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ABSTRACT 

Mapping the Dorsal Skin Pigmentation Patterns of Two Sympatric Populations of Ambystomatid 

Salamanders, Ambystoma opacum and A. maculatum from Northeast Tennessee 

by 

Lok Raj Pokhrel 

Because of growing concern of habitat fragmentation and its adverse effects on salamander 

communities in Appalachian region, sympatric populations of ambystomatid salamanders A. 

opacum and A. maculatum were studied in Northeast Tennessee to address a number of 

questions: i) the extent of sexual size dimorphism (SSD) in both species, ii) what traits influence 

the dorsal skin pigmentation and how, iii) whether gender differences in developmental stability 

occur, and iv) the extent of phenotypic variation within each species. The findings of this study 

revealed SSD in both species of salamanders. The most parsimonious statistical model was 

developed that explained the influence of body mass, dorsal body area, and sex on development 

of dorsal white pigmentation in marbled salamanders. Data on asymmetry indicate that females 

are under more stress than males in marbled salamanders, while for spotted salamanders 

nonsignificant asymmetry is indicative of similar level of stress in both sexes. Data on 

coefficient of variation (CV) suggest stabilizing selection on optimal body size and mass in 

female marbled salamanders compared to males; however, for spotted salamanders CV indicates 

relatively similar selection pressure for body size and mass for both sexes. 
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CHAPTER 1 

INTRODUCTION 

Amphibians are declining at an unprecedented scale (Wyman 1990), and evidence 

suggests that they might be facing a large extinction crisis (Beebee and Griffiths 2005; 

Mendelson et al. 2006; McCallum 2007; Roelants et al. 2007). Global Amphibian Assessment 

(GAA conducted by IUCN 2005) revealed that between 33% and 50 % of the world’s 6000 

amphibian species are currently threatened with extinction and over 120 species have already 

disappeared since 1980 (Stuart et al. 2004; Moore and Church 2008). Researchers think the 

sudden decline in amphibian populations might reflect the environmental degradation, as 

amphibians may be considered as biomarkers of environmental health (Wyman 1990) because of 

their sensitivity to habitat perturbations and human-induced changes (Blaustein and Wake 1990). 

The global concern regarding amphibian decline originates from the important ecological roles 

that amphibians play in wetlands and the surrounding terrestrial habitats. In wetlands, amphibian 

larvae are found to be significant predators, prey (Duellman and Trueb 1994), and herbivores 

(Morin et al. 1990). In upland habitats, adult amphibians act as both predators and prey (Porter 

1972). Amphibians account for much of the vertebrate biodiversity in uplands and wetlands 

(Duellman and Trueb 1994). Thus, loss of amphibians may have adverse effects on the wetland 

and its surrounding terrestrial communities (Beebee 1996). 

With the growing human population, increase in anthropogenic activities is generally 

thought to decrease the viability of the local populations by degrading habitat quality (Francl and 

Gary 2002), limiting feeding and breeding opportunities, and subsequently increasing regional 

extinctions of wildlife species (Fernandez-Juricic et al. 2004). Anthropogenic changes in the 

environment are significant environmental stressors and may be linked to contemporary 
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evolution (Reznick and Ghalambor 2001). One of the major challenges in conservation and 

evolutionary biology is to understand how natural populations respond to anthropogenically 

induced environmental changes (Soderman 2006). With the ongoing changes of weather 

patterns, depletion of atmospheric ozone, varied invasives, pollutants (Soderman 2006), and 

emerging diseases like chytridiomycosis (Davidson et al. 2003) and iridoviruses (Jancovich et al. 

1997), sensitive amphibians will be affected (see Davidson et al. 2003), and such effects may be 

manifested during ontogeny as asymmetric phenotype (Wright and Zamudio 2002).  

Developmental Stability and Bilateral Asymmetry 

Developmental stability is the process by which an organism executes the genetically 

programmed developmental pathways correctly, producing a phenotype without developmental 

errors (Clarke 1995). Under normal conditions, development follows genetically determined 

pathways and minor perturbations are controlled by developmental stability mechanisms. 

However, under stress the efficacy of stability mechanisms may be reduced such that 

development cannot be restored resulting in asymmetric phenotypes (Clarke 1995). As 

developmental stability can be greatly affected by both genetic and environmental influences 

during ontogeny (Palmer and Strobeck 1986; Leary and Allendorf 1989; Markow 1995), the 

ability to buffer against stressors is viewed as a vital indirect fitness component (Clarke 1995).  

Pigmentation Biology and Phenotypic Variation 

  The dorsal skin pigmentation system has long captured the interest of developmental 

biologists, geneticists and ecologists (Hoekstra 2006).  Color quality and/or pigmentation 

patterns frequently exhibit variation both within and between species in quantifiable ways 

(Endler 1990). Functions of pigmentation such as crypsis, thermoregulation, and sexual signaling 

may impact the nature of variation in pigmentation and color patterns (Thayer 1909; Cott 1940).  
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In vertebrates, several mechanisms may contribute to regional variation in skin 

pigmentation. Though several genes have been identified that are linked to melanocyte 

development and dispersal (Baxter et al. 2004), very little is known about their spatial and 

temporal control. It has been hypothesized that developmental timing could play an important 

role in generating regular patterns. For instance, subtle differences in the timing of melanocyte 

differentiation could be responsible for phenotypic variation in the skin pigmentation patterns in 

zebra and other mammals (Bard 1977).  

All pigment cells originate from a common neural crest precursor whose commitment 

towards a definite type of chromatophore is not established before its localization in a specific 

area of the body. Depending on localization, the pigment cells are differentiated from neural 

crest cells into melanophores, chromatophores, and leucophores/iridophores. Some pigment cells 

then migrate into epidermis earlier in life, while others remain in the dermis and migrate into the 

epidermis during metamorphosis (Bagnara 1987). Most neural crest cells are pluripotent, 

whereas a few are already committed toward a definite phenotype. Environmental effects are 

also thought to play important role in determining the final phenotype (Bagnara et al. 1979b). 

Ultrastructure of larval skin has revealed that pattern formation in spotted salamander is closely 

related to Triturus alpestris, where pattern formation is governed by environment. 

Phylogenetically, A. maculatum is closely related to A. mexicanum and A. tigrinum in which skin 

pattern formation is solely based on cell-cell interaction (see Epperlein et al. 1996).  

Variation during ontogeny that is manifested in phenotype is typically induced by 

environmental heterogeneity or environmental stress (Berrigan and Scheiner 2004; Gabriel 

2005). For instance, the larvae of Arizona tiger salamanders change their body color depending 
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on substrates in the ponds (Fernandez and Collins 1988). Temperature is also found to be crucial 

in the fate of development of the pigmentation patterns (Davison 1964).  

In a small ecological niche where competition among the individuals of the same species 

may be intense, intra-population variation would be greater (Adolph 1931). Both inter- and intra-

population variation are often related to phenotypic variation induced by local environmental 

differences (e.g., temperature, resources, competitors, predators) to which the individuals are 

exposed (Berven 1982; Reznick 1982; Berven and Gill 1983; Stearns 1983). Intra-population 

variation can be influenced by genotypic variation, non-genetic maternal effects, random effects 

among individuals (Travis 1980; Kaplan and Cooper 1984), and annual variation in 

environmental conditions (Collins 1979).  

Amphibian metamorphs may differ both at age and size (Pfennig 1992; Collins et al. 

1993). Differences are also seen in maturation patterns retaining larval phenotype and becoming 

sexually mature in the larval aquatic habitat (e.g., Sonora tiger salamander), or metamorphosing 

and becoming sexually mature in the typical upland terrestrial habitats (e.g., anurans and other 

salamanders) (Newman 1992; Collins et al. 1993). However, in rare occasion alternate morphs 

have also been encountered (Pfennig 1992). 

To understand the evolution of morphological traits, it is vital to understand the 

ecological factors that may influence variation in the life history traits of the individuals in the 

local populations. Body size is possibly the most fundamental trait of an animal (Schmidt-

Neilsen 1984). The ontogeny of body size and the overall shape of amphibians differ in 

predictable ways along environmental gradients, which is suggestive of adaptive response to 

food scarcity, predation and extreme environmental conditions (e.g., Lee 1993; Cummins and 

Swan 1995; Morrison et al. 2004; Phillips et al. 2006). Thus, body size has considerable 
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influence on organization of ecological communities and on the fitness and survival of the 

individuals (Lawton 1990).  

As most amphibians are nocturnal and differentially colored, it has been regarded that the 

bright color patterns of nocturnal animals function to increase foraging success by providing 

attractive visual cues to nocturnal prey because bright parts of the animals stand out from the 

background (Heiling et al. 2003; Tso et al. 2004, 2006).  

Sexual Size Dimorphism (SSD) 

In amphibians, sexual dimorphism in body size and morphology has drawn great 

attention (e.g., Shine 1979), but less is known about sexual dimorphism in regard to skin 

pigmentation patterns (Todd and Davis 2007). Intersexual niche divergence and/or dietary 

divergence can also amplify or restrain the degree of sexual dimorphism generated by aspects of 

reproductive biology (Shine 1988). Among amphibians, females are often larger than males 

because they are presumably selected for higher fecundity (Salthe and Duellman 1973). 

However, males are larger than females when male–male combat is present (Shine 1979; but see 

Halliday and Verrell 1986). Although sexual size dimorphism is typically associated with 

selection for reproductive roles (Shine 1988; Hedrick and Temeles 1989), ecological differences 

between the sexes in regard to habitat use, predation and diet have also been related to 

dimorphism (Shine 1989; Anderson and Vitt 1990; Reimchen and Nosil 2004). 

Among salamanders, males are larger than females in most desmognathine species 

(Bruce 1993; Bakkegard and Guyer 2004). However, in the family Plethodontidae, dimorphism 

tends to be female-biased (Bruce 2000), except for Hydromantes platycephalus (Adams 1942). 

This study investigated the influence of body size, mass, and sex on the extent of dorsal 

skin pigmentation in marbled salamander Ambystoma opacum. The most parsimonious 
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explanatory model using general linear model (GLM) was developed via the process of statistical 

eliminations to illustrate the relationships. This study also determined the extent of sexual size 

dimorphism in two species of ambystomatid salamanders as quantitative studies on SSD using 

several parameters of these species were lacking. Levels of developmental stability and 

phenotypic variation within the populations were also studied.  

The following hypotheses were tested: (H1) There is sexual size dimorphism in marbled 

and spotted salamanders. The prediction was that sexual size dimorphism would be reflected in 

the extent of skin pigmentation, different body dimensions, and body mass. (H2) The dorsal 

body area, body mass, and sex of the individuals would influence the extent of pigmentation 

patterns on the dorsum of marbled salamanders. The prediction was that the body dimensions 

and their interactions with sex would show significant influence on the extent of white 

pigmentation in marbled salamanders because as dorsal white pigmentation develops soon after 

metamorphosis, pigmentation is thought to be somehow influenced by sex related body growth.  

(H3.1) Phenotypic variation is relatively greater in males than in females of marbled 

salamanders. Since female marbled salamanders spend more time in parental care during 

October-December for which there may be stabilizing selection on optimal body size and mass, 

and because such traits are correlated with increased clutch size, it was predicted that females 

would show less coefficient of variation than males of marbled salamanders. (H3.2) Phenotypic 

variation between sexes of spotted salamander is relatively similar. Because spotted salamanders 

have similar life history between sexes, it was predicted that both sexes would show relatively 

similar coefficients of variation. (H4) The degree of developmental stability will differ between 

sexes in both species. It is predicted that as the degree of stress differs between sexes, it would be 

manifested as subtle differences in bilateral morphological traits like skin pigmentation. So, it 
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was expected that the relative measure of asymmetry would be significantly different between 

sexes in both species of salamanders. 
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CHAPTER 2 

MATERIALS AND METHODS 

Species Biology 

The study organisms are sympatric populations of the marbled salamander Ambystoma 

opacum and spotted salamander A. maculatum that inhabit disturbed and fragmented habitats 

near South Holston Dam in Northeast Tennessee, USA (Smith 2004). In Appalachian 

ecosystems, salamander communities are very important as they often exceed the combined 

biomass of other terrestrial vertebrates (Hairston 1987). Because habitat fragmentation and clear-

cutting of the woodland have adverse impacts on salamander populations (Ash 1997, Harpole 

and Hass 1999), it is important to document phenotypic variation in salamander populations.  

Marbled Salamander 

Ambystoma opacum (Gravenhorst 1807) is widely distributed in eastern North America 

inhabiting mixed deciduous forests from eastern Texas and Oklahoma, northeast through Illinois 

and Indiana to southern New Hampshire and central Massachusetts, and south to north Florida 

(Scott 2005). Some disjunct populations can be found, such as along the southern edge of Lake 

Michigan (Anderson 1967) and at Osceola island, TN (Hamed et al. 2007) on which this study is 

based.  

Ambystoma opacum is a stout, medium sized salamander that has a black ground color 

overlain by distinct cross-bands on the entire dorsum. Males have silvery white bands, whereas 

females have silvery gray bands (Petranka 1998), but there is no consistency in dorsal patterns 

within sexes (Nobel and Brady 1933).They may have a life span of 8-10 years (Graham 1971; 

Taylor and Scott 1997). 



 

Males often arrive at potential breeding

1998). Breeding takes place from

eggs on the soil under the cover

for 1 to 2 months, and then leave the eggs before

1968; Petranka 1990). The marbled salamander is

parental care (Nussbaum 1985, 1987). The larvae are aggressive and are amon

predators in fishless ponds. They are voracious

salamander larvae in ponds (Smith 19

insects, snails, and even caterpillars (Petranka 1998). As aquatic larvae, animals are greenish

yellow to black and emerge from

become conspicuous and seen as white saddl

Figure 1 Distribution range (shaded dark
(B) in USA (Modified from United States:
2004). 
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potential breeding sites about a week before females (Petranka 

from August to November when each female lays between 1 to 200 

eggs on the soil under the cover of leaf litter in the dry pond. Eggs are often brooded by females 

months, and then leave the eggs before they are inundated (Green 1955

arbled salamander is the only species of Ambystoma

parental care (Nussbaum 1985, 1987). The larvae are aggressive and are amon

ponds. They are voracious, and will eat both conspecific and heterospecific 

salamander larvae in ponds (Smith 1990) in addition to zooplankton, isopods, fairy shrimps, 

and even caterpillars (Petranka 1998). As aquatic larvae, animals are greenish

from natal ponds as dark animals with minor white speckles

become conspicuous and seen as white saddles or bands as they age (Conant and Collins 1998).

shaded dark) of marbled salamanders (A) and spotted salamanders 
United States: ARMI National Atlas for Amphibians Distributions,

females (Petranka 

August to November when each female lays between 1 to 200 

are often brooded by females 

Green 1955; Worthington 

Ambystoma that shows 

parental care (Nussbaum 1985, 1987). The larvae are aggressive and are among the dominant 

and will eat both conspecific and heterospecific 

isopods, fairy shrimps, 

and even caterpillars (Petranka 1998). As aquatic larvae, animals are greenish-

natal ponds as dark animals with minor white speckles, which 

es or bands as they age (Conant and Collins 1998). 

 

and spotted salamanders 
as for Amphibians Distributions, 
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Spotted Salamander 

The spotted salamander Ambystoma maculatum (Shaw 1802) is distributed from southern 

Canada to eastern and central United States (Petranka 1998). It is a slow moving animal with 

limited dispersal capabilities (Madison 1997) and inhabits deciduous hardwood and mixed 

bottomland forests along rivers, swamps, and fish-free vernal pools. It spends most of the time 

hiding in leaf litter, under fallen wood, or in tunnels below ground (Petranka1998).  

The spotted salamander has brown to black skin with bilaterally oriented orange to 

yellow spots leading down its dorsum, which are acquired following metamorphosis (Petranka 

1998). A few spots are also located on the head and legs. This species is an explosive breeder 

(breeding en masse), and breeds between late winter to early spring when a female usually 

deposits 2 to 4 egg masses with 1 to 250 eggs in each clutch (Petranka 1998). Adults remain in 

the pond for only few nights every year (Tennessen and Zamudio 2003; Savage and Zamudio 

2005). Larvae develop in ponds throughout the late spring and early summer (Zamudio and 

Wieczorek 2007). Adults migrate to breeding ponds during late winter to early spring, typically 

during rainy evenings. They exhibit strong homing behavior to their breeding sites (Whitford and 

Vinegar 1966), often even entering and exiting the pond repeatedly at similar locations. Homing 

behavior is sufficiently strong that when captured individuals were released into unfamiliar 

breeding habitats, they bypassed this habitat and returned to their natal breeding ponds (Shoop 

1968; Stenhouse 1985; Sexton et al. 1986). 

Study Site and Salamander Collections 

The study site is located at Osceola Island Recreation Area in Sullivan County, 

Tennessee, USA. It is a vernal pool of about 900 feet in circumference (Smith 2004) and is 

situated one mile below the South Holston Dam on the Holston View Dam road (36.5239°N, 
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82.1100°W at altitude 1478 ft). This pond was inadvertently created when the Tennessee Valley 

Authority (TVA) made a borrow pit to construct a parking lot at the recreational area. It fills with 

water in the late winter but dries out by the end of the summer (Smith 2004). A mixed deciduous 

forest primarily composed of Sycamore (Plantus occidentalis), Sweet Gum (Liquidambar 

stryaciflua) and White Oak (Quercus alba), and non-native bamboo patch (Phyllostachys 

aureosulcata; 0.5 ha) borders the south of the pond, while shrubby treeless habitat borders the 

east, west and north of the pond (Figure 2). About 60 feet away from the pond toward the north 

runs the Holston View Dam road, and across this road is a small isolated, fragmented, and 

disturbed mixed deciduous forest (0.79 ha) mainly composed of Virginia Pine (Pinus 

virginiana), Box Elder (Acer negundo), and Sycamore (Plantus occidentalis) (Hamed et al. 

2008) . 

 

Figure 2  Schematic representation of the study area at Osceola Island, South Holston River, TN    
(diagram not to scale) 
 

All marbled salamanders were collected from the same study site during their post-

breeding migration during October and November 2008 by using pitfall traps and drift fence that 
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are installed around the pond. Spotted salamanders were also collected during post-breeding 

migration during March 2008 using the same method mentioned earlier (for details see Table 1). 

They were then transported into the laboratory in (2x1.5x1.5) cu. feet rectangular plastic 

containers with moistened leaf litter, added to reduce dehydration of the animals, from the same 

habitat. The procedures used for collections and handling of the salamanders for this study were 

approved by the ETSU animal care and use committee (Protocol # P070902-AS). 

Table 1  Collection of Salamanders from Osceola Island Recreational Area, TN 

Specimen Collection date Male Female Total salamander 
collected (N) 

Marbled salamander 
(A. opacum) 

10/19/2008 100 0  
275 10/30/2008 6 36 

11/28/2008 2 131 
Total 108 167 

Spotted salamander 
(A. maculatum) 

03/12/2008 8 14  
131 03/20/2008 56 53 

Total 64 67 
 

Photography and Measurements 

Salamanders were photographed (Fujifilm FinePix S5800 8MP digital camera) on the 

same day of collection and were released to the collection site the next day. For photography, the 

camera was mounted at a fixed distance from the stage and the specimen along with a standard 

metric ruler was positioned directly under the camera lens so that both the left and right sides of 

the specimen were present on each digital image of marbled salamanders. The purpose of using 

the standard metric ruler was to provide a calibration scale for Image analysis. For spotted 

salamanders, two images were taken for each specimen: one from the left side and the other from 

the right side so that the spots could be precisely captured in the same plane. All images were 

taken in the same room.  
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Image analysis software, ImageJ (NIH, Image Processing and Analysis in Java) was used 

to calculate the dimensions of selected objects in digital images by calculating the number of on-

screen pixels in each selected object, then reporting the actual dimensions of the object in 

millimeters based on a user-defined pixel-to-millimeter ratio. The pixel-to-mm ratio for the 

images was obtained by measuring the digitized image of standard metric ruler. Depending upon 

the agility of the salamanders during photography, some were anesthetized using MS-222 (2%) 

for 15-30 minutes. The gender of animals was identified looking at the vent (for both species, 

males have parallel ridges inside the cloaca that run perpendicular to the cloacal slit). 

For marbled salamanders, the following measurements were obtained (Figure 3): (1) eye-

to-eye length (EEL) was measured from the distal part of left eye to the distal part of right eye; 

(2) neck length was measured at the constricted part of the neck; (3) width between fore limbs 

(WBFL) was measured from the anterior part of left fore-limb to the anterior part of right fore-

limb; (4) dorsal body length was measured by drawing a line mid-dorsally that extended from 

anterior part of fore-limbs to anterior part of hind-limbs (DBL); (5) right body pigmented area 

(RBPA) was measured by tracing each band on the right side and taking their sum; (6) left body 

pigmented area (LBPA) was measured by tracing each band on the left side and taking their sum 

; (7) dorsal body area (DBA) was measured by inverting the image so that the edge of the bands 

make the lateral boundaries  and the fore limbs and the hind limbs make the anterior and 

posterior boundaries such that the area consists of both white bands and dark melanic areas; (8)  

width between hind limbs (WBHL) was measured from the anterior part of left hind limb to the 

anterior part of right hind limb; and (9) snout-vent-length (SVL) was measured from the tip of 

the snout to the distal margin of the vent in live animals. For spotted salamanders (shown right, 

Fig. 3), (1) total length (TL) was measured from the tip of the snout to the tip of the tail; (2) 



 

snout-vent-length (SVL) was measured from the tip of the snout to the posterior part of vent in 

live animals; and (3) yellow spots were counted only from the main body.

All morphometric measurements obtained for both species were rounded to three decimal 

places. A line was drawn down the dorsum of marbled salamanders (see Figure 3) in order to 

separate bands on left and right sides so that a relative measure of asymmetry could be 

determined. The body mass was measured with an electronic balance to the nearest 0.001g.

Figure 3  Image analysis procedure to gener
salamander (left) and spotted salamander (right)
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Statistical Analyses 

All linear morphological traits measured were tested for normality using Kolmogorov-

Smirnov test (Table 11) and the data distributions were visualized via frequency histograms. As 

all the traits showed normal distribution, transformations were not made unless otherwise stated. 

Outliers were not removed from the analyses.  

Sexual size dimorphism was explored using one way ANOVA for both species. 

Additionally Principal Component 1 (PC1-Bartlett’s scores), which explained the body size, was 

used to investigate the extent of sexual size dimorphism in marbled salamander. The conditions 

for Principal Component Analysis (PCA) were met via Kaiser-Meyer-Olkin (KMO) test and 

Bartlett’s test of sphericity. Data were rotated using Varimax rotation with Kaiser Normalization, 

and Principal Components were obtained by using correlation matrix. This was followed by 

Hierarchical cluster analysis by using the measure of Squared Euclidean distance and centroid 

method to generate a dendrogram in order to classify similar animals. Linear morphometric traits 

such as snout-vent-length, eye-to-eye length, distance between fore limbs, and distance between 

hind limbs were used to produce the dendrogram to classify the marbled salamanders into similar 

groups. 

The most parsimonious explanatory model was developed to investigate the influence of 

different body dimensions, body mass, and sex on the extent of dorsal white pigmentation in 

marbled salamanders by using General Linear Model (GLM) via the process of statistical 

eliminations. Several candidate sets of plausible models were developed with and without 

interactions and observed for significance. The standardized residuals were plotted against the 

unstandardized residuals (fitted value) in order to test the validity of the fitted model. In several 

cases, frequency histograms of the standardized residuals were also plotted for visualizing 
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normality. When the model showed significance, the residual plot/histogram did not support 

linearity because of skewness. Transformations of the dependent variable improved the 

predicting power of the model. Then by removing unnecessary variables from the models, called 

model simplification, the most parsimonious explanatory model was designed that could predict 

the extent of dorsal skin pigmentation in marbled salamanders.  

Coefficient of Variation (CV) is an index that may be used to describe the amount of 

phenotypic variation within and among populations.  

Mathematically, 

CV= (standard deviation/mean) x100 …………………………………… (I) 

CV is particularly useful when comparing dispersion in datasets with different means or 

with different units of measurement. For different populations or sources, the mean and standard 

deviation of the traits often tend to change together so that the CV is relatively stable or constant 

(Snedecor and Cochran 1980). With the increase in normally distributed sample size, the sample 

CV provides the better estimate of population CV (Mahmoudvand et al. 2007). 

Relative measure of asymmetry is a measure of developmental stability that is calculated 

as the ratio of absolute value of difference between trait on left and right sides to the trait size. 

Mathematically,  

Relative measure of asymmetry = |R-L| / (R+L) ………………………………  (IV) 

Where 

|R-L| = absolute value of the difference in means between right side trait and left side trait, and 

(R+L) = summation of the mean values of the right side trait and left side trait. 
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CHAPTER III 

RESULTS 

Sexual Size Dimorphism (SSD) 

1. Marbled Salamander 

The correlation between white pigmentation and all morphological traits measured were 

found to be significant (P<0.001; see Table 2 for details). But the small correlation coefficient 

values indicate that total white pigmentation might also be correlated with third variable.  

Table 2  Correlation Coefficients for different traits of marbled salamanders 

Trait Total White Pigmentation  P  
 Correlation r   

Body Mass (g) 0.430  <0.001  
Snout-Vent-Length (mm) 0.448  <0.001  
Dorsal Body Length (mm) 0.411  <0.001  
Dorsal Body Area (mm2) 0.511  <0.001  
Eye-to-Eye Length  (mm) 0.367  <0.001  
Neck Width (mm) 0.502  <0.001  
Width b/w Fore Limbs (mm) 0.387  <0.001  
Width b/w Hind Limbs (mm) 0.446  <0.001  

 

Therefore, Principal Component Analysis (PCA) was carried out to investigate how the variables 

were interrelated (see Table 3 for details). Principal Component 1 (PC1) explained most of the 

variances for different linear body dimensions (variance=73.971% and eigenvalue=6.657), thus it 

was taken as body size; PC2 explained most of the variances for body mass (variance=8.942%), 

while PC3 explained most of the variances for total white pigmentation (variance=5.899%). 

However, PC1 was only used for further analyses of SSD as it showed greater eigenvalue (Eigen 

value=6.657). The eigenvalues for PC2 and PC3 were less than 1, and therefore were not used 

for further analyses. 
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Table 3   Rotated Component Matrix with Principal Components for marbled 
salamanders 

 
Trait Rotated Component Matrix 

PC1 PC2 PC3 
Body Mass (WT) 0.362 0.870 0.241 
Snout-Vent-Length (SVL) 0.845 0.414 0.161 
Dorsal Body Length (DBL) 0.848 0.383 0.127 
Dorsal Body Area (DBA) 0.862 0.329 0.271 
Eye-to-Eye Length (EEL) 0.895 0.292 0.098 
Neck Width (NW) 0.797 0.059 0.432 
Width b/w Fore Limbs (WBFL) 0.898 0.241 0.161 
Width b/w Hind Limbs (WBHL) 0.781 0.217 0.332 
Total White Pigmentation (TWP) 0.204 0.205 0.932 

 
Results showed a significant difference between sexes in marbled salamanders in regard 

to body size obtained as PC1 (Welch-F=116.222, P<0.001; see Figure 4). This finding supported 

the hypothesis of SSD in several body dimensions of A. opacum. 

 
 

Figure 4   Marbled salamander: SSD in body size obtained as Principal Component 1(Bartlett’s  
               Score) using 8 morphological characters (as shown in Table 2) 
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Additionally one way ANOVA was used for each trait to test whether significant 

differences in body dimensions between sexes occur. A Mann-Whitney non-parametric test was 

used to test the significance for percentage of white pigmentation as it was scaled with dorsal 

body area. All nine morphological traits showed significant differences between sexes (P<0.001), 

except for total white pigmentation (F=0.024, P>0.5) and total number of white bands (F=2.253, 

P>0.1). Details on sexual size dimorphism are given in Table 4 (see Appendix for Figures 9-13 

on SSD). This finding supported the hypothesis of sexual size dimorphism in different body 

dimensions of marbled salamanders. 

Table 4   One way ANOVA test for sexual size dimorphism in marbled salamanders using 
several morphological traits  

 
Trait 

 
Mean±SD F 

 
P 

Male Female 
Body Mass 6.685±1.886 7.817±1.355 33.443 <0.001 
Snout-Vent-Length 60.426±6.424 70.567±6.314 166.314 <0.001 
Eye-to-Eye Length 9.990±0.740 11.197±0.818 152.811 <0.001 
Neck Width 9.399±1.042 10.105±1.075 28.843 <0.001 
Width between Fore Limbs 10.322±1.144 12.079±1.104 160.614 <0.001 
Width between Hind Limbs 9.799±1.079 10.832±1.151 55.283 <0.001 
Dorsal Body Length 32.511±4.605 39.973±4.202 191.130 <0.001 
Dorsal Body Area 325.160±78.092 444.996±89.009 130.119 <0.001 
% White Pigmentation 54.866±9.535 41.134±9.563 2715.000 <0.001 
Total White Pigmentation 179.473±55.377 180.445±47.987 0.024 >0.5 
# White Bands 5.70±0.924 5.86±0.840 2.253 >0.1 

 
Results showed that females are on average significantly larger (both in body length and 

body widths) and heavier (in body mass), but with significantly lesser coverage of percentage of 

dorsal white pigmentation than males. However, no significant difference was observed in total 

number of white bands and total white pigmentation between sexes. The mean number of bands 

was 5.70 and 5.86 for males and females respectively. The mean total white pigmentation was 

179.473 mm2 and 180.445 mm2 for males and females respectively. 
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Hierarchical Cluster Analysis was performed using the measure of Squared Euclidean 

distance that classified the marbled salamanders into two large groups of males and females; but 

one small cluster of smaller males was also produced which was not expected. Linear 

morphometric traits such as snout-vent-length, eye-to-eye length, distance between fore limbs, 

and distance between hind limbs were used to produce the dendrogram (Figure 5) using centroid 

clustering method that showed the relative cohesiveness of the groups of marbled salamanders. 

 
 
Figure 5  Dendrogram generated by Hierarchical Cluster Analysis of marbled salamanders using 
linear morphometric traits such as snout-vent-length, body length, eye-to-eye length, distance 
between fore limbs, and distance between hind limbs. Data just below the branch of dendrogram 
represent the range of SVL below which are the numerals representing the ratio of number of 
males (M) to females (F). 

2. Spotted Salamander 

There was a significant difference between sexes in spotted salamander in body mass, 

snout-vent-length and total length, but not for total spots number on the dorsum (Table 5).  

Table 5  One way ANOVA test for sexual size dimorphism in spotted salamanders  

 
Trait 

Mean±S. D. F 
 

P 
Male Female 

Weight (g) 16.403±3.240 18.327±3.781 9.740 <0.005 

Snout-Vent-Length (mm) 91.406±6.529 97.074±7.406 21.528 <0.001 
Total Length (mm) 177.937±13.614 187.194±16.721 12.007 <0.005 
# Total Spot 10.670±1.985 10.810±1.964 0.151 >0.5 
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Data showed that females are significantly heavier (in body mass) and larger (in Snout-

Vent-Length and Total length) than males in spotted salamanders; however, there is no 

intersexual difference in yellow skin pigmentation (measured as total number of spots counted 

on the dorsum). This finding supported the hypothesis of SSD in spotted salamanders.                                                               

Designing Statistical Model for Dorsal White Pigmentation 
 

The most parsimonious statistical model that explained how the body mass, dorsal body 

area, and sex could influence the ontogeny of dorsal white skin pigmentation in the marbled 

salamander is developed via model simplification using a general linear model (GLM). The 

model showed main effects of body mass and dorsal body area, a significant interaction of sex 

with dorsal body area, and a significant interaction of sex with body mass and dorsal body area 

on the generation of dorsal white pigmentation in marbled salamander. This predictive model of 

white pigmentation for marbled salamander supported the hypothesis that skin pigmentation can 

be influenced by body mass, dorsal body area, and sex of the individual salamander. 

The fitted model is as follows: 

Ln (Total White Pigmentation) =3.398+ 0.139 Body Mass + 0.003 Dorsal Body Area +    
 0.002(Sex*Dorsal Body Area) - 0.0002 (Sex*Body   
 Mass*Dorsal Body Area) 

 
The statistical analyses and the parameters of final model (see Table 6) along with the residual 

plot (see Figure 6) are presented below. 

Table 6   Most Parsimonious Statistical Model designed by using GLM via statistical 
eliminations that shows the influence of Body Mass, Dorsal Body Area (DBA), and Sex on 
logarithm of Total White Pigmentation 
 

Dependant Variable:  
White Pigmentation 

Type III Sum 
of Squares 

 
Mean Square 

 
F 
 

 
P 
 Variable 

Intercept 13.238 13.870 316.794 <0.001 
Body Mass 1.180 1.180 26.941 <0.001 
DBA 2.801 2.801 63.979 <0.001 
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Table 6   Continued 
 

Sex*DBA 0.820 0.820 18.725 <0.001 
Sex*Body Mass*DBA 0.877 0.439 10.019 <0.001 
Error 11.690 0.044   
Coefficients Table 
Predictor B Std. Error t  P 
Intercept 3.398 0.191 17.799 <0.001 
Body Mass 0.139 0.027 5.190 <0.001 
DBA 0.003 0.000 7.337 <0.001 
Sex*DBA 0.002 0.000 4.327 <0.001 
Sex*Body Mass*DBA -0.0002 0.000 -3.998 <0.001 

 
 

 
 

Figure 6  Residual Plot of the most parsimonious model: standardized residual of LnWhite vs. 
predicted residuals of LnWhite of marbled salamanders. As residuals did not show discernable 
pattern, the model is accepted. 
 

Table 7 shows the initial General Linear Model that is followed by its residual plot shown 

in Figure 7. 
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Table 7   First candidate statistical model designed for White Pigmentation in marbled 
salamanders 
 

Dependent Variable: White 
Pigmentation 

Type III 
Sum of 
Squares 

Mean 
Squares 

 
F 

 
P 

Variable 
Intercept 4494.633 4494.633 3.285 >0.05 
Sex 4507.920 4507.920 3.295 >0.05 
Body Mass 1608.974 1608.974 1.176 >0.1 
Snout-Vent-Length 9356.802 9356.802 6.839 <0.01 
Body Length 15164.849 15164.849 11.084 <0.005 
Body Area 27496.146 27496.146 20.096 <0.001 
Eye-to-Eye Length 9768.323 9768.323 7.140 <0.01 
Neck Width 9394.941 9394.941 6.867 <0.01 
Width b/w Fore Limbs 1577.652 1577.652 1.153 >0.1 
Width B/w Hind Limbs 2415.962 2415.962 1.766 >0.1 
Sex*Body Mass 75.766 75.766 0.055 >0.5 
Sex* Snout-Vent-Length  395.275 395.275 0.289 >0.5 
Sex* Body Length 67.245 67.245 0.049 >0.5 
Sex*Body Area 6779.593 6779.593 4.955 <0.05 
Sex*Body Mass* Body Area 3907.883 1953.942 1.428 >0.1 
Error 354365.769 1368.208   

 

 

Figure 7  Residual Plot of first model: standardized residual of White Pigmentation vs. predicted 
residuals of White Pigmentation of marbled salamanders. As residual plot showed discernable 
pattern, the model was not accepted. So, new models were developed as shown in Tables 12, 13, 
14, 15, and 16 (see Appendix). 
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Relative Measure of Asymmetry 
 
1. Marbled Salamander: Intersexual Difference  

 There was a significant difference in the relative measure of asymmetry between sexes in 

marbled salamanders in regard to dorsal white pigmentation.  Females were more asymmetric in 

dorsal white pigmentation than males (Table 8) of marbled salamanders.  

Table 8   One way ANOVA Test for inter-sexual difference in Relative Measure of Asymmetry 
of marbled salamanders. P<0.005 suggests significant difference in Relative Measure of 
Asymmetry between sexes of marbled salamander. 

 
Sex Marbled salamanders: Relative Measure of Asymmetry = IR-LI/(R+L) 

N Mean Welch F-statistics F -value P 
Male 107 0.052 12.360 9.421 <0.005 
Female 168 0.077 

 

Asymmetry in white pigmentation was correlated with body length (Pearson r=0.119, 

P<0.05; see Figure 8 left) and dorsal body area (Pearson r=0.140, P<0.05; see Figure 8 right). 

  

Figure 8  Scatter plots showing correlation of asymmetry in white pigmentation with dorsal body 
length (shown to left), and dorsal body area (shown to right) of marbled salamanders. Males are 
shown in blue and females are shown in green. 
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The findings supported the hypothesis that females are more asymmetric in white 

pigmentation than males of marbled salamanders, which suggests that females might be under 

greater stress than males.   

2. Spotted Salamander: Intersexual Difference in Asymmetry 

There was no significant difference in relative measure of asymmetry between sexes of 

spotted salamander in regard to mean yellow spot count (Table 9). This finding did not support 

the hypothesis of intersexual difference in spot count asymmetry. Spot asymmetry was neither 

correlated with body size (total length: Pearson r=0.037, P>0.5; snout-vent-length: Pearson 

r=0.155, P>0.05) nor with body mass (Pearson r=0.024, P>0.5).  

Table 9  One way ANOVA test for inter-sexual difference in Relative Measure of Asymmetry of 
spotted salamanders. P>0.1suggests no significant difference in Relative Measure of Asymmetry 
in number of spots between sexes of spotted salamanders. 

 
Sex Spotted salamanders: Relative Measure of Asymmetry = IR-LI/(R+L) 

N Mean Welch F-statistics F (between 
groups) 

P 

Male 64 0.063 2.052 2.000 >0.1 
Female 67 0.090 

 
Phenotypic Variation 

The results showed that coefficient of variation (CV) of body mass/Snout-Vent-Length 

for males is relatively greater than that for females in marbled salamander, and within population 

variance was also found to be significantly different from mean variance for males (P<0.001), 

but not for females (P>0.1). This indicates the likelihood of strong selection pressure on body 

mass and body size for females compared to males. However, for spotted salamanders, males 

and females showed relatively similar CV, and within population variance was not significantly 

different from mean variance for both sexes (P>0.1; see Table 10 for details). This indicates the 
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possibility of similar selection pressure for both sexes in spotted salamanders supporting the 

hypothesis that phenotypic variation between sexes of spotted salamander is relatively similar. 

Table 10  Coefficient of Variation for Marbled and Spotted salamander populations obtained 
using Ratio statistics for Body Mass/Snout-Vent-Length. * indicates the significance within 
population variance at P<0.001 using Levene’s test for equality of variance. 
 

 
 
             Statistics 

Ratio statistics for  Body Mass/SVL 
Marbled salamander Spotted salamander 

♂ ♀ ♂ ♀ 
Std. Deviation 0.023 0.016 0.025 0.029 
Mean 0.109 0.111 0.179 0.187 
Coefficient of Variation (CV) 21.5%* 14.8% 13.9% 15.5% 

 
Body size relationships of different morphological traits were also investigated which 

showed isometric relationships that are presented in Appendix (see Tables 16 and 17).  
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CHAPTER 4 

DISCUSSIONS 

The results show that A. opacum differs significantly between sexes in overall body size 

including average body mass and percentage of dorsal white pigmentation. This study revealed 

significant sexual size dimorphism in nine morphological characters in marbled salamanders. In 

A. opacum, females are significantly heavier and larger than males, but males have significantly 

greater white pigmentation than females when scaled with body size. However, no statistically 

significant difference was found in total white pigmentation (not scaled with dorsal body area) or 

mean number of white bands. This result supports the findings of Todd and Davis (2007) for 

percentage of white pigmentation, but they did not measure other size related parameters. 

Likewise, for A. maculatum, females are, on average, heavier and larger than males but are not 

significantly different in yellow skin pigmentation (measured as number of spots on the dorsum 

per individual).  

Dimorphic characters in both species of ambystomatid salamanders may reflect the 

adaptation of males and females to different social and/or reproductive needs. Previous studies in 

frogs indicate that larger body size in females is a character correlated with selection for 

increased clutch size when females are larger than males (Salthe and Duellman 1973; Crump 

1974). Although color signaling is considered an important ecological character in diurnal 

systems (Bruce et al. 2003), its importance in nocturnal organisms is very poorly understood 

(Chuang et al. 2007). Greater white pigmentation might be of evolutionary significance because 

white coloration stands out against the dark background at night. Salamanders being nocturnal 

breeder, such coloration may possibly have a role in sexual signaling. However, these hypotheses 

remain to be tested in marbled salamanders.  
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The most parsimonious General Linear Model developed for dorsal white pigmentation 

of marbled salamander reflects the influence of body mass, dorsal body area, and gender in 

generation of skin pigmentation. Body mass and dorsal body area explained the main effects on 

white pigmentation, and sex was found to influence the pigmentation but only via interaction 

with body mass and dorsal body area. Though much is not known about how body mass, body 

size, and sex influence the generation of skin pigmentation in amphibians, it is understood that 

some pigmented cells migrate into epidermis earlier in life, and others remain in the dermis and 

migrate into the epidermis during metamorphosis (Bagnara 1987). Metamorphosis is followed by 

higher growth rate of body size, and with this growth follows the development of white and 

yellow pigmentation in marbled and spotted salamanders respectively (Petranka 1998). As very 

little is known whether the extent of skin pigmentation pattern is fixed in these two species of 

salamanders, Wright and Zamudio (2002) found that the spot pattern in A. maculatum had 

changed in the course of last 50 years in the areas adjacent to the golf course because of the high 

applications of herbicides and chemical fertilizers in the golf course. However, as meta-

population dynamics exists in ambystomatid salamanders (Zamudio and Wieczorek 2007), the 

existing population can be replaced by a new population over time, thus rendering less validity of   

such studies. Moreover, skin pattern formation is hypothesized to be interplay between neural 

crest derived cells, environmental factors, most important of which are factors associated with 

growth and survival (Bagnara 1982; Tucker and Erickson 1986). 

This study has established the base line data for developmental stability in marbled and 

spotted salamanders that may serve researchers in comparative studies to understand the effects 

of genetic/environmental stress. In addition, it has been accepted that lower asymmetry levels 

indicate higher developmental stability and higher fitness of the individuals (Moller and Swaddle 
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1997). Any subtle deviation from the perfect symmetry can indicate the body condition of the 

individuals and the environment they inhabit (Moller and Swaddle 1997). The significant 

difference in relative measure of asymmetry for average area of dorsal white pigmentation 

between sexes in marbled salamander indicates the possibility of different roles that the 

reproductive biology of each sex play in generating white pigmentation, and/or the possibility of 

different stress levels between sexes. It is known that female marbled salamanders breed on dry 

ponds during October-December, and also exhibit parental care via attending the nest with the 

clutch of eggs for 1-2 months during which it does not feed (Noble and Brady 1933). In contrast, 

parental care is lacking in males. So it seems conceivable that females are under more stress than 

males, which may be manifested as higher asymmetry in females than males in morphological 

traits like skin pigmentation. Likewise, it is also possible that the two sexes might have different 

buffering capacity that would result into significantly different asymmetry levels.  

Relative measure of asymmetry in average spot count between sexes in spotted 

salamanders was not significantly different and suggests the possibility of both sexes being under 

strong genetic control and thus similar buffering capacity against stress. Likewise, they could 

also be under similar stress level, which is logical, as both sexes of the same species inhabit the 

same habitats.  

Many ecomorphological studies suggest that if interspecific competition is driving the 

size spacing of species, the CV for the morphological traits should be severely constrained in 

each competing species to preserve the necessary spacing between them necessary for ecological 

coexistence (Grant 1968; Pulliam 1975; Ricklefs and Travis 1980). Relatively smaller CV for 

female marbled salamander suggests that they might be under higher selection pressure on body 

mass and body size as larger body size is thought to confer greater reproductive advantage 
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(Salthe and Duellman 1973; Crump 1974) that might have resulted into low variation compared 

to males. However, for spotted salamanders data showed relatively similar variation in body 

mass and snout-vent-length which might infer the possibility of similar selection pressure on 

both sexes. This is conceivable as both sexes have similar ecological roles in the ecosystem.  
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CHAPTER 5 

CONCLUSIONS 

The findings of this study supported the hypothesis (H1) that there is sexual size 

dimorphism in both species of ambystomatid salamaders: A. opacum and A. maculatum.  In A. 

opacum, females are significantly heavier and larger than males, but males have significantly 

greater white pigmentation than females when scaled with body size. Likewise in A. maculatum, 

females are significantly heavier and larger than males, but with no significant intersexual 

difference in mean yellow spot number.  

The most parsimonious general linear model (GLM) was developed which supported the 

hypothesis (H2) that the extent of dorsal white pigmentation could be influenced and predicted 

by body size, mass, and sex of marbled salamander. Though much is not known about how body 

size, body mass, and sex could influence the generation of skin pigmentation in amphibians, this 

necessitates further studies on ontogeny and biology of pigmentation. 

As less is known about phenotypic variation in A. opacum and A. maculatum, this study 

showed that females may be under greater selection pressure on body size and mass of marbled 

salamanders, and thus showed less variation compared to males supporting the hypothesis 

(H3.1). For spotted salamanders, because phenotypic variation was found to be similar between 

sexes, which supported the hypothesis (H3.2), data on CV are indicative of similar selection 

pressure for body size and mass of each gender.  

Data on relative measure of asymmetry indicated that females might be under more stress 

than males of marbled salamanders, and  supported the hypothesis (H4), while for spotted 

salamanders asymmetry was not significantly different between sexes, which did not support the 

hypothesis (H4),  indicating the possibility of similar levels of stress in both sexes. 
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APPENDIX 

Tests for Normality of Data Distribution 

Table 11  Tests for Normality of data distribution using Kolmogorov-Smirnov Z for several 
morphological traits. N is sample size. 

    
Traits 

Marbled salamanders (N=275) 
Kolmogorov-Smirnov Z P-value 

Weight (WT) 0.697 >0.5 
Snout-vent-length (SVL) 0.564 >0.5 
Dorsal Body Length (DBL) 0.719 >0.5 
Dorsal Body Area (DBA) 0.552 >0.5 
Eye-to-Eye Length (EEL) 0.311 >0.5 
Neck Width (NW) 0.884 >0.1 
Width b/w Fore Limbs (WBFL) 0.580 >0.5 
Width b/w Hind Limbs (WBHL) 0.677 >0.5 
Total White Pigmentations (TWP) 0.871 >0.1 
 
Traits 

Spotted Salamanders (N=131) 
Kolmogorov-Smirnov Z P-value 

Weight (WT) 0.808 >0.5 
Snout-vent-length (SVL) 0.727 >0.5 
Total Length (TL) 0.601 >0.5 

 
Sexual Size Dimorphism in Marbled Salamanders 

 

 
 
Figure 9  Marbled salamander: SSD in Body Mass (P<0.001; shown to left), and Snout-Vent-

Length (P<0.001; shown to right) 
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Figure 10   Marbled salamander: SSD in Dorsal Body Length (P<0.001; shown to left), and 

Dorsal Body Area (P<0.001; shown to right) 
 

 
 
Figure 11  Marbled salamander: SSD in Eye-to-Eye Length (P<0.001; shown to left), and Neck 

Width (P<0.001; shown to right) 
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Figure 12   Marbled salamander: SSD in Width between Fore Limbs (P<0.001; shown to left), 

and Width between Hind Limbs (P<0.001; shown to right) 
 

 
 
Figure 13  Marbled salamander: SSD in % of White Pigmentation (P<0.001; shown to left), and 

Total White Pigmentation (P>0.5; shown to right) 
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Figure 14  Spotted salamander: SSD in Body Mass (P<0.001; shown to left), and Snout-Vent-

Length (P<0.001; shown to right) 

Sexual Size Dimorphism in Spotted Salamanders 
 

 

Figure 15  Spotted salamander: SSD in Total Length (P<0.005; shown to left), and mean Total 

Spots Count (P>0.5; shown to right) 
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Sets of Candidate Models for White Pigmentation of Marbled Salamanders 
 

Table 12  Second candidate statistical model designed for White Pigmentation of marbled 
salamanders by logarithmic transformation of dependant variable 
 

Dependent Variable: 
Ln(White Pigmentation) 

Type III 
Sum of 
Squares 

Mean 
Squares 

 
F 

 
P 

Variable 
Intercept 6.489 6.489 162.163 <0.001 
Sex 0.084 0.084 2.107 >0.1 
Body Mass 0.612 0.612 15.307 <0.001 
Snout-Vent-Length 0.337 0.337 8.410 <0.005 
Body Length 0.325 0.325 8.125 <0.005 
Body Area 1.437 1.437 35.911 <0.001 
Eye-to-Eye Length 0.189 0.189 4.729 <0.05 
Neck Width 0.234 0.234 5.857 <0.05 
Width b/w Fore Limbs 0.062 0.062 1.544 >0.1 
Width B/w Hind Limbs 0.082 0.082 2.054 >0.1 
Sex*Body Mass 0.012 0.012 0.299 >0.5 
Sex* Snout-Vent-Length  0.030 0.030 0739 >0.1 
Sex* Body Length 0.005 0.005 0.128 >0.5 
Sex*Body Area 0.193 0.193 4.812 <0.05 
Sex*Body Mass* Body Area 0.689 0.345 8.614 <0.001 
Error 10.283 0.040   

 

 

Figure 16  Residual Plot of second model: standardized residual of LnWhite 
Pigmentation vs. predicted residuals of LnWhite Pigmentation in marbled salamanders. 
As residual plot showed no discernable pattern, the model was accepted. 
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Table 13  Third candidate statistical model designed for White Pigmentation of marbled 
salamanders 
 

Dependent Variable:           
Ln(White Pigmentation) 

Type III 
Sum of 
Squares 

Mean 
Squares 

 
F 

 
P 

Variable 
Intercept 7.310 7.310 171.083 <0.001 
Body Mass 1.002 1.002 23.454 <0.001 
Snout-Vent-Length 0.250 0.250 5.845 <0.05 
Body Length 0.122 0.122 2.864 >0.05 
Body Area 1.403 1.403 32.838 <0.001 
Eye-to-Eye Length 0.287 0.287 6.711 <0.05 
Neck Width 0.077 0.077 1.803 >0.1 
Sex*Body Area 0.738 0.738 17.277 <0.001 
Sex*Body Mass* Body Area 0.847 0.424 9.917 <0.001 
Error 11.237 0.043   

 

 

Figure 17  Residual Plot of third model: standardized residual of LnWhite Pigmentation 
vs. predicted residuals of LnWhite Pigmentation in marbled salamanders. As residual 
plot showed no discernable pattern, the model was accepted. 

 

 



 

Table 14  Fourth candidate statistical
salamanders. As Snout-Vent-Length is non
model, it was eliminated in the next model.
 

Dependent Variable:           
Ln(White Pigmentation)

Variable 
Intercept 
Body Mass 
Snout-Vent-Length 
Body Area 
Eye-to-Eye Length 
Sex*Body Area 
Sex*Mass* Body Area
Error 

Figure 18  Residual Plot of
vs. predicted residuals of LnWhite Pigmentation in marbled salamander
showed no discernable pattern, the model 
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statistical model designed for White Pigmentation
Length is nonsignificant in influencing white pigmentation in this 

model, it was eliminated in the next model. 

Dependent Variable:           
Ln(White Pigmentation) 

Type III Sum 
of Squares 

Mean 
Squares 

 
F 

7.982 7.982 184.740
1.028 1.028 23.798
0.122 0.122 2.828
1.755 1.755 40.631
0.214 0.214 4.944
0.885 0.885 20.507

Sex*Mass* Body Area 0.860 0.430 9.949
11.450 0.043  

 

of fourth model: standardized residual of LnWhite Pigmentation 
LnWhite Pigmentation in marbled salamander

showed no discernable pattern, the model was accepted. 

model designed for White Pigmentation of marbled 
significant in influencing white pigmentation in this 

 
P 

184.740 <0.001 
23.798 <0.001 
2.828 >0.05 
40.631 <0.001 
4.944 <0.05 
20.507 <0.001 
9.949 <0.001 

 

 

LnWhite Pigmentation 
LnWhite Pigmentation in marbled salamander. As residual plot 
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Table 15  Fifth candidate statistical model designed for White Pigmentation of marbled 
salamanders. As Eye-to-Eye Length is non-significant in influencing white pigmentation in this 
model, it was eliminated in the next model. 
 

Dependent Variable:           
Ln(White Pigmentation) 

Type III Sum 
of Squares 

Mean 
Squares 

 
F 

 
P 

Variable 
Intercept 8.754 8.754 201.233 <0.001 
Body Mass 1.288 1.288 29.612 <0.001 
Body Area 2.639 2.639 60.664 <0.001 
Eye-to-Eye Length 0.188 0.188 2.702 >0.1 
Sex*Body Area 0.824 0.824 18.938 <0.001 
Sex*Mass* Body Area 0.970 0.485 11.145 <0.001 
Error 11.572 0.044   

 
 

 
 
 

Figure 19  Residual Plot of fifth model: standardized residual of LnWhite Pigmentation 
vs. predicted residuals of LnWhite Pigmentation in marbled salamanders. As residual 
plot showed no discernable pattern, the model was accepted. 
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Body Size Relationships of Different Morphological Traits of Marbled and Spotted Salamanders 
 
Table 16  Body size relationships of different morphological traits of marbled salamanders. 
Predictor variable (x) is snout-vent-length (SVL). Slope with * indicates that the slope is not 
significantly different from 1 (P>0.1) indicating isometric relationship. For acronyms, see Table 
10. 
 

Depend
ent 

variable 
(y) 

Male Female 
Intercept 

(a) 
Slope 
(b) 

Allometric equation 
y = a x b 

Intercept 
(a) 

Slope 
(b) 

Allometric equation 
y = a x b 

WT -1.159-15 0.722* WT=-1.159-15*SVL0.722 -1.412 0.436* WT=-1.412*SVL0.436 

EEL -0.015 0.884* EEL=-0.015*SVL0.884 -8.856-15 0.813* EEL=-8.856-15*SVL0.813 

NW -0.025 0.748* NW=-0.025*SVL0.748 6.729-16 0.601* NW=6.729-16*SVL0.601 

WBFL -0.017 0.829* WBFL=-0.017*SVL0.829 -7.232-15 0.695* WBFL=-7.232-15*SVL0.695 

WBHL 0.018 0.690* WBHL=0.018*SVL0.690 0.014 0.658* WBHL=0.014*SVL0.658 

DBL 1.975-16 0.882* DBL=1.975-16*SVL0.882 -2.003-15 0.877* DBL=-2.003-15*SVL0.877 

DBA -3.687-16 0.882* DBA=-3.687-16*SVL0.882 -4.071-15 0.852* DBA=-4.071-15*SVL0.852 

TWP -2.810-16 0.750* TWP=-2.810-16*SVL0.750 0.003 0.370* TWP=0.003*SVL0.370 

 
Table 17  Body size relationships between body mass (WT) and snout-vent-length (SVL) of 
spotted salamanders. Predictor variable (x) is snout-vent-length (SVL). Slope with * indicates 
that the slope is not significantly different from 1 (P>0.1) indicating isometric relationship. 
 

Depend
ent 

variable 
(y) 

Male Female 

Inter-
cept 
(a) 

Slope 
(b) 

Allometric equation: 
y = a x b 

Intercept 
(a) 

Slope 
(b) 

Allometric equation: 
y = a x b 

WT -0.004 0.840* WT=-0.004*SVL0.840 -2.570-15 0.759* WT=-2.570-15*SVL0.759 
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