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ABSTRACT 

 

 

Diel Patterns of Foraging Aggression and Antipredator Behavior in the Trashline Orb-weaving 

Spider, Cyclosa turbinata 

 

 

 

 

by 

 

James Colton Watts  

 

 

Few studies have rigorously assessed the adaptive value of diel rhythms in animals. We laid the 

groundwork for assessing the adaptive rhythm hypothesis by assaying diel rhythms of foraging 

and antipredator behavior in the orb-weaving spider Cyclosa turbinata. When confronted with a 

predator stimulus in experimental arenas, C. turbinata exhibited thanatosis behavior more 

frequently and for longer durations during the day. However, assays of antipredator response 

within webs revealed more complex diel patterns of avoidance behaviors and no pattern of 

avoidance behavior duration. Assays of prey capture behavior found that the likelihood of 

exhibiting prey capture behavior varied significantly across times of day and test subjects, but 

only test subject predicted attack latencies. Although C. turbinata foraging aggression changed 

over the diel cycle, we found no evidence of a trade-off between foraging behavior and predator 

vigilance. However, overall patterns of vigilance may be masked by diel changes in antipredator 

strategies. 
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CHAPTER 1 

INTRODUCTION 

The Nature of Diel Rhythms 

Diel rhythms of physiology and behavior are present in virtually all taxa examined to 

date. These daily oscillations are widely assumed to be adaptive strategies that coordinate 

various biological functions with ecologically appropriate times of day (Dunlap et al. 2004). 

Some diel rhythms arise from reactionary responses to environmental stimuli (i.e. exogenously 

driven rhythms), while others are proactive responses that may anticipate environmental 

transitions (i.e. endogenously driven rhythms). For example, the colonial orb-weaving spider 

Metepeira incrassata relies on exogenous light cues to trigger the daily replacement of the web’s 

prey capture surface (Uetz et al. 1994). This behavior presumably ensures that the sticky capture 

silk is replaced sufficiently often to maintain its highly specialized and efficient function as a 

snare for flying insect prey (Uetz et al. 1994; Foelix 2011). In contrast, honeybees use an 

endogenous clock to form time-memories that coordinate collection visits to flowers with times 

of day during which the flowers have proven most profitable (Moore and Doherty 2009). The 

timing of food source visits by an endogenous clock presumably reduces the amount of energy 

spent visiting flowers during periods of low nectar production (Moore and Doherty 2009). In 

many cases diel rhythms arise from complex interactions among exogenous and endogenous 

cues. Take for instance the well-studied influence of light and temperature cycles on the timing 

of endogenous rhythms, such as the locomotor activity rhythm of the honeybee (Moore and 

Rankin 1985; Moore and Rankin 1993). Although the endogenous locomotor activity rhythm 

persists, by definition, without environmental input, the sensitivity of the rhythm to 

environmental input permits coordination with the current environmental cycle (Moore and 
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Rankin 1985; Moore and Rankin 1993). Moreover, many diel rhythms are governed by 

exogenously influenced endogenous rhythms that may be further modified by nonperiodic (i.e. 

nonentraining) environmental cues (Roth et al. 2009; Zeigler et al. 2010; Eban-Rothschild 2011). 

Perhaps the most notable example of this phenomenon is the well-studied diel vertical migration 

of plankton. For many species the diel rhythm of vertical migration persists in the absence of 

environmental cues, suggesting regulatory influence of an endogenous rhythm (Zeigler et al. 

2010). However, the presence of predatory fish stimuli can produce substantial changes in the 

migratory patterns of the plankton, as can nonperiodic changes in light intensity (Zeigler et al. 

2010). 

Diel Rhythms as Targets of Selection 

Whether a rhythm arises from exogenous cues, endogenous cues, or an interaction 

between the two, the mechanisms that produce diel rhythms are likely targets of selection. 

Selection may shape exogenously driven rhythms by acting on genetic components underlying 

the sensory machinery required to detect environmental changes or the genetic, neural, and 

endocrine networks capable of altering physiological and behavioral processes in response to 

those changes. On the other hand, endogenously driven rhythms arise from mechanisms linking 

physiology and behavior with phases of an endogenous oscillator that, in turn, is entrained to the 

external environmental cycle by exogenous cues. Therefore, selection may shape endogenously 

driven rhythms in an analogous fashion by acting on genetic components underlying: i) the 

ability to detect environmental changes, ii) the mechanisms enabling the entrainment of the 

endogenous oscillator to those changes (e.g. Emery et al. 1998, Ceriani et al. 1999), or iii) the 

genetic, neural, and endocrine networks that coordinate physiological and behavioral processes 

with the phase of the endogenous oscillator. Consequently, selection on endogenous rhythms 
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may affect the relationship between the endogenous oscillation and the environmental cycle, the 

physiological and behavioral processes that are regulated by the endogenous oscillator, and the 

timing of physiological and behavioral changes relative to phases of the endogenous oscillation. 

Because endogenously driven rhythms are mediated by an internal timepiece, the 

resulting changes in physiology and behavior may be decoupled temporally from cues that define 

the environmental cycle and entrain the timepiece (Fleury et al. 2000). In this context selection 

on endogenous rhythms may explain the apparent diversity of endogenous period lengths both 

among and within species (Fleury et al. 2000). However, it is important to note that 

endogenously driven rhythms are not unique in this respect as exogenously driven rhythms may 

also produce responses that are temporally decoupled from environmental cues. This effect can 

be produced via an interval timer in which a response is activated upon reaching threshold 

concentrations of biochemical products that are produced or degraded in a time-dependent 

fashion (Bradshaw et al. 2003). These time-dependent biochemical processes are in turn reset by 

environmental cues that coordinate the response with the current environmental cycle (Bradshaw 

et al. 2003). Some authors have suggested that such biological timers might be sufficient to 

explain some characteristics of diel rhythms such as their role in photoperiodism (Bradshaw et 

al. 2003). Thus, in an evolutionary context we might consider exogenously and endogenously 

driven rhythms as equal recipients of selective pressures arising from diel variation in 

environmental conditions. 

The Proximate and Ultimate Causes of Diel Rhythms 

 Since their discovery, endogenous circadian rhythms have garnered a tremendous amount 

of interest in the molecular mechanisms that produce environmentally sensitive self-sustaining 

rhythms. In all organisms studied circadian rhythms appear to arise from transcriptional-
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translational feedback loops that are timed by posttranslational modification (Ceriani et al. 1999, 

Gallego and Virshup 2007). For example, in mammals the core oscillation derives from the 

activity of the transcription factors CLOCK and BMAL1 (Gallego and Virshup 2007).  These 

transcription factors dimerize and together promote the expression of a number of genes, 

including their own inhibitors such as the PER and CRY proteins (Gallego and Virshup 2007). 

Following their translation, PER and CRY must associate in the cytoplasm before being 

phosphorylated and subsequently translocated into the nucleus where they inhibit the 

transcriptional activity of CLOCK and BMAL1 (Gallego and Virshup 2007). This time delay 

imparts the oscillatory nature of the circadian cycle that is then perpetuated by posttranslational 

modifications of PER and CRY within the nucleus that reduce inhibition of CLOCK and 

BMAL1 (Gallego and Virshup 2007). This basic feedback mechanism appears to be quite similar 

across diverse taxa despite independent evolutions of the genes involved (Gallego and Virshup 

2007). 

 In turn, the elucidation of the genetic components and biochemical mechanisms 

underlying circadian oscillations has enabled extensive manipulations of rhythmic behavioral 

and physiological processes. These manipulations have clarified the role of a biological clock in 

regulating a variety of physiological and behavioral functions, including reproductive physiology 

(Beaver et al. 2002), oviposition (Howlader and Sharma 2006), endocrine function (Dickmeis 

2009), foraging behavior and metabolism (Xu et al. 2008), structure and sensitivity of the eye 

(Koovor et al. 1999), and general activity levels (DeCoursey et al. 1997, 2000; Hurd and Ralph 

1998). Moreover, many of these manipulative studies have provided insight into the adaptive 

significance of diel rhythms. For instance, Hurd and Ralph (1998) demonstrated that genetic 

manipulations of the endogenous clock in golden hamsters produced individuals with fragmented 
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locomotor activity patterns and decreased longevity. More importantly, the authors demonstrated 

that strong, consolidated activity rhythms and increased longevity could be induced in senescing 

animals by implanting sections of suprachiasmatic nuclei (SCN; the site of the primary 

mammalian clock) from fetal animals (Hurd and Ralph 1998). Thus, the authors concluded that 

intact endogenous clocks enhance the fitness of golden hamsters through their influence on 

longevity (Hurd and Ralph 1998). 

 A similar study on the effects of clock function in Drosophila melanogaster found that 

copulations between males and females with genetically disrupted clocks resulted in fewer 

progeny than copulations between individuals with intact clocks (Beaver et al. 2002). This effect 

was driven by a reduction in the number of eggs laid, possibly because oviposition in Drosophila 

is rhythmic (Howlader & Sharma 2006), as well as an increased occurrence of unfertilized eggs 

(Beaver et al. 2002). Upon further investigation, the authors found that males with disrupted 

clocks suffered a decrease in reproductive success when mated with wild-type females, an effect 

that appears to arise from decreased accumulation of sperm in the seminal vesicles of males with 

dysfunctional clock genes (Beaver et al. 2002). 

 In another notable study Green et al. (2002) genetically disrupted endogenous oscillations 

of transcription in Arabidopsis to determine if mutant plants lacking the ability to anticipate 

environmental transitions suffered fitness reductions. The researchers found that mutant plants 

that are incapable of anticipating environmental transitions do not alter flowering time as 

drastically as wild-type plants in response to changes in photoperiod (Green et al. 2002). 

Moreover, genetically disrupted plants suffered decreased seed viability when compared to wild-

type plants but only under extreme short-day conditions (4 hours of light and 20 hours of 

darkness). 



12 

 

 While the above studies point to an adaptive function of intact rhythm-producing 

mechanisms in plant and animal systems, these data must be interpreted with caution. For 

example, the studies of the golden hamster and Drosophila demonstrate an intrinsic advantage to 

possessing a functioning rhythm (Hurd & Ralph 1998, Beaver et al. 2002, Johnson 2005). That 

is, individuals derive a benefit from the temporal organization of internal events that may be 

entirely independent of daily variation in the environment (Johnson 2005). Consequently, these 

studies provide little insight into the ecological processes that may have selected for internal 

organization corresponding to the diel cycle as opposed to organization along any arbitrary 

temporal scale (Johnson 2005). Although the study by Green et al. (2002) begins to evaluate the 

role of 24-hour environmental cycles in producing the fitness consequences of dysfunctional 

rhythms, the data indicate differences between wild-type and mutant plants exist only under 

extremely unnatural conditions. Johnson (2005) critiques a series of experiments from the 1950s 

that also demonstrate increased fitness associated with a daily rhythm corresponding to 

environmental cycles; however, these studies relied on even less realistic manipulations of 

environmental cycles, namely comparisons between 24-hour and non-24-hour cycles. Moreover, 

these studies rely on incomplete measures of fitness to draw their primary conclusions, as do the 

previously described contemporary studies (Hurd & Ralph 1998, Beaver et al. 2002, Green et al. 

2002, Johnson 2005). For example, a golden hamster with decreased longevity may produce an 

unusually large number of offspring, just as a fruit fly with decreased sperm release may be 

exceptionally long-lived or unusually successful in securing mating opportunities (Johnson 

2005). These considerations emphasize the exceptional difficulty of rigorously assessing the 

adaptive value of circadian rhythms. The issue we face is not whether organisms perform better 
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under some types of environmental cycles than others, but whether characteristics of the 24-hour 

day could select for organisms that organize their physiology and behavior accordingly. 

 Thus, there is an unfortunate discontinuity between molecular and ecological studies 

examining the adaptive value of diel rhythms. The utility of molecular and genetic techniques in 

disrupting clock properties is well-established, yet there are few studies of this kind reaching 

beyond the intrinsic value of diel rhythms to consider the ecological characteristics of the 24-h 

day that might favor daily oscillations in physiology and behavior. In one notable effort to bridge 

this disjunction, Ouyang et al. (1998) staged competitive bouts among 3 strains of cyanobacteria 

of varying clock genotype under 24-h and non-24-h day lengths. By first characterizing the 

growth of each clock mutant strain in isolation under constant light and light:dark (LD) cycles, 

the researchers were able to rule out any inherent differences in growth among the strains. 

However, when placed in competition, the strain with an endogenous period most closely 

matching the environmental cycle excluded the other strains. While this study also exploited 

unnatural (i.e. non-24-h) diel cycles, the authors elegantly demonstrated a plausible ecological 

mechanism selecting for individuals with resonating endogenous rhythms. It remains to be seen 

exactly what competitive advantage is available to cyanobacteria with rhythms more closely 

matching those of the 24-hour day, but these data demonstrate the value of an ecologically 

relevant approach to understanding selection on diel rhythms. 

 In a similar example, Fleury et al. (2000) demonstrated that differences in endogenous 

oviposition rhythms among sympatric species of parasitoid wasps are sufficient to offset 

competitive asymmetries inherent among contemporaneously deposited offspring. These data 

show that diel rhythms can produce a selective advantage by enabling organisms to perform 

behaviors at ecologically appropriate times of day, such as those times prior to the exploitation of 
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a resource by a competitor (Fleury et al. 2000). These data also support hypotheses regarding the 

significance of intraspecific and interspecific variation in diel rhythms (Fleury et al. 2000). A 

species’ typical diel rhythm may be shaped by selection acting on the timing of behavioral or 

physiological output relative to phases of the internal clock or timer, while variation in diel 

rhythms within a species provides the raw material upon which selection may act (Fleury et al. 

2000). 

 Another notable example is the work of Patricia DeCoursey and her colleagues regarding 

adaptive activity rhythms in sciurid rodents. In one study DeCoursey et al. (1997) characterized 

alterations of diel rhythms of locomotor activity in antelope ground squirrels following 

mechanical destruction of the SCN. Destruction of the SCN disrupted the strongly diurnal 

locomotor activity rhythms of the squirrels in controlled laboratory settings, and SCN-lesioned 

squirrels returned to the field tended to experience greater predation-related mortality 

(DeCoursey et al. 1997). While the authors suggested that nocturnal activity of the clock-

disrupted individuals was maladaptive due to increased exposure to nocturnal predators, the 

strength of their conclusions was limited by sample size (DeCoursey et al. 1997). In a similar 

study, DeCoursey et al. (2000) tracked SCN-lesioned, sham-operated, and unoperated eastern 

chipmunks at a field site in the Allegheny Mountains. While they did not observe any nocturnal 

activity outside of the burrows, they did detect nocturnal restlessness of SCN-lesioned 

chipmunks within their burrows. In turn, SCN-lesioned chipmunks suffered greater predation by 

weasels during an 80-day period after repatriation (DeCoursey et al. 2000). Thus, it seems that 

the circadian clock in eastern chipmunks coordinates locomotor activity with periods of reduced 

predation risk (DeCoursey et al. 2000). These data are of course correlative and relied heavily on 

survival as a proxy for reproductive fitness (DeCoursey et al. 2000). More work is needed to 
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evaluate whether diel variation in predation risk is sufficient to select for individuals with 

strongly diurnal activity patterns in antelope ground squirrels (DeCoursey et al. 2000). 

Orb-Weaving Spiders as a Model System 

 As a model system, orb-weaving spiders are particularly well-suited for investigating the 

fitness consequences of diel variation in environmental conditions. Spiders are both predator and 

prey and, therefore, must balance the boldness needed to capture prey against the wariness 

needed to avoid predation (Wise 1993; Jones et al. 2011a). This trade-off may be particularly 

consequential for orb-weaving spiders, as these spiders are highly exposed to visual predators 

such as birds and wasps while foraging from the center of their aerial webs (Foelix 2011). Orb-

weaving spider species also differ considerably in their daily foraging routine (Carico 1986; 

Herberstein and Elgar 1994). Some orb-weaving spiders forage nocturnally, constructing a web 

in the evening and foraging throughout the night (Carico 1986). Many of these spiders seek a 

retreat during the day, presumably to reduce exposure to visual predators (Foelix 2011). Other 

spiders appear to forage diurnally or continuously (Carico 1986; Herberstein and Elgar 1994). 

These species of spiders often possess additional morphological features (e.g. spines, aposematic 

coloration, and camouflage) that may represent adaptations for foraging during periods of 

heightened predation risk (Cloudsley-Thompson 1995). Taking a species-specific approach to 

understanding diel behavioral rhythms in spiders may provide insight into the adaptive value of 

diel rhythms as well as the diversity of strategies for coping with periodic environmental 

changes. 

Additionally, behavioral syndromes of aggression-related behaviors have been described 

for many spider species (Pruitt and Riechert 2012) including orb-weaving spiders (Kralj-Fisher 

and Schneider 2012). A behavioral syndrome is a suite of correlated behavioral traits (Sih and 



16 

 

Bell 2008). In a population a behavioral syndrome produces both within-individual and among-

individual correlations in behavior (Sih and Bell 2008). In other words, individuals exhibit 

consistent rank-order relationships in behavioral traits across contexts and through time (Sih and 

Bell 2008). In behavioral syndromes of aggression in spiders, individuals that are relatively 

bolder in response to predator cues tend to be relatively more aggressive toward prey, 

conspecifics, and inquilines (Riechert and Hedrick 1993; Pruitt et al. 2008; Pruitt and Riechert 

2012; Keiser and Pruitt 2014). In some circumstances these correlations can generate additional 

fitness trade-offs (e.g. Pruitt et al. 2008), as any given individual cannot express the full range of 

phenotypic flexibility seen in the population (Sih and Bell 2008). While the potential for 

additional behavioral constraints may be particularly interesting in the context of the evolution of 

diel behavioral flexibility, a behavioral syndrome also enables the use of diel changes in a single 

behavioral trait as a proxy for diel changes in the relative level of aggression and boldness across 

contexts (Jones et al. 2011a). 

For example, a recent paper by Jones et al. (2011a) characterized diel rhythms of 

boldness in the orb-weaving spider Larinioides cornutus by assaying antipredator behavior at 

different times of day. The authors found that L. cornutus exhibits strong diel rhythms of 

antipredator behavior that, according to a study on behavioral syndromes in Larinioides (Kralj-

Fisher and Schneider 2012), may be tied to oscillations in other aggression-related behaviors 

(Jones et al. 2011a). The spiders assayed by Jones et al. (2011a) responded more fearfully to a 

predator cue during the day, as evidenced by a greater duration of thanatosis (i.e. death-feigning) 

behavior. The oscillation in antipredator behavior continued under constant conditions, 

suggesting that the rhythm is endogenously driven (Jones et al. 2011a). While previous studies 

have described circadian rhythms of locomotor activity and visual sensitivity in spiders (Seyfarth 
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1980; Suter 1993; Koovor et al. 1999), Jones et al. (2011a) are the first to describe a circadian 

rhythm in a behavior directly linked with spider fitness. Consequently, the discovery of diel 

rhythms of aggression-related behaviors in spiders provides a unique opportunity to place 

behavioral rhythms into an ecological context. 

The rhythm of antipredator behavior observed in L. cornutus fits intuitively with the 

ecology of the species. L. cornutus appears to forage nocturnally, replacing its web at dusk and 

remaining in the web hub throughout the night (Sherman 1994). During this time, L. cornutus 

devotes less time to thanatosis behavior in response to predator cues (Jones et al. 2011a). The 

spiders then take down their webs in the early morning and remain hidden in a retreat for the 

remainder of the day (Bellmann 1997). During this period of decreased foraging effort the 

spiders devote much more time to thanatosis behavior in response to predators (Jones et al. 

2011a). This pattern may reflect a trade-off between foraging aggression and predator vigilance 

for L. cornutus (Jones et al. 2011a). Flying prey caught in webs are often able to free themselves 

after some time, constraining the duration of time a spider may spend out of the web in response 

to predators (Nentwig 1982, Rypstra 1982). Thus, during periods of active foraging, spiders may 

be required to reduce predator vigilance to be present in the web hub sufficiently often to catch 

flying prey (Jones et al. 2011a). However, during the day, when the spider does not actively 

forage, there is no cost in lost prey capture associated with maximizing defensiveness in 

response to predators (Jones et al. 2011a). Consequently, patterns of antipredator behavior and 

thus aggression in L. cornutus appear to reflect the daily switch in the foraging mode of the 

spider and differences in behavioral trade-offs that may exist between the foraging and 

nonforaging period. Whether the daily foraging routine in itself is an adaptive strategy for coping 
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with daily changes in environmental conditions (e.g. prey and predator abundance) remains to be 

tested. 

Hypotheses and Design 

 The present study represents the next step in assessing the adaptive value of diel 

behavioral rhythms in orb-weaving spiders. We hypothesize that diel rhythms of aggression-

related behaviors in orb-weaving spiders represent adaptive strategies for maximizing foraging 

gain relative to predation risk over the diel cycle. If our hypothesis is correct, we expect to 

observe diel rhythms of aggression-related behaviors even in spiders that forage continuously 

throughout the day. In other words, if diel variation in environmental factors is sufficient to 

provide an advantage to individuals that modulate their aggression over the diel cycle, then we 

should observed diel rhythms of aggression even in spiders that to do not transition between 

foraging and nonforaging states. Alternatively, diel rhythms of aggression may simply reflect 

daily changes in foraging mode. If this is true, then continuously foraging spiders should not 

modulate their aggression over the course of the day because behavioral trade-offs remain 

essentially constant. 

 We further hypothesize that diel rhythms of aggression-related behaviors arise from 

trade-offs between predator vigilance and foraging efficiency. If our hypothesis is correct, 

aggression towards prey and wariness of predators should be negatively correlated through time 

and across individuals. In other words, periods of increased foraging intensity should be 

characterized by a decreased tendency to leave the foraging area (i.e. the web center) in response 

to predator cues. Any link between these behaviors should also manifest at the individual level, 

with individuals that generally tend to respond more aggressively toward prey also tending to be 

less wary of predators. In this case individuals are not optimally flexible and must balance 
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conflicting ecological roles through time and across contexts. Alternatively, aggression toward 

prey and wariness of predators may be positively correlated through time and across individuals. 

Such a mechanism would enable spiders to evade predators with great efficiency while 

maintaining high levels of responsiveness to prey, but the advantage of this strategy depends 

upon the ability of the spider to reliably discriminate predator and prey cues. A spider that 

inappropriately exhibits aggressive prey capture behavior in response to a predator cue likely 

suffers a severe fitness cost, as would a spider exhibiting antipredator behavior in response to 

flying prey entering its web. It is also possible that foraging and antipredator behavior are 

decoupled in C. turbinata, indicating a remarkable degree of sensory discrimination and 

behavioral flexibility that may decrease behavioral time-budget trade-offs (Sih et al. 2012). 

To assess these hypotheses, we assayed diel rhythms of foraging and antipredator 

behavior in a continuously foraging orb-weaving spider, Cyclosa turbinata (Araneae: 

Araneidae). We first assayed diel rhythms of antipredator behavior of C. turbinata in 

experimental arenas. These observations provided a reduced, baseline impression of diel rhythms 

of defensive behavior in C. turbinata under controlled conditions. Moreover, these data are 

comparable with previous studies examining antipredator behavior of other spider species within 

experimental arenas (Pruitt et al. 2008; Jones et al. 2011a). We then assayed diel rhythms of 

antipredator behavior of spiders maintained in webs to assess the reliability of antipredator 

behavior data collected under reduced conditions as compared to a more natural setting. Finally, 

we assayed diel rhythms of foraging behavior for spiders maintained in webs to determine if 

foraging behavior changed over the diel cycle. To our knowledge, this is the first study 

quantitatively assessing diel rhythms of foraging behavior in spiders. 
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 In addition to investigating hypothesis concerning diel behavioral rhythms in a 

continuously foraging spider, this study provides a framework for rigorous assessments of the 

adaptive significance of diel rhythms. By quantifying diel variation in environmental conditions 

and the role of spider behavior in modifying exposure to temporally variable risks, we can model 

the optimal behavioral policy for spiders over the diel cycle. More importantly, we can use 

pharmacological manipulations of spider behavior to demonstrate fitness costs that might be 

associated with deviations from the optimal daily routine. Ultimately, this work will contribute to 

a comparative study aimed at understanding the diversity of diel behavioral routines observed 

across closely related spider taxa. Thus, the consequences of the work described here reach well 

beyond the scope of this study. 
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CHAPTER 2 

DIEL PATTERNS OF FORAGING AGGRESSION AND ANTIPREDATOR BEHAVIOUR IN 

THE TRASHLINE ORB-WEAVING SPIDER, CYCLOSA TURBINATA 

 

J. Colton Watts, Ashley Herrig, William D. Allen, Thomas C. Jones* 

 

Department of Biological Sciences, East Tennessee State University, U.S.A. 
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Diel rhythms of physiology and behaviour are present in virtually all taxa examined to 

date. However, few studies have rigorously assessed the adaptive value of physiological and 

behavioural rhythms in animals. We laid the groundwork for an assessment of the adaptive 

rhythm hypothesis by assaying diel rhythms of foraging and antipredator behaviour in the 

trashline orb-weaver Cyclosa turbinata (Araneae: Araneidae). When confronted with a predator 

stimulus in experimental arenas, C. turbinata exhibited thanatosis behaviour more frequently and 

for longer durations during the day. However, assays of antipredator response within webs 

revealed more complex diel patterns of avoidance behaviours and no pattern of avoidance 

behaviour duration. A preliminary assay of prey capture behaviour suggested that C. turbinata 

also exhibits nocturnal patterns of foraging aggression. A refined foraging experiment, in which 

we randomized prey stimulus frequency, found that time of day and spider ID strongly predicted 

the likelihood of exhibiting prey capture behaviour. Only spider ID predicted latency to attack 

the prey stimulus despite low individual repeatability (r = 0.10). These data support our 

prediction that C. turbinata modulate foraging aggression over the diel cycle, but we found no 

evidence of a trade-off between foraging behaviour and predator vigilance. However, overall 

patterns of vigilance may be masked by diel changes in antipredator strategies that correspond to 

fluctuations in the relative abundances of predator types. 

 

Keywords: chronoecology; behavioural trade-offs; behavioural rhythm; predator vigilance; 

antipredator strategies 
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Diel rhythms are widely assumed to enhance individual fitness by coordinating various 

behaviours and physiological processes with periods of favorable environmental conditions. 

Some diel rhythms arise from reactionary responses to changing environmental stimuli, while 

others are regulated by an endogenous (circadian) clock and may anticipate environmental 

transitions. For example, zooplankton exhibit entrained rhythms of vertical migration that reduce 

exposure to diurnal visual predators (Enright & Hammer, 1967; Lampert, 1989). Honeybees 

utilize a circadian time-memory to exploit food sources during times of day when they have 

proven most profitable (Moore & Doherty, 2009). The colonial orb-weaving spider Metepeira 

incrassata relies on changing light intensity to signal the web-replacement behaviour necessary 

for daily renewal of the prey capture surface (Uetz et al., 1994). The diversity of rhythmic 

outputs and their physiological bases demands rigorous exploration of the adaptive significance 

of diel rhythms. While many authors have demonstrated fitness costs associated with genetically 

and mechanically disrupted biological rhythms (Green et al., 2002; Beaver et al., 2002; 

DeCoursey et al., 1997, 2000) few have demonstrated ecological mechanisms through which 

heritable rhythmicity may enhance individual fitness (Ouyang et al., 1998; but see Johnson, 

2005). 

As both predator and prey, spiders offer a robust opportunity to examine trade-offs 

between the aggression needed to capture prey and the wariness needed to avoid predation (Jones 

et al., 2011a). Several studies of spider taxa have provided evidence that aggression toward prey 

and wariness of predators are negatively correlated as part of a behavioural syndrome aggression 

(Riechert & Hedrick, 1993; Pruitt et al., 2008; Pruitt et al., 2012a). This “aggressive spillover” 

presumably constrains behavioural flexibility (Pruitt et al., 2008) and would require individuals 

to balance the consequences of exhibiting bold or docile behaviour across ecological contexts 
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(Pruitt et al., 2008). Behavioural syndromes in spiders appear to be heritable (Riechert & 

Maynard Smith, 1989), suggesting that selection may act to optimize correlated suites of 

behaviours in the natural environment. 

According to the Risk Spreading Theorem (RST), individuals should devote the 

minimum amount of time to foraging (i.e. decreased vigilance) that meets the energetic 

requirements of survival and reproduction (Houston et al., 1993). This model assumes temporal 

homogeneity of risk and reward which is unrealistic in most environmental settings. We have 

unpublished data demonstrating considerable diel fluctuations in the abundance of spider prey 

and threat species (i.e. flying insects and parasitoid wasps) in the natural habitat. If fluctuations 

in prey and threat abundances produce diel changes in the relative intensities of potential 

foraging gain and predation risk, selection should favor individuals that modulate their 

aggression level over the course of the day (Lima & Bednekoff, 1999). We hypothesize that 

selection acts on suites of aggression-related behaviours in spiders and that diel patterns of 

foraging and antipredator behaviour are adaptive behavioural strategies that maximize foraging 

gain relative to predation risk.  

A recent study provided evidence of diel rhythms of antipredator behaviour in a nocturnal 

orb-weaving spider that appear to reflect daily transitions from refuge use to active foraging 

(Jones et al., 2011a). If diel variation in environmental conditions selects for rhythms of 

aggression-related behaviours, we expect to see rhythms of antipredator behaviour and foraging 

aggression in spider species that do not entirely forego foraging during certain periods of the day. 

We assessed our prediction by assaying diel variability of antipredator and foraging 

behaviour in the trashline orb-weaver Cyclosa turbinata (Araneae: Araneidae) (Walckenaer). 

These spiders continuously occupy the web hub, leaving only to replace the web prior to sunrise, 
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and appear to forage during day and night (unpublished data). We first determined if antipredator 

behaviour varied over the diel cycle using a modification of the assay described in Jones et al. 

(2011a). We later assayed antipredator behaviour and prey capture behaviour concurrently for 

spiders maintained in webs to determine i) if antipredator behaviour and foraging aggression 

vary over the diel cycle, ii) if patterns of antipredator behaviour in the web reflect those seen in 

experimental arenas, and iii) if aggression toward prey stimuli and boldness towards predator 

cues are negatively correlated with respect to time of day and within individuals in C. turbinata. 

Finally, we conducted a refined assessment of diel rhythms of foraging behaviour to verify the 

data from our concurrent antipredator and foraging behaviour experiment. 

 

METHODS 

 

Study Species 

 

Cyclosa turbinata (Araneae: Araneidae)(Walckenaer) is a small (4-7 mm) orb-weaving 

spider common along forest edges and fencing in the southeastern United States. They construct 

vertical orb webs containing a stabilimentum lined with prey carcasses, detritus, and egg cases, 

the so called ‘trashline’ (Fig. 1). The stabilimentum appears to interfere with ability of predators 

to locate the spider within the web (Chou et al., 2005; Tseng & Tso, 2009). Spiller (1984) 

reported that C. turbinata spiders are bivoltine, reproducing in the late spring and fall; however 

we are not aware of any studies describing the life history of C. turbinata in the southeastern 

United States. C. turbinata are easily collected and readily construct webs within wooden frames 

in the lab. We collected individuals from the field at the start of each of our three experiments. 
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Fig. 1. A female Cyclosa turbinata as seen in the web hub. The so-called ‘trashline’ composed of 

prey remains and detritus is visible above and below the spider. Photo courtesy of Richard A. 

Bradley. 

 

Antipredator Behaviour Assay in the Arena 

 

Collection and maintenance 

 

 In August, 2012 we collected 13 adult female C. turbinata from fences and hedges in 

Johnson City, TN, USA. We maintained spiders individually in 59 ml deli containers under a 

12:12 h light:dark cycle and approximately 23°C for 5 days. All spiders refused prey while in 

deli containers. After 5 days of acclimation, we placed each spider into a 30 cm X 30 cm X 10 

cm four-sided wooden frame which was then wrapped in plastic food wrap and left overnight to 
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promote web construction. On day 7 we unwrapped each frame, gave each spider two 

Drosophila hydei or two termite workers, and misted the web with distilled water. We left the 

spiders in the temperature- and light-controlled room for four more days with only daily misting. 

On day 12, we again misted the webs and gave each spider 2 Drosophila hydei or 2 termite 

workers. We left the spiders overnight to permit feeding before returning the spiders to 59 ml 

deli containers the next day. We permitted one day of acclimation to deli containers before 

beginning antipredator behaviour assays on August 25 at 1100 h (3 h after onset of photophase). 

 

Behavioural assay 

 

To determine whether antipredator behaviour varies over the diel cycle in C. turbinata, we used 

the ‘huddle response’ assay described in Jones et al. (2011b). We coaxed spiders from their 

containers into a clean glass dish (15 cm diameter, 6cm high). We gave each spider 30 s to 

acclimate before delivering a gentle puff of air from approximately 10 cm away. The puff of air 

initiates the well-known ‘huddle response,’ or thanatosis, that many spiders exhibit when 

threatened. We timed the duration of the response with a stopwatch to the nearest second. We 

delivered the puff of air 3 times or until an active response was observed. Since individuals did 

not always exhibit thanatosis behaviour, we noted the type of behaviour observed. Individuals 

not actively responding after 3 stimulus deliveries were scored as “non-responsive.” Spiders that 

huddled in response to our coaxing them from their containers were given up to 5 min to break 

from the huddle before beginning the 30 s acclimation interval. Spiders that did not break from 

an initial huddle within 5 min were given a score of 500 s. We repeated this assay every 4 h for 5 

days under 12:12 h light:dark and 23°C. 
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Foraging and Antipredator Behaviour in the Web 

 

Collection, maintenance, and design 

 

 We collected 35 adult female C. turbinata and their trashlines from fences and hedges in 

Johnson City, TN, USA during the last week of July, 2013. We haphazardly selected 20 

individuals to place immediately into 30 cm X 30 cm X 10 cm four-sided wooden frames backed 

with canvas. We permitted spiders to retain their original trashlines during the experiment. We 

used removable fiberglass screens to enclose the spider within the frames before leaving them 

overnight under a ramping (1 h) 12:12 h light:dark cycle and 23 °C. All remaining spiders were 

maintained in 110 ml deli containers in the same temperature- and light-controlled room. Any 

spider that had not built a web by the following morning was removed and replaced with a 

haphazardly selected spider from the same collection group. We repeated this process until 20 

frames were occupied by a spider in its web. We then began a 5 day acclimation period during 

which each spider was misted daily at irregular intervals. We provided 2 termite workers daily 

for the first 4 days of this period and starved the spiders on day 5. We haphazardly assigned each 

spider to one of two groups before beginning assays at 0300 h (4 h prior to beginning of 1 h 

photophase ramp) on day 6. We arbitrarily designated one group to receive the predator stimulus 

during the first trial while the other group received the prey stimulus (stimuli described below). 

To ensure that all 20 spiders were tested for both stimuli at each time of day, we alternated the 

stimulus received by each group throughout the remaining trials. We tested both groups every 4 

h for 6 consecutive trials before allowing a 20 h break. This break shifted the group-specific 

schedule by 4 h so that responses to both stimuli could be captured for both groups at all 6 times 
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of day. We repeated this process 4 times in order to gather 2 responses of each spider to each 

stimulus for 6 times of day. We fed each spider 2 termite workers midway through each 20 h 

break in an attempt to reduce hunger and/or habituation bias. However, we observed such strong 

habituation to the prey stimulus that we lengthened the duration of the second 20 h break to 116 

h in an attempt to regain the foraging behaviour initially exhibited by the spiders. 

 

Prey stimulus and assay 

 

 Our prey stimulus consisted of a small (2-inch diameter) audio speaker wired to a 

function generator (PI-9598, PASCO Scientific, Roseville, CA, U.S.A.). An 8 cm section of an 

approximately 2.5 mm diameter wooden dowel was fixed to the speaker cone perpendicular to 

the plane of the speaker using hot-glue. A 10 cm section of plastic twist tie was then fixed to the 

end of the wooden dowel using hot-glue. The twist tie was topped with a 5 cm length of 0.30mm 

diameter monofilament to prevent the stimulus from penetrating and destroying the web. Finally, 

hot-glue was used to fix a small, matte-black plastic bead to the monofilament. The bead served 

to add weight to the end of the apparatus as well as to provide surface area for adhesion to the 

capture spiral. We used data on web-borne vibrations of prey in C. turbinata webs from Suter 

(1978) to select our prey stimulus frequency of 250 Hz. We set the tone generator to a low 

amplitude output. We took a wooden frame from the shelf it was housed upon and placed it upon 

the lab bench. We then removed the screen enclosing the front of the frame and the spider was 

allowed to acclimate while we prepared a second frame. The first spider was then tested by 

applying the stimulus to the web at approximately 3cm to the left or right of the spider and 

recording the time elapsed between contact of the bead with the web and contact of the spider 
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with the bead (hereafter “latency to attack”). Spiders that did not attack within 2 min were 

recorded as “non-responsive.” This process was repeated during each trial until the entire group 

(n = 10) had been tested. Unfortunately, the stimulus frequency was inadvertently shifted to 

approximately 150 Hz at some unknown point in the experiment. Consequently, we used these 

data only to test for behavioral correlations in C. turbinata and for an initial, qualitative 

assessment of diel rhythms of foraging behavior. 

 

Predator stimulus and assay 

 

 The predator stimulus consisted of a 10 cm section of plastic-coated wire affixed by tape 

to a waterproof handheld vibratory stimulation device (Mini Neon Vibes, California Exotic 

Novelties) (procedure modified from Keiser & Pruitt 2014). We wrapped the free end of the wire 

tightly around the centre of a craft puff ball. The vibratory stimulation device was incidentally 

broken during the 1100 h trials on the third test day, after which the wire and puff ball were 

affixed to a backup device (First Time Mini Vibe, California Exotic Novelties). During trials, the 

wooden frames were taken from the shelves and opened following the procedure described for 

prey stimulus trials. After the acclimation period, we turned the vibratory device to its lowest 

setting and then gently brushed the spider’s abdomen with the craft puff ball. We applied the 

stimulus to the spider three times or until an “active response” was elicited. The active responses 

we recorded consisted of fleeing to the web edge, dropping from the web, shaking the web, and 

rearing (raising 1st pair of legs). We timed the duration of absences from the web hub arising 

from a response to the predator stimulus. Spiders that did not elicit one of these four behaviours 

within three applications of the stimulus were recorded as “non-responsive”. 
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Foraging Behaviour in the Web – Refined Analysis 

 

Collection and maintenance 

 

We collected 15 adult female C. turbinata from fences and hedges in Johnson City, TN, 

USA on October 9, 2013. We immediately placed individuals in web frames under conditions 

identical to those described above in Foraging and Antipredator Behaviour in the Web. We 

allowed a 5 day acclimation period to lab conditions, during which we fed the spiders two 

termite workers every other day and misted webs daily at irregular intervals. We began foraging 

behaviour trials at 0700 h on day 6. 

 

Prey stimulus and assay 

 

 We modified the protocol and stimulus described above to conduct a second round of 

foraging assays. We circumvented issues of habituation and incidental variation in stimulus 

frequency by randomizing the prey stimulus frequency across applications. We again consulted 

Suter (1978) in identifying the range of 150-250 Hz within which we randomized the stimulus 

frequency. This range conveniently encompassed the original stimulus frequency as well as the 

frequency to which the stimulus had been shifted in our previous experiment. We divided the 

range into 10 Hz increments and used a random number table to determine the number of 

increments by which the frequency would be raised above 150 Hz for each application of the 

stimulus. Our assay protocol was identical to that described above, however we did not assay 
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antipredator behaviour in parallel. This relaxed the need for a complex alternating schedule. We 

assayed all 15 spiders every 4 h for 5 days, with no feeding breaks or misting of webs. We 

provided supplemental humidity with a small humidifier filled with distilled water. 

 

Statistical Methods 

 

 The nature of the data posed considerable statistical challenges. To analyse diel patterns 

of antipredator behaviour in the arena, we used a Chi-square analysis to test the distribution of 

pooled thanatosis occurrences among times of day against a uniform distribution. The small 

number of observations of antipredator behaviour in the web precluded analysis of individual 

behaviours. We lumped response types according to whether the response resulted in absence 

from the web hub (the area from which individuals forage) and used a Chi-square test to 

determine if spiders were equally likely to flee the web hub (i.e., flee to the web edge or drop 

from the web) across all times of day. We used Scheirer-Ray-Hare tests (Dytham, 2011) to test 

the effects of time of day, individual, and the interaction of time of day and individual on huddle 

duration in the arena. We used an identical Scheirer-Ray-Hare model to predict duration of 

absence from the web hub for all instances in which a spider left the web hub. We constructed a 

GLM testing the association between individuals’ tendencies to flee the foraging area and to 

attack simulated prey using data from our combined foraging and antipredator behaviour 

experiment. Since stimulus variation and habituation confounded the foraging data from the 

combined experiment, we excluded these data from subsequent statistical analyses. We used the 

data from the second foraging experiment to construct a binary logistic regression model testing 

the effects of time of day and individual on the likelihood of attacking the prey stimulus. We 



33 

 

included the number of prior stimulus experiences and the frequency of the stimulus at each 

delivery (hereafter “trial number” and “stimulus frequency,” respectively) in the regression 

model to test for effects of habituation/hunger and frequency bias. We also used a Scheirer-Ray-

Hare test to determine the effects of time of day, individual, and time by individual interaction on 

latency to attack the prey stimulus for all instances in which attacks occurred. Any individual 

that died during the experiment or did not exhibit any prey capture behaviour was excluded from 

the analyses (n = 2). We calculated repeatability as described by Lessells and Boag (1987) for 

huddle duration in the arena and latency to attack in the web to evaluate the individual 

consistency of C. turbinata behaviours. Since huddle duration and latency to attack data could 

not be transformed to normality, we used ANOVAs on rank-ordered data to partition the 

variance components. We used MS Excel 2013 to calculate descriptive statistics and create 

figures. We used SPSS (version 21, IBM Corp., Armonk, NY, U.S.A.) for our binary logistic 

regression model and for the rank ANOVAs necessary for Scheirer-Ray-Hare tests and 

partitioning of variance components. 

 

RESULTS 

 

Diel Patterns of Antipredator Behaviour in the Arena 

 

When assayed in experimental arenas under 12:12 light:dark conditions, C. turbinata 

exhibited strong diel patterns of thanatosis behaviour (Fig. 2). The number of spiders “huddling” 

in response to our predator stimulus rose gradually throughout the early morning and increased 

sharply between 0700 h and 1100 h (Fig. 2). Between 1900 h and 2300 h the number of spiders 
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huddling decreased sharply. Our analysis indicated that the distribution of pooled thanatosis 

occurrences among times of day differed significantly from a uniform distribution (Chi-square 

test: X2
4 = 27.34, P < 0.0001). We found similar patterns of thanatosis duration, with individuals 

exhibiting thanatosis huddling longer during the day (Fig. 2). Transition times and magnitudes 

closely resembled those seen in thanatosis occurrence. We found significant associations of time 

of day and individual with the duration of the huddle response (Scheirer-Ray-Hare test: df = 5, H 

= 69.74, P < 0.0001; df = 12, H = 47.78, P < 0.0001, respectively). However, there was no effect 

of time of day by individual interaction (Scheirer-Ray-Hare test: df = 54, H = 38.98, P = 0.94). 

Repeatability of individual huddle durations was relatively low (r = 0.196). We observed very 

few instances of aggressive behaviour (i.e. rearing, n = 8) when spiders were tested in arenas. 
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Fig. 2. Diel rhythms in antipredator response of C. turbinata assayed in arenas under light:dark 

12:12 h. The dotted line represents the proportion of trials at each time of day in which spiders 

exhibited thanatosis. Columns represent the means and standard errors of thanatosis durations for 

13 spiders tested at 6 times of day for 5 days. Open bars: spiders tested with lights on; solid bars: 

spiders tested with lights off. 

 

Diel Patterns of Foraging and Antipredator Behaviour in the Web 

 

 When we assayed spiders in their webs under a ramping 12:12 light:dark cycle, we again 

observed diel patterns of antipredator behaviour. The variety of behaviours exhibited within 

webs greatly exceeded that seen within arenas; however, several behaviours were only observed 

during certain times of day (Fig. 3). For instance, we never observed spiders running to the web 

edge at 1500 h or 1900 h (Fig. 3a). Similarly, spiders never dropped from the web hub when 
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assayed at 0700 h, 1100 h, or 1500 h (Fig. 3b). Web-shaking behaviour, on the other hand, 

occurred at all times of day except 2300 h (Fig. 3c). We observed rearing behaviour and non-

responsiveness at all times of day (Fig. 3d&e). When we combined antipredator responses types 

into those which involved leaving the foraging position of the web hub and those which did not, 

we found significant diel patterns in the occurrence of absence from the web hub (Chi-square 

test: X2
4 = 57.14, P < 0.0001) (Fig. 4). We found no significant effect of time of day, individual, 

or time of day by individual interaction on the duration of absences from the hub (Scheirer-Ray-

Hare test: df = 4, H = 5.24, P = 0.263; df = 17, H = 20.78, P = 0.236; df = 12, H = 6.68, P = 

0.878, respectively). Although habituation and uncontrolled variation in prey stimulus frequency 

confounded our initial foraging data, the data were suggestive of nocturnal patterns of foraging 

aggression (Fig. 5a). However, we observed attacks at all times of day at which we assayed 

individuals. We did not find a significant association between individuals’ tendency to leave the 

web hub and their tendency to attack the prey stimulus (GLM: t = 1.30, P = 0.211, R2 = 0.085). 

Our second, refined assessment of foraging behaviour in the web corroborated our initial 

findings (Fig. 5). When we randomized the prey stimulus frequency and tested individuals every 

4 h for 5 days, we again found nocturnal patterns of foraging aggression (Fig. 5b). More spiders 

attacked the prey stimulus during the night and early morning than during the day and early 

evening (Fig. 5b). Moreover, we found that time of day strongly predicted the likelihood of 

attack (Wald = 18.702, df = 5, P = 0.002). We also detected a strong effect of individual on the 

likelihood of attack (Wald = 44.22, df = 10, P = 0.0001). While stimulus frequency did not 

predict the likelihood of attack (Wald = 1.294, df = 1, P = 0.255), the effect of trial number was 

marginally non-significant (Wald = 3.539, df = 1, P = 0.060). Although latency to attack the prey 

stimulus tended to be greater during the day and early evening, this pattern was non-significant 
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(Scheirer-Ray-Hare test: df = 5, H = 4.66, P = 0.459) (Fig. 5). We found a strong effect of 

individual on latency to attack the prey stimulus (Scheirer-Ray-Hare test: df = 9, H = 19.80, P = 

0.019) but found no evidence of time of day by individual interaction (Scheirer-Ray-Hare test: df 

= 23, H = 25.15, P = 0.834). Interestingly, repeatability of attack latencies for individuals was 

relatively low (r = 0.11). 
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Fig. 3. Occurrence of C. turbinata antipredator response types by time of day for individuals 

assayed in webs under ramping light:dark 12:12 h. Individuals responded to simulated predator 

attacks by a) fleeing to the web edge, b) dropping from the web, c) shaking the web, d) rearing, 

or e) remaining motionless in the web hub (no response). Bars represent the proportion of trials 

at each time of day in which each response was elicited. Open bars: spiders tested with lights on; 

shaded bars: spiders tested during crepuscule; solid bars: spiders tested with lights off. 
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Fig. 4. Diel rhythms of absence from the foraging area of C. turbinata assayed in webs under 

ramping light:dark 12:12 h. The dotted line represents the proportion of trials at each time of day 

in which spiders left the web hub. Columns represent the means and standard errors of web hub 

absence durations for 20 spiders tested at 6 times of day for 2 days. Open bars: spiders tested 

with lights on; shaded bars: spiders tested during crepuscule; solid bars: spiders tested with lights 

off. 
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Fig. 5. Diel rhythms of foraging aggression of C. turbinata assayed in webs under ramping 

light:dark 12:12 h. Dotted lines represent the proportion of trials at each time of day in which 

spiders attacked the prey stimulus. Columns represent the means and standard errors of latency 

to attack the prey stimulus. a) Initial data collected from 20 spiders assayed at 6 times of day for 

2 days using a fixed stimulus frequency; b) data collected from 10 spiders tested at 6 times of 

day for 5 days using a randomized stimulus frequency. Open bars: spiders tested with lights on; 

shaded bars: spiders tested during crepuscule; solid bars: spiders tested with lights off. 

  

DISCUSSION 

 

 Diel rhythms have been widely touted as adaptations that enhance individual fitness by 

coordinating physiological and behavioural functions with periods of favorable environmental 

conditions. However, little evidence exists in support of this assumption, particularly in animal 

systems (Johnson, 2005). As both predator and prey, spiders provide a tractable model system 

for investigating the adaptive value of diel behavioural variation. Our findings contribute to a 

growing body of literature suggesting that spiders modulate their antipredator behaviour over the 

diel cycle (Jones et al., 2011a; Watts et al., unpublished data). Moreover, we provide evidence of 

diel rhythms of foraging aggression in a continuously foraging spider. These results support our 
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prediction that foraging aggression and predator wariness vary over the diel cycle even in spider 

species that do not transition from refuge use to active foraging. 

Contradictory patterns of antipredator response types in our two assays suggest that 

antipredator behaviour is highly context-dependent in C. turbinata (compare Fig. 2 & Fig. 4). 

When we assayed C. turbinata in arenas, we observed more instances and longer durations of 

antipredator behaviour (i.e. thanatosis) during the day (Fig. 2). These patterns are similar to those 

reported in another Araneid spider, Larinioides cornutus (Jones et al., 2011a). Jones et al. 

(2011a) posited that increased thanatosis behaviour during the day may correspond to an 

increased fitness cost associated with fleeing the web hub during the evening and night, when 

flying insect prey are most abundant (unpublished data). The authors also noted that such 

patterns of vigilance may arise from diurnal patterns of risk of predation by visual predators (e.g. 

birds and wasps) (Jones et al., 2011a). However, when we assayed C. turbinata in webs, we 

found that absences from the foraging area occurred predominately during the night (Fig. 3). It 

may be that the contradictory and non-intuitive nature of our findings arises from the 

commitment of C. turbinata to a cryptic predator avoidance strategy during the day (Tseng & 

Tso, 2009). If individuals rely on camouflage provided by the trashline to avoid detection by 

diurnal visual predators, then non-responsiveness in the web may constitute a predator avoidance 

strategy (Tseng & Tso, 2009). Consequently, the diel patterns of antipredator behaviour we 

described for spiders in webs may not reflect overall predator vigilance but may instead reflect 

transitions between a passive avoidance strategy (i.e. non-responsiveness to maximize 

camouflage) and an active avoidance strategy (i.e. dropping from or fleeing the foraging area). 

Therefore it is possible that rhythms of antipredator behaviour in arenas do in fact represent 

patterns of overall vigilance, as has been suggested by studies of behavioural syndromes in other 
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spider taxa (Pruitt & Riechert, 2012). Alternatively, C. turbinata may simply modify their 

behavioural responses in context. Our contradictory findings emphasize the caution with which 

behavioural assays in unnatural settings should be interpreted. 

While we observed prey capture behaviour at all times of day, we found that C. turbinata 

was more likely to attack the prey stimulus during the night and early morning (Fig. 5). These 

observations indicate that C. turbinata forages across the diel cycle, yet modulates foraging 

aggression in a periodic fashion. The rhythm of aggression seen in C. turbinata resembles 

previously collected data on diel patterns of flying insect abundance (unpublished data). 

However, the period of greatest foraging aggression coincides with period during which C. 

turbinata is most likely to leave the foraging area in response to simulated predator attacks (Fig. 

4 & Fig. 5). This suggests that C. turbinata does not sacrifice predator vigilance to increase 

foraging effort, but our uncertainty regarding rhythms of overall vigilance casts doubt on this 

interpretation. As mentioned above, diel shifts in predator avoidance strategies may mask overall 

rhythms of vigilance of spiders in their webs. If we accept that diel rhythms of antipredator 

behaviour in arenas are representative of rhythms of overall vigilance, then foraging aggression 

and predator vigilance may be negatively correlated with respect to time of day (Fig. 2 & Fig. 5). 

Alternatively, if rhythms of wariness in arenas are artifacts of unnatural conditions, aggression 

toward prey and wariness of predators while in the web may in fact be positively correlated.  

Such a relationship could arise if aggression and wariness are mutually affected by rhythms of 

general neurological arousal (i.e. individuals are generally more sensitive to stimuli during 

certain times of day). However, we did not detect a correlation between individuals’ tendency to 

attack and their tendency to leave the foraging area in response to simulated predation attempts. 

This suggests that foraging aggression and predator vigilance are not correlated in C. turbinata 
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and contrasts with recent evidence that antipredator behaviour is negatively correlated with 

aggression toward prey in other spider taxa (Pruitt & Riechert, 2012). It is important to note, 

however, that our ability to detect any association between aggression toward prey and boldness 

toward predators in C. turbinata is likely limited by individual consistency as evidenced 

indirectly by our analysis of antipredator response duration and latency to attack prey (r = 0.196, 

r = 0.11, respectively). Furthermore, we used rough proxies for individual foraging aggression 

and predator wariness that differ from those used in previous studies (Pruitt & Riechert, 2012). If 

aggression and boldness are in fact unrelated in C. turbinata, this would represent an example of 

remarkable behavioural flexibility in a spider that may permit nearly optimal responses to 

concurrent risks (i.e. predation and lost foraging). 

We are still uncertain whether diel variation in foraging effort and predator vigilance 

represents an adaptive strategy to maximize foraging gain relative to predation risk across the 

diel cycle. A rigorous test of this adaptive hypothesis will require i) quantifying  diel fluctuations 

in foraging gain and predation risk and ii) determining whether/how different behavioural 

responses alter the outcomes of interspecific interactions. We have recently begun quantifying 

diel environmental variability for C. turbinata (unpublished data), and several recent studies 

have shown that the behavioural tendency of individuals affects the outcome of interspecific 

interactions in other taxa (Keiser & Pruitt, 2014; Pruitt et al., 2012b). We believe that the 

framework developed here will facilitate future investigations of the adaptive significance of diel 

rhythms of behaviour. In particular, an enhanced understanding of the environmental cues and 

neurochemical processes mediating behavioural rhythmicity will enable the manipulations 

necessary for rigorous evaluations of the adaptive rhythm hypothesis. 

 



44 

 

ACKNOWLEDGMENTS 

 

 We gratefully acknowledge support from the National Science Foundation through IOS 

grant no. 1257133. We thank Richard A. Bradley for the use of his photograph, as well as Dr. 

Robert B. Suter and Dr. Jonathan A. Coddington for invaluable advice regarding stimuli 

development and spider housing. We are particularly indebted to Nathaniel Hancock, Michael 

Largent, and Alex Quijano for the preparation of a light-controlled study space. We also thank 

the Department of Biological Sciences for logistical support. 

 

REFERENCES 

 

Beaver, L. M., Gvakharia, B. O., Vollintine, T. S., Hege, D. M., Stanewsky, R., Giebultowicz, J. 

M. (2002) Loss of circadian clock function decreases reproductive fitness in males of 

Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United 

States of America, 99(4), 2134-2139. 

Chou, I., Wang, P., Shen, P., Tso, I. (2005) A test of prey-attracting and predator defence 

functions of prey carcass decorations built by Cyclosa spiders. Animal Behaviour, 69, 

1055-1061. 

DeCoursey, P. J., Krulas, J. R., Mele, G., Holley, D. C. (1997) Circadian performance of SCN-

lesioned antelope ground squirrels in a desert enclosure. Physiology and Behavior, 62(5), 

1099-1108. 

DeCoursey, P. J., Walker, J. K., Smith, S. A. (2000) A circadian pacemaker in free-living 

chipmunks: essential for survival? Journal of Comparative Physiology A, 186, 169-180. 



45 

 

Dytham, C. (2011) Choosing and Using Statistics: A Biologist’s Guide (3rd ed.). West Sussex, 

UK: Wiley-Blackwell. 

Enright, J. T. & Hammer, W. M. (1967) Vertical diurnal migration and endogenous rhythmicity. 

Science, New Series, 157(3791), 937-941. 

Green, R. M., Tingay, S., Wang, Z., Tobin, E. M. (2002) Circadian rhythms confer a higher level 

of fitness to Arabidopsis plants. Plant Physiology, 129(2), 576-584. 

Houston, A. I., McNamara, J. M., Hutchinson, J. M. C. (1993) General results concerning the 

trade-off between gaining energy and avoiding predation. Philosophical Transactions: 

Biological Sciences, 341(1298), 375-397. 

Johnson, C. H. (2005) Testing the adaptive value of circadian rhythms. Methods in Enzymology, 

393, 818-837. 

Jones, T. C., Akoury, T. S., Hauser, C.K., Moore, D. (2011a) Evidence of circadian rhythm in 

antipredator behavior in the orb-weaving spider Larinioides cornutus. Animal Behavior, 

82(3), 549-555. 

Jones, T. C., Akoury, T. S., Hauser, C. K., Neblett II, M.F., Linville, B. J., Edge, A. A., Weber, 

N. O.  (2011b) Octopamine and serotonin have opposite effects on antipredator behavior 

in the orb-weaving spider, Larinioides cornutus.  Journal of Comparative Physiology A, 

197, 819-825. 

Keiser, C. N. & Pruitt, J. N. (2014) Spider aggressiveness determines the bidirectional 

consequences of host-inquiline interactions. Behavioral Ecology, 25, 142-151. 

Lampert, W. (1989) The adaptive significance of diel vertical migration of zooplankton. 

Functional Ecology, 3, 21-27. 



46 

 

Lessels, C. M. & Boag, P. T. (1987) Unrepeatable repeatabilities: a common mistake. The Auk, 

104(1), 116-121. 

Lima, S. L. & Bednekoff, P. A. (1999) Temporal variation in danger drives antipredator 

behavior: the predation risk allocation hypothesis. The American Naturalist, 153(6), 649-

659. 

Moore, D. & Doherty, P. (2009) Acquisition of a time-memory in forager honey bees. Journal of 

Comparative Physiology A, 195, 741-751. 

Ouyang, Y., Anderson, C. R., Kondo, T., Golden, S. S., Johnson C. H. (1998) Resonating 

circadian clocks enhance fitness in cyanobacteria. Proceedings of the National Academy 

of Sciences of the United States of America, 95(15), 8660-8664. 

Pruitt, J. N., Riechert, S. E., Jones, T. C. (2008) Behavioural syndromes and their fitness 

consequences in a socially polymorphic spider, Anelosimus studiosus. Behavioral 

Ecology, 76, 871-879. 

Pruitt, J. N., Oufiero, C. E., Avilés, L., Riechert, S. E. (2012) Iterative evolution of increased 

behavioral variation characterizes the transition to sociality in spiders and proves 

advantageous. The American Naturalist, 180(4), 496-510. 

Pruitt, J. N., Stachowicz, J. J., Sih, A. (2012) Behavioral types of predator and prey jointly 

determine prey survival: potential implications for the maintenance of within-species 

behavioral variation. The American Naturalist, 179(2), 217-227. 

Pruitt, J. N. & Riechert, S. E. (2012) The ecological consequences of temperament in spiders. 

Current Zoology, 58(4), 589-596. 

Riechert, S. E. & Maynard Smith, J. (1989) Genetic analyses of two behavioral traits linked to 

individual fitness in the desert spider Agelenopsis aperta. Animal Behaviour 37, 624-637. 



47 

 

Riechert, S. E. & Hedrick, A. N. (1993) A test for correlations among fitness-linked behavioral 

traits in the spider Agelenopsis aperta (Araneae: Agelenidae). Animal Behaviour 46, 669-

675. 

Spiller, D. A. (1984) Competition between two spider species: experimental field study. Ecology, 

65(3), 909-919. 

Suter, R. B. (1978) Cyclosa turbinata (Araneae: Araneidae): prey discrimination via web-borne 

vibrations. Behavioral Ecology and Sociobiology, 3(3), 283-296. 

Tseng, L. & Tso, I. (2009) A risky defence by a spider using conspicuous decoys resembling 

itself in appearance. Animal Behaviour, 78, 425-431. 

Uetz G. W., Heiber, C. S., Jakob, E. M., Wilcox, R. S., Kroeger, D.,  McCrate, A., Mostrum, A. 

M. (1994) Behavior of colonial orb-weaving spiders during a solar eclipse. Ethology, 96, 

24-32. 

  



48 

 

REFERENCES 

Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R, Giebultowicz JM. 2002. 

Loss of circadian clock function decreases reproductive fitness in males of Drosophila 

melanogaster. Proc Natl Acad Sci USA. 99(4): 2134-2139. 

Bellmann H. 1997. Kosmos-atlas spinnentiere. Stuttgart: Frankh-Kosmos Verlag. 

Bradshaw WE, Quebodeaux MC, Holzapfel CM. 2003. The contribution of an hourglass timer to 

the evolution of photoperiodic response in the pitcher-plant mosquito, Wyeomyia smithii. 

Evolution 57(10): 2342-2349. 

Carico JE. 1986. Web removal patterns in orb-weaving spiders. In: Shear, WA, editor. Spiders: 

webs, behavior, and evolution. 1st ed. Stanford: Stanford University Press. p 306-318. 

Ceriani MF, Darlington TK, Staknis D, Mas P, Petti AA, Weitz CJ, Kay SA. 1999. Light-

dependent sequestration of timeless by cryptochrome. Science 285: 553-556.  

Chou I, Wang P, Shen P, Tso I. 2005. A test of prey-attracting and predator defence functions of 

prey carcass decorations built by Cyclosa spiders. Anim Behav. 69(5): 1055-1061. 

Cloudsley-Thompson JL. 1995. A review of the anti-predator devices of spiders. Bull Br Arach 

Soc. 10(3): 81-96. 

DeCoursey PJ, Krulas JR, Mele G, Holley DC. 1997. Circadian performance of SCN-lesioned 

antelope ground squirrels in a desert enclosure. Physiol Behav. 62(5): 1099-1108. 

DeCoursey PJ, Walker JK, Smith SA. 2000. A circadian pacemaker in free-living chipmunks: 

essential for survival? J Comp Physiol A. 186: 169-180. 

Dickmeis T. 2009. Glucocorticoids and the circadian clock. J Endocrinol. 200: 3-22. 

Dunlap JC, Loros JJ, DeCoursey PJ, editors. 2004. Chronobiology: biological timekeeping. 

Sunderland: Sinauer Associates. 



49 

 

Dytham C. 2011. Choosing and using statistics: a biologist’s guide. 3rd ed. West Sussex, UK: 

Wiley-Blackwell. 

Eban-Rothschild A, Belluci S, Bloch G. 2011. Maternity-related plasticity in circadian rhythms 

of bumble-bee queens. Proc R Soc B 287: 3510-3516. 

Emery P, So WV, Kaneko M, Hall JC, Rosbash M. 1998. CRY, a Drosophila clock and light-

regulated cryptochrome, is a major contributor to circadian rhythm resetting and 

photosensitivity. Cell 95: 669-679. 

Enright JT, Hammer WM. 1967. Vertical diurnal migration and endogenous rhythmicity. 

Science, New Series 157: 937-941. 

Fleury F, Allemand R, Vavre F, Fouillet P, Bouletreau M. 2000. Adaptive significance of a 

circadian clock: temporal segregation of activities reduces intrinsic competitive 

inferiority in Drosophila parasitoids. Proc R Soc Lond B. 267: 1005-1010. 

Foelix RF. 2011. Biology of spiders. 3rd ed. New York: Oxford University Press.  

Gallego M, Virshup DM. 2007. Post-translational modifications regulate the ticking of the 

circadian clock. Nat Rev Mol Cell Bio. 8(2): 139-148. 

Green RM, Tingay S, Wang Z, Tobin EM. 2002. Circadian rhythms confer a higher level of 

fitness to Arabidopsis plants. Plant Physiol. 129(2): 576-584. 

Herberstein ME, Elgar MA. 1994. Foraging strategies of Eriophora transmarina and Nephila 

plumipes (Araneae: Araneoidea): nocturnal and diurnal orb-weaving spiders. Aust J Ecol. 

19: 451-457. 

Houston AI, McNamara JM, Hutchinson JMC. 1993. General results concerning the trade-off 

between gaining energy and avoiding predation. Phil Trans R Soc Lond B. 341: 375-397. 



50 

 

Howlader G, Sharma VK. 2006. Circadian regulation of egg-laying behavior in fruit flies 

Drosophila melanogaster. J Insect Physiol. 52: 779-785. 

Hurd MW, Ralph MR. 1998. The significance of circadian organization for longevity in the 

golden hamster. J Biol Rhythms 13(5): 430-436. 

Johnson CH. 2005. Testing the adaptive value of circadian rhythms. Method Enzymol. 393: 818-

837. 

Jones TC, Akoury TS, Hauser CK, Moore D. 2011a. Evidence of circadian rhythm in 

antipredator behavior in the orb-weaving spider Larinioides cornutus. Anim Behav. 

82(3): 549-555. 

Jones TC, Akoury TS, Hauser CK, Neblett II MF, Linville BJ, Edge AA, Weber NO. 2011b. 

Octopamine and serotonin have opposite effects on antipredator behavior in the orb-

weaving spider, Larinioides cornutus.  J Comp Physiol A. 197: 819-825. 

Keiser CN, Pruitt JN. 2014. Spider aggressiveness determines the bidirectional consequences of 

host-inquiline interactions. Behav Ecol. 25: 142-151. 

Koovor J, Ortega-Escobar J, Munoz-Cuevas A. 1999. Circadian structural changes in the retina 

of Lycosa tarantula (Araneae: Lycosidae). Biol Rhythm Res 30(4): 407-423. 

Kralj-Fisher S, Schneider JM. 2012. Individual behavioural consistency and plasticity in an 

urban spider. Anim. Behav. 84(1): 197-204. 

Lampert W. 1989. The adaptive significance of diel vertical migration of zooplankton. Funct 

Ecol. 3: 21-27. 

Lessels CM, Boag PT. 1987. Unrepeatable repeatabilities: a common mistake. The Auk 104(1): 

116-121. 



51 

 

Lima SL, Bednekoff PA. 1999. Temporal variation in danger drives antipredator behavior: the 

predation risk allocation hypothesis. Am Nat. 153(6): 649-659. 

Moore D, Doherty P. 2009. Acquisition of a time-memory in forager honey bees. J Comp 

Physiol A. 195: 741-751. 

Moore D, Rankin MA. 1985. Circadian locomotor rhythms in individual honeybees. Physiol 

Entomol. 10(2): 191-197. 

Moore D, Rankin MA. 1993. Light and temperature entrainment of a locomotor rhythm in 

honeybees. Physiol Entomol. 18(3): 271-278. 

Nentwig W. 1982. Why do only certain insects escape from a spider’s web? Oecologia 53(3): 

412-417. 

Ouyang Y, Anderson CR, Kondo T, Golden SS, Johnson CH. 1998. Resonating circadian clocks 

enhance fitness in cyanobacteria. Proc Natl Acad Sci USA. 95(15): 8660-8664. 

Pruitt JN, Riechert SE, Jones TC 2008. Behavioural syndromes and their fitness consequences in 

a socially polymorphic spider, Anelosimus studiosus. Behav Ecol. 76: 871-879. 

Pruitt JN, Oufiero CE, Avilés L, Riechert SE. 2012. Iterative evolution of increased behavioral 

variation characterizes the transition to sociality in spiders and proves advantageous. Am 

Nat. 180(4): 496-510. 

Pruitt JN, Stachowicz JJ, Sih A. 2012. Behavioral types of predator and prey jointly determine 

prey survival: potential implications for the maintenance of within-species behavioral 

variation. Am Nat. 179(2): 217-227. 

Pruitt JN, Riechert SE. 2012. The ecological consequences of temperament in spiders. Curr Zool. 

58(4): 589-596. 



52 

 

Riechert SE, Maynard Smith J. 1989. Genetic analyses of two behavioral traits linked to 

individual fitness in the desert spider Agelenopsis aperta. Anim Behav. 37(4): 624-637. 

Riechert SE, Hedrick AN. 1993. A test for correlations among fitness-linked behavioral traits in 

the spider Agelenopsis aperta (Araneae: Agelenidae). Anim Behav. 46(4): 669-675. 

Roth T, Sprau P, Schmidt R, Naguib M, Amrhein V. 2009. Sex-specific timing of mate searching 

and territory prospecting in the nightingale: nocturnal life of females. Proc R Soc B. 276: 

2045-2050. 

Rypstra AL. 1982. Building a better insect trap: an experimental investigation of prey capture in 

a variety of spider webs. Oecologia 52(1): 31-36. 

Seyfarth EA. 1980. Daily patterns of locomotor activity in a wandering spider. Physiol Entomol. 

5: 199-206. 

Sherman PM. 1994. The orb-web: and energetic and behavioural estimator of a spider’s dynamic 

foraging and reproductive strategies. Anim Behav. 48(1): 19-34. 

Sih A, Cote J, Evans M, Fogarty S, Pruitt JN. 2012. Ecological implications of behavioural 

syndromes. Ecol Lett. 15: 278-289. 

Sih A, Bell AM. 2008. Insights for behavioral ecology from behavioral syndromes. Adv Stud 

Behav. 38: 227-281. 

Spiller DA. 1984. Competition between two spider species: experimental field study. Ecology, 

65(3): 909-919. 

Suter RB. 1978. Cyclosa turbinata (Araneae: Araneidae): prey discrimination via web-borne 

vibrations. Behav Ecol Sociobiol. 3(3): 283-296. 



53 

 

Suter RB. 1993. Circadian rhythmicity and other patterns of spontaneous motor activity in 

Frontinella pyramitela (Linyphiidae) and Argyrodes trigonum (Theridiidae). J Arachnol. 

21(1): 6-22. 

Tseng L, Tso I. 2009. A risky defence by a spider using conspicuous decoys resembling itself in 

appearance. Anim Behav. 78: 425-431. 

Uetz GW, Heiber CS, Jakob EM, Wilcox RS, Kroeger D,  McCrate A, Mostrum AM. 1994. 

Behavior of colonial orb-weaving spiders during a solar eclipse. Ethology 96: 24-32. 

Wise DH. 1993. Spiders in Ecological Webs. Cambridge: Cambridge University Press. 

Xu K, Zheng X, Sehgal A. 2008. Regulation of feeding and metabolism by neuronal and 

peripheral clocks in Drosophila. Cell Metab. 8: 289-300. 

Ziegler TA, Cohen JH, Forward Jr. RB. 2010. Proximate control of diel vertical migration in 

phyllosoma larvae of the Caribbean spiny lobster Panulirus argus. Biol Bull. 219: 207-

219. 



54 

 

VITA 

JAMES COLTON WATTS 

 

Education:    Cookeville High School, Cookeville, Tennessee, 2008 

B.S. Biology, East Tennessee State University, Johnson City, 

Tennessee, 2012 

M.S. Biology, East Tennessee State University, Johnson City,  

   Tennessee, 2014 

 

Professional Experience: Graduate Assistant, East Tennessee State University, College of  

Arts and Sciences, 2012-2014 

 

Publications:  Joyner ML, Ross CR, Watts JC, Jones TC (submitted Nov. 16,  

2013) A Stochastic Simulation Model for Anelosimus  

studiosus During Prey Capture: A Case Study for  

Determination of Optimal Spacing. Mathematical  

Biosciences and Engineering. 

 

Watts JC, Herrig A, Allen WD, Jones TC (submitted Dec. 18,  

2013) Diel Patterns of Foraging Aggression and 

Antipredator Behaviour in the Trashline Orb-weaving 

Spider, Cyclosa turbinata. Animal Behaviour. 

 

Presentations:   Ecological Implications of Diel Rhythms of Aggression in  

the Subsocial Spider Anelosimus studiosus (Araneae: 

Theridiidae). Oral Presentation, Entomological Society of 

America Meeting, 2012 

 

Ecological Implications of Diel Rhythms of Aggression in  

the Subsocial Spider Anelosimus studiosus (Araneae: 

Theridiidae). Poster Presentation, Appalachian Student 

Research Forum, 2013 

 

Chronoethology of Cyclosa turbinata. Oral Presentation, American  

Arachnological Society Meeting, 2013 

 

Honors and Awards:   James H. Quillen Graduate Scholar, 2013-2014 

 

    Runner-up Best Student Talk, American Arachnological Society  

Meeting, 2013 

 

1st Place Graduate Poster Presentation in Natural Sciences,  

Appalachian Student Research Forum, 2013 

 

National SMART Grant, 2011 


	East Tennessee State University
	Digital Commons @ East Tennessee State University
	5-2014

	Diel Patterns of Foraging Aggression and Antipredator Behavior in the Trashline Orb-weaving Spider, Cyclosa turbinata
	James C. Watts
	Recommended Citation



