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This thesis presents regulatory and biosynthetic mechanisms by which microorganisms 

produce secondary metabolites that can potentially be developed into drugs beneficial to 

humans. The first section shows the role of small signaling molecules in regulating the 

production of one of the novel antifungal metabolites, heat stable antifungal factor 

(HSAF), from Lysobacter enzymogenes. 	

	

	In the second part of the thesis I report our attempts to isolate and characterize the 

biosynthesis of WBP, a new secondary metabolite from Lysobacter antibioticus OH13. I 

have included the in-silico analysis of the gene cluster for WBP and the predicted 

biosynthetic pathway based on analysis of the genes.  I have also included the work to 

delete part of the gene responsible for the biosynthesis of WBP, which is still in progress.  
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1 

Molecular Mechanism for the Biosynthesis and Regulation of Secondary 

Metabolites in Lysobacter 

Introduction 

Natural products from microorganisms and plants have been the best source of structurally 

profound drugs, particularly as anti-infective and anti-tumor agents (1, 2). However, the interest 

in natural products, especially by the pharmaceutical companies was compromised in the last two 

decades (3, 4). Some of the challenges that lead to this de-emphasis in natural product drug 

discovery includes: extremely low yields, limited supply, and complex structures posing 

enormous difficulty for structural modifications (1, 3, 5). However, the rapid advance in gene 

sequencing, gene synthesis, bioinformatics, and metabolomics has driven the natural product 

drug discovery process to a new era, by transforming the process from the tedious isolation, 

screening process to in silico-based bio-mining approaches that seek to eventually transform 

genomic information directly into biosynthetic output (1, 5-7). Therefore, so many new 

microorganisms are under investigation through these new approaches for the discovery of new 

bioactive compounds (8-10). Lysobacter is a new example, which is a genus of Gram-negative 

bacteria emerging as a new source of novel secondary metabolites (11-15).  

The genus Lysobacter belongs to the family Xanthomonadaceae and consists of around 25 

reported species, where L. antibioticus, L. brunescens, L. enzymogenes and L. gummosus are the 

first to be isolated from soil (16, 17). These gliding bacterial predators are known for their lytic 

activity against diverse organisms: bacteria, fungi, and worms. They produce several lytic 
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enzymes like proteases, glucanases, lipases, chitinases, as well as secondary metabolites (16, 18-

21, 27).  We have been studying the metabolites from Lysobacter, especially from L. 

enzymogenes for their potent activity against methicillin-resistant Staphylococcus aureus 

(MRSA) and vancomycin-resistant enterococci (VRE) (22, 23). WAP-8294A, lysobactin, and 

tripropeptins are some of the main antibacterial metabolites so far isolated and under extensive 

research in our group (11, 13, 22, 24). Another group of metabolites isolated from L. 

enzymogenes is dihydromaltophilin (HSAF) and analogs, which have potent activities against a 

wide range of fungi with a novel mode of action (13, 15, 25, 26). The compounds belong to the 

polycyclic tetramate macrolactams (PTM), which are emerging as a new class of secondary 

metabolites with distinct structures and a new mode of action (15, 28). The majority of these 

secondary metabolites are biosynthesized by nonribosomal peptide synthetase (NRPS) or/and 

polyketide synthetase (PKS) (13, 15, 28). However, only a few metabolites and their 

corresponding genes are known from Lysobacter species other than from the L. enzymogenes 

(29). To explore new secondary metabolites from Lysobacter species we obtained and analyzed 

the genome of L. antibioticus OH13 using antiSMASH for clustered natural product biosynthetic 

genes (30, 31). Thirteen hits of gene clusters for the secondary metabolite are identified 

including the phenazine cluster (32). Six gene clusters among the thirteen hits contain NRPS 

genes. Here in the Section II of this thesis we report the identification and characterization of one 

(WBP) of the NRPS gene clusters from L. antibioticus OH13. The WBP cluster appears partly 

similar to the WAP gene cluster but with one less NRPS module than the WAP cluster (11).  
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One of the main problems in developing natural products into potential drugs, as mentioned 

above, is their low production yield (5).  For instance, the yield of HSAF is still very low in L. 

enzymogenes strains OH11 and C3, although this compound has been extensively studied (15, 

33).  One of the solutions to this problem is to thoroughly investigate the regulatory mechanism 

of HSAF production in this bacterium, which could lead to new approaches to facilitating its 

production through rational genetic and molecular engineering strategies. Several recent studies 

have shown that the antibiotic production in L. enzymogenes is a nutrient-dependent trait and is 

regulated by endogenous  and/or xenogenous small molecules (34-36).
 
However, the details of 

the signaling pathways, in  particular how the small molecule signals are perceived by the 

Lysobacter cells, remain  largely unknown.  We recently identified a group of DSFs (diffusible 

signaling factors), LeDSF1-5, from L.  enzymogenes strain OH11 and found that LeDSF3 

regulates the biosynthesis of HSAF. The LeDSF3 signaling is mediated by a two-component 

regulatory system   (TCS), RpfC/RpfG, which is responsible for sensing the DSF and for 

conveying the signal to  the subsequent gene expression and HSAF production (36).
 
RpfC is a 

membrane-bound sensor  protein with histidine kinase activity (37-39).
 
When the cell density 

increases and the DSF concentration reaches a threshold, the DSF-bound RpfC undergoes an 

autophosphorylation at its active site histidine residue. The autophosphorylation activates RpfC, 

which subsequently   phosphorylates its partner protein RpfG, the intracellular response regulator 

of the TCS,   resulting in the activation of the cyclic di-GMP phosphodiesterase activity of RpfG 

(40-42).
  

The downstream signal transduction pathway is still unclear in L. enzymogenes, but 
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evidence   suggested that the activated RpfG could then hydrolyze cyclic di-GMP, which is a 

second   messenger involved in numerous cellular processes (35, 36).
 
The decrease in c-di-GMP 

  concentration in the cells could be sensed by downstream regulators, such as the global 

  regulator Clp, a cAMP receptor-like protein (43, 44).
 
Previous studies and our recent results 

 showed that Clp controls antibiotic biosynthesis and lytic enzyme production in L.  enzymogenes 

(35, 44). Thus, the DSF-regulated HSAF biosynthesis in L. enzymogenes is likely  mediated by 

the RpfC/RpfG/Clp pathway.   Furthermore, we also discovered another key regulator, DF 

(diffusible factor) that can help activate the transcription of the hsaf pks/nrps operon, resulting in 

increasing HSAF level (34-36). The DSF and DF systems work independently to carry out a 

positive regulation on the HSAF biosynthesis in L. enzymogenes (34). Unlike the DSF-family 

signal, where their regulatory pathway is through the two-component signaling transduction 

pathway (RpfC/RpfG) and regulator Clp (34-36), the DF structure and its mode of action for 

regulating HSAF biosynthesis remains poorly understood in L. enzymogenes to date.  In Section I 

of this thesis, we showed that L. enzymogenes produced 3-HBA and 4-HBA via LenB2 under 

both in vitro and in vivo conditions. Importantly, we presented several lines of evidence to show 

that 4-HBA, and 3-HBA, served as a diffusible factor or a potential diffusible signaling molecule 

to modulate the antibiotic HSAF biosynthesis in L. enzymogenes. 
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SECTION I  

3-Hydroxybenzoic Acid and 4-Hydroxybenzoic Acid are the Diffusible Factors Regulating 

the Heat-Stable-Antifungal-Factor Biosynthesis in Lysobacter enzymogenes 

 

Abstract 

Lysobacter enzymogenes, a Gram-negative microorganism, is a source of potentially novel 

bioactive secondary metabolites such as HSAF, WAP-8294A, and aryl polyene pigments. 

Extensive research has been carried out to study the mechanism of biosynthesis of these 

metabolites. However, the molecular regulations of these natural products are not well 

understood so far. In the present study, we provided the first report that 3-hydroxybenzoic acid 

(3-HBA) and 4-hydroxybenzoic acid (4-HBA) serve as diffusible factors capable of regulating 

HSAF biosynthesis in L. enzymogenes. We found L. enzymogenes utilized LenB2 as a bi-

functional chorismatase to convert chorismate to 4-HBA and 3-HBA. Mutation of lenB2 almost 

completely abolished the production of 4-HBA and 3-HBA, leading to a complete stop of HSAF 

production, whereas overexpression of lenB2 increased the production of HSAF. The results 

show that 3-HBA and 4-HBA are diffusible signaling molecules modulating the HSAF 

biosynthesis in L. enzymogenes. This finding expands our understanding of the biological roles 

played by the widely distributed benzoic acid derivatives in bacteria.  
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1.1. Background and Significance 

Lysobacter species are gram-negative bacteria having lytic activity against a wide range of 

microorganisms including fungi, Gram-positive and Gram-negative bacteria, and nematodes 

(29). This activity is attributed to the production of several extracellular enzymes, secondary 

metabolites, and other unknown bioactive compounds (29, 45). Some of the many secondary 

metabolites identified so far from L. enzymogenes are WAP-8294A and HSAF, which have 

strong activity against Methicillin-resistant Staphylococcus aureus (MRSA) and many fungal 

species, respectively (Figure 2) (11, 15). Several studies have been carried out so far to elucidate 

the mechanism of biosynthesis and activity of these two potential lead anti-infective compounds. 

WAP-8294A is a group of cyclic lipodepsidpeptides that are biosynthesized by two large NRPS 

in L. enzymogenes OH11 (LeOH11) (11); it has potent activity against MRSA strains (11). HSAF 

is a polycyclic tetramate macrolactam (PTM) with unusual chemical structure and novel mode of 

action against many pathogenic fungal species (28, 33). It is biosynthesized by a PKS/NRPS 

hybrid megaenzyme (28). Although many studies have been carried out to study the mechanism 

of biosynthesis of these two groups of compounds, few attempts are made to investigate the 

regulation of the production of HSAF and WAP-8294A in LeOH11 (36). We recently discovered 

several key systems/regulators, such as DSF (diffusible signal factor) and DF (diffusible factor) 

that are involved in the transcriptional activation of the hsaf pks/nrps operon, resulting in an 

increase of HSAF production (34-36). These two systems worked independently to carry out a 
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positive regulation on the HSAF biosynthesis in L. enzymogenes (34). Specifically, a DSF-family 

signal, referred to as LeDSF3 (13-methyltetradecanoic acid), was identified to control HSAF 

biosynthesis by a two-component signaling transduction pathway (RpfC/RpfG) and the global 

regulator Clp (34-36). In contrast, the structure of DF in L. enzymogenes has not been determined 

and its regulatory mechanism for HSAF biosynthesis remains poorly understood to date. 

  

History of the DF signaling in bacteria can be traced back to 1997. It was initially discovered in 

the economically important phytopathogenic bacterium, Xanthomonas campestris pv. campestris 

(Xcc), which causes serious disease of black rot in crucifers (46). A novel, but uncharacterized 

secreted compound controlling the biosynthesis of the polyene yellow pigments (also called 

xanthomonadins) was found in this bacterium (46). The structure of DF was further identified as 

3-HBA by He and colleagues (47). In addition, they showed that Xcc also produced 4-HBA in 

their later studies (48). Interestingly, the biosynthesis of both 3-HBA and 4-HBA in Xcc was 

dependent on an enzyme XanB2, a pteridine-dependent dioxygenase-like protein (Figure 1) (47, 

48). Further evidence showed that XanB2 is a bi-functional chorismatase that converted 

chorismate, the end product of the shikimate pathway, to 3-HBA and 4-HBA in Xcc (48). 

Malfunction of XanB2 almost completely abolished production of 3-HBA and 4-HBA (47, 48). 

Moreover, XanB2 homologs are found to be widespread in different bacterial species under 
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various ecological niches (47), suggesting the potential importance of this group of small 

molecules in the bacterial kingdom. 

 

Although both 3-HBA and 4-HBA were produced in Xcc by the same shikimate pathway, the 

functions played by each molecule was, however, remarkably different. Abundant evidences 

have shown that 3-HBA played a vital role in modulating xanthomonadins biosynthesis, while 4-

HBA was mainly involved in ubiquinone (CoQ8) coenzyme biosynthesis in Xcc (47, 48). But it 

is important to note that 4-HBA was found to be a precursor for CoQ8 biosynthesis, not as a 

signaling molecule (48). Furthermore, X. oryzae pv. oryzae (Xoo, the bacterial pathogen causing 

rice blight) was also found to produce 3-HBA and 4-HBA via the XanB2 homologue 

(PXO_3739) for the biosynthesis of xanthomonadin, CoQ8, and exopolysaccharide (49). Thus, 

despite the many studies in Xanthomonas, all available reports to date did not clearly address 

whether 4-HBA can function as a signal molecule (DF).  
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Figure 1. Structure of DF (3-Hydroxybenzoic acid and 4-Hydroxybenzoic acid)  

 

 

In the present study, we showed that L. enzymogenes also produced 3-HBA and 4-HBA via 

LenB2 under both in vitro and in vivo conditions. Importantly, we presented several lines of 

evidence to show that 4-HBA and 3-HBA served as signaling molecules to modulate the 

antibiotic HSAF biosynthesis in L. enzymogenes. To our knowledge, this is the first example to 

clearly demonstrate that 3-HBA and 4-HBA can serve as signaling molecules for antibiotic 

biosynthesis in bacteria. These findings deepen our current view on biological functions of 3-

HBA and 4-HBA in bacterial physiology.  
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Figure 2. Structure of anti-infective agents produced by Lysobacter: HSAF and WAP-829A2 

 

 

HSAF (antifungal) 

 

 

WAP-8294A2 (antibacterial) 

 

1.2. Materials and Methods 

1.2.1. Bacterial strains, plasmids and growth conditions 

Escherichia coli strains used for plasmid construction were routinely grown in LB (Luria Broth) 

at 37 °C, supplemented with gentamicin (Gm, 25µg/ml) as needed for solid and liquid media. 

Lysobacter enzymogenes stains were grown in LB medium or 1/10 TSB at 28 °C. When 

required, antibiotics were added into the medium according to the following final concentrations: 

kanamycin (Km), 100 µg/ml; and Gm, 150 µg/ml.  
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1.2.2. Isolation, purification, and structural identification of 3-HBA and 4-HBA in L. 

enzymogenes 

The wild-type OH11 of L. enzymogenes was grown in 1/10 TSB (100 ml, 3000 shake flask, total 

300 liters) at 28 °C with shaking at 200 rpm for 36-48 hours. The culture was acidified by HCl to 

a pH value of 2.0, followed by extraction with the same volume of ethyl acetate (EtOAc) until 

the filtrate was colorless. The combined filtrate, upon evaporation, yielded a crude extract, which 

was further partitioned between methanol and petroleum ether. The methanol layer was 

concentrated under vacuum to obtain a yellow syrupy material (7.4 g). The extract was then 

subjected to column chromatography (60 g silica gel 60 Merck, Darmstadt, Germany, column; 

chloroform-methanol, gradient elute; 250 ml for each gradient) and Sephadex LH-20 column 

chromatography (GE healthcare, Uppsala, Sweden) column were used. TLC analyses were 

performed with pre-coated silica gel 60 F254 plates (Merck, Darmstadt, Germany). NMR spectra 

were recorded on a Bruker Advance 400 spectrometer at 400/100 MHz (Bruker, Fällanden, 

Switzerland). Mass spectra were obtained on a LCQ mass spectrometer (Thermo, West Palm 

Beach, FL, USA). An Agilent 1120 HPLC system (Agilent, Santa Clara, CA, USA), with RF 

C18 columns (10.0 × 250 mm, 5 µm, for preparative HPLC; 4.6 × 150 mm, 3.5 µm, for analytic 

HPLC), was used in the studies. The HPLC program is described in (Table S2). All general 

chemical reagents were purchased from Sigma-Aldrich or Fisher Scientific. 

 

 



 
	
	

	
	

	
	
	
	
	

12 

1.2.3. Gene in-frame deletion in L. enzymogenes 

A double cross-over homologue recombination strategy was used to generate an in-frame 

deletion of GOI (Genes of Interest) in L. enzymogenes, as described previously (50). In brief, two 

flanking regions of GOI were generated by PCR (polymerase chain reaction) amplification using 

various corresponding primer pairs (Table S1), and cloned into respective sites of the suicide-

vector pEX18Gm. The final constructs were transformed into conjugal strain E. coli to conjugate 

with the wild type L. enzymogenes OH11 (34, 50). Next, Lysobacter transformants on the LB 

plates were selected by adding Km (100 µg/ml) and Gm (150 µg/ml) in the absence of sucrose. 

Positive colonies were further cultivated on the LB plates containing 10% (w/v) sucrose and Km 

(100 µg/mL) to select for correct construct by a second cross-over event. The resultant mutants 

were confirmed by PCR and sequencing (Table S1).  

 

1.2.4. Construction of lenb2 overexpression mutant 

To construct lenb2 overexpression strain, In-fusion cloning system (In-Fusion® HD Cloning 

Plus catalogue # 638909, Clontech Laboratories, Inc. A Takara Bio Company, 

www.clontech.com) was implemented. This method of cloning is ligase independent cloning of 

PCR product, where the reaction depends upon the 3’ to 5’ proofreading exonulease function of 

the polymerase developed from Vaccina virus DNA polymerase (51). It works by fusing DNA 

fragment and linearized vectors by recognizing a 15 bp overlap at their ends (52).  The vector 
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pHmgA was linearized with PstI/BamHI restriction enzymes and the coding region of lenb2 was 

amplified by designing forward and reverse primers having a 15 bp overlap, homologous to the 

site of the vector (Figure 3). The reaction mixture, which contained the enzyme, the linearized 

vector, and the purified PCR product of the lenb2 gene, was incubated for 15 minutes in 50oC. 

The vector, pHmgA, included one homologous region of hmgA gene, HSAF promoter (PHSAF), 

and the plasmid containing the lenb2 gene is therefore expected to integrate into the hmgA gene 

in OH11 genome by homologous recombination (17). The hmgA gene encodes a homogentisate 

1,2 dioxygenase, which catalyzes the oxidative cleavage of the aromatic ring of 

tyrosine/phenylalanine, a key step in aromatic amino acid degradation pathway. The disruption 

of hmgA gene blocks the oxidative cleavage reaction and leads to the accumulation of 

homgentisate, exhibiting black color in the mutant organisms and allowing for easy selection of 

the single crossover mutant into whose genomes the construct has been integrated. In the 

construct the coding region of lenb2 was placed downstream from the strong promoter PHSAF. 

The constructs were validated and transferred into LeOH11. The black colored colonies were 

selected and verified by diagnostic PCR (Figure 4) 
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Figure 3. Construction of pHmgA-PHSAF-based vectors for overexpressing lenb2 in Lysobacter 

enzymogenes  
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Figure 4. Genotypic and phenotypic confirmation of the mutant 

Yellow: wild type LeOH11 
Black: hmgA gene disruption mutant  

Diagnostic PCR to amplify the expected 902 
bp in the lenb2 and HmgA region of the 
vector 

 

 

 

 

1.2.5. Effect of 3-HBA and 4-HBA on HSAF production 

3-HBA and 4-HBA (final concentration 0.2-10 µM) were added into 50 ml 1/10 TSB culture of 

various strains of L. enzymogenes. The cultures grew at 28 °C, 200 rpm for 2 days, and were 

extracted with the same volume of ethyl acetate. The organic phase was concentrated under 

vacuum, and the crude extract was dissolved with 0.5 ml methanol. A fraction (20 µl) of the 

methanol extract was injected in HPLC to analyze HSAF and analogs. For semi-quantification, 

the peak area of HSAF and analogs was measured to obtain the relative yield of the compounds.  

 

1.2.6. RNA extraction, reverse-transcription PCR and real time-PCR 

LeOH11 and its mutants were grown in 100 ml 1/10 strength TSB medium for 24 h. An aliquot 

of 3 ml cells was transferred to a sterile centrifuge tube and centrifuged for 3 min at 12,000 rpm. 

RNA was extracted from the strains using TRIZOL solution following the manufacturer’s 

Kb					Marker			1									2									3									4	 
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instruction. For DNA removing and reverse transcription PCR, PrimerScript RT reagent Kit with 

gDNA Eraser Kit (TaKaRa biocompany) was used in this study. For real time-PCR assay, iQ 

SYBR green supermix kit (BIO-RAD company) was used. The primers for real-time PCR are 

listed in (Table S1), and 16S RNA was used as the reference (36). 

 

1.3. Results and Discussion 

1.3.1. L. enzymogenes produced both 3-HBA and 4-HBA via LenB2  

To explore whether L. enzymogenes can produce 3-HBA and 4-HBA, we cultivated L. 

enzymogenes OH11 in the HSAF-inducing medium (1/10 TSB), and collected cell-free culture 

after growth for 2 days. These cell-free cultures were extracted by EtOAc and concentrated, 

followed by HPLC separation to reveal two peaks that exhibited similar retention time of 4-HBA 

and 3-HBA as described in the previous Xcc study (48). These two peaks were further collected 

and their structures identified by NMR analyses. As shown in (Figure S1), both compounds gave 

distinct 1H and 13C chemical shifts similar to the 4-HBA and 3-HBA standards. The data 

demonstrate that L. enzymogenes produces 3-HBA and 4-HBA in the HSAF-producing medium.  

Next, we investigated how 3-HBA and 4-HBA are synthesized in L. enzymogenes. Given that 

XanB2 from Xcc was shown to be a bi-functional enzyme requiring for both 3-HBA and 4-HBA 

production (48), we speculated that the XanB2 homologue LenB2 might play a similar function 

in L. enzymogenes. As shown in (Figure 5), we found that mutation of lenB2 almost completely 
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impaired 3-HBA and 4-HBA production as identified by HPLC. These data suggest that LenB2 

was responsible for the in vivo production of 3-HBA and 4-HBA in L. enzymogenes. 

 

Figure 5. HPLC analysis of 3-HBA and 4-HBA in LeOH11 and LenB2 mutant 		
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1.3.2. Exogenous addition of 3-HBA and 4-HBA increases HSAF production 

We tested the effect of 3-HBA and 4-HBA on the production of HASF and analogs. When 0.2 

µM 3-HBA or 4-HBA was added into the cultures, the production of HSAF analogs increased in 

all treatments (Figure 6-7). 3-HBA exhibited a stronger effect (6.1 fold) than 4-HBA (0.9 fold). 

When the concentration of 4-HBA and 3-HBA increased to 1.0 µM, their effect on HSAF 

production became similar, with 6.3 fold increase by 3-HBA and 6.0 fold increase by 4-HBA.  

Next, we evaluated the expression level of HSAF pks-nrps, the key gene for HSAF biosynthesis 

using Q-RT-PCR (Figure 8). In the wild type, the exogenous addition of 4-HBA (0.2 µM) 

increased pks-nrps expression by 2.2 fold, whereas 3-HBA (0.2 µM) increased pks-nrps 

expression by 4.6 fold (Figure 8). The results are in general agreement with the observed HSAF 

increase when HBA were exogenously added to the wild type culture (Figure 6-7). In addition, 

we evaluated the expression level of HSAF ox4, a tailoring gene for HSAF biosynthesis using Q-

RT-PCR (Figure 9) (28). The exogenous addition of 4-HBA (0.2 µM) increased ox4 expression 

by 2.1 fold, and 3-HBA (0.2 µM) increased the ox4 expression by 4.7 fold (Figure 9) (28). 
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Figure 6. The effect of 3-HBA on HSAF yield. A LeOH11 wild type; B through E. LeOH11 

wild type treated with 0.2, 1.0, 5.0, and 10 µM 3-HBA, respectively (from 48hrs culture extracts 

For the identity of the compounds, HSAF (1),  alteramide A (2), 3-deOH-HSAF (3), and 3-

deOH-altermide A (4) 	
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Figure 7. The effect of 4-HBA on HSAF yield. A. LeOH11 wild type; B through E. LeOH11 

 wild type treated with 0.2, 1.0, 5.0, and 10 µM 4-HBA, respectively. (The sample was taken  

from 48 hrs culture extracts). For the identity of the compounds, HSAF (1), alteramide A (2), 3-

deOH-HSAF (3), and 3-deOH-altermide A (4)  
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Figure 8. The effect of 3-HBA and 4-HBA on HSAF pks-nrps expression. A. LeOH11 wild 

type; B. LeOH11 wild type treated with 0.2 µM 4-HBA; C. LeOH11 wild type treated with 0.2 

µM 3-HBA. (The data is generated from 3 replicates). 

 

 

 

Figure 9. The effect of 3-HBA and 4-HBA on HSAF ox4 expression. A. LeOH11 wild type; B. 

LeOH11 wild type treated with 0.2 µM 4-HBA; C. LeOH11 wild type treated with 0.2 µM 3-

HBA. (The data is generated from 3 replicates). 
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1.3.3. LenB2 impacts the expression of HSAF biosynthetic genes 

We compared the production and the expression level of HSAF in the strains: wild type LeOH1, 

overexpressed lenb2 gene (LeOH11-pHmgA-PHSAF-lenb2) and lenb2 mutant strains (55). HPLC 

analysis of the metabolite extracts showed that the production of HSAF analogs increased by 5.6 

fold in the overexpressed lenb2 strain (Figure 10). This result coincides with the increased yield 

of HSAF upon exogenous addition of DF.  Next, we evaluated the expression level of 

biosynthetic genes (hsaf-nrps/pks and ox-4) through real time PCR. As shown in  (Figure 11-12), 

the expression level of both hsaf-nrps/pks and ox-4 increased by about 1.75 fold in the 

overexpressed lenb2 strains relative to the wild type LeOH11. The expression level of both 

HSAF genes decreased by about 0.5 fold in the Δlenb2 strains, compared to the wild type 

LeOH11. This result coincides with the exogenous addition of DF in LeOH culture medium.  
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Figure 10. HSAF yield in LeOH11 wild type (A), lenb2 overexpressed strain (B), and Δlenb2	

(C).	 (The sample was taken from 36hrs culture extracts). For the identity of the compounds, 

HSAF (1), alteramide A (2), 3-deOH-HSAF (3), and 3-deOH-altermide A (4)  

 

 

 

Figure 11.  HSAF-pks/nrps expression in LeOH11 wild type (A), overexpressed lenb2 (B), 

Δlenb2 (C). (The data is generated from 3 replicates). 
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Figure 12. HSAF-ox-4 expression in A. LeOH11 wild type; B. overexpressed lenb2; C. Δlenb2. 

(The data is generated from 3 replicates). 

 

 

 

 

1.3.4. Summary 

3-HBA and 4-HBA have been predicted to be present in a variety of bacterial species (48, 56). 

However, their relations to antibiotic biosynthesis in bacterial biocontrol agents have never been 

demonstrated. In the present study, we provided the first example to show that 3-HBA and 4-

HBA function as diffusible factors capable of regulating antibiotic HSAF production in L. 

enzymogenes.  
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In summary, this work demonstrates that 3-HBA and 4-HBA are signaling molecules that 

regulate the antifungal HSAF biosynthesis in L. enzymogenes. The role of these diffusible factors 

in antibiotic regulation has never been described in any DF producing bacterium. This finding 

widens our current view on the regulatory mode of DF in bacteria. Furthermore, it also facilitates 

the generation of high yield HSAF producing strains via modification of the 4-HBA signaling 

pathway in L. enzymogenes. Finally, given that DFs are widely produced by a variety of bacterial 

species, this study may trigger more studies on the function of DF in many other antibiotics. 
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1.4. Supporting Information   

Table S1. Primers used in this study 
Primer Sequence 

LenB2-F CGCCATATGAGCGCGGCCGCCGCGACCGT (NdeI) 

LenB2-R CCCAAGCTTGCCGTGCACTCCGTCGATCT(HindIII) 

RT-lenB2-F CAGTTGGAAGAAACCCTGGC 

RT-lenB2-R CATGCACCAGGATCCGCG 

16s-forw-realtime PCR ACTTCGTGCCAGCAGCCG 

16s-revs-realtime PCR CCATTCCCAGGTTGAGCCC 

HSAF-nrps-forw-realtime PCR GCAGATTCCGCCGCACAT 

HSAF-nrps-revs-realtime PCR CGAAGCCGAACGAGTTGACC 

HSAF-ox4-forw-realtime PCR  CGACGACGCCGACAAGATG 

HSAF-ox4-revs-realtime PCR TCGCCCATTGCCAGCACA 

In-fusion-forw-lenB2  GAAAAAGAAGGATCATGAGCGCGGCCGCCGCG 

In-fusion-revs lenB2  TTGATATCGAATTCCTGCAGTCAGCCGTGCACTCGGTC 
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Table S2. The gradient elution program for HPLC analysis (Mobile Phase A: acetonitrile contain 

0.1% formic acid; Mobile Phase B: water containing 0.1% formic acid; flow rate: 1 mL/min; 

detect wavelength: 280 nm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (min) MP A (%) MP B (%) 

0 40 60 

4 40 60 

17 70 30 

20 70 30 

25 100 0 

28 100 0 

29 40 60 
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Figure S1. NMR spectra of 3-HBA and 4-HBA produced in L. enzymogenes. 
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Section II  

Identification and Characterization of WBP Biosynthetic Gene Cluster from Lysobacter 

antibioticus OH13 

 

Abstract 

Lysobacter antibioticus OH13 (LaOH13) is a Gram-negative bacterium known to produce 

several bioactive compounds. We analyzed the genome sequence of LaOH13 using antiSMASH 

and found at least 13 gene clusters putatively responsible for the biosynthesis of natural products. 

Among the 13 clusters, six gene clusters contain nonribosomal peptide synthetases (NRPS) 

genes. One (designated WBP) of the gene clusters is similar to the WAP cluster that is 

responsible for the biosynthesis of WAP-8294A, a group of potent anti-MRSA antibiotics in 

Lysobacter enzymogenes OH11. The WBP cluster contains two huge open reading frames, 

together encoding 11 modules of NRPS, which is one module less than the WAP cluster. In this 

research, we set out to isolate the putative WBP metabolites from LaOH13 through  constructing 

a WBP mutant by deleting  one of the NRPSs, WBPS1. The mutation abolished the production 

of several metabolites that were produced by the wild type. The isolation and structural 

determination of these compounds are currently undergoing.  
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2.1. Background and Significance 

Lysobacter antibioticus OH13 is a ubiquitous environmental bacterium that belongs to the 

Lysobacter genus within the Xanthomonadaceae family (16, 56). The genus is emerging as a 

novel biocontrol agent against pathogens of crop plants including Bipolaris sorokiniana, 

Uromyces appendiculatus, and Rhizoctonia solani (57-59). We have been studying Lysobacter 

species as a new source of bioactive natural products (11, 15, 17, 25, 26, 28, 54, 60). We recently 

identified the biosynthetic genes for WAP-8294A, a group of cyclic lipodepsipeptides isolated 

from Lysobacter enzymogenes, with very potent activity against methicillin-resistant 

Staphylococcus aureus (MRSA) (11). Cyclic depsipeptides are a large and diverse family of 

naturally occurring secondary metabolites with potent antibacterial activity (60, 61).  Most of the 

compounds are isolated from soil-borne or plant-associated bacteria (62). Cyclic 

lipodepsipeptides are composed of a lipid tail linked to a short oligopeptide which is cyclized to 

form a lactone or lactam ring either between two amino acids in the peptide chain or between an 

amino acid and amino- or hydroxyl-group bearing fatty acid moiety (63). The peptides are 

biosynthesized by the multi-functional enzymes, non-ribosomal peptide synthetase (NRPS) 

(64,65).  Daptomycin is the leading antibiotic of this group already in the market for the 

treatment of systemic and life-threatening infections caused by Gram-positive bacteria such as 

MRSA and vancomycin resistant Staphylococcus aureus (VRSA) and enterococci (VSE) (65-

68).  
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In exploring for new antibiotic compounds in LaOH13 we obtained and analyzed the genome of 

LaOH13  and found thirteen gene clusters (Figure 13). Among the 13 gene clusters, we found 

one cluster is likely to encode for NRPS that are similar to the WAP-829A NRPS. We predicted 

that the NRPS are to synthesize new cyclic lipodepsipeptides, WBP. The goal of this project is to 

identify the natural products and to characterize the putative WBP biosynthetic gene cluster from 

LaOH13. 

 

Figure 13. Putative natural product biosynthetic gene clusters identified from the genome of 

Lysobacter antibioticus OH13 using antiSMASH  
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2.2. Materials and Methods  

2.2.1. Bacterial strains, plasmids, and general DNA manipulations.  

Escherichia coli XL1-blue strain was used as the host for general DNA propagation. L. 

antibioticus OH13 and other bacterial strains were grown in NA broth medium (0.5% peptone, 

0.4% yeast extract, 1% glucose). Genomic DNA of L. antibioticus was prepared as previously 

described (44). Plasmid preparation and DNA gel extraction were carried out using kits from 

Qiagen. PCR primers were synthesized by Eurofins  MWG Operon (distributed through Fisher 

Scientific). All other manipulations were performed according to standard methods (69).  

 

2.2.2. Generation of gene deletion mutants 

To construct vectors for in-frame deletion of the first A (adenylation) domain (A1) from wbps1 

(Figure 14), two DNA fragments were  amplified from the upstream and downstream of each of 

these two genes using the primer  pairs described in (Table S4). Genomic DNA from the wild 

type L. antibioticus OH13 was  used as the PCR template. Each of the upstream fragments was 

digested with XhoI/PstI, and  each of the downstream fragments was digested with PstI/XbaI. 

The upstream and  downstream fragments of wbps1 were cloned into the conjugation vector 

pJQ200SK to  produce pJQ200SK- wbps1leftright. The resulting vectors were confirmed by 

sequencing and PCR. Several attempts were carried out to transfer the constructed vectors into L. 
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antibioticus wild type using electroporation but it is not yet successful.  

 

Figure 14. Construction of vector for the deletion of the A1-domain in WBP_nrps gene   

 

 

 

 

2.2.3. Production and analysis of metabolites in wild type LaOH13 

OH13 was grown in R2A for 36-48 hrs, and an aliquot of 2 ml was transferred to a 250-ml flask 

containing 50 ml of fermentation medium (5% yeast extract, 5% protease peptone, 5% casein 
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hydrolysate, 5% glucose, 0.5% soluble starch, 3% sodium pyruvate, 3% dipotassium  hydrogen 

phosphate, MgSO47H2O; pH 7.2). The culture was incubated at 28°C for 3 days with shaking at 

200 rpm. To extract the metabolites, the 50-ml broth culture was collected. The supernatant was 

extracted with ethyl acetate (1/1, vol/vol). The organic phase was dried with a rotavapor (R-200; 

Buchi) to obtain the crude extract. The extract was dissolved in 2 ml methanol. A 20 µl aliquot 

of each extract was analyzed by high-pressure liquid chromatography (HPLC; 1220 Infinity LC, 

Agilent Technologies) using a column (Cosmosil 5C18-AR-II; 4.6 mm by 250 mm). Water-0.1% 

TFA (solvent A) and acetonitrile-0.1% TFA (solvent B) were used as the mobile phases with a 

flow rate of 1.0 ml/min. Hence the mass of WBP is predicted to be 1508 the sample was 

analyzed using LC-MS (HPLC: Cosmosil 5C18-AR-II, LC, MS: Finnigan mat, LCQ).  

 

2.3. Results and Discussion  

2.3.1. Sequence analysis of WBP gene cluster  

In looking for novel antibiotics in Lysobacter species, we obtained and analyzed the genome of 

LaOH13. We found at least 13 gene clusters probably responsible for the biosynthesis of several 

secondary metabolites; the majority of these gene clusters code for nonribosomal peptide 

synthetases (NRPS). One of the clusters grabbed our attention, as it contains two huge NRPSs 

that are embedded next to each other. The first NRPS (WBPS1) hosts 7 modules having 26 
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domains: 7 adenylation domains (A), 7 peptidyl carrier proteins (PCP), 7 condensation domains 

(C), 4 epimerase domains (E), and 1 methylation domain (M). The second (WBPS2) contains 

four modules having 15 domains 4 A, 4 PCP, 4 C, 2 E and 1 thioesterase (TE). WBP is named 

because of its similarity to the NRPS organization of the WAPS1 and WAPS2, previously 

characterized from Lysobacter enzymogenes OH11 (11).  

 

The substrate specificity of the adenylation (A) domains of the 11 NRPS modules was predicted 

based on sequence alignments of the 10-amino-acid “nonribosomal peptide codes” defined by 

Stachelhaus et al. (70, 71). Table S3 below shows the predicted “nonribosomal peptide codes” 

from the A domains of the 7-module of WBPS1, which would putatively activate and 

incorporate L-Val1 , D-Glu2 , L-Ser3 , Gly4 , D-N-Me-Phe5 , D-Leu6 , and D-Glu7, and of the 4-

module WBPS2, which would putatively activate and incorporate L-Ser8, D-Val9, D-Arg10, and 

beta Ala11. These putative substrates are used to predict the assembly line for the WBP 

biosynthesis, as shown in (Figure 16). 
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Figure 15 WBP gene cluster from L. antibioticus OH13 

 

 
 

 
 

ORF Bp aa Location Blastx Homolog 
1 1499  4539156 - 4540655 NAD-dependent epimerase/dehydratase 
5 1115  4531279 – 4532394 glycosyl transferase group 1 
8 1142  4535484 – 4536626 glycosyl transferase group 1 

11 1499  4539156 - 4540655 exopolysaccharide biosynthesis domain protein 
12 692  4540656 – 4541348 polysaccharide export protein 
13 1445  4    541777 – 4543222 sugar transferase 
17 1907  4547277 – 4549184 ABC transporter related protein 
18 27915 9304 4549308 – 4577222 condensation domain-containing (7modules)  

C  A1 PP  C  A 2 PP  E  C  A3  PP  C  A4  PP  C  A5  M  PP  E  C  A6 
PP  C  A7  PP  E  

19 16296 5431 4577203 – 4593498 condensation domain-containing (4modules) 
C  A1 PP  C  A 2  PP  E  C  A3  PP  E  C  A4  PP  TE 

20 1262  4593555 – 4594817 Decarboxylase, pyridoxal-dependent  
21 218  4594951 – 4595169 mbtH-like protein  
22 1289  4595329 – 4596618 major facilitator family transporter  
28 1334  4602202 – 4603536       sensor histidine kinase  
29 515  4603586 – 4604101 response regulator 
30 1388  4604434 – 4605822 sigma-54 dependent transcriptional regulator 
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Figure 16. Proposed biosynthetic pathway for WBP products from L. antibioticus OH13.  

 

	  

 

    

 

2.3.2. LC-MS analysis of crude extract from Lysobacter antibioticus OH13 

Numerous attempts to generate WBP mutant strains were not successful. To identify the putative 

WBP from the crude extract of L. antibioticus OH13, we have used tandem Liquid-

Chromatography-Mass Spectrometry (LC-MS) to trace the putative WBP compounds from the 
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crude extracts of L. antibioticus OH13 grown in the R2A medium for three days. A peak with a 

mass of 1508 was identified at the retention time of 16.77 minutes (Figure 17). Bruijn et al. 

recently reported the same mass of 1508 for an unknown compound, which could also be the 

same products of the WBP gene cluster (29). Therefore, we are collecting the crude extracts of 

OH13 metabolites to isolate the compounds with the retention time around 16 minutes and 

ultimately characterize their structure using NMR. 

 

Figure 17 HPLC (A) and LC-MS (B) of the crude extract of wild type Lysobacter antibioticus 

OH13 
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2.4. Supporting Information  

Table-S3: Specificity of Adenylation domains of WBP NRPSs 

 
 

Table S4.  Primers used for amplifying the left and right arms of wbp_s1  

           Type  Primers 

P1 S1 Left armForward (XhoI） 5’-CCGCTCGAGCACGCTCACCGCCTTCATCC-3’  

P2 S1 left arm Reverse 5’-GTCGTTCCAGTCCAGCAGCAGCGCGAACCACATTTCCGACT-3’ 

P3 S1 Right arm Forarwrd 5’-AGTCGGAAATGTGGTTCGCGCTGCTGCTGGACTGGAACGAC-3’ 

P4 S1 Right arm Reverse (XbaI） 5’-TGCTCTAGATCAACAACGGCACCCACAAC-3’  

 

 

 

 

 

 

SN  
 
 
WBPS1 

A-Domain Signature AA Score (%) 
1 A1 D  A  Y  W  W  G  G  T  F  K Val 100 
2 A2 D  T  E  D  I  G  A  V  D  K Glu 70 
3 A3 D  V  W  H  L  S  L  V  D  K Ser 90 
4 A4 D  I  L  Q  L  G  L  V  W  K Gly 100 
5 A5 D  A  W  T  I  A  A  V  C  K Phe 90 
6 A6 D  A  M  L  I  G  A  I  C  K Leu 80 
7 A7 D  T  E  D  V  G  C  V  D  K Arg/Glu 70 
8  

WBPS2 
A8 D  V  W  H  V  G  S  I  G  K Ser 70 

9 A9 D  A  Y  W  L  G  G  T  F  K Val 90 
10 A10 D  A  A  I  V  G  E  I  W  K Arg 60 
11 A11 I  D  W  V  S  S  I  W  D  K Ala-b 60 
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