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Modeling the impacts of electric bicycle purchase incentive
program designs
Alexander Bigazzi and Elmira Berjisian

Department of Civil Engineering, University of British Columbia, Vancouver, Canada

ABSTRACT
Governments are interested in incentivizing e-bike adoption, due to
potential benefits from displacing travel by private automobile. To
inform the development of e-bike purchase incentive programs,
the objective of this paper is to determine how key elements of
program design (particularly rebate amounts and structure) are
expected to affect new e-bike purchases. An aggregate demand
model is developed and applied to rebate scenarios to examine
incentive effectiveness. Results show that rebate programs are
expected to be bound by available rebates, not e-bike demand,
and additional bike shop revenues exceed rebate costs. At a fixed
program budget, fewer, larger rebates yield fewer additional sales,
but a larger share of rebates go to low-income and new (marginal)
purchasers. Flat and proportional rebate structures yield similar
sales, although flat rebates are more income-equitable. Flat
rebates are recommended for new e-bike incentive programs, with
robust program evaluations to inform future program designs.
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1. Introduction

The growing literature on electric bicycles (e-bikes) indicates that e-bike use (and interest
in e-bikes) is steadily growing worldwide, with uptake in North America and Europe
lagging uptake in Asia (Fishman and Cherry 2016). Many governments are interested
in incentivizing further e-bike adoption, due to potential benefits from increasing phys-
ical activity in the population and displacing travel by private automobile. Commonly
cited motivators of e-bike adoption are some of the same factors motivating other
forms of active travel (e.g. exercise-related health benefits, environmental concerns)
coupled with the greater ease of cycling with motor assistance (e.g. traveling with less
time and/or longer distances, mitigating effects of hills, and reducing perspiration
during travel). Commonly cited deterrents are price and fear of theft, in addition to
the deterrents of cycling in general such as fear of injury and exposure to weather
(Fishman and Cherry 2016; Fyhri et al. 2017; Leger et al. 2019; Rose 2012).
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Incentive programs for e-bikes take various forms, often targeting the known barriers
to adoption (McQueen, MacArthur, and Cherry 2019). Some program strategies are
similar to general cycling promotion (in particular infrastructure improvements),
while others target particular issues of concern for e-bikes (secure parking with electric
power, for example). As e-bikes are a relatively novel option for many travelers, many
incentive programs (particularly those run by companies in the e-bike industry) use
free or discounted e-bike rentals or loans. To address the issue of purchase cost directly,
a common e-bike adoption incentive program type is purchase incentives through mon-
etary rebates to consumers (sometimes coupled with other incentive elements such as
training or rentals).

Although e-bike incentive programshave increased in recent years, to date there has been
limited evaluation of program impacts on e-bike adoption or usage (McQueen,MacArthur,
and Cherry 2019). Several studies in northern Europe and the US have found positive per-
ception and behavior changes from interventions in the form of short-term e-bike loans of
1–10 weeks (Fyhri et al. 2017; MacArthur et al. 2017; Moser, Blumer, and Hille 2018;
Wikstrøm and Böcker 2020). Moser, Blumer, and Hille (2018) reported that a two-week
loan program ‘had a long-term effect on participants’ habitual associations with car use,
regardless of whether they would go on to purchase an e-bike’ after the intervention.
Fyhri et al. (2017) reported an increased willingness to pay for e-bikes after such a first-
hand experience, and suggested price reductions as an incentive strategy. de Kruijf et al.
(2018) found direct financial incentives (per km cycled) to be effective for increasing e-
bike travel, but did not investigate purchase decisions or incentives.

Developing a purchase incentive program involves many design elements including
eligibility, administration, and rebate amounts. A key design question is how to use avail-
able resources most effectively with respect to program goals. For example, a fixed
program budget could be distributed as many small incentives or fewer, larger incentives.
If the goal is to encourage mode shift toward cycling, a key program performance indi-
cator is the incentivized amount of new e-bike adoption. It cannot be reasonably assumed
that all purchase incentives are going toward new (marginal) purchasers; some purchases
would have been made without the incentive. So incentive program design relies on an
understanding of how incentives influence purchase behavior.

A variety of methods have been used to model the impacts of incentives on vehicle
sales or travel mode adoption, depending on the context, objectives, and available data
and resources. Past research on e-bike adoption scenarios has used sales and adoption
assumptions, due to a lack of available information and models (Bucher et al. 2019;
McQueen, MacArthur, and Cherry 2020). For example, in Mason, Fulton, and McDo-
nald (2015) the impacts of e-bike uptake are estimated by a priori assumed adoption
levels. No known research estimates e-bike sales or adoption based on a behavioral
model of responses to price incentives or rebates.

More research has been done on electric vehicle (automobile) sales and adoption in
the context of price incentives (rebates and tax breaks). Chandra, Gulati, and Kandlikar
(2010) assumed that rebates have no effect on the aggregate number of new cars sold, and
hence only modeled the effects of price incentives on the hybrid electric vehicle (HEV)
market share of new car sales. They estimated that 26% of new HEV sales were attributed
to a US$1000 rebate. DeShazo, Sheldon, and Carson (2017) similarly modeled the effect
of an electric vehicle (EV) rebate program based on the market share of EV, using a
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utility-based demand model estimated from stated preference (survey) data. Diamond
(2009) estimated a similar HEV market-share model using empirical sales data from
the United States.

Hence, models of EV purchase subsidies estimate the share of auto sales that will be
EV, assuming that the incentives have a negligible effect on total auto ownership. This
approach would poorly transfer to e-bike incentives because they are per se intended
to increase total bicycle ownership and usage, not incentivize a shift away from conven-
tional bicycles. Such an effect is supported by a recent meta-analysis that suggested just
around ¼ of e-bike use displaces travel by conventional bicycles, varying widely by
context (Bigazzi and Wong 2020). Thus, it is unreasonable to assume that anywhere
near all of the incentivized e-bike adoption is from a fixed market of bicycle ownership,
and an alternative approach is needed to estimate the effects of e-bike purchase incentives
on e-bike adoption.

Given the lack of information in the literature, those seeking to develop e-bike pur-
chase incentive programs have little basis for making decisions about program design
elements. This paper aims to help address that gap and inform the design of e-bike pur-
chase incentive programs. The objective is to determine how key elements of program
design (in particular the role of rebate amounts and structure) are expected to affect
new e-bike purchases. Related impacts of the program such as additional bike shop rev-
enues are also examined. A mathematical model is developed to estimate the effects of
e-bike purchase incentives from microeconomic principles, and then the model is
applied to several rebate scenarios to examine incentive effectiveness in different
contexts.

2. Method

An aggregate demand model is used to estimate increased e-bike purchases resulting
from a rebate program, and further adoption impacts are estimated from values in the
relevant literature. Additional e-bike sales due to rebate incentives are estimated from
program parameters (number and size of rebates), market information (baseline e-bike
price and sales estimates), and representative elasticity values from the literature. The
model is applied to case study market characteristics from two Canadian cities, one
small and the other large, with otherwise comparable characteristics: Victoria and Van-
couver, British Columbia.

2.1. e-bike demand model

The aggregate demand model is based on extensive literature in transport economics
(Ortuzar and Willumsen 2011; Small and Verhoef 2007). Individuals have a likelihood
of purchasing an e-bike in a given year that is dependent on e-bike price p, e-bike
characteristics, individual preferences and characteristics, opportunity costs of pur-
chasing, and other factors. Aggregate demand d for e-bikes is a function of the same
set of factors and the size of the population. Two common forms for the aggregate
demand functional relationship to price are linear, d = f (p), and power, d = f ( pk).
Price elasticity of e-bike demand 1 represents the effect of e-bike price on aggregate
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e-bike demand:

1 = p
d
∂d
∂p

.

A rebate r will reduce the effective consumer e-bike price from p to p− r, assuming a
relatively flat e-bike market supply curve so that the rebate program does not affect e-
bike retail prices. Using a linear demand function, the new total demand with a rebate is

d = db 1− 1r
p

( )
where db is the baseline demand without a rebate. The change in

demand as a result of the rebate is Dd = d − db = −db1
r
p
. Alternatively, using a

power demand function the new demand level is d = db 1− r
p

( )1

and the change inde-

mand is Dd = db 1− r
p

( )1

− 1

[ ]
.

The change in demand, Dd, represents the additional potential EB sales with the
rebate, but the sales may not be realized if there are a limited number of rebates, nr, avail-
able within the incentive program (due to budget constraints). If d ≤ nr, there are
enough rebates to satisfy all demand (baseline plus rebate-induced), and there will be
s = Dd additional sales and s+ db total rebates issued. If d . nr, there are not enough
rebates available for all demand with the rebates. In that case, it is assumed that it is effec-
tively impossible to only provide rebates to the marginal (rebate-induced) purchases, and
an individual’s opportunity to receive a rebate is independent of their likelihood of pur-
chasing. It is also assumed that purchasers would know about the availability of a rebate
before purchasing. Hence, the nr available rebates are distributed proportionally to base-
line and marginal demand such that:

.
db
d
nr go to baseline individuals who would have purchased without the rebate, and

Figure 1. Illustration of rebate- and demand-limited conditions.
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.
Dd
d

nr go to induced (marginal) purchasers, resulting in s = Dd
d

nr additional sales
(which equates to s = Dd at the limiting case d = nr).

Rebate-limited and demand-limited additional sales are illustrated in Figure 1. The
minimum budget to satisfy demand and reach the demand-limited (not rebate-
limited) condition is nrr = dr (i.e. where nr = d).

Applying the linear and power demand functions, expressions for additional sales and
relevant program impacts are given in Table 1. In summary, to estimate the additional
sales from a rebate program, the following model inputs are needed:

. Market information: baseline price (p) and demand (db) without rebates

. Program design variables: rebate amount (r) and number available (nr)

. Consumer attributes: price elasticity of e-bike demand (1)

The selection of these variables is discussed in the next section. There are several major
assumptions in the method which are noted above and discussed at the end of the paper,
but warrant repetition here. The first is that e-bike market prices are assumed to be
unaffected by the introduction of the rebate program (i.e. bike shops do not adjust their
prices in response to the rebates or the induced demand). The second is that rebates are
arbitrarily allocated to purchasers so that a marginal/induced purchaser (who would
only purchase with the rebate) and a baseline demand purchaser (those who would
have purchased without the rebate) have an equal likelihood of receiving a rebate.

2.2. Input data and assumptions

2.2.1. Case study locations
The model is applied for a case study of two similar cities of different sizes, but similar con-
texts:Victoria andVancouver,BritishColumbia, Canada. Both cities have strong sustainable

Table 1. Summary of demand functions.
Linear demand function Power demand function

Demand-limited
(d ≤ nr)

Rebate-limited
(d . nr)

Demand -limited
(d ≤ nr)

Rebate-limited
(d . nr)

Rebate-limited test
condition

db 1− 1r
p

( )
. nr db 1− r

p

( )1

. nr

Total demand with rebate, d db 1− 1r
p

( )
db 1− r

p

( )1

Additional demand with
rebate, Dd

−db1
r
p

db 1− r
p

( )1

− 1
( )

Additional sales, s −db1
r
p

nr1r
1r − p

db 1− r
p

( )1

− 1
( )

nr 1− 1− r
p

( )−1( )

Rebates issued db 1− 1r
p

( )
nr db 1− r

p

( )1

nr

Portion of rebates to new
purchasers

1r
1r − p

1− 1− r
p

( )−1( )
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transportation policy agendas, with robust cycling networks (for North America), and
various cycling supports from advocacy organizations and all levels of government.
Neither currently has an e-bike purchase incentive program.The province ofBritishColum-
bia does have a vehicle scrappage programwith the option of aC$1050 rebate on an e-bike of
at least C$1200, among other options including C$6000 toward a new electric car or C$200
cash (where C$1000=US$800). However, informal information from both bike shops and
the SCRAP-IT program indicates the e-bike incentive is rarely used. Estimates are made
for both themunicipalities and regions of Victoria andVancouver, with the regions encom-
passing suburban areas with less cycling infrastructure and activity.

2.2.2. e-bike sales
E-bike sales and ownership numbers are difficult to obtain, particularly at fine spatial scales.
E-bike sales estimates at the national level are typically made through customs records,
which itself is challenging due to a lack of clarity in filing categories (Benjamin and
Poynter 2014;Wild andWoodward 2018). There is no known large-scale survey that collects
e-bike ownership data, and the closest spatial sales data available are for the entire USA.Due
to a lack of market data, baseline e-bike demand (db) for the case study geographies is esti-
mated by scaling US annual sales by population and bicycle commute mode share.

The core assumption behind the sales estimate is that per capita e-bike sales are pro-
portional to bicycle commute mode shares. Local annual e-bike sales, SL, are estimated
from annual US national sales, SU , the population of each geography, PL and PU , and
the bicycle commute mode share of each geography, ML and MU . The core assumption

can be written
SL

PLML
= SU

PUMU
, and rearranged to solve for SL = SU

PLML

PUMU
.

Base year (2016) data are given in Table 2. Population and bicycle commute data and
5-year growth estimates are taken from the US and Canadian Censuses (Statistics Canada
2012, 2017; U.S. Census Bureau 2018). US e-bike sales estimates are compiled from the
eight sources: (Benjamin and Poynter 2014; Citron and Gartner 2016; Fishman and
Cherry 2016; MacArthur, Dill, and Person 2014; McFarland 2018; Sutton 2017; Takiff
2017; The NDP Group, Inc. 2017). Compiled sales estimates from all eight sources
yield 13 observations over the years 2012 through 2017. A linear trend-line through
these data is estimated as SU = 101, 500+ 28, 500(Year − 2012), with an R2 of 0.45,
indicating 2016 sales of 215,500 and annual growth of 28,500.

Table 2. Baseline e-bike sales data estimates.

Victoria city
Victoria
metro

Vancouver
city

Vancouver
metro USA

2016 Population (annual growth) 85,792
(1.40%)

367,770
(1.31%)

631,486
(0.91%)

2,463,431
(1.27%)

324,310,011
(0.77%)

2016 Bicycle commute mode share
(annual growth)

11.11%
(0.88%)

6.58%
(2.24%)

6.14% (7.08%) 2.35% (5.44%) 0.69% (2.50%)

2016 Annual e-bike sales (annual
growth)

unknown unknown unknown unknown 215,500 (28,500)

2020 baseline demand (±20%) 1375 (±275) 3671 (±734) 6960 (±1,392) 9913 (±1983) 329,500
(±65,900)

2030 baseline demand (±20%) 2329 (±466) 7045 (±1409) 20,388
(±4078)

25,786 (±5157) 614,500
(±122,900)
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Table 2 also gives 2020 and 2030 estimates for baseline demand db, based on the 2016
data and growth rates, and the core assumption equation (i.e. per capita e-bike sales are
proportional to bike commute mode share), along with an assumed ±20% margin of
error to account for the large uncertainty. Sales of e-bikes are estimated at 4–28 per
1000 population for Victoria and Vancouver (varying by geography and year) and at
1–2 per 1000 population for the US; for comparison, the US and Europe are estimated
to purchase non-electric bicycles at a rate of about 50 and 30 per 1000 persons per
year, respectively (Benjamin and Poynter 2014). The projected e-bike sales growth rate
in Victoria and Vancouver is 5% to 11% per year. The e-bike market size is difficult to
estimate at this scale, but note that if program is rebate-limited, then the additional
sales (s) are independent of db. Hence, the results will not be sensitive to this variable
in a market of sufficient size to satisfy the rebate scarcity constraint: d . nr.

2.2.3. e-bike prices
Sales prices for e-bikes were obtained through a survey of nine local e-bike retailers in
2018. Prices were categorized according to style (mountain, cargo, road, etc.), and
motor assist type (pedal-assist, throttle-assist, etc.). Across all e-bikes, prices ranged
from C$590 to C$12,370. By several different weightings by type and model, overall
median prices were in the range of C$3700 to C$4900.

Based on these data, representative low, medium, and high e-bike prices are given as C
$2500, C$4500, and C$6500, respectively (in CAD). Baseline demand is assumed to be
uniformly distributed across these price levels. For comparison, industry information
suggests average US sales prices (in C$) of C$3200, with 40% of US sales from e-bikes
over C$4000, 30% from e-bikes in the range C$3300 to C$4000, and 30% from e-bikes
below C$3300 (The NDP Group, Inc. 2017). Also, as mentioned above, a recent report
for the Victoria region suggested a regional e-bike price range of C$2000 to C$8000
(WATT Consulting Group 2018).

Price changes over time are difficult to predict. As a new technology, e-bike prices may
fall as battery technology advances. At the same time, prices are rising in the bicycle
market in general, and the future trend for e-bike prices is unknown. Given this uncer-
tainty, scenarios are estimated with price trends ranging ±5% annually.

2.2.4. Price elasticity of e-bike demand
Due to limited information on e-bike demand and price sensitivity, values are derived
from the broader literature on bicycles and electric cars. Five relevant studies report
the following values for price elasticity of demand: −1.3 for bicycles in the Netherlands
(Derksen and Rombouts 1937), −2.7 for bicycles in the US (Kerr 1987), and −0.9 to −2.3
for electric vehicles in the US (DeShazo, Sheldon, and Carson 2017; Glerum et al. 2014;
Mabit and Fosgerau 2011). Based on these studies, a broad range of elasticity values is
applied, with a central value of −2.0, but ranging from −1.0 to −3.0.

2.2.5. Income effects on e-bike demand
Lower-income individuals tend to have higher marginal utilities of income, and hence be
more sensitive to price and rebates (DeShazo, Sheldon, and Carson 2017). Thus, rebates
aremore cost-effective if targeted to lower-incomeconsumers, andequity and efficiencyout-
comes can align. Potential price effects are estimated by segmenting the potential e-bike
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market into three incomecategories (low/medium/high), and applying 20%changes to price
elasticities across segments, informed by DeShazo, Sheldon, and Carson (2017) and Small
and Verhoef (2007). The baseline demand is also distributed disproportionally across the
income segments, to account for the high income of early e-bike adopters reported in the
literature (FishmanandCherry 2016;MacArthur,Dill, andPerson2014). Theassumedbase-
line demand is equal across income tertiles for low-priced e-bikes, two times higher from
high-income versus low-income tertiles for medium-priced e-bikes, and 3 times higher
for high-income versus low-income tertiles for high-priced e-bikes.

2.3. Rebate program scenarios

Modeled program characteristics and rebate amounts are based on a review of existing e-
bike incentives programs. To focus on municipal-led programs, the review was limited to
rebate programs that targeted residents of a specified area rather than employees of com-
panies or business-oriented programs. Examples included programs in Edmonton,
Austin, and Oslo (Austin Energy 2018; City of Edmonton 2020; Weller 2017), in addition
to those in a recent white paper on e-bike incentive programs (McQueen, MacArthur,
and Cherry 2019). Typical incentive amounts range from C$260 to C$1600, although
amounts over C$1000 are rare. Based on these observations, the suggested ranges for
representative rebates is as follows: Low (C$200 to C$400), Medium (C$400 to C
$1000), and High (C$1000 to C$1600).

As an alternative to flat rebate amounts, tiered rebate structures offer rebate amounts
that vary, usually based on the price of the e-bike. For example, rebate amounts can
increase by C$100–200 with incremental C$1000 e-bike price tiers. A similar approach
is rebate amounts at a fixed percentage of e-bike prices, often capped at a maximum
amount. Typical amounts are 20%–30% of e-bike price, capped anywhere in the range
of flat rebate amounts, from C$300 to C$1600.

The modeled programs begin in 2020, and a 10-year horizon is included to model
demand out to 2030 with varying demand and prices. Program effects are estimated
using a linear demand function and representative annual program budgets of C
$50,000 to C$1,300,000 – roughly half of the relevant population. Two types of rebate
structures are modeled with varying rebate amounts, based on the review of existing pro-
grams: flat rebates of C$200 to C$1600, and proportional rebates of 10% to 30% of e-bike
price. For e-bike prices ranging from C$2500 to C$6500, the 10% to 30% proportional
rebates translate to rebate amounts of C$250 to C$1950. A tiered rebate structure was
not modeled separately because it is essentially a discrete equivalent to the proportional
rebates, and yields similar results. Rebates are equally available across all e-bike price
levels and distributed randomly; hence, consistent with above, in rebate-limited con-
ditions rebates are distributed proportionally to total demand at each e-bike price level.

3. Results

3.1. Program design factors

The upper 8 rows of Table 3 give the estimated effects in 2020 of a flat rebate program in
Vancouver with an annual budget of C$300,000 and fixed rebates of C$200 to C$1600.

8 A. BIGAZZI AND E. BERJISIAN



The number of available rebates decreases with higher per-rebate values. At the same
time, higher rebate amounts increase total and induced (marginal) e-bike demand.

These are all rebate-limited cases (i.e. all available rebates are used), and so the additional
sales are limited by the number of rebates available to marginal purchasers (those who will
only purchasewith the rebates). At higher rebate amounts, the induceddemand increases, as
does the portion of rebates going to marginal purchasers. However, the additional e-bike
sales fall somewhat with rebate amount, as fewer rebates are available. New revenue to
bike shops falls as well with fewer additional sales. Still, because induced demand is a
higher share of total e-bike demand at higher rebate levels, the amount and share of
rebates going to marginal purchasers increase with rebate amount.

In short, there is a general trade-off, where higher rebate amounts yield fewer additional
e-bike sales (because fewer rebates are available at a fixed program budget), but a higher
proportion of the rebate funds go to marginal purchasers. Also, note that the new bike
shop revenue (induced by the rebates) exceeds the program costs in all cases.

The lower three rows of Table 3 also give the estimated effects of a proportional rebate
program (but otherwise the same), with rebates of 10% to 30% of e-bike prices. These are
again rebate-limited cases, with all available rebates used. The estimated effects are similar
to the flat rebate program, where higher rebate levels yield slightly fewer additional pur-
chases, but a greater share of rebates going to marginal purchasers. In addition, the mag-
nitude of the effects is similar, if comparing flat and proportional rebates in Table 3.

The effects scale linearly with the budget, so doubling the budget essentially doubles
the impact of the program. The linear relationship with the budget is due to the consist-
ent rebate-limited state of the program (i.e. there is ample demand to take up all the avail-
able rebates). With small rebates and a large budget, the effects could become demand-
limited, which would cap the program effects. For the example program in Vancouver
above, this would not happen until the annual budget exceeded C$1.5 million.

3.2. Context

Table 4 compares flat rebate program effects across the four geographies described above:
municipal and regional Victoria and Vancouver. For comparison across scales, annual

Table 3. Estimated impacts of a flat rebate program in Vancouver (in C$)1.

Rebate
amount 2

Number of
rebates available

Total e-bike
demand

Induced e-bike
demand

Additional
sales

New bike shop
revenue

Rebates to
additional
purchasers

$200 1500 7680 720 141 $543,700 $28,100 9%
$400 750 8400 1440 129 $497,100 $51,400 17%
$600 500 9120 2160 118 $457,900 $71,100 24%
$800 375 9840 2880 110 $424,400 $87,800 29%
$1000 300 10,560 3600 102 $395,400 $102,300 34%
$1200 250 11,280 4320 96 $370,200 $114,900 38%
$1400 214 12,000 5040 90 $348,000 $126,000 42%
$1600 188 12,720 5760 85 $328,300 $135,900 45%
10% 776 8350 1390 129 $500,000 $50,000 17%
20% 388 9740 2780 111 $428,600 $85,700 29%
30% 259 11,140 4180 97 $375,000 $112,500 38%
1$300,000 annual budget, base demand of 6960 for 2020, demand elasticity of −2.0, and linear demand function.
2Average rebate amounts of $387, $773, and $1160 for 10%, 20%, and 30% rebate programs, respectively.

TRANSPORTATION PLANNING AND TECHNOLOGY 9



program budgets are set at around half of the relevant population. Rebate levels and other
parameters are set at medium values: $800 flat rebates, demand elasticity of −2.0 with a
linear demand function. The incentive program impacts are rebate-limited in all cases,
yielding proportionally similar effects across geographies. In all cases, 29% of the
rebates go to marginal purchasers, because that only depends on the rebate amount, e-
bike prices, and demand elasticity – see Table 1. New bike shop revenue is 41% higher
than the budget in all cases, and additional sales are proportional to budgets. The
bottom two rows in Table 4 give the minimum program budgets in each geography to
satisfy all demand (and reach the demand-limited condition), which are much higher
than the proposed (and typical) amounts. Smaller rebates (e.g. C$200 instead of C
$800) induce less demand and provide more rebates at a fixed budget, and so yield a
demand-limited condition at a lower budget. Comparing geographies, regional settings
are closer to a demand-limited condition because they have less e-bike demand as a
ratio to the population; but even then, program budgets would have to be very large
to satisfy all demand.

3.3. Forecast impacts

Forecasting program impacts out to 2030 based on growth in baseline demand and chan-
ging prices, the baseline demand growth for e-bikes has no impact on the estimated
program effects because, as described above, the programs are rebate-limited and not
demand-limited. This includes the analysis of uncertainty of ±20% in the base and fore-
casted e-bike demand. This result is favorable for the modeling approach, given the large
uncertainty in estimating e-bike demand at a local scale.

The results are, however, sensitive to potential e-bike price changes over time. Rising
prices reduce the program effects, while falling prices amplify program effects, due to
changes in the size of the rebates relative to e-bike prices. Modeling the same flat-
rebate programs as in Table 4, e-bike price growth of 5% annual yields 30% lower new
e-bike sales due to the incentive program in 2030 across all geographies, while annual
5% price reductions yields 40% higher new e-bike sales due to the programs. Thus, if
e-bike prices fall (due to market growth and improvements in battery technology, for
example), then that will enhance the program outcomes. A proportional (versus flat)
rebate program design would produce effects insensitive to e-bike market price
changes, as long as the total program budget were adjusted accordingly.

Table 4. Comparison of flat C$800 rebate across geographies.
Victoria city Victoria metro Vancouver city Vancouver metro

Population 90,700 387,400 654,800 2,590,500
Baseline demand 1380 3670 6960 9910
Program budget $50,000 $200,000 $300,000 $1,300,000
Number of rebates 63 250 375 1625
Total (induced) e-bike demand 1950 (570) 5190 (1520) 9840 (2880) 14,010 (4100)
New sales (revenue) 18 ($70,700) 73 ($282,900) 110 ($424,400) 476 ($1,838,900)
Minimum budget to satisfy demand ($800
rebates)

$1,560,000 $4,150,000 $7,870,000 $11,210,000

Minimum budget to satisfy demand ($200
rebates)

$300,000 $810,000 $1,540,000 $2,190,000
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3.4. Distribution by income and price

Table 5 gives the distribution of rebates by income and price tertiles for flat rebate pro-
grams of C$200 to C$1600 and percentage rebates of 10% to 30% (using the same
program parameters as above). The income-based estimates assume higher price elas-
ticity for lower-income purchasers, and baseline e-bike demand disproportionately
from higher-income purchasers, particularly for higher-priced e-bikes, as described in
the Methodology section. The resulting distributions of rebates are similar across
geographies.

The results show that the incentive program overall can be considered somewhat pro-
gressive with respect to income, with higher proportions of rebates going to lower-
income purchasers compared to the baseline shares of demand. The effect is amplified
with higher rebate amounts because lower-income purchasers tend to have higher
price elasticities, which means they are more responsive to price incentives. Higher flat
rebates also increase demand more for lower-priced e-bikes, for which the flat rebate
is a greater proportion of the total cost – and which are more often purchased by
lower-income purchasers. On the other hand, proportional rebates reduce the progres-
siveness of the rebates because a larger share of the total rebates available goes to
higher-priced e-bikes, which are more often purchased by higher-income purchasers.

Although the program tends to increase rebates to lower-income purchasers relative
to baseline demand, with the assumption that the baseline demand is skewed toward
higher-income purchasers, a larger share of rebates will likely still go to the high-
income segment, despite the program helping to shift the distribution toward lower-
income purchasers. Overall, a flat rebate program is expected to make e-bikes more
affordable for low-income purchasers, although it may not cancel out disparities in base-
line demand by income.

3.5. Parameter sensitivity

The results reported above are not sensitive to baseline demand assumptions because the
program effects are rebate-limited, not demand-limited. As shown above, program
budgets would have to be very large to meet the demand-limited condition, particularly
with medium or large rebate amounts.

The results are, however, highly sensitive to the assumed price elasticity of e-bike
demand. For the example programs above, the induced demand varies by a factor of
three with elasticity ranging from −1.0 to −3.0, leading to additional e-bike sales that

Table 5. Share of rebates by purchaser income and e-bike price level (in C$).

Rebate amount
Low

income
Medium
income

High
income

Low
price

Medium
price

High
price

$200 25% 33% 42% 35% 33% 32%
$800 27% 34% 40% 39% 32% 29%
$1600 28% 34% 38% 42% 31% 27%
10% 25% 34% 41% 34% 33% 33%
20% 26% 34% 41% 34% 33% 33%
30% 26% 34% 40% 34% 33% 33%
Reference share of baseline
demand

24% 33% 43% 33% 33% 33%
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vary by a factor of two. For similar reasons, the results are also moderately sensitive to the
assumption of a linear versus power form demand model. The power model implies a
more dynamic response, generating greater induced demand and additional e-bike
sales, by about 30% compared to the linear model estimates. Hence, estimates reported
above are conservative, and program impacts could be higher, depending on the true
demand response to price incentives. Given the uncertainty of the true elasticity value
and its greater impact on the results, the true demand functional form is likely of less
importance.

4. Limitations

The demand modeling approach applied here has several important uncertainties and
sensitivities. Estimated incentive program impacts are highly sensitive to demand elas-
ticity and moderately sensitive to price trends and demand functional form. However,
results are not sensitive to baseline demand or demand trends because incentive pro-
grams are likely to be rebate-limited. This assumption and finding is supported by a
recent e-bike incentive program in Edmonton, Canada, with a C$50,000 rebate
program (rebates of 30% up to C$750) that ran out of rebates in just days.

A substantial assumption in the method is that e-bike market prices are assumed to be
unaffected by the introduction of the rebate program. In other words, bike shops do not
adjust their prices in response to the rebates or the induced demand. This assumption is
supported by the relatively small portion of e-bike demand receiving a rebate: 3% to 12%
for the programs in Table 4. At that scale, the rebate is unlikely to substantially distort the
local market e-bike price.

Another assumption is that rebates are arbitrarily allocated to potential purchasers, so
that there is an equal likelihood of a marginal purchaser (who would only purchase with
the rebate) obtaining a rebate as a baseline purchaser (who would have purchased
without the rebate). It would be nearly impossible to selectively provide incentives to
marginal purchasers, and so this is a reasonable assumption given the lack of information
about strategic actions that baseline or marginal purchasers may take to obtain a refund.
If marginal purchasers are more motivated and effective in obtaining rebates than base-
line purchasers, that would increase the program effectiveness; but the opposite may also
be true (marginal purchasers may be less motivated, decreasing program effectiveness).

The analysis is conservative in neglecting potential positive spill-over effects of
additional e-bike sales due to the incentive program. For example, each new e-bike pur-
chaser may increase the likelihood of acquaintances purchasing an e-bike through social
network effects; or they may increase the general likelihood of e-bike purchases through
familiarity and norming. Such effects have been reported but not sufficiently quantified to
include in the analysis (Fyhri et al. 2017; Simsekoglu and Klöckner 2019). Similarly, the
effects of an initial e-bike purchase induced by the incentive program on the likelihood of
future e-bike purchases by the same person are not modeled.

The model applied in this paper is built on well-established microeconomic principles,
but not empirically validated. It is difficult to empirically discriminate between marginal
and baseline purchasers; self-reported survey instruments are vulnerable to response
biases (hypothetical, strategic, etc.) undermining their internal validity, samples of e-
bike purchasers are biased through self-selection, and a relevant control population
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can be difficult to identify and recruit. As e-bike incentive programs more frequently
emerge, it is imperative to couple them with robust evaluation studies, which can help
to improve understanding of key factors such as the price elasticity of e-bike demand
conditioned on socio-demographics.

This analysis considers e-bike purchases but not actual usage. If purchases correspond
to usage, then program impacts can be extended to outcomes such as displaced driving,
emissions reductions, and increased physical activity – e.g. in the order of 500 kg CO2e
per year per e-bike (Bigazzi and Berjisian 2019). However, it is uncertain how e-bike
usage by new purchasers may differ from that of existing early adopters, particularly –
and crucially – how marginal (induced) purchasers differ from baseline purchasers. If
an e-bike purchase is only made with the inducement of a substantial price reduction,
will the purchaser be less motivated to use it? Mode substitution patterns may also
differ between marginal and baseline adopters – and by other relevant factors such as
income. If higher-income purchasers are more likely to substitute for driving, then
program equity and environmental impact goals may come into conflict. These questions
need to be answered with robust before-and-after evaluation including both immediate
and long-term travel behavior changes.

5. Conclusions

While the precise impact estimates of this analysis should be interpreted with caution, the
modeling provides several insights about e-bike incentive programs. These include: e-
bike rebate incentive programs are expected to be rebate-limited (not demand-limited)
at typical rebate and budget amounts – in other words, all available rebates will be
used; program impacts increase proportionally with the budget, but are otherwise con-
sistent across geographies; additional bike shop revenue is expected to exceed rebate
costs, even allowing for administrative costs; incentive programs improve access to e-
bikes for lower-income residents, but may not overcome disparities in baseline
demand; higher rebate amounts (at a fixed budget) generally yield fewer additional
sales and lower additional bike shop revenues, but a larger share of rebates goes to
low-income and new (marginal) purchasers; flat and proportional rebate structures
yield similar results, although flat (or capped) rebates yield better income equity; and esti-
mated effects are robust to uncertainty in current and future baseline e-bike demand, but
flat rebate effects will be amplified if e-bike prices fall over time, and diminished if they
rise.

Based on these findings, flat rebates of C$400 to C$800 are recommended as a reason-
able starting point for initiating an e-bike rebate incentive program. A flat rebate
program is simpler than proportional or tiered rebates, which reduces administrative
costs and can also be good for adoption because program simplicity is an important
factor for the effectiveness of incentives (DeShazo, Sheldon, and Carson 2017). Flat
rebates also are preferable from an equity perspective, to avoid larger rebates going to
higher-priced e-bikes (which are more likely to be purchased by higher-income individ-
uals). Flat rebates (with respect to e-bike price) can be tiered by income level to further
improve program equity. Other considerations in rebate program design beyond rebate
structure include: rebate eligibility requirements (e-bike type and price, purchase
location, residency, income thresholds), administration (application process, allocation
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of scarce rebates), and co-requirements (education/training program). The relatively
simple model presented and applied in this paper can be used in the program design
process in other locations, to examine trade-offs in rebate size and structure.
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