DIRECTED CATALYTIC ASYMMETRIC HYDROBORATION OF 1,1-DISUBSTITUTED ALKENES

Mohammad Odeh Bani Khaled
University of Nebraska-Lincoln, mohammad@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/chemistrydiss
Part of the Chemistry Commons

[^0]
1,1-DISUBSTITUTED ALKENES

By

Mohammad Bani Khaled

A Thesis

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements
For the Degree of Master of Science

Major: Chemistry
Under the Supervision of Professor James M. Takacs

Lincoln, Nebraska

July 2012

Directed Catalytic Asymmetric Hydroboration (CAHB) of 1,1-Disubstituted

Alkenes
Mohammad Bani Khaled M.S.
University of Nebraska, 2012

Adviser: James M. Takacs:

Since the beginning of catalytic asymmetric hydroboration (CAHB) in 1989, many new approaches have been developed. Developing an efficient method of catalytic asymmetric hydroboration to produce useful chiral organoboranes is still a challenge due to limited success with a small range of substrates. Typically, effective CAHB requires the presence of vinylarene moiety or a particular substitution pattern around the alkene. One area of research in the Takacs group has been to expand this substrate scope by incorporating two-point binding to direct the reaction to one regioisomer selectively. CAHB of two-point binding substrates in the presence of simple chiral monophosphite and monophosphoramidite ligands is an attractive approach to overcome this challenge.

One of the long standing challenges is the catalytic asymmetric hydroboration of 1,1disubstituted alkenes. Although practical and highly enantioselective conjugate addition and hydroboration utilizing stoichiometric amounts of chiral borane of 1,1-disubtituted alkenes by Hoveyda, Mazet, and Soderquist have been demonstrated, CAHB of 1,1 disubstituted alkenes remain a significant challenge. Herein, we report an elegant solution of this problem using two-point binding. For example, this reaction can be
carried out by treatment of the β, γ-disubstituted alkene unsaturated amide with $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$ and ligands TADDOL-derived monophosphite or BINOL-derived monophosphoramidite. High catalytic activity (62\%), high regioselectivity ($>96 \%$), and enantioselectivities up to 94% were obtained with the β, γ-unsaturated ester framework. The applicability of this method was further highlighted by successfully forming chiral β -substituted butyrolactones, the key precursor for the synthesis of biologically active natural products including lignans. This method also enables for the efficient preparation of trifluoroborate salts to provide chiral reagents for the Suzuki- Miyaura cross coupling reaction.

Table of Contents

i. Acknowledgments I
ii. Index of Figures II
iii. Index of Schemes III
iv. Index of Tables IV
v. List of Abbreviations. VI
1.
Introduction 1
1.1. Development of asymmetric synthesis 1
1.2. The Versatility of organoboranes 4
1.3. Background of transition metal catalyzed hydroboration 7
1.4. Directed hydroboration 9
1.5. Hydroboration reagents. 11
1.6. Enantioselective hydroborations, 13
1.7. Mechanism of rhodium-catalyzed hydroboration 17
1.8. Conclusion 20
2. Carbonyl-directed Catalytic Asymmetric Hydroboration (CAHB) of 1,1-
disubstituted alkenes 21
2.1. Background: Amide directing hydroboration of β, γ-disubstituted alkene 21
2.2. Previous Attempts of Enantioselective Hydroboration of 1,1-Disubstituted
Alkenes 24
2.3. Investigation of CAHB of 1,1 -disubstituted Alkenes contained a β, γ-unsaturated carbonyl framework. 26
2.4. The influence of boranes in CAHB of 1,1-disubstituted alkene 33
2.5. A More Detailed Summary of pinBH Data for Comparison Purposes 37
2.6. Exploration into application of bornates 41
3.1. Catalytic asymmetric hydroboration of β, γ-unsaturated ester and Weinreb amides 43
3.2. Catalytic asymmetric hydroboration of 1,1-disubstituted Weinreb amides. 50
3.3. Potential applications of the directed CAHB of unsaturated esters in synthesis 53
4. Concluding Remarks 56
5. Experimental Data 60
6.References. 94
7. Chapter 7 Spectra Appendix 9

i. Acknowledgements

It is a pleasure to thank my supervisor, Professor James M.Takacs who has invaluable help of constructive comments throughout the thesis works and with his patience and knowledge whilst allowing me to work in the his research lab.

I would like to express my appreciation to many people who have helped me in the research lab: Dr. Mark Helle, Sean Smith, Nathan Thacker, Kazuya Toyama, Scott A. Pettibone and Andy Geis, For their kind assistance with giving advice, writing thesis, helping with various applications in the lab, and so on. And sincere thanks to all my friends outside the chemistry department.

I also thank the graduate chair of chemistry department Professor Jody Redepenning for his support and invaluable assistance on both an academic and a personal level since the start of my classes work in 2009.

I am grateful to the secretaries and staff in the chemistry departments in NebraskaLincoln, for helping the department to run smoothly, for assisting me in many academic issues.My acknowledgements also goes to all the technicians of chemistry department for their co-operation

Last but not least, I wish to thank my beloved wife for her kindness, moral support during my study, encouragement and for every moment she has patience with me, To her I dedicate this thesis.

ii: Index of Figures

Figure 1: Two Enantiomers of Proxyphene.. 1
Figure 2: Enantioselective Hydrogenation Step in the Industrial Production of L-DOPA2
Figure 3: Functional Group Transformations of Chiral Organoboronate Intermediates... 4
Figure 4: Carbon-Carbon Cross Coupling using Chiral Secondary Boronic Esters....... 5
Figure 5: Representative Examples of Synthetic Reaction of Boronate Ester.............. 6
Figure 6: Rh(I)-Catalyzed/ non-Catalyzed Hydroboration Reaction using Catechoborane
\qquad
Figure 7: Early Enantioselective Hydroboration using Rhodium-Ligand Catalyst
Combinations... 8
Figure 8: CAHB with Chiral Catalysts by Hayashi and Coworkers............................ 9
Figure 9: Examples of Directed Hydroboration... 10
Figure 10: Representative Functional Groups Directed Hydroboration...................... 11
Figure 11: Oxidative Addition of TMDB with Wilkinson's Catalyst....................... 12
Figure 12: Regiochemical Reversal with Catecholborane and Pinacolborane.............. 13
Figure 13: Hydroboration of Styrene with Rhodium Combined with BINAP
Ligand...... 14
Figure 14: Recent Rhodium-Catalyzed CAHBs with Chelating P, P-Ligands 15

Figure 15: Highly Enantioselective CAHB with Chiral Monodentate Ligands Reported
\qquad
Figure 16: Proposed Rhodium Metal Catalyzed Hydroboration of Vinyl Arene............ 18
Figure 17: Deuterium Labeled Mechanistic Studies using Catecholborane.................. 19

iii. Index of Schemes

Scheme 1: Amide-directed rhodium-catalyzed hydroboration by evans et. al 21
Scheme 2: Efficient directed CAHB of β, γ-unsaturated amides by takacs et al 22
Scheme 3: amide directed catalytic hydroboration of trisubstituted alkenes by takacs. et.
al. 23
Scheme 4: NHC/Cu-catalyzed CAHB by hoveyda et al 24
Scheme 5: Iridium-catalyzed CAHB of α-methylstyrene by mazet et al 25
Scheme 6: Example of stoichiometric asymmetric hydroboration of by soderquist. et. al.25
Scheme 7: The influence of boranes structure in CAHB of β, γ-unsaturated weinreb
\qquadScheme 8: Catalytic hydroboration of 3-methyl-3-butenoic acid phenyl amide X16 withvariety of boranes.34
Scheme 9 Catalytic hydroboration of X16 phenyl amide with variety of ligands 39
Scheme 10 Subsequent transformations of organoboronate 42
Scheme 11: Catalytic hydroboration of tert-butyl esters with TMDB and L2a Ligand. 48
Scheme 12: Catalytic hydroboration of 5-methyl-3-methylidenehexanoic acid weinrebamides X29 with pinBH... 50
Scheme 13: Attempted route for the preparation of β-phenyl- γ-butyrolactone 52
Scheme 14: Representative examples of applications of CAHB of 3-methyl-3-butenoic
acid tert-butyl ester X23 53
Scheme15: Preparation of biologically active chiral β-substituted- γ-lactones via CAHB55

iv.Index of Tables

Table 1: Catalytic hydroboration of 3-methyl-3-butenoic acid phenyl amide X16 with
TMDB 27
Table 2: Catalytic hydroboration of 3-methylidene-pentanoic acid phenyl amide X17 with TMDB 29
Table 3: Catalytic hydroboration of 1,1-disubstituted phenyl amide phenyl amide $\mathbf{X}(\mathbf{1 8})$, $\mathbf{X}(19)$ and $\mathbf{X (2 0)}$ with TMDB 29
Table 4: Catalytic hydroboration of 1,1-disubstituted phenyl amide $\mathbf{X 2 1}$ and $\mathbf{X 2 2}$ with
\qquadTMDB32
Table 5: Catalytic hydroboration of 3-methyl-3-butenoic acid phenyl Amide X16 with variety of boranes 35
Table 6: Catalytic hydroboration of 3-Cyclohexyl-3-butenoic acid phenyl amide X19 with variety of boranes 36
Table 7: Catalytic hydroboration of 31,1-disubstituted phenyl amides X17,X18,X20 withpinBH.37
Table 8: Catalytic hydroboration of 1,1-disubstituted phenyl amides X21 and X22 withpinBH... 38Table 9: Catalytic hydroboration of $\mathbf{X 1 6}$ phenyl amide with variety of ligands40
Table 10: Catalytic hydroboration of 3-methyl-3-butenoic acid tert-butyl ester $\mathbf{X} 23$ with
pinBH 45
Table11: Catalytic hydroboration of 3-methyl-3-butenoic acid tert-butyl ester X23 withTMDB46

Table12: Catalytic hydroboration of 3-benzyl-3-butenoic acid tert-butyl with pinBH and TMDB... 47

Table 13: Catalytic hydroboration of tert-butyl esters with TMDB and L2a ligand...... 49
Table 14: The results of catalytic hydroboration of 5-methyl-3-methylidenehexanoic acid weinreb amides X29 with pinBH and TMDB .51

Table 15: Summarizing the results.

vi.List of Abbreviations

CAHB	Catalytic Asymmetric Hydroboration
9-BBN	9-Borabicyclo(3.3.1)nonane
TMDB	4,4,6-Trimethyl-1,3,2-dioxaborinane
BINAP	$2,2^{\prime}$-Bis(diphenylphosphino)-1,1'-binaphthyl
Bn	Benzyl
Bu	Butyl
DME	Dimethoxyethane
MS	Mass Spectrometry
ca	Calculated
Calcd	Deutero Catecholborane
CatBD	Catecholborane
CatBH	pinacolborane
pinBH	Cyclooctadiene
COD	Enantiomeric excess
ee	Cyclohexyl
Cy	Norbornadienyl
nbd	Melarity Point
Mp	MMR

DCE	Dichloroethane
DCM	Dichloromethane
RT	Room temperature
Rac	Racemic
J	Coupling Constant
Eq	Equivalents
Aq	aqueous
Me	Ethyl
Et	Dimethylaminopyridine
DMAP	1-Ethyl-3-
EDCI	(dimethylaminopropyl)carbodiimide
	N,N'-Dicyclohexylcarbodiimide
DCC	Normality
N	High Resolution Mass Spectrometry
HRMS	High Pressure Liquid Chromatography
HPLC	Minute
Min	Hz

Chapter 1- Introduction

1.2 Development of asymmetric synthesis

Asymmetric synthesis is a fundamental technology for producing enantiomerically pure materials which play a particularly important role in science and industry. ${ }^{1}$ For example, proxyphene has two enantiomers and each one has a different biological $\operatorname{activity}^{2}$ (Figure 1). , Darvon ${ }^{\mathrm{TM}}$ has an analgesic property while Novrad ${ }^{\mathrm{TM}}$ has an antitussive property.

Darvon

Novrad

Figure1. Two Enantiomers of Proxyphene

A small amount of chiral, enantiomerically pure catalyst can, in principle, effectively promote reactions and lead to the formation of large amounts of enantiomerically pure compounds. Some of these products may be very difficult to form by any other accessible method. Intensive research efforts have been devoted to the development of selective and practical asymmetric catalytic protocols and a large variety of chiral ligands and catalytic systems have been developed for asymmetric reactions in industry and academia. ${ }^{3}$

Catalytic chiral reactions such as hydrogenation, ${ }^{1}$ oxidation, ${ }^{3}$ and alkylation ${ }^{3}$ have been developed to the point that they are used routinely on an industrial scale.

William S. Knowles ${ }^{4}$ in 1968 pioneered methods in enantioselective synthesis by replacing the achiral triphenylphosphine ligands in Wilkinson's catalyst_with the chiral phosphine ligands. i.e., $(\mathrm{Ph}) \mathrm{P}(\mathrm{Me}) \mathrm{Pr}$, and employed this modified catalyst in asymmetric hydrogenation reactions. This experiment gave only a modest level of asymmetric induction (15\% enantiomeric excess (ee)) but set the stage for the field to rapidly advance. Further research into the nature of the chiral ligand led to DIPAMP. This latter method of creating asymmetric compounds has been effectively utilized in the hydrogenation step of the industrial production of L-DOPA. This discovery of accelerating production of L-DOPA was one among the first economical and efficient method to generate chiral compounds by asymmetric catalysis using chemical catalysts. ${ }^{5}$ The continued growth of asymmetric catalysis have been advanced with the use of recent techniques such as high-throughput screening and computational studies. ${ }^{3,6}$

Figure 2. Enantioselective Hydrogenation Step in the Industrial Production of L-DOPA.

The Takacs group has been among the leaders in developing directed catalytic asymmetric hydroboration (CAHB) reactions for the preparation of chiral organoboranes. The reaction bears some similarity to catalytic asymmetric hydrogenation as will be seen in this dissertation.

1.2 The Versatility of organoboranes

Hydroboration reactions are one of the most important processes to produce organoboronates from alkenes $(\mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ triple bonds under readily accessible conditions. ${ }^{7}$ This reaction involves the addition of hydrogen and a boron atom across the Π - system of a double or triple bond. It has gained considerable attention because it possesses unique properties such as proceeding under much milder conditions to produce synthetic intermediates such as organoboronates that can be easily converted into secondary products with wide range of functional groups. ${ }^{8,9,10}$ (Figure 3).

Figure 3. Functional Group Transformations of Chiral Organoboronate Intermediates

Many protocols that utilize chiral organoboronates reactions have emerged. For example, Molander ${ }^{11}$ reported the stereospecific Suzuki-Miyaura cross coupling of enantio-
enriched alkyltrifluoroborates ($10 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $20 \mathrm{~mol} \%$ of XPhos).
Interestingly, this reaction was shown to be very efficient with a variety of substrates and gives the product with complete inversion of configuration. Crudden also provided successful example of cross-coupling using chiral secondary boronic esters and palladium to regioselectively form product with retention of enantioselectivity $\left(0.15 \mathrm{mmol}^{\circ} \mathrm{Ag}_{2} \mathrm{O}\right.$, $8 \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}, 8-12$ equiv of $\left.\mathrm{PPh}_{3}\right)\left(\right.$ Figure 4). ${ }^{12}$

($82 \%, 95.5 \%$)

Figure 4. Carbon-Carbon Cross Coupling using Chiral Secondary Boronic Esters

The recent synthetic utility of boronate esters are summarized in (Figure 5). ${ }^{13,14,15,16}$

Knochel. 2002

M. J. O'Donnell, 2003

Figure 5. Representative Examples of Synthetic Reactions of Boronate Ester

1.3 Background of transition metal catalyzed hydroboration

Männig and Nöth's in 1985 reported the first catalytic hydroboration reaction using tris(triphenylphosphine)chlororhodium (I) (Wilkinson's catalyst to catalyze the addition of catecholborane (CatBH) across a double bond. ${ }^{17}$ This led to a rapid increase in interest toward developing a highly efficient catalytic process for the synthesis of enantiopure organoboronates via transition metal-catalyzed reactions with high levels of regio- and stereochemical control. There can be significant differences in reactivity between catalyzed and non-catalyzed reactions of the same substrate. For instance, metalcatalyzed hydroboration of unsaturated ketones in the presence of $1 \mathrm{~mol} \%$ of $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ led to the product resulting from the addition of catecholborane to the double bond whereas the hydroboration by catecholborane without the catalyst led to the addition of catecholborane to the carbonyl group. The difference between catalyzed and non-catalyzed reactions is also seen in hydroboration of styrene. Catalyzed hydroboration favors the Markovnikov addition products (after C-B bond oxidation) while the noncatalyzed reaction produces the anti-Markovnikov addition product (Figure 6).

Figure 6. Rh(I)-Catalyzed/ non-Catalyzed Hydroboration Reaction using Catecholborane (CatBH).

Suzuki ${ }^{18}$ and Burgess ${ }^{19}$ studied the control of regioselectivity and diastereoselectivity of the catalyzed and non-catalyzed hydroborations of allylic compounds. In 1988, the Burgess group reported the first example of a catalytic asymmetric hydroboration (CAHB) reaction. They subjected 1,2-disubstituted olefins, for example norbornene, to catalytic hydroboration conditions by CatBH using $\left([\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}\right.$ and the chiral diphosphine, (R,R)-DIOP. The reactions proceed smoothly to furnish norbornol (90\%, 64% ee $)$. Suzuki employed $\operatorname{Rh}(\mathrm{I})$ in combination with (S, S)-DIOP with indene and also obtained moderate enantioselectivity in the CAHB (91%, 74% ee) (Figure 7).

Figure 7. Early Enantioselective Hydroboration using Rhodium-Ligand Catalyst Combinations.

The synthetic potential of CAHB was quickly realized, and a big step forward was made by Hayashi and coworkers; ${ }^{20}$ they demonstrated the switching of regioselectivity using a cationic phosphine-rhodium catalyst $\mathrm{Rh}(\mathrm{I})$ for the hydroboration of styrene derivatives to produce secondary benzylic boranes with high enantioselectivity (Figure 8).

Hayashi ,1989

Figure 8. CAHB with Chiral Catalysts by Hayashi and Coworkers.

1.4 Directed hydroboration

The development of directed catalytic hydroboration was initiated in 1980s. Evans found that the amide group can serve as a directing group with the best selectivity found using Crabtree's iridium catalyst, although practical levels were found with rhodium, too. Both cyclic and acyclic substrates have been shown the proximal addition of boron demonstrating the directing ability of the amide group. ${ }^{22}$ Moreover; they achieved excellent diastereoselectivity with phosphite -directed hydroboration in combination of rhodium complexes. The reaction proceeds successfully in presence of stoichiometric amounts of Wilkinson's catalyst and catecholborane followed by oxidative workup by basic hydrogen peroxide to cleave the phosphites. Although Evans carried out the pioneering work in directed catalytic asymmetric hydroboration, Fu later presented an efficient hydroboration by employing an indenyl ligand to provide coordinative saturation around the metal which is required for binding with the alkene moiety. ${ }^{23}$ With this system, high levels of selectivity were obtained indicative of an ether-directed reaction (75\%) (Figure 9).

Fu, 1998
Ether directed hydroboration reaction

Figure 9.Examples of Directed Hydroboration

A further development of this chemistry was reported by Gevorgyan, et al; ${ }^{24}$ who used a pendant ester as a highly efficient directing functional group; esters provide a versatile functional group which can be used for further transformations. He employed $[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}$ and pinacolborane to the 3,3-disubstituted cyclopropenes. The reaction proceeded effectively to furnish $>99: 1$ cis-diastereoselectivity in excellent enantioselectivity up to 99% ee.$V e d e j s{ }^{25}$ recently discussed the efficiency of amine in the non-catalyzed directed hydroboration of a β, γ-unsaturated amine by THF• BH_{3}
followed by oxidative workup. The latter substrates exhibit 43:1 regioselectivity in favor of the 3,5-disubstituted product (Figure 10).

Gevorgyan, 2003

Vedejs, 2008
amine directed hydroboration reaction

2) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}$

$$
\text { yield }=85 \% \quad \text { Ratio: } 43: 1
$$

Figure 10.Representative Functional Groups Directed Hydroboration.

1.5 Hydroboration reagents

A number of boranes have been prepared and employed for the non-catalyzed hydroboration of a wide variety of cyclic and acyclic substrates. In contrast, CatBH and pinacolborane (pinBH) are by far the most popular boranes used in the catalyzed reaction; a wide range of transition metal complexes have been explored, too. Other reagents were also employed in catalytic hydroboration with variable success. ${ }^{26}$ For research described later in this dissertation, it should be noted that Kono et al. ${ }^{27}$ reported 4,4,6-trimethyl-1,3,2-dioxyborinane (TMDB) undergoes in the oxidative addition with Wilkinson's catalyst (Figure 11). Woods and Strong also used this borane for the non-
catalyzed hydroboration reaction of many alkenes, ${ }^{28}$ and Evans used it in his original report of the catalyzed reaction.

Figure 11. Oxidative Addition of TMDB with Wilkinson's Catalyst
The choice of borane employed in a hydroboration reaction can have a significant influence on the mechanism and regioselectivity of the catalyzed reaction. For instance, the reaction of perfluroroalkylethylenes with CatBH catalyzed by (DPPB) $\mathrm{Rh}(\mathrm{I})$ gives the internal secondary borane with very high regioselectivity and furnishes the secondary alcohol after oxidative workup. Employing pinBH with $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$, the reaction forms the primary borane and, following the oxidative workup, the primary alcohol. ${ }^{29}$ Another example which highlights the important role of the borane in the selectivity of catalytic systems is in the hydroboration of 4-octene. When CatBH is used in combination with Wilkinson's catalyst, the reaction gives the secondary alcohol in very high selectivity; in contrast, pinBH in the reaction proceeds with apparent alkene isomerization to give the primary alcohol after oxidative workup (Figure 12). ${ }^{30}$

Figure 12. Regiochemical Reversal with Catecholborane and Pinacolborane

1.6 Enantioselective hydroborations

The enantioselective construction of chiral molecules is an important issue because many natural compounds have chiral centers. ${ }^{1}$ Since the pioneering work of Männig and Nöth, much effort has been directed toward creating enantiomerically enriched stereocenters with boron as a substituent. As discussed above, modest levels of enantioselectivity were reported by Burgess and Suzuki for the CAHB of 1,1- and 1,2-disubstituted olefins. Hayashi et.al, reported the significant contribution to catalytic enantioselective hydroboration, ${ }^{20}$ they also establish several new and broadly applicable improvements including modifications of the ligand and catalyst in the enantioselective process. This reaction is performed with a cationic rhodium catalyst combined with (+)-2,2'-bis(diphenyIphosphino)- 1,1'-binaphthyl (BINAP). The cationic rhodium/BINAP complex was highly active. For instance, the hydroboration reaction of styrene proceeds to completion in 30 min even at $-30^{\circ} \mathrm{C}$ with $1 \mathrm{~mol} \%$ of the catalyst.

The successes of employing BINAP as a chiral ligand in a variety substrates
demonstrates that the BINAP is one of the best ligands in enantioselective hydroboration reactions. However, even its scope for CAHB is rather limited. In the case of styrene substrates, electron rich olefins give higher enantioselective than the electron poor substrates. The sterically hindered substrate like ortho-substituted styrenes shows low yield and low enantioselectivity. α or β-substitution of the double bond generally lead to low enantioselectivities with this particular ligand (Figure 13). Nonetheless, diphsophanes are, by far, the most extensively used class of ligands; they show a wide range of reactivity and enantioselectivity. ${ }^{1}$ Some of the more successful examples are discussed in the following paragraph.

Figure 13.Hydroboration of Styrene with Rhodium Combined with BINAP Ligand.
Knochel 31 reported preparation of the dicyclohexylbis(phosphane), shown in Figure 14, and reported that it gave high chemo-, regio- and enantioselectivity in the rhodiumcatalyzed hydroboration with CatBH. He employed this system on a number of para-, meta- and ortho-styrenes to furnish a range of enantioselectivity (76-93 \%) with one exception $\left(p-\mathrm{CF}_{3}, 58 \%\right.$ ee $)$. Buono reported that the bis(aminophosphane) gives results within the range of (42-77 \% ee) in styrene system. ${ }^{32}$ The accumulated results of ligand screenings suggest that changing the ligand backbone has a profound effect on the yield, regioselectivity and enantioselectivity of these reactions (Figure 14).

Figure 14. Recent Rhodium-Catalyzed CAHBs with Chelating P, P-Ligands. ${ }^{1}$
The Takacs group ${ }^{34}$ studied the CAHB reaction of styrene and styrene derivatives using effective TADDOL-derived monodentate ligands such as phosphite LA and phosphoramidite LB. These ligands furnish highly enantioselective products in combination with a $\mathrm{Rh}(\mathrm{nbd}) \mathrm{Cl}$ derived catalyst. Many of the styrene derivatives were examined with pinBH and CatBH for comparison purposes. Introducing electron donating group such as -OMe at para position in styrene produced ($96 \%, 93 \%$ ee) with ligand LA and $(96 \%, 94 \%$ ee) with ligand LB. A strong inductive electron withdrawing group (e.g., CF_{3}) in the same position produced $(96 \%, 90 \%$ ee) with ligand $\mathbf{L A}$ and $(92 \%$, 90\%ee) with ligand $\mathbf{L B}$ (Figure 15).

Related TADDOL-derived ligands and BINOL-derived phosphoramidites are also useful with substrates that exploit the directing ability of amide functional group to promote the CAHB with two point binding between olefin moiety and the amide to rhodium as a model to explain their effectiveness. ${ }^{35}$ CAHB of β, γ-unsaturated Weinreb amides are
another directing group studied by the Takacs group. ${ }^{36}$ The Weinreb amides add synthetic value since they readily undergo transformation to other functional groups. For example, the Weinreb amide shown furnishes the β-hydroxy acid after the oxidative workup of the product of TMDB addition using $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$ in conjunction with phosphoramidite $\mathbf{L} \mathbf{1}$ ($77 \%, 92 \%$ ee) (Figure 15).
Takacs, 2006
1)

Takacs, 2008

or

Takacs, 2011

Figure 15. Highly Enantioselective CAHB with Chiral Monodentate Ligands Reported from the Takacs Group.

1.7 Mechanism of rhodium-catalyzed hydroboration

The key to achieving a successful hydroboration reaction is developing an efficient and useful method to produce a boronate ester with a high degree of regio-, diastereo-, and/or enantioselectivity by applying chiral ligands to introduce the enantioselectivity in the
outcome. Experimentally, it has been found that the reaction is sensitive to many different factors, including the catalyst nature, borane reagents, solvents, temperature, and the interplay between steric and electronic effects on the substrate.

Männing and Nöth carried out an investigation to provide experimental evidence. They proposed the first generally accepted mechanism of the rhodium-catalyzed hydroboration as shown in Figure 16. This model was established on the basis of the observations of the reaction between catecholborane with Wilkinson's catalyst and it is supported by deuterium studies in case of vinylboronates and alkane formation ${ }^{37}$ as well as by Ziegler's ${ }^{38}$ density functional theory calculations.

The reaction pathway is a dissociative mechanism involving rhodium (I) oxidatively adding the B-H bond of catecholborane, followed by alkene coordination with simultaneous dissociation of an additional PPh_{3} group. Migratory insertion of the alkene into the Rh-H bond with a subsequent reductive elimination of the alkylboronate ester completes the catalytic cycle (Figure 16).

Figure 16. Proposed Rhodium Metal Catalyzed Hydroboration of Vinyl Arene.

In deuterium labeling studies, Evans ${ }^{37,39}$ found that CatBD (deuterated catecholborane) behaved differently with different substrates in reactions catalyzed by $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$. The two key substrates were styrene and 1-decene. Remarkably, the reactions with styrene proceed to complete conversion to form 1-phenyl-2-deuterioethanol without any hydride migration or deuterium scrambling that would indicate reversible reaction. The observed
deuterium distribution was much different upon the rhodium-catalyzed addition of CatBD to 1-decene under the same conditions. Evans suggested that the mechanism is reversible from rhodium alkyl complex back to the alkene. The considerable amount of deuterium on the terminal carbon in both substrates furthermore suggests that the regio-determining step in the catalytic cycle is the selective reductive elimination from the primary alkyl rhodium complex (Figure 17).

Figure 17. Deuterium Labeled Mechanistic Studies using Catecholborane.

1.8 Conclusion

As we have seen, catalytic asymmetric hydroboration (CAHB) is valuable method for the synthesis of enantiomerically organoboronate compounds. However, the ability of prior technology to reliably produce defined classes of enantiopure products in a predictable manner is limited in 1,2-disubstituted and monosubstituted alkenes (vinyl arenes) using catalysts employing more complex, chelating ligands.

The thesis goal is to expand and develop the generality of directed CAHB of alkenes by focusing on the directed CAHB of two-point binding substrates in the β, γ-unsaturated carbonyls framework. The use of catalysts derived from simple, readily accessible monophosphite and monophosphoramidite ligands demonstrating high efficiency in stereochemical control of the reaction and to obtain high enantiopure products will be seen in this dissertation.

Chapter 2: Carbonyl-directed Catalytic Asymmetric Hydroboration (CAHB) of 1,1disubstituted alkenes

2.1 Background: Amide directing hydroboration of $\boldsymbol{\beta}, \boldsymbol{\gamma}$-disubstituted alkene.

Catalytic asymmetric hydroboration (CAHB) is potentially a powerful tool for preparation of chiral organoborane molecules. Advantages of organoborane reagents include the numerous reactions than can be used to convert organoboranes to useful organic substructures and the ease with which their properties can be tuned. ${ }^{40}$ Evans and co-workers ${ }^{22}$ elegantly demonstrated the efficiency of the amide moiety in accelerating and directing the regiochemical course of catalyzed hydroboration reactions. It is noteworthy that the hydroborations of acyclic β, γ-unsaturated amides proceed to give highly regioselective results, supporting a two point binding model for these substrates. For example, the catalytic hydroboration reaction of β, γ-unsaturated amide X10 followed by oxidative work up forms the β-hydroxyamide (74\%) with high yield; the regioselectivity favoring the oxidation at the β - rather than γ-position is reported to be 20:1 (Scheme 1).

Scheme 1 Amide-directed rhodium-catalyzed hydroboration by evans et. al.

The Takacs group in 2008^{35} reported an efficient procedure for amide directed CAHB by pinacol borane (pinBH) demonstrating that two-point binding substrates can undergo reaction with high enantioselectively using $\mathrm{Rh}(\mathrm{I})$ complexes of several chiral monodentate phosphorus ligands derived from simple chiral diols such as TADDOL and BINOL. For example, CAHB of $\mathbf{X 1 1}(\mathrm{R} 1=$ isopropyl) using $\mathbf{L 1}$ proceeds in good yield (79\%) and high enantioselectivity (97\% ee).the effectiveness of the chiral ligands highlighted by structure $\mathbf{L} \mathbf{2}$ varies for different substrates, giving a range of enantioselectivity (93-99\%). The CAHB also proceeds with high regioselectivity; only 3$4 \%$ of the γ-isomer is formed under the described conditions for each substrate shown below in Scheme 2.

X11

1) $0.5 \mathrm{~mol} \% \mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$
$\xrightarrow{1.1 \% \mathrm{~L} .2 \text { eq } \mathrm{PinBH}}$
THF, $40^{\circ} \mathrm{C}, 12 \mathrm{~h}$
2) $\mathrm{H}_{2} \mathrm{O}_{2}$, aq. NaOH
(76-80\%)

a ($\mathrm{n}=1, \mathrm{R}=i \mathrm{Pr}, 93 \% \mathrm{ee}$)
b ($\mathrm{n}=2, \mathrm{R}=i \mathrm{Pr}, 95 \% \mathrm{ee}$)
c ($\mathrm{n}=3, \mathrm{R}=\mathrm{Ph}, 99 \%$ ee)

a: $\left(\mathrm{Ar}=(3,5-\mathrm{diMe}) \mathrm{C}_{6} \mathrm{H}_{3}\right)$
b: $\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$
c: $\left(\mathrm{Ar}=\left(44^{4}-\mathrm{tBu}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right)$
d: $\left(\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right.$

Scheme 2 Efficient directed CAHB of β, γ-unsaturated amides by takacs et al.

The Takacs group ${ }^{41}$ provided, as previously mentioned, a new catalyst for the hydroboration reaction of β, γ-disubstituted unsaturated phenyl amides. This catalyst
proved to be effective for many of the previously problematic cases, and generally allowed the reactions to proceed under mild conditions. Based on these findings the highly selective CAHB reactions in trisubstituted alkenes were also successfully developed. The combination of $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$ with simple TADDOL derived phenyl monophosphite ligands in presence of pinBH furnished products in high enantiopurity as shown below in Scheme 3.

Ligand	$\mathbf{R}^{\mathbf{E}}$	$\mathbf{R}^{\mathbf{Z}}$	Yield \%	ee\%
$\mathbf{L}_{\mathbf{2}} \mathbf{d}$	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}$	CH_{3}	81	95
$\mathbf{L}_{\mathbf{2}} \mathbf{a}$	$\mathrm{CH}_{3} \mathbf{d}$	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}$	83	95
$\mathbf{L}_{\mathbf{2}} \mathbf{c}$	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Ph}$	CH_{3}	79	93
$\mathbf{L}_{\mathbf{2}} \mathbf{d}$	$\left.\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$	CH_{3}	80	96
$\mathbf{L}_{\mathbf{2}} \mathbf{c}$	CH_{3}		$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	81

Scheme 3 Amide directed catalytic hydroboration of trisubstituted alkenes by takacs, et al.

2.2 Previous Attempts of Enantioselective Hydroboration of 1,1-Disubstituted

Abstract

Alkenes Building on the work of Evans and Takacs, we proposed to expand the scope of substrates for directed CAHB to include γ, β-unsaturated amide substrates contained 1,1disubstituted alkene moities. The previous studies in the directed CAHB are described in the context of (E) - and (Z)-1,2-disubstituted and 1,2,2-trisubstituted alkenes. There are a few examples of the non-directed CAHB of 1,1-disubstituted alkenes. Hoveyda ${ }^{42,43}$ reported the net non-directed CAHB of 1,1-disubstituted vinylarene substrates using chiral Cu-based bidentate N -heterocyclic carbene (NHC) complexes with bis(pinacolato)diboron. Although this study demonstrates that 1,1-disubstituted alkenes readily react with CAHB with high enantioselectivity and regioselectivity, only selected vinylarenes are successful, and it requires the use of bis(pinacolato)diboron. In particular, the successful substrates require a large size difference between the alkene substituents (Scheme 4).

Scheme 4 NHC/Cu-catalyzed CAHB by hoveyda et al.

Significant progress has been made recently in the design and development protocol for CAHB of 1,1-disubstituted alkenes by Mazet et al. ${ }^{44}$ Highly selective and highly efficient
iridium catalysts were found to be effective for the CAHB of 1-methylstyrene by pinBH. For example, using ligand $\mathbf{L L}$, iridium-catalyzed CAHB gives the terminal product with high regio- and enantioselectivity ($92 \%, 92 \%$ ee).The versatile chiral organoborane product proved useful for subsequent Suzuki cross-coupling reactions (Scheme 5).

Scheme 5 Iridium-catalyzed CAHB of α-methylstyrene by Mazet et al.

Soderquist and coworkers developed a useful stoichiometric reagent for the asymmetric hydroboration of 1,1-disubstituted alkenes. ${ }^{45}$ Their chiral 9-borabicyclononane derivative exhibited remarkable enantioselectivity for 2-tert-butylpropene, and good selectivity for other methylidene substrates, for example, α-methylstyrene shown below (Scheme 6).

Scheme 6 Example of stoichiometric asymmetric hydroboration of by Soderquist et al.

2.3 Investigation of CAHB of $\mathbf{1 , 1}$-disubstituted Alkenes contained a $\boldsymbol{\beta}, \boldsymbol{\gamma}$-unsaturated carbonyl framework.

We began by examining the possibility of using simple 1,1-disubstituted alkenes contained within a β, γ-unsaturated carbonyl framework to generate enantiomerically pure organoboranes starting with the substrate that contains the methyl substituent in β position. Our protocol (described in detail below) seeks to reduce the number of potential catalysts and ligands screened by taking into account the prior art (i.e., successful catalyst precursors and chiral ligands) available in the group. Based on our own precedents, we can compare results to expectations and we modify the system according to prior trends saving time and effort. We had established that simple TADDOL-derived phosphite and phosphoramidite ligands afford high levels of enantioselectivity in the rhodium-catalyzed asymmetric hydroborations of acyclic β, γ unsaturated amides with pinacolborane (pinBH). A BINOL-derived monophosphoramidite was also shown to be among the most successful ligands for these substrates. The initial investigations employ $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$ since prior studies have shown that a readily dissociable counterion is essential. As in prior studies, this investigation used both pinBH (vide infra) and 4,4,6-trimethyl-1,3,2-dioxaborinane (TMDB) to screen the CAHB of 3-methyl-3-butenoic acid phenyl amide X16 as shown in Table 1 for CAHB by TMDB.

Table 1 Catalytic hydroboration of 3-methyl-3-butenoic acid phenyl amide X16 with TMDB
(

Amide X16 was screened in the CAHB by TMDB with a series of TADDOL-derived ligands to determine their influence on yield, regioselectivity and enantioselectivity. The overall highest level of enantioselectivity was obtained from the CAHB of X16 by TMDB using $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$ in combination with $\mathbf{L 2 a}$. CAHB of $\mathbf{X 1 6}$ under those conditions affords γ-dioxaborato amide $\mathbf{X}(\mathbf{1 6})$-1 in moderate yield but excellent enantiomeric purity ($60 \%, 94 \%$ ee). CAHB of the substrate with ligand $\mathbf{L 2 b}$ affords the γ dioxaborato amide $\mathbf{X}(\mathbf{1 6})$ - $\mathbf{1}$ in very good levels of enantiomeric purity (88% ee, Table 1). CAHB of the same substrate with other TADDOL-derived ligands, that is, $\mathbf{L 2 c}$ and $\mathbf{L 2 d}$, also afford the respective γ-dioxaborato amide in similarly good levels of enantiomeric purity ($80-84 \%$ ee, entries 3 and 2, respectively). However, directed CAHB of the same substrate using phosphoramidite ligand L3a (and some related ligands, data not included in Table 1) results in very low enantioselectivity, although the yield is quite reasonable (72\%, 10\% ee). The BINOL-derived monophosphoramidite ligand L1 gave moderate levels of enantioselectivity ($80 \%, 63 \%$ ee).

Encouraged by the results obtained with arguably the simplest methylidene substrate X16, we continued our investigation into more highly substituted ones, focusing on the interplay of alkene and the catalyst as it influences the yield and enantioselectivity. Table 2 gives a quick view of the major screening results from the CAHB of $\mathbf{X 1 7}$ by TMDB and highlights the levels of asymmetric inductions obtained from the screening. Not surprisingly, the results of directed CAHB of X17 are similar to those obtained with X16. The reaction proceeded smoothly to selectively form the γ-dioxaborato amides in enantioselectivities up to 90% ee.

Table 2 Catalytic hydroboration of 3-methylidene-pentanoic acid phenyl amide X17 with TMDB

 X17	1) $1 \% \mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$ 2.1\% L 2 equiv TMDB THF, $40^{\circ} \mathrm{C}$ 2) $\mathrm{aq} \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}$	 $X(17)-1$
Ligand	\% yield	\% ee
L2a	70	90
L2c	55	83
L2d	50	71
L1	52	58

We have developed a highly efficient coordinative catalytic system. One of the major advantages of this catalyst system is the general applicability to multiple 1,1 -disubstituted alkenes. In order to explore the stereochemistry and the regiochemistry of the other substituents, we employed the same catalytic system in X18 which has the isobutyl substituents in the β-position. Interestingly these experiments gave similar enantioselectivity induction as X16 and very high regioselectivity . For example CAHB of the substrate $\mathbf{X 1 8}$ with ligands L2a affords the respective γ-dioxaborato amides $\mathbf{X}(\mathbf{1 8})$ 1 in excellent levels of enantiomeric purity (95% ee, Table 3).

Table 3 Catalytic hydroboration of 1,1-disubstituted phenyl amide $\mathbf{X}(\mathbf{1 8}), \mathbf{X}(\mathbf{1 9})$ and $\mathbf{X}(\mathbf{2 0})$ with TMDB

$\mathrm{X} 18, \mathrm{R}=\mathrm{iBu}$
$\mathrm{X} 19, \mathrm{R}=\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}$
$\mathrm{X} 2 \mathrm{O}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$

1) $1 \% \mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$
$\xrightarrow[\text { THF }, 40^{\circ} \mathrm{C}]{\substack{2.1 \% \mathrm{~L} \\ 2 \text { equiv TMDB }}}$
2) aq $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}$

$\mathrm{X}(18)-1$
$X(19)-1$
$X(20)-1$

* \% Yield and \% ee are representative of the γ-hydroxyamide isomer

Our initial objective in this investigation had been to design a useful chiral catalytic system capable of operating a diverse set of substrates. It was apparent from the screenings of previous substrates that there was no significant steric difference between them. While we have observed significant success with these systems, we are aware of the limitations inherent in alkene substituent pattern so we felt that it is important to introduce a bulky substituent and experimentally explore the aspects of reactivity. We therefore selected X19 and X20 where we observed that these substrates can react with CAHB and afford high enantiomeric excess. For instance, while CAHB of X19 produces $\mathbf{X (1 9)} \mathbf{- 1}$ in moderate yields (79\%, 90\% ee .Table 3), $\mathbf{X 2 0}$ affords $\mathbf{X (2 0)} \mathbf{- 1}$ in nearly same higher yield (79\%, 93\% ee. Table 5).

Although currently confined to a small window of substrates, the following investigation introduces a new olefin pattern. We synthesized and studied X21 and X22 substrates that may hold greater potential for constructing a biological target molecules. Products furnished from these reactions are structurally stable and may be employed for subsequent Pd-catalyzed cross-coupling. Under the same conditions, these substrates had furnished highly enantiopure products up to 94% with very good regioselectivity when L2a has been employed.

Table 4 Catalytic hydroboration of 1,1-disubstituted phenyl amide X21 and X22 with TMDB

$\mathrm{X} 21, \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$
$\mathrm{X} 22, \mathrm{R}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ph}$

1) $1 \% \mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$ 2.1\% L $\xrightarrow[\text { THF, } 40^{\circ} \mathrm{C}]{2 \text { equiv TMDB }}$
2) aq $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}$
$X(22)-1$

Ligand	\% yield	\% ee
L2a	72	94
L2c	59	77
L2b	60	78
L1	61	56
Ligand	\% yield	\% ee
L2a	70	92
L2c	59	75
L1	40	50

$* \%$ Yield and $\%$ ee are representative of the γ-hydroxyamide isomer

2.4 The influence of boranes in CAHB of 1,1-disubstituted alkene

The Takacs group ${ }^{36}$ studied the reactivity of boranes in directed CAHB and found that the nature of the structure of the borane is a key factor in the determining level of enantioselectivity. For example, CAHB of the test substrate illustrated in Scheme 7 by B1, a five-membered ring borane, gives product in lower enantiomeric excess (75\%, 83\% ee) than the six-membered ring homologue $\mathbf{B 4}(78,96 \%$ ee $)$.

B2

75 (83 ee\%)
77(92 ee\%)
40(81 ee\%) 78(96 ee\%)

B5
16(14 ee\%)

B6
10(50 ee\%)

B7
79(84 ee \%)

B8
81(97 ee\%)

Scheme 7 The influence of boranes structure in CAHB of β, γ-unsaturated weinreb amide.

Table 5 summarizes the chemical yield, regioselectivity (i.e., $\% \gamma$ - and $\% \beta$-products formed) and enantioselectivity for the γ-product as a function of borane in the CAHBs of X16; the same chiral catalyst system formed from L2a is used in each case. The results obtained using the six-membered ring dioxaborinanes, that is $\mathbf{B 2}$ and $\mathbf{B 4}$, are on average more selective (average of 87% ee) than those obtained on average using the fivemembered ring dioxaborolanes, B1 and B3 (66% ee). Furthermore, the γ / β ratio with B2 and B4, are on average higher (average of 6.3) than those obtained on average using, B1 and $\mathbf{B 3}$ (average of 2.3).The two six-membered ring boranes, the trimethyl derivative $\mathbf{B 2}$ (TMDB, 94% ee) and pinacol-like tetramethyl derivative $\mathbf{B 4}$ (91% ee), afford quite similar results. Comparing specific five- and six-membered ring boranes with similar methyl substitution patterns finds some differences. For example, B1 affords with L2a ($66 \%, 60 \%$ ee) while B4 affords ($82 \%, 91$ ee\%). It was on the basis of this short study that TMBD (B2) was selected for the screenings of phenyl amides (X16-X22). During the hydroboration reaction, the majority of boranes led to form γ-products as major products with considerable amount of undesirable products such as β - products, this perhaps due to the size of alkyl group at β - position (scheme 8).

Scheme 8 Catalytic hydroboration of 3-methyl-3-butenoic acid phenyl Amide X16 with variety of Boranes.

Table 5 Catalytic hydroboration of 3-methyl-3-butenoic acid phenyl Amide X16 with variety of boranes.

L	$\gamma \%$	$\begin{gathered} \text { B1 } \\ \text { \% ee }(\gamma) \end{gathered}$		$\gamma \%$	$\begin{gathered} \text { B2 } \\ \text { \% ee }(\gamma) \end{gathered}$	$\beta \%$	$\gamma \%$	$\begin{gathered} \text { B3 } \\ \% \text { ee }(\gamma) \end{gathered}$	$\boldsymbol{\beta \%}$	$\gamma \%$	$\begin{gathered} \text { B4 } \\ \text { \% ee }(\gamma) \end{gathered}$	$\boldsymbol{\beta} \%$
L2a	66	60	34	81	94	13	53	75	41	82	91	12
L2b	65	50	24	40	88	30	36	73	28	64	89	5
L2c	58	52	36	62	84	25	31	79	43	80	79	10
L2d	62	48	23	60	80	30	34	75	41	79	87	10
L1	75	62	11	80	63	18	65	65	22	78	66	7

* Yield determined by crude ${ }^{1} \mathrm{H}$ NMR with mesitylene as an internal standard; enantioselectivities determined by HPLC analysis.

We also examined the borane influence on the catalytic efficiency and level of enantioselectivity in another substrate $\mathbf{X 1 9}$ with the expectation that it would provide additional insight into the reaction. A similar trend in enantioselectivity is found for the CAHB of X19 compared to X16. TMDB (B2) give high enantioselectivity (90% ee).

However, unlike X16, only small amount of the β-isomer are formed presumably due to increased steric hindrance at the β-position due to the cyclohexyl substituent. As discussed earlier in this chapter, reagents and conditions have been identified for which directed CAHB is very efficient with TMDB enabling the asymmetric hydroboration of 1,1-disubstituted substrates to be developed into a highly enantiomeric and practical reaction.

Table 6 Catalytic hydroboration of 3-cyclohexyl-3-butenoic acid phenyl amide X19 with variety of boranes

	$\mathbf{B 1}$			$\mathbf{B 2}$			B3		
\mathbf{L}	$\boldsymbol{\gamma} \%$	\% ee $(\boldsymbol{\gamma})$	$\boldsymbol{\beta} \%$	$\boldsymbol{\gamma} \%$	\% ee $(\boldsymbol{\gamma})$	$\boldsymbol{\beta} \%$	$\boldsymbol{\gamma} \%$	$\boldsymbol{\%}$ ee $(\boldsymbol{\gamma})$	$\boldsymbol{\beta} \%$
$\mathbf{L 2 a}$	79	60	3	74	70	7	79	90	3
L2c	78	55	3	74	70	7	70	82	3
L2d	75	5	4	78	60	3	71	70	2
L1	58	64	3	76	50	2	62	55	2
L3	70	-15	5	45	40	3	30	-55	5

[^1]
2.5 A More Detailed Summary of pinBH Data for Comparison Purposes

While some data are presented in the preceding two tables, we studied the efficiency and selectivity of CAHB with pinBH $(\mathbf{B 1})$ in greater detail since this reagent has often been used for catalyzed hydroboration and is commercially available, stable, easily stored and (if needed) easily prepared. ${ }^{46}$ Neither the borane reagents nor the modified catalysts were able to reach the enantioselectivity and regioselectivity obtained from TMDB.The results of this study are summarized in tables $7,8 \& 9$.

Table 7 Catalytic hydroboration of 1,1-disubstituted phenyl amides X17, X18 and X20 with pinBH.

Ligand	\% yield	\% ee	Ligand	Yield	\% ee	Ligand	Yield	ee \%
L2a	63	67	L2a	68	60	L2a	80	75
L2c	60	68	L2c	71	55	L2c	72	65
L2d	64	53	L2d	65	45	L2d	71	60
L1	57	50	L3a	75	-32	L1	60	53
-	-	-	L1	64	62	-	-	-

*\% Yield and \% ee are representative of the γ-hydroxyamide isomer

The CAHB of the X18 substrate proceeds smoothly and goes to completion when using pinBH borane. However, the enantioselectivity induction is not improved when changing the borane source from TMDB to pinBH the same trend observed in $\mathbf{X 2 1}$ and $\mathbf{X 2 2}$. The summary of this screening are located in Table 8.

Table 8 Catalytic hydroboration of 1,1-disubstituted phenyl amides X21 and X22 with pinBH

Ligand	Yield	ee \%	Ligand	Yield	e.e \%
L2a	62	60	L2a	64	67
L2c	72	51	L2c	68	45
L2b	63	43	L1	53	40
L1	75	34	-	-	-

*\% Yield and \% ee are representative of the γ-hydroxyamide isomer

Overall, 4,4,6-trimethyl-1,3,2-dioxaborinane (TMDB (B2)), has been also found to be an excellent borane reagent for directed CAHB; it is generally more reactive and selective than pinBH and yet stable and easily prepared. ${ }^{47}$

To survey the role of the ligands, we have done CAHB using $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$ in conjunction with TADDOL-derived monophosphite, TADDOL-derived phosphoramidites or BINOLderived monophosphoramidite and pinBH affords, after oxidative work-up, β hydroxyamides. The results are summarized in Table 9.

Scheme 9 Catalytic hydroboration of $\mathbf{X 1 6}$ phenyl amide with variety of ligands.

Table 9 Catalytic Hydroboration of X16 phenyl amide with variety of ligands

Ligand	$\boldsymbol{\gamma} \%$	\% ee	$\boldsymbol{\beta} \%$
L2b	65	50	24
L2d	62	48	23
L2c	58	52	36
L2a	66	60	34
L1	75	62	11
L3a	92	-18	1
L3c	92	-40	1
L3d	90	-34	1
L3b	89	-15	2

Regardless of the ligand used (i.e., TADDOL-derived monophosphite, TADDOL-derived phosphoramidite, or BINOL-derived monophosphoramidite), CAHB with pinBH affords the γ-hydroxy amide as the major product (Table 9). However, the various ligands do affect the product ratio suggesting that small changes in the ligand scaffold alters the topography at the site of catalysis in a significant way. The TADDOL-derived monophosphites (i.e., L2a, L2b, L2c and L2d) behave similarly giving predominantly the corresponding γ-hydroxy product after oxidative workup. Among the ligands studied here, this group ligand gives the highest amount of β-hydroxy product. For example, CAHB with L2a, and L2c yield $34 \% \& 36 \%$ of the β-product, respectively. Directed

CAHB of X16 by pinBH with TADDOL-derived phosphoramidites L3a, L3b, L3c and L3d give high yield 89-92\% of the γ-product indicating very high regioselectivity; less than 2% of the β-isomer is found with these ligands. Unfortunately, the level of enantioselectivity induced by those ligands is low, only an average of 32% ee. Similarly, the BINOL-derived phosphoramidite generates the γ-hydroxy product predominantly but with a modest level of enantioselectivity ($75,62 \%$ ee). Finally, it is also noteworthy that enantioswitching is observed in the some cases for the CAHB of X16 by pinBH. Enantioswitching. ${ }^{48}$ describes the situation where similar ligand scaffolds of the same absolute configuration give enantiomeric products. For example, compare the results obtained with L3c give -40 \% ee while L2a give 60\% ee. There is no general mechanistic rationale accounting enantioswitching. Similarly, it is difficult to rationalize why the yield changes with small structural and electronic changes in the ligands. These differences may simply reflect significant and essential differences in catalyst reactivity, structure, and/ or the reaction mechanism.

2.6 Exploration into application of boronates

The CAHB of 1,1-disubstituted substrates exhibits high selectivity producing chiral organoboronate derivatives which can be either be oxidized to give the non-racemic chiral alcohol or potentially used in other transformations. To illustrate the latter,treating the chiral organoboronate with KHF_{2} gives the trifluoroborate salt. These can be used in Suzuki-Miyaura coupling. ${ }^{11}$ For example, organoboronate is obtained in good yield (53\%) from X16 (R=Me). Scheme 10 shows the subsequent transformations to illustrate its synthetic utility.

Scheme 10 (a) aq $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}$; (b) $\mathrm{KHF}_{2}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$; (c) $5 \% \mathrm{Pd}(\mathrm{OAc})_{2}, 10 \%$ RuPhos, $\mathrm{Ar}-\mathrm{X}, \mathrm{K}_{2} \mathrm{CO}_{3}$, toluene $/ \mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}$ ($\mathrm{Ar}-\mathrm{X}=$ Chlorobenzene.yield $=81 \%$).

In summary the directed CAHB of 1,1-disubstituted alkene has proven to be rewarding. High level of high levels of regio- and enantioselective control can results in CAHB of a β, γ-unsaturated amide framework. Furthermore, we also studied directed CAHB of 1,1disubstituted alkenes consisting of a more synthetically versatile directing groups in the following Chapter.

Chapter 3.1 Catalytic asymmetric hydroboration of $\boldsymbol{\beta}, \boldsymbol{\gamma}$-unsaturated ester and weinreb amides

The use of a phenyl amide as a directing group has played a major role in the direct CAHB reaction developed in the Takacs group as is apparent from the results described in Chapter 2. For example, CAHB of X18 by 4,4,6-trimethyl-1,3,2dioxaborinane (TMDB) catalyzed by $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$ in conjunction with the TADDOLderived phosphite L2a affords -dioxaborato amide $\mathbf{X (1 8)}$-1 in excellent enantiomeric purity $(72 \%, 95 \%$ ee $)$; only a trace of the β-substituted product is found ($<3 \%$). We sought to expand the scope of the directed CAHB of 1,1-disubstituted alkene by opening options for subsequent chemistry. Accordingly, we investigated other directing groups for the 1,1-disubstituted alkenes at hand. In this chapter, we report that the tert-butyl ester moiety promotes the directed CAHB utilizing the same chiral rhodium catalyst. For example, CAHB of $\mathbf{X 2 3}$ affords $\mathbf{X}(\mathbf{2 3}) \mathbf{- 1}$ in the similar yield and similarly high enantiomeric purity as the corresponding phenyl amide. The reaction proceeds with good regiocontrol as well; only a trace amount of the β-hydroxy ester is formed. Oxidative workup with basic hydrogen peroxide leads to cyclization of the γ-hydroxy ester to the γ-lactone.

In evaluating the directed CAHB of X23, several BINOL-derived phosphoramidite, TADDOL-derived phosphite, and phosphoramidite ligands derivatives were examined from the list shown below. The reactivity and enantioselectivity vary widely. Overall, directed CAHB of the tert-butyl ester derivatives with pinBH gives good reactivity with moderate enantiomeric induction; generally they afford results similar to those obtained from the corresponding phenyl amide substrate. For example, the CAHB of the $\mathbf{X 2 3}$ in
presence of L2a and pinBH furnish, after oxidation, γ-hydroxy alcohol in (57, 81\% ee); the CAHB of the phenyl amide X16 in presence of L2a and pinBH furnish γ-hydroxy alcohol ($66,60 \%$ ee). Certain ligands derived from the TADDOL scaffold afford catalysts that exhibit good enantioselectivity. For example, the parent TADDOL-derived phenylphosphite L2c affords $\mathbf{X}(\mathbf{2 3})$-1 in 75\% ee and the corresponding (3,5dimethyl)phenyl analogue L2d gives 69 \% ee (Table 10).

TMDB

PinBH

L3
L2

a: $\left(\mathrm{Ar}=(3,5-\mathrm{diMe}) \mathrm{C}_{6} \mathrm{H}_{3}\right)$
b: $\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$
c: $\left(\mathrm{Ar}=\left(4^{\prime}-t \mathrm{Bu}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right)$
d: $\left(\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right.$
$\mathrm{a}:(\mathrm{X}=\mathrm{N}(\mathrm{Me}) \mathrm{Ph})$
$\mathrm{b}:(\mathrm{X}=$ Indoline $)$ $\mathrm{b}:(\mathrm{X}=\mathrm{Indoline})$
$\mathrm{c}:(\mathrm{X}=\mathrm{N}(\mathrm{Ph}) \mathrm{Bn})$ c: $(X=N(P h) B n)$ $\mathrm{d}:(\mathrm{X}=\mathrm{N}(\mathrm{Bn}) \mathrm{Bn}$

Table 10 Catalytic hydroboration of 3-methyl-3-butenoic acid tert-butyl ester $\mathbf{X} \mathbf{2 3}$ with pinBH.

Ligands	Yield \%	ee \%
L2a	57	81
L2c	50	75
L2d	52	69
L1	49	72
L3	58	-10

The previous screening of phenyl amide substrates it was found that TMDB increases the enantioselectivity compared to pinBH. It was therefore expected that directed CAHB of the tert-butyl ester substrates by TMDB would again give higher levels of enantioselectivity. As summarized in Table 11, this proved to be the case. The enantioselectivity increases in each case; L2a gives the highest enantiomeric excess (94%) among the group of ligands. For example, the CAHB of the $\mathbf{X 2 3}$ in presence of L2a and TMDB furnish γ-hydroxy alcohol (63, 94\% ee) and in presence of $\mathbf{L 2 d}$ furnish γ-hydroxy alcohol (63, 92\% ee). It is worth noting that the BINOL-derived phosphoramidite $\mathbf{L} 1$ also gives improved enantioselectivity, 82% ee with TMDB, as compared to 72% ee with pinBH. The high degree of stereoselectivity obtained with the tert-butyl ester moiety should provide a powerful method for stereoselective construction of a chiral intermediate for target-directed synthesis.

Table 11 Catalytic hydroboration of 3-methyl-3-butenoic acid tert-butyl ester $\mathbf{X} \mathbf{2 3}$ with TMDB.

Ligands	Yield \%	ee \%
L2a	63	94
L2c	60	88
L2d	63	92
L1	50	82
L3a	59	-23

To explore the scope a second tert-butyl ester substrate bearing an alkyl substituent in β position was prepared. The benzyl group was chosen because it often enables more rapid and efficient access to structurally novel chemical libraries. ${ }^{49}$ The results of the CAHB of X24 by pinBH and TMDB are summarized in tables 12. For the three ligands examined, the regio and enantioselectivity observed was higher than the corresponding reaction with pinBH. The highlight of this study was the regioselectivity of the products, generating a single regioisomer at the γ-position.

Table 12 Catalytic hydroboration of 3-benzyl-3-butenoic acid tert-butyl X24 with pinBH and TMDB.

	X24			
Ligands				
	Yield \%	ee \%	Yield \%	ee \%
L2a	64	61	80	95
L2b	62	57	72	82
L2c	51	30	79	92

From the studies conducted above and those carried out by others in the Takacs group, it was concluded that, for the 1,1-disubstituted substrates under investigation, the levels of asymmetric induction are highest for CAHB by TMDB using catalysts modified by the 3,5-diMe(TADDOL)POPh ligand (i.e., L2a). Thus, L2a was the best ligand to work with in exploring the reactions of other substrates in the hopes of developing a catalytic system to construct novel target molecules and use this strategy for chemical synthesis. Further screening reactions were carried out to continue to investigate the scope of this reaction with respect to the β-substituent (Scheme 11). The results are summarized in Table 13. In
each case, the lactone was produced in moderate to good yield and in $90-95 \%$ ee; only trace amounts of the β-regioisomer products were observed.

Scheme 11 Catalytic hydroboration of tert-butyl esters with TMDB and L2a ligand .

Table 13 The results of catalytic hydroboration of tert-butyl esters with TMDB and L2a ligand.

Entry	Ester	Product	Yield	ee\%
X23			62	94
X24			80	95
X25			65	91
X26			76	91
X27			63	94
X28			61	90

3.2 Catalytic asymmetric hydroboration of 1,1-disubstituted weinreb amides

We also briefly examined the potential of using Weinreb amides at the directing group for directed CAHB. Weinreb amide derivatives are also useful functional groups for further synthetic transformation. CAHB of Weinreb amide X29 by CatBH and pinBH was screened using $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$ in conjunction with TADDOL-derived phosphite ligands and BINOL-derived monophosphoramidite ligands; the results are summarized in Table 14. Using pinBH, the level of enantioselectivity is generally low. For example, the CAHB of X29 by pinBH using L2c gives the γ-hydroxy product in 50\% yield and 50\% ee. CAHB of the same substrate by TMDB generally gives improved levels of enantioselectivity generally across the series of TADDOL- and BINOL-derived monophosphites and phosphoramidites. For example, CAHB of X29 by TMBD using L2a generates the γ-hydroxy products in 91% ee, however, the yield (45\%) remains only modest in these preliminary experiments.

Scheme 12 Catalytic hydroboration of 5-methyl-3-methylidenehexanoic acid weinreb amides $\mathbf{X 2 9}$ with pinBH and TMDB.

Table 14 The results of catalytic hydroboration of 5-methyl-3-methylidenehexanoic acid weinreb amides $\mathbf{X 2 9}$ with pinBH and TMDB

Ligands			 TMDB	
	Yield \%	ee \%	Yield \%	ee \%
L2a	48	45	45	91
L2c	50	50	50	75
L2d	40	30	30	70
L1	20	25	38	20

* \% Yield and \% ee are representative of the γ-hydroxyamide isomer

The results in Table 13 suggest that the methodology should be very amenable to the stereoselective construction of chiral γ-hydroxy esters and β-substituted- γ-lactones. We attempted to construct the γ-phenyl lactone X30, a precursor to $(R)-(-)$-baclofen, ${ }^{50}$ which is a therapeutically effective GABAB receptor agonist. ${ }^{51}$ Unfortunately, this reaction did not proceed smoothly and the desired products were not formed cleanly under this condition because of alkene reduction and β-substitution. Although this application failed, the methodology has been successfully used by others in the Takacs group to prepare lignan precursors in good yield and high enantiomeric purity. Other potential applications are discussed in the following section.

Scheme 13 Attempted route for the preparation of β-phenyl- γ-butyrolactone

3.3 Potential applications of the directed CAHB of unsaturated esters in synthesis.

The rhodium-catalyzed directed CAHB reaction is developing into one of the most versatile and general methods developed for the preparation of highly enantiomeric selectivity of organoboronates. We envision that this method will ultimately serve in the asymmetric synthesis of variety of heterocyclic and carbocyclic compounds that found application in both medicinal and material chemistry. ${ }^{1,2,3,6}$ In the case of β, γ-unsaturated amides and esters, 1,1-disubstituted substrates react to form products with a high degree of regio- and enantioselectivity. For example, CAHB of X23 followed by work up with hydrogen peroxide and aqueous sodium hydroxide yields lactone $\mathbf{X}(\mathbf{2 3})-\mathbf{1}$ in excellent enantiomeric purity ($62 \%, 94 \%$ ee $)$. This lactone offers unique advantages as an intermediate for asymmetric synthesis and has been used in asymmetric total synthesis (Scheme 14). For example, Riaz reported the isolation and separation of the desired isomer of this lactone and used it to carry out a more expeditious and efficient synthesis of xyloketal. The latter compound has attracted attention due to its unusual C_{3}-symmetric structure and it's as a potent inhibitor of acetylcholine esterase. ${ }^{52}$

Scheme 14 Representative examples of applications of CAHB of 3-methyl-3-butenoic acid tert-butyl ester $\mathbf{X 2 3}$.

CAHB of $\mathbf{X 2 3}$ followed by mild oxidative workup $\left(\mathrm{NaBO}_{3}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}\right)$ gives β-hydroxy ester $\mathbf{X}(\mathbf{2 3})-\mathbf{2}$ (Scheme 14). The latter compound has served as a key intermediate in several total syntheses, for example, in the multi-step synthesis of amphidinolide $\mathrm{X} .{ }^{53}$ The latter compound was the first macrodiolide consisting of polyketide-derived diacid and diol units isolated from natural sources; it possesses moderate cytotoxicitiy against L1210 and KB cell lines. ${ }^{54}$ Fujimoto ${ }^{55}$ used the same intermediate in his synthesis of muscone, the component of musk used in many perfumes. Nakamura ${ }^{56}$ prepared stink bug pheromones from this same intermediate.

Other β-substituted- γ-lactones prepared by directed CAHB have similarly found used as intermediates in asymmetric total syntheses. For example, Lee used γ-butyrolactones $\mathbf{X (2 6) - 1}$ in a key step of his synthesis of enantiomerically pure Pregabalin ${ }^{\mathrm{TM}}$, an anticonvulsant drug used for neuropathic pain. ${ }^{57}$ Peter reported the alkylation of β-benzyl-γ-butyrolactone $\mathbf{X}(\mathbf{2 4})$-1 enroute to several symmetric and unsymmetric lignan homologs (Scheme 15). ${ }^{49}$

Scheme 15 Preparation of biologically active chiral β-substituted- γ-lactones via CAHB

In summary, the recent development of directed CAHB reactions directly produce chiral intermediates that are associated with natural products synthesis and it is expected that the continued development of these methodologies will contribute to other new applications in asymmetric total synthesis.

Chapter 4: Concluding remarks

We provided efficient method in catalytic hydroboration of 1,1-disubsituted alkene using two-point binding methodology. This method furnishes chiral organoboronates in high enantiomeric purity. The reactions of several 1,1-disubstitued alkenes within a β, γ unsaturated carbonyl framework including phenyl amide, esters, Weinreb amide under several reaction conditions and catalyst systems were investigated in this thesis. Since a little change in topography of chiral ligands has direct influence in the hydroboration outcomes, we postulated that the use of an assortment of TADDOL- and BINOL-derived monophosphites and phosphoramidites could serve as suitable ligands for selective directed hydroboration for 1,1-disubstituted alkene. Using structurally-similar boranes has significant effects not only on the regioselectivity but also on the enantioselectivity of the products.

The presence of directing group can serve an efficient tool in controlling the stereoselectivity in CAHB. To test this hypothesis in 1,1-didubstituted alkene within a β, γ-unsaturated carbonyl framework, the $\mathbf{X 1 6}$ substrate was subjected to the CAHB in presence of $1 \% \mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$ in combination with 2.1% 3,5-diMe(TADDOL)POPh (L2a) and 4,4,6-trimethyl-1,3,2-dioxaborinane (TMDB (B2)) affords γ-dioxaborato amide $\mathbf{X}(16)-1$ in good yield and excellent enantiomeric purity ($53 \%, 95 \%$ ee); and tertbutyl ester were proven to be an excellent directing moieties in the CAHB of 1,1disubstituted alkenes. For example, the $\mathbf{X 2 3}$ substrate was subjected to the CAHB in presence of $1 \% \mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}$ in conjunction with 2.1% 3,5-diMe(TADDOL)POPh and TMDB produced γ-dioxaborato ester $\mathbf{X}(\mathbf{2 3}) \mathbf{- 1}$ in good yield and excellent enantiomeric purity ($62 \%, 94 \%$ ee). The Weinreb amide also permits the efficient two-point binding
from the carbonyl and olefin moieties. For example, CAHB of weinreb amide derivative $\mathbf{X 2 9}$ gave promising results ($45 \%, 91 \%$ ee).

The 1,1-disubstituted alkenes substrates investigated within this study involve varying degrees of reactivity and enantioselectivity with many ligands and boranes. The most promising results are listed in Table 15.

Table 15 Results of CAHB of 1,1-disubstituted alkene

Substrate	Yield \%	ee \%
	53	95
	60	92
	80	95
	72	90
	71	93
	73	94
	55	94

Substrate	Yield \%	ee \%
	62	94
	65	91
	78	91
	80	95
	67	92
	63	94
	45	91

The ability to produce chiral organoboronates through CAHB of two bond binding substrate provides unique opportunities for the accomplishment of verity enantioselective reactions. This protocol offers highly regio-and enantioselectivity, making them extremely powerful tools for synthesis of stereochemically products.

Chapter 5: Experimental Data

General procedures. Reactions were carried out in a dry nitrogen atmosphere. Dichloromethane (DCM) and tetrahydrofuran (THF) were freshly distilled under the following conditions: THF from sodium metal and benzophenone, and DCM from calcium hydride. HPLC solvents were filtered through Millipore filter paper. When indicated in the following procedures, solvents were degassed by freezing under reduced pressure followed by a dry nitrogen atmosphere thaw (3-4 times). 4,4,6-Trimethyl-1,3,2dioxaborinane TMDB was distilled immediately before use. All synthesized compounds were purified with flash chromatography using EMD Silica Gel 60 Geduran®, distilled via short path distillation, or triturated. Thin Layer Chromatography analyses were performed on Analtech Silica Gel HLF (0.25 mm) precoated analytical plates and visualized with use of handheld short wavelength UV light, iodine stain (I_{2} and EMD Silica Gel 60 Geduran®) or vanillin stain (ethanol, $\mathrm{H}_{2} \mathrm{SO}_{4}$, and vanillin). HPLC analyses were performed with use of an ISCO model 2360 HPLC and Chiral Technologies, Inc. chiral HPLC columns (Chiralcel OD; column: $250 \times 4.6 \mathrm{~mm}$) Data were recorded and analyzed with ChromPerfect chromatography software (version 5.1.0). NMR spectra were recorded on 600,400 , and 300 MHz Bruker Advance NMR spectrometers using residue $\mathrm{CHCl}_{3}(\delta 7.27 \mathrm{ppm})$ or $\mathrm{CDCl}_{3}(\delta 77.0 \mathrm{ppm})$ for reference unless otherwise specified. Peaks are expressed as m (unresolved multiplet), q (quartet), t (triplet), d (doublet) or s (singlet). IR spectra were recorded using an Avatar 360 FT-IR. Optical rotations were measured as solutions, $1.0 \mathrm{~g} / 100 \mathrm{~mL}$ in chloroform unless indicated otherwise, and recorded using an Autopol III automatic polarimeter. HRMS analyses were performed by the Nebraska Center for Mass Spectrometry.

Representative procedure for the preparation of allylic acid

Preparation of 3-methyl-3-butenoic acid (X1): Magnesium turnings and a few crystals of iodine were added to 400 mL of freshly distilled THF (dry) in three necked 1000 mL round bottom flask equipped with a stir bar and condenser. The allylic chloride $(16.21 \mathrm{~g}, 180 \mathrm{mmol})$ was diluted by twice its volume with THF and added to a dropping funnel. A portion of the allyl chloride solution (ca. 50 mL) was added to the magnesium turnings; exothermic reaction ensued causing the THF to reflux. (Note: if the mixture did not heat to reflux, more allyl chloride (ca 20 mL) was added and the mixture gently heated to reflux using a heat gun). The remaining allyl chloride solution was added dropwise at a rate sufficient to maintain a gentle reflux. Upon complete addition, the cooling reaction was allowed to stir for 30 min under N_{2} turning milky white. The mixture was cooled to $-78^{\circ} \mathrm{C}$ (30 min). Afterwards, a steady stream of CO_{2} blanketed the mixture for (ca 1 h). The temperature was slowly allowed to increase to $0^{\circ} \mathrm{C}$ by removing the cold bath. The pH was then adjusted to $10-11$ by the addition of cold 2 Maq NaOH and extracted with diethyl ether three times. The mixture was then acidified with cold 4 M HCl to pH 2-3 and extracted three times with diethyl ether. The organic solvent was concentrated under reduced pressure to affords after flash chromatography on silica gel (50:50 Hexanes:Ethyl acetate), the title compound ($6 \mathrm{~g}, 33 \%$) as a light yellow oil; TLC analysis $R_{f} 0.30$ (50:50 hexanes :dichloromethane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 11.82$ $(1 \mathrm{H}, \mathrm{br}$ s, OH$), 4.96$ and $4.89\left(2 \mathrm{H}, \mathrm{s}\right.$'s, d), $3.09(2 \mathrm{H}, \mathrm{s}, \mathrm{b}), 1.84(3 \mathrm{H}, \mathrm{s}, \mathrm{e}) ;{ }^{13} \mathrm{C}$ NMR (100
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.97$ (a), 137,06 (c), 115.60 (d), 43.31 (b), 22,62 (e) ; IR (neat) $2975.5\left(\mathrm{CH} \mathrm{sp}^{2}\right.$ stretch $)$ and $1652 \mathrm{~cm}^{-1}$.

Representative procedure for the preparation of allylic alcohols. ${ }^{58}$

> 2) Propargyl alcohol, Cul $-78^{\circ} \mathrm{C} \sim \mathrm{rt}$

General procedure illustrated for the preparation of 2-methylene-4-phenylbutan-1-ol (X2): Into a flame-dried three-neck RBF with condenser and a dropping funnel under N_{2} was added THF (40 mL), magnesium turnings $(2 \mathrm{~g}, 88 \mathrm{mmol})$ and a tiny crystal of I_{2}. A solution of (2-bromoethyl) benzene ($8.0 \mathrm{~g}, 88 \mathrm{mmol}$) in THF (10 mL) was added drop wise while reaction was initiated by heating with a heat gun. After the addition of (2bromoethyl) benzene was complete, the reaction was stirred for 3 hours. The mixture was then cooled to $0^{\circ} \mathrm{C}$ and transferred via cannula into a cooled $\left(-70^{\circ} \mathrm{C}\right)$ suspension of copper iodide ($5.0 \mathrm{mmol}, 50 \mathrm{~mol} \%$) and propargyl alcohol (10.0 mmol) in dry toluene (15 mL). which was followed by a natural warming to room temperature. After complete conversion of the starting material (ca. 18 h) the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether (3 X 30 mL). The combined extracts were dried (anhyd. MgSO_{4}). The solvent was evaporated and the crude product purified by flash chromatography (85:15 Hexane: ethyl acetate) to afford the title compound ($2.5 \mathrm{~g}, 58 \%$) as a colorless oil; TLC analysis $\mathrm{R}_{f} 0.50$ (60:40 hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.36-7.33(2 \mathrm{H}, \mathrm{t}, J=8, \mathrm{~g}, \mathrm{~g}$ '), 7.27-
$7.25(3 \mathrm{H}, \mathrm{d}, J=8, \mathrm{~h}, \mathrm{~h}, ~, \mathrm{i}), 5.12$ and $4.98(2 \mathrm{H}, \mathrm{s}$'s, c), $4.14(2 \mathrm{H}, \mathrm{s}, \mathrm{a}), 2.87(2 \mathrm{H}, \mathrm{t}, J=4, \mathrm{~d})$ $2.41(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8, \mathrm{e}), 2.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 148.44(\mathrm{~b}), 141.09$ (f), 128.40(h,h'), 128.38(g.g'), 125.96(i), 109.05(c), 65.92(a), 34.66 (e), 34.30(d); IR (neat) 3325 (OH stretch), 2922 (OH bend), 1018, 1056, 1453(C-O stretch), 647, 729. HRMS (FAB) calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}(\mathrm{M}+\mathrm{Na})$: 185.0942 , found $185.0939 \mathrm{~m} / \mathrm{z}$.

Preparation of Preparation of 2-cyclohexyl-2-propenol (X3): Following the general procedure, cyclohexylmagnesium chloride (45 mL of a 2.0 M solution in THF, 90 mmol) and propargyl alcohol affords the title compound ($3.33 \mathrm{~g}, 79 \%$) as a colorless oil after flash chromatography over silica gel (80:20 hexanes:ethyl acetate); TLC analysis $R_{f} 0.40$ (75:25 hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.00$ and $4.86(2 \mathrm{H}, \mathrm{s}$'s, c), 4.10(2H, s, a), 2.00-1.85(2H, m, a, OH), 1.85-1.70 (4H, m, e,e', f,f'), 1.70-1.65(1H, m, $\mathrm{g}), 1.30-1.10(5 \mathrm{H}, \mathrm{m}, \mathrm{e}, \mathrm{e}, \mathrm{f}, \mathrm{f}, \mathrm{g}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.53(\mathrm{~b}), 107.40(\mathrm{c})$, 65.05(a), 41.25(d), 32.43(e, e'), 26.70(f,f'), 26.29(g); IR (neat) 3306 (O-H stretch), 2850, 1649, 1060, 1019 (C-O stretch), $889,625 \mathrm{~cm}^{-1}$; HRMS (EI) calcd. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}: 140.1201$, found $140.1204 \mathrm{~m} / \mathrm{z}$.

Preparation of 2-Phenyl-2-propenol (X4): Following the general procedure, phenylmagnesium bromide (90 mL of a 1.0 M solution in THF, 90 mmol) and propargyl alchol affords, after flash chromatography on silica gel (80:20 hexanes:ethyl acetate), the title compound ($3.08 \mathrm{~g}, 77 \%$) as a light yellow oil; TLC analysis $R_{f} 0.30$ (75:25 hexanes:ethyl acetate); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{e}, \mathrm{e}^{\prime}\right), 7.45-7.30$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{f}, \mathrm{f}\right.$ ', g), 5.50 and $5.39\left(2 \mathrm{H}, \mathrm{s}\right.$'s, c), $4.55(2 \mathrm{H}, \mathrm{s}, \mathrm{a}), 2.28(1 \mathrm{H}, \mathrm{br}$ s, OH$) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 147.30$ (b), 138.60 (d), 128.53 (f,f'), 127.94 (g), 126.10 (e,e'), 112.55 (c), 64.87 (a); IR (neat) 3370 (O-H stretch), 2945, 2883, 1735, 1632, 1495, 1444, 1372, 1239, 1043 (C-O stretch), 1024, 902, 778, 706, $609 \mathrm{~cm}^{-1 .}$

Representative procedure for the preparation of allylic carbonates ${ }^{59}$

Preparation of 2-phenylethyl ethyl carbonate (X5): To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of the allyl alcohol (50 mmol) and dry pyridine (100 mmol) in THF $(100 \mathrm{~mL})$ was added ethyl chloroformate (50 mmol) dropwise over 10 min . The mixture was stirred at room temperature for 3 h and then partitioned between dilute aq. hydrochloric acid and ether (ca. 150 mL each). The aqueous phase was extracted with an additional potion of ether,
the combined organic layers washed with brine, and dried (anhyd. MgSO_{4}). Following evaporation of the solvent, flash chromatography on silica gel (90:10 hexanes:ethyl acetate) gave the title compound ($9.37 \mathrm{~g}, 80 \%$) as a color less oil; TLC analysis $\mathrm{R}_{f} 0.70$ (90:10 hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(2 \mathrm{H}, \mathrm{m}, \mathrm{g}, \mathrm{g}$ '), 7.22$7.25(3 \mathrm{H}, \mathrm{m}, \mathrm{k}, \mathrm{k}$ ', i$), 5.16$ and $5.06(2 \mathrm{H}, \mathrm{s}$'s, f), $4.64(2 \mathrm{H}, \mathrm{s}, \mathrm{d}), 4.24(2 \mathrm{H}, \mathrm{q}, J=4, \mathrm{~b})$, $2.84(2 \mathrm{H}, \mathrm{t}, J=8, \mathrm{~h}), 2.45(2 \mathrm{H}, \mathrm{t}, J=8, \mathrm{~g}), 1.36(3 \mathrm{H}, \mathrm{t}, J=5, \mathrm{a}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 155(\mathrm{c}), 142.93(\mathrm{e}), 141.53(\mathrm{i}), 128\left(\mathrm{k}, \mathrm{k}^{\prime}\right), 128.37\left(\mathrm{~g}, \mathrm{~g}^{\prime}\right), 126.00(\mathrm{l}), 113.43(\mathrm{f}), 70.12(\mathrm{~d})$, 64.06(b), 34.76(g), 34.02(h), 14.31(a); IR (neat) 1742 (C-O stretch), 1374, 1435, 1496 (C-O stretch), 2933($\mathrm{CH} \mathrm{sp}^{2}$ stretch), 698, 908, 1007; HRMS (FAB) calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na}): \mathbf{2 5 7 . 1 1 5 4}$, found $257.1154 \mathrm{~m} / \mathrm{z}$.

Preparation of 2-cyclohexylallyl ethyl carbonate (X6): To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 2-cyclohexylallyl alcohol ($2.80 \mathrm{~g}, 20 \mathrm{mmol}$) and pyridine ($3.16 \mathrm{~g}, 40 \mathrm{mmol}$) in THF $(30 \mathrm{~mL})$ was added ethyl chloroformate $(2.17 \mathrm{~g}, 20 \mathrm{mmol})$ dropwise over a period of 10 min . The resultant reaction mixture was allowed to stir for 3 h and then diluted with a solution of dilute $\mathrm{HCl}(15 \mathrm{~mL})$. The mixture was extracted with diethyl ether (3 x ca. 20 mL) and the combined organic extracts were dried (anhyd. MgSO_{4}) and concentrated under reduced pressure. Flash chromatography on silica gel (95:5 hexanes:ethyl acetate) afforded the title compound ($3.69 \mathrm{~g}, 87 \%$) as a colorless oil; TLC analysis $R_{f} 0.75$ (95:5 hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.04$ and $4.96(2 \mathrm{H}, \mathrm{s}$'s, f), 4.60 $(2 \mathrm{H}, \mathrm{s}, \mathrm{d}), 4.20(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{~b}), 2.00-1.90(1 \mathrm{H}, \mathrm{m}, \mathrm{g}), 1.90-1.75(4 \mathrm{H}, \mathrm{m}, \mathrm{h}, \mathrm{h}, \mathrm{i}, \mathrm{i})$,
$1.75-1.65(1 \mathrm{H}, \mathrm{m}, \mathrm{j}), 1.31(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{a}), 1.30-1.10(5 \mathrm{H}, \mathrm{m}, \mathrm{h}, \mathrm{h}, \mathrm{i}, \mathrm{i}, \mathrm{j}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.07$ (c), 148.66 (e), 111.07 (f), 69.35 (d), 63.92 (b), 41.19 (g), 32.09 (h,h'), 26.56 (i,i'), 26.21 (j), 14.25 (a); IR (neat) 2926, 2853, 1742 (C=O stretch), 1649, 1448, 1374, 1241 (C-O stretch), 1004, 908, 890, 790, $630 \mathrm{~cm}^{-1}$; HRMS (CI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H}): 213.1491$, found $213.1493 \mathrm{~m} / \mathrm{z}$.

Preparation 2-Phenylallyl ethyl carbonate (X7): Following the representative procedure, 2-phenylallyl alcohol ($2.68 \mathrm{~g}, 20 \mathrm{mmol}$) afforded, after flash chromatography on silica gel (95:5 hexanes:ethyl acetate), the title compound ($3.46 \mathrm{~g}, 84 \%$) as a colorless oil; TLC analysis $R_{f} 0.75$ ($95: 5$ hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.50-7.45 (2H, m, h,h'), 7.45-7.30 (3H, m, i,i', j), 5.60 and $5.45(2 \mathrm{H}, \mathrm{s}$'s, f), $5.06(2 \mathrm{H}, \mathrm{s}$, d), $4.23(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{~b}), 1.33(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{a}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 155.06 (c), 142.15 (e), 137.86 (g), 128.54 (i,i'), 128.14 (j), 126.04 (h,h'), 115.62 (f), 68.87 (d), 64.15 (b), 14.25 (a); IR (neat) 2984, 1740 (C=O stretch), 1634, 1375, 1242 (CO stretch), 1006, 910, 872, 789, 705, $547 \mathrm{~cm}^{-1}$.

Representative procedure for the preparation of disubstituted β, γ-unsaturated

esters.

Preparation of 3-methylidene-5-phenylpentanoic acid ethyl ester (X8): A stirred solution of the allylic carbonate $(5 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(22.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ was blanketed with a head space of CO to 60 psi . The resulting mixture was warmed to $50^{\circ} \mathrm{C}$ and stirred (24 h). Afterwards, the cooled reaction mixture was partitioned between ether/water. The organic layer was dried and concentrated, and the residue was purified by column chromatography on silica (80:20 hexanes:ethyl acetate) to give the title compound ($0.490 \mathrm{~g}, 45 \%$) as a colorless oil: TLC analysis $\mathrm{R}_{f} 0.70$ (90:10 hexanes:ethyl acetate) ${ }^{1}{ }^{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(2 \mathrm{H}, \mathrm{m}, \mathrm{j}, \mathrm{j}), 7.19-7.29(3 \mathrm{H}, \mathrm{m}, \mathrm{k}, \mathrm{k}, ~ \mathrm{l}), 4.99$ and $4.97(2 \mathrm{H}, \mathrm{s}$'s, f), $4.14(2 \mathrm{H}, \mathrm{q}, J=8, \mathrm{~b}), 3.10(2 \mathrm{H}, \mathrm{s}, \mathrm{d}), 2.79(2 \mathrm{H}, \mathrm{t}, J=8, \mathrm{~g}), 2.43(2 \mathrm{H}, \mathrm{t}$, $J=8, \mathrm{~h}), 1.27(3 \mathrm{H}, \mathrm{t}, J=8, \mathrm{a}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.48(c), $141.95(\mathrm{e})$, 141.72(i), 128.49(k, k'), 128.35(j,j'), 125.91(i), 114.02(f), 60.69(b), 42.27(d), 37.59(g), 33.96(h), 14.24(a); IR (neat) 2934 (CH sp ${ }^{2}$ stretch), 1735 (C=O stretch), 1154, 1367, 1387 (CO stretch), 746, 654.HRMS (FAB) calcd. For $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})$: 218.1307, found $219.1389 \mathrm{~m} / \mathrm{z}$.

Preparation of 2-phenylethyl ethyl acid

Preparation of 3-Methylidene-5-phenylpentanoic acid (X9): To the compound ($230 \mathrm{mg}, 26 \mathrm{mmol}) \mathbf{X 8}$ was added methanol 1 mL and $2 \mathrm{~N} \mathrm{KOH}(9 \mathrm{~mL})$, and stirred overnight at room temperature. The resultant basic solution was extracted with dichloromethane ($2 \times 15 \mathrm{~mL}$) and then acidified. The acidic aqueous layer was extracted with dichloromethane ($3 \times 30 \mathrm{~mL}$) and the combined organic extracts were dried (anhyd. MgSO_{4}) and concentrated under reduced pressure. The crude residue was then purified via flash chromatography on silica gel (50:50 hexanes:ethyl acetate) to afford the title compound ($184 \mathrm{mg} \mathrm{g}, 63 \%$) as a light yellow oil; TLC analysis $\mathrm{R}_{f} 0.50$ (50:50 hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.34-$ $7.30(2 \mathrm{H}, \mathrm{m}, J=8, \mathrm{~h}, \mathrm{~h}$ '), $7.28-7.21(3 \mathrm{H}, \mathrm{m}, J=8, \mathrm{i}, \mathrm{i}, \mathrm{j}), 5.05$ and $5.03(2 \mathrm{H}, \mathrm{s}$'s, d), $3.16(2 \mathrm{H}, \mathrm{s}, \mathrm{b}), 2.81(2 \mathrm{H}, \mathrm{t}, J=8, \mathrm{e}), 2.47(2 \mathrm{H}, \mathrm{t}, J=8, \mathrm{f}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 178.03(a), 141.54(c), 141.23(g), 128.40(i, i'), 128.35(h,h'), 125.98 (j), 114.79(d), 41.91(b), 37.48(e), 33.95(f); IR (neat) 3026(OH stretch), 2926 (OH bending), 1703 ($\mathrm{C}=\mathrm{O}$ stetch), 1216, 1293, 1406(C-O stretch), 967, 768, 765. cm ${ }^{-1}$. HRMS (ESI) calcd. For $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}(\mathrm{M}+\mathrm{Na}): 213.0891$, found $213.0813 \mathrm{~m} / \mathrm{z}$.

Representative procedure for the preparation of β, γ-unsaturated amides ${ }^{60}$

Preparation of 3-methyl-3-butenoic acid phenyl amide (X16): To a cooled (0 ${ }^{\circ} \mathrm{C}$) solution of 3-methyl-3-butenoic acid ($501 \mathrm{mg}, 5.0 \mathrm{mmol}$) in dichloromethane (DCM, 10 mL) was added aniline ($560 \mathrm{mg}, 6.0 \mathrm{mmol}$) and N, N-dimethylamino pyridine (DMAP, $61 \mathrm{mg}, 0.50 \mathrm{mmol}$). After the resulting mixture was allowed to stir for 0.5 h at the same temperature, N, N-dicyclohexylcarbodiimide (DCC, $1.14 \mathrm{~g}, 5.5 \mathrm{mmol}$) was added in one portion and allowed to warm to room temperature. After an overnight stir, the reaction mixture was filtered and the filtrate was washed with dilute $\mathrm{HCl}(2 \times 15 \mathrm{~mL}, 1 \mathrm{M})$. The organic layer was dried (anhyd. MgSO_{4}) and concentrated under reduced pressure. Flash chromatography on silica gel (75: 25 hexanes:ethyl acetate) affords the title compound ($570 \mathrm{mg}, 65 \%$) as a white solid: $\mathrm{mp} 97-99^{\circ} \mathrm{C}$; TLC analysis $R_{f} 0.30$ ($75: 25$ hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.53(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, $\left.\mathrm{c}, \mathrm{c}^{\prime}\right), 7.33(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{~b}, \mathrm{~b}$) $), 7.13(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{a}), 5.09$ and $5.02(2 \mathrm{H}, \mathrm{s}$,s, h), $3.15(2 \mathrm{H}, \mathrm{s}, \mathrm{f}), 1.88(3 \mathrm{H}, \mathrm{s}, \mathrm{i}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.58$ (e), 140.35 (d), 137.80 (g), 128.98 (b,b'), 124.36 (a), 119.79 (c, c'), 116.09 (h), 47.41 (f), 22.46 (i); IR (neat) 3291 (N-H stretch), 3060, 2953, 2921, 2865, 1657 (C=O stretch), 1638, 1595, 1525 ($\mathrm{N}-\mathrm{H}$ bend), 1440, 1307, 1251 (C-N stretch), 1162, 869, 738, 688, $617 \mathrm{~cm}^{-1}$.

Preparation of 3-Methylidene-5-phenylpentanoic acid phenyl amide (X21):

Following the general procedure, 3-methylene-5-phenylpentanoic acid (1g, 5.25 mmol) affords, after flash chromatography on silica gel (75:25 hexanes:ethyl acetate), the title compound ($484 \mathrm{mg}, 61 \%$) as a white solid: $\mathrm{mp} 79-80^{\circ} \mathrm{C}$; TLC analysis $R_{f} 0.40$ (75:25 hexanes:ethyl acetate); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 1, \mathrm{l}), 7.40-$ $7.30\left(3 \mathrm{H}, \mathrm{m}, \mathrm{c}, \mathrm{c}^{\prime}, \mathrm{NH}\right), 7.30-7.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{b}, \mathrm{b}^{\prime}\right), 7.25-7.20(3 \mathrm{H}, \mathrm{m}, \mathrm{m}, \mathrm{m}, \mathrm{n}), 7.14(1 \mathrm{H}, \mathrm{t}, J$ $=6.8 \mathrm{~Hz}, \mathrm{a}), 5.16$ and $5.12(2 \mathrm{H}, \mathrm{s}$'s, h), $3.19(2 \mathrm{H}, \mathrm{s}, \mathrm{f}), 2.86(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{j}), 2.50(2 \mathrm{H}$, $\mathrm{t}, J=8.4 \mathrm{~Hz}, \mathrm{i}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.31(\mathrm{e}), 143.69(\mathrm{~d}), 141.21(\mathrm{k}), 137.66$ (g), 128.99 (b,b'), 128.44 (l, l'), 128.35 (m,m'), 126.06 (n), 124.38 (a), 119.69 (c, c'), 115.75 (h), 46.25 (f), 37.44 (i), 33.91 (j); IR (neat) 3237 (N-H stretch), 3185, 3061, 3025, 1652 (C=O stretch), 1596, 1541 (N-H bend), 1469, 1443, 1398, 1346, 1247 (C-N stretch), 1193, 961, 897, 747, 694, $616 \mathrm{~cm}^{-1}$; HRMS (EI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}: 279.1623$, found $279.1649 \mathrm{~m} / \mathrm{z}$.

Preparation of 3-Cyclohexyl-3-butenoic acid phenyl amide (X19): follow the same procedure describe above with carbonylation, A mixture of 2-cyclohexylallyl ethyl carbonate $\quad(1.06 \mathrm{mg}, 5.0 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(116 \mathrm{mg}, 0.10 \mathrm{mmol})$ was put under a pressurized (60 psi) atmosphere of carbon monoxide. The mixture was heated $\left(50^{\circ} \mathrm{C}\right)$ for

24 h and then allowed to cool to room temperature and ambient pressure. The resultant black mixture was run over a silica plug to afford the crude β, γ-unsaturated ethyl ester. The crude residue was taken up in a mixture of Methanol (5 mL) and aqueous 2 M Potassium hydroxide (50 mL) and stirred overnight at room temperature. The resultant basic solution was extracted with dichloromethane ($2 \times 15 \mathrm{~mL}$) and then acidified. The acidic aqueous layer was extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$ and the combined organic extracts were dried (anhyd. MgSO_{4}) and concentrated under reduced pressure. The crude β, γ-unsaturated acid ($537 \mathrm{mg}, 3.2 \mathrm{mmol}$) was used in the next step without further purification.

Following the general amidation procedure with DCC , the crude β, γ-unsaturated acid affords, after flash chromatography on silica gel (80:20 hexanes:ethyl acetate), the title compound ($469 \mathrm{mg}, 39 \%, 3$ steps) as a white solid: $\mathrm{mp} 81-83^{\circ} \mathrm{C}$; TLC analysis R_{f} 0.40 (75:25 hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, $7.51\left(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{c}, \mathrm{c}^{\prime}\right), 7.34\left(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}, \mathrm{~b}, \mathrm{~b}^{\prime}\right), 7.12(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{a})$, 5.15 and $5.06(2 \mathrm{H}, \mathrm{s}$'s, h), $3.19(2 \mathrm{H}, \mathrm{s}, \mathrm{f}), 2.05-1.95(1 \mathrm{H}, \mathrm{m}, \mathrm{i}), 1.90-1.65(5 \mathrm{H}, \mathrm{m}, \mathrm{k}, \mathrm{k}$, l,j,j'), 1.30-1.10 (5H, m, j, j',k,k', l); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.85$ (e), 150.39 (d), 137.72 (g), 129.00 (b,b'), 124.31 (a), 119.65 (c, c'), 113.79 (h), 44.06 (i), 44.42 (f), 32.18 (j,j’), 26.48 (k,k’), 26.09 (l); IR (neat) 3330 (N-H stretch), 2921, 2848, 1665 (C=O stretch), 1596, 1514 (N-H bend), 1436, 1346, 1245 (C-N stretch), 1167, 956, 905, 749, 691, $586 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NaNO}(\mathrm{M}+\mathrm{Na}): 266.1521$, found 266.1526 m / z.

Preparation of 3-Phenyl-3-butenoic acid phenyl amide (X20): Following the general procedure, 2-phenylallyl ethyl carbonate ($1.03 \mathrm{~g}, 5.0 \mathrm{mmol}$) affords, after flash chromatography on silica gel (75:25 hexanes:ethyl acetate), the title compound (215 mg , $18 \%, 3$ steps) as a white solid: mp $90.5-93.5^{\circ} \mathrm{C}$; TLC analysis $R_{f} 0.40(75: 25$ hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.50(3 \mathrm{H}, \mathrm{m}, \mathrm{j}, \mathrm{j}, \mathrm{NH}), 7.45-$ $7.35\left(5 \mathrm{H}, \mathrm{m}, \mathrm{c}, \mathrm{c}^{\prime}, \mathrm{k}, \mathrm{k}^{\prime}, 1\right), 7.35-7.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{b}, \mathrm{b}^{\prime}\right), 7.10(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{a}), 5.78$ and $5.41\left(2 \mathrm{H}, \mathrm{s}\right.$'s, h), $3.65(2 \mathrm{H}, \mathrm{s}, \mathrm{f}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.35$ (e), 142.08 (d), 138.76 (i), 137.61 (g), 128.94 (b,b'), 128.82 (j,j’), 128.47 (l), 125.78 (k,k'), 124.43 (a), 119.84 (c, c'), 117.44 (h), 45.14 (f); IR (neat) 3248 (N-H stretch), 3192, 3135, 3085, 2929, 1804, 1656 ($\mathrm{C}=\mathrm{O}$ stretch), 1597, 1554 ($\mathrm{N}-\mathrm{H}$ bend), 1484, 1441, 1338, 1232 (C-N stretch), $1162,896,770,752,688 \mathrm{~cm}^{-1}$.

Representative procedure of preparing phenyl amide via tert-butyl ester approach

Preparation of 5-methyl-3-methylidenehexanoic acid phenyl amide (X18): To tert-butyl ester X26 (595 mg, 3.0 mmol) was added trifluoroacetic acid $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 8 \mathrm{~mL}\right)$
followed by a 1 h stir at room temperature. The mixture was concentrated under reduced pressure, taken up in ethyl acetate (15 mL), and washed with dilute sodium hydroxide (3 x $10 \mathrm{~mL}, 2 \mathrm{M}$). The basic aqueous layer was acidified and extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The combined organic extracts were dried (anhyd. MgSO_{4}) and concentrated under reduced pressure to afford the crude β, γ-unsaturated acid (320 $\mathrm{mg}, 2.0 \mathrm{mmol}$) which was used in the next step without further purification.

Following the general amidation procedure with DCC , the crude β, γ-unsaturated acid affords, after flash chromatography on silica gel (80:20 hexanes:ethyl acetate), the title compound ($390 \mathrm{mg}, 60 \%$) as a white solid: $\mathrm{mp} 90-92.5^{\circ} \mathrm{C}$; TLC analysis $R_{f} 0.40$ (75:25 hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.53$ $\left(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{c}, \mathrm{c}^{\prime}\right), 7.32\left(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}, \mathrm{~b}, \mathrm{~b}^{\prime}\right), 7.11(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{a}), 5.09$ and $5.06(2 \mathrm{H}, \mathrm{s}$'s, h), $3.13(2 \mathrm{H}, \mathrm{s}, \mathrm{f}), 2.02(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{i}), 1.90-1.75(1 \mathrm{H}, \mathrm{m}, \mathrm{j})$, $0.91\left(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{k}, \mathrm{k}^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.92$ (e), 143.29(d), 137.90 (g), 128.94 (b,b'), 124.30 (a), 119.84 (c, c'), 116.17 (h), 45.67 (f), 45.63 (j), 25.96 (i), 22.41 (k,k'); IR (neat) 3290 (N-H stretch), 2953, 2921, 2865, 1657 ($\mathrm{C}=\mathrm{O}$ stretch), 1638, 1595, 1530 (N-H bend), 1440, 1393, 1307, 1295, 1251 (C-N stretch), 1223, 1162, 1120, 996, 869, 738, 668, $617 \mathrm{~cm}^{-1} ;$ HRMS (CI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}(\mathrm{M}+\mathrm{H}):$ 218.1545, found $218.1539 \mathrm{~m} / \mathrm{z}$.

Preparation 3-Methylidene-pentanoic acid phenyl amide (X17): Following the general procedure, 3-ethyl-3-butenoic acid tert-butyl ester X25 (511 mg, 3.0 mmol$)$ affords, after flash chromatography on silica gel (75:25 hexanes:ethyl acetate), the title compound ($362 \mathrm{mg}, 64 \%, 2$ steps) as a white solid: $\mathrm{mp} 101-102{ }^{\circ} \mathrm{C}$; TLC analysis $R_{f} 0.40$ (75:25 hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.52$ $\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{c}, \mathrm{c}^{\prime}\right), 7.33\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{~b}, \mathrm{~b}^{\prime}\right), 7.12(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{a}), 5.11$ and $5.06(2 \mathrm{H}, \mathrm{s}$'s, h), $3.17(2 \mathrm{H}, \mathrm{s}, \mathrm{f}), 2.18(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{i}), 1.11(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, j), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.72$ (e), $146.09(\mathrm{~d}), 137.79$ (g), 128.98 (b,b’), 124.33 (a), 119.74 (c, c'), 113.92 (h), 46.23 (f), 28.89 (i), 12.12 (j); IR (neat) 3240 (N-H stretch), $3187,2955,2839,1658$ ($\mathrm{C}=\mathrm{O}$ stretch), 1595,1544 ($\mathrm{N}-\mathrm{H}$ bend), 1488, 1444, 1400, 1352, 1297, 1252 (C-N stretch), 1187, 969, 759, $693 \mathrm{~cm}^{-1}$; HRMS (CI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}(\mathrm{M}+\mathrm{H}): 190.1232$, found $190.1237 \mathrm{~m} / \mathrm{z}$.

Preparation 3-Methylidene-6-phenylhexanoic acid phenyl amide (X22): Following the general procedure, tert-butyl ester $\mathbf{X 3 1}(781 \mathrm{mg}, 3.0 \mathrm{mmol})$ affords, after flash chromatography on silica gel (80:20 hexanes:ethyl acetate), the title compound (476 mg , $57 \%, 2$ steps) as a white solid: $\mathrm{mp} 51-53^{\circ} \mathrm{C}$; TLC analysis $R_{f} 0.50$ (75:25 hexanes:ethyl acetate) ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.52(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$,
m, m'), 7.40-7.35 (2H, m, c, c'), 7.35-7.25 (2H, m, b, b'), 7.25-7.20 (3H, m, n, n',o), 7.15
$(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{a}), 5.13$ and $5.11(2 \mathrm{H}, \mathrm{s}$'s, h), $3.18(2 \mathrm{H}, \mathrm{s}, \mathrm{f}), 2.66(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}$, k), $2.22(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{i}), 1.90-1.80(2 \mathrm{H}, \mathrm{m}, \mathrm{j}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.71 (e), 144.20 (d), 141.98 (l), 137.71 (g), 129.02 (b,b’), 128.44 (m,m’), 128.37 (n, n’), 125.87 (o), 124.43 (a), 119.83 (c, c'), 115.20 (h), 46.06 (f), 35.52 (i), 35.42 (k), 29.24 (j).

Representative procedure for the preparation of β, γ-unsaturated tert-butyl esters ${ }^{61}$

Preparation of 3-methyl-3-butenoic acid tert-butyl ester (X23): To a cooled (-78 ${ }^{\circ} \mathrm{C}$) solution of N, N-diisopropylamine ($4.2 \mathrm{~mL}, 30 \mathrm{mmol}$) in THF (5 mL) was slowly added n-butyllithium (12 mL of a 2.5 M soln. in hexanes, 30 mmol). The resultant mixture was allowed to stir for 0.5 h at the same temperature before the dropwise addition of tert-butyl acetate $(4.0 \mathrm{~mL}, 30 \mathrm{mmol})$. The reaction mixture was allowed to stir for an additional 0.5 h and the generated tert-butyl lithioacetate solution was used in the next step.

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ suspension of nickel bromide $(2.76 \mathrm{~g}, 12.6 \mathrm{mmol})$ in THF (15 mL) was added n-butyllithium (2 mL of a 2.5 M soln. in hexanes, 5 mmol). After the resultant black mixture was allowed to stir for $15 \mathrm{~min}, 2$-bromopropene $(2.66 \mathrm{~mL}, 30$ mmol) was added followed by the tert-butyl lithioacetate solution prepared in the previous step. The reaction was allowed to slowly rise to room temperature and stirred for an additional 1 h . The reaction mixture was quenched by the addition of dilute HCl $(15 \mathrm{~mL}, 1 \mathrm{M})$ and then extracted with diethylether $(2 \mathrm{x} 20 \mathrm{~mL})$. The combined organic
extracts were dried (anhyd. MgSO_{4}) and concentrated under reduced pressure. Flash chromatography over silica gel (80:20, hexanes:dichloromethane) affords the title compound ($2.34 \mathrm{~g}, 50 \%$) as a light yellow oil; TLC analysis $R_{f} 0.50$ (50:50 hexanes:dichloromethane); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.88$ and $4.82(2 \mathrm{H}, \mathrm{s}$'s, f), 2.93 $(2 \mathrm{H}, \mathrm{s}, \mathrm{d}), 1.80(3 \mathrm{H}, \mathrm{s}, \mathrm{g}), 1.45(9 \mathrm{H}, \mathrm{s}, \mathrm{a}, \mathrm{a},, \mathrm{a}$) $) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.72(\mathrm{c})$, 139.13 (e), 114.09 (f), 80.42 (b), 44.79 (d), 27.99 (a, a’, a"), 22.38 (g); IR (neat) 3075, 2976, 2934, 1728 (C=O stretch), 1647, 1455, 1366, 1258 (C-O stretch), 1139, 690, 843 cm^{-1}.

Preparation of 3-Methylidenepentanoic acid tert-butyl ester (X25): Following the general procedure, 2-bromobutene ($4.1 \mathrm{~g}, 30 \mathrm{mmol}$) affords, after flash chromatography on silica gel (80:20 hexanes:dichloromethane), the title compound (2.9 $\mathrm{g}, 59 \%$) as a light yellow oil: TLC analysis $R_{f} 0.55$ (50:50 hexanes:dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.91$ and $4.88(2 \mathrm{H}, \mathrm{s}$'s, f), $2.97(2 \mathrm{H}, \mathrm{s}, \mathrm{d}), 2.12(2 \mathrm{H}, \mathrm{q}, J=7.6$ $\mathrm{Hz}, \mathrm{g}), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{a}, \mathrm{a}^{\prime}, \mathrm{a}^{\prime}\right), 1.06(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{~h}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 170.99 (c), 144.65 (e), 111.83 (f), 80.40 (b), 43.47 (d), 28.78 (g), 28.01 (a, a', a"), 12.02 (h); IR (neat) 2935, 2848, 1731 (C=O stretch), 1653, 1391, 1252 (C-O stretch), 1145, 1122, 1040, 948, 761, $576 \mathrm{~cm}^{-1}$.

Preparation of 3-phenyl-3-butenoic acid tert-butyl ester (X27): Following the general procedure, (1-bromovinyl)benzene ($4.36 \mathrm{~g}, 24 \mathrm{mmol}$) affords, after flash chromatography on silica gel (80:20 hexanes:dichloromethane), the title compound (2 g , 38%) as a light yellow oil; TLC analysis $R_{f} 0.50$ (50:50 hexanes:dichloromethane), ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{j}, \mathrm{j}), 7.30-7.20(3 \mathrm{H}, \mathrm{m}, \mathrm{i}, \mathrm{i}, \mathrm{k}), 5.01$ and $4.95\left(2 \mathrm{H}, \mathrm{s}\right.$'s, f), $3.48(2 \mathrm{H}, \mathrm{s}, \mathrm{g}), 2.92(2 \mathrm{H}, \mathrm{s}, \mathrm{d}), 1.49(9 \mathrm{H}, \mathrm{s}, \mathrm{a}, \mathrm{a}, \mathrm{a})$) ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.60(\mathrm{c}), 141.71(\mathrm{~g}), 140.16$ (e), $128.29(\mathrm{~h}, \mathrm{~h})$), 127.64 (i,i'), 125.94 (j), 115.72 (f), 80.70 (b), 42.73 (d), 27.89 ($\left.a^{\prime} \mathrm{a}^{\prime}, \mathrm{a}^{\prime \prime}\right)$.

Preparation of 3-(2-phenylethyl)-3-butenoic acid tert-butyl ester (X28): Following the general procedure, 2-bromo-4-phenylbutene ($4.13 \mathrm{~g}, 20 \mathrm{mmol}$) affords, after flash chromatography on silica gel (75:25 hexanes:dichloromethane), the title compound (2.03 $\mathrm{g}, 42 \%$) as a light yellow oil; TLC analysis $R_{f} 0.60$ (50:50 hexanes:dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{k}, \mathrm{k}^{\prime}\right), 7.30-7.20(3 \mathrm{H}, \mathrm{m}, \mathrm{j}, \mathrm{j}, \mathrm{l}), 4.99$ and $4.97(2 \mathrm{H}, \mathrm{s}$'s, f), $3.03(2 \mathrm{H}, \mathrm{s}, \mathrm{d}), 2.83(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{~h}), 2.46(2 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}, \mathrm{~g})$, 1.51 (9H, s, a, a' $\left.{ }^{\prime}{ }^{\prime \prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.80$ (c), 142.47 (i), 141.85 (e), 128.35 (j,j', k,k'), 125.88 (l), 113.64 (f), 80.58 (b), 43.49 (d), 37.72 (g), 34.05 (h), 28.08
(a,a’,a"); IR (neat) 3028, 2978, 2931, 1726 (C=O stretch), 1647, 1496, 1454, 1366, 1255 (C-O stretch), 1139, 1030, 956, 896, 841, 744, $697 \mathrm{~cm}^{-1}$.

Representative preparation of of tert-butyl esters via of vinyl ${ }^{62}$

Preparation of 3-iso-butyl-3-butenoic acid tert-butyl ester (X26): To a mixture of 2,3-dibromopropene $(7.01 \mathrm{~g}, 35 \mathrm{mmol})$ and copper chloride ($173 \mathrm{mg}, 1.8 \mathrm{mmol}$) in THF $(30 \mathrm{~mL})$ was slowly added isobutylmagnesium bromide $(40 \mathrm{mmol}, 13.8 \mathrm{~mL}$ of a 2.9 M solution in THF) at room temperature. After a 5 h stir, the reaction was quenched with satd. aq. ammonium chloride (30 mL) and then extracted with diethyl ether ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were dried (anhyd. MgSO_{4}) and concentrated under reduced pressure. The crude residue was taken up in hexanes, passed through a short silica plug, and concentrated under reduced pressure. The resultant crude 2-bromo-4methylpentene $(4.25 \mathrm{~g}, 26 \mathrm{mmol})$ was used in the next step without further purification.

Following the general procedure for the nickel-catalyzed substitution of vinyl bromides, crude vinyl bromide prepared in the previous step affords, after flash chromatography on silica gel (70:30, hexanes:dichloromethane), the title compound (3.12 $\mathrm{g}, 45 \%$) as a light yellow oil: TLC analysis $R_{f} 0.50$ (50:50 hexanes:dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.91$ and $4.87(2 \mathrm{H}, \mathrm{s}$'s, f), $2.92(2 \mathrm{H}, \mathrm{s}, \mathrm{d}), 1.98(2 \mathrm{H}, \mathrm{d}, J=7.2$ $\mathrm{Hz}, \mathrm{g}), 1.95-1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{h}), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{a}, \mathrm{a}^{\prime}, \mathrm{a}\right.$ " $), 0.89(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{i}, \mathrm{i}) ;{ }^{\prime}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.90$ (c), 141.96 (e), 114.33 (f), 80.36 (b), 45.79 (d), 43.03 (g),
28.00 (a, a’ ,a"), 25.75 (h), 22.38 (i,i'); IR (neat) 2969, 2912, 1722 (C=O stretch), 1431, 1376,1177 (C-O stretch), 1117, 884, 826, 740, $521 \mathrm{~cm}^{-1}$.

Preparation of 3-Benzyl-3-butenoic acid tert-butyl ester (X24): Following the general procedure, crude 2-bromo-3-phenylpropene prepared from 2,3-dibromopropene ($7.01 \mathrm{~g}, 35 \mathrm{mmol}$) and phenylmagnesium bromide ($40 \mathrm{mmol}, 40 \mathrm{~mL}$ of a 1.0 M solution in THF) affords, after flash chromatography on silica gel (80:20, hexanes:dichloromethane), the title compound ($4.40 \mathrm{~g}, 54 \%$) as a light yellow oil; TLC analysis $R_{f} 0.60$ (50:50 hexanes:dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-$ $7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{j}, \mathrm{j}), 7.30-7.20(3 \mathrm{H}, \mathrm{m}, \mathrm{i}, \mathrm{i}, \mathrm{k}), 5.01$ and $4.95(2 \mathrm{H}, \mathrm{s} \mathrm{s}, \mathrm{f}), 3.48(2 \mathrm{H}, \mathrm{s}, \mathrm{g})$, $2.92(2 \mathrm{H}, \mathrm{s}, \mathrm{d}), 1.49\left(9 \mathrm{H}, \mathrm{s}, \mathrm{a}, \mathrm{a}^{\prime}, \mathrm{a}^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.75$ (c), 142.43 (h), 138.97 (e), 129.17 (i,i'), 128.39 (j,j’), 126.30 (k), 115.26 (f), 80.59 (b), 42.68 (g), 42.40 (d), 28.06 (a, a’ , a"); IR (neat) 2978, 1725 (C=O stretch), 1647, 1494, 1366, 1253(C-O stretch), $1137,966,898,838,728,696,628 \mathrm{~cm}^{-1}$.

Preparation 3-(3-phenylpropyl)-3-butenoic acid tert-butyl ester (X31): Following the general procedure, crude 2-bromo-5-phenylpentene prepared from 2,3-
dibromopropene ($4.02 \mathrm{~g}, 20 \mathrm{mmol}$) and 2-phenylethylmagnesiumbromide (15 mmol) affords, after flash chromatography on silica gel (75:25 hexanes:dichloromethane), the title compound ($2.23 \mathrm{~g}, 57 \%$) as a light yellow oil; TLC analysis $R_{f} 0.60$ (50:50 hexanes:dichloromethane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.25(2 \mathrm{H}, \mathrm{m}, \mathrm{l}, \mathrm{l}$ '), $7.25-$ $7.15(3 \mathrm{H}, \mathrm{m}, \mathrm{k}, \mathrm{k}, ~ \mathrm{~m}), 4.94$ and $4.93(2 \mathrm{H}, \mathrm{s}$'s, f), $2.97(2 \mathrm{H}, \mathrm{s}, \mathrm{d}), 2.65(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, i), $2.17(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{~g}), 1.90-1.75(2 \mathrm{H}, \mathrm{m}, \mathrm{h}), 1.46(9 \mathrm{H}, \mathrm{s}, \mathrm{a}, \mathrm{a}, \mathrm{a})$) ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.93$ (c), 142.74 (j), 142.33 (e), 128.45 (k,k'), 128.31 (l, l'), 125.74 (m), 113.30 (f), 80.54 (b), 43.35 (d), 35.50 (g), 35.47 (i), 29.14 (h), 28.03 (a, a’, a"); IR (neat) 3026, 2933, 2863, 1726 (C=O stretch), 1645, 1496, 1366, 1255 (C-O stretch), 1140, 897, $839,744,695 \mathrm{~cm}^{-1}$.

Representative procedure for rhodium-catalyzed asymmetric hydroboration

Preparation of (3R)-4-Hydroxy-3-methylbutanoic acid phenyl amide (X(16)-1): A

 stock solution (2.0 mL) containing $\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}(2.6 \mathrm{mM})$ and (3,5-dimethylTADDOL)POPh ($\mathbf{L}, 5.6 \mathrm{mM}$) in THF was prepared. To the resulting yellow solution $\left[\mathrm{Rh}(\mathrm{nbd})_{2} \mathrm{BF}_{4}(2.0 \mathrm{mg}, 0.0053 \mathrm{mmol})\right.$ and (3,5-dimethyl-TADDOL)POPh (L2a, 7.8 mg , $0.011 \mathrm{mmol})$] was slowly added over the course of 15 min a solution of 1,1 -disubstituted alkene X16 ($92.45 \mathrm{mg}, 0.528 \mathrm{mmol})$ in THF (2.0 mL). To the reaction mixture was slowly added a solution of 4,4,6-trimethyl-1,3,2-dioxaborinane (TMDB, $135 \mathrm{mg}, 1.1$ $\mathrm{mmol})$ in THF (1.0 mL) over the course of 0.5 h . After an additional 24 h stir, Afterwards, the reaction mixture was re-cooled $\left(0^{\circ} \mathrm{C}\right)$, diluted with THF $(15 \mathrm{~mL})$ andquenched by the slow addition of methanol (6 mL) followed by the dropwise addition of 3 N aq. $\mathrm{NaOH}(8 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL})$, the resultant mixture was extracted with dichloromethane ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were dried (anhyd. MgSO_{4}) and then concentrated under reduced pressure. Flash chromatography on silica gel (60:40 hexanes:ethyl acetate) affords the title compound $(52 \%, 95 \%$ ee $)$ as a white solid: mp $115-117^{\circ} \mathrm{C}$; TLC analysis $R_{f} 0.70$ (50:50 hexanes:ethyl acetate); chiral HPLC analysis (Chiralcel-IC,

80:2 0 hexanes: isopropanol) showed peaks at 17 minutes ($3 \%(\mathrm{R}$)) and 21 minutes (97 $\%(\mathrm{~S})) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.51\left(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{c}, \mathrm{c}^{\prime}\right)$, $7.30\left(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{~b}, \mathrm{~b}^{\prime}\right), 7.10(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{a}), 3.70-3.55(1 \mathrm{H}, \mathrm{m}, \mathrm{h}), 3.55-3.40$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{h}, \mathrm{OH}), 2.52$ and $2.29\left(2 \mathrm{H}\right.$, overlapping dd's, $J_{1}=14.0 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, J_{2}=14.0 \mathrm{~Hz}$, $6.00 \mathrm{~Hz}, \mathrm{f}), 2.30-2.20(1 \mathrm{H}, \mathrm{m}, \mathrm{g}), 1.00(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{i}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 171.71$ (e), 137.88 (d), 128.94 (b,b’), 124.40 (a), 120.19 (c, c'), 67.46 (h), 42.16 (f), 33.36 (g), 17.03 (i); HRMS (CI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})$: 194.1181, found 194.1180 m / z.

Preparation of (3R)-3-Ethyl-4-hydroxybutanoic acid phenyl amide (X(17)-1):

Following the general procedure, 1,1-disubstituted alkene $\mathbf{X 1 7}(99.85 \mathrm{mg}, 0.528 \mathrm{mmol})$ affords, after flash chromatography on silica gel (60:40 hexanes:ethyl acetate), the title compound ($65.61 \mathrm{mg}, 60 \%$) as a white solid: $\mathrm{mp} 118-119.5^{\circ} \mathrm{C}$; TLC analysis $R_{f} 0.50$
(50:50 hexanes:ethyl acetate); Chiral HPLC analysis (Chiralcel-IC, 90:10
hexanes:isopropanol) showed peaks at 37 minutes (5.0\% (R)) and 45 minutes (95.0% (S)); ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.52\left(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{c}, \mathrm{c}^{\prime}\right)$, $7.33\left(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{~b}, \mathrm{~b}^{\prime}\right), 7.12(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{a}), 3.78\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=\right.$ $3.0 \mathrm{~Hz}, \mathrm{~h}), 3.59\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, \mathrm{~h}\right), 2.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.55-2.45$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 2.10-2.00(1 \mathrm{H}, \mathrm{g}), 1.50-1.35(2 \mathrm{H}, \mathrm{m}, \mathrm{i}), 0.98(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{j}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.63$ (e), 137.83 (d), 128.99 (c, c’), 124.38 (a), 119.99 (b,b’), 65.32 (h), 40.46 (f), 39.75 (g), 24.36 (i), 11.59 (j).

Preparation of (3R)-3-iso-butyl-4-hydroxybutanoic acid phenyl amide (X(18)-1):

Following the general procedure, 1,1-disubstituted alkene $\mathbf{X 1 8}$ ($114.65 \mathrm{mg}, 0.528 \mathrm{mmol}$) affords, after flash chromatography on silica gel (80:40 hexanes:ethyl acetate), the title compound ($89.39 \mathrm{mg}, 72 \%$) as a white solid: $\mathrm{mp} 92-94{ }^{\circ} \mathrm{C}$; TLC analysis $R_{f} 0.60(50: 50$ hexanes:ethyl acetate); Chiral HPLC analysis (Chiralcel-IC, 90:10 hexanes:isopropanol) showed peaks at 26 minutes ($2.0 \%(\mathrm{R})$) and 29 minutes ($96.0 \%(\mathrm{~S})$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.50\left(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{c}, \mathrm{c}^{\prime}\right), 7.32\left(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{~b}, \mathrm{~b}^{\prime}\right)$, $7.12(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{a}), 3.79\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=10.5 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, \mathrm{~h}\right), 3.57\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=\right.$ $\left.10.5 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, \mathrm{~h}\right), 2.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.55-2.45(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 2.20-2.10(1 \mathrm{H}, \mathrm{g})$, $1.69-1.66(1 \mathrm{H}, \mathrm{m}, \mathrm{j}), 1.28-1,22(2 \mathrm{H}, \mathrm{m}, \mathrm{i}), 0,91(6 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz}, \mathrm{k}, \mathrm{k} \text {) })^{13} \mathrm{C}$ NMR (75
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.61$ (e), 137.84 (d), 128.97 (c,c’), 124.36 (a), 120,01 (b,b’), 65.76 (h), 40.90 (f), 40.72 (g), 35.78(j), 25,72(i), 22,78-22,66 (k,k').

Preparation of (3S)-3-cyclohexyl-4-hydroxybutanoic acid phenyl amide (X(19)-1):

Following the general procedure, 1,1-disubstituted alkene X19 (128.38 mg, 0.528 mmol$)$ affords, after flash chromatography on silica gel (60:40 hexanes:ethyl acetate), the title compound ($99.28 \mathrm{mg}, 72 \%$) as a white solid: $\mathrm{mp} 88-89^{\circ} \mathrm{C}$; TLC analysis $R_{f} 0.60$ (60:40 hexanes:ethyl acetate); Chiral HPLC analysis (Chiralcel-IC, 90:10 hexanes:isopropanol) showed peaks at 42 minutes ($4.0 \%(\mathrm{R})$) and 46 minutes ($94.0 \%(\mathrm{~S})$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.71(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.50\left(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{c}, \mathrm{c}^{\prime}\right), 7.33\left(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{~b}, \mathrm{~b}^{\prime}\right)$, $7.12(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{a}), 3.79(1 \mathrm{H}, \mathrm{m}, \mathrm{h}), 3.68(1 \mathrm{H}, \mathrm{m}, \mathrm{h}), 2.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.55-$ $2.45(2 \mathrm{H}, \mathrm{d}, J=6.3, \mathrm{f}), 2.00-1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{g}), 1.75-1.60(5 \mathrm{H}, \mathrm{m}, \mathrm{i}, \mathrm{j}, \mathrm{j}), 1.55-1.12(6 \mathrm{H}, \mathrm{m}$, $\mathrm{k}, \mathrm{k}, ~, ~ l) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.61$ (e), 137.84 (d), 128.97 (c, c'), 124.36 (a), 120,01 (b,b'), 64.44 (h), 43.38 (f), 39.55 (g), 38,88(i), 30.37(j,j'), 26.54,(k,k'), 26,84(l).

Preparation of (3S)-4-Hydroxy-3-phenylbutanoic acid phenyl amide ($\mathbf{X}(\mathbf{2 0})$-1):

Following the general procedure, 1,1-disubstituted alkene X20 (125.19 mg, 0.528 mmol$)$ affords, after flash chromatography on silica gel (60:40 hexanes:ethyl acetate), the title compound ($95.64 \mathrm{mg}, 71 \%$) as a white solid: $\mathrm{mp} 95.5-97^{\circ} \mathrm{C}$; TLC analysis $R_{f} 0.50$ (50:50 hexanes:ethyl acetate); Chiral HPLC analysis (Chiralcel-IC, 80:20 hexanes:isopropanol) showed peaks at 20 minutes ($2.0 \%(\mathrm{R})$) and 24 minutes (95.0% $(\mathrm{S})){ }^{1}{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.86(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, c, c' $), 7.30-7.10\left(7 \mathrm{H}, \mathrm{m}, \mathrm{b}, \mathrm{b}^{\prime}, \mathrm{j}, \mathrm{j}, \mathrm{k}, \mathrm{k}^{\prime}, \mathrm{l}\right), 6.98(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{a}), 4.79(1 \mathrm{H}, \mathrm{t}, J=5.2$ $\mathrm{Hz}, \mathrm{OH}), 3.65-3.50(2 \mathrm{H}, \mathrm{m}, \mathrm{h}), 3.35-3.20(1 \mathrm{H}, \mathrm{m}, \mathrm{g}), 2.82$ and $2.60(2 \mathrm{H}$, overlapping dd's, $\left.J_{1}=14.8 \mathrm{~Hz}, 5.9 \mathrm{~Hz}, J_{2}=14.8 \mathrm{~Hz}, 8.9 \mathrm{~Hz}, \mathrm{f}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ 170.55 (e), 143.16 (d), 139.67 (i), 129.06 (j,j’), 128.55 (b,b’), 128.32 (k,k'), 126.64 (l), 123.40 (a), 119.45 (c, c'), 65.84 (h), 44.92(f).

Preparation of (3R)-4-Hydroxy-3-(2-phenylethyl)butanoic acid phenyl amide
(X(21)-1): Following the general procedure, 1,1-disubstituted alkene X21 (139.99 mg, 0.528 mmol) affords, after flash chromatography on silica gel (60:40 hexanes:ethyl acetate), the title compound ($109.14 \mathrm{mg}, 73 \%$) as a white solid: $\mathrm{mp} 81-83^{\circ} \mathrm{C}$; TLC
analysis $R_{f} 0.50$ (60:40 hexanes:ethyl acetate); Chiral HPLC analysis (Chiralcel-IC, 90:10 hexanes:isopropanol) showed peaks at 40 minutes (2.0\% (R)) and 46 minutes (95.0% (S)); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.50\left(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{c}, \mathrm{c}^{\prime}\right)$, 7.35-7.25 (4H, m, b, b’, l, l’), 7.25-7.15 (3H, m, m,m’, n), 7.13 ($1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{a}$), 3.85-3.75 (1H, m, h), 3.70-3.60 (1H, m, h), 2.92 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), 2.80-2.65 ($2 \mathrm{H}, \mathrm{m}, \mathrm{j}$), 2.55-2.45 (2H, m, f), 2.20-2.10 (1H, m, g), 1.80-1.65 (2H, m, i); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.32(\mathrm{e}), 141.89(\mathrm{k}), 137.75(\mathrm{~d}), 129.01\left(\mathrm{l}, \mathrm{l}^{\prime}\right), 128.48\left(\mathrm{~b}, \mathrm{~b}^{\prime}\right), 128.37(\mathrm{~m}, \mathrm{~m}$ ') , 125.98 (n), 124.44 (a), 120.02 (c, c'), 65.36 (h), 40.60 (f), 37.77 (j), 33.41 (g), 33.11 (i); IR (neat) 1677 (C=O stretch), 1040, 1122(C-O stretch), 3200(OH stretch), 1399, 1439, 1409(C-N stretch), 675, 829, $638 \mathrm{~cm}^{-1}$; HRMS (CI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})$: 284.1651, found $284.1656 \mathrm{~m} / \mathrm{z}$.

Preparation of (3R)-3-Hydroxymethyl-6-phenylhexanoic acid phenyl amide

(X(22)-1): Following the general procedure, 1,1-disubstituted alkene X22 (147.39 mg, 0.528 mmol) affords, after flash chromatography on silica gel (60:40 hexanes:ethyl acetate), the title compound ($109.83 \mathrm{mg}, 70 \%$) as a white solid: $\mathrm{mp} 78.5-80^{\circ} \mathrm{C}$; TLC analysis $R_{f} 0.50$ (50:50 hexanes:ethyl acetate); Chiral HPLC analysis (Chiralcel-IC, 90:10 hexanes:isopropanol) showed peaks at 26 minutes ($2.0 \%(\mathrm{R})$) and 31 minutes (94.0% (S)); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.51\left(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{c}, \mathrm{c}^{\prime}\right)$, 7.33-7.29 (4H, m, b, b', m, m'), 7.23-7.17 (3H, m, n, n', o), $7.13(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{a})$,
$3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{h}), 3.58(1 \mathrm{H}, \mathrm{m}, \mathrm{h}), 2.65(2 \mathrm{H}, \mathrm{m}, \mathrm{k}), 2.55-2.45(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 2.20-2.10(1 \mathrm{H}$, $\mathrm{m}, \mathrm{g}), 1.71-1.51(2 \mathrm{H}, \mathrm{m}, \mathrm{i}), 1.51-1.45(2 \mathrm{H}, \mathrm{m}, \mathrm{j}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.21$ (e), 141.89 (i), 137.75 (d), 129.01 (m,m'), 128.48 (b,b'), 128.37 (n.n'), 125.98 (o), 124.44 (a), 120.02 (c,c'), 65.36 (h), 40.10 (f), 38.04 (k), 32.60 (g), 31.08 (i), 20.06 (j).

Representative procedure for preparation lactones ${ }^{57}$

Preparation of (4S)-4-isobutylbutyrolactone (X(26)-1): 1,1-disubstituted alkene X26 ($102 \mathrm{mg}, 0.528 \mathrm{mmol}$) was subjected to standard CAHB conditions . The resultant reaction mixture was diluted with an additional 10 mL of THF followed by slow addition of NaOH (6 mL of a 3 M aqueous soln.) and dropwise addition of $\mathrm{H}_{2} \mathrm{O}_{2}(0.6 \mathrm{~mL}$ of a 30% aqueous soln.). After a 2 h stir, sodium metabisulfite $\left(\mathrm{Na}_{2} \mathrm{SO}_{5}, 4 \mathrm{~mL}\right.$ of a 10% aqueous soln.) was added and the resultant mixture was acidified (6 M HCl) and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried (anhyd. MgSO_{4}) and concentrated under reduced pressure. Flash chromatography on silica gel (75:25 hexanes:ethyl acetate) affords the title compound ($58.6 \mathrm{mg}, 78 \%$) as a light yellow oil; TLC analysis $R_{f} 0.50$ ($75: 25$ hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.41$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=8.8 \mathrm{~Hz}, J_{2}=8.1 \mathrm{~Hz}, \mathrm{~d}\right), 3.88\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=8.9 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz}, \mathrm{~d}\right), 2.70-2.55$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{b}), 2.25-2.10(1 \mathrm{H}, \mathrm{m}, \mathrm{c}), 1.65-1.50(1 \mathrm{H}, \mathrm{m}, \mathrm{f}), 1.36(2 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{e}), 0.93$ $(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{~g}), 0.90(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{~g}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.22$ (a), 73.56 (d), 42.21 (e), 34.76 (b), 33.83 (c), 26.28 (f), 22.64 (g), 22.40 ($\left.\mathrm{g}^{\prime}\right)$; IR (neat)

2956, 2903, 1773 (C=O stretch), 1469, 1420, 1367, 1216, 1168 (C-O stretch), 1011, 913, $838,730,646,557 \mathrm{~cm}^{-1}$.

Preparation of (3R)-4-benzylbutyrolactone (X(24)-1): ${ }^{\mathbf{3}}$ Following the general procedure, 1,1-disubstituted alkene $\mathbf{X} \mathbf{2 4}(123 \mathrm{mg}, 0.528 \mathrm{mmol})$ affords, after flash chromatography on silica gel (75:25 hexanes:ethyl acetate), the title compound (73.2 mg , 80%) as a light yellow oil; TLC analysis $R_{f} 0.40$ ($75: 25$ hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.34(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{~h}, \mathrm{~h}), 7.27(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{i}), 7.17(2 \mathrm{H}$, $\left.\mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{~g}, \mathrm{~g}^{\prime}\right), 4.35\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=8.9 \mathrm{~Hz}, J_{2}=8.9 \mathrm{~Hz}, \mathrm{~d}\right), 4.05\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=6.2 \mathrm{~Hz}\right.$, $\left.J_{2}=6.1 \mathrm{~Hz}, \mathrm{~d}\right), 2.95-2.85(1 \mathrm{H}, \mathrm{m}, \mathrm{c}), 2.85-2.75(2 \mathrm{H}, \mathrm{m}, \mathrm{e}), 2.62\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=17.4 \mathrm{~Hz}, J_{2}\right.$ $=7.9 \mathrm{~Hz}, \mathrm{~b}), 2.31\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=17.4 \mathrm{~Hz}, J_{2}=6.9 \mathrm{~Hz}, \mathrm{~b}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 176.84 (a), 138.25 (f), 128.81 (g,g'), 128.67 (h,h'), 126.83 (i), 72.66 (d), 38.95 (e), 37.18 (b), 34.25 (c); IR (neat) 2963, 2909, 1773 (C=O stretch), 1496, 1417, 1257, 1166 (C-O stretch), 1088, 1012, 910, 797, 731, 699, 638, 531 cm ${ }^{-1}$.

Preparation of (3R)-4-methylbutyrolactone (X(23)-1): Following the general procedure, 1,1-disubstituted alkene $\mathbf{X 2 3}(82.43 \mathrm{mg}, 0.528 \mathrm{mmol})$ affords, after flash
chromatography on silica gel (75:25 hexanes:ethyl acetate), the title compound (32.75 $\mathrm{mg}, 62 \%$) as a light yellow oil; TLC analysis $R_{f} 0.60$ (80:20 hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.41\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=8.0 \mathrm{~Hz}, J_{2}=8.1 \mathrm{~Hz}, \mathrm{~d}\right), 3.87\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=\right.$ $\left.8.0 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz}, \mathrm{~d}\right), 2.68-2.65(2 \mathrm{H}, \mathrm{m}, \mathrm{b}), 2.17-2.15(1 \mathrm{H}, \mathrm{m}, \mathrm{c}), 1.17(3 \mathrm{H}, \mathrm{d}, J=6.4$ $\mathrm{Hz}, \mathrm{e}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.21$ (a), 74.68 (d), 34.14 (b), 30.40 (c), 17.94 (e).

Preparation of (3R)-4-(phenylethyl)butyrolactone (X(28)-1): Following the general procedure, 1,1-disubstituted alkene $\mathbf{X 2 8}(139.47 \mathrm{mg}, 0.528 \mathrm{mmol})$ affords, after flash chromatography on silica gel (75:25 hexanes:ethyl acetate), the title compound (61.27 $\mathrm{mg}, 61 \%$) as a light yellow oil; TLC analysis $R_{f} 0.40$ (75:25 hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{i}, \mathrm{i}), 7.26(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{j}), 7.17(2 \mathrm{H}, \mathrm{d}$, $J=7.3 \mathrm{~Hz}, \mathrm{~h}, \mathrm{~h} ’), 4.44\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, \mathrm{~d}\right), 3.97\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=9.0 \mathrm{~Hz}, J_{2}=\right.$ $7.0 \mathrm{~Hz}, \mathrm{~d}), 2.85-2.74(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 2.75-2.53(2 \mathrm{H}, \mathrm{m}, \mathrm{b}), 2.30-2.19(1 \mathrm{H}, \mathrm{m}, \mathrm{c}), 1.89-1.74$ (2H, m, e); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 177.06$ (a), $138.23(\mathrm{~g}), 128.80(\mathrm{~h}, \mathrm{~h}), 128.67$ (i,i'), 126.83 (j), 73.21 (d), 35.27 (e), 34.46 (b), 33.24 (f), 31.48 (c).

Representative procedure for preparation of γ-borylated product

Preparation of (3R)-tert-butyl-3-((4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)methyl) pentanoate: Following the representative procedure for rhodium-catalyzed asymmetric hydroboration of β, γ-unsaturated amides at room temperature, hydroboration of β, γ unsaturated ester $\mathbf{T 3}$ ($89.8 \mathrm{mg}, 0.528 \mathrm{mmol}$) affords, after flash chromatography on silica gel (95:5 hexanes:ethyl acetate), the title compound ($102.35 \mathrm{mg}, 65 \%$) as a yellow oil; TLC analysis $\mathrm{R}_{f} 0.60$ (70:30 hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.22$ $4.11(1 \mathrm{H}, \mathrm{m}, \mathrm{j}), 2.20-2.17(2 \mathrm{H}, \mathrm{dd}, J=6.9 \mathrm{~Hz}, \mathrm{~d}), 2.04-1.95(1 \mathrm{H}, \mathrm{m}, \mathrm{e}), 1.79-1.74(1 \mathrm{H}$, $\mathrm{dd}, J=13.8 \mathrm{~Hz}, \mathrm{i}), 1.50-1.41(1 \mathrm{H}, \mathrm{m}, \mathrm{i}), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{a}, \mathrm{a}^{\prime}, \mathrm{a}^{\prime}{ }^{\prime}\right), 1.40-1.32(2 \mathrm{H}, \mathrm{m}, \mathrm{l}), 1.28$ $\left.(6 \mathrm{H}, \mathrm{s}, \mathrm{h}, \mathrm{h})^{\prime}\right), 1.24(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{k}), 0.88(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{~m}), 0.69(2 \mathrm{H}, \mathrm{d}, J=6.8$ $\mathrm{Hz}, \mathrm{f}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.24$ (c), 79.51 (b), 70.39 (g), 64.41 (j), 45.96 (i), 42.33 (d), 33.27 (e), 31.28 (h, h'), 28.94 (l), 28.16 ($\mathrm{a}, \mathrm{a}^{\prime}, \mathrm{a}^{\prime}{ }^{\prime}$), 28.06 (f), 23.21 (k), 11.19 (m).

Representative procedure preparation of alcohol via oxidation with $\mathbf{N a B O}_{3}$.

Preparation of (3R)-tert-butyl-3-(hydroxymethyl)-5-methylhexanoate (X(26)-
1): Following the general procedure for the CAHB of 1,1-disubstituted alkene $\mathbf{X 2 6}$, the
resultant reaction mixture was concentrated under reduced pressure and then taken up in THF (1.5 mL) and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL}) . \mathrm{NaBO}_{3}$-tetrahydrate $(40 \mathrm{mg}, 0.26 \mathrm{mmol})$ was added to the resulting mixture. After a 2 h vigorous stir, the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and diethylether (4 mL). The aqueous layer was extracted with diethylether ($2 \times 3 \mathrm{~mL}$) and the combined organic extracts were dried (anhyd. MgSO_{4}) and concentrated under reduced pressure. The crude residue was purified via flash chromatography on silica gel (80:20 hexanes:dichloromethane) to afford the title compound ($86.74 \mathrm{mg}, 76 \%$) as a light yellow oil; TLC analysis $R_{f} 0.50$ (60:40 hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.70-3.60(1 \mathrm{H}, \mathrm{m}, \mathrm{f}), 3.60-3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{f}), 2.28\left(2 \mathrm{H}, \mathrm{dd}, J_{1}=4.4 \mathrm{~Hz}, J_{2}=2.5\right.$ $\mathrm{Hz}, \mathrm{d}), 2.16(1 \mathrm{H}, \mathrm{br}$ s, OH$), 2.10-2.00(1 \mathrm{H}, \mathrm{m}, \mathrm{e}), 1.70-1.60(1 \mathrm{H}, \mathrm{m}, \mathrm{h}), 1.47(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{a}, \mathrm{a}^{\prime}, \mathrm{a}^{\prime}\right), 1.30-1.20(2 \mathrm{H}, \mathrm{m}, \mathrm{g}), 0.92(3 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}, \mathrm{i}), 0.90(3 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}, \mathrm{i}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.32$ (c), 80.62 (b), 66.07 (f), 40.43 (g), 38.46 (d), 35.71 (e), 28.08 ($\mathrm{a}, \mathrm{a}^{\prime}, \mathrm{a}^{\prime \prime}$), 25.19 (h), 22.80 (i), 22.67 (i').

Preparation of tert-butyl 4-hydroxy-3-phenylbutanoate ($\mathbf{X (2 7) - 1) : ~ F o l l o w i n g ~ t h e ~}$ general procedure for the CAHB of 1,1-disubstituted alkene $\mathbf{X 2 7}$, the resultant reaction mixture was concentrated under reduced pressure and then taken up in THF (1.5 mL) and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL}) . \mathrm{NaBO}_{3}$-tetrahydrate $(40 \mathrm{mg}, 0.26 \mathrm{mmol})$ was added to the resulting mixture. After a 2 h vigorous stir, the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and
diethylether (4 mL). The aqueous layer was extracted with diethylether ($2 \times 3 \mathrm{~mL}$) and the combined organic extracts were dried (anhyd. MgSO_{4}) and concentrated under reduced pressure. The crude residue was purified via flash chromatography on silica gel (80:20 hexanes:dichloromethane) to afford the title compound ($78.54 \mathrm{mg}, 63 \%$) as a light yellow oil: TLC analysis $R_{f} 0.70$ (75:25 hexanes:ethyl acetate); ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.39-7.31(3 \mathrm{H}, \mathrm{m}, \mathrm{i}, \mathrm{i}, \mathrm{j}), 7.25(2 \mathrm{H}, \mathrm{d}, J=8, \mathrm{~h}, \mathrm{~h}), 3.84-3.70(2 \mathrm{H}, \mathrm{m}, \mathrm{f}), 3.33(1 \mathrm{H}$, $\mathrm{m}, \mathrm{e}), 2.73$ and $2.60(2 \mathrm{H}, \mathrm{m}, \mathrm{d}), 1.39\left(9 \mathrm{H}, \mathrm{s}, \mathrm{a}, \mathrm{a}^{\prime}, \mathrm{a}\right),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.92 (c), 141.12 (g), 128.61 (h,h’), 127.88 (i,i'), 126.70 (j), 80.66 (b), 67.03 (f), 41.10 (d), 38.66(e), 27.93 ($\mathrm{a}^{\prime} \mathrm{a}^{\prime}, \mathrm{a}^{\prime}$ ').

General procedures for the preparation of L2a

$\xrightarrow[\text { THF }]{\substack{\mathrm{PCl}_{3}, \text { TEA } \\ \text { phenol }}}$

Preparation of (3,5-dimethyl-TADDOL)POPh (L2a): 3,5-Dimethyl-TADDOL was prepared as previously described ${ }^{64}$. To a cooled solution (dry ice-acetone bath, -78 ${ }^{\circ} \mathrm{C}$) of 3,5-imethyl-TADDOL ($500 \mathrm{mg}, 0.864 \mathrm{mmol}$) and triethylamine (TEA, 0.30 mL , $2.16 \mathrm{mmol})$ in dry, oxygen-free THF (35 mL) was added $\mathrm{PCl}_{3}(0.07 \mathrm{~mL}, 0.86 \mathrm{mmol})$ in one portion. The resulting mixture was allowed to slowly warm to room temperature and stir over a total of ca. 12 h . Afterwards, the reaction mixture was filtered and the volatiles were removed on a vacuum line. The residue was dissolved in THF (5 mL) and the
resulting solution added (rapid addition) to a mixture of phenol ($105.7 \mathrm{mg}, 1.123 \mathrm{mmol}$) and TEA ($0.18 \mathrm{~mL}, 1.3 \mathrm{mmol}$) in THF (35 mL). The resulting mixture was allowed to stir at room temperature for ca. 12 h . The resulting mixture was filtered and the volatiles were removed on a vacuum line. Flash chromatography on silica gel (97:3 hexanes:ethyl acetate) affords the title compound ($412.0 \mathrm{mg}, 68 \%$) as a white foamy solid: $\mathrm{mp} 97.0-$ $98.2{ }^{\circ} \mathrm{C}$; TLC analysis $R_{f} 0.80$ (95:5 hexanes: ethyl acetate); $[\alpha]_{\mathrm{D}}{ }^{20}=-120.0^{\circ}(c 0.5$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.20(6 \mathrm{H}, \mathrm{m}), 7.15-7.05(5 \mathrm{H}, \mathrm{m}), 6.99(2 \mathrm{H}$, $\mathrm{d}, J=10.5 \mathrm{~Hz}), 6.90(2 \mathrm{H}, \mathrm{s}), 6.86(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 5.33(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 5.17(1 \mathrm{H}$, d, $J=8.2 \mathrm{~Hz}), 2.40(6 \mathrm{H}, \mathrm{s}), 2.37(6 \mathrm{H}, \mathrm{s}), 2.32(6 \mathrm{H}, \mathrm{s}), 2.92(6 \mathrm{H}, \mathrm{s}), 0.99(3 \mathrm{H}, \mathrm{s}), 0.74$ $(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.16\left(J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 146.10\left(J_{\mathrm{CP}}=2.0 \mathrm{~Hz}\right)$, 145.83, 141.23 (3.0 Hz), 141.02, 137.37, 136.99, 136.50, 136.29, 129.45, 129.07, 128.94, $128.78,126.89,126.84,125.10,125.08,123.33,120.89,120.81,112.65,85.51\left(J_{C P}=8.1\right.$ $\mathrm{Hz}), 84.64\left(J_{C P}=4.2 \mathrm{~Hz}\right), 82.34\left(J_{C P}=13.8 \mathrm{~Hz}\right), 81.28\left(J_{C P}=4.8 \mathrm{~Hz}\right), 26.95,26.48$, 21.69, 21.59, 21.48 (overlapping peaks); ${ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 129.36$; IR (neat) 2916, 2863 (P-O stretching), 1595, 1489, 1455, 1370, 1213 (C-O-C stretch), 1159, 1035, 939, 853, 800, 761, $689 \mathrm{~cm}^{-1}$; HRMS (FAB) calcd. for $\mathrm{C}_{45} \mathrm{H}_{49} \mathrm{O}_{5} \mathrm{P}(\mathrm{M}+\mathrm{H}): 701.3396$, found $701.3409 \mathrm{~m} / \mathrm{z}$.

Preparation of 4,4,6-Trimethyl-1,3,2-dioxaborinane ((TMD)BH):To a cooled
$\left(0^{\circ} \mathrm{C}\right)$ solution of 2-methyl-2,4-pentanediol $(1.54 \mathrm{~g}, 12 \mathrm{mmol})$ in dichloromethane (6 $\mathrm{mL})$ was slowly added borane $\left(\mathrm{BH}_{3}, 1 \mathrm{~mL}\right.$ of a 10 M solution in dimethylsulfide, 10 mmol) dropwise. After the resulting mixture was stirred for 1.5 h at the same
temperature, the ice bath was removed and the reaction was allowed to stir for an additional 0.5 h . Volatiles were carefully removed under reduced pressure (i.e., concentration via rotovap while the mixture was submerged in a room temperature water bath). After complete removal of dichloromethane and dimethylsulfide $\left(\mathrm{SMe}_{2}\right)$, the residue was purified via bulb-to-bulb distillation $\left(160-165^{\circ} \mathrm{C}\right)$ to afford the title compound ($960 \mathrm{mg}, 75 \%$) as a colorless liquid: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.30-4.15$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{d}), 3.84(1 \mathrm{H}, \mathrm{q}, J=155.6 \mathrm{~Hz}, \mathrm{BH}), 1.90-1.75(1 \mathrm{H}, \mathrm{m}, \mathrm{c}), 1.60-1.45(1 \mathrm{H}, \mathrm{m}, \mathrm{c})$, $1.31(3 \mathrm{H}, \mathrm{s}, \mathrm{a}), 1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{a}^{\prime}\right), 1.26(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{e}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 70.99 (b), 64.73 (d), 46.17 (c), 31.02 (a), 28.14 (a'), 22.93 (e); ${ }^{11}$ B NMR (193 MHz , THF with residual $\left.\mathrm{CDCl}_{3}\right) \delta 24.96(\mathrm{~d}, J=169.1 \mathrm{~Hz}$); IR (neat) $2976(\mathrm{CH} \mathrm{sp} 3$ stretch), 2879, 2400, 1495, 1427, 1384, 1291, 1156 (C-O stretch), 1094, 1024, 889, 789, $666 \mathrm{~cm}^{-1}$;

HRMS (CI) calcd. for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{BO}_{2}(\mathrm{M}+\mathrm{H}): 129.1087$, found $129.1082 \mathrm{~m} / \mathrm{z}$.

Chapter 6 References

1. P.Andrew Evans, Modern Rhodium-Catalyzed Organic Reactions., 2005.
2. Slywka. G.W, Melikian. A.P, Whyatt .P.L, Meyer. M.C, J. Clin. Pharmacol., 1975, 15, 598.
3. Iwao Ojima, Catalytic Asymmetric Synthesis, 3rd Edition.. 2010
4. Knowles.W.S, Sabacky, M.J, J. Chem. Commun., 1968, 22, 1445.
5. Collins, A. N.; Sheldrake, G. N.; Crosby, J. eds., Chirality in Industry II:

Developments in the Commercial Manufacture of Optically- Active Compounds, Wiley, Chichester, 1996 and 1997.
6. Alan Aitken, S. N. Kilenyi, Asymmetric synthesis, 1992
7. Loudon, Marc. G."Addition Reactions of Alkenes." Organic Chemistry (Fourth Edition ed.). 2002, 168-172.
8. . Crudden.C.M, Edwards.D, Eur. J. Org. Chem., 2003, 24, 4695.
9. Reetz, M. T. Pure Appl. Chem., 1988, 60, 1607
10. a) Brown.H. C, Yoon. N. M, J. Am. Chem. Soc., 1977, 99, 5514. B) Brown.H. C, Klender. G, J. Organoboranes. Inorg. Chem., 1962, 1, 204.
11. Sandrock.D.L, Ge' rard.L.G, Chen.C.Y, Dreher.S.D, Molander.G.A, J. Am. Chem. Soc., 2010, 132, 17108.
12. Imao.D, Glasspoole.B.W, Laberge.V.S, Crudden.C.M, J. Am. Chem. Soc., 2009, 131, 5024.
13. A. C. Chen, L. Ren, C. M. Crudden, Chem. Commun., 1999, 64, 9704.
14. D. S. Matteson, Tetrahedron., 1998, 54, 10555.
15. E. Hupe, I. Marek, P. Knochel, Org. Lett., 2002, 4, 861.
16. M. J. O'Donnell, J. T. Cooper, M. M. Mader, J. Am. Chem.Soc., 2003, 125, 2370
17. Ma"nnig. D, No"th. H, Angew. Chem., Int. Ed. Engl., 1985, 24, 878.
18. Sato. M, Miyaura. N, Suzuki. A, Tetrahedron Lett., 1990, 31, 231.
19. K.Burgess, M.J.Ohlmeyer, J. Org. Chem., 1988, 53, 5178.
20. T.Hayashi, Y.Matsumoto, Y.Ito, J. Am. Chem. Soc., 1989, 111, 3426
21. Brown. J. M, Hulmes. D. I, Layzell. T. P, J. Chem. Soc, Chem. Commun., 1993, 22, 1673.
22. (a) Evans. D. A, Fu. G. C, J. Am. Chem. Soc., 1991, 113, 4042. (b) Evans. D. A, Fu. G. C, Hoveyda. A. H, J. Am. Chem. Soc., 1992,114, 6671.
23. C. E. Garrett, G. C. Fu, J. Org. Chem., 1998, 63, 1370
24. Rubina. M, Rubin. M, Gevorgyan. V, J. Am. Chem. Soc., 2003, 125, 7198.
25. Scheideman.M, Wang.G, Vedejs.E, J. Am. Chem. Soc., 2008, 130, 8669
26. (a) D.A.Evans, A.R.Murci, R.Stürmer, J. Org. Chem., 1993, 58, 5307. (c)
J.M.Brown, G.C.Lloyd-Jones, J. Chem. Soc., Chem. Commun.,1992, 29, 710.(d)
J.M.Brown, G.C.Lloyd-Jones, J. Am. Chem. Soc., 1994, 116, 866 (e) A.T.Kynch, L.G.Sneddon, J. Am. Chem. Soc. 1987, 109, 5867 (f) P.J.Fazen, L.G.Sneddon, Organometallics., 1994, 13, 2867 (g) A.T.Lynch, L.G.Sneddon, J. Am. Chem. Soc., 1989, 111, 6201.
27. Kono. H, Ito. K, Nagai. Y, Chem. Lett., 1975, 10, 1095
28. Woods.W. G, Strong. P. L, J. Am. Chem. Soc., 1966, 88, 4667
29. Ramachandran. P. V, Jennings. M. P, Brown. H. C, Org. Lett., 1999, 1, 1399.
30. (a) S.Pereira, M.Srebnik, Tetrahedron Lett., 1996, 37, 3283. (b) S.Pereira, M.Srebnik, J. Am. Chem. Soc., 1996, 118, 909.
31. S. Demay, F. Volant, P. Knochel, Angew. Chem. Int. Ed., 2001,40, 1235
32. J.M. Brunel, G. Buono, Tetrahedron Lett., 1999, 40, 3561.
33. F. Blume, S. Zemolka, T. Fey, R. Kranich, H.-G. Schmalz, Adv.Synth. Catal., 2002, 344, 868
34. Moteki. S. A, Wu. D, Chandra .K. L, Reddy. D. S,Takacs. J. M, Org. Lett., 2006, 8, 3097
35. Smith. S. M, Thacker. N. C, Takacs. J. M, J. Am. Chem. Soc.,2008, 130, 3734
36. Smith. S. M, Uteuliyev. M, Takacs, J. M, Chem. Commun. 2011, 47, 7812.
37. Evans. D. A, Fu. G. C, J. Org. Chem., 1990, 55, 2280.
38. Widauer. C, Grtzmacher. H, Ziegler. T, Organometallics., 2000, 19, 2097.
39. Evans. D. A, Fu, G. C, Anderson, B. A, J. Am. Chem. Soc., 1992, 114, 6679.
40. Crudden. C.M, Glasspoole.B.W, Lata.C.J, Chem. Commun., 2009, 44, 6704.
41. Smith. S. M, Takacs. J. M, J. Am. Chem. Soc., 2010, 132, 1740.
42. Martinez. G.A, Hoveyda, A. H, J. Am. Chem. Soc., 2010, 132, 10634.
43. O'Brien. J. M, Lee. K. S, Hoveyda, A. H , J. Am. Chem. Soc., 2010, 132, 10630.
44. Mazet.C , Ge'rard.D, Chem. Commun., 2011, 47, 298.
45. Gonzalez. A. Z, Román. J. G, Gonzalez. E, Martinez. J, Medina.J. R., Matos. K, Soderquist. J. A, J. Am. Chem. Soc., 2008, 130, 9218.
46. Tucker.C.J, Andresen.B.M, Dube.P, Negri.J.T, Org. Lett., 2001, 3, 465
47. C.E.Tucker, J.Davidson, P.Knochel, J. Org. Chem., 1992, 57, 3482
48. Smith. S. M, Takacs. J. M, Org. Lett., 2010, 12, 4612.
49. Kamlage.S, Peter.G.M, Chem. Commun., 2001, 4,331
50. Doyle.M.P, Hu.W, Chirality., 2002, 14, 169.
51. Berthelot. P, Vaccher. C, Flouquet. N, Debaert. M, Luyckx. M, Brunet. C, J Med Chem., 1991, 34, 2557.
52. Krohn.K, Riaz.M, Tetrahedron Letters., 2004, 45, 293.
53. Escrich.C.R, Urpí.F, Vilarrasa.J, Org. Lett., 2008, 10, 5191.
54. Kobayashi. J, Kubota. T, J. Nat. Prod., 2007, 70, 451
55. Fujimoto. S, Yoshikawa. K, Itoh. M, Kitaharai. T, Biosci. Biotechnol. Biochem., 2002, 66, 1389.
56. Nakamura.Y, Mori.K, Biosci. Biotechnol. Biochem., 2000, 64, 1713.
57. Ok.T, Lee. H, J. Org. Chem., 2007, 72, 7390.
58. Lu. Z, Ma. S, J. Org. Chem., 2006, 71, 2655
59. Tsuji. J, Sato. K, Okumoto. H, J. Org. Chem., 1984, 49, 1341
60. Gaspar. B, Carreira. E. M, Angew. Chem. Int. Ed., 2007, 46, 4519
61. Alcock. S. G, Baldwin. J. E, Bohlmann. R, Harwood. L. M, Seeman. J. I, J. Org. Chem., 1985, 50, 3526.
62. Bigot. A, Breuninger. D, Breit. B, Org. Lett., 2008, 10, 5321
63. Hughes. G, Kimura. M, Buchwald. S. L, J. Am. Chem. Soc., 2003, 125, 11253
64. Seebach. D, Dahinden. R, Marti. R. E, Beck. A. K, Plattner. D. A, Kuhnle. F. N. M, J. Org. Chem., 1995, 60, 1788.

Chapter 7: Spectra Appendix

${ }^{1}$ H NMR X1

1D Proton NMR

13	12	11	10	9	8	7	6	5	4	3	2	1	0	ppm

${ }^{13}$ C NMR X1

13 C

${ }^{1}$ H NMR X2

${ }^{13}$ C NMR X2

${ }^{1}$ H NMR X5

${ }^{13}$ C NMR X5

${ }^{1}$ H NMR X8

1D Eroton

${ }^{13}$ C NMR X8

${ }^{1}$ H NMR X9

1D Proton NMR

${ }^{1}$ H NMR X16

${ }^{1} \mathrm{H}$ NMR X17

${ }^{13} \mathrm{C}$ NMR X17

${ }^{1}$ H NMR X18

${ }^{13}$ C NMR X18

${ }^{1}$ H NMR X19

${ }^{13}$ C NMR X19

${ }^{1}$ H NMR X20

${ }^{13}$ C NMR X20

${ }^{1}{ }^{1}$ NMR X21

1 D Proton NMR

${ }^{13} \mathrm{C}$ NMR X22

${ }^{1}$ H NMR X23

${ }^{13}$ C NMR X23

${ }^{1}$ H NMR X24

${ }^{13}$ C NMR X24

${ }^{1}$ H NMR X25

${ }^{13}$ C NMR X25

${ }^{1}$ H NMR X26

${ }^{13}$ C NMR X26

${ }^{1}$ HNMR X28

${ }^{13}$ C NMR X28

${ }^{1}$ H NMR X31

${ }^{13}$ C NMR X31

${ }^{1}$ H NMR X(16)-1

${ }^{13} \mathrm{C}$ NMR X(16)-1

${ }^{13} \mathbf{C}$ NMR X(17)-1
(

1D Proton NMR

$\begin{array}{llllllllllllll}7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0\end{array} \mathrm{ppm}$

${ }^{13} \mathbf{C}$ NMR X(21)-1

${ }^{1}$ H NMR X(26)-1

${ }^{13}$ C NMR X(26)-1

${ }^{1} \mathbf{H}$ NMR X(24)-1

${ }^{13} \mathbf{C}$ NMR X(24)-1

[^0]: Bani Khaled, Mohammad Odeh, "DIRECTED CATALYTIC ASYMMETRIC HYDROBORATION OF 1,1-DISUBSTITUTED ALKENES" (2012). Student Research Projects, Dissertations, and Theses - Chemistry Department. 35.
 http://digitalcommons.unl.edu/chemistrydiss/35

[^1]: * The yield determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, the enantiomeric excess determined by HPLC.

