical Example of a Bilinear Modeling Problem.
Illustration of a data matrix X and a response matrix Y, as they are typically used in partial least
squares modeling problems. In metabolomics applications, the data matrix will contain a set of N
spectra, each having K variables. For supervised modeling problems, each observation in the data
matrix is paired with a corresponding row in the response matrix that holds either continuously
varying outputs or binary class memberships. The data are then decomposed into a small number of
score vectors (t) and loading vectors (p), with corresponding weight vectors (w) used to transform
the observations in X into scores-space. The responses in Y are similarly decomposed into scores
(u) and loadings (c). Tick marks denote transposition.

3.2 Multivariate Datasets

In the majority of cases, multivariate datasets used in metabolomics take the form of second-order

tensors in RN×K . More simply, these datasets are real matrices having N rows and K columns. By

convention, the data are arranged as N observation row vectors of length K, where K is referred to

as the dimensionality of the dataset (Figure 3.1). Typical examples of 1D datasets include sets of

1H or 13C NMR spectra [4, 55], direct-injection mass spectra (DI-MS, [13, 79, 112]), infrared (IR)

and Raman spectra [35, 16], or capillary electrophoretograms (CE, [70]). This remarkable diversity

of instrumental platforms used in metabolomics is traceable to the ability of bilinear factorizations

such as principal component analysis (PCA, [51]) and partial least squares (PLS, [103]) to directly

accept these second-order tensors for modeling (vide infra).

The dimensionality of a multivariate dataset may be increased by adding another “mode”, resulting

in a third-order (or higher) tensor (X ∈ RN×K1×K2 , Figure 3.2). In such cases, the total dimension-

ality of the dataset is now the product of the dimensionalities along each mode of the data tensor

(e.g. K1 ×K2). Third-order tensors are the natural data structures for sets of two-dimensional ob-
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Figure 3.2: Canonical Example of
an Unsupervised Trilinear Modeling
Problem.
Illustration of a third-order data tensor X
as may be found in multilinear factoriza-
tion problems. Such data tensors will con-
tain a set of N spectra, each having K1

variables along their first mode and K2

variables along their second. The data ten-
sor is then decomposed into a small num-
ber of score vectors (t) and loading vectors
(p, q), with corresponding weight vectors
(w, z) used to transform the observations
in X into scores-space. Tick marks denote
transposition.

servations, including 1H–1H, 1H–13C and 1H–15N NMR spectra, hyphenated chromatography-mass

spectra (LC-MS, GC-MS), hyphenated electrophoresis-mass spectra (CE-MS), and hyphenated ion-

mobility mass spectra (IM-MS). While third-order data tensors may hold substantially more chemi-

cal information than their second-order counterparts, they are not directly compatible with bilinear

factorization methods, and they require specialized processing, treatment and modeling algorithms

[62, 63]. As an example, tensors may be vectorized into matrices [46] that are suited for PCA

and PLS, but at the cost of lost structural information. Methods such as uncorrelated multilinear

PCA (UMPCA, [62]), on the other hand, provide a means of directly decomposing tensors into

low-dimensional spaces while maintaining structural information.

Figure 3.3: Canonical Example of a Multiblock Bilinear Modeling Problem.
Illustration of a pair of data matrices X1 and X2, their observation-wise concatenation X, and a
response matrix Y, as they are typically used in multiblock partial least squares modeling problems.
In metabolomics applications, each data matrix Xb in the set of B matrices will contain a set of N
spectra, each having Kb variables. The data are then decomposed into a small number of superblock
score vectors (t) and superblock loading vectors (p), with corresponding superblock weight vectors
(w). Each individual data matrix is also decomposed into a set of block scores (tb), block loadings
(pb) and block weights (wb). Tick marks denote transposition.
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Another mechanism of increasing the information content of datasets entering into multivariate

chemometric models is to collect spectral observations on two or more complementary instrumental

platforms for each sample. In such a “multiblock” modeling approach, each data block Xb contains

N Kb-variate observations [99, 77]. Bilinear methods such as consensus PCA (CPCA), hierarchical

PCA and PLS, and multiblock PLS may then be used to provide information about data variation

that is correlated between data blocks. Recent examples of multiblock modeling in metabolomics

include fusions of near-IR and mid-IR spectra [6], 1H NMR and direct injection electrospray mass

spectra (DI-ESI-MS, [65]), and observations from multiple sensors in process control applications

[39].

3.3 Spectral Processing

Following the acquisition of experimental data, instrumentation-specific processing must be applied

to transform the data into a suitable set of real matrices for bilinear modeling, or tensors for multilin-

ear modeling. Because the majority of data presented herein originated from an NMR spectrometer,

and because NMR spectra present unique challenges to the analyst during data handling, the fol-

lowing discussions will center around processing of 1D and 2D NMR datasets.

3.3.1 NMR Signals

Modern NMR spectrometers effectively acquire a rotating-frame free induction decay (FID) through

the use of quadrature phase detection of the incoming signal [57]. This detection method imparts

relative phase information to the time-domain decays by creating an “in-phase” signal component

i(t) and a “quadrature” component q(t) phased ninety degrees from i(t). Indirect dimensions of

multidimensional NMR experiments are also collected in quadrature through interleaved acquisition

of one-dimensional decays that have been cosine- and sine-modulated by the indirect-dimension

signals [80]. As a result, each data point in a D-dimensional NMR signal collected in complete

quadrature exists in a hypercomplex space HD [73], which is defined by a real basis element and D

complex basis elements:

ΦD ≡ {1 · u1 · · ·uD} (3.1)
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where multiplication by any complex element ud results in a ninety degree phase shift in dimension

d, and the basis elements combine commutatively under multiplication, as follows:

uiuj =ujui (3.2)

u2
i =− 1 (3.3)

The basis elements in ΦD are a generating set for the complete set of components of the hypercomplex

space HD. For example, in three dimensions:

Φ3 = {1, u1, u2, u1u2, u3, u1u3, u2u3, u1u2u3} (3.4)

A scalar in HD is then expressed as a linear combination of this component set. For the three-

dimensional example:

x = a+ bu1 + cu2 + du1u2 + eu3 + fu1u3 + gu2u3 + hu1u2u3 (3.5)

or, more generally and succinctly:

x =
∑
φ∈ΦD

x{φ} · φ (3.6)

where x{φ} denotes the real coefficient of x that scales the basis component φ in x. For the above

three-dimensional example, the expression x{u1u3} would evaluate to f . Finally, the expression

of hypercomplex tensors is formally accomplished by defining each coefficient as a real tensor of

appropriate size, like so:

x{φ} ∈ Rk1···kK ∀φ ∈ ΦD (3.7)

where K is the number of modes of the tensor. The above equation may be compactly written as

Hk1···kKD . Any scalar in HD – and therefore any data point in a D-dimensional quadrature-complete

NMR dataset – shall require 2D real coefficients in order to be completely determined. While

the hypercomplex algebras H0 and H1 are isomorphic to the real (R) and complex (C) numbers,

respectively, H2 and H3 are not isomorphic to the quaternions and octonions, as the latter are non-

commutative under multiplication. This hypercomplex algebra, introduced for partial-component

nonuniform subsampling by Schuyler et al. [73], provides an elegant formalism for expressing and

handling NMR data.
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Mathematically, 1D NMR free induction decays are described by the following commonly used

parametric signal model:

f(t) =

M∑
m=1

αm exp {u1(ωmt+ θm)− ρmt} (3.8)

where αm, ωm, θm and ρm represent the amplitude, frequency, phase error and decay rate of the

m-th damped complex exponential in the model f(t). Using the above formalism for hypercomplex

tensors, this signal model is trivially extended to any number of dimensions by multiplying in a

modulation term for each dimension:

f(t) =

M∑
m=1

αm

D∏
d=1

exp {ud(ωm,dtd + θm,d)− ρm,dtd} (3.9)

For example, a 2D FID may be modeled as follows:

f(t1, t2) =

M∑
m=1

αm exp {u1(ωm,1t1 + θm,1) + u2(ωm,1t2 + θm,2)− ρm,1t1 − ρm,2t2} (3.10)

In short, NMR free induction decays may be treated as sums of damped hypercomplex exponentials.

While it is possible to directly parameterize f(t) using either maximum likelihood estimation [19,

20, 17] or Bayesian model selection and estimation [7, 8, 9, 18], this chapter will focus on the

soft modeling of multiple NMR spectra using bilinear matrix factorizations. However, the above

parametric description of NMR data is useful in understanding various processing tasks required by

these hypercomplex tensors.

3.3.2 Time-domain Processing

Processing of acquired NMR data is broken into two stages, where time-domain data is manipulated,

transformed into the frequency domain, and further processed using frequency-domain functions [48].

The most routinely used time-domain NMR processing function – and the first to be applied dur-

ing processing – is referred to as apodization, where the free induction decay tensor is multiplied

point-wise by a window function w(t) that varies over t. Multiplication by this window function

serves several purposes, including noise reduction, resolution enhancement, shaping of individual

resonances and removal of sin(x)/x truncation artifacts in the frequency domain. During apodiza-

tion, it is also common practice to selectively scale the first collected data point in an attempt to

reduce later frequency-domain baseline distortions [81, 34].
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Following apodization, one or more dimensions of the time-domain NMR data may be extended

with zeros, a process known as zero-filling. Doubling of the number of data points by zero-filling

is a well-established method of increasing both the digital resolution and the signal-to-noise ratio

(SNR) of an NMR signal, and further zero-filling only achieves a smoother interpolation of signals

in the frequency domain [34]. A final use of zero-filling is to augment the size of a given dimension

into a power of two, enabling the use of a fast Fourier transform (FFT, [21]) in lieu of the slower

discrete Fourier transform (DFT) to move the data into the frequency domain.

Figure 3.4: Commonly Applied Window Functions.
Window functions (A) produced from a 3.0 Hz exponential (red), a 3.0 Hz Gaussian (green), and a
squared-cosine (blue). Discrete Fourier transforms of the window functions in (A), zoomed around
the first few (low frequency) data points, are shown in (B). Multiplication of a time-domain signal
by a given window function in (A) results in a convolution of its frequency-domain counterpart with
the impulse response in (B). Frequency values in (B) are normalized.

3.3.3 Frequency-domain Processing

When NMR free induction decays have been digitized on a grid of uniformly spaced time-domain

points, the most convenient method of transforming them into the frequency domain is the discrete

Fourier transform (DFT, [10, 73]). Using the introduced formalism for hypercomplex NMR data,

the DFT along dimension d of a time-domain vector f ∈ HND is defined1 as:

sk =
1√
N

N−1∑
n=0

exp

{
−2πud

nk

N

}
fn ∀k ∈ ZN−1

0 (3.11)

which is a linear transformation Fd : HND → HND . Discrete Fourier transformation of multidimen-

sional NMR data along one dimension requires the application of Fd to every d-mode vector of the

1 For succinctness, the set of integers from α to β shall be denoted as Zβα, i.e. Zβα ≡ {i | i ∈ Z ∧ α ≤ i ≤ β}
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hypercomplex tensor, and full Fourier transformation requires such an operation along each mode

of the tensor. Discrete Fourier transformation is computationally efficient when using the FFT, and

requires no prior knowledge about the frequency content of the data. However, when only a subset

of data points have been collected from a uniform Nyquist grid, as is the case during nonuniform

sampling (NUS), the DFT is a sub-optimal estimator of frequency content, and other non-Fourier

methods of transformation are required [10, 67].

Once transformed into the frequency domain, NMR spectra require a phase correction process-

ing step, in which a phase factor Θ(ω) is multiplied point-wise with the data to correct for phase

errors (i.e. θm,d terms in f(t)) in the data. For example, a 1D phase-factor along dimension d would

have the following form:

Θ(ω) = e−udθ(ω) (3.12)

Ideally, the detected time-domain free induction decays would arrive in-phase with respect to the

receiver, and fine tuning of acquisition parameters can often accomplish this [20]. However, variations

in receiver phase, dead time between the transmit and receive gating circuits, and delays arising from

analog and digital filtering can all introduce phase errors. These phase errors mix the in-phase and

quadrature components of the hypercomplex signal, and produce a mixture of desirable absorptive

spectral lines and broad dispersive lines between the real and imaginary components of each data

point. Unmixing of these absorptive and dispersive contributions to the real spectral component

involves the identification of the phase error θ(ω), an expansion of phase error terms as powers of ω:

θ(ω) = θ0 + θ1ω + θ2ω
2 + . . . (3.13)

Realistically, phase errors higher than first-order are not observed in modern NMR spectra, and

phase correction rests on the determination of a zero-order phase error (θ0) and a first-order phase

error (θ1) in each dimension. This determination may be performed manually, through software-

interactive adjustment of zero- and first-order corrections by the analyst. However, manual phase

correction is generally too time-consuming in the case of chemometric studies, where there are tens

to hundreds of spectra to correct. In that case, the task of phase correction is handed to any number

of automated routines that correct each spectrum individually. Spectra may be automatically phase-

corrected by maximization of the most negative absorptive data point [75], analysis of the absorption-

versus-dispersion [23] or symmetry [47] characteristics of spectral lines, baseline optimization [11]
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or entropy minimization [15], to name a few. It is important to note that, when the ultimate fate

of the spectral data is multivariate analysis, the phase-correction of each spectrum in isolation is

wasteful of information that is available from treating the dataset as an ensemble [108], as phase

differences between spectra non-linearly affect both line shapes and baseline, possibly emphasizing

spectral details that contain no chemically or biochemically relevant information.

3.4 Statistical Treatment

The properties of the bilinear factorizations commonly applied in metabolomics dictate that pro-

cessed data tensors be treated by one or more operations before they are suitable for modeling.

These statistical treatments generally aim to either reduce the dimensionality of the data tensor (i.e.

binning and variable selection) or increase the self-consistency of observations and variables (i.e.

alignment, normalization and scaling). Treatment operations are usually instrumentation-agnostic,

as the data at this stage of handling almost always fall into one of the general structures outlined

in Section 3.2.

Figure 3.5: Example Bin Region Selection Results.
Simulated 1H NMR spectra of citrate in 20 samples having pH values normally distributed around
6.0± 0.05 pH units, binned using uniform (A, B), optimized (C, D) and adaptive-intelligent (E, F)
algorithms. Results of bin region integration are shown in the bottom panels.

3.4.1 Binning

Because the chemical shifts of 1H nuclei depend strongly on temperature, pH, ionic strength, and

several other factors that affect their electronic environment, spectral datasets acquired for NMR

metabolic fingerprinting suffer from imprecision in 1H chemical shifts between observations. This

chemical shift imprecision, known as a problem of imperfect correspondence among variables in X
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[1], decreases the reliability and interpretability of multivariate bilinear models (e.g. PCA, PLS)

trained directly on full-resolution spectral data in X. Similar errors in correspondence may also

occur in chromatographic datasets, where small drifts in retention time arise from instrumental in-

stability, analyte interactions, and fluctuations in mobile phase and stationary phase composition

[68]. The traditional method of mitigating imperfect variable correspondence in a data matrix is

to partition the original set of variables into a smaller set of regions, referred to as bins, and to

integrate each bin to yield a data matrix having reduced dimensionality.

While binning masks variable mis-correspondence, filters incoherent instrumental noise, and achieves

substantial dimensionality reduction, it often hides potentially significant variation in low-intensity

resonances nearby strong signals. If bin regions are specified with a uniform size, binning is nearly

guaranteed to split signals or spectral features into multiple bins, resulting in undesirable multi-

collinearities within the reduced variable set. Optimized binning [78] attempts to avoid dividing

signals between bins by adjusting uniform bin boundaries into local minima of the data matrix

mean, 〈X〉. However, because optimized binning begins with a uniform bin set, its practical ability

to minimize peak splitting is limited. More complex methods of region identification use either peak

detection [25] or recursive subdivision [28] in order to define a more optimal bin set without relying

on uniform bin boundaries.

Figure 3.6: Example iCOshift Alignment Results.
Full-resolution (A) and interval correlation-optimized shifting (iCOshift) aligned (B) 1D 1H NMR
spectra from a chemometric study of brewed coffee roasts. Spectral alignment was performed such
that each observation was shifted to maximize correlation with its respective group mean. Spectral
color indicates the observation index.
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3.4.2 Alignment

Binning capably masks variability in signal positions and provides an effective means of dimension-

ality reduction, but it also results in a drastic loss of fine spectral information, as nearby distinct

spectral features have been integrated together in the binning process. When full spectral resolu-

tion is required during model training and interpretation, the correspondence problem in NMR and

chromatographic datasets may be alternatively addressed by signal alignment methods. The most

commonly applied alignment algorithms rely on either a warping transformation [68, 40, 109] or lin-

ear shifts [92, 72, 85] to bring individual variables of each observation into alignment with a reference

observation, which is usually the mean of the data. Warping during alignment is more applicable in

situations where a linear dependence between variable index (e.g. retention time) and peak width is

expected. In contrast, shift-based alignment preserves peak width, which is ideal for spectroscopic

datasets. Like binning, all alignment algorithms must first subdivide the variable set into regions

that are then individually warped or shifted, and considerations similar to those in binning apply

equally well during alignment region selection.

3.4.3 Normalization

Despite the quantitative nature of most spectroscopic platforms, chemometric samples exhibit vari-

able total analyte concentrations due to variations in sample preparation, instrument stability, or

even the samples themselves. These “dilution errors” are especially common in metabolomics exper-

iments using samples of biofluids such as urine, where total concentrations may vary several orders

of magnitude. To ensure spectral intensities in a data tensor are directly comparable across each

observation, normalization is applied to the tensor [107]. The most common normalization method

used in chemometrics is unit-integral or constant-sum (CS) normalization, where each observation

is scaled such that its total integral is unity [22]. CS normalization does more harm than good,

however, as it introduces false correlations between variables and poorly tolerates large disparities

in intensities between each observation.

In an attempt to overcome the drawbacks of CS normalization, Dieterle et al. introduced prob-

abilistic quotient (PQ) normalization, in which the median normalization quotient between all cor-

responding data points is used as an estimator of the true dilution factor [30]. Shortly after, a method

of normalization based on intensity histogram matching (HM) was proposed as an alternative to PQ

normalization, taking cues from image processing algorithms [86]. Based on their ability to more ac-
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Figure 3.7: Effects of Scaling Noisy
Synthetic Spectra.
(A) Set of 40 synthetic spectra containing
two Lorentzian signals. The first set of sig-
nals at 7.0 ppm have normally distributed
intensities of 20 ± 0.5 absolute units, and
the second set at 3.0 ppm are divided into
two sets of intensities, the first normally
distributed around 25 ± 0.5 units and the
second around 30± 0.5 units.
(B) The same set of synthetic spectra after
subtraction of the sample mean of the data
matrix. The two sets of intensities at 3.0
ppm now appear markedly different after
centering.
(C) The set of synthetic spectra after
unit variance (UV) scaling, illustrating the
strong noise amplification effect of the UV
method.
(D) The set of synthetic spectra after
Pareto scaling, in which noise amplifica-
tion is reduced relative to UV scaling.

curately recover true dilution factors, both PQ and HM normalization were reported to outperform

CS normalization on real and simulated 1H NMR metabolomics data matrices. Finally, while more

commonly applied to IR spectroscopic data, standard normal variate (SNV) and its mathematical

cousin, multiplicative scatter correction (MSC) are also candidate methods for normalizing data

tensors produced by NMR and other spectroscopic platforms [38].

3.4.4 Scaling

Because bilinear factorization methods such as PCA and PLS generate models based on the eigen-

structure of the covariance matrices of X and Y (vide infra), they are sensitive to the magnitudes of

individual variables in those matrices. Variables with greater intensity – and therefore greater vari-

ance – in a data matrix will draw the attention of these methods, resulting in an unequal weighting

of variable importance during model training [51, 76, 91]. As a consequence, analysts commonly

apply one or more scaling transformations to their data prior to modeling. The simplest and most
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pervasive method, referred to as Unit Variance (UV) scaling, centers each variable with respect to

its mean and scales by its standard deviation, like so:

x̃nk =
xnk − x̄k

sk
(3.14)

where X̃ is the scaled data matrix, x̄k is the sample mean of the k-th variable over all N obser-

vations, and sk is the corresponding sample standard deviation. Subtraction of the sample mean

facilitates the identification of differences between observations, and scaling by the sample standard

deviation equally weights every variable in X. When data are UV-scaled, methods that normally

analyze covariance eigenstructure will instead rely on scale-invariant correlations between variables.

Although UV scaling achieves an equal weighting of all variables entering into PCA or PLS, it am-

plifies the weight of noise variables relative to that of signal variables, resulting in decreased model

utility and reliability [49]. Pareto scaling applies a less aggressive scaling than UV by retaining

partial covariance between variables in an attempt to reduce this noise amplification:

x̃nk =
xnk − x̄k√

sk
(3.15)

A more advanced scaling method that avoids noise amplification uses a maximum likelihood scaling

transformation (MALS, [49]) that accounts for the estimated distribution of noise in X. Other forms

of scaling have been developed that emphasize various desirable features in a data structure. For

example, variable stability (VAST) scaling multiplies each element by the coefficient of variation of

its variable in order to focus on highly stable spectral features:

x̃nk =
xnk − x̄k

sk
· x̄k
sk

(3.16)

The alternative level scaling method scales data elements by their sample mean, effectively focusing

later analyses on changes in relative magnitude:

x̃nk =
xnk − x̄k

x̄k
(3.17)

However, both VAST and level scaling have a more limited scope of application than the general

UV, Pareto and MALS methods described above, as they yield optimal transformations only on data

structures containing the features they aim to accentuate. For example, VAST scaling is not suited

for data tensors that contain large variation between experimental groups, unless further steps are
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taken to VAST-scale on a (supervised) per-group basis.

A special case for scaling occurs during multiblock modeling when two or more data blocks con-

tain differing variable counts. In these situations, data blocks having more variables would acquire

a larger effective weight during model training. For example, joint modeling of full-resolution 1H

NMR data (K ≈ 103) and mass spectral data (K ≈ 105) would result in a weighting of MS variables

by a factor of ten relative to NMR variables. To achieve equal block weighting, the variables of each

block must be scaled by the square root of the number of block variables:

˜̃xbnk =
x̃bnk√
Kb

(3.18)

where the second tilde indicates block scaling in addition to any standard scaling (e.g. UV, Pareto)

that may have been applied. When all data blocks contain analyte concentrations instead of raw

spectral variables, range scaling may be applied prior to block scaling to remove instrumental re-

sponse factors and transform all concentrations into relative values [76]:

x̃bnk =
xbnk − x̄bk

maxn(xbnk)−minn(xbnk)
(3.19)

Range scaling holds intuitive appeal for multiblock modeling of concentration data, but its applica-

tion to other kinds of datasets is ill-advised, as it suffers from similar noise amplification problems

as UV scaling.

3.4.5 Variable Selection

Due to the expense of sample preparation and data acquisition in metabolomics studies, a strong

temptation exists to retain all observed variables during multivariate analyses [54]. Because variables

are scaled to equal (or nearly equal) weight prior to modeling, this practice produces multivariate

models that suffer in both predictive ability and general reliability. In short, only variables that are

truly relevant to the chemical system under study should be included during modeling. To that end,

conservative manual removal of irrelevant variables based on spectroscopic and biochemical domain

knowledge is often performed in metabolomics. 1H NMR datasets, for instance, nearly always

contain highly varying signals from solvents, buffers, and chemical shift reference compounds, all of

which may confound or overshadow relevant sources of variation. Variables containing such signals,

as well as signal-free variables that only contain instrumental noise, are excellent candidates for
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manual variable selection. More computationally intensive methods of variable selection, including

support vector machine recursive feature elimination (SVM-RFE), genetic algorithms (GA), random

forests (RF) and bootstrapping have also been developed to more aggressively select variables from

multivariate data structures [58, 105]. While it is important to retain only relevant variables for

modeling, an over-aggressive variable selection is equally detrimental, as it leads to over-fit models

that may fail to tolerate subsequent outlying observations.

3.5 Modeling

The most widely applied modeling methods in metabolomics – namely principal component analysis,

partial least squares and orthogonal projections to latent structures (OPLS, [88]) – fall within a

class of methods known as bilinear matrix factorizations. The general form of a bilinear matrix

factorization is:

X = TPT + E (3.20)

where the data matrix X ∈ RN×K is approximated by the product of two matrices, T ∈ RN×A and

P ∈ RK×A, which are referred to as “scores” and “loadings”, respectively. The matrix E ∈ RN×K

holds any variation in X that is not captured by the scores and loadings. To understand how such

a factorization may be used to approximate a data matrix, it is instructive to consider the product

of scores and loadings in vector form:

X =

A∑
a=1

tapa
T + E (3.21)

where ta and pa are the a-th columns of the score and loading matrices, respectively. In other

words, the data matrix is approximated by a set of A rank-1 matrices that are constructed by the

outer products of each pair of scores and loadings. Because A is commonly much less than either

N or K, these bilinear factorizations are also referred to as low-rank approximations of their data

matrices.

Figure 3.8: Example Three-component Bilinear Low-rank Approximation.
Depiction of a three-component bilinear low-rank approximation TPT of a data matrix X having
residuals E, with each outer product of the approximation broken out.
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It is important to note that nearly every data matrix modeled by equation (3.20) in metabolomics

contains far fewer observations than variables (i.e. N � K) [107]. In this situation, there are

infinitely many solutions to the equation that yield the same error E. This is easily demonstrated

by multiplying the scores and loadings by an orthonormal matrix R ∈ RA×A:

X = T̂P̂T + E

= TRRTPT + E

= TPT + E (3.22)

where T̂ = TR and P̂ = PR. A similar expansion of the solution set may be accomplished by

multiplying the scores by a diagonal A × A matrix, and multiplying the loadings by the inverse of

the same diagonal matrix. This equivalence of an infinite number of solutions to equation (3.20),

known as the problems of rotational and scale ambiguity, is solved by placing constraints on the

values that scores and loadings may take [26, 51]. The choice of constraints defines a particular

bilinear factorization method as unique, and determines what kind of information is sought from a

data matrix using that method.

3.5.1 Principal Component Analysis

In principal component analysis (PCA), which exactly follows equation 3.20, the loading vectors in

P are constrained to be an orthonormal basis set. More precisely, the loadings produced by PCA

are not just any orthonormal basis, but are in fact the first A eigenvectors of the sample covariance

matrix XTX. In chemometrics, the most commonly used algorithm for constructing PCA models is

nonlinear iterative partial least squares (NIPALS, [42]):

Algorithm 3.1 NIPALS Algorithm for PCA

Input: X ∈ RN×K
Output: t ∈ RN , p ∈ RK
1: t(0) ∼ UN×1 { t may also be initialized to a column of X }
2: k ← 1
3: repeat
4: p(k) ∝ XT t(k−1)

5: t(k) ← Xp(k)

6: k ← k + 1

7: until ‖t(k)−t(k−1)‖2
‖t(k−1)‖2

< ε

where ← indicates assignment, and ∝ indicates normalized assignment. In others words, the follow-
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Figure 3.9: Principal Components of
Synthetic Bivariate Data.
(A) Set of 100 points drawn from a bi-
variate normal distribution, and the corre-
sponding principal components computed
by eigendecomposition of the points’ sam-
ple covariance matrix. Bold and thin
arrows indicate the normalized and un-
normalized loadings, respectively.
(B) Set of 100 points drawn from two bi-
variate normal distributions having differ-
ent means, where the major source of vari-
ation in the data is orthogonal to the di-
rection that separates the two groups.
(C) Set of 100 points drawn from two bi-
variate normal distributions having differ-
ent means, where the major source of vari-
ation is parallel to the direction that sepa-
rates the groups.
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ing two statements:

a ∝ b ⇔ a← b

‖b‖2

are in fact equivalent. In summary, NIPALS PCA initializes a score vector from a uniform random

distribution, and repeatedly projects the rows and columns of X into the score and loading vectors

until the scores converge to a predefined limit ε. By substituting the scores assignment into the

loadings assignment, we arrive at the following iteration equation:

p(k) ← XTXp(k−1)

‖XTXp(k−1)‖2
(3.23)

which is the equation for power iteration on XTX [43]. Indeed, the NIPALS algorithm implicitly

computes the dominant eigenvector p of the K×K sample covariance matrix, with a corresponding

eigenvalue tT t:

XTXp =
(
tT t
)
p

The above algorithm computes a single principal component of X in the form of t and p. In order

to compute a second component, the first component’s contributions must be subtracted from X, a

step referred to as “deflation”:

X′ ← X− tpT (3.24)

Re-application of the NIPALS algorithm to the deflated matrix X′ will then produce the second

principal component of the original data matrix X. This process of power iteration and deflation is

repeated until an optimal number of components A∗ is reached.

PCA for Unsupervised Modeling

From the algebraic properties of PCA, an intuitive geometric picture may be constructed (Figure 3.9).

In essence, PCA determines the directions within a data matrix – the principal components – that

contain the greatest sources of variation in that matrix (3.9A), where each direction is constrained to

be orthogonal to all previous directions. When observations in X fall into two or more experimental

groups, they produce different clustering patterns in the PCA scores T. In cases where the within-

group variation in one or more groups is the major source of variation in X, PCA will fail to

effectively separate the groups in scores space (3.9B). However, when the between-group variation

significantly contributes to the total variation in X, the groups will be well-separated (3.9C). Thus,

PCA is a powerful method of identifying major trends among variables in a data matrix, as well as
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general relationships between observations, and does not bias its results based on class identity. For

a description of methods to quantify separations between experimental groups in PCA scores space,

see Chapter 10.

PCA for Outlier Detection

During data handling, it is common practice to exclude outlying observations, when warranted by

the analysis, in order to ensure relevant information extraction. In the univariate case, the sample

mean x̄ and sample standard deviation s may be estimated from a data vector x, which may then

be standardized into a set of Mahalanobis distances d:

dn =
xn − x̄
s

∀n ∈ ZN1 (3.25)

These distances in d may be transformed into t statistics and compared to critical values of a t-

distribution using a run plot in order to visually detect outliers [14]. In the multivariate case, the

sample mean vector x̄ ∈ RK and the sample variance-covariance matrix S ∈ RK×K of the data

matrix X ∈ RN×K must first be computed:

x̄ =N−1
N∑
n=1

xn (3.26)

S = (N − 1)−1XTX (3.27)

where xn is the n-th observation row vector in X. The set of squared Mahalanobis distances may

then be computed as follows [27]:

d2
n = (xn − x̄)S−1(xn − x̄)T ∀n ∈ ZN1 (3.28)

Once again, each squared distance may be compared to a critical value from a T 2-distribution

to assess the probability that its corresponding observation is an outlier. The above procedure

fails in practice, because the covariance matrix is severely rank-deficient, and thus non-invertible

(i.e. N � K). To ensure a stable inversion of the covariance matrix, the data matrix may be

approximated using PCA (i.e. X ≈ TPT ), where the number of principal components is less

than the rank of the data matrix. Using the orthonormality property of PCA loadings, squared
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Figure 3.10: PCA for Outlier Test-
ing.
(A) Set of 40 spectra, generated identically
to those in Figure 3.7, with the exception
of observation 20, which contains an extra
Lorentzian signal at 6.8 ppm.
(B) Principal Component Analysis scores
plot of the spectral data, showing the
68.3% (1σ), 95.5% (2σ) and 99.7% (3σ)
confidence regions as dashed, thin and bold
ellipses, respectively. Point colorings in-
dicate relative squared Mahalanobis dis-
tances, ranging from blue to red as d2 in-
creases.
(C) Run plot of squared Mahalanobis dis-
tances computed from PCA scores of the
spectral data, again illustrating the one-,
two- and three-σ thresholds for outlier de-
tection. Point colorings indicate relative
squared Mahalanobis distances.

Mahalanobis distances may again be obtained from the PCA scores:

d2
n = tn

(
TTT

N − 1

)−1

tTn ∀n ∈ ZN1 (3.29)

where tn is the n-th row of the scores matrix T. Because the matrix TTT is diagonal, it is trivially

inverted and calculation of each d2
n is greatly simplified. Mahalanobis distances computed using PCA

scores are close approximations of their true values in the original high-dimensional space [27], and

provide a means of outlier detection in high-dimensional data (Figure 3.10). Outliers may be visually

identified from scatter plots of PCA scores (Figure 3.10B) or from run plots of their corresponding

squared Mahalanobis distances (Figure 3.10C). In both cases, the squared Mahalanobis distance is

compared to the χ2 distribution at a preselected significance α and A degrees of freedom [50, 106].
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PCA for Multiple Linear Regression

Often, a data matrix X ∈ RN×K is used within the context of a multiple linear regression to

determine a set of regression coefficients B ∈ RK×M that best recapitulate a set of responses

Y ∈ RN×M using the data in X:

Y = XB + E (3.30)

In which case the ordinary least squares (OLS) estimator of the regression coefficients is obtained

from inversion of the normal equations [31]:

B̂ = (XTX)−1XTY (3.31)

The OLS regression coefficients B̂ minimize the sum of squares of the residual matrix, ‖E‖2F , and

are maximum likelihood estimates of B when the errors are independent and identically normally

distributed [31]. However, the fact that N � K yet again makes the matrix XTX non-invertible,

forcing the analyst down a different path. By replacing the data matrix with its PCA approximation

in the regression equation:

Y = TPTB + E′ (3.32)

it is possible to obtain OLS estimates of the regression coefficients:

B̂′ = (PTTTPT )−1PTTY

= P(TTT)−1TTY (3.33)

= PĜ (3.34)

where the matrix Ĝ ∈ RA×M is the set of OLS regression coefficient estimates in PCA scores space:

Y = TG + E′ (3.35)

By computing the least-squares estimates of the regression coefficients in the low-dimensional PCA

scores space and projecting those estimates into the original high-dimensional space, this technique of

principal component regression (PCR, [51]) sidesteps the curse of dimensionality during estimation.

Furthermore, the variances of PCR-estimated coefficients B̂′ are lower than those of the original

OLS estimates B̂. The PCR method will fail to obtain useful estimates, however, when response-

correlated information in the data matrix is not a major source of variation (cf. Figure 3.9B). In
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such cases, methods such as PLS must be used instead.

3.5.2 Partial Least Squares

Partial least squares (PLS) approaches the high-dimensional multiple linear regression problem in-

troduced in equation 3.30 by approximating both X and Y using bilinear factorizations [104]:

X = TPT + E (3.36)

Y = UCT + G (3.37)

= TCT + F

where the last equality indicates that the X-scores are highly correlated with the Y-scores, and

are therefore good predictors of Y. The most commonly applied algorithm for PLS is once again

NIPALS-based, and is shown below:

Algorithm 3.2 NIPALS Algorithm for PLS

Input: X ∈ RN×K , Y ∈ RN×M
Output: t ∈ RN , p ∈ RK , w ∈ RK , u ∈ RN , c ∈ RM
1: u ∼ UN×1 { u may also be initialized to a column of Y }
2: repeat
3: w ∝ XTu
4: t← Xw
5: c← YT t

tT t

6: u← Yc
cT c

7: until τ < ε
8: p← XT t

tT t

where τ equals the score convergence value:

τ =
‖t(k) − t(k−1)‖2
‖t(k−1)‖2

(3.38)

and iteration superscripts have been dropped for readability. Backtracking the iteration assignments

now produces a different iteration equation:

w(k) ← XTYYTXw(k−1)

‖XTYYTXw(k−1)‖2
(3.39)

which is the equation for power iteration on the cross-covariance matrix XTYYTX. The NIPALS

PLS algorithm computes the dominant eigenvector w of the cross-covariances between the data and
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Figure 3.11: PLS Components of
Synthetic Bivariate Data.
(A) Set of 100 points drawn from a bi-
variate normal distribution, and the cor-
responding partial least squares weights
computed by eigendecomposition of the
points’ cross-covariances with the response
vector.
(B) Set of 100 points drawn from two bi-
variate normal distributions having differ-
ent means, where the major source of vari-
ation in the data is orthogonal to the direc-
tion that separates the two groups. Note
the mixing of predictive information be-
tween both PLS components.
(C) Set of 100 points drawn from two bi-
variate normal distributions having differ-
ent means, where the major source of vari-
ation is parallel to the direction that sepa-
rates the groups.
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responses (cf. Figure 3.11). As in PCA, computation of subsequent PLS components is achieved by

deflating the data and response matrices:

X′ ← X− tpT (3.40)

Y′ ← Y − tcT (3.41)

and re-applying NIPALS on X′ and Y′. Unlike PCA, the PLS loadings P are not orthogonal, and the

X-scores are instead obtained through a linear transformation by a set of non-orthogonal “weights”

W∗ ∈ RK×A, like so:

T = XW∗ (3.42)

This allows PLS to be rewritten into the form of a multiple linear regression model:

Y = XW∗CT + F (3.43)

= XB̂PLS + F

These weights W∗, which directly relate to X, may be computed from the orthonormal weights W

returned from NIPALS through the following transformation [64]:

W∗ = W(PTW)−1 (3.44)

3.5.3 Orthogonal Projections to Latent Structures

The PLS modeling framework expresses the data and response matrices as a pair of low-rank bilinear

factorizations, where the data scores T hold variation in the data that is Y-predictive, as well as

variation that compensates for the Y-uncorrelated portion of the data [44]. As a result, PLS models

typically require more components than response matrix columns. In other words, A∗ ≥M for any

PLS model, where the two are equal if and only if no Y-uncorrelated variation is present in X.

This presence of “compensatory correlations” in PLS scores confounds interpretation of scores and

loadings produced by such non-parsimonious PLS models.

One potential solution proposed to deal with Y-uncorrelated variation, known as orthogonal signal

correction (OSC, [5, 97]), removes variation in the data matrix that is not correlated to the responses
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Figure 3.12: Orthogonal Projections
of Synthetic Bivariate Data.
(A) Projection of the set of points in (B)
onto their response-predictive (PLS) com-
ponent.
(B) Set of 100 points and their PLS com-
ponents from Figure 3.11B.
(C) Projection of the set of points in (B)
onto their response-orthogonal (OPLS)
component.
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using an orthogonal projection that reveals Y-predictive variation:

Xp = X−ToPo
T (3.45)

=
(
I−To(To

TTo)−1To
T
)

X (3.46)

where the Y-orthogonal scores To ∈ RN×Ao and loadings Po ∈ RK×Ao may be estimated using a

variety of algorithms [5]. However, OSC methods tend to suffer from problems of overfitting, and

PLS models trained on data matrices that have been filtered by OSC are also at risk of being over-fit

[88]. As an alternative to direct methods of orthogonal signal correction, a modified NIPALS PLS

algorithm – orthogonal projections to latent structures (OPLS) – was proposed. Instead of remov-

ing all Y-uncorrelated variation in X prior to PLS modeling, OPLS only removes Y-uncorrelated

variation that interferes with predictive PLS components, effectively partitioning the variation in

the data matrix into a set of Ap predictive components and a set of Ao orthogonal components:

X = TPT + ToPo
T + E (3.47)

Y = UCT + G (3.48)

= TCT + F

The addition of OSC to NIPALS PLS in the form of OPLS is described in the following algorithm:
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Algorithm 3.3 NIPALS Algorithm for OPLS

Input: X ∈ RN×K , Y ∈ RN×M
Output: t ∈ RN , p ∈ RK , w ∈ RK , To ∈ RN×a, Po ∈ RK×a, Wo ∈ RK×a, u ∈ RN , c ∈ RM
1: for all m ∈ ZM1 do

2: vm ← XTym

yT
mym

3: V← [V, vm]
4: end for
5: u ∼ UN×1 { u may also be initialized to a column of Y }
6: done ← false
7: E← X
8: a← 0
9: while not done do

10: repeat
11: w ∝ ETu
12: t← Ew
13: c← YT t

tT t

14: u← Yc
cT c

15: until τ < ε
16: p← ET t

tT t
17: z← p

18: z← z− vT
mz

vT
mvm

vm ∀m ∈ {1, 2, . . .M}
19: wo ∝ z
20: to ← Ewo

21: po ← ET to
toT to

22: λ← ‖z‖2
‖p‖2

23: if λ > λth then
24: To ← [To, to]
25: Po ← [Po, po]
26: Wo ← [Wo, wo]
27: E← E− topo

T

28: a← a+ 1
29: else
30: done ← true
31: end if
32: end while

where τ is again the convergence value for t. The above OPLS algorithm computes one predictive

(PLS) component in the vectors t and p, and a orthogonal components in To and Po. While the

above algorithm appears considerably more complicated than those for PCA or PLS, it is essentially

a PLS algorithm (lines 10–16) that has been wrapped in an OSC filter (main “done” loop). At each

execution of the main loop, a single PLS component is computed on the current predictive data

matrix, E. If a new orthogonal component may be obtained from this PLS component that contains

significant variation (i.e. λ > λth), it is added to the set of orthogonal components and subtracted

from E, from which an updated PLS component is computed. As in PCA and PLS, computation of
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subsequent OPLS component sets is achieved by first deflating the data and response matrices:

X′ ←X− tpT −ToPo
T (3.49)

Y′ ←Y − tcT (3.50)

and then re-applying NIPALS on X′ and Y′. Like PLS, the OPLS equations may also be written

in the form of a multiple linear regression:

Y =
(
X−ToPo

T
)

W∗CT + F (3.51)

It is important to note that OPLS does not outperform PLS in prediction [83], but merely provides

a more easily interpretable, parsimonious model for the analyst. In fact, predictions made by OPLS

models having Ap predictive components and Ao orthogonal components are identical to those made

by PLS models having Ap+Ao components. Also, when the data matrix contains no Y-uncorrelated

variation, OPLS and PLS will produce identical models.

O2PLS

While the above NIPALS OPLS algorithm is capable of handling matrix-Y multivariate regression

problems, its creators have championed the O2PLS [89] method instead of OPLS in such situations.

Whereas OPLS is a unidirectional (i.e. X 7→ Y) regression method, the bidirectional O2PLS method

considers neither matrix to be special, and decomposes each matrix into a ‘local’ or ‘unique’ compo-

nent and a ‘joint’ component (i.e. X↔ Y). The O2PLS modeling method provides an unsupervised

means of analyzing relationships between two spectral data matrices, where variation exists in each

matrix that is uncorrelated to the other.

3.5.4 Consensus PCA

In analogy to PCA, which seeks directions of maximum variation (loadings) in a data matrix, the

consensus PCA (CPCA-W, [99, 77]) seeks a set of “consensus” loadings Pb that contain a maximum

amount of variation in each of the B provided data blocks Xb while retaining variation that relates

each block to the others. In essence, CPCA-W returns a PCA “super-model” for the matrix of
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concatenated blocks X and a PCA block model for each individual block Xb:

X = [X1, . . . ,XB ] (3.52)

= TPT + E (3.53)

Xb = TbPb
T + Eb ∀b ∈ ZB1 (3.54)

The NIPALS algorithm for CPCA-W, shown below, returns a pair of super-scores t and super-

loadings p that relate to the matrix of concatenated blocks, as well as a pair of block scores tb and

block loadings pb for each of the B provided blocks:

Algorithm 3.4 NIPALS Algorithm for CPCA-W

Input: Xb ∈ RN×Kb ∀b ∈ ZB1
Output: t ∈ RN , p ∈ RK , w ∈ RB , tb ∈ RN , pb ∈ RK ∀b ∈ ZB1
1: t ∼ UN×1 { t may also be initialized to a column of X }
2: repeat
3: for all b ∈ ZB1 do
4: pb ∝ Xb

T t
5: tb ← Xbpb
6: end for
7: R← [t1, . . . tB ]

8: w ∝ RT t
tT t

9: t← Rw
10: until τ < ε
11: pb ← Xb

T t
tT t

∀b ∈ ZB1
12: pT ← [p1

T , . . .pB
T ]

where τ relates to the convergence value of the super-scores t as in standard PCA. Computation of

subsequent components requires the deflation of each data block, like so:

X′b ← Xb − tpb
T ∀b ∈ ZB1 (3.55)

When block scaling is applied to each data block, the super-scores and super-loadings produced by

CPCA-W of the blocks will be equivalent to scores and loadings from PCA of the concatenated

matrix [99, 77]. Thus, the super-loadings (p) from CPCA-W are again the set of eigenvectors of

the sample covariance matrix of X. The loadings of each individual block are the projections of

that block onto the super-scores (Algorithm 3.4, line 11). As a result, each block model describes

block-specific variation that is correlated to the consensus directions of the combined set of blocks.
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3.5.5 Multiblock PLS

Several extensions of PLS [99] have been proposed for problems of high-dimensional multiple linear

regression of multiple data blocks against a single matrix of responses. However, one particular ex-

tension, known as multiblock PLS (MB-PLS), was described [96] that has several attractive features.

Like CPCA-W, MB-PLS constructs a super-model that relates the concatenated set of B blocks to

the response matrix Y, but concomitantly breaks each block into its own model that describes that

block’s contribution to Y-prediction:

X = [X1, . . . ,XB ] (3.56)

= TPT + E (3.57)

Xb = TbPb
T + Eb ∀b ∈ ZB1 (3.58)

Y = UCT + G (3.59)

= TCT + F

While the practical calculation of MB-PLS models is usually performed by extracting block models

from a PLS model trained on X, the original algorithm for MB-PLS is of the NIPALS-type, and is

shown below:

Algorithm 3.5 NIPALS Algorithm for MB-PLS

Input: Xb ∈ RN×Kb ∀b ∈ ZB1 , Y ∈ RN×M
Output: t ∈ RN , p ∈ RK , u ∈ RN , c ∈ RM , w ∈ RB , tb ∈ RN , pb ∈ RK , wb ∈ RK ∀b ∈ ZB1
1: u ∼ UN×1 { u may also be initialized to a column of Y }
2: repeat
3: for all b ∈ ZB1 do
4: wb ∝ Xb

Tu
5: tb ← Xbwb

6: end for
7: R← [t1, . . . tB ]
8: w ∝ RTu
9: t← Rw

10: c← YT t
tT t

11: u← Yc
cT c

12: until τ < ε
13: pb ← Xb

T t
tT t

∀b ∈ ZB1
14: pT ← [p1

T , . . .pB
T ]

where τ once again relates to the convergence value of the super-scores t. Computation of subsequent
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components requires the deflation of each data block using super-scores [96], like so:

X′b ←Xb − tpb
T ∀b ∈ ZB1 (3.60)

Y′ ←Y − tcT (3.61)

It can be shown [99] that MB-PLS using block scaling and super-score deflation produces an identical

super-model to that obtained by PLS modeling of the concatenated matrix X, which indicates that

the super-weights produced by MB-PLS are still eigenvectors of the matrix of cross-covariances

between X and Y. Thus, MB-PLS provides the analyst with a standard PLS model that describes

how the joint data in X predict Y, as well as how each individual data block Xb contributes to the

joint prediction.

3.5.6 Multiblock OPLS

While MB-PLS provides a powerful framework for multiblock multivariate regression problems, it

suffers from the same shortcomings of PLS when Y-uncorrelated variation exists in one or more

data blocks [61, 60]. To address this flaw in MB-PLS, the generalized OnPLS multiblock modeling

framework, which extends O2PLS to B data blocks, was developed [60]. Like in O2PLS, no matrix

in OnPLS is special, and all matrices are regressed against all others in a complete association graph

(Figure 3.13A). While such complete connectivity may be useful during unsupervised modeling, it

is an over-complication in the multiblock regression schemes normally handled in metabolomics (cf.

Chapter 9). Because each data block must only predict a single block of responses (Figure 3.11B),

the recently developed multiblock OPLS (MB-OPLS) method is a more suitable candidate.

Multiblock OPLS decomposes each block Xb into a set of Y-predictive scores and loadings, as

well as a set of Y-uncorrelated scores and loadings that would normally interfere with MB-PLS
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predictions:

X = [X1, . . .XB ] (3.62)

= TPT + ToPo
T + E (3.63)

Xb = TbPb
T + TobPob

T + Eb ∀b ∈ ZB1 (3.64)

Y = UCT + G (3.65)

= TCT + F

The MB-OPLS algorithm, described in greater detail in Chapter 9, is based on NIPALS MB-PLS

with an added OPLS-type OSC filter that removes Y-uncorrelated variation from super-loadings.

Deflation of predictive and orthogonal components from each block is achieved using super-scores,

as in the above MB-PLS algorithm. The complete matrix-Y MB-OPLS algorithm follows on the

next page.
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Algorithm 3.6 NIPALS Algorithm for MB-OPLS

Input: Xb ∈ RN×Kb ∀b ∈ ZB1 , Y ∈ RN×M
Output: t ∈ RN , p ∈ RK , u ∈ RN , c ∈ RM , To ∈ RN×a, Po ∈ RK×a, w ∈ RB ,

tb ∈ RN , pb ∈ RK , wb ∈ RK , Tob ∈ RN×a, Pob ∈ RK×a ∀b ∈ ZB1
1: u ∼ UN×1 { u may also be initialized to a column of Y }
2: done ← false
3: a← 0
4: Eb ← Xb ∀b ∈ ZB1
5: while not done do
6: repeat
7: for all b ∈ ZB1 do
8: wb ∝ Eb

Tu
9: tb ← Ebwb

10: end for
11: R← [t1, . . . tB ]
12: w ∝ RTu
13: t← Rw
14: c← YT t

tT t

15: u← Yc
cT c

16: until τ < ε
17: pb ← Eb

T t
tT t

∀b ∈ ZB1
18: pT ← [p1

T , . . .pB
T ]

19: z← p

20: z← z− vT
mz

vT
mvm

vm ∀m ∈ ZM1
21: wo ∝ z
22: to ← [E1, . . .EB ]wo

23: pob ← Eb
T to

toT to
∀b ∈ ZB1

24: tob ←
Ebpob

pob
Tpob

∀b ∈ ZB1
25: po

T ← [po1
T , . . .poB

T ]

26: λ← ‖z‖2
‖p‖2

27: if λ < λth then
28: To ← [To, to]
29: Po ← [Po, po]
30: Wo ← [Wo, wo]
31: Tob ← [Tob, tob] ∀b ∈ ZB1
32: Pob ← [Pob, pob] ∀b ∈ ZB1
33: Eb ← Eb − topob

T ∀b ∈ ZB1
34: a← a+ 1
35: else
36: done ← true
37: end if
38: end while
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Figure 3.13: Association Graphs
for OnPLS and MB-OPLS.
(A) Completely connected graph of
nPLS and OnPLS regression models,
in which no single matrix is consid-
ered unique. (B) Sparsely connected
acyclic graph of MB-PLS and MB-
OPLS regression models, where each
data block Xb predicts the unique ma-
trix Y.

Computation of another predictive component requires the deflation of each data block by both the

predictive super-scores t and the orthogonal super-scores To, similar to the super-score deflation

method in MB-PLS [96]:

X′b ←Xb − tpb
T −ToPob

T ∀b ∈ ZB1 (3.66)

Y ←Y − tcT (3.67)

In the same manner that block factors of CPCA-W and MB-PLS may be obtained from PCA and

PLS models – respectively – of the concatenated matrix of blocks [99, 77], MB-OPLS block scores

and loadings may be obtained from an OPLS model trained on the concatenated matrix X. The

following algorithm describes the steps required to extract block-level models from super-model

scores and loadings.

Algorithm 3.7 Extraction of MB-OPLS Factors from OPLS

Input: Xb ∈ RN×Kb ∀b ∈ ZB1 , Y ∈ RN×M
Output: t ∈ RN , p ∈ RK , u ∈ RN , c ∈ RM , To ∈ RN×a, Po ∈ RK×a,

tb ∈ RN , pb ∈ RK , Tob ∈ RN×a, Pob ∈ RK×a ∀b ∈ ZB1
1: {t, p, u, c, To, Po} ← OPLS(X,Y)
2: for all b ∈ ZB1 do
3: for all ao ∈ Za1 do
4: to ← Toao { Extract the ao-th column of To }
5: wob ← [Woao ]b { Extract the b-th block of of Woao }
6: tob ← Xbwob

7: pob ← Xb
T to

toT to
8: Pob ← [Pob, pob]
9: Tob ← [Tob, tob]

10: Xb ← Xb − topob
T

11: end for
12: wb ∝ Xb

Tu
13: tb ← Xbwb

14: pb ← Xb
T t

tT t
15: Xb ← Xb − tpb

T

16: end for
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Figure 3.14: Comparison of MB-PLS and MB-OPLS Loadings.
(A) Original predictive (solid lines) and orthogonal (dashed lines) block loadings used to construct
a toy three-block data structure having 100 observations and 200 variables per block. (B) Resulting
MB-PLS block loadings from a two-component model, illustrating how the PLS algorithm mixes
predictive information between multiple components in the presence of orthogonal variation. (C)
Resulting MB-OPLS predictive (solid) and orthogonal (dashed) block loadings from a one-component
(1+1) model, effectively illustrating how MB-OPLS achieves the same segregation of predictive and
orthogonal variation as OPLS and OnPLS on a per-block basis.

For each of the B data blocks, the extraction procedure first computes orthogonal block loadings and

scores, and deflates them from the block. Then, predictive block scores and loadings are computed

using the method outlined previously [99] for extracting MB-PLS block components from a PLS

model (steps 12–14). The resulting block scores and loadings from algorithm 3.7 are identical to

those produced by algorithm 3.6.

3.6 Validation

Application of the above bilinear factorization methods to one or more spectral data matrices yields

valuable insights into both general chemical trends and relationships (e.g. from PCA) and response-

predictive spectral features (e.g. from OPLS) in those matrices. However, wanton use of these

multivariate methods without validation or knowledge of algorithmic intent can quickly lead to sta-

tistically insignificant conclusions about the underlying chemistry. The NIPALS-based algorithms

described above are highly numerically stable, even in the presence of multicollinearity, noise, and

missing data [104, 2]. This numerical stability almost guarantees that PCA, PLS and OPLS will

return a set of scores and loadings, even when those scores and loadings are only based on a small

fraction of the total variation in the data. PLS and OPLS return biased regression coefficient esti-

mates (B̂PLS) and force separation based on responses in scores space. OPLS is especially adept

at forcing scores-space separation, because its integrated OSC filter removes systematic data matrix

variation that does not “agree” with the responses. These powerful modeling features make PLS and
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Figure 3.15: Demonstration of PLS Overfit Based on Variable Count.
(A) Scores from a two-component PLS model of unit-variance scaled Gaussian white noise (N = 10,
K = 5). Inset: R2

Y (blue) and Q2 (green) statistics for each component in the model, computed from
100 iterations of seven-fold Monte Carlo cross-validation. (B) Same scenario as (A) with K = 10.
(C) Same scenario as (A) with K = 20. (D) Same scenario as (A) with K = 100.

OPLS fully capable of producing results based on noise alone, if so requested [98]. As the number

of variables in the data increases over the number of observations, the danger of overfitting also

increases (Figure 3.15). In effect, the probability of observing correlations to the responses increases

with variable count, just as the probability of observing long runs of heads or tails increases with

the number of fair coin tosses.

In chemometric studies of spectroscopic datasets, where N � K, the tendency of bilinear models

to over-fit must be balanced by rigorous application of several validation methods. When sufficient

validation is lacking, any conclusions drawn from these models should automatically be treated as

suspect from a statistical viewpoint. Therefore, all efforts must be taken during experimental de-

sign, data collection and handling in order to obtain data and models that acceptably withstand

cross-validation.

3.6.1 Explained Variation

In general, the amount of variation explained by a bilinear factorization of a matrix is quantified by

its sum of squares:

SS
{
tpT

}
=
∥∥tpT∥∥2

F
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where ‖·‖2F denotes the squared Frobenius norm, which will be used as a shorthand for the sum of

squares. Because the raw sum of squares is not scale-invariant, it is normally reported as a ratio

relative to the total sum of squares. In the context of a PCA (equation 3.20), this ratio is referred

to as R2
X (or simply R2):

R2
X =

SSfit

SStotal
=

∥∥TPT
∥∥2

F

‖X‖2F
(3.68)

= 1− SSerr

SStotal
= 1−

‖E‖2F
‖X‖2F

(3.69)

where the second set of equalities arises from the fact that PCA loadings are eigenvectors of XTX

and right singular vectors of X [51]. The cumulative R2
X statistic may be broken into sums of

per-component R2
X statistics, due to the orthonormality properties of principal components:

R2
X =

A∑
a=1

∥∥tapaT∥∥2

F

‖X‖2F
(3.70)

In the case of PLS modeling (equation 3.37), a second ratio exists (R2
Y ) that quantifies the amount

of variation explained in the responses:

R2
Y =

∥∥TCT
∥∥2

F

‖Y‖2F
(3.71)

= 1−
‖F‖2F
‖Y‖2F

(3.72)

Similar expressions exist for the predictive and orthogonal factorizations of X in OPLS models,

which are referred to as R2
X,p and R2

X,o, respectively. While these R2 statistics provide valuable first

insights into the amount of variation that may be explained by a multivariate model, they are gross

over-estimations of model reliability and should not be used during model selection as a means of

determining the optimal component count, A∗. Cross-validatory methods discussed in later sections

provide more effective means of identifying A∗ during model training.

3.6.2 External Cross-validation

In its most traditional form, cross-validation involves the division of N observations in a dataset

(i.e. X and Y) into a training set (Xt and Yt) having Nt observations and a validation set (Xv and

Yv) having Nv observations. The training and validation datasets are then processed and treated
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separately using identical methods, and models are constructed on the training dataset. In the case

of PLS modeling, the analyst will arrive at the following equation:

Yt = XtW
∗CT + F (3.73)

Assessment of model reliability is then performed by estimating the responses of the validation

dataset using the trained model, like so:

Ŷv = XvW
∗CT (3.74)

where the predicted residual sum of squares (PRESS) statistic is now readily computable from the

sum of squares of the difference between true and estimated validation-set responses:

PRESS =
∥∥∥Yv − Ŷv

∥∥∥2

F
(3.75)

Like any other sum of squares measure, PRESS depends on the magnitudes of the values in Y.

Thus, a scale-invariant reporter of reliability (Q2) is obtained from the PRESS statistic as follows:

Q2 = 1− PRESS

SStotal
= 1−

∥∥∥Yv − Ŷv

∥∥∥2

F

‖Yv‖2F
(3.76)

This model reliability statistic is often referred to as a “cross-validated” R2 statistic, and provides a

relative measure of how well a given model will generalize to the estimation of future observations.

Like R2 statistics, Q2 is also computable on a per-component basis.

When the values in Y do not vary continuously, but instead hold binary class membership in-

formation, it is possible for Q2 – as defined by the previous equation – to under-estimate model

reliability [100]. In the case of two-class discrimination, Q2 quadratically penalizes values in ŷ that

are beyond the class labels in y. In more concrete terms, a cross-validation predicted class label of

1.5 for a true class label of 1.0 should incur no penalty, as it represents an unambiguous prediction.

However, the quadratic nature of Q2 penalizes such results. When PLS and OPLS are used for

binary class discrimination, the more suitable “discriminant Q2” (DQ2) is a more suitable metric of

reliability:

DQ2 = 1− PRESSD

SStotal
(3.77)
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where PRESSD represents the discriminant PRESS statistic:

PRESSD =

N∑
n=1


0 if yn = 1 and ŷn > 1

0 if yn = 0 and ŷn < 0

(yn − ŷn)2 else

(3.78)

In effect, PRESSD computes the sum of all squared y-residuals that represent a potentially am-

biguous classification [100]. The same result may be achieved by appropriately bounding the values

within ŷ to the class label extents in y, followed by the use of standard PRESS and Q2 calculations.

This alternative strategy has the added benefit of ensuring that the prediction sum of squares ‖ŷ‖2F
never exceeds the total sum of squares ‖y‖2F , which is a requirement for CV-ANOVA, discussed

below.

3.6.3 Internal Cross-validation

Supervised Models

Due to the severely limited number of observations in most chemometric studies, the practice of exter-

nal cross-validation is rare, and all observations are usually retained for model training. Nevertheless,

model reliability statistics may be obtained from the similar practice of internal cross-validation.

In any internal cross-validation scheme, the N observations of a given dataset are divided into G

groups, referred to as G-fold or leave-n-out cross-validation (where n = bN/Gc). Each group is then

left out in turn, and its responses are estimated from a model trained on the remainder of the data.

To more succinctly introduce internal cross-validation procedures, the set of all partitionings of N

elements into G groups, denoted P(N,G), shall be introduced:

P(N,G) ≡
{
p | p ∈ ZN ∧ 1 ≤ pn ≤ G ∀n ∈ ZN1

}
(3.79)

As an example, one member of the set P(7, 3) is (1, 2, 3, 1, 2, 3, 1).2 Given a partitioning σ ∈ P(N,G),

the following algorithm demonstrates the computation of Q2 for a single PLS component:

2This type of partitioning actually has a name, and is often seen in practical cross-validation schemes. It is
colloquially referred to as a “Venetian blinds” partitioning of seven observations into three groups.

72



Algorithm 3.8 Internal PLS Component Cross-validation

Input: X ∈ RN×K , Y ∈ RN×M ,G, σ ∈ P(N,G)
Output: Q2 ∈ R
1: for all g ∈ ZG1 do
2: ng ← {n | n ∈ ZN1 ∧ σn = g}
3: {t,p,u, c,w} ← PLS(X(−ng),Y(−ng)) { X(−ng), Y(−ng) contain no rows from group g }
4: B(ng) ← wcT

pTw
5: end for
6: for all n ∈ ZN1 do
7: ŷn ← xnB(σn) { ŷn, xn are the n-th rows of Ŷ, X }
8: end for

9: Q2 ← 1− ‖
Y−Ŷ‖2

F

‖Y‖2F

In the simplest case where G = N , known as leave-one-out cross-validation (LOOCV), only one

observation is left out at a time. It has been shown, however, that leave-one-out methods do not

identify optimal models as effectively as leave-n-out methods as N increases [74], so G should be

less than the number of observations whenever possible. Within a leave-n-out cross-validation of

N observations, there are
(
N
n

)
different ways to partition the dataset into the desired number of

groups. A complete cross-validation would require the evaluation of all possible partitions, which is

computationally intractable even for small (e.g. N ≥ 20) datasets. While it is possible to arbitrarily

select a single partitioning, such as a regular pattern of group assignment, it is much more attractive

to randomly resample a number of partitionings (np) from the set of
(
N
n

)
possibilities (σ ∼ P(N,G))

in a Monte Carlo leave-n-out cross-validation approach [110]. Monte Carlo cross-validation offers the

possibility of assigning confidence regions to reported Q2 values for a given dataset, which provides

the analyst with further information on model reliability estimates.

In practice, per-component Q2 statistics provide a means of determining A∗, the optimal com-

ponent count. When new components are added to the model that fail to reliably estimate the

responses under cross-validation, their Q2 values will become negative. Thus, a practical rule during

model training is to only retain components having positive Q2 statistics.

Unsupervised Models

Internal cross-validation of unsupervised PCA models poses a unique challenge in comparison to

PLS and OPLS, as it does not involve the prediction of a set of responses [33, 56, 37]. Eshghi

[37] provides a more comprehensive review of internal cross-validation practices for PCA models.

In short, leave-n-out cross-validation of PCA models requires that both observations and variables
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Figure 3.16: Partitioning in Leave-n-out PCA Cross-validation.
Graphical illustration of two different partitionings (red and blue) of a data matrix. Each partitioning
(group) requires the computation of a set of scores (t̂) and loadings (p̂) in order to estimate it’s
left-out values, indicated by filled circles. Estimation of x̂ik requires computation of t̂ with variable
k left out and p̂ with observation i left out. The value of x̂ik is then obtained from the (i, k)-th
index of t̂p̂T

be partitioned into G groups. The resulting pair of partitionings allows groups of data matrix

elements to be left out and recomputed during cross-validation. For each group, a score vector t̂ is

computed after leaving out variables in the group, and a loading vector p̂ is computed after leaving

out observations in the group. The outer product of t̂ and p̂ is then used in estimating the data

matrix elements located at the intersections of the left-out variables and observations (Figure 3.16).

The following algorithm demonstrates the computation of Q2 for a single principal component, given

a row partitioning σ and a column partitioning ρ:

Algorithm 3.9 Internal PCA Component Cross-validation

Input: X ∈ RN×K , G, σ ∈ P(N,G), ρ ∈ P(K,G)
Output: Q2 ∈ R
1: for all g1 ∈ ZG1 do
2: ng ← {n | n ∈ ZN1 ∧ σn = g1}
3: p̂← PCA(X(−ng)) { X(−ng) contains no rows from group g}
4: for all g2 ∈ ZG1 do
5: kg ← {k | k ∈ ZK1 ∧ ρk = g2}
6: t̂← PCA(X(−kg)) { X(−kg) contains no columns from group g}
7: t̂← t̂

√
K

K−|kg|
8: for all n ∈ ng do
9: for all k ∈ kg do

10: X̂n,k ← t̂np̂k
11: end for
12: end for
13: end for
14: end for

15: Q2 ← 1− ‖
X−X̂‖2

F

‖X‖2F
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3.6.4 Response Permutation Testing

While internal cross-validation metrics such as Q2, number of mis-classifications, and AUROC [98]

are a good first insight into model reliability, they do not provide a robust mechanism for discrimi-

nating between low- and high-quality models. Methods that report a degree of statistical significance

in the form of a p value are preferred, as they may be compared to a threshold (e.g. α = 0.05).

One such method, known as response permutation testing, establishes a distribution of models rep-

resenting the null hypothesis (H0) that no relationship exists between the data and responses [98].

For a number of iterations, the rows of the response matrix Y are randomly permuted to yield a

null response matrix Ỹ, upon which a supervised PLS or OPLS model is trained. The set of models

generated after response permutation – more specifically their R2 and Q2 parameters – may be

compared against those of the original model to obtain a p value. Provided the resulting p value is

less than the defined threshold α, the analyst may reject the null hypothesis that the original model

is based on random correlations between X and Y.

3.6.5 CV-ANOVA Testing

Response permutation testing capably reports p values via hypothesis testing of model reliabil-

ity, but it requires significant computation time to train the 100 – 1,000 models required for an

accurate result. The alternative CV-ANOVA testing method effectively requires no additional com-

putation time after internal cross-validation, as it compares the fitted Y residuals obtained from

cross-validation procedures [36]. In effect, CV-ANOVA tests whether the mean square error of fitted

residuals from PLS and OPLS models is significantly smaller than the total mean square variation

in Ŷ. By comparing the ratio of these mean square values to an F distribution, CV-ANOVA reports

its own p value which may again be compared to a predefined threshold.

3.7 Conclusions

Multivariate bilinear factorizations such as PCA, PLS and OPLS provide an essential platform for

rapid information extraction of rich spectral datasets. Through proper application of processing

and treatment, optimal choice of modeling algorithms, and judicious administration of validation

metrics, multivariate analysis can lend a powerful hand in biochemical examination of complex,

multiparametric metabolic systems. Specific applications of multivariate analysis in metabolomics

are discussed in further detail in the following chapter.
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Chapter 4

Applications of Multivariate Analysis in Metabolomics

4.1 Introduction

This chapter details several varied applications of multivariate analysis within the field of metabolomics,

from the simplest examples of constructing multivariate calibration models of 1H NMR spectral data

for determination of caffeine concentration in coffee, to more complex examples of multiblock statis-

tical modeling of joint 1H NMR and electrospray MS data. A final note on the relationship between

PCA scores-space class separations and OPLS-DA model reliability is also presented to conclude the

chapter.

4.2 1H NMR Fingerprinting of Brewed Coffees

To provide an initial illustration of the capabilities of the MVAPACK software suite [32], four

roasts of brewed coffee were purchased from a local coffee shop. In this study, 1H NMR and UV/Vis

absorbance spectra were collected in order to construct a multivariate calibration of 1H NMR spectral

information against caffeine concentration.

4.2.1 Materials and Methods

Coffee Sample Preparation

Four freshly brewed roasts of coffee (Light, Dark, Medium Regular and Medium Decaffeinated) were

purchased from a local coffee shop. From each roast, sixteen 1.2 mL samples were drawn while the

coffee was still hot and stored at −80◦C for 24 hours. The samples were then lyophilized at −50◦C

and 0.1 mBar for 24 hours and subsequently redissolved in 1.0 mL of 99.8% D2O (Isotec, St. Louis,

MO) without pH adjustment. Following re-dissolution, the samples were centrifuged at 12,000 RPM

and 25◦C for 5 minutes and 800 µL of the supernatant was collected into NMR tubes. The samples

were stored in their NMR tubes at 4◦C for 36 hours prior to data collection.
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Caffeine Extraction

Measurement of the caffeine concentration in each coffee roast was performed based on previously

outlined procedures [3]. Triplicate standards of caffeine were made by dissolving 2.9 mg of caffeine

(Sigma-Aldrich, St. Louis, MO) into 100.0 mL of 99.5% CH2Cl2 (Sigma-Aldrich, St. Louis, MO)

for a final concentration of 149 µM. From each purchased coffee roast, 25 mL of brewed coffee

were combined with 25 mL of CH2Cl2 in a separatory funnel in a two-step liquid-liquid extraction.

Extracted caffeine in CH2Cl2 was diluted 20-fold into 1.0 mL and subjected to UV/Vis absorption

spectroscopy for caffeine quantitation.

Figure 4.1: UV/Vis Caffeine Quantitation Band-fitting Results.
UV/Vis absorbance band-fitting results for caffeine concentration estimation of dark roast (A), light
roast (B), regular medium roast (C), and decaffeinated medium roast (D). Black lines represent
observed spectra, dashed grey lines represent fitted spectra, red lines represent fitted caffeine, and
blue and green lines represent additional Gaussian bands required for fitting.

UV/Vis Spectroscopy

Absorption spectra of caffeine standards and extracts were collected on a Shimadzu UV-2501PC with

a 1.0 nm slit width and 1.0 cm quartz cuvettes. Spectra were collected between the wavelengths of
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500 nm and 230 nm.

NMR Spectroscopy

All NMR experiments were collected on a Bruker Avance DRX 500 MHz spectrometer equipped

with a 5 mm inverse triple-resonance (1H, 13C, 15N) cryoprobe with a z-axis gradient. A Bruker

BACS-120 sample changer and ICON-NMR software were used to automate NMR data collection.

A standard 1D 1H NMR spectrum using a SOGGY pulse sequence [14, 19] and a T2-filtered 1D

1H NMR spectrum using a z-filtered Carr-Purcell-Meiboom-Gill (CPMG) sequence [20] with an

identical SOGGY water suppression element were acquired for each sample. All experiments were

performed at 20◦C with 128 scans, 32 dummy scans, a carrier frequency offset of 2,351 Hz, a 6,009

Hz spectral width, and a 1.0 s inter-scan delay. For T2 filtered spectra, 20 repetitions of a CPMG-z

element having a delay (τ) of 5.0 ms were performed per scan, for a total filter time (2nτ) of 200.0

ms. Free induction decays were collected with 32,768 total data points resulting in a total acquisition

time of 10 minutes per experiment.

Caffeine Quantitation

A reference spectrum of caffeine in CH2Cl2 was generated from the three standard UV/Vis absorp-

tion spectra by taking the mean of the spectra after multiplicative scatter correction (MSC, [12]).

To quantify caffeine in the extracts, the absorption spectrum of each extract was fit by nonlinear

least squares [16] to the sum of the scaled caffeine reference spectrum and no more than two ex-

tra “background” Gaussian bands (Figure 4.1). The ratio of the fit caffeine reference spectrum in

each extract to that of the known samples was used as an estimate of caffeine concentration in the

extracts. Concentrations of the medium regular, medium decaffeinated, dark and light roasts were

1.526 mM, 0.217 mM, 1.979 mM and 4.993 mM, respectively.

Multivariate Analysis

All NMR spectra were loaded, processed, treated and modeled inside the GNU Octave 3.6 program-

ming environment [9] using functions available in the MVAPACK software suite for chemometrics

[32]. Free induction decays were loaded in from Bruker DMX binary format and corrected for group

delay errors by a circular shift of their time-domain data points. All decays were Fourier transformed,
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automatically phase-corrected and referenced to match the chemical shifts of caffeine with known

database values. Spectral regions upfield of 0.44 ppm and downfield of 9.16 ppm were removed

from the dataset, as they contained no informative signals. As solvent resonances were adequately

suppressed by the excitation sculpting pulse sequence, no spectral regions were removed around the

water resonance. Figure 4.2 illustrates the final result of spectral processing of the coffees dataset

using MVAPACK.

Figure 4.2: Processed 1H NMR Spectra of Coffee Roasts.
Representative processed 1D 1H NMR spectra for all spectra of each coffee roast, acquired using
the water-suppressed CPMG-z pulse sequence and processed in MVAPACK. To reach this point,
free induction decays were simply Fourier transformed and automatically phased. No manual phase
corrections were applied after autophasing.

For principal component analysis (PCA), the dataset was normalized by the method of probabilistic

quotients (PQ, [8]) and subjected to adaptive intelligent binning [7]. Low-variation bins were au-

tomatically removed from the dataset [37], resulting in a final data matrix having 64 observations

and 284 variables. The data matrix was scaled to unit variance [25] prior to NIPALS PCA modeling

[15], which produced six significant components having cumulative R2
X and Q2 statistics of 0.9689

and 0.8965± 0.0105, respectively [11].

Linear discriminant analysis (LDA) was performed on the first three dimensions of resulting PCA

scores to yield a two-component model that best captured the between-class variation present in

the three orthonormal PCA score vectors. LDA modeling yielded a model having a cumulative R2
X

statistic of 0.9950 and cumulative R2
Y and Q2 statistics of 1.0. Scores from the PCA model of the

coffees 1H NMR spectral data, and their corresponding LDA projection, are shown in Figure 4.3.

For orthogonal projections to latent structures regression (OPLS-R, [23]), the full-resolution dataset
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Figure 4.3: Principal Component Scores of the Coffees Spectra.
PCA (A) and LDA (B) scores of the four coffee roasts. Red, green, blue and violet points represent
dark, light, decaffeinated medium, and regular medium roasts, respectively. Ellipsoids and ellipses
enclose the 95% confidence intervals estimated by the sample means and covariances of scores from
each class. Axis labels in panels (A) and (B) indicate scores in PCA and LDA bases, respectively,
and not the same set of scores.

was aligned using a per-class application of interval correlation-optimized shifting (iCOshift, [21])

and PQ normalization, resulting in a final data matrix having 64 observations and 11,888 variables.

The Pareto-scaled data matrix was regressed by OPLS against a response vector containing caffeine

concentrations estimated by UV/Vis analysis of the four coffee roasts, yielding a model with one

predictive component and one orthogonal component (R2
X,p = 0.5294, R2

X,o = 0.1288, R2
Y = 0.9822,

Q2 = 0.9502 ± 0.0008). CV-ANOVA significance testing returned a p value equal to zero (F =

2258.8) to within double-precision floating point error, indicating a reliable model. The OPLS-R

and LDA models were further validated using response permutation tests having 1,000 iterations

each. The permutation tests of both models resulted in p values less than 0.001 for both R2
Y and

Q2, a further indication of high model reliability.

Validation against SIMCA-P+

Correctness of the PCA and OPLS-R models generated by MVAPACK was verified by exporting

the final processed and treated data matrices from GNU Octave and modeling them in SIMCA-P+

13.0 (Umetrics AB, Ume̊a, Sweden). The scores extracted from SIMCA and MVAPACK were found

to have coefficients of determination (R2) of 0.999976 and 0.999989 for the PCA and OPLS models,

respectively. The “imperfect” non-unity values of R2 reflect the fact that SIMCA-P+ 13.0 only

permits the export of scores with no more than four decimal places.
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Figure 4.4: Backscaled Coffees
OPLS-R Model Loadings.
Backscaled OPLS-R predictive loadings of
the four coffee roasts regressed according
to estimated caffeine concentration. The
pseudospectral nature of backscaled load-
ings facilitates analysis of model results by
any spectroscopist. The four most intense
positive positive peaks in the loadings
pseudospectrum correspond directly to
caffeine NMR resonances archived in
the BMRB, indicating a fairly successful
regression against caffeine concentration.

4.2.2 Results and Discussion

Use of MVAPACK during analysis of the coffees dataset arguably facilitated rapid identification of

ideal processing, treatment and modeling parameters during data handling. Use of automatic phase

correction, adaptive intelligent binning, and PQ normalization yielded a dataset in which three prin-

cipal components were sufficient to fully separate all classes in scores space, and subsequent LDA

modeling resulted in complete class separation in only two components (Figure 4.3).

As opposed to the PCA modeling procedure, which utilized binned spectra, OPLS-R model training

was performed using full-resolution 1D 1H NMR spectra in order to reap the interpretive advantages

of full-resolution backscaled loadings (Figure 4.4). The availability of iCOshift alignment [21] in

MVAPACK effectively makes the modeling of full-resolution NMR spectral data possible by correct-

ing positional noise [1] in the spectra that corrupts the bilinear nature of the data. By regressing

the NMR data against estimates of caffeine concentration obtained by UV/Vis spectroscopy (Figure

4.1), a loading pseudo-spectrum of caffeine was obtained that matched almost perfectly with spectral

data deposited in the Biological Magnetic Resonance Bank [24]. It is conceivable that spectral fea-

tures co-extracted with caffeine in the loadings correspond to coffee bean metabolites lost alongside

caffeine during roasting or decaffeination.
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Figure 4.5: Coffees OPLS-R Scores as Evidence of Overfit.
OPLS-R scores of the four coffee roasts, where each roast was regressed against its caffeine con-
centration estimated by UV/Vis absorbance spectroscopy. Scores in panels (A) through (D) were
computed from models having 1 through 4 orthogonal components, respectively.

Figure 4.6: Coffees OPLS-R Cross-validated Scores.
OPLS-R scores of the four coffee roasts, where each roast was regressed against its caffeine con-
centration, as in Figure 4.5. Mean score values and confidence ellipses for each observation were
computed from 100 iterations of seven-fold Monte Carlo internal cross-validation.

Notably, the UV/Vis-estimated caffeine concentration of the dark roast coffee was slightly higher

than that of the medium roast, which is contrary to expectation given that the coffees were brewed

using equal volumes of grounds. However, OPLS-R of the NMR data using the estimated caffeine

concentrations correctly ranked the roasts according to expectation (Figure 4.5A). When more or-
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thogonal components were allowed into the OPLS-R model, the dark roast again shifted to a higher

caffeine concentration, beautifully indicating the presence of overfitting (Figure 4.5B–D). Monte

Carlo cross-validated scores further supported the fact that a 1 + 1 OPLS model was the most ap-

propriate (Figure 4.6). Therefore, an OPLS-R model having only a single orthogonal component

was chosen, given the fact that it more faithfully modeled the underlying NMR data at the expense

of contradicting the more uncertain UV/Vis measurements.

Finally, no discernible difference was observed between the 1D 1H NMR spectra acquired with

and without T2-filtering. Spectra collected on in-house brewed coffee exhibited high levels of protein

background signal, which were readily suppressed using the CPMG-z pulse sequence element. On

the other hand, the spectra of the four purchased roasts showed no such background signal, possibly

due to more correct brewing technique.

4.3 Fingerprinting of Joint 1H NMR and DI-ESI-MS Data

Multiblock bilinear factorizations such as CPCA-W, MB-PLS and MB-OPLS provide a powerful

framework for analyzing a set of multivariate observations from multiple analytical measurements

containing potentially correlated variables [26, 28, 22]. Such algorithms provide analogous infor-

mation to PCA, PLS and OPLS in situations where extra knowledge is available to subdivide the

measured variables into multiple “blocks”. As a result, the correlation structures of each block and

the between-block correlations may be simultaneously utilized. Due to the existence of common

trends among all blocks, this use of between-block correlations during modeling will ideally bring

the model loadings (latent variables) into better agreement with the true underlying biochemistry

(hidden variables). In short, multiblock algorithms provide an ideal means of integrating 1D 1H

NMR and direct injection electrospray mass spectrometry (DI-ESI-MS) datasets for metabolic fin-

gerprinting [35].

Consensus PCA (CPCA-W), Multiblock PLS (MB-PLS), and Multiblock OPLS (MB-OPLS) were

used to analyze 1D 1H NMR and DI-ESI-MS data collected on metabolite extracts from hu-

man dopaminergic neuroblastoma cells (SK-N-SH) after different neurotoxin treatments [17]. Each

dataset was also individually subjected to single-block modeling by PCA and PLS in order to high-

light the information gained by jointly modeling the data within multiblock frameworks.
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4.3.1 Materials and Methods

NMR Acquisition and Processing

NMR data were collected and processed according to previously described procedures [36]. A Bruker

Avance DRX 500 MHz spectrometer equipped with a 5 mm inverse triple-resonance cryoprobe (1H,

13C, 15N) with a z-axis gradient, a BACS-120 sample changer, and an automatic tuning and match-

ing accessory were utilized for automated NMR data collection. Free induction decays were collected

into 32,768 complex data points over a spectral window of 2,342±2,741 ppm, using the SOGGY wa-

ter suppression pulse sequence (zgesgp, [14, 19]).

Following acquisition, the 1D 1H NMR free induction decays were processed in the MVAPACK

toolbox [32]. A 1.0 Hz exponential apodization function and a single round of zero-filling were ap-

plied prior to Fourier transformation. Spectra were then automatically phased and normalized using

phase-scatter correction (PSC, [33], Chapter 6). Finally, chemical shift regions containing spectral

baseline noise or solvent signals were manually removed. Binning of the processed NMR spectra was

performed using the Adaptive Intelligent (AI) binning algorithm that avoids splitting signals into

multiple bins [7].

MS Acquisition and Processing

Mass spectra of the SK-N-SH metabolite extracts were acquired in positive ion mode over a mass

range of m/z 50–1,200. Spectra were acquired for 30 s each using the following source conditions: 2.5

kV electrospray capillary voltage, 60 V sampling cone voltage, 4.0 V extraction voltage, 80◦C source

temperature, 250◦C desolvation temperature, 500 L/h desolvation gas flow rate, and 15 µL/min

injection flow rate.

The initial stages of mass spectral data processing were performed using MassLynx V4.1 (Waters

Corp., Milford, MA). A background subtraction was performed on all spectra: reference spectra of

either paraquat, 1-methyl-4-phenylpyridinium (MPP+), rotenone, or 6-hydroxydopamine (6-OHDA)

in H2O/CH3OH/HCO2H (49.75:49.75:0.5) at 10 ppm were used as backgrounds. Background sub-

traction of each spectrum was performed in a class-dependent manner (e.g. the MPP+ reference

mass spectrum was used as background for MPP+-treated cell samples). As a result, mass spec-

tral signals from the drugs themselves were guaranteed to not influence subsequent analyses. The
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background-subtracted mass spectra were then loaded into MVAPACK for binning and normaliza-

tion. All mass spectra were linearly re-interpolated onto a common axis that spanned from m/z

50–1,200 in 0.003 m/z steps, resulting in 383,334 variables prior to processing. Based on the low

probability of observing a metabolite in the mass range m/z 1,100–1,200, the region was removed

prior to binning. Mass spectra were uniformly binned using a bin width of 0.5 m/z, resulting in

a data matrix of 2,095 variables. Finally, the MS data matrix observations were normalized using

probabilistic quotient (PQ) normalization [8].

Multivariate Statistical Analysis

Using functions available in the latest version of MVAPACK, the NMR and MS data were joined

into a single multiblock data structure and modeled using CPCA-W, MB-PLS and MB-OPLS.

Both blocks were scaled to unit variance prior to modeling, and equal contribution of each block to

the models (fairness) was ensured by further scaling each block by the square root of its variable

count [22]. For the purposes of comparison, PCA and PLS models of the independent NMR and MS

data matrices were also constructed. All PLS models were trained on a binary discriminant response

matrix (i.e. PLS-DA), in which untreated cells were assigned to one class, and all neurotoxin-treated

cells were assigned to a second class.

Cross-validation of Multivariate Models

Initially, all PCA and CPCA-W models were internally cross-validated using a leave-one-out (LOOCV)

procedure in MVAPACK during model training [11]. A subsequent set of PCA models was trained

and cross-validated using a Monte Carlo seven-fold (MCCV) procedure that produced less optimistic

Q2 statistics. All PLS-DA, MB-PLS-DA and MB-OPLS-DA models were internally cross-validated

using a Monte Carlo seven-fold procedure [30]. All MCCV rounds involved 50 iterations per tested

model component. The results of cross-validation were summarized by per-component Q2 statis-

tics, and the number of model components was chosen such that the cumulative Q2 was a strictly

increasing function of component count. Response permutation tests of all supervised models were

performed with 1,000 permutations each to assess the statistical significance of R2
Y and Q2 val-

ues [27]. CV-ANOVA significance tests [10] were also performed to supplement the results of the

permutation tests.

92



Figure 4.7: Comparison of PCA and
MB-PCA Scores.
Scores generated from (A) PCA of 1H
NMR in vacuo, (B) PCA of DI-ESI-MS in
vacuo, and (C) MB-PCA of 1H NMR and
DI-ESI-MS. Separations between classes
are increased upon combination of the two
data matrices via MB-PCA. Yellow, red,
green, violet and blue scores correspond
to the control, 6-OHDA, MPP+, paraquat
and rotenone classes, respectively.
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Figure 4.8: Dendrograms of
PCA and MB-PCA Scores.
Dendrograms computed from scores-
space class separations [31] in the
in vacuo PCA and MB-PCA models.
Panels (A–C) correspond to scores in
panels (A–C) in Figure 4.7, above.
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4.3.2 Results and Discussion

Classical Modeling

PCA of the binned NMR data matrix (N = 29, K = 159) resulted in 10 principal components having

cumulative R2
X and Q2 statistics of 0.9485 and 0.4591, respectively, based on LOOCV. Overall, no

patterns were readily discernible in the NMR PCA scores (Figure 4.7A) due to high within-class

variation in the data. However, scores for paraquat treatment were found to significantly separate

from all other classes (p < 0.002) along the first principal component. Scores from PCA of the

binned MS data matrix (N = 29, K = 2,095) were found to exhibit markedly less within-class

variation compared to the NMR data (Figure 4.7B). Using LOOCV, three significant components

were identified from the binned MS data, yielding fairly low cumulative R2
X and Q2 statistics of

0.3397 and 0.1590. While paraquat treatment still separated from other drug treatments in MS

PCA scores space, the greatest separations were observed between treated and untreated (control)

cells (p < ×10−9). These differing patterns of separation in NMR and MS PCA scores suggested that

multiblock analyses could provide further information, ideally separating both control and paraquat

scores from all other classes. Figure 4.8 contains dendrograms of scores-space class separation for

each scores plot in Figure 4.7.

Per-component Q2 statistics computed from LOOCV of the NMR and MS PCA models suggested

fairly marginal model reliability at component counts greater than one, so follow-up analyses were

performed using MCCV on the same data matrices to obtain less optimistic estimates of reliability.

In both cases, MCCV produced single-component PCA models, indicating that the LOOCV had

substantially over-estimated the number of principal components in each matrix. A comparison of

the resulting Q2 statistics from LOOCV and MCCV is shown in Figure 4.9.

PLS-DA of the full-resolution NMR (N = 29, K = 16,138) and MS (N = 29, K = 2,095) data

matrices both resulted in two-component models. With the exception of the algorithmically forced

separation between control and treatment classes, similar clustering patterns were observed when

compared to the PCA scores (Figure 4.10A–B). MCCV results from the NMR (R2
Y = 0.9519, Q2 =

0.7303 ± 0.0517) and MS (R2
Y = 0.9951, Q2 = 0.9440 ± 0.01142) PLS-DA models indicated reason-

able levels of response fit and predictive ability. Further validation by CV-ANOVA [10] indicated

reliable models with p values of 0.002 and 9.8× 10−6 for NMR and MS data, respectively. Response

permutation tests for both PLS-DA models returned p < 0.001, supporting the CV-ANOVA test
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results.

Multiblock Modeling

Identification of consensus directions in the NMR and MS data matrices that maximally captured

overall variation (MB-PCA) or response correlations (MB-PLS) resulted in more informative models

than those calculated against either NMR or MS in vacuo. Using MB-PCA with LOOCV, five signif-

icant components were identified (Q2 = 0.2322) that cumulatively explained comparable amounts of

variation in the NMR (R2
X = 0.8528) and MS (R2

X = 0.5015) blocks relative to the individual PCA

models. As expected, MB-PCA combined the information from both blocks to dramatically increase

class separations in super-scores space (Figure 4.7C). More specifically, both control and paraquat

classes were separated from other neurotoxin treatments, predominantly along the first principal

component. Furthermore, MPP+ treatment exhibited significant separation from 6-OHDA and

rotenone treatments, which was not expected from examination of the individual NMR or MS PCA

scores.

Subsequent re-evaluation of the MB-PCA model’s reliability using MCCV reduced the number of

expected significant components to two (Figure 4.9C). However, secondary and higher components’

Q2 statistics were still found to be statistically indistinguishable from zero, which further suggests

that only one principal direction exists in the binned NMR and MS data matrices that captures any

substantial variation.

MB-PLS of the data yielded similar improvements in model information content. Two significant

components were identified (R2
Y = 0.9876, Q2 = 0.9014 ± 0.0185) that clearly separated control

and paraquat treatment classes from all other classes in scores space (Figure 4.10). CV-ANOVA

testing produced a p value of 3.4× 10−4 and response permutation testing yielded p < 0.001, indi-

cating a reliable MB-PLS-DA model. Backscaled first-component MB-PLS-DA loadings are shown

in Figure 4.11. Modeling the multiblock data with MB-OPLS and MCCV produced a single predic-

tive component and a single orthogonal component (R2
Y = 0.9031, Q2 = 0.7084 ± 0.0241), making

later interpretation markedly simpler (cf. Figures 4.12 and 4.13). Examination of cross-validated

MB-OPLS-DA scores (Figure 4.14) provides an excellent example of how PLS mixes predictive and

compensatory variation. In MB-OPLS super-scores, paraquat treatment is distinctly separated from

other neurotoxin treatment classes along the orthogonal component (to). In the MB-PLS model,

this distinction between paraquat and other drug treatments becomes mixed with the variation that

separates the control class from all drug treatments. However, the two effects have been disentangled
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Figure 4.9: Comparison of LOOCV
and MCCV Q2 Statistics for PCA.
R2 (red), Q2

LOOCV (green) and Q2
MCCV

(blue) statistics from (A) PCA of 1H NMR
in vacuo, (B) PCA of DI-ESI-MS in vacuo,
and (C) MB-PCA of 1H NMR and DI-
ESI-MS. In all cases, MCCV indicates that
both datasets contain a single significant
principal component, while LOOCV over-
estimates the number of significant compo-
nents.
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Figure 4.10: Comparison of PLS-DA
and MB-PLS-DA Scores.
Cross-validated scores generated from (A)
PLS-DA of 1H NMR in vacuo, (B) PLS-
DA of DI-ESI-MS in vacuo, and (C)
MB-PLS-DA of 1H NMR and DI-ESI-
MS. Consensus directions in MB-PLS-
DA scores space show decreased rota-
tion during cross-validation when com-
pared to PLS-DA scores of the in vacuo
PCA model. Yellow, red, green, violet
and blue scores correspond to the control,
6-OHDA, MPP+, paraquat and rotenone
classes, respectively.
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Figure 4.11: Backscaled NMR and MS Block Loadings.
Backscaled (A) 1H NMR block and (B) DI-ESI-MS block loadings from MB-PLS-DA. Comparison
of the above panels to those from MB-OPLS-DA (Figures 4.12, 4.13) reveals the mixed predictive
and orthogonal variation present in MB-PLS loadings. It is also important to note that a second
PLS component exists, and thus complete interpretation of the joint NMR and MS data requires
simultaneous examination of two sets of block loadings.

Figure 4.12: Backscaled NMR and MS Predictive Block Loadings.
Backscaled predictive (A) 1H NMR block and (B) DI-ESI-MS block loadings from MB-OPLS-DA.

in the MB-OPLS model, providing richer information about the differing mechanisms of each neuro-

toxic drug. Additional orthogonal components would serve to further disentangle the two effects, at

the slight expense of model reliability. Validation of the MB-OPLS model by CV-ANOVA resulted
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Figure 4.13: Backscaled NMR and MS Orthogonal Block Loadings.
Backscaled orthogonal (A) 1H NMR block and (B) DI-ESI-MS block loadings from MB-OPLS-DA.

Figure 4.14: MB-OPLS-DA Cross-
validated Scores.
Cross-validated scores generated from MB-
OPLS-DA of the joint 1H NMR and DI-
ESI-MS data. The OPLS filter within MB-
OPLS has effectively rotated the super-
scores of the MB-PLS model (Figure
4.10C) to better differentiate between
class-predictive and class-orthogonal vari-
ation.

in a p value equal to 5.5× 10−6, and permutation testing corroborated CV-ANOVA with p < 0.001,

once again indicating a reliable supervised model.

4.3.3 Conclusions

The use of multiblock bilinear factorizations that capitalize on the availability of blocking information

afforded greater model interpretability with the NMR and MS data than what was provided by single-

block methods. The neurotoxins dataset provided an opportunity to compare the results of LOOCV

and MCCV for optimal principal component count determination when marginally predictive data

is being modeled. As expected, MCCV was a less optimistic estimator of model reliability than
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LOOCV, and produced more parsimonious PCA decompositions. Finally, the dataset was an ideal

proving ground for the new MB-OPLS algorithm, as MB-PLS-DA had clearly mixed class-predictive

variation into multiple components. The use of MB-OPLS-DA resulted in more easily interpretable

backscaled loadings, and provided more information relating to separations between control and

drug treatment and separations between paraquat and other drug treatments (Figure 4.13).

4.4 Monte Carlo Analysis of Scores-space Separations

While the necessity of validating PLS and OPLS models is well understood within the statistics and

chemometrics communities, it is an unfortunate fact that validation of PLS and OPLS models is

still infrequent in work published by non-statistically oriented research groups [4]. This is especially

true in the rapidly growing field of metabolomics, where these methods are quite often – and quite

mistakenly – considered surrogates for PCA. PCA, PLS and OPLS are distinct modeling frame-

works that achieve very different goals (cf. Section 3.5) and extract different information from a

dataset. However, the optimistically forced class separations provided by PLS-DA and OPLS-DA

have spawned a pattern of misuse in metabolomics and related fields. When PCA fails to identify

significant separation between classes, untrained analysts may move to biased, insufficiently vet-

ted OPLS-DA models without considering the statistical implications [2, 18]. While it is certainly

possible for OPLS-DA to identify separation when PCA does not, the statistical significance of the

separation must be validated before conclusions are drawn from the results. Studies that lack proper

validation are automatically suspect from a statistical viewpoint, implying that future attempts to

reproduce their results may fail. Thus, validation of all supervised models is an absolute requirement

in chemometrics.

Even before supervised models are trained, the separations between classes in PCA scores space

may be used as an informative qualitative predictor of whether reliable OPLS-DA models may be

trained on the same data. This section presents practical guidelines on what level of OPLS-DA

model reliability may be expected based solely on PCA class separations.

4.4.1 Materials and Methods

A Monte Carlo simulation was performed using MVAPACK [32] to analyze the relationship between

class separations in PCA scores space and OPLS-DA cross-validation metrics, as a function of
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spectral noise content. Two data matrices that both contained highly significant class-discriminating

variation were used within two parallel simulations.

Initial Datasets

Two classes of observations (Light and Medium Decaffeinated) from the binned data matrix were ex-

tracted from the latest version of the Coffees dataset [32]. The resulting data matrix (referred to as X:

N = 32,K = 284) contains a highly significant separation between the two classes based on caffeine

1D 1H NMR spectral features. A second dataset, generated from a comparison of two chemically

defined cell growth media, was used to provide further support for the trends observed during Monte

Carlo analysis of the Coffees data matrix. The resulting Media data matrix (N = 50,K = 238) also

contains highly significant separation between two classes based on 1D 1H NMR spectral features.

Prior to Monte Carlo simulation, the `2 norm (largest singular value) of each data matrix X was

computed and stored as σmax. A set of 50 noise standard deviations (σ) where each value ranged

from σmax/500 to σmax/10. For each noise standard deviation, a set of 200 Monte Carlo iterations

was performed. Another set of 200 iterations was also performed on each original data matrix X

without any added noise.

Monte Carlo Simulation

At each Monte Carlo iteration, an N ×K real matrix of noise values was drawn as NK indepen-

dently and identically distributed samples from a zero-mean normal distribution having a standard

deviation of σ, corresponding to the current noise value as described above. The data matrix X was

summed with the noise matrix, and a three-component (A = 3) PCA model was computed on the

resulting sum (X′) after unit variance scaling [25] using a NIPALS algorithm [15]. The explained

variation (R2) of each principal component was computed as described in Section 3.6. A Monte Carlo

leave-n-out cross-validation (MCCV) was performed based on the modified method of Krzanowski

and Eastment [11] in order to obtain a per-component predictive ability (Q2) statistic. A seven-fold

partitioning of observations and variables, randomly resampled ten times, was performed for each

PCA MCCV run. Following PCA model training, the Mahalanobis distance between the two classes

was computed using PCA scores [6].
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After computation of the Mahalanobis distance, the noisy data matrix X′ was Pareto-scaled and

subjected to OPLS-DA using a Pareto-scaled binary (0, 1) response vector (y) and a NIPALS OPLS

algorithm [23]. A one-component (Ap = 1, Ao = 1) OPLS model was constructed, from which

backscaled predictive loadings were extracted by dividing by the coefficients obtained from Pareto

scaling [5]. The Pearson correlation coefficient between backscaled loadings and the known “true”

loadings – corr(p,p0) – was computed for later visualization. Explained variation (R2
Y ) was com-

puted as described in Section 3.6. A Monte Carlo leave-n-out internal cross-validation of the OPLS

model was performed using a seven-fold partitioning of the data matrix that was randomly resam-

pled ten times [34]. Predictive ability (DQ2) statistics were computed as the mean DQ2 obtained

from MCCV results [29]. Thus, each OPLS model contained a set of ten fitted residual matrices from

cross-validation available for use in CV-ANOVA significance testing [10]. During CV-ANOVA cal-

culations, the median values of mean square error (MSE) were computed from all residual matrices,

and the ratio of median fitted MSE to median residual MSE was calculated to yield an F -statistic

for p value generation.

Figure 4.15: Monte Carlo Results for the Coffees Data Matrix.
Relationships to OPLS-DA CV-ANOVA p values obtained through Monte Carlo simulation of (A)
the Mahalanobis distance (DM ) between classes in PCA scores space, and (B) the correlation be-
tween OPLS-DA model predictive loadings given noisy data (p) and loadings obtained on the original
Coffees data matrix (p0). The density of points in both panels is indicated by coloring, where red
indicates high point density and blue indicates low density.

4.4.2 Results and Discussion

As expected, PCA scores-space class separations rapidly decreased as noise was added to the data.

Addition of noise also forced a rise in OPLS-DA cross-validation statistics. As a result, a strong

exponential relationship is observed between Mahalanobis distances calculated from PCA scores and
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Figure 4.16: Monte Carlo Results for the Media Data Matrix.
Summary of Monte Carlo results from the Media data matrix. See Figure 4.15 for more details.

CV-ANOVA p values from OPLS-DA models (Figures 4.15A and 4.16A). Because PCA modeling uses

no class membership information, the scores-space distances in these figures are essentially the least

biased method of appraising discrimination ability. As the two classes become less distinguishable

based on their spectral measurements, PCA will expose less separation between their scores. When

PCA fails to expose class separation, OPLS-DA will continue to do so at the expense of model

reliability, as it is relying on weaker sources of variation in the noisier data. While the exact form

of the relationship between distance and p value will depend on the input data and responses, this

analysis provides clear evidence that distances between classes in PCA scores may be used as a

qualitative ruler of future supervised model reliability.

The shrinkage of Mahalanobis distances as data matrix noise increases occurs concomitantly with

a rapid loss of correlation between ideal OPLS predictive loadings and estimated loadings (Figures

4.15B, 4.16B and 4.17A). It is critical to note that class separations in OPLS scores space do not

appreciably decrease (Figure 4.18) with the decreased loading correlations. In effect, the OPLS

model has identified different, less reliable sources of variation in the noisy data matrix in order

to maintain class separation. OPLS-DA requires only that some variation in the measured data

correlates with class membership, regardless of whether that variation is signal or noise [30, 23, 13].

When the true predictive spectral features that reflect the underlying biochemistry have become

masked by noise, OPLS-DA will shift its focus to the variation that best predicts class membership.

Because OPLS-DA provides the most optimistic result possible, validation becomes a necessity.

These Monte Carlo simulations once again illustrate how noise can masquerade as class-predictive

variation in statistical analyses of high-dimensional spectral measurements. Moreover, the simula-
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Figure 4.17: Effect of Noise on Loadings and CV-ANOVA Statistics.
(A) Decrease of correlation between estimated loadings (p) and true loadings (p0) as varying degrees
of noise are added to the Coffees (red) and Media (blue) data matrices. Light shaded regions indicate
confidence intervals of plus or minus one standard deviation from the mean correlation. A value of
1x additive noise corresponds to a noise standard deviation equaling 0.002 times the data matrix `2
norm. (B) Increase of p values from CV-ANOVA validation as varying degrees of noise are added to
the data matrices. Shaded regions indicate plus or minus one standard deviation from the median
p value.

tions touch on an often-overlooked distinction between class separations and reliable, statistically

significant class separations in PCA/PLS scores space. Although PLS and OPLS may separate

classes in situations where PCA cannot, this outcome should raise a red flag to the analyst that the

model is suspect and the data may not sufficiently predict class membership. Only after rigorous

cross-validation can it be safely inferred that OPLS-DA class separations are reliable and significant.

If cross-validated estimates of OPLS-DA scores still separate the desired classes, and CV-ANOVA

and permutation testing report significant p values, the models may be used for chemical inference.

If cross-validation is left unreported, conclusions drawn from the models must be met with strong

skepticism [27, 4].

The results of these Monte Carlo analyses relating PCA scores-space separations to OPLS-DA

cross-validation metrics effectively summarize the reasons why rigorous cross-validation is neces-

sary in chemometric studies relying on multivariate methods. More specifically, they reaffirm the

importance of PCA as a first-pass unsupervised tool in metabolic fingerprinting and untargeted

metabolic profiling studies, where class separations in scores space are often the sole basis for fur-

ther experimentation. It is an unfortunate common practice in such studies to dismiss completely

overlapped classes in PCA scores space and move ahead to (usually un-validated) supervised meth-

ods such as PLS and OPLS that force scores-space separation. Such practices almost guarantee the
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Figure 4.18: Effect of Noise on PCA and OPLS-DA Scores.
Comparison of representative PCA (A, C, E) and OPLS-DA (B, D, F) scores resulting from mod-
eling the original data matrix (A, B), the 4x noisy data matrix (C, D), and the 20x noisy data
matrix (E, F). Ellipses represent the 95% confidence regions for class membership.

irreproducibility of any conclusions drawn from trained multivariate models, as the relationship from

Monte Carlo simulation indicates. It is therefore highly recommended that methods which assign

Mahalanobis distance-based confidence ellipses to classes in PCA scores [31], report cross-validation

estimated scores plots for PLS and OPLS models [27], and provide one or more cross-validated met-

rics during model training [32] be used in these studies whenever possible.

These analyses are only a case study for two specific data matrices, and are not meant to provide a

quantitative relationship between any of the discussed metrics over all possible metabolomics stud-
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ies. Instead, they lend positive numerical support to the recommendations that analysts rigorously

validate their models by multiple means, including CV-ANOVA, response permutation testing, and

even qualitative examination of PCA scores-space class separations. It is hoped that this work may

be used to further promote best practices of supervised multivariate model training and validation

in the community.
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Chapter 5

The MVAPACK Suite for NMR Chemometrics

5.1 Introduction

The biochemical laboratory procedures involved in metabolomics experiments are potentially straight-

forward and inexpensive, depending on the biological systems and pathways under study [49]. The

minimal sample handling requirements of 1D 1H NMR spectroscopy and the immense sensitivity

of multivariate bilinear factorizations such as principal component analysis (PCA) and partial least

squares (PLS) make NMR metabolic fingerprinting especially attainable. This low barrier to entry

has no doubt contributed to the rapid recent growth of the field. Unfortunately, the data handling

tasks of NMR metabolomics are far more difficult to properly execute. Commercial software pack-

ages available for multivariate analysis (e.g. SIMCA, PLS Toolbox, The Unscrambler, etc.) tend

to be expensive and require more software for upstream processing and treatment of spectral data.

Analysts are thus required to first open and process NMR data in packages such as ACD/1D NMR

Manager (Advanced Chemistry Development), Mnova NMR (Mestrelabs Research) and perform fur-

ther statistical treatment in MATLAB (The Mathworks, Natick, MA), R, or Microsoft Excel. This

results in an unnecessarily cumbersome and time-consuming data handling pipeline by forcing the

analyst to pass data between multiple software packages. As a result, the field of metabolomics

research is littered with unpublished “in-house” software solutions created for processing, treating

or modeling NMR datasets [38, 37, 7, 6, 11, 28, 43]. This continued reinvention of the wheel impedes

progress in the field and complicates the tasks of standardization and communication of protocols

that the metabolomics community is desperately attempting to achieve [29, 20]. Insult is then added

to injury, as these in-house solutions are far less likely than their commercial counterparts to include

proper means of validating trained multivariate models, further contributing to the general lack of

model validation already present in the field [41]. While the community has released several official

software packages targeted at metabolomics [26, 8, 39, 24, 46, 18, 1], none provide a complete, well-

validated data path. At the time of this writing, no single software package existed to bring raw

NMR data along its complete journey to validated, interpretable multivariate models.
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These issues motivated the development of a free and open-source software package, MVAPACK, that

provides a complete pipeline of functions for NMR chemometrics and metabolomics. MVAPACK

is written in the GNU Octave mathematical programming language [14], which is also open-source

and nearly syntactically identical to MATLAB. Thus, the installation of GNU/Linux, Octave and

MVAPACK onto a commodity workstation provides a uniform environment in which a data analyst

may truly work “from FIDs to models” in a few minutes using a set of well-documented, open-source,

high-level data handling functions.

Figure 5.1: Example Data Handling Flow in MVAPACK.
A general NMR metabolic fingerprinting data handling flow diagram (A) and its associated minimum
working example MVAPACK scripts (B). This minimalist data handling script is a simple starting
point for using MVAPACK; much greater flexibility and functionality are present in the software
than may be shown here. All functions in bold typeface are provided in MVAPACK.

5.2 Materials and Methods

5.2.1 Software Implementation

The MVAPACK software package is written in GNU Octave, an open-source mathematical program-

ming language that uses MATLAB syntax [14]. Every function available in MVAPACK is realized as

a single Octave function file that may be examined or changed using any text editor. Most functions

in MVAPACK follow a similar input-to-output template, where an input data matrix A is modified

and returned as an output data matrix B. Other input arguments, required or optional, may accom-

pany A, and extra output values may accompany B, depending on the specific needs of the analyst.

Models produced by PCA, PLS, OPLS, LDA, MB-PCA and MB-PLS are all similarly organized

into Octave structures (i.e. “structs”) that all follow scalar, vector, and matrix notations of Wold
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et al. [45]. Thus, functions in MVAPACK are highly modular, often allowing drop-in replacement

of one processing, treatment or modeling method for another by a simple change of function name

and arguments. For instance, all modeling algorithms allow the specification of a scaling method at

the time they are trained, so all available scaling functions conform to the same interface: for any

input data matrix, a scaled data matrix is returned alongside the centering and scaling vectors used

to compute the matrix.

Data may be handled in MVAPACK in either interactive mode, in which the user types commands

into the Octave interpreter one at a time, or in batch mode, where a complete processing scheme has

been laid out in an Octave script to be executed non-interactively. Once an ideal set of data handling

steps is determined by interactive manipulation of any given dataset, it may be immortalized in an

Octave script, thus providing documentation of procedures and allowing for rapid recalculation of

all associated results.

Figure 5.1 illustrates a simple MVAPACK script capable of taking 1D 1H NMR data from raw

free induction decays to validated PCA and OPLS-DA models. In section 1, a binary class matrix

Y and an accompanying set of class labels are built, and the time-domain raw data are loaded into

the complex data matrix F. In section 2, the time-domain data matrix F is zero-filled once and

Fourier-transformed to produce the complex spectral data matrix S. Section 3 automatically phase

corrects each spectrum in S, normalizes and corrects for between-spectrum phase differences, and

corrects the chemical shift abscissa to center the reference peak at 0.0 ppm. In sections 4 and 5, data

handling splits into two pathways, where icoshift alignment [30] is used to generate a data matrix

A fit for full-resolution OPLS-DA and AI-binning [9] is used to generate a data matrix B for PCA.

In section 6, a PCA model is built and assigned classes and labels, and a model quality plot and a

scores plot are produced. In section 7, similar functions are used to train an OPLS-DA model and

produce summary plots. Finally, section 8 performs CV-ANOVA [15] and response permutation [41]

significance tests to fully validate the supervised OPLS-DA model. While Figure 5.1 is completely

functional, it is still an extremely bare-bones approach to metabolic fingerprinting. MVAPACK

provides countless other functions and schemes for handling data.
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5.2.2 Feature Set

The functions available in MVAPACK span the following general categories: data loading and

processing (Table 5.1), treatment (Table 5.2), modeling (Table 5.3), and validation (Table 5.4) [20].

Specific features in each category are discussed in the following sections.

Table 5.1: MVAPACK Processing Feature Matrix.
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Loading
Bruker, 1D * * * * * * * * * * *
Bruker, 2D * * * * * *
Varian, 1D * * * * * * * * * *

Apodization
Exponential, 1D * * * * * * * *
Exponential, 2D * * * * * *
Gaussian, 1D * * * * * * *
Gaussian, 2D * * * * * *
Sine, 1D * * * * * *
Sine, 2D * * * * * *

Zero-filling
ZF, 1D * * * * * * * * *
ZF, 2D * * * * * *

Transforms
DFT, 1D * * * * * * * * * *
DFT, 2D * * * * * *
CWT, 1D * * *
IST, 2D * * * *

Phase correction
Manual, 1D * * * * * * * * * * *
Manual, 2D * * * * * * *
Automatic, 1D * * * * * * * * *
Automatic, 2D * * * * *

Processing

Loading of Bruker raw data is available using either a high-performance DMX-format loading routine

or nmrPipe [10] as a backend, and loading of Varian data is available using an nmrPipe backend. Ad-

ditionally, data in a variety of structured text formats may be read into MVAPACK using standard

GNU Octave routines. The NMR spectral processing functions in MVAPACK follow the tradi-

tional paradigms of NMR processing [22] and include methods for apodization, zero-filling, Fourier
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transformation, Iterative Soft Thresholding (IST) reconstruction [23], manual and automatic phase

correction [31, 5, 2], region of interest selection and manipulation, peak picking [12], integration and

referencing.

Table 5.2: MVAPACK Treatment Feature Matrix.
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Binning
Uniform, 1D * * * * * * *
Uniform, 2D * * * * *
Optimized, 1D * *
Adaptive, 1D * *
Adaptive, 2D *

Alignment
Global * *
Interval * *

Normalization
CS * * * * *
PQ * *
HM *
SNV * * * * * * *
MSC * * * * *
PSC *

Scaling
UV * * * * * * * * * *
Pareto * * * * * * *
Range * * * * * *
Level * * *
VAST * * * *

Treatment

Functions for statistical data treatment in MVAPACK include binning [33, 9], alignment [30], normal-

ization [3, 11, 34], scaling [36], and direct orthogonal signal correction [40]. In addition, MVAPACK

supports uniform binning and AI-binning (Chapter 6) of third-order data tensors stored as arrays

of real matrices in Octave.
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Table 5.3: MVAPACK Modeling Feature Matrix.
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Bilinear
PCA * * * * * * * * * * *
LDA * * *
PLS * * * * * * *
OPLS * * *

Multiblock
MB-PCA * *
MB-PLS * *
MB-OPLS *

Modeling

MVAPACK provides complete support for building PCA [27], LDA [21], PLS [44, 19, 45], OPLS

[35, 4], MB-PCA and MB-PLS [42, 32] models from processed and treated datasets. At the current

time, only bilinear factorizations are supported within MVAPACK.

Table 5.4: MVAPACK Validation Feature Matrix.
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Validation
R2, Q2 * * * * * * * * *
Permutation * * * *
CV-ANOVA * *

Visualization
2D Scores * * * * * * * * * *
3D Scores * * * * * *
Loadings * * * * * * * * * *
Backscaling *
S-plot * *
SUS-plot * *
Data Ellipsoid * * * * * *
Class Ellipsoid *
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Validation

All PCA and MB-PCA models are validated as they are built based on the results of a Monte

Carlo leave-n-out (Modified K +E) internal cross-validation [13, 16], and all PLS, OPLS and MB-

PLS models are validated during training based on results of a Monte Carlo leave-n-out internal

cross-validation [47, 48]. In all cases, a set of R2 (i.e. R2
X and R2

Y ) statistics are generated to

assess how well each data and response matrix is approximated by the models, and Q2 statistics are

generated to describe self-consistency and predictive ability of each data matrix in PCA and PLS

models, respectively. Per-component R2 and Q2 statistics are utilized by MVAPACK to estimate

the optimal number of model components. Because cross-validation is performed using a Monte

Carlo scheme in MVAPACK, all Q2 statistics are reported with confidence intervals, regardless of

model type. Further validation of supervised models is available in the form of CV-ANOVA [15] and

response permutation [41] significance testing, both of which report p values that indicate model

validity.

5.3 Discussion and Conclusions

This chapter presents MVAPACK, a completely free and open-source data handling environment

tailor-suited to NMR chemometrics and 1H NMR and MS metabolic fingerprinting applications.

Unlike data handling chains composed of multiple commercial software packages, MVAPACK is free

to use, modify and distribute according to the GNU General Public License [17] and provides a single

consistent data handling environment. Because MVAPACK is written for GNU Octave, researchers

already familiar with MATLAB syntax will also be familiar with MVAPACK without a considerable

learning curve. Datasets and results obtained using MVAPACK are readily saved and exchanged

using GNU Octave built-in support for the MATLAB mat-file format.

A recent review [25] of software packages targeted at metabolomics highlights the piecemeal na-

ture of 1D 1H NMR data handling in the field, where no single package is capable of performing

all the tasks required by the analyst. MVAPACK addresses this need by providing a complete

pipeline that is tuned for metabolic fingerprinting. Use of MVAPACK reduces data analysis time in

metabolic fingerprinting from days to minutes, simply by collecting all the required functions into a

single scriptable environment. In fact, the example script in Figure 5.1 would execute in under five

minutes on a modern GNU/Linux or Mac OS X computer system.
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The routine processing of any 1D and 2D NMR spectral data may be readily done with MVA-

PACK, and processing routines are easily batched. The MVAPACK scripts written to analyze the

datasets in Chapter 4 are composed of intuitive, modular commands that logically subdivide the

script into recognizable tasks like automatic phase correction, spectral alignment, normalization, and

so forth. Furthermore, aside from physical memory limitations of the host computer, MVAPACK

does not impose any limit on the number of NMR observations that may be simultaneously handled.

A major advantage of MVAPACK is the seamless transfer of the processed, treated NMR data

to multivariate statistical analyses. The PCA, PLS, OPLS and LDA bilinear modeling algorithms,

now ubiquitous in the metabolomics community, are all implemented in MVAPACK using a consis-

tent under-the-hood framework. Model results may be visualized and interpreted using MVAPACK

routines that provide scatter, line and bar plots of model scores, loadings and validation statistics.

Critically, MVAPACK automatically ensures that all trained models are valid using leave-one-out

and Monte Carlo leave-n-out internal cross-validation routines and provides further means of val-

idating supervised models in the form of CV-ANOVA and response permutation significance test-

ing. Several powerful examples of MVAPACK applied to real datasets are presented in Chapter

4. Because it implements well-established algorithms available from peer-reviewed chemometrics

literature, MVAPACK generates identical results when compared to expensive software packages

like Umetrics SIMCA-P+.

In short, MVAPACK provides a complete platform for NMR chemometric data handling that is ideal

for both routine handling of metabolomics datasets and development of novel algorithms. Unlike

its closed-source predecessors, the modular, open-source design of MVAPACK readily accepts new

functionality, allowing it to grow and maintain pace with the state-of-the-art in the chemometrics

literature. MVAPACK is freely available for download at http://bionmr.unl.edu/mvapack.php.

Detailed documentation of MVAPACK, all datasets presented in Chapter 4, and the scripts used to

handle them are also available for download.
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Chapter 6

Phase-Scatter Correction of NMR Datasets

6.1 Introduction

As previously introduced in Chapter 3, normalization of data tensors is a commonly performed pro-

cedure aimed at minimizing the within-class variation of two or more groups of observations, relative

to the total or between-class variation in the dataset. Irrespective of whether separations between

classes are obtained using an unsupervised PCA model or a supervised (O)PLS-DA model, greater

statistical significance and increased biological relevance may be ascribed to separations between

classes having greater variation between groups than within them [11].

Normalization applied directly to hypercomplex NMR data (or its real component) is sub-optimal,

as even small phase differences between observations can frustrate the estimation of normalization

factors (cf. Section 3.3). Possibly worse, blind normalization of poorly phased spectral data can

accentuate experimentally irrelevant spectral features in a data tensor during multivariate modeling,

leading the analyst to erroneous conclusions. These difficulties motivated the development of phase-

scatter correction (PSC, [13]) as a means of simultaneously correcting the coupled phase errors and

dilution errors that are present in hypercomplex NMR data tensors. When hypercomplex NMR

data must be normalized prior to multivariate analyses within the confines of a metabolomics study,

the interrelation of phase and dilution errors is best handled using phase-scatter correction.

6.2 Theory

6.2.1 Multiplicative Scatter Correction

Phase-scatter correction (PSC) is effectively an extension of multiplicative scatter correction (MSC)

to handle phase errors during normalization. In MSC, each real spectrum is scaled around its

mean intensity and shifted to match a reference spectrum, typically the mean of the dataset [3].

Optimal normalization factors (b) of a data matrix X are determined by a linear regression of the
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mean-centered reference vector onto the mean-centered matrix:

(
X− 〈X〉

)T
b =

(
r− 〈r〉

)T
(6.1)

where observations are stored as row vectors in X, and r is the reference observation row vector. The

equation above represents an overdetermined system of linear equations, therefore the least-squares

estimate of b may be computed rapidly, and MSC is rather computationally efficient.

6.2.2 Phase-scatter Correction

PSC additionally corrects zero- and first-order phase errors during normalization, requiring a non-

linear optimization of the following objective:

Q(X | p) =

N∑
n=1

‖zn ◦ xn − r‖22 (6.2)

where ◦ denotes the element-wise product, the mean-centered matrix X lies in HN×K1 , the mean-

centered reference r lies in HK1 , and the set of parameters p includes a normalization factor and two

phase errors per observation in X:

p = {b1, . . . bN , θ0,1, . . . θ0,N , θ1,1, . . . θ1,N} (6.3)

and each vector zn contains the normalization and phase corrections for the n-th observation xn:

zn,k = bne
u1(θ0,n+θ1,nk) (6.4)

Because the reference observation r is fixed during optimization, minimization of Q(X | p) may be

achieved by independently minimizing each observation’s contributions. Minimization is carried out

for every observation in the data matrix using Levenberg-Marquardt nonlinear least squares [7] as

implemented by the leasqr function in GNU Octave, a function similar to MATLAB’s nlinfit. Each

corrected spectrum x̂n is then returned from optimization as follows:

x̂n = zn ◦ xn + 〈r〉 (6.5)

Phase-scatter correction of 50 1D 1H NMR spectra having 32,768 complex points each requires
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approximately 30 seconds on a single-core 3.2 GHz Intel workstation running GNU Octave 3.6.

6.2.3 Ensemble Phase Correction

It is important recognize that the phase-scatter correction objective function Q(X | p) provides no

measure of ideal phase values, meaning that PSC requires an additional phase correction step prior

to its execution in order to ensure adequate initial conditions. Even when X has been suitably phase-

corrected, PSC may still attempt to minimize scatter between spectra by re-introducing phase errors.

This undesirable behavior of PSC may be observed when large disparities in spectral intensities are

present between observations. To correct this, a standard phase correction objective f : HKD → R

may be combined with the PSC objective using a Lagrange multiplier, like so:

Λ(X | p) = −
N∑
n=1

f(θn ◦ xn) + λ

N∑
n=1

‖zn ◦ xn − 〈Z ◦X〉‖22 (6.6)

where the correction matrix Z has the same form as in PSC, expressed as a real diagonal matrix of

normalization factors B and a hypercomplex matrix of phase factors Θ:

Z = BΘ (6.7)

and θn is the n-th row of Θ. The new ensemble phase correction (EPC) objective function Λ(X | p)

balances the potentially opposing goals of phase correction and scatter correction through the La-

grange multiplier λ, and does not require the specification of a reference observation r. In effect, EPC

allows its scatter correction reference to float as the current mean of the data, 〈Z◦X〉. This floating

reference requires the simultaneous optimization of all the parameters in p, unlike phase-scatter

correction. Efficient minimization of Λ(X | p) may be accomplished by a modified Nelder-Mead

simplex optimization procedure [8], which serially updates the simplices of all observations at each

global iteration and maintains the current mean vector 〈Z ◦X〉 at each update.

In contrast to phase-scatter correction, which seeks to minimize the scatter of data matrix ob-

servations around a fixed reference, ensemble phase correction approaches the dilemma of entwined

phase and normalization errors from an opposing direction by introducing a scatter term into a

standard automatic phase correction procedure. The amount of normalization achieved by EPC is

directly controlled by the magnitude of λ: in the opposite limits of λ = 0 and λ → ∞, EPC be-
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Figure 6.1: Cluster Quality after
Normalization and PCA Modeling.
Comparison of PCA cluster quality for 1H
NMR metabolomics data normalized us-
ing different algorithms. The minimum J2

value (worst cluster quality) for each model
is reported here, as it is a more effective in-
dicator of overall model and cluster quality
than the mean or median.

comes equivalent to standard phase correction and phase-scatter correction with a floating reference,

respectively.

6.3 Materials and Methods

6.3.1 NMR Data Processing

Previously collected 1H NMR spectral data from published work [4] was leveraged as a typical

metabolomics dataset for performance analysis of PSC versus other normalization methods. Free

induction decays were loaded into GNU Octave 3.6 [2] for processing using MVAPACK routines [12].

Time-domain signals were zero-filled to 32,768 points and Fourier transformed, resulting in a complex

data matrix of 177 spectra divided among 16 classes (N = 177, K = 32,768, M = 16). Spectra

were both automatically phase corrected by simplex entropy minimization [1] and manually phase

corrected by applying a constant phase shift to all spectra. Both automatically and manually phase

corrected datasets were then normalized using the CS, PQ, HM, SNV, MSC and PSC methods (cf.

Chapter 3). Each normalized data matrix was binned using a uniform 0.04 ppm bin width, scaled

per-variable to unit variance, and subjected to PCA. The J2 statistic [6] was calculated for each

class to provide a measure of cluster quality for the PCA scores from each normalization method,

as follows:

J2,m =
|C|
|Cm|

(6.8)

where Cm is the covariance matrix of the scores in class m, C is the covariance matrix of all

scores, and the vertical bars represent the matrix determinant. Thus, as a cluster shrinks relative

to the entirety of the scores-space data, its J2 statistic will increase. While J2 provides a measure
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Figure 6.2: Cluster Quality after
Normalization and PCA Modeling.
Comparison of PCA cluster quality for 1H
NMR metabolomics data normalized using
different algorithms. For each normaliza-
tion method, a box is defined by the es-
timated first and third quartiles of J2 for
the clusters and whiskers are defined by
the range of the J2 values for the clusters.
For this dataset, the minimum J2 value is
most instructive, given the fact that over-
all model quality is not well-reflected by
the J2 metric in the case of distorted prin-
cipal components.

of individual cluster tightness, it does not capture the degree of cluster overlap within a dataset.

Figures 6.1 and 6.2 show the results of the J2 calculation for normalization methods applied to real

1H NMR metabolomics data.

To quantify differences between extracted principal components of automatically and manually phase

corrected datasets, the angle between the first principal component loading vector of each pair of

models (ϕ) was calculated as follows:

ϕ = cos−1
(
pauto

Tpman
)

(6.9)

where pauto and pman are the first-component loadings computed from a given normalization

method’s data after automatic and manual phase correction, respectively. The loading angle ϕ

for a given normalization method is a reflection on that method’s ability to properly normalize data

and produce consistent PCA models from different initial phase error conditions.

Table 6.1: Metabolite Spectra Used in Monte Carlo Simulations.

Aminobutyrate Adenosine Alanine Arginine
Asparagine Aspartate Choline Citrulline
Ethanolamine Fructose Galactose Glucose
Glutamate Glutamine Glycine Histidine
Isoleucine Lactate Leucine Lysine
Malate Maltose Myoinositol Ornithine
Phenylalanine Proline Putrescine Serine
Succinate Sucrose Threonine Valine
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6.3.2 Simulated NMR Datasets

The 1H NMR spectra of 100 mM samples of 32 metabolites (Table 6.1) at pH 7.4 were down-

loaded from the Biological Magnetic Resonance Bank (BMRB, [10]) and fit to mixtures of complex

Lorentzian functions using ACD/1D NMR Processing (Advanced Chemistry Development). Peak

amplitudes (A), chemical shifts (ω0), and widths (λ) returned from fitting were loaded into GNU

Octave to generate simulated spectra having 65,536 data points and a spectral width of 11 ppm,

centered at 4.7 ppm, based on the following model function:

s(ωk) =

P∑
p=1

Apλp
λp + u1(ωk − ω0,p)

(6.10)

where s(ωk) is the k-th data point of the spectrum, P equals the number of peaks, and u1 equals the

imaginary unit. Spectra were referenced and normalized to the DSS peak, and peaks corresponding

to HOD and DSS were subsequently removed, resulting in a basis set of 32 perfectly-phased, noise-

free metabolite spectra. Finally, the basis metabolite spectra were stored row-wise in a matrix S for

later use in Monte Carlo calculations.

Figure 6.3: Monte Carlo Normalization Results.
Results of 100 Monte Carlo iterations at 0.2◦ zero-order phase error, indicating the ability of all
normalization methods to recover the true dilution factor of a nearly perfectly phased dataset. Red
points reflect the dilution factors calculated by integrated the DSS peak and blue points reflect the
dilution factor estimates from normalization. Upper panels show the dilution factors recovered from
automatically phased data after normalization, and lower panels show dilution factors recovered
from unphased data after normalization.
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6.3.3 Monte Carlo Experiments

Using the basis metabolite spectra, a dataset of 48 simulated metabolomics spectra (X ∈ HN×K1 )

was generated according to the following equation:

X = A
(
CS + 1rT

)
+ E (6.11)

where A ∈ RN×N is a diagonal matrix of dilution factors αn, C ∈ RN×P is a matrix of metabolite

concentrations, S ∈ HP×K1 is the previously created metabolite basis set, r ∈ HK1 is a spectrum

of the DSS reference peak, 1 ∈ RN is a vector of ones, and E ∈ HN×K1 is a matrix of complex

Gaussian white noise. Dilution factors were drawn from a log-normal distribution having zero mean

and σ = 0.25. Concentrations in C were drawn from normal distributions with parameters chosen

to mimic those in Torgrip et al. (Table 6.2) [9]. The resultant data in X is a simulated set of N = 48

metabolite extracts, spiked with 100 µM DSS, where six distinct classes arise from differences in

the concentrations of alanine, asparagine, glutamate, malate, proline, sucrose and valine. All other

metabolites were assigned concentrations from a normal distribution having µ = 5 µM and σ = 0.5

µM.

Table 6.2: Metabolite Concentrations Altered in Monte Carlo Simulations.

Metabolite CA (µM) CB (µM) CC (µM) CD (µM) CE (µM) CF (µM)
Alanine 9.2± 1.4 19.6± 1.6 16.9± 1.2 6.5± 0.66 26.2± 3.6 13.5± 1.1
Asparagine 6.8± 0.86 11.7± 1.8 19.0± 1.9 14.7± 1.2 24.8± 2.6 17.4± 1.0
Glutamate 13.3± 1.7 9.2± 1.5 18.8± 1.9 16.9± 2.1 25.0± 3.5 6.9± 1.0
Malate 14.2± 1.2 11.9± 1.4 22.0± 5.1 6.7± 0.68 9.4± 0.72 18.0± 2.4
Proline 11.4± 1.5 18.4± 3.1 14.7± 2.4 6.9± 0.62 9.8± 1.5 23.7± 2.9
Sucrose 7.1± 0.9 17.2± 2.1 19.3± 2.0 13.2± 1.9 9.3± 0.56 23.3± 2.7
Valine 9.0± 0.85 26.3± 2.3 13.4± 1.2 20.4± 1.7 6.7± 0.90 17.0± 1.5

Monte Carlo simulations were run to assess the performance of all discussed normalization methods

over various amounts of phase error added to X. Forty-six phase error points were calculated, in

which the standard deviation of θ0 was linearly increased from 0◦ to 5◦. The standard deviation of

θ1 at each point was equal to one tenth that of θ0. Both θ0 and θ1 were assigned zero mean. For

each phase error point, 100 Monte Carlo iterations were performed with different sets of random

dilution factors. Spectra in the de-phased X matrix were automatically phase corrected using

simplex entropy minimization and normalized each time using CS, PQ, HM, SNV, MSC and PSC

methods. Normalization to unit DSS integral was also performed for reference. An identical set of
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normalization calculations was performed on the unphased data. Estimated dilution factors were

compared to the true values to produce a root-mean-square dilution error, RMSE(α), for each

method. Figure 6.3 shows the RMSE(α) result of Monte Carlo simulation at 0.2◦ phase error. To

assess normalization effects on multivariate model quality, spectra from each method were uniformly

binned with 0.04 ppm bin widths, each bin scaled to unit variance, and subjected to PCA. Values

of J2 for each of the six classes were then calculated, and the median of the values was reported for

each Monte Carlo iteration. The ϕ values between automatically phased and unphased principal

component loadings were also calculated at each iteration to asses each normalization method’s

ability to produce consistent models in the presence of phase errors. Figure 6.4 summarizes the

results of Monte Carlo simulation over all phase errors based on RMSE(α), J2 and ϕ.

Figure 6.4: Summary of Monte Carlo Simulation Results.
Results of the Monte Carlo simulation over all phase error points. (A) As phase error increases,
dilution factor estimates from all methods except PQ remain fairly stable. Estimates from PSC
compete with MSC, but suffer in comparison with HM. (B) However, J2 values indicate that PSC
outperforms all other normalization methods at producing tight clusters at any realistic phase error.
(C) Finally, values of ϕ calculated from PCA loadings indicate that PSC maintains the highest
model consistency in the face of imperfectly phased data. Phase error on the x-axis refers to zero-
order error; it should be noted that each point also contains first-order phase error as discussed in
the Methods.

6.4 Results

On the real metabolomics spectral data, PSC normalization resulted in the highest quality clusters

(Figure 6.5) according to the J2 statistic shown in Figure 6.1. Given the fact that the spectra were

each automatically phase corrected before any normalization was applied, this observed increase

in J2 must be due to the correction of subtle phase differences between spectra not detectable by

correcting each spectrum individually. It is important to note that, while PQ and HM produce

higher median J2 values (Figure 6.2), this is an artifact of large distortions of their respective PCA

loadings, and not always reflective of higher-quality clusters. Because J2 is a per-cluster statistic,
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it is only an ideal measure of overall scores-space model quality when all clusters are nearly identi-

cally distributed. Models containing highly distorted components may contain several high-quality

clusters and a few extremely low-quality clusters, resulting in a high mean or median J2 value.

For that reason, the lower bound of J2 for each method – effectively the worst cluster quality –

was chosen as a better indicator of overall model quality than the median. In fact, PSC produced

the most consistent model loadings between automatically and manually phase corrected data, with

a ϕ value of 14.5◦. This can be compared to ϕ values of 89.6◦ and 20.2◦ for PQ and HM, respectively.

Moreover, Monte Carlo analysis of PSC versus contemporary normalization methods show that

PSC offers a unique advantage during multivariate analysis. Results of Monte Carlo normalization

after automatic phase correction and summarized in Figure 6.4, and scatter plots of recovered dilu-

tion factors are shown in Figure 6.3. While PSC fails to recover true dilution factors as accurately

as DSS, CS or HM normalization, it does remain competitive with MSC at all phase errors (Figure

6.4A). PSC normalization yields tighter clusters than all other methods, as is apparent from Figure

6.4B. Furthermore, PSC results in dramatically lower values of ϕ than all other methods, indicat-

ing that residual phase errors left uncorrected by automatic phase correction are significant enough

to distort principal component loadings when normalized by any method other than PSC (Figure

6.4C).

Figure 6.5: Distortion of Principal Components by PQ Normalization.
PCA scores of a typical metabolomics dataset after automatic phasing followed by either PQ or PSC
normalization. In both plots, ellipses denote different classes of antibiotic treatment of Mycobac-
terium smegmatis and differing symbols within each ellipse represent different antibiotic subclasses.
(A) PQ normalization amplifies residual phase differences left behind after automatic phasing, but
(B) PSC normalization produces a more interpretable PCA model by correcting residual phase
differences.
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6.5 Discussion

As is evident from visual inspection of both the real metabolomics dataset and the Monte Carlo

simulated datasets, correction of minute phase differences between spectra yields a substantial im-

provement in cluster quality in multivariate analyses. In general, phase differences contribute sig-

nificantly to spectral line shape difference in 1H NMR data. This effect is especially pronounced

in the case of PSC normalization of spectra containing significant and consistent broad background

signals, where normalization alone cannot comparably standardize baselines (cf. Chapter 7).

One particularly striking result of the Monte Carlo simulations is the difference between auto-

matically phase corrected and unphased dilution factor estimates (Figure 6.3). In fact, examination

of dilution factors estimated by DSS integration clearly shows that automatic phase correction in-

troduces variation into the dataset through minute differences in θ0 and θ1 between spectra. This

artificial variation is then amplified through normalization, as is especially apparent in the case of

PQ normalization.

In their report on HM normalization, Torgrip et al. noticed the potential unsuitability of the

explained sum of squares (R2
X) for assessing model quality differences due to normalization methods

[9]. As a ratio measure, explained sum of squares is not suitable for comparing the qualities of

PCA models trained on different data, or any preprocessing done prior to building the models [5].

Therefore, the J2 statistic was chosen as an alternative means of comparing cluster quality during

Monte Carlo simulation. Effectively, J2 measures the ratio of the area of a cluster in scores space

relative to the total scores-space area, regardless of how much variation the model captures. Even

still, because J2 is a per-cluster statistic, it is not an ideal measure of overall scores-space model

quality, especially for models containing highly distorted components. Mean or median J2 values

of a model may be high in this case, despite the fact that the model scores are useless from the

perspective of class discrimination. Thus, the minimum J2 was chosen as a more effective indicator

of overall cluster quality.

6.6 Conclusions

Phase-scatter correction is a novel algorithm for simultaneously correcting zero- and first-order

phase errors and random dilution factors in 1H NMR chemometric data. While PSC only performs
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comparably to MSC in dilution factor estimation, it more consistently yields high-quality clusters

and interpretable models when used prior to PCA decomposition. PSC can be fully automated

through prior automatic phase correction of the dataset, has no tunable parameters, and makes no

assumptions regarding line shape, baseline flatness, or intensity distributions in the data. These

qualities lend PSC to use in chemometrics as a new method of normalizing NMR data entering into

multivariate analyses such as PCA or PLS. The latest implementation of PSC is available in the

MVAPACK toolbox [12].

6.7 References

[1] L. Chen, Z. Q. Weng, L. Y. Goh, and M. Garland. An efficient algorithm for automatic phase
correction of NMR spectra based on entropy minimization. Journal of Magnetic Resonance,
158(1-2):164–168, 2002.

[2] J. W. Eaton, D. Bateman, and S. Hauberg. GNU Octave Manual Version 3. Network Theory
Limited, 2008.

[3] T. Fearn, C. Riccioli, A. Garrido-Varo, and J. E. Guerrero-Ginel. On the geometry of SNV and
MSC. Chemometrics and Intelligent Laboratory Systems, 96(1):22–26, 2009.

[4] S. Halouska, R. J. Fenton, R. G. Barletta, and R. Powers. Predicting the in vivo Mechanism of
Action for Drug Leads Using NMR Metabolomics. ACS Chemical Biology, 7(1):166–171, 2012.

[5] K. Kjeldahl and R. Bro. Some common misunderstandings in chemometrics. Journal of Chemo-
metrics, 24(7-8):558–564, 2010.

[6] K. Koutroumbas and S. Theodoridis. Pattern Recognition. Academic Press, 2006.

[7] D. W. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Jour-
nal of the Society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

[8] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal,
pages 308–313, 1964.

[9] R. J. O. Torgrip, K. M. Aberg, E. Alm, I. Schuppe-Koistinen, and J. Lindberg. A note on
normalization of biofluid 1D 1H NMR data. Metabolomics, 4(2):114–121, 2008.

[10] E. L. Ulrich, H. Akutsu, J. F. Doreleijers, Y. Harano, Y. E. Ioannidis, J. Lin, M. Livny,
S. Mading, D. Maziuk, Z. Miller, E. Nakatani, C. F. Schulte, D. E. Tolmie, W. R. Kent, H. Yao,
and J. L. Markley. BioMagResBank. Nucleic Acids Research, 36:402–408, 2008.

[11] B. Worley, S. Halouska, and R. Powers. Utilities for quantifying separation in PCA/PLS-DA
scores plots. Analytical Biochemistry, 433(2):102–104, 2013.

[12] B. Worley and R. Powers. MVAPACK: A Complete Data Handling Package for NMR
Metabolomics. ACS Chemical Biology, 9(5):1138–1144, 2014.

[13] B. Worley and R. Powers. Simultaneous phase and scatter correction for NMR datasets. Chemo-
metrics and Intelligent Laboratory Systems, 131:1–6, 2014.

132



Chapter 7

Uncomplicated Statistical 1H NMR Spectral Remodeling

7.1 Introduction

Structure-activity relationships (SAR) by NMR [22] spurred a revolution for the role of NMR in

drug discovery. Like X-ray crystallography, NMR had been primarily used as a means to determine

protein and protein-ligand structures as part of a structure-based drug discovery effort [4]. NMR is

now an important alternative to traditional high-throughput screening (HTS) assays for identifying

drug-like chemical leads [16, 17]. By combining NMR ligand-affinity screens with fragment-based

libraries, a dramatic increase in chemical diversity is achieved (from 106 to 1063), while also mini-

mizing resources, increasing hit-rates and improving the drug-like qualities of the resulting chemical

leads [5]. Consequently, NMR fragment-based screens have significantly benefited the pharmaceuti-

cal industry by leading to a number of clinical-stage compounds.

NMR ligand-affinity screening is also a powerful platform for protein functional annotation dur-

ing the search for novel drug targets [13, 20]. Significant percentages of the human proteome and

the proteomes of other infectious organisms are comprised of functionally uncharacterized proteins

[14]. Undoubtedly hidden among this multitude of unannotated proteins are novel drug targets that

may lead to new treatments or new means of overcoming mechanisms of drug resistance. Besides

verifying that a functionally unannotated protein is druggable, NMR ligand affinity screening also

identifies the functional epitope and the classes of ligands that bind the uncharacterized protein.

This information may then be leveraged to infer a function through structural similarities with func-

tionally annotated proteins [18, 19].

NMR spectroscopy reports a multitude of time-averaged physical observables that carry information

relating to the nature of interactions between small molecule ligands and protein targets [10]. A

number of 1D 1H NMR pulse sequences have been developed to probe these distinct features of

binding, including differences in free and bound ligand diffusion and relaxation properties [6], and
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saturation transfers from water [1] and protein [11] resonances. As part of an NMR high-throughput

screen, these 1D 1H NMR pulse sequences present a number of unique challenges that include high

false positive rates, long acquisition times, and high demand for protein samples [9, 7]. However,

at suitably chosen concentrations of ligand and protein, a standard, unedited 1D 1H NMR experi-

ment may be used to detect binding interactions through enhanced relaxation rates of ligand spins

[12, 20, 13].

While it is possible to detect ligand binding using standard 1D 1H NMR, the resulting spectra

are a combination of free and bound ligand and protein signals, a fact which makes them difficult to

interpret. Broad, rolling baselines arising from slowly tumbling protein spins are particularly prob-

lematic during interpretation, as they often mask changes in ligand signal broadness and intensity.

This masking effect due to protein baselines is exacerbated at protein-ligand concentration ratios

nearing or exceeding unity, forcing the use of excess ligand and increasing the false negative rate

during screening. To mitigate these issues, a statistical method called Uncomplicated Statistical

Spectral Remodeling (USSR), was developed that removes protein baselines from high-throughput

ligand-based screening datasets by leveraging inter-sample reproducibility of protein signals. In ad-

dition, it will be demonstrated that the use of phase-scatter correction greatly improves inter-sample

protein baseline reproducibility and reduces the false-positive rate incurred by subsequent USSR-

based analyses. The combination of PSC and USSR enables a rapid analysis of standard 1D 1H

NMR screening data, especially in difficult cases having a high protein-ligand concentration ratio.

7.2 Materials and Methods

7.2.1 Sample Preparation and NMR Acquisition

A set of 117 samples containing free ligand mixtures and a set of 117 samples containing Bovine

Serum Albumin (BSA) with ligand mixtures were prepared based on previously published proce-

dures [20, 13]. In summary, each mixture contained no more than four ligands, each ligand had a

concentration of 100 µM, and BSA had a concentration of 200 µM when present. All NMR samples

were prepared to 600 µL total volume in a buffer containing 10 mM bis-tris-d19, 1.0 mM NaCl,

1.0 mM KCl, 1.0 mM MgCl2 and 10 µM trimethylsilyl propanoic acid (TMSP) in D2O at pH 7.0

(uncorrected). Samples were loaded into standard 5 mm NMR tubes for spectral acquisition.

All NMR experiments were collected on a Bruker Avance DRX 500 MHz spectrometer equipped
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Figure 7.1: Statistical Baseline from
the BSA Screening Dataset.
Statistical baseline (µ ± 4σ) computed
from the 1H NMR ligand-based screen
against BSA. The mean baseline is traced
in deep red, while the confidence region
for the baseline is filled in light red under-
neath.

with a 5 mm inverse triple-resonance (1H, 13C, 15N) cryoprobe with a z-axis gradient. A Bruker

BACS-120 sample changer and ICON-NMR software were used to automate NMR data collection.

Standard 1D 1H NMR spectra were collected for each sample using a SOGGY water suppression

pulse sequence [8, 15]. All experiments were performed at 20◦C with 256 scans, 8 dummy scans, a

carrier frequency offset of 2,352 Hz, a 5,483 Hz spectral width, and a 1.0 section inter-scan delay.

Free induction decays were collected with 4,096 complex data points, resulting in a total acquisition

time of 8 minutes per experiment.

7.2.2 NMR Data Processing

Acquired NMR spectra were loaded and processed in batch inside the GNU Octave 3.6 programming

environment [3] using functions available in the MVAPACK software package [23]. Free induction

decays were loaded in from Bruker DMX binary format and corrected for group delay by a fixed

circular shift. All decays were then zero-filled twice, Fourier transformed and automatically phase

corrected using a simplex optimization routine. Phase-scatter correction was applied to a copy of

the screen spectral data, and spectral remodeling was performed in parallel on the uncorrected and

corrected datasets for the purposes of comparison.

7.2.3 Statistical Spectral Remodeling

The Uncomplicated Statistical Spectral Remodeling (USSR) method capitalizes on the reproducibil-

ity of the protein baseline and the low likelihood that ligand signals will dominate any given spectral

data point across multiple samples. For each pair of free mixture (fn) and screen (mixture plus

protein, pn) 1H NMR spectra, a difference spectrum (dn) was computed using a simple point-wise
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subtraction. The central tendency (µ) and dispersion (σ) of the difference spectra were then ro-

bustly estimated using the median and median absolute deviation, respectively. Figure 7.1 shows

the statistical baseline computed by USSR from a screen of ligand binding to BSA. Once a statistical

baseline is established for a given dataset, each spectrum pn in the screen is remodeled to maxi-

mally remove interference from baseline signals. Each spectral data point in pn is compared to µ±σ

using a Bonferroni-corrected Student’s t-test [2]. The resulting p value provides a measure of how

distinguishable the corresponding data point is from the statistical baseline. Based on a preselected

level of significance (α), data points having low p values are retained (less the statistical baseline) in

the remodeled spectrum (rn) and data points having high p values are modeled as Gaussian white

noise. Figure 7.2 shows an example remodeled spectrum from the ligand binding analysis of BSA.

Figure 7.2: Statistical Baseline Removal from a Screen Spectrum.
An example spectral remodeling result of tolazamide, dimethyl 4-methoxyisophthalate, 1,7-
dimethylxanthine and oxolinic acid in the presence of BSA, showing (A) the free ligand spectrum
(black) and the remodeled spectrum (red) resulting from removing the statistical baseline (red) from
the screen spectrum (black) in (B). The remodeled pseudospectrum readily indicates that several
peaks from dimethyl 4-methoxyisophthalate have broadened into the baseline due to interaction with
BSA.

7.2.4 Statistical Hit Determination

For each peak in each remodeled spectrum from USSR, a KD was computed based on the intensity

ratio between free and remodeled ligand signals. First, in the limit of fast exchange between free and

bound ligand states relative to the NMR timescale, the fraction of bound ligand (fB) was computed:

fB =

(
IF
IB
− 1

)(
vB
vF
− 1

)−1

(7.1)
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where IF and IB are the intensities of free and remodeled (bound) ligand signals, and vF and

vB are the estimated NMR line widths of the free and remodeled ligand signals, respectively [21].

This fast-exchange assumption may be safely regarded as valid in most high-throughput 1D 1H NMR

protein-ligand affinity screening experiments [10], where the width and intensity of each ligand signal

is a population-weighted sum of its values in the free and bound states. Without any assumptions

about relative concentrations of ligand and protein, the fraction of bound ligand is related to the

total protein concentration [P ]T , total ligand concentration [L]T and KD via the following equation

[21]:

fB =

[
1 +

2KD

([P ]T − [L]T −KD) +
√

([P ]T − [L]T −KD)2 + 4KD[P ]T

]−1

(7.2)

The solution of the above equation for KD yields the following result:

KD =
(fB − 1)(fB [L]T − [P ]T )

fB
(7.3)

which was used to computed per-peak KD values for each remodeled spectrum rn. Finally, the

per-peak KD values were used to compute sample mean and standard deviation KD values for each

ligand. Hit detection was accomplished by comparing per-ligand mean and standard deviation KD

values against a threshold via a Student’s t-test, where a resulting p value less than a predefined

significant p value was reported as binding.

Figure 7.3: Failed Baseline Removal due to Phase Errors.
Example of a failed USSR result, highlighting the impact of phase error during computation and
subtraction of the statistical baseline from a screen spectrum. Remodeled peaks (A, red) upfield of
4.0 ppm are in fact not true signals, but were generated due to a phase-induced discrepancy between
the statistical baseline (B, red) and the screen spectrum (B, black).
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Figure 7.4: Impact of Dataset Size
on USSR Statistical Baselines.
Correlation between statistical baselines
from bootstrap-subsampled datasets of
varying size and the original statistical
baseline computed from the complete BSA
dataset. Lines indicate median correla-
tions, and shaded regions indicate confi-
dence regions of plus or minus one stan-
dard deviation, estimated using median
absolute deviation. Blue lines and shaded
regions indicate values from subsampling
the PSC normalized dataset, and red lines
and shaded regions indicate values from
subsampling the uncorrected dataset.

7.2.5 Analysis of Dataset Size

A small simulation study was conducted to assess the quality of USSR statistical baseline estimates

over a range of sample sizes (number of spectral pairs). For sizes from 2 to 116, the BSA dataset

was randomly subsampled, without replacement, to produce a smaller dataset. For each resultant

dataset, the statistical baseline was estimated, and its Pearson correlation to the true statistical

baseline was computed and stored. Over all numbers of spectral pairs in the simulation, the median

baseline correlations were computed, and are reported in Figure 7.4.

7.3 Results

From the USSR analysis of ligand binding to BSA, 43 compounds were classified as hits from the

library of 456 compounds. All classified hits were determined to bind BSA with at least 1.0 mM

affinity (KD ≤ 0.001 µM) at a statistical confidence level of 99%. A summary of the hits, along

with their estimated KD and p values, is provided in Table 7.3. Comparison of results from both

PSC-corrected and uncorrected USSR datasets reveals that the use of PSC normalization prior to

USSR modeling greatly reduces the effective positive rate of statistical hit determination: 195 hits

were identified from the PSC-uncorrected spectra. Closer examination of hits identified without

PSC correction indicates that USSR failed to fully subtract the statistical baseline from the screen

spectra (e.g. Figure 7.3), resulting in residual baseline intensity passing into equation 7.2 during

KD calculation and hit determination. In short, the use of PSC normalization prior to USSR

enables more effective baseline subtraction by decreasing both dilution- and phase-related protein

baseline intensity variation in collected 1H NMR spectra (Figure 7.5). Baseline estimates obtained

by collecting a spectrum of pure protein will suffer from the same phase-induced variation, which
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Figure 7.5: Impact of PSC on USSR
Statistical Baselines.
Relative standard deviations (RSDs) of the
statistical baselines computed before (red)
and after (black) phase-scatter correction,
which substantially decreases inter-sample
variability of the protein baseline signals.

would also increase the false positive rate during hit determination. The introduced combination

of PSC and USSR provides a more reliable means of baseline identification, without the need for

collection of a free protein reference spectrum.

Cursory analysis of the robustness of the USSR statistical baseline during random subsampling of

the BSA dataset indicated that the PSC/USSR methodology can reliably operate at very low dataset

sizes (i.e. 10–20 spectral pairs). Pearson correlations between true and subsampled baselines did

not appreciably decrease even after harsh subsampling (Figure 7.3), and correlations computed from

PSC-normalized data maintained significantly higher values than those from non-normalized data.

While it would be possible to obtain a statistical baseline from fewer than ten spectral pairs, this is

not recommended, as it will decrease the effectiveness of the Bonferroni-corrected t-test that USSR

performs during remodeling. Therefore, as a general rule of thumb, PSC/USSR analyses may be

performed on high-throughput screening datasets having as few as ten spectral pairs, and higher

sample sizes only serve to further increase the reliability of remodeled results.

7.4 Discussion and Conclusions

While the saturation transfer difference (STD) NMR experiment [11] is a popular choice for ligand-

based NMR affinity screens, a 1D 1H NMR spectrum requires only a few seconds to acquire, making

it an ideal choice for high-throughput screening. STD experiments require significantly longer acqui-

sition times (upwards of hours) in order to acquire difference spectra with sufficient signal-to-noise

to reduce false negatives. A particular strength of STD is the minimal amount of protein needed per

experiment, making it practical to screen a reasonably large chemical library (upwards of thousands
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of compounds) with only a few milligrams of protein. Through a judicious choice of protein and

ligand concentrations coupled with the use of cryoprobes and high magnetic fields, it is also possible

to minimize protein requirements in 1D 1H line-broadening screens. While STD experiments still

tend to require less protein than line-broadening experiments, the higher false positive rate of STD

screening easily negates any advantages of minimal protein usage. This high false positive rate arises

due to the tendency of STD experiments to emphasize weak binding affinities commonly encountered

during aggregation and nonspecific binding [7, 9].

NMR line-broadening experiments take advantage of the molecular-weight dependence of T2 re-

laxation and the resultant measurable difference in line-widths between proteins and the compounds

in a screening library [6]. Upon binding a protein target, the 1H NMR resonances of a compound will

broaden significantly or even disappear. In principal, this spectral broadening is easily observable

and binding is readily identified. In practice, background signals from the protein can confound the

data analysis. This background interference increases with the size and concentration of the protein

and leads to an increase in false negative rates. Apparent line-width differences between free and

bound ligands also increase with protein size and concentration, making the optimal experimental

conditions for NMR line-broadening screens exactly the same conditions which confound manual

interpretation. Clearly, the ability to accurately remove the protein background from an NMR line-

broadening experiment will improve both the utility and reliability of the technique, especially at

relatively high protein-ligand concentration ratios where binding is more apparent.

By removing interfering protein baseline signals, USSR provides a straightforward means of visually

or computationally analyzing screening results. In fact, the outcome of applying the USSR method

to an extremely challenging and atypical test case is rather dramatic: an NMR line-broadening

screen of BSA against a chemical library of 456 compounds identified 43 binders, despite the BSA

background signals completely obscuring the ligand spectral features. An example screening re-

sult of tolazamide, dimethyl 4-methoxyisophthalate, 1,7-dimethylxanthine and oxolinic acid against

BSA is illustrated in Figure 7.2. Removal of the interfering protein statistical baseline from the

screen spectrum (Figure 7.2B) yielded a high-quality pseudo-spectrum of the ligand mixture in the

presence of BSA. Overlaying the remodeled NMR spectrum with the free ligand mixture spectrum

indicated that the two spectra were essentially identical for the non-binding ligands (Figure 7.2A).

Only dimethyl 4-methoxyisophthalate, which binds BSA, exhibited any difference after remodeling.

The USSR method of baseline estimation and subtraction is expected to perform equally well under
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any conditions where a common, highly reproducible spectral feature exists within a dataset. The

presented application of PSC/USSR to high-throughput protein-ligand affinity screening is but one

example of its potential uses.

However, reliable identification of the protein baseline from screening data requires highly repro-

ducible sample preparation, data collection and processing. The last of these requirements is met

by the use of phase-scatter correction prior to remodeling, which brings protein baselines from all

spectra into closer agreement with each other and minimizes the number of false hits identified

during analysis. It is important to note that PSC is only an effective pre-treatment for USSR

when protein baseline signals are of comparable intensity to ligand signals. PSC normalization is

designed to maximize statistical agreements between spectra by phase and normalization correction,

and its use of the `2 norm as a criterion for ‘agreement’ implies that higher-intensity features will

be preferentially corrected. Thus, PSC achieves the best results prior to USSR when protein signals

are a major spectral component, as is the case when protein-ligand concentration ratios are near or

greater than unity. In effect, the combined use of PSC and USSR expands the range of protein-ligand

concentration ratios which may be probed by 1H line-broadening experiments for the purposes of

high-throughput screening.

Finally, it cannot be under-emphasized that the single-point KD computations employed by USSR

during statistical hit determination are only order-of-magnitude estimates of the true dissociation

rates, and can carry significant systematic and random errors. In particular, the fraction of bound

ligand – and by extension, the dissociation constant – depends exquisitely on the estimated free

and bound ligand line widths, vF and vB . Thus, any imprecision in the line width estimates will

propagate into a systematic bias in the final dissociation constants. If required, verification of initial

hits may be achieved to higher accuracy via multiple-point estimation of the KD through linear or

nonlinear least squares [21].

An implementation of the USSR algorithm is available in open-source GNU Octave code as a part

of the MVAPACK toolbox [23].
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Table 7.1: Results of the USSR Analysis of Ligand Binding to BSA.

Compound KD (nM) p
Thiamine hydrochloride 0.143 ≤ 10−6

5-azacytidine 0.072 ≤ 10−6

Nadolol 0.142 ≤ 10−6

N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide 0.090 ≤ 10−6

Timolol maleate 0.092 ≤ 10−6

5-phenylvaleric acid 0.000 ≤ 10−6

Astemizole 0.000 ≤ 10−6

Leflunomide 0.041 ≤ 10−6

Gliotoxin 0.061 ≤ 10−6

2-aminofluorene 0.141 0.000001
Mordant orange 1 0.162 0.000020
Indomethacin 0.239 0.000027
Diminazene aceturate 0.186 0.000034
Flavanone 0.188 0.000065
(-)-arctigenin 0.200 0.000101
Meclofenamic acid sodium salt 0.154 0.000188
2-acetamidophenol 0.198 0.000202
Bromocresol green 0.198 0.000266
Mycophenolic acid 0.203 0.000341
7-deazaguanine 0.213 0.000466
Camptothecin 0.183 0.000468
Flavone 0.208 0.000582
Naproxen 0.211 0.000653
2,6-diisopropylphenol 0.220 0.000816
Z-L-phenylalanine 0.230 0.001076
Cromolyn sodium salt 0.226 0.001080
Methotrexate, (+)-ametthopterin 0.237 0.001106
Cinoxacin 0.231 0.001224
Dimethyl 4-methoxyisophthalate 0.218 0.001315
8-methoxypsoralen 0.237 0.002242
L-ornithine hydrochloride 0.337 0.002326
Aminophylline hydrate 0.246 0.002633
Captopril 0.277 0.002781
Ebselen 0.246 0.002854
2-aminophenol 0.394 0.003476
Myristic acid 0.271 0.004925
Sulindac sulfide 0.269 0.005659
Phenylpyruvic acid 0.282 0.006867
Diclofenac sodium salt 0.284 0.007310
Prednisolone 0.286 0.007693
Alaproclate hydrochloride 0.281 0.007706
Phenylmethanesulfonyl fluoride 0.265 0.008433
Methyl 4-hydroxyphenylacetate 0.286 0.008845
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Chapter 8

Generalized Adaptive Intelligent Binning of Multiway Data

The art of doing mathematics consists in finding that special case which contains all the
germs of generality.

– David Hilbert

8.1 Introduction

Figure 8.1: Generalization of Adaptive Intelligent Binning.
(A) In the one-dimensional case, the bin containing regions 1 and 2 is optimally subdivided (asterisk)
when the sum of the objective values in regions 1 and 2 is maximal and greater than the original
bin’s objective value. (B) In the D-dimensional case, there are now D possible dimensions along
which an optimal subdivision may exist. The optimal subdivision along the 1H dimension (triangle)
occurs when the sum of the objective values in regions 3+6 and 4+5 is maximal and greater than
that of the original bin. Similarly, the optimal subdivision along the 13C dimension (circle) occurs
when the sum of the objective values in regions 3+4 and 5+6 is maximal and above the original bin
objective. A comparison between all possible optimal subdivisions along all dimensions yields the
best possible subdivision (13C, circle).

By and large, the phase “NMR metabolic fingerprinting” implies the use of one-dimensional (1D) 1H

NMR spectroscopic methods, due in no small part to the ease and speed of 1D data collection and
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the large natural abundance of NMR-active protons found in metabolomics samples [20, 33]. Before

processed spectra are submitted to PCA or PLS for modeling, they are often subdivided into bins

to simplify multivariate analyses. Spectral binning, introduced and described in detail in Chapter

3, reduces the dimensionality of a data matrix and masks chemical shift variability between samples

at the expense of decreased model interpretability: any given bin in a 1D 1H NMR spectral dataset

may contain several overlapped signals from multiple distinct metabolites [1]. Thus, without uti-

lizing computationally intensive methods of deconvolution to tease apart signal contributions from

individual metabolites [4, 36], the resulting fingerprint from a binned 1D dataset is usually limited

to high-level inference about metabolic trends.

By leveraging the connectivities between 1H and 13C nuclei in metabolites, two-dimensional (2D)

heteronuclear NMR methods reduce spectral overlap by spreading 1H information over a second

(13C) chemical shift dimension [23]. Heteronuclear single quantum coherence (HSQC) experiments

are commonly performed in NMR metabolic profiling studies, and provide an NMR singlet or mul-

tiplet for each directly bonded 1H–13C pair in the sample. Developments in NMR hardware and

acquisition techniques have brought natural abundance 1H–13C HSQC experiment times down to

values compatible with high-throughput metabolic fingerprinting studies [24, 26]. However, multi-

variate analysis of 2D NMR datasets is still a nontrivial undertaking that requires either vectorization

[16], which breaks the inherent structure of the data, or the use of multilinear factorizations [21, 22],

which are more computationally intensive and difficult to cross-validate.

Spectral binning is another potential means of preparing 2D NMR datasets for multivariate analysis

that holds several advantages over binning 1D spectra. First, multiple integration of bins maps

each spectrum to an observation vector regardless of its original dimensionality, allowing bilinear

PCA and PLS algorithms to be used without concern for loss of the inherent structure of the data.

Second, binning of 2D spectral data yields more well-conditioned data matrices than simple vector-

ization. Finally, because signals are better resolved in 2D spectra, each bin contains substantially

fewer signals from distinct metabolites. Multiple different algorithms have been developed to bin 1D

NMR data [3, 2, 7, 9, 27], and the use of uniform binning on 2D NMR data has also been reported

[29]. However, at the time of this writing, no methods exist to intelligently bin multidimensional

data for use in multivariate analyses. This motivated the development of a generalization of Adap-

tive Intelligent (AI) binning [9] to spectral data of any dimensionality, called Generalized Adaptive

Intelligent (GAI) binning (Figure 8.1).
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8.2 Theory

8.2.1 AI-binning

Generalized AI-binning (GAI-binning) is a logical extension of AI-binning to two or more dimensions.

In the AI algorithm (Figure 8.1A), bins are recursively subdivided until a stopping criterion or

minimum bin width is reached [9]. For a 1D dataset containing N spectra, the following objective

function is used to assess the quality of each bin:

Vb =
1

N

N∑
n=1

[(maxn,b − In,b,1)(maxn,b − In,b,end)]
R
2 (8.1)

where maxn,b is the maximum intensity inside the bin b in spectrum n, and In,b,1 and In,b,end are

the bin edge intensities. The exponent R in the AI objective function is referred to as a “resolution

parameter”, which offers a means of tuning the binning result based on signal-to-noise and peak

resolution of a dataset. The replacement of R with R
2 in the exponent of equation 6.1, enables

a slightly modified interpretation of each summed term in the AI objective function as a relaxed

form of a geometric mean of the differences between the bin edge intensities and the maximum bin

intensity. At each subdivision step, new bin edges are chosen to maximize the combined (summed)

objective values of the two resulting bins over the objective value of the original bin. If no bin

subdivision exists with a combined objective value greater than that of the original bin, recursive

subdivision within that bin is terminated, and the AI algorithm terminates once all bins may no

longer be subdivided.

8.2.2 GAI-binning

In two or more dimensions, the set of bin boundary points expands to include all points that lie on

the edges (or faces, hyperfaces, etc.) of the bin. By denoting the set of all edge points in bin b as

Eb, a new objective function may be constructed:

Vb =
1

N

N∑
n=1

[ ∏
e∈Eb

(maxn,b − Ie)

] R
||Eb||

(8.2)

Thus, the GAI algorithm computes the “relaxed” geometric mean of the differences between the

bin maximum and all points on the boundary. In the case of one-dimensional data, it is apparent

that equation 6.2 reduces to equation 6.1, and GAI-binning operates identically to AI-binning. As

dimensionality increases, the risk of floating-point overflow or underflow increases due to the larger
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bin edge set Eb. To avoid this, the following “log-objective” may be used in lieu of equation 6.2:

Vb,ln =
R

N ||Eb||

N∑
n=1

∑
e∈Eb

ln(maxn,b − Ie) (8.3)

Like AI-binning, GAI-binning initializes a bin around the entire dataset and proceeds to recursively

subdivide each bin until a minimum bin size is reached or no bin may be divided to yield an increase in

the objective value. Because the number of ways to subdivide each bin increases with dimensionality,

all possible dimensions are tested, and the new bin boundary that maximizes the objective over all

possible subdivision dimensions is selected (Figure 8.1B). Therefore, the GAI algorithm may be

considered a form of binary space partitioning (BSP) which limits its partition hyperplanes to lying

orthogonally to the basis vectors of the coordinate system [8].

8.2.3 Noise Bin Elimination

It is important that noise bins be removed from the data matrix prior to multivariate analysis, as

their presence is known to negatively impact the interpretability and reliability of multivariate models

[15, 5]. Because the integration of a noisy space of increasing dimensionality (i.e. double or triple

integration) results in a random variable having a similarly increasing variance, the importance of

noise removal is compounded in multidimensional binning. Therefore, a noise bin removal step based

on spectral intensity was added to the GAI algorithm. A running mean and variance calculation was

performed to estimate the noise floor of each spectrum. The initial mean µn and standard deviation

σn of the noise were computed using the first 32 points on one edge of the spectrum, which were

assumed to contain only baseline noise. Every other data point was then classified as signal or noise

based on whether its intensity exceeded the current running noise floor, µn+3σn. Upon inclusion of

a new noise data point, the mean and standard deviation of the noise were appropriately updated.

Once the estimated noise floor was determined for each spectrum in the dataset, a threshold for bin

removal was computed as the median noise floor of all the spectra:

Ith = medn(µn + kσn) (8.4)

where k is a user-selectable parameter to adjust the noise threshold. Only bins whose maximum

intensity fell above Ith were retained in the final data matrix.
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8.3 Materials and Methods

8.3.1 Human Liver Dataset

Two independently collected 1H–13C HSQC NMR datasets from ongoing metabolomics studies were

used as test cases for the GAI-binning algorithm. For the first dataset, twenty-four 1.0 mL samples

of SK-Hep1 human liver cells were provided for metabolic fingerprinting, half of which were treated

with 50 µM tetrathiomolybdate (TTM). The cells were extracted into 80:20 methanol:water to col-

lect the water-soluble metabolites, spun in a rotary evaporator for two hours, lyophilized at −50◦C

and 0.02 mBar for 24 hours, and finally redissolved in 600 µL of 50.0 mM phosphate buffer in 99.8%

D2O (Isotec, St. Louis, MO) adjusted to pH 7.4. The redissolved, pH-adjusted samples were then

collected into NMR tubes.

Experiments were collected on a Bruker Avance III HD 700 MHz spectrometer equipped with a

5 mm inverse quadruple-resonance (1H, 13C, 15N, 31P) cryoprobe with cooled 1H and 13C channels

and a z-axis gradient. A Bruker SampleJet and ICON-NMR were used to automate NMR data col-

lection. A 2D gradient-enhanced 1H–13C HSQC with improved sensitivity [25, 18] (hsqcetgpsi) was

collected for each sample. Spectra were collected with 4 scans and 16 dummy scans over a uniform

Nyquist grid of 512 and 64 complex points along the 1H and 13C dimensions, respectively. Spectral

windows were set to 3,285 ± 4,545 Hz along 1H and 12,677 ± 14,620 Hz along 13C. All spectra were

collected at a sample temperature of 298.0 K.

Figure 8.2: Binned Liver Dataset.
Processed 1H–13C HSQC mean spectrum of the liver data tensor, with overlaid uniform (A) and
GAI (B) bin boundaries.
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8.3.2 Mouse Embryonic Fibroblast Dataset

A second set of samples from kinase suppressor of Ras 1 (KSR1) knockout mouse embryonic fi-

broblast (MEF) cells was also provided to generate a test 1H–13C HSQC dataset for GAI-binning.

For this second dataset, ten cell samples from ksr−/− MEFs and ten samples from KSR1-rescued

ksr−/− MEFs were used to produce metabolite extracts. The cells were washed, extracted into 80:20

methanol:water, spun in a rotary evaporator, lyophilized and redissolved according to the procedures

used to extract metabolites from the liver cell samples.

Experiments were collected on a Bruker Avance DRX 500 MHz spectrometer equipped with a 5

mm inverse triple-resonance (1H, 13C, 15N) cryoprobe with a z-axis gradient. A Bruker BACS-120

sample changer and ICON-NMR software were used to automate data collection. A 2D gradient-

enhanced 1H–13C HSQC (hsqcetgp) was collected for each sample. Spectra were collected with 128

scans and 16 dummy scans over a uniform grid of 1024 and 32 complex points along the 1H and

13C dimensions, respectively. Spectral windows were set to 2,359 ± 2,367 Hz along 1H and 8,174 ±

8,803 Hz along 13C. All spectra were collected at a sample temperature of 293 K.

Figure 8.3: Binned Fibroblast Dataset.
Processed 1H–13C HSQC mean spectrum of the MEF data tensor, with overlaid uniform (A) and
GAI (B) bin boundaries.

8.3.3 NMR Processing and Multivariate Analysis

All processing, treatment and statistical modeling were performed in GNU Octave 3.6 [12] using

routines currently available in the MVAPACK toolbox for NMR chemometrics [34], discussed in

Chapter 4. The 2D raw serial files were loaded [10], apodized with a squared-sine window, zero-filled

once along 1H and twice along 13C, and Fourier-transformed. Spectra from the liver cell extracts
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were manually phase-corrected and cropped (1.0 – 6.6 ppm along 1H; 16 – 112 ppm along 13C), and

spectra from the MEF extracts were similarly phase corrected and cropped (1.25 – 6.2 ppm along

1H; 8 – 102 ppm along 13C). Both uniform and GAI-binning were performed on each data tensor

using minimum 1H and 13C bin widths of 0.025 and 2.5 ppm, respectively, and a GAI resolution

parameter of 0.1. Binned regions identified to be less intense than three times the standard deviation

of the spectral noise (k = 3) were removed after binning. The mean spectra of the entire processed

liver and MEF datasets, superimposed with bins identified by both uniform and GAI-binning, are

shown in Figure 8.2 and Figure 8.3.

The applicability of GAI-binning to bilinear factorizations was demonstrated by modeling the data

tensors using both PCA and OPLS-DA. For PCA modeling of the data, the spectral regions iden-

tified by each binning method were doubly integrated. Scores and loadings were then calculated

using the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm [17]. Internal leave-one-out

cross-validation (LOOCV) of each computed PCA model was performed to yield model fit (R2
X) and

predictive ability (Q2) statistics [19, 14]. For OPLS-DA, spectral data points within the identified

bins were vectorized row-wise into a data matrix as previously described [16]. During vectorization,

all data points within each binned region are stacked into an observation vector, and data points

not within bins are excluded. The use of vectorization prior to supervised modeling facilitates the

creation of backscaled pseudospectral OPLS loadings, which hold greater ease of interpretation over

binned loadings [32]. Modeling by an OSC-filtered NIPALS algorithm [28] and 100 rounds of seven-

fold Monte Carlo cross-validation (MCCV) [35] were performed to compute data fit (R2
X), response

fit (R2
Y ) and model predictive ability (Q2) statistics. The binned data matrices produced via double

integration were also subjected to OPLS-DA modeling in the same manner as the vectorized data.

All OPLS-DA models were further validated using CV-ANOVA [13] and 1,000 iterations of response

permutation testing [31] to rigorously ensure model reliability. Backscaled predictive OPLS loadings

were computed from the vectorized bins according to previously published works [6, 16]. During

backscaling, OPLS loading vectors were scaled by the inverse of their original Pareto scaling co-

efficients and then unstacked into a two-dimensional pseudospectrum using bin information. Data

points not included in the vectorized loadings were set to zero in the backscaled pseudospectrum.

All data matrices were normalized using Probabilistic Quotients (PQ) [11] and then Pareto scaled

[30] prior to modeling.
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8.4 Results and Discussion

Processing of the liver extract spectra yielded a real data tensor of 24 1H–13C HSQC spectra having

442×149 points each, and processing of the fibroblast spectra yielded a tensor of 17 spectra having

1,071×172 real data points each. The observation counts (N), variable counts (K) and PCA/OPLS

cross-validation statistics (R2, Q2) for each dataset and variable reduction method are summarized

in Table 8.1. Further validation results from the OPLS models, all of which indicate varying degrees

of high model reliability, are also summarized in Table 8.2. Through examination of the variable

counts within Table 8.1, it is readily apparent that GAI-binning is dramatically more effective than

uniform binning at discriminating between signal and noise regions within spectral data. On average,

GAI-binning segmented each data tensor into less than half the number of bins produced by uniform

binning, and produced PCA models with markedly higher R2
X and Q2 statistics. Moreover, even

with the greatly reduced variable counts produced by GAI-binning relative to uniform binning, the

OPLS Q2 statistics between the two methods are statistically indistinguishable. In fact, the variable

counts resulting from GAI-binning these third-order tensors are substantially lower than the few

hundred variables typically produced by binning one-dimensional spectra. Resulting scores from

PCA modeling of the GAI-binned liver data tensor are shown in Figure 8.4.

Table 8.1: Data Matrices and PCA/OPLS Model Statistics.

Integration Vectorization
PCA OPLS OPLS

K R2
X Q2 R2

Y Q2 K R2
Y Q2

Liver Unif. 248 0.82 0.71 0.993 0.938 ± 0.002 11,160 0.993 0.929 ± 0.003
N = 24 GAI 113 0.89 0.75 0.991 0.928 ± 0.003 10,474 0.994 0.933 ± 0.003
MEF Unif. 334 0.48 0.40 0.994 0.974 ± 0.004 18,348 0.994 0.963 ± 0.005
N = 17 GAI 93 0.71 0.56 0.994 0.973 ± 0.005 18,789 0.996 0.962 ± 0.006

Table 8.2: OPLS-DA Cross Validation p-values.

Integration Vectorization
Permutation CV-ANOVA Permutation CV-ANOVA

Liver Unif. < 0.001 3.24× 10−11 < 0.001 4.70× 10−11

N = 24 GAI < 0.001 3.34× 10−10 < 0.001 9.74× 10−11

MEF Unif. < 0.001 3.56× 10−10 < 0.001 1.73× 10−9

N = 24 GAI < 0.001 1.37× 10−9 < 0.001 2.34× 10−9

Backscaled predictive OPLS-DA loadings of the vectorized 1H–13C HSQC spectral data tensors
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Figure 8.4: PCA Scores of a GAI-
binned Tensor.
Principal component analysis scores result-
ing from modeling the GAI-binned 1H–13C
HSQC liver data matrix, indicating a high
degree of separation between experimental
groups. Model R2

X and Q2 were 0.68 and
0.64 for the first principal component (t1)
and 0.12 and 0.09 for the second (t2). Class
separations of this magnitude are readily
achievable using data matrices generated
by GAI-binning, due in large part to the
low variable counts it generally produces.

(Figure 8.5) lend further support for the use of multidimensional binning in metabolic fingerprinting

studies. Even when vectorization is performed in place of integration to produce a data matrix,

binning offers an effective means of variable selection: only 10,474 of 65,858 variables (16%) were

retained when GAI-binning was used as a pre-filter prior to modeling the liver data. A similar re-

duction was observed in the fibroblast dataset, where GAI-binning retained 18,789 of 184,212 total

variables for a 90% reduction in dimensionality. These substantially reduced variable counts offered

by binning translate to more well-conditioned bilinear modeling problems. As the dimensionality of

the input dataset is increased further, the reductions in variable count afforded by multidimensional

binning are expected to become even more dramatic. While the variable counts produced by vector-

ization of uniformly binned data tensors are comparable to those from GAI-binning, it is critical to

recognize that the uniformly binned regions contain more noise data points than their GAI-binned

counterparts, and thus offer a less efficient dimensionality reduction.

Spectral regions produced by GAI-binning (Figure 8.2) demonstrate several important properties

of the combined binning and noise removal processes. Because t1 noise and truncation artifacts

yield phase-incoherent negative spectral excursions after Fourier transformation, “unrelaxed” GAI-

binning (R = 1) tends to preferentially subdivide near such regions, producing elongated bins along

the F1 dimension. Decreasing the resolution parameter from its maximum value shrinks these bins

to contain only true signals. Thus, an objective rule for determining an optimal resolution parameter

during binning is to decrease R until all bins shrink to contain a minimal amount of noise. Once an

optimal resolution parameter has been identified, a suitable noise threshold (k) must be determined

such that all noise bins are removed without loss of bins containing weak signals. However, once

R and k have been determined for a given set of experimental conditions, they may be applied
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during GAI-binning to any data collected at later times under the same conditions to achieve ideal

results. The selections of resolution parameter (R = 0.1) and noise threshold (k = 3) made in this

work were identified according to the above criteria through a manual visual examination of the

binning results, but it is conceivable that objective metrics of these criteria could be constructed

that facilitate automated determination of these parameters.

Finally, like AI-binning, the execution time of GAI-binning scales quadratically with the number of

spectral data points, and scales approximately linearly with both the number of spectral dimensions

and the number of observations. Typical run times for binning two-dimensional datasets range from

seconds to a few minutes, depending mostly on the data point count. Thus, while zero-filling may

be used to increase the digital resolution of data being input into GAI-binning, it should be applied

sparingly to avoid unnecessarily long computation times during bin region determination.

Figure 8.5: Pseudospectral HSQC Loadings.
Backscaled full-resolution pseudospectral loadings from OPLS-DA modeling of the GAI-reduced (A)
liver and (B) fibroblast 1H–13C HSQC data tensors. Positive and negative loadings are represented
by red and blue contours, respectively.

8.5 Conclusions

Generalized Adaptive Intelligent binning is a logical extension of the previously described Adaptive

Intelligent binning algorithm [9] to multidimensional datasets, and provides a model-free alternative

to peak-fitting and peak-picking as a means of variable selection in multivariate analyses. Further-

more, GAI-binning is a more intelligent method to extract signal regions from multidimensional

spectral data tensors than uniform binning, and may be used to generate very low-dimensionality

data matrices via multiple integration or efficiently noise-filtered data matrices via vectorization.
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The C++ implementations of 1D and 2D GAI-binning used in this work are freely available as part

of the MVAPACK software package [34] introduced in Chapter 5.
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8.6 Permutation Test Results

Figure 8.6: Response Permutation Test: Uniform integration.
Response permutation test results for OPLS-DA models from the uniformly binned (integrated) liver
(A, B) and fibroblast (C, D) data tensors. Model fit (R2

Y ) statistics (A, C) are shown in blue, and
model predictive ability (Q2) statistics (B, D) are shown in green. True values of R2

Y and Q2 are
represented by vertical bars, and null distributions are computed through kernel density estimation
of the values from permutation. Scatter plots of the permutation (null) R2

Y and Q2 statistics are
shown in the lower panes.

Figure 8.7: Response Permutation Test: GAI-integration.
Response permutation test results for OPLS-DA models from the GAI-binned (integrated) liver (A,
B) and fibroblast (C, D) data tensors. See the caption of Figure 8.6 for a complete description of
the figure contents.
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Figure 8.8: Response Permutation Test: Uniform vectorization.
Response permutation test results for OPLS-DA models from the uniformly binned (vectorized) liver
(A, B) and fibroblast (C, D) data tensors. See the caption of Figure 8.6 for a complete description
of the figure contents.

Figure 8.9: Response Permutation Test: GAI-vectorization.
Response permutation test results for OPLS-DA models from the GAI-binned (vectorized) liver (A,
B) and fibroblast (C, D) data tensors. See the caption of Figure 8.6 for a complete description of
the figure contents.
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Chapter 9

Multiblock Orthogonal Projections to Latent Structures

I see NIPALS as an open ended array of models with unlimited complexity in the com-
bined use of several devices.

– Herman Wold

9.1 Introduction

The method of nonlinear iterative partial least squares (NIPALS) has firmly entrenched itself in the

field of chemometrics. Implementations of principal component analysis (PCA) and projections to

latent structures (PLS) that utilize NIPALS-type algorithms benefit from its numerical stability, as

well as its flexibility and simplicity [1, 6, 21]. Only a few subroutines from level 2 of the basic linear

algebra subprograms (BLAS) specification are required to construct a complete NIPALS-type algo-

rithm [4], making it an attractive means of constructing PCA and PLS models of high-dimensional

spectroscopic datasets.

One particularly recent addition to the NIPALS family of algorithms, called orthogonal projections

to latent structures (OPLS), integrates an orthogonal signal correction (OSC) filter into NIPALS

PLS [17, 2]. By extracting variation from its computed PLS components that is uncorrelated (or-

thogonal) to the responses, OPLS produces a more interpretable regression model compared to PLS.

In fact, when trained on the same data and responses, and OPLS model and a PLS model with the

same total number of components will show no difference in predictive ability [18]. Despite its rel-

ative novelty to the field, the enhanced interpretability of OPLS over PLS has made it a popular

method in exploratory studies of spectroscopic datasets of complex chemical mixtures.

Extensions of NIPALS PCA and PLS to incorporate blocking information that partitions the set

of measured variables into multiple “blocks” of data have recently gained attention in the field,

as more experimental designs involve the collection of data from multiple analytical platforms per

sample. In such experiments, referred to as “class II” multiblock schemes by Smilde et al. [15],
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correlated consensus directions are sought from the blocks that maximally capture block variation

and (optionally) maximally predict a set of responses. Of the available extensions of NIPALS to

multiblock modeling, a class of methods exists that bears attractive computational qualities, namely

computability from single-block bilinear factorizations. When both super weights and block loadings

are normalized in consensus PCA (i.e. CPCA-W), the obtained super scores are equivalent to those

obtained from PCA of the concatenated matrix of blocks [20]. Likewise, scores obtained from PLS of

the concatenated matrix are equivalent to super scores from multiblock PLS (MB-PLS) when super

scores are used in the deflation step [19, 20]. As a result, these multiblock bilinear factorizations

inherit many of the useful properties of their single-block equivalents.

A second class of multiblock methods exists in which every block is predicted in a regression model

by every other block. In the first of such methods, known as nPLS, the MAXDIFF criterion [16] is

optimized one component at a time (i.e. sequentially) to yield a set of predictive weight vectors for

each block [12]. The recently described OnPLS algorithm also falls within this class. OnPLS extends

O2PLS to three or more matrices and may be considered a prefixing of nPLS with an OSC filtering

step. OnPLS deflates non-globally predictive variation that may or may not be orthogonal to all

blocks from each matrix, and then computes an nPLS model from the filtered result [12]. While

fully symmetric OnPLS is a powerful and general addition to the existing set of multiblock modeling

frameworks, it is arguably an over-complication when the regression of a single response matrix on

multiple data blocks (i.e. MB-PLS) is sought. For such situations, a novel algorithm termed MB-

OPLS for multiblock orthogonal projections to latent structures is introduced that embeds an OSC

filter within NIPALS MB-PLS, thus solving an inherently different problem from OnPLS. It will

be shown that MB-OPLS, in analogy to CPCA-W and MB-PLS, is computable from a single-block

OPLS model of the matrix of concatenated data blocks. Thus, MB-OPLS forms a bridge between

this special class of consensus component methods and the highly general symmetric regression

framework of OnPLS.

9.2 Theory

MB-OPLS belongs to a set of multiblock methods that exhibit a computability from their single-

block equivalents. A short discussion of these methods follows, in which the optimization criterion

of each method is shown to belong to the MAXBET family of objective functions. This is contrasted

to nPLS and OnPLS, which have been shown to optimize a MAXDIFF objective. Finally, the equiv-
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alence of MB-OPLS and OPLS is demonstrated, and final mentions are made to differences between

MB-OPLS and OnPLS.

In all following discussions, it will be understood that there exist n data matrices X1 to Xn, each

having N rows (observations) and Ki columns (variables). The matrix X = [X1 | · · · | Xn] of all

concatenated blocks will be used in cases of single-block modeling. Finally, a response matrix Y

having N rows and M columns will be assumed to exist for the purposes of regression.

9.2.1 nPLS and OnPLS

In their initial description of the OnPLS modeling framework [12], Löfstedt and Trygg introduced

nPLS as a generalization of PLS regression to cases where n > 2, and a model is sought in which

each matrix Xi is predicted by all other matrices Xj 6=i. The nPLS solution involves identifying a set

of weight vectors wi that simultaneously maximize the covariances between each pair of resulting

scores ti = Xiwi via the following objective function:

n∑
i,j=1
i 6=j

ti
T tj =

n∑
i,j=1
i 6=j

wi
TXi

TXjwj (9.1)

subject to the constraints ‖wi‖ = 1. This objective was recognized to be a member of the MAXDIFF

family of functions, whose solution is obtainable using a general algorithm from Hanafi and Kiers

[5]. After the identification of a set of weight vectors, the scores

ti = Xiwi

and loadings

pi =
Xi

T ti

ti
T ti

may be computed for each matrix, which is then deflated prior to the computation of subsequent

component weights:

Xi ← Xi − tipi
T =

(
I− titi

T

ti
T ti

)
Xi (9.2)

This deflation scheme follows the precedent set by two-block PLS regression. Because their de-

scribed approach used a distinct deflation scheme from single-component (sequential) MAXDIFF,

it was given the name “nPLS” by the authors to distinguish it from MAXDIFF [12, 8].
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OnPLS extends nPLS by decomposing each matrix into a globally predictive part and a non-globally

predictive (orthogonal) part using an orthogonal projection. By removing orthogonal variation from

each block prior to constructing an nPLS model, OnPLS optimizes the following MAXDIFF-type

objective function:
n∑

i,j=1
i 6=j

ti
T tj =

n∑
i,j=1
i6=j

wi
TXi

TZiZjXjwj (9.3)

where Zi represents the orthogonal projector identified by OnPLS for matrix i:

Zi = I−Toi

(
Toi

TToi

)−1

Toi
T

where Toi = [toi,1 | · · · | toi,Ao
], the concatenation of all orthogonal score vectors for the block, and

toi,a = Xiwoi,a. In OnPLS, each orthogonal weight woi,a is chosen such that its score toi,a contains

maximal covariance with the variation in Xj 6=i that is not jointly predictive of Xi. The OnPLS

framework provides a powerful set of methods for unsupervised data mining and path modeling

[12, 9, 10, 11].

9.2.2 CPCA-W and MB-PLS

The consensus PCA method, introduced by Wold et al. as CPCA and modified by Westerhuis et al.

into CPCA-W, identifies a set of weights pi that maximally capture the within-block variances and

between-block covariances of a set of n matrices [20]. It was further proven by Westerhuis, Kourti

and MacGregor that the results of CPCA-W computed on matrices X1 to Xn are identical to those

from PCA of the concatenated matrix [X1 | · · · | Xn]. It immediately follows from this equivalence

that the CPCA-W algorithm optimizes the following objective function:

tT t = pTXTXp =

n∑
i,j=1

ti
T tj =

n∑
i,j=1

pi
TXi

TXjpj (9.4)

subject to the constraint ‖p‖ = 1, where pT = [p1
T | · · · | pnT ]. Maximizing the above function

yields a set of super scores t that relate the N observations in X to each other based on the extracted

consensus in p, as well as block scores ti and loadings pi that describe each block. This objective

function is of the MAXBET variety, in contrast to the MAXDIFF objective of nPLS and OnPLS. As

a result, the CPCA-W NIPALS algorithm may be considered a special case of the general algorithm
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from Hanafi and Kiers [5].

The multiblock PLS (MB-PLS) method, when deflation is performed using super scores [19], shares

an equivalence with single-block PLS as proven by Westerhuis et al. [20]. Therefore, the MB-PLS

objective takes on a similar form as in CPCA-W, with the addition of a weighting matrix:

tTYYT t = wTXTYYTXw =

n∑
i,j=1

ti
TYYT tj =

n∑
i,j=1

wi
TXi

TYYTXjwj (9.5)

where once again ‖w‖ is constrained to unity. In analogy to Höskuldsson’s interpretation of PLS as a

regression on orthogonal components, where YYT is used to weight the covariance matrix, the above

function corresponds to a MAXBET objective with an inner weighting of YYT [6]. Alternatively,

equation 9.5 could be interpreted as a MAXBET computed on the n cross-covariance matrices YTX1

to YTXn.

9.2.3 MB-OPLS

Extension of prior multiblock NIPALS algorithms to incorporate an OSC filter rests on the obser-

vation that, in both the cases of CPCA-W and MB-PLS, deflation of each computed component is

accomplished using super scores. For any super score deflation method, a loading vector is computed

for each block:

pi =
Xi

T t

tT t

and the super scores t and block loadings are then used to deflate their respective block:

Xi ← Xi − tpi
T =

(
I− ttT

tT t

)
Xi (9.6)

Equation 9.6 differs from equation 9.2 used in nPLS and OnPLS, which uses block-specific scores

and loadings during deflation. This method of super score deflation ensures that the super scores

become an orthogonal basis, while allowing scores and loadings to become slightly correlated at the

block level, and is a necessary condition for the equivalences between CPCA-W and MB-OPLS and

their single-block counterparts [20]. This condition shall be employed in MB-OPLS by deflating each

matrix by a set of orthogonal super scores To, which shall be shown to be equal to the orthogonal

scores obtained from single-block OPLS. By constructing an MB-PLS model on the set of matrices
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after deflation by To, we effectively arrive at another MAXBET objective:

tTYYT t = wTXTZYYTZXw =

n∑
i,j=1

ti
TYYT tj =

n∑
i,j=1

wi
TXi

TZYYTZXjwj (9.7)

where w is constrained to unit `2-norm and Z is the orthogonal projector for the super scores To.

The MB-OPLS Model

MB-OPLS constructs an OPLS model for each matrix Xi, where the predictive and orthogonal load-

ings for each matrix are interrelated by a set of predictive and orthogonal super scores, respectively:

Xi = TPi
T︸ ︷︷ ︸

Xpi

+ ToPoi
T︸ ︷︷ ︸

Xoi

+Ei (9.8)

Concatenation of all block-level matrices together in equation 9.8 results in a top-level consensus

model, which is in fact equivalent to an OPLS model trained on the partitioned data matrix X:

X = [X1 | · · · | Xn] = T[P1
T | · · · | Pn

T ]︸ ︷︷ ︸
Xp

+ To[Po1
T | · · · | Pon

T ]︸ ︷︷ ︸
Xo

+ [E1 | · · · | En]︸ ︷︷ ︸
E

(9.9)

Like PLS, OPLS and MB-PLS, an MB-OPLS model contains a second equation that relates the

predictive super scores and responses:

Y = TCT + F (9.10)

The MB-OPLS Algorithm

The MB-OPLS algorithm was introduced in Chapter 3, but will be decomposed in more detail as sub-

algorithms here in order to relate it with the OPLS NIPALS algorithm. For simplicity, procedures

relating to cross-validation and automatic component count identification will be stripped from this

discussion of MB-OPLS. MB-OPLS admits a matrix of responses Y, but also supports vector-y

modeling as a special case. Direct and normed assignment will be indicated by “←” and “∝”,

respectively.

165



Algorithm 9.1 Core Algorithm for MB-OPLS

Input: {Xi ∈ RN×Ki}ni=1, Y ∈ RN×M
1: Vi ← SUBSPACE(Xi,Y) ∀i ∈ {1, . . . , n}
2: {wi}ni=1, {ti}ni=1, {pi}ni=1, t, c,u← PREDCMP({Xi}ni=1,Y)
3: To compute an orthogonal component, continue to step (4).

Otherwise, proceed to step (7).
4: {woi}ni=1, {toi}ni=1, {poi}ni=1, to ← ORTHCMP({Xi}ni=1, {Vi}ni=1, {pi}ni=1)
5: Xi ← Xi − topoi

T ∀i ∈ {1, . . . , n}
6: Return to step (2).
7: Xi ← Xi − tpTi ∀i ∈ {1, . . . , n}
8: To compute another predictive component, return to step (2).

Otherwise, end.

The SUBSPACE method computes the Y-predictive subspace for each data matrix Xi, and follows

directly from the single-block OPLS algorithm described by Trygg and Wold [17]:

Algorithm 9.2 Predictive Subspace Identification for MB-OPLS

Input: X ∈ RN×K , Y ∈ RN×M
1: for all m ∈ {1, . . . ,M} do

2: vm ← XTym ·
(
yTmym

)−1

3: V← [V | vm]
4: end for

Predictive MB-OPLS components identified by the PREDCMP method are, in fact, MB-PLS com-

ponents:
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Algorithm 9.3 Predictive Component Computation for MB-OPLS

Input: {Xi ∈ RN×Ki}ni=1, Y ∈ RN×M
1: Initialize u to a column of Y
2: repeat
3: wi ∝ Xi

Tu ∀i ∈ {1, . . . , n}
4: ti ← Xiwi ∀i ∈ {1, . . . , n}
5: R← [t1 | · · · | tn]
6: wT ∝ RTu
7: t← RwT

8: c←
(
YT t

)
·
(
tT t
)−1

9: u← (Yc) ·
(
cT c

)−1

10: until ‖u− uold‖ · ‖uold‖−1 < ε

11: pi ←
(
Xi

T t
)
·
(
tT t
)−1 ∀i ∈ {1, . . . , n}

In the above method, the value of ε is set to a very small number, such as 10−9. Once a predictive

component has been computed, MB-OPLS uses the ORTHCMP method to extract a new orthogonal

component:

Algorithm 9.4 Orthogonal Component Computation for MB-OPLS

Input: {Xi ∈ RN×Ki}ni=1, {Vi ∈ RM×Ki}ni=1, {pi ∈ RKi}ni=1

1: woi ← pi ∀i ∈ {1, . . . , n}
2: for all m ∈ {1, . . . ,M} do

3: φ←
(∑n

i=1 vi,m
Twoi

)
·
(∑n

i=1 vi,m
Tvi,m

)−1

4: woi ← woi − φvi,m ∀i ∈ {1, . . . , n}
5: end for
6: α←

(∑n
i=1 woi

Twoi

)−1/2

7: woi ← αwoi ∀i ∈ {1, . . . , n}
8: toi ← Xiwoi ∀i ∈ {1, . . . , n}
9: to ←

∑n
i=1 toi

10: poi ←
(
Xi

T to

)
·
(
to
T to
)−1 ∀i ∈ {1, . . . , n}

For each predictive component in the model, a set of orthogonal components is extracted. After the

computation of a new orthogonal component, the current predictive component is updated to reflect

the removal of orthogonal variation from the matrices Xi. The MB-OPLS algorithm closely follows

the matrix-Y OPLS algorithm presented by Trygg and Wold [17], but replaces the standard PLS

computation (steps 4–10 in OPLS) with an MB-PLS computation.

Equivalence to OPLS

In both the vector-y and matrix-Y OPLS algorithms proposed by Trygg and Wold [17], a basis V

for the response-correlated variation in X is constructed by regressing the data onto each column of
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responses:

vm ←
XTym
ymTym

∀m ∈ {1, . . . ,M} (9.11)

where ym and vm denote the m-th columns of Y and V, respectively. When X is partitioned into

multiple blocks, the computed basis also bears the same partitioning, i.e. VT = [V1
T | · · · | Vn

T ],

where each of the n submatrices corresponds to the regression of its respective block Xi onto the

responses:

vi,m ←
Xi

Tym
ymTym

∀m ∈ {1, . . . ,M} (9.12)

where vi,m is the m-th column of Vi. Therefore, the bases of response-correlated variation identified

by OPLS and MB-OPLS are equal. Given a single-block PLS loading vector p, the OPLS algorithm

computes an orthogonal weight wo by orthogonalizing p to the columns of V:

wo ← wo −
(

vm
Two

vmTvm

)
· vm ∀m ∈ {1, . . . ,M} (9.13)

after wo has been initialized from p. From the proof of Westerhuis et al. [20], it is known that the

single-block PLS loading p equals the concatenation of all block loadings from MB-PLS, i.e. that

pT = [p1
T | · · · | pnT ]. Expansion of all vector terms in the above equation into their partitioned

forms results in the following new assignment rule:

woi ← woi −
(∑n

i=1 vi,m
Twoi∑n

i=1 vi,mTvi,m

)
· vi,m ∀m ∈ {1, . . . ,M} (9.14)

The scalar term in equation 9.14 should be recognized as φ in the ORTHCMP method. By the same

reasoning, steps 6 and 7 in ORTHCMP are equivalent to scaling wo to unit norm. Therefore, because

wo is the column-wise concatenation of all weights woi, it is then apparent that the orthogonal super

scores extracted by MB-OPLS are identical to those from OPLS of the concatenated matrix X:

to = Xwo = [X1 | · · · | Xn]


wo1

...

won

 =

n∑
i=1

Xiwoi =

n∑
i=1

toi (9.15)

From this equivalence, and the fact that PREDCMP in MB-OPLS constitutes an MB-PLS compu-

tation, we arrive at the equivalence between MB-OPLS and OPLS. Thus, orthogonality between the

responses and orthogonal super scores to computed by MB-OPLS is also ensured. However, because

the computation of orthogonal weights involves all blocks, the resulting orthogonal block scores toi
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are not guaranteed to be orthogonal to the responses.

Computation from an OPLS Model

The equivalence between MB-OPLS super scores and OPLS scores may be leveraged to generate an

MB-OPLS model from an existing OPLS model of a partitioned data matrix, saving computation

time during cross-validated model training. Algorithm 3.7 in Chapter 3 details the extraction of

MB-OPLS block scores and loadings from an OPLS model.

The keen observer will recognize the similarity between Algorithm 3.7 and the procedure outlined

by Westerhuis et al. for extracting MB-PLS block components from a PLS model [20]. By using this

algorithm to compute MB-OPLS models, the analyst avoid the unnecessary computation of block

components during cross-validated model training.

9.3 Datasets

Two datasets will be described to illustrate how MB-OPLS effectively integrates an OSC filter into

an MB-PLS decomposition of a set of n matrices. The first synthetic dataset contrasts the mixing

of predictive information in MB-PLS with its separation in MB-OPLS using a contrived three-block

regression example similar to that introduced by Löfstedt and Trygg [12]. The second dataset, a

joint set of NMR and MS observations introduced in Chapter 4, is used to demonstrate the enhanced

interpretability of MB-OPLS models over MB-PLS in a real example of discriminant analysis. All

modeling and validation were performed using routines available in the MVAPACK chemometrics

toolbox [22].

9.3.1 Synthetic Example

In the first dataset, three matrices (all having 100 rows and 200 columns) were constructed to hold

one y-predictive component (tpi
T ) and one y-orthogonal component (topoi

T ). The score vectors

were non-overlapping (orthogonal) Gaussian density functions, and all block loading vectors were

mutually overlapping Gaussian density or square step functions. The true synthetic block loadings

are illustrated in Figure 9.1A. A two-component MB-PLS-R model was trained on the synthetic

three-block example dataset, as well as a 1 + 1 (one predictive, one orthogonal) component MB-

OPLS-R model. Block loadings extracted by MB-PLS-R and MB-OPLS-R and shown in Figures
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Figure 9.1: Synthetic Three-block Example Dataset.
Block loadings in the synthetic multiblock example dataset. (A) True predictive loadings (solid)
and orthogonal loadings (dashed) used to construct the three-block dataset. First, second and third
block loadings are colored in red, green and blue, respectively. (B) First component (solid) and
second component (dashed) loadings identified by MB-PLS modeling of the three data blocks. (C)
Predictive (solid) and orthogonal (dashed) block loadings identified by MB-OPLS, illustrating the
separation of y-uncorrelated variation accomplished by the integrated OSC filter.

9.1B and 9.1C, respectively.

9.3.2 Joint 1H NMR and DI-ESI-MS Datasets

The second dataset is a pair of processed and treated data matrices, collected on 29 samples of

metabolite extracts from human dopaminergic neuroblastoma cells treated with various neurotoxic

agents [7]. Details about the collection, processing and treatment of this dataset may be found in

Chapter 4, but will be summarized here. The first matrix, collected using 1H NMR spectroscopy,

contains 16,138 columns and the second, collected using direct injection electrospray ionization mass

spectrometry (DI-ESI-MS), contains 2,095 columns. Prior to all modeling, block weighting was ap-

plied after Pareto scaling to ensure equal contribution of each block to the models [15].

In a previously published analysis of this dataset [13], a two-component, two-class (vector-y) MB-

PLS-DA model was trained on the dataset in order to discriminate between untreated and neurotoxin-

treated cell samples. To highlight the improved interpretability of MB-OPLS over MB-PLS, a 1 + 1

MB-OPLS-DA model was trained on the data using an identical vector of class labels. Block com-

ponents were extracted from an OPLS-DA model of the concatenated matrix X = [XNMR | XMS ]

using Algorithm 3.7 in Chapter 3. For both models, fifty rounds of Monte Carlo seven-fold cross-

validation [14, 23] were performed to compute per-component Q2 statistics [21], in addition to the

R2 statistics available from model training. CV-ANOVA significance testing was also applied to

further assess model reliability [3].
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Figure 9.2: Super Scores of Joint Spectroscopic Data.
Super scores identified by (A) MB-PLS and (B) MB-OPLS modeling of the joint 1H NMR and
DI-ESI-MS data matrices. Extraction of y-orthogonal variation from the first PLS component is
clear in the MB-OPLS scores. Ellipses represent the 95% confidence regions for each sub-class of
observations, assuming normal distributions. Colors indicate membership to the untreated (yellow),
6-hydroxydopamine (red), 1-methyl-4-phenylpyridinium (green) and paraquat (violet) sub-classes.
Cross-validated super scores are shown in Figure 9.3.

Figure 9.3: Cross-validated Super Scores of Joint Spectroscopic Data.
Cross-validation estimated super scores from (A) MB-PLS and (B) MB-OPLS modeling of the joint
1H NMR and DI-ESI-MS data matrices. Points indicate mean values for each observation, and filled
regions represent the union of all observations’ confidence intervals from Monte Carlo iterations.
Class colors are identical to those in Figure 9.2.

9.4 Results and Discussion

In both the contrived dataset and the real spectroscopic dataset, the interpretative advantage offered

by MB-OPLS over MB-PLS is strikingly apparent. In the synthetic example, MB-OPLS capably

identifies the true predictive and orthogonal loadings in the presence of y-orthogonal variation that

clouds the interpretation of MB-PLS loadings (Figure 9.1). By design, this comparison between

MB-OPLS and MB-PLS is highly similar to the first example presented by Löfstedt and Trygg to
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compare nPLS and OnPLS for general data discovery [12]. However, as is evidenced by the differ-

ences between equations 9.3 and 9.7 above, MB-OPLS solves an inherently distinct problem from

OnPLS: the identification of consensus variation in multiple blocks of data that predicts a single set

of responses.

The ability of MB-OPLS to separate predictive and orthogonal variation from multiple data matri-

ces is further exemplified in the discriminant analysis of the real spectroscopic dataset. From the

rotated discrimination axis in the MB-PLS-DA scores (Figure 9.2A), it is clear that predictive and

orthogonal variation have become mixed in the corresponding block loadings (Figure 4.11). Integra-

tion of an OSC filter into the multiblock model in the form of MB-OPLS-DA achieved the expected

rotation of super scores to place more predictive variation into the first component (Figure 9.2B). As

a consequence of this rotation, spectral information that separates paraquat treatment from other

neurotoxin treatments is also moved into the orthogonal component. For example, strong loadings

from citrate in the 1H NMR MB-PLS block loadings (Figure 4.11A, 2.6 ppm) are substantially

diminished in the predictive block loadings from MB-OPLS (Figure 4.12A), as separation between

paraquat and other treatments has been isolated along the orthogonal component in super scores.

Inspection of the orthogonal block loadings from MB-OPLS (Figure 4.13) will reveal, as expected,

that citrate contributes more to separation between neurotoxin treatments than to separation be-

tween treatments and controls.

The partial correlation of both predictive and orthogonal block scores in MB-OPLS is readily ob-

served in the comparison of block scores from MB-PLS and MB-OPLS (Figures 9.4 and 9.5). While

the super scores in Figure 9.2B are rotated to separate predictive and orthogonal variation, block

scores in Figures 9.4B and 9.5B have slightly rotated back into alignment with the MB-PLS block

scores. This partial correlation and re-mixing of predictive and orthogonal variation in MB-OPLS

block scores is a consequence of the use of super score deflation in the presented algorithm. When all

matrices contain similar patterns of orthogonal variation, their MB-OPLS block scores will reflect

this by retaining the OSC-induced rotation captured at the consensus level by the super scores.

Because the MB-OPLS-DA model of the real spectral data matrices was trained using the single-

block OPLS routine already present in MVAPACK, all standard cross-validation metrics were avail-

able in the model without further computational expenditure. Monte Carlo cross-validation of the

MB-PLS model produced cumulative R2
Y and Q2 statistics of 0.988 and 0.901±0.015, respectively,

172



and validation of the MB-OPLS model resulted in statistics of 0.903 and 0.706±0.028, respectively.

In addition, MB-OPLS modeling yielded R2
X,p and R2

X,o statistics of 0.378 and 0.245 for the first

block, and 0.236 and 0.083 for the second block. Monte Carlo cross-validated super scores from

MB-PLS and MB-OPLS are depicted in Figure 9.2. Compared to MB-PLS scores in Figure 9.2A,

MB-OPLS scores (Figure 9.2B) exhibit an increased uncertainty due to the coupled nature of pre-

dictive and orthogonal components in OPLS models. Further validation of the MB-OPLS-DA model

via CV-ANOVA produced a p value equal to 2.88× 10−6, indicating a sufficiently reliable model.

It is worthy of final mention that the objective solved by MB-OPLS is but a single member of

a super-family of methods introduced in detail by Hanafi and Kiers [5]. In the first family, nPLS

and OPLS maximally capture the between-matrix covariances before and after orthogonal signal

correction, respectively, and thus serve to regress a set of matrices against each other. Methods in

the second family capture both within-matrix variances and between-matrix covariances of a set of

matrices (CPCA-W), a set of response-weighted matrices (MB-PLS), and a set of response-weighted

OSC-filtered matrices (MB-OPLS). By casting these methods in the light of MAXDIFF and MAX-

BET, we obtain an informative picture of their characteristics, commonalities, and differences. For

example, nPLS and OnPLS force an equal contribution of each matrix to the solution through the

constraint ‖wi‖ = 1, while CPCA-W, MB-PLS and MB-OPLS allow contributions to float based

on the “importance” of each matrix to the modeling problem at hand. This super weight approach

necessitates a block scaling procedure to avoid highly weighting any given matrix due to size alone

[15, 20].

Figure 9.4: First-block Scores of Joint Spectroscopic Data.
Block scores from (A) MB-PLS and (B) MB-OPLS modeling of the 1H NMR data matrix. Ellipses
and class colors are identical to those in Figure 9.2.
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Figure 9.5: Second-block Scores of Joint Spectroscopic Data.
Block scores from (A) MB-PLS and (B) MB-OPLS modeling of the DI-ESI-MS data matrix. Ellipses
and class colors are identical to those in Figure 9.2.

9.5 Conclusions

The MB-OPLS method described in this chapter is a versatile extension of MB-PLS to include

an OSC filter, and belongs to a family of MAXBET optimizers that share an equivalence with

their single-block factorizations. By removing consensus response-uncorrelated variation from a set

of n data matrices, MB-OPLS expands the scope and benefits of OPLS to cases where blocking

information is available. The ability of MB-OPLS to separate predictive and orthogonal variation

from multiple blocks of data has been demonstrated on both synthetic and real spectral data, both

in cases of vector-y regression and discriminant analysis. The described algorithm admits either

a vector or a matrix as responses, and is implemented in the latest version of the open-source

MVAPACK chemometrics toolbox [22].
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Chapter 10

Quantification of PCA/PLS-DA Class Separations

People want to see patterns in the world. ... So important is this skill that we apply it
everywhere, warranted or not.

– Benoit Mandelbrot

10.1 Introduction

The importance placed on interpretation of PCA, PLS-DA and OPLS-DA scores plots necessitates

the use of quantitative procedures to determine the significance of separations between multiple

experimental groups in scores space. However, no de facto protocol or metric exists to provide a

means of reporting the degree or significance of group separation [18, 9, 8]. Anderson et al. used the

J2 criterion [1, 12] to assess the quality of resulting scores clusters according to the average withing-

group and between-group scatters for all groups. However, the J2 metric only provides an overall

estimate of group separation without fine-grained information on each pair of groups [12]. A similar

problem exists with the related Davies-Bouldin index [2], which chooses a worst-case estimate of

group overlap as its figure of merit. Dixon et al. [4] also comprehensively reported the performances

of four cluster separation indices based on modifications of metrics used to validate separation for

unsupervised clustering algorithms. Alternatively, the PCAtoTree protocol constructs dendrograms

from Euclidean distance matrices computed from PCA scores for the PHYLIP [6] software suite using

a bootstrapping routine to determine branch node significance [18, 16]. However, it was recently

shown that hypothesis testing using a Mahalanobis distance metric and the T 2 and F distributions

can provide a statistical means of quantifying group similarity [8], suggesting the possibility of

returning p values for full statistical quantitation of group separations in scores space.

10.2 Materials and Methods

The methods described below were implemented in software using the C programming language

with minimal external dependencies, so the programs may be compiled and executed on any modern
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GNU/Linux distribution.

10.2.1 Probability Calculation

Under the assumption that each group in the scores space is distributed as a multivariate normal

random variable, the separations between groups may be calculated using the squared Mahalanobis

distance metric [14]:

D2
M = (uj − ui)

TS−1
p (uj − ui) (10.1)

In the above equation, ui,uj ∈ Rp are the p-variate sample means of groups i and j, respectively,

and Sp ∈ Rp×p is the pooled variance-covariance matrix, a weighted sum of the covariance matrices

from groups i and j:

Sp =
niSi + njSj
ni + nj

(10.2)

where ni and nj are the number of observations in groups i and j, respectively. The Mahalanobis

distance may then be related to a Hotelling’s T 2 statistic by the following scaling [15]:

T 2 =

(
ninj
ni + nj

)
D2
M (10.3)

This T 2 statistic is an extension of the Student’s t statistic to hypothesis tests in multiple dimensions,

and may be related to an F distribution by a final scaling [15]:

xF =
ni + nj − p− 1

p(ni + nj − 2)
T 2 ∼ F (p, ni + nj − p− 1) (10.4)

It can be seen from this final relation that evaluation of the complement of the cumulative F -

distribution function at xF yields the p value for accepting the null hypothesis: the points in groups

i and j are in fact drawn from the same distribution.

10.2.2 Dendrogram Generation

The implementation of the tree-generation procedure is a classical UPGMA algorithm [17]. When

p values are reported at each branch point, a single tree is generated based on the matrix of Ma-

halanobis distances between groups. In the case of bootstrapped trees, the groups are randomly

resampled with replacement while preserving group size. The desired number of trees is then gen-

erated using Euclidean distances between group means. The final tree used to report bootstrap
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Figure 10.1: Confidence Ellipses and p-dendrogram of Example OPLS-DA Scores.
(A) 2D OPLS-DA scores plot illustrating 95% confidence ellipses for a model having one predictive
(PLS) and one orthogonal (OSC) component. The symbol shape and color each point correspond
to the groups in (B). Discrimination in the first component is between wild-type and antibiotic-
treated Mycobacterium smegmatis, and separations along the second component indicate metabolic
differences between different antibiotic treatments. The antibiotics cluster together based on a
shared biological target (cell wall synthesis, mycolic acid biosynthesis, or transcription, translation
and DNA supercoiling). (B) Dendrogram generated from the scores in (A) using Mahalanobis
distances, with p values for the null hypothesis reported at each branch.

probabilities is built using a Euclidean distance matrix calculated from the original (non-resampled)

dataset.

10.2.3 Confidence Ellipse Calculation

When viewing PCA and PLS-DA scores plots, it was common practice to apply hand-drawn ellipses

to inform group membership, or even to omit such ellipses entirely. This may lead to inconsistent or

erroneous interpretation of experimental results. Instead, the fact that the Mahalanobis distances of

a set of p-variate points from their sample mean follow a χ2 distribution having p degrees of freedom

[10] may be leveraged to estimate 95% confidence ellipses for scores in any number of dimensions.

The sample mean u and sample covariance matrix S for each group must first be calculated from

its scores-space data. Then, each group covariance matrix is decomposed into its eigenvalues and

eigenvectors,

S = QΛQ−1 (10.5)

where Q ∈ Rp×p is an orthogonal matrix holding the eigenvectors of S, and Λ ∈ Rp×p is a diagonal

matrix holding the corresponding eigenvalues of S.

For the case of two-dimensional scores data, the 95% confidence ellipse for a group is as follows:
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Figure 10.2: Confidence Ellipsoids
from PCA Scores.
3D PCA scores plot with superimposed
95% confidence ellipsoids drawn as meshes
containing group points. The ellipsoids
define the statistical significance of class
separation and provide an illustration
where two groups are distinct in three-
dimensional scores space.

[
x(t)
y(t)

]
= u + Q

√
ΛF−1

0.95,2

[
cos(t)
sin(t)

]
(10.6)

where F−1
0.95,2 is the value of the inverse χ2 cumulative distribution function at α = 0.05 and two

degrees of freedom, and the square-root is taken element-wise over Λ. Similarly, a three-dimensional

(3D) confidence ellipsoid may be obtained from the following parametric equation:

x(u, v)
y(u, v)
z(u, v)

 = u + Q
√

ΛF−1
0.95,3

cos(u) cos(v)
cos(u) sin(v)

sin(v)

 (10.7)

where the parameters t, u and v are all evaluated on (0, 2π). These methods allow for the inclusion

of confidence regions onto two- and three-dimensional scores plots that reflect the 95% membership

boundaries for each group. The approach assumes normally distributed within-group errors. Figures

10.1A and 10.2 illustrate the inclusion of these group confidence regions in representative PCA

and OPLS-DA scores, respectively. The ellipses and ellipsoids clearly define statistically significant

class separation and also provide an example in which multiple groups actually belong to the same

underlying biological classification.

10.3 Results and Discussion

The described PCA utilities software package consists of a set of standalone C programs that gener-

ate dendrograms from PCA, PLS-DA and OPLS-DA scores, report p values and bootstrap numbers

on tree branches, and incorporate confidence ellipses/ellipsoids into scores plots. The p values re-

ported for every pair of distinct groups in scores space provide a truly quantitative means to discuss

group separations. Support for the generation of dendrograms with these p values at each branch

point is also included as an alternative answer to the bootstrap for answering the question of tree

uniqueness. This eliminates the prior dependence on PHYLIP [16] reported for the original PCA-

toTree [18] software package. The reporting of p values is complementary to bootstrapping methods
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in cases of highly overlapped groups, in that it provides a more direct, interpretable quantitation of

group separation.

In comparison with PCAtoTree, the PCA utilities software package now uses Mahalanobis distances

because this metric is more appropriate for multivariate data. De Maesschalck et al. [3] provide an

exceptional introduction to the use of Mahalanobis distances with PCA. Specifically, Mahalanobis

distances account for different variances in each scores-space direction (t1, t2, t3, etc.) and are in-

variant to scaling transformations. This accounting for variances-covariance structure ensures that

the use of a Mahalanobis distance metric for dendrogram generation includes cluster shape and ori-

entation in the analysis of group separation. Also, Mahalanobis distances calculated between groups

in PCA scores space will closely approximate those calculated from the original data matrix while

avoiding possible multicollinearities among the original variables. This is not true of Mahalanobis

distances in PLS or OPLS scores space, because of the underlying supervision of the PLS algorithm.

These features differ from the Euclidean distance metric, which is a special case of the Mahalanobis

metric that arises when the group covariance matrices equal the identity matrix. Figure 10.1B illus-

trates the dendrogram structure based on the use of Mahalanobis distances determined from a set

of scores, and Figure 10.3 shows the dendrogram structure based on Euclidean distances from the

same scores.

It is important to note that our software is not a means of determining the reliability of PCA or

PLS-DA models, but only a tool set for quantifying the scores that those models produce. In the

case of PCA scores, significance of the principal components used must be inferred based on the ex-

plained sum of squares or another cross-validation technique [5, 13]. PLS-DA models require rigorous

cross-validation to ensure model reliability, as they almost always yield perfect separations between

the scores of different groups [11]. With that in mind, separations between groups not under dis-

crimination may be due to true experimental differences in PLS-DA scores plots, as opposed to the

forced separations between discriminated groups. Thus, the interpretation of any results from the

PCA utilities must be done with the knowledge of the underlying algorithm’s mathematical intent,

and only after the model has been validated. While we demonstrated confidence region generation

using only 2D and 3D scores plots, it is important to note that the PCA utilities software package

places no restriction on the number of components or on which components may be used during

dendrogram generation and p value calculation. Any dimensionality or choice of scores may be used

with the described methods, provided all components are suitably validated.
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Figure 10.3: Dendrogram Generated
using Euclidean Distances.
Bootstrapped dendrogram generated from
the scores data in Figure 10.1A using a Eu-
clidean distance metric. Bootstrap statis-
tics reported at each branch were com-
puted from 5,000 bootstrap iterations.

The updated and enhanced version of PCAtoTree, called PCA utilities, provides a novel means

of quantifying and visualizing separation significance in PCA, PLS-DA and OPLS-DA scores plots.

Importantly, PCA utilities enables single-step methodologies for generating informative scores plots

and dendrograms of experimental groups in any study utilizing PCA, PLS-DA or OPLS-DA to

elucidate group structure in complex datasets, including metabolic fingerprinting and untargeted

metabolic profiling. The tools are distributed under version 3.0 of the GNU General Public License

[7] and are freely available at http://bionmr.unl.edu/pca-utils.php.
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Chapter 11

Analysis of Protein n− π∗ Interactions

Whether you can observe a thing or not depends on the theory which you use. It is the
theory which decides what can be observed.

– Albert Einstein

11.1 Introduction

Proteins exhibit a diversity of structures, with 2,738 folds or topologies present in the CATH database

[14]. Each unique structure is defined by its amino acid composition, where sequence identities

greater than 40% imply homologous structures [23]. Predicting the three-dimensional conformation

of a protein from its primary sequence is a fundamental challenge of structural biology, and achieving

this goal requires a thorough understanding of the underlying interactions and forces that stabilize

protein structures [32].

Hydrophobic interactions and hydrogen bonds are two of the most common forces attributed to

the overall stability of protein structures [22, 10]. The burial of hydrophobic residues is generally

considered a major driving force in protein folding [13] and has been predicted to contribute roughly

8 kJ/mol per buried residue. Conversely, the contribution of hydrogen bonds to protein structure

stability has been controversial [19]. Hydrogen bonds have been described as destabilizing, par-

tially stabilizing or important driving forces. Of course, hydrogen bonds are a defining feature of

α-helices, β-sheets and turns. Thus, the generally accepted view is that hydrogen bonds within a

protein structure are marginally favored over hydrogen bonds to water. Hydrogen bonds are esti-

mated to contribute roughly 4 kJ/mol to protein stability, but can vary based on the polarity of

the microenvironment [12]. Despite these observations, a satisfying general mechanism for protein

folding has not yet been described [25, 26], which strongly implies that our understanding of the

factors involved in protein folding and stability is incomplete.

In a recent paper, Bartlett et al. proposed a new and potentially important interaction analogous

to the hydrogen bond [3]. Unfortunately, the predicted n − π∗ interaction was based on density
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Figure 11.1: Predicted n−π∗ Interaction and Associated Carbonyl 13C Chemical Shifts.
(A) Residues Asn155 and Phe189 from the x-ray structure of Bacillus amyloliquefaciens subtillisin
BPN’ (PDB ID: 1v5i) illustrating the structural features for an optimal n− π∗ interaction between
carbonyl groups. (B) 2D contour plot of carbonyl 13C chemical shift differences relative to random
coil values as a function of the distance (d) and angle (θ) between carbonyls. A Gaussian smoothing
function was applied to the data with ∆x and ∆y of 0.3 Å and 1.5◦, respectively. A transparency
mask based on the density of experimental data (Figure 11.2) is overlaid on the contour plot. Regions
lacking experimental data are white. Positive values indicate downfield shifts.

functional theory and a relatively low-level basis set. Conventional Kohn-Sham density functional

theory does not properly model virtual orbitals [17] such as the π∗ orbital proposed by Bartlett et

al. to have a role in protein stabilization. Moreover, the relatively low-level basis set used by the

authors is inadequate to model such orbitals, and likely gives rise to substantial basis-set superpo-

sition errors. Experimental data in support of this prediction was also not presented. Nevertheless,

the predicted n− π∗ interaction was suggested to aid in the stabilization of protein structures and

contribute roughly 0.4 to 5.4 kJ/mol. This stabilization was predicted to occur through the electron

delocalization of the lone pair (n) of a carbonyl oxygen atom to the antibonding π∗ orbital of a

neighboring carbonyl carbon atom. An optimal n− π∗ interaction was predicted to be restricted to

a specific range of structural parameters (Figure 11.1A) corresponding roughly to the Bürgi-Dunitz

trajectory [5]. The distance (d) between the donor oxygen and acceptor carbon must be ≤ 3.2 Å, and

the angle between the (donor O)· · · (acceptor C) vector and the acceptor carbonyl vector, θ, must

lie between 99◦ and 119◦. Interestingly, the structural parameters required for an optimal n − π∗

interaction are prevalent in a wide variety of common secondary structures, including α-helices,

310-helices and twisted β-sheets, suggesting a potential alternative explanation.

Despite the presence of numerous conformations consistent with the n − π∗ interaction in protein

structures, no experimental evidence was presented that supported the actual existence of this inter-
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action. NMR chemical shifts of sp2-hybridized groups contain a paramagnetic component caused by

mixing of excited states with non-zero orbital angular momentum into the diamagnetic ground state

[21]. These excitations are predominantly n−π∗ and π−π∗ and are therefore highly sensitive to per-

turbations of these orbitals. The predicted n−π∗ interactions between neighboring carbonyls would

be expected to modify the local electronic environment of the acceptor carbonyl carbon nucleus,

and the NMR 13C chemical shift of the acceptor carbonyl carbon would experience a significant

chemical shift change in the presence of an n− π∗ interaction [1]. Indeed, a strong (roughly 20 ppm

range) linear relationship has been previously observed between carbonyl 13C chemical shifts and

the carbonyl n− π∗ transition energy [24, 8].

An extensive analysis of 13C chemical shifts correlated to high-resolution x-ray structures com-

bined with a detailed analysis of the molecular orbitals of a formamide trimer model complex does

not support the postulated n− π∗ interaction. In fact, our model indicates that an n− π∗ interac-

tion is implausible. Instead, a simple dipole-dipole interaction better explains the observed effects

used in support of the n− π∗ interaction. While a prior manuscript by the same authors dismissed

the dipole-dipole interaction explanation without elaboration [6], this work suggests it is a more

plausible explanation of the observed data.

11.2 Materials and Methods

11.2.1 Analysis of Experimental Structures

A detailed statistical analysis was performed to correlate experimentally observed carbonyl 13C

chemical shifts with structural parameters between all possible pairs of carbonyls. Specifically,

the angle between the carbonyls (θ) and the distance (d) between the oxygen and carbon were

compared to experimental carbonyl 13C chemical shifts. The PISCES [28] (http://dunbrack.fcc.

edu/pisces) set of 2,885 high-resolution (< 1.6 Å) x-ray crystal structures with less than 30%

pairwise sequence identity selected from the RCSB Protein Data Bank (PDB) [4] was used for this

analysis. Each structure was associated with assigned NMR 13C and 15N chemical shifts from the

Biological Magnetic Resonance Bank (BMRB: http://www.bmrb.wisc.edu) [27] by FASTA [20]

sequence alignments. The best match with an E-value ≤ 1.0 × 10−9 and sequence identity ≥ 95%

was chosen, where the median E-value was 3.8 × 10−40 . The aligned 13C and 15N chemical shifts

were uniformly referenced with the SHIFTCOR software tool [30]. The protein interfaces, surfaces

and assemblies software tool (PISA, http://www.ebi.ac.uk/pdbe/prot_int/pistart.html) [15]
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Figure 11.2: Population of (d, θ)-
space by Experimental Structures.
Plot of the distance (d) and angle (θ) mea-
sured between each of the 45,792 pairs of
carbonyls with a potential n− π∗ interac-
tion. The relative density of points in the
occupied d and θ space was used to gener-
ate a transparency mask for Figure 11.1.

was used to predict residues involved in crystal packing interfaces. Residues with B-factors two

standard deviations from the mean within each structure were identified as dynamic. Also, 3,699

NMR solution structures with PDB depositions cross-linked to the BMRB were used as a validation

dataset, with alignments performed in an identical fashion to the analyzed x-ray structures.

A set of Perl scripts was written to extract structural parameters from the x-ray structures. For

each structure in the selected set, all pairs of residues were analyzed for the possibility of an n− π∗

interaction. Values of d and θ were calculated for each residue pair, and torsional angles φ and

ψ were calculated for the “acceptor” residue of each pair. Pairs of carbonyls with d and θ values

within the optimal limits for an n−π∗ interaction were labeled as interactors (Figure 11.2). Standard

random-coil chemical shifts were subtracted from the experimental carbonyl 13C chemical shifts for

each residue.

For all pairs of residues, a dipole-dipole potential (Vdd) was calculated from the high-resolution

x-ray structures using equation 11.1:

Vdd =
~µ1 · ~µ2 − 3(~µ1 · r̂)(~µ2 · r̂)

4πε0|~r|3
(11.1)

where ~µ1 and ~µ2 are the two C=O bond vectors, ~r is the vector between the centers of the C=O

bonds, and r̂ is its unit vector. The nominal value of 2.34 Debye was taken for the carbonyl dipole

moment. Similarly, for all residue pairs, the minimum possible hydrogen bond length (dO−H) was

calculated from the high-resolution x-ray structures. Hydrogen bond lengths were calculated based

on the nearest non-neighboring backbone amide hydrogen, with a maximal bonding angle of 60◦.

Figure 11.3 illustrates the relationship between Vdd and 13C chemical shifts of all carbonyl pairs in
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Figure 11.3: Carbonyl 13C Chemical
Shifts and Dipole-Dipole Potential.
Carbonyl 13C chemical shift differences rel-
ative to random coil are plotted against
calculated dipole-dipole potential (Vdd).
The dipole-dipole potential is calculated
from the high-resolution x-ray structure
using equation 11.1. Pairs of carbonyls
with d and θ values within the optimal lim-
its for an n−π∗ interaction are colored red.

the dataset.

11.2.2 Model Compound Calculations

Quantum chemical calculations were performed using the program Gaussian-09 [11]. A nearly planar

formamide head-to-tail dimer, composed of a formamide monomer (molecule 1) hydrogen bonded

through its C=O group to the N-H group of a second, nearly parallel formamide (molecule 2)

was chosen to approximate the hydrogen bonding motif found in both α-helices and antiparallel

β-sheets. The dimer was fully optimized at the MP2/6-311++G(2d,p) level; Möller-Plesset second

order perturbation theory (MP2) was chosen because it is superior in modeling long-range and

dispersive contributions to the electron correlation Hamiltonian. A third formamide (molecule 3)

was then added to generate the putative n− π∗ interaction with molecule 1, imposing the following

constraints: (1) C3=O3 · · ·C1 angle fixed at 90◦, to ensure the nπ orbital of molecule 3 points toward

the carbonyl of molecule 1 (2) O3 · · ·C1=O1 constrained to a set of fixed angles θ, ranging from

70◦ to 120◦ (3) O3 · · ·C1 constrained to a set of fixed distances d, ranging from 2.9 Å to 3.3 Å (5)

O1 · · ·N2 constrained to a set of fixed distances, ranging from 2.8 Å to 3.2 Å, to vary the strength of

the hydrogen bond. The system of three molecules was then subjected to constrained optimization

at the same level as before. The optimized trimolecular system at an angle θ = 90◦ is shown in

Figure 11.4. Finally, a full set of shielding tensors was computed using standard Gauge-independent

atomic orbital methods.
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Figure 11.4: Formamide Trimer
Model.
Molecular orbitals of (A) the hydrogen
bond donor, (B) the putative nπ−π∗ donor
and (C) the putative nπ − π∗ acceptor,
in the trimeric complex used in quantum
chemical calculations.
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11.3 Results

A total of 2,516,360 residue pairs from a set of 164 high-resolution (< 1.6 Å) x-ray crystal structures

with assigned and uniformly referenced carbonyl 13C chemical shifts were analyzed for potential

n − π∗ interactions. Setting a maximal distance of 6.0 Å between the donor oxygen and acceptor

carbon yielded 45,792 potential acceptor carbonyl carbon atoms. The carbonyl 13C chemical shift

differences relative to random coil values for each of the 45,792 potential acceptor carbonyls were

plotted against the d and θ values for each carbonyl pair (Figure 11.1B). These chemical shift differ-

ences represent the contribution from the local structural environment, and potentially the n − π∗

interaction. The two-dimensional contour plot indicates a maximal downfield shift of 2.9 ppm cen-

tered on the optimal structural parameters predicted for an n− π∗ interaction.

Of the 45,792 carbonyls, 5,378 had optimal d and θ values for an n − π∗ interaction and 40,414

were outside this optimal range. The mean carbonyl 13C chemical shift difference for the 40,414 car-

bonyls labeled as non-interactors is 0.58 ± 1.98 ppm. In contrast, the mean carbonyl 13C chemical

shift difference for the 5,378 interactors is 2.93 ± 2.41 ppm. A Student’s t-test indicates the differ-

ence of 2.35 ppm between the two means is statistically significant at the 99.9% confidence level. To

address possible errors introduced into the analysis by highly dynamic residues in the x-ray struc-

tures, possible carbonyl interactors with B-factors greater than two standard deviations above the

mean were omitted from the dataset. In the resultant set of 44,302 potential carbonyl interactors,

the 2.33 ppm chemical shift difference was statistically indistinguishable from the original analysis.

Similarly, possible interactors predicted at a 95% confidence level to participate in crystal-packing

interfaces were also omitted from the dataset. Again, the corresponding set of interactors yielded a

chemical shift difference of 2.33 ppm, which is still statistically significant at the 99.9% confidence

level.

To address the possibility that differences between x-ray crystal structures and NMR solution struc-

tures may lead to errors in the analysis, a replicate analysis was performed on a set of 137 NMR

solution structures corresponding to the same set of 13C and 15N chemical shifts used previously.

Structural alignments using MAMMOTH showed a mean RMSD of 1.87 ± 0.57 Å between the pairs

of x-ray and NMR structures. Of the 1,419,547 resulting carbonyl pairs from the NMR structures,

38,534 pairs were found to be potential interactors. Of the carbonyls in that set, 2,510 interactors

were found with a mean carbonyl 13C chemical shift difference of 2.84 ± 1.71 ppm. The remaining
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36,024 non-interactors had a mean carbonyl 13C chemical shift difference of 1.02 ± 2.02 ppm. Again,

the 1.82 ppm difference between the two means is statistically significant at the 99.9% confidence

level, indicating that differences between x-ray and NMR structures cannot account for the observed

downfield 13C chemical shift.

As predicted, a clear correlation is observed between structural regions consistent with an optimal

n−π∗ interaction and a downfield shift of the accepting carbonyl 13C resonance. Interestingly, the po-

tential n−π∗ interactions were primarily observed between sequential (|i−j| = 1) carbonyls. Out of

the 164 structures and 2,516,360 residue pairs, only four pairs of carbonyls exhibited a through-space

(|i− j| > 5) arrangement consistent with an optimal n−π∗ interaction. This result implies any pro-

tein stabilization energy obtained from the proposed n−π∗ interaction is opportunistic, as opposed

to a driving force for protein folding. Apparently, the formation of through-space n−π∗ interactions

is simply less favorable than for other interactions, such as hydrogen bonds or salt-bridges. This also

implies that the predicted energy of 5.4 kJ/mol for an optimal n−π∗ interaction is an over-estimate.

In actuality, an n − π∗ interaction that imparts a stability of 5.4 kJ/mol would likely fix adja-

cent pairs of carbonyl groups to preferred torsional angles in order to maximize this interaction.

Correspondingly, the existence of these highly energetic n − π∗ interactions would likely be detri-

mental to properly folding a protein structure. Folding a protein to its native fold would require

distorting the majority of carbonyl pairs away from the ideal torsion angles for a proper n − π∗

interaction. Only 12% (5,378 out of 45,792) of carbonyls from the 164 x-ray structures adopted

conformations with optimal d and θ values for an n − π∗ interaction. As a result, folding every

protein structure would incur an initial energetic penalty of nearly 5.4 kJ/mol per carbonyl pair.

A predominant number of the carbonyls consistent with an optimal n − π∗ interaction and with a

downfield shift of roughly 2.5 ppm fall within the typical α-helical region of a Ramachandran plot,

where the remaining residues are near the twisted β-sheet region (Figure 11.5). Significant chemical

shift changes for carbonyl residues within secondary structures are well documented [29]. Previous

analyses of structural factors contributing to carbonyl 13C chemical shifts have implicated hydrogen

bond formation [9, 2, 31] or excluded hydrogen bond formation [7, 18, 16], have implicated φ, ψ, and

χ dihedral angles [18] or have excluded secondary structure parameters [7, 9]. Thus, other factors,

such as hydrogen bonds or dipole-dipole interactions, may explain the apparent correlation between

carbonyl 13C shifts and the optimal d and θ values for an n − π∗ interaction. This is probable
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Figure 11.5: Population of (φ, ψ)-
space by Experimental Structures.
Ramachandran plot of carbonyls with 13C
chemical shift differences relative to ran-
dom coil that are > 2.5 ppm. The acceptor
carbonyls from each pair of carbonyls with
d and θ values within the optimal limits for
an n− π∗ interaction are colored red.

Figure 11.6: Carbonyl 13C Chemical
Shifts and Hydrogen Bonds.
Contour plot of 13C carbonyl chemical
shift differences as a function of calcu-
lated dipole-dipole potential (Vdd) and cal-
culated hydrogen bond length (dO−H).

given the association of n − π∗ interactions with secondary structure elements. The contribution

of a dipole-dipole interaction to carbonyl 13C chemical shifts is illustrated in Figure 11.3. The

dipole-dipole potentials were calculated using the high-resolution x-ray structures for each of the

45,792 carbonyl pairs with a maximal distance of 6.0 Å between the donor oxygen and acceptor

carbon. While there is significant scatter in the data, there is also a clear trend between a downfield

carbonyl 13C chemical shift and an increasing dipole-dipole energy. Importantly, the cluster of

acceptor carbonyls in Figure 11.3 with the largest 13C chemical shift difference (3.15 ± 2.44 ppm)

and positive dipole-dipole potentials also conforms to the optimal d and θ values for the predicted

n− π∗ interaction.

The contribution of a hydrogen-bond interaction to the carbonyl 13C chemical shift was similarly

evaluated by calculating the shortest oxygen-hydrogen distance (dO−H) for each donor carbonyl.

Again, the distances were calculated using the high-resolution x-ray structures for each of the 45,792

carbonyl pairs. A three-dimensional plot comparing the dipole-dipole potentials, oxygen-hydrogen
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distances, and the associated carbonyl 13C chemical shifts is very revealing. It can be clearly seen

from Figure 11.6 that any contribution from a hydrogen bond to the 13C carbonyl chemical shift

is minimal relative to the dipole-dipole contribution. Both the α-helical and β-sheet regions, which

obviously contain hydrogen bond interactions, have distinctly different 13C carbonyl chemical shifts.

The α-helical region corresponds to a positive dipole-dipole interaction, and correspondingly to a

large carbonyl 13C chemical shift difference. Conversely, the β-sheet region has a negative dipole-

dipole interaction and a near zero carbonyl 13C chemical shift difference. These results further

indicate a consistency with a dipole-dipole interaction as opposed to the predicted n−π∗ interaction.

It is important to note that there is a second cluster of carbonyls in Figure 11.3 with low 13C

chemical shifts and negative dipole-dipole potentials that are also consistent with the optimal d and

θ values for the predicted n−π∗ interaction. A visual inspection of the x-ray structures indicates that

these carbonyl pairs are actually pointing away from each other and do not form the configuration

for an n−π∗ interaction illustrated in Figure 11.1A. Clearly, d and θ values alone fail to adequately

define the optimal geometry of the dipole-dipole interaction that is apparently responsible for the

observed downfield 13C chemical shifts.

Figure 11.7: Summary of Quantum Chemical Calculations.
Plot of calculated (A) carbonyl 13C chemical shielding (σ) and (B) dipole-dipole interaction energy
(E) as a function of the distance between donor oxygen and acceptor carbon (d) and the angle
between carbonyl groups (θ).

To further examine the origin of these effects, quantum chemical calculations were conducted on

a model system, a formamide trimer in which molecules 2 and 3 form an approximately planar,

head-to-tail hydrogen bonded dimer, and molecule 3 acts as a putative n − π∗ donor, with the nπ

“donor” oxygen fixed at a distance d which ranges from 2.9 Å and 3.3 Å from the carbonyl carbon of
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molecule 2, with the O3 · · ·C2 vector also fixed at angles θ from 70◦ to 120◦ from the C2=O2 vector.

To avoid problems with the use of density functional theory to model virtual orbitals, Möller-Plesset

second order perturbation theory (MP2) was instead used, with a substantially larger basis set than

in the previous work. The geometry and relevant Hartree-Fock orbitals of the complex used is shown

in Figure 11.4, for d = 2.9 Å and θ = 100◦. The computed chemical shielding is shown in Figure

11.7A as a function of d and θ. The shielding decreases monotonically with θ, but, in contrast, the

slope of the shielding surface with respect to d changes sign between θ = 70◦ and θ = 120◦. This

shielding surface does not have the geometry expected if the chemical shielding dependencies on θ

and d were dominated by an nπ − π∗ interaction, where shielding should be maximal at θ slightly

larger than 90◦ and d = 2.9 Å, decreasing rapidly with increasing values of d.

However, the shielding surface does show a remarkable similarity to the dipole-dipole energy between

the putative donor and acceptor, as shown in Figure 11.7B. This energy was computed using a very

simple model assuming the electric dipole vector lies along the carbonyl bond for both molecules

and has a value of 2.34 D or 7.81 × 10−30 C·m. As can be seen, the dipole energy closely parallels

the chemical shielding surface, monotonically increasing with θ and inverting its slope with respect

to d as θ increases. This indicates the major influence on the carbonyl 13C chemical shielding is

not an nπ − π∗ interaction but rather the electrostatic field from the neighboring carbonyl dipole.

The correspondence is not, however, exact: the chemical shielding surface shows a small negative

inflection around θ = 90◦, which is actually slightly reversed in the dipolar energy plot.

Figure 11.8: Supplemental Quantum Chemical Results.
(A) Plot of the residuals for the fit of the chemical shielding surface to a function proportional
to the dipole-dipole energy. (B) Summary of the quantum chemical calculations of the hydrogen
bond contribution to the dipole-dipole interaction; plot of carbonyl 13C chemical shielding (σ) as a
function of the hydrogen bond angle (θ) and distance (dO−N ).
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In order to examine whether an nπ − π∗ interaction might be responsible for this inflection, the

chemical shielding surface was fit to a function proportional to the dipolar energy, under the as-

sumption the dipole moment vector lies along the C=O bond direction, and the best fit subtracted

from the chemical shielding surface (Figure 11.8A). The residual shows a minimum at θ ∼ 95◦, as

would be expected for an nπ − π∗ interaction, but the dip does not appear to decrease rapidly as d

increases, as an orbital overlap term would. In fact, the residual is slightly larger at d = 3.3 Å than

at 2.9 Å (1.3 ppm vs. 1.1 ppm).

From the fit of the shielding surface to the estimated dipole interaction energy, with the assumption

the magnitude of the electric dipole moment is that of a formamide monomer (3.7 D), a dependence

of chemical shielding on field of −190 ppm/a.u. was obtained (1 atomic unit (a.u.) of electric field

equals 5.142× 1011 V/m). Direct calculations of the dependence of the shielding of an isolated for-

mamide on an external applied field along the C=O bond direction gave a value of −150 ppm/a.u.

However, it is highly likely that this estimation of the dipole-dipole interaction for two amides is low.

Firstly, higher electric multipole terms were neglected in the calculation, and these are likely to be

substantial for a moiety as asymmetric as a peptide linkage, at these close proximities. Second, the

interaction of the dipoles is likely to be enhanced by the highly polarizable hydrogen bond, which

is necessarily omitted in the monomer model. Agreement of the model with direct estimates of the

effect of electric field on shielding is therefore rather good.

The dependence of chemical shielding on hydrogen bonding strength for all combinations of d and

θ was examined as a function of the hydrogen bond distance dO−N (Figure 11.8B). In accordance

with the results of Wishart and others [7, 18, 16], and contrary to initial näıve expectations, the

effect was very small and independent of the position of the putative nπ − π∗ donor carbonyl.

For the sake of completeness, the effect of an “end-on” carbonyl-carbonyl interaction was examined,

using a dimeric cluster in which the “donor” carbonyl bond was parallel to the “donor” oxygen-

“acceptor” carbon vector, resulting in a possible nσ −π∗ interaction. As can be seen in Figure 11.9,

for values of d ranging from 2.9 Å to 4.1 Å, the chemical shielding also follows the negative of the

dipolar interaction energy over the range 70◦ < θ < 120◦, with little evidence of any effect of orbital

overlap on chemical shielding.

One other outcome of the calculations is of possible note. While there was little discernible ef-
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Figure 11.9: Summary of Quantum Chemical Calculations for “End-On” Dipole Inter-
action.
Plots of (A) interaction energy and (B) carbonyl 13C chemical shielding (σ) as a function of the
angle between the carbonyls (θ) for three different distances (d) between the donor oxygen and
acceptor carbon.

fect of the proposed nσ − π∗ or nπ − π∗ interactions on the shielding of the carbonyl carbon or the

length of the carbonyl bond, substantial pyramidalization of the amide nitrogen was observed at low

values of d and values of θ close to 90◦. This would indicate that the primary effect of the “donor”

carbonyl might not be on the carbonyl π bond per se, but on its delocalization over the entire

amide group. There was also a substantial lengthening of the carbon-nitrogen bond – consistent

with a reduced bond order – accompanied by substantial changes in the computed 15N chemical

shielding. Thus, while no evidence was found of effects from nσ − π∗ interactions on the 13C NMR

spectroscopy or the energetics of the system, such interactions might be detectable in 15N chemical

shifts. Unfortunately, 15N shifts are known to be much more dispersed than carbonyl 13C shifts and

are susceptible to a wide range of influences, so disentangling the interaction in real proteins might

be a Herculean task.

11.4 Discussion and Conclusions

When the molecular orbitals for the trimeric complex are examined in detail, the above results be-

come clear. It is in fact misleading to think of amide groups as being dominated by the carbonyl

π bond. The highest occupied molecular orbital (HOMO) of the formamide trimer in fact consists

almost entirely of pz orbitals on the N and O, with wavefunctions of opposite sign. This is depicted

in Figure 11.4A for the Hartree-Fock HOMO of the hydrogen bond donor (energy = −0.377 Ha).

The orbital is slightly bonding with respect to the carbonyl, but the carbonyl carbon overall has

very little contribution to the molecular orbital. The equivalent orbital of the putative acceptor
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(Figure 11.4B) has somewhat lower energy (−0.438 Ha) but shows remarkably little mixing with

other molecular orbitals, and in particular little mixing with the nπ orbital of the putative nπ − π∗

donor (Figure 11.4C). That orbital has in fact a very similar energy (−0.465 Ha), and at other ge-

ometries – specifically lower values of θ, mixes with the HOMO of the acceptor. The reason for this

is quite simple: because the HOMO has only a very small contribution for carbonyl carbon orbitals,

bringing the nπ orbital closer to it has very little effect. The mixing that is present at smaller values

of θ in fact seems to be partly responsible for the increased pyramidalization of the nitrogen of the

acceptor at those orientations. We see no evidence of any orbital mixing that could be attributed to

nπ − π∗ interactions. Given the weakness of the mixing with orbitals that are very close in energy

to nπ it is implausible that substantial mixing would be observed with an orbital almost a Hartree

higher in energy.

In conclusion, quantum chemical calculations, experimental carbonyl 13C chemical shifts and struc-

tural data indicate that a simple electrostatic dipole-dipole interaction explains the large downfield

carbonyl 13C chemical shift in an α-helix. There is no evidence for a significant contribution from an

n− π∗ interaction to the carbonyl bond. The single indication of n− π∗ interactions seems to be a

substantial lengthening of the carbon-nitrogen bond and pyramidalization of the nitrogen at θ angles

favorable for these interactions. In fact, such pyramidalization seems to be a logical consequence of

the electronic structure of amides, whose π orbitals are delocalized over the whole system.
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Chapter 12

Summary and Future Directions

Chemists, in particular, cannot understand why they should fund someone to do data
analysis.

– Richard Brereton [6]

12.1 The Need for Data Handling

The field of chemometrics is still in its infancy, but the chemometric practice of extracting quantita-

tive chemical information from data collected on complex samples is much older, and has innumerable

applications in chemistry [47, 6]. While the standard toolbox of t-tests, run charts and univariate

distributions has served analytical chemists well, the analysis of spectral measurements of multi-

component mixtures demands a more computationally intensive approach.

However, optimal chemometric modeling of spectral data does not begin when the data are read in for

the first time, but before acquisition has even been performed. Successful experimental design relies

on data collection procedures that yield informative, high-quality measurement results. Spectra hav-

ing the highest possible resolution, dynamic range and signal-to-noise ratio are necessary if reliable

conclusions are to be drawn from their models. In multidimensional NMR experiments, methods of

sparse data collection are becoming increasingly popular, as they provide avenues for maximizing

spectral quality. In these nonuniform sampling (NUS) methods, the greatest contributing factor

to spectral quality is the sampling scheme, and the generation of sampling schemes that optimize

various spectral features (i.e. sensitivity or resolution) is still an active area of fundamental research

[31]. Chapter 2 introduces a general framework for multidimensional nonuniform sampling that

extends the work of Hyberts and Wagner [25] and deterministically generates nonuniform sampling

schedules that perform as well or better than stochastic methods [53]. By suggesting an alternative

mechanism for introducing irregularity into a sampling schedule, burst-augmented gap sampling

aims to provoke further investigation into which features of a sampling schedule yield optimal spec-

tral results. Furthermore, this new framework is the first proposed mechanism for deterministically
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constructing sampling schedules on a multidimensional Nyquist grid [19] based on a general equation.

The processing, treatment and modeling of spectral measurements using multivariate statistics,

outlined in Chapter 3, is a nuanced task, with many pitfalls awaiting the chemist who lacks expe-

rience and training in multivariate data analysis [49, 55]. Most applications of chemometrics are

performed by analytical chemists, whose expertise lies with a certain type of instrumentation rather

than statistics. In order to promote statistically sound data handling practices, chemometricians

must begin to place easy-to-use, well-documented software packages in the hands of chemists. These

software packages must simultaneously provide powerful mechanisms of multivariate data analy-

sis, educate users about proper data handling, and encourage further extension and collaboration

between fundamentally focused chemometricians and applications-driven chemists. Chapter 5 in-

troduces MVAPACK [50], an open-source suite of simple GNU Octave [18] functions that aims to

address those goals, and Chapter 4 describes its use on a wide variety of applications within the

rapidly growing field of metabolomics [50, 30, 55]. The release of MVAPACK under an open-source

license ensures transparency, allows for critical review by expert members of the chemometrics com-

munity, and enables modification and extension by its user base.

Without a doubt, the availability of MVAPACK made the development of phase-scatter correction

(PSC, Chapter 6), uncomplicated statistical spectral remodeling (USSR, Chapter 7), and generalized

adaptive intelligent binning (GAI-binning, Chapter 8) substantially easier [51, 56, 54]. By interlacing

these methods into the existing fabric of MVAPACK, only a single new function had to be written

for each new method. The data structures required by the algorithms – complex data matrices,

real data matrices, and arrays of real matrices – are provided in a well-defined format by existing

functions in MVAPACK. As a result, development could be focused 100% on functionalities of the

actual algorithms, and not the “glue code” typically required to make a method even moderately

useful. This modularity conveys distinct advantages to the entire community: from the perspective

of an MVAPACK user, adding PSC or GAI-binning into an existing data handling protocol requires

changing a single function call in an Octave script.1

As more chemists begin to collect multiple analytical measurements from each sample, it is im-

perative that well-defined, statistically acceptable methods be available to model the resulting data

[45, 46, 38, 30, 52]. Consensus PCA (CPCA-W) and Multiblock PLS (MB-PLS), discussed in Chap-

1After upgrading to the latest version of MVAPACK, of course.
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ter 3, are powerful extensions of PCA and PLS modeling to multiblock datasets, and are implemented

in MVAPACK to provide easy access by the community. However, at the time of their implemen-

tation, no analogous extension of OPLS existed to handle multiblock data. Most chemists using

multivariate statistics prefer OPLS over PLS due to its enhanced interpretability [42, 41], and the

lack of a formally defined multiblock analog of OPLS was starting to become apparent in the form of

several ad hoc attempts to use single-block OPLS on multiple matrices [10, 5]. Chapter 9 formally

defines Multiblock OPLS (MB-OPLS) as a consensus bilinear factorization method, relates it to the

OnPLS method proposed by Löfstedt and Trygg [29], and describes its relationship to several other

methods (CPCA-W, MB-PLS, nPLS and OnPLS) in the context of the highly general framework

described by Hanafi and Kiers [22]. Coupled with the inclusion of MB-OPLS in MVAPACK, this

description presents a thoroughly vetted avenue for chemists to easily model their multiblock data

using OPLS, without resorting to ad hoc approaches [52].

However, bilinear factorizations like PCA, PLS and OPLS merely represent the very first step

towards chemometric modeling of spectral data [20]. Ideal chemometric models of spectral mea-

surements would directly report the concentrations of the individual components in the mixtures

being studied [17]. In the context of bilinear modeling, achieving this goal requires the imposition

of stronger constraints on the model scores and loadings (cf. Section 3.5). Methods such as multi-

variate curve resolution by alternating least squares (MCR-ALS, [15]) and molecular factor analysis

(MFR, [17]) impose non-negativity constraints on both the scores and loadings in an alternating

least squares framework, while Bayesian spectral decomposition (BSD, [35, 40]) and Bayesian posi-

tive source separation (BPSS, [32, 33]) do so by assigning prior probabilities to their values. While

these methods report more chemically and spectroscopically relevant information than PCA by im-

posing non-negativity, they still return mixtures of multiple compounds in their loadings. Imposition

of “hard modeling” constraints takes the problem a step further by requiring each extracted signal

to obey a certain parametric form. Hard modeling of NMR data has been accomplished using time-

domain Bayesian [7, 8, 9, 12] and maximum-likelihood [13] modeling, as well as hybrid time- and

frequency-domain maximum-likelihood [14, 11, 24] modeling. Such methods translate the task of

identifying mixture components into one of peak-matching, where each signal in the model is as-

signed to a known set of signals from a given compound. Inclusion of compound identity information

in the modeling process is the final step towards directly decomposing complex mixtures into their

constituent parts. Methods such as BATMAN [1, 23] and BQuant [57] have been shown to perform

quite capably in modeling 1D 1H NMR spectra, but require the specification of spectral information
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for each potential mixture component, and tend to be computationally expensive. Despite the clear

advantage these more complex approaches hold over soft modeling, their adoption by the chem-

istry community has proceeded incredibly slowly. Without easy-to-use software implementations,

these advanced modeling algorithms are likely to remain a mere afterthought in applied fields like

metabolomics, where usability often outweighs capability.

Once models have been constructed around a dataset, the task of inference begins, usually in-

volving a great deal more expert chemical or biochemical insight than model construction required.

At this stage, it can be tempting to draw conclusions based on patterns observed in the results. The

tendency of human perception to over-fit patterns to data can, however, lead analysts to infer too

much from a model. When chemical conclusions must be drawn from scores plots of PCA, PLS-DA

or OPLS-DA models, there are simple statistical measures that can be taken to avoid mis-perception

of scores-space patterns. Chapter 10 introduces a set of utilities to quantitatively measure and depict

separations between classes in model scores [48]. These utilities are based on the Mahalanobis dis-

tance, a multivariate meter stick [16] that takes distributional properties of each class into account.

Using these utilities, analysts may confidently make statistical arguments about distances between

experimental classes in a dataset.

Finally, the possibility of the existence a new fundamental electronic interaction (the n − π∗ in-

teraction) in proteins was explored in Chapter 11. Given the massive amounts of chemical and

biological data available in depositories like the protein databank (PDB, [4]) and the biological mag-

netic resonance bank (BMRB, [43]), cheminformatic and bioinformatic data mining efforts such as

the one performed in Chapter 11 are becoming increasingly possible. Efforts to curate the existing

wealth of data into usable quantities, such as models of protein 1H, 13C and 15N chemical shifts

[37, 39, 26, 21, 27] and order parameters [2, 3] have proven useful in protein structure determination

and refinement protocols. Combined with high-accuracy distance [44] and orientation [28] restraints,

these databases will increasingly serve as sources of prior information in novel probabilistically driven

structure determination efforts [34, 36].

While the raw amount of data is not quite as overwhelming in chemometrics as it may be in chem-

informatic and bioinformatic studies, its complexity is just as great. As efforts to model protein

structure and dynamics, cellular metabolic flux, and multi-component chemical mixtures continue,

data handling methods must be advanced to ensure maximal “information handling” is achieved.
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These methods must be provided in easy-to-use software packages that allow their users to focus on

scientific inquiry, rather than trudging though manual pages to find the special syntax of a given

function. Of course, doing so will require deep, multidisciplinary collaboration between groups that

specialize in computer science, mathematics, statistics, chemistry and biology.

12.2 References

[1] W. Astle, M. de Iorio, S. Richardson, D. Stephens, and T. Ebbels. A Bayesian Model of
NMR Spectra for the Deconvolution and Quantification of Metabolites in Complex Biological
Mixtures. Journal of the American Statistical Association, 107(500):37–41, 2012.

[2] M. V. Berjanskii and D. S. Wishart. A Simple Method to Predict Protein Flexibility Using
Secondary Chemical Shifts. Journal of the American Chemical Society, 127:14970–14971, 2005.

[3] M. V. Berjanskii and D. S. Wishart. Application of the random coil index to studying protein
flexibility. Journal of Biomolecular NMR, 40:31–48, 2008.

[4] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov,
and P. E. Bourne. The Protein Data Bank. Nucleic Acids Research, 28(1):235–242, 2000.

[5] J. Boccard and D. N. Rutledge. A consensus orthogonal partial least squares discriminant anal-
ysis (OPLS-DA) strategy for multiblock Omics data fusion. Analytica Chimica Acta, 769:30–39,
2013.

[6] R. G. Brereton. A short history of chemometrics: A personal view. Journal of Chemometrics,
28(10):725–736, 2014.

[7] G. L. Bretthorst. Bayesian Analysis I. Parameter Estimation Using Quadrature NMR Models.
Journal of Magnetic Resonance, 88:533–551, 1990.

[8] G. L. Bretthorst. Bayesian Analysis II. Signal Detection and Model Selection. Journal of
Magnetic Resonance, 88:552–570, 1990.

[9] G. L. Bretthorst. Bayesian Analysis III. Applications to NMR Signal Detection, Model Selection
and Parameter Estimation. Journal of Magnetic Resonance, 88:571–595, 1990.

[10] M. Bylesjo, R. Nilsson, V. Srivastava, A. Gronlund, A. I. Johansoon, S. Jansson, J. Karlsson,
T. Moritz, G. Wingsle, and J. Trygg. Integrated Analysis of Transcript, Protein and Metabolite
Data to Study Lignin Biosynthesis in Hybrid Aspen. Journal of Proteome Research, 8(1):199–
210, 2009.

[11] R. A. Chylla, K. Hu, J. J. Ellinger, and J. L. Markley. Deconvolution of two-dimensional NMR
spectra by fast maximum likelihood reconstruction: Application to quantitative metabolomics.
Analytical Chemistry, 83(12):4871–4880, 2011.

[12] R. A. Chylla and J. L. Markley. Improved frequency resolution in multidimensional constant-
time experiments by multidimensional Bayesian analysis. Journal of Biomolecular NMR, 3:515–
533, 1993.

[13] R. A. Chylla and J. L. Markley. Theory and application of the maximum likelihood principle
to NMR parameter estimation of multidimensional NMR data. Journal of Biomolecular NMR,
5(3):245–258, 1995.

203



[14] R. A. Chylla, B. F. Volkman, and J. L. Markley. Practical model fitting approaches to the
direct extraction of NMR parameters simultaneously from all dimensions of multidimensional
NMR spectra. Journal of Biomolecular NMR, 12(2):277–297, 1998.

[15] A. de Juan and R. Tauler. Multivariate Curve Resolution (MCR) from 2000: Progress in
Concepts and Applications. Critical Reviews in Analytical Chemistry, 36(3-4):163–176, 2006.

[16] R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart. The Mahalanobis Distance. Chemo-
metrics and Intelligent Laboratory Systems, 50(1):1–18, 2000.

[17] C. D. Eads, C. M. Furnish, I. Noda, K. D. Juhlin, D. A. Cooper, and S. W. Morrall. Molecular
Factor Analysis Applied to Collections of NMR Spectra. Analytical Chemistry, 76(7):1982–1990,
2004.

[18] J. W. Eaton, D. Bateman, and S. Hauberg. GNU Octave Manual Version 3. Network Theory
Limited, 2008.

[19] M. T. Eddy, D. Ruben, R. G. Griffin, and J. Herzfeld. Deterministic schedules for robust and
reproducible non-uniform sampling in multidimensional NMR. Journal of Magnetic Resonance,
214:296–301, 2012.

[20] P. S. Gromski, H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa, M. L. Turner, and R. Goodacre.
A tutorial review: Metabolomics and partial least squares discriminant analysis – a marriage
of convenience or a shotgun wedding. Analytica Chimica Acta, 879:10–23, 2015.

[21] B. Han, Y. Liu, S. W. Ginzinger, and D. S. Wishart. SHIFTX2: Significantly improved protein
chemical shift prediction. Journal of Biomolecular NMR, 50:43–57, 2011.

[22] M. Hanafi and H. A. L. Kiers. Analysis ofK sets of data, with differential emphasis on agreement
between and within sets. Computational Statistics and Data Analysis, 51:1491–1508, 2006.

[23] J. Hao, W. Astle, M. de Iorio, and T. M. D. Ebbels. BATMAN: An R package for the automated
quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model.
Bioinformatics, 28(15):2088–2090, 2012.

[24] K. Hu, J. J. Ellinger, R. a. Chylla, and J. L. Markley. Measurement of absolute concentra-
tions of individual compounds in metabolite mixtures by gradient-selective time-zero 1H–13C
HSQC with two concentration references and fast maximum likelihood reconstruction analysis.
Analytical Chemistry, 83(24):9352–9360, 2011.

[25] S. G. Hyberts, K. Takeuchi, and G. Wagner. Poisson-Gap Sampling and Forward Maximum
Entropy Reconstruction for Enhancing the Resolution and Sensitivity of Protein NMR Data.
Journal of the American Chemical Society, 132(7):2145–2147, 2010.

[26] M. Iwadate, T. Asakura, and M. P. Williamson. Cα and Cβ carbon-13 chemical shifts in proteins
from an empirical database. Journal of Biomolecular NMR, 13:199–211, 1999.

[27] D.-W. Li, D. Meng, and R. Bruschweiler. Reliable resonance assignments of selected residues
of proteins with known structure based on empirical NMR chemical shift prediction. Journal
of Magnetic Resonance, 254:93–97, 2015.

[28] F. Li, J. Lee, A. Grishaev, J. Ying, and A. Bax. High Accuracy of Karplus Equations for Relating
Three-bond J-couplings to Protein Backbone Torsion Angles. ChemPhysChem, 16(3):572–578,
2015.

[29] T. Lofstedt and J. Trygg. OnPLS – a novel multiblock method for the modeling of predictive
and orthogonal variation. Journal of Chemometrics, 25:441–455, 2011.

204



[30] D. D. Marshall, S. Lei, B. Worley, Y. Huang, A. Garcia-Garcia, R. Franco, E. D. Dodds, and
R. Powers. Combining DI-ESI-MS and NMR datasets for metabolic profiling. Metabolomics,
11(2):391–402, 2015.

[31] M. Mobli. Reducing seed-dependent variability of non-uniformly sampled multidimensional
NMR data. Journal of Magnetic Resonance, 256:60–69, 2015.

[32] S. Moussaoui, D. Brie, A. Mohammad-Djafari, and C. Carteret. Separation of non-negative
mixture of non-negative sources using a Bayesian approach and MCMC sampling. IEEE Trans-
actions on Signal Processing, 54(11):4133–4145, 2006.

[33] S. Moussaoui, C. Carteret, D. Brie, and A. Mohammad-Djafari. Bayesian analysis of spec-
tral mixture data using Markov Chain Monte Carlo Methods. Chemometrics and Intelligent
Laboratory Systems, 81(2):137–148, 2006.

[34] M. Nilges, A. Bernard, B. Bardiaux, T. Malliavin, M. Habeck, and W. Rieping. Accurate NMR
Structures Through Minimization of an Extended Hybrid Energy. Structure, 16:1305–1312,
2009.

[35] M. F. Ochs, S. Stoyanova, F. Arias-Mendoza, and T. R. Brown. A New Method for Spectral
Deconvolution Using a Bilinear Bayesian Approach. Journal of Magnetic Resonance, 137:161–
167, 1999.

[36] S. Olsson, B. R. Vogeli, A. Cavalli, W. Boomsma, J. Ferkinghoff-Borg, K. Lindorff-Larsen, and
T. Hamelryck. Probabilistic Determination of Native State Ensembles of Proteins. Journal of
Chemical Theory and Computation, 10:3484–3491, 2014.

[37] K. Osapay and D. A. Case. A New Analysis of Proton Chemical Shifts in Proteins. Journal of
the American Chemical Society, 113:9436–9444, 1991.

[38] A. K. Smilde, J. A. Westerhuis, and S. de Jong. A framework for sequential multiblock com-
ponent methods. Journal of Chemometrics, 17(6):323–337, 2003.

[39] S. Spera and A. Bax. Empirical correlation between protein backbone conformation and Calpha
and Cbeta 13C nuclear magnetic resonance chemical shifts. Journal of the American Chemical
Society, 113(14):5490–5492, 1991.

[40] R. Stoyanova, J. K. Nicholson, J. C. Lindon, and T. R. Brown. Sample classification based
on Bayesian spectral decomposition of metabonomic NMR data sets. Analytical Chemistry,
76(13):3666–3674, 2004.

[41] H. S. Tapp and E. K. Kemsley. Notes on the practical utility of OPLS. Trends in Analytical
Chemistry, 28(11):1322–1327, 2009.

[42] J. Trygg and S. Wold. Orthogonal projections to latent structures (O-PLS). Journal of Chemo-
metrics, 16(3):119–128, 2002.

[43] E. L. Ulrich, H. Akutsu, J. F. Doreleijers, Y. Harano, Y. E. Ioannidis, J. Lin, M. Livny,
S. Mading, D. Maziuk, Z. Miller, E. Nakatani, C. F. Schulte, D. E. Tolmie, W. R. Kent, H. Yao,
and J. L. Markley. BioMagResBank. Nucleic Acids Research, 36:402–408, 2008.

[44] B. R. Vogeli. The nuclear Overhauser effect from a quantitative perspective. Progress in Nuclear
Magnetic Resonance Spectroscopy, 78:1–46, 2014.

[45] J. A. Westerhuis and P. M. J. Coenegracht. Multivariate modelling of the pharmaceutical two-
step process of wet granulation and tableting with multiblock partial least squares. Journal of
Chemometrics, 11(5):379–392, 1997.

[46] J. A. Westerhuis, T. Kourti, and J. F. MacGregor. Analysis of multiblock and hierarchical PCA
and PLS models. Journal of Chemometrics, 12(5):301–321, 1998.

205



[47] S. Wold. Chemometrics; what do we mean with it, and what do we want from it? Chemometrics
and Intelligent Laboratory Systems, 30(1):109–115, 1995.

[48] B. Worley, S. Halouska, and R. Powers. Utilities for quantifying separation in PCA/PLS-DA
scores plots. Analytical Biochemistry, 433(2):102–104, 2013.

[49] B. Worley and R. Powers. Multivariate Analysis in Metabolomics. Current Metabolomics,
1(1):92–107, 2013.

[50] B. Worley and R. Powers. MVAPACK: A Complete Data Handling Package for NMR
Metabolomics. ACS Chemical Biology, 9(5):1138–1144, 2014.

[51] B. Worley and R. Powers. Simultaneous phase and scatter correction for NMR datasets. Chemo-
metrics and Intelligent Laboratory Systems, 131:1–6, 2014.

[52] B. Worley and R. Powers. A Sequential Algorithm for Multiblock Orthogonal Projections to
Latent Structures. Chemometrics and Intelligent Laboratory Systems, 2015.

[53] B. Worley and R. Powers. Deterministic Multidimensional Nonuniform Gap Sampling. Journal
of Magnetic Resonance, 2015.

[54] B. Worley and R. Powers. Generalized Adaptive Intelligent Binning of Multiway Data. Chemo-
metrics and Intelligent Laboratory Systems, 146:42–46, 2015.

[55] B. Worley and R. Powers. PCA as a predictor of OPLS-DA model reliability. Analytica Chimica
Acta, 2015.

[56] B. Worley, N. J. Sisco, and R. Powers. Statistical Removal of Background Signals from High-
throughput 1H NMR Line-broadening Ligand-affinity Screens. Journal of Biomolecular NMR,
63(4):53–58, 2015.

[57] C. Zheng, S. C. Zhang, S. Ragg, D. Raftery, and O. Vitek. Identification and quantification of
metabolites in 1H NMR spectra by Bayesian model selection. Bioinformatics, 27(12):1637–1644,
2011.

206


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	10-15-2015

	Chemometric and Bioinformatic Analyses of Cellular Biochemistry
	Bradley Worley

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Data Handling in Chemometrics
	Acquisition
	Processing and Treatment
	Modeling and Validation
	Inference

	Summary of Work
	References

	Multidimensional Nonuniform Gap Sampling
	Introduction
	Theory
	Poisson-gap Sequences
	Multidimensional Gap Sampling
	Burst Augmentation
	Expectation Sampling Distributions
	Multidimensional Expectation Sampling Distributions

	Materials and Methods
	Generation of Deterministic Schedules
	Generation of Stochastic Schedules
	Spectral Data Collection
	Computation of Performance Metrics
	Generation of Peak-picking Statistics
	Analysis of Sampling Distributions
	Average Poisson-gap Sequences

	Results
	Discussion and Conclusions
	References

	Multivariate Analysis in Metabolomics
	Introduction
	Multivariate Datasets
	Spectral Processing
	NMR Signals
	Time-domain Processing
	Frequency-domain Processing

	Statistical Treatment
	Binning
	Alignment
	Normalization
	Scaling
	Variable Selection

	Modeling
	Principal Component Analysis
	Partial Least Squares
	Orthogonal Projections to Latent Structures
	Consensus PCA
	Multiblock PLS
	Multiblock OPLS

	Validation
	Explained Variation
	External Cross-validation
	Internal Cross-validation
	Response Permutation Testing
	CV-ANOVA Testing

	Conclusions
	References

	Applications of Multivariate Analysis in Metabolomics
	Introduction
	1H NMR Fingerprinting of Brewed Coffees
	Materials and Methods
	Results and Discussion

	Fingerprinting of Joint 1H NMR and DI-ESI-MS Data
	Materials and Methods
	Results and Discussion
	Conclusions

	Monte Carlo Analysis of Scores-space Separations
	Materials and Methods
	Results and Discussion

	References

	The MVAPACK Suite for NMR Chemometrics
	Introduction
	Materials and Methods
	Software Implementation
	Feature Set

	Discussion and Conclusions
	References

	Phase-Scatter Correction of NMR Datasets
	Introduction
	Theory
	Multiplicative Scatter Correction
	Phase-scatter Correction
	Ensemble Phase Correction

	Materials and Methods
	NMR Data Processing
	Simulated NMR Datasets
	Monte Carlo Experiments

	Results
	Discussion
	Conclusions
	References

	Uncomplicated Statistical 1H NMR Spectral Remodeling
	Introduction
	Materials and Methods
	Sample Preparation and NMR Acquisition
	NMR Data Processing
	Statistical Spectral Remodeling
	Statistical Hit Determination
	Analysis of Dataset Size

	Results
	Discussion and Conclusions
	References

	Generalized Adaptive Intelligent Binning of Multiway Data
	Introduction
	Theory
	AI-binning
	GAI-binning
	Noise Bin Elimination

	Materials and Methods
	Human Liver Dataset
	Mouse Embryonic Fibroblast Dataset
	NMR Processing and Multivariate Analysis

	Results and Discussion
	Conclusions
	Permutation Test Results
	References

	Multiblock Orthogonal Projections to Latent Structures
	Introduction
	Theory
	nPLS and OnPLS
	CPCA-W and MB-PLS
	MB-OPLS

	Datasets
	Synthetic Example
	Joint 1H NMR and DI-ESI-MS Datasets

	Results and Discussion
	Conclusions
	References

	Quantification of PCA/PLS-DA Class Separations
	Introduction
	Materials and Methods
	Probability Calculation
	Dendrogram Generation
	Confidence Ellipse Calculation

	Results and Discussion
	References

	Analysis of Protein n -  Interactions
	Introduction
	Materials and Methods
	Analysis of Experimental Structures
	Model Compound Calculations

	Results
	Discussion and Conclusions
	References

	Summary and Future Directions
	The Need for Data Handling
	References


