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ABSTRACT 

 CONDUCTIVE INKS AND FILMS VIA INTENSE PULSED LIGHT 

Gabriel L. Draper 

November 30th, 2016 

This research focuses on the investigation of Earth abundant copper and carbon 

based nanomaterials that are subjected to Intense Pulsed Light Processing to create 

conductive films, as future flexible electronics and renewable energy solutions would 

benefit from the quick and scalable production of conductive films.  Use of nanomaterials 

in their oxide/hydroxide forms leads to higher stability in aqueous inks for efficient large 

area solution deposition.   

IPL Processing utilized 2044 μs pulses ranging from 589 J - 2070 J over an area of 

1.9 cm x 30.5 cm, with energy densities of 10.1, 12.8, 15.8, 19.2, 22.9, 26.8, 31.1 and 35.7 

Jcm-2, of non-coherent white light in wavelengths ranging from UV to NIR (240 nm – 

1,000 nm) through a xenon lamp.  The rapid pulses induce localized temperature increases 

in the films, flexible plastic substrates can be used without degradation.  Three different 

morphological systems and nanomaterials were studied: 1D (copper hydroxide nanowires), 

2D (Graphene Oxide nanosheets), and 3D (cuprous oxide encapsulated by nickel oxide 

nanoparticles & also copper nitrate hydroxide nanoparticles).  The nanomaterials were 

rapidly reduced into conductive films via Intense Pulsed Light Processing aided through 

the organic decomposition of additives, providing a reducing environment.  Through 
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inclusion of different materials and morphologies, nanoscale manipulations can lead to 

breakthroughs in advanced materials and additive manufacturing. 

Cu2O (20nm) nanoparticles encapsulated with a NiO layer were synthesized to 

explore protecting the Cu from oxidation and diffusion into Si based photovoltaic 

applications. The room temperature synthesis and IPL processes easily prevented 

formation of alloys at the copper-nickel interface.  The encapsulation was shown to reduce 

Cu diffusion into Si.  

Copper nitrate hydroxide, Cu2(OH)3NO3, was synthesized under ambient 

conditions with copper nitrate and potassium hydroxide reagents and processed by IPL. 

Films were deposited by screen-printing and then subjected to IPL Processing.  Since 

Cu2NO3(OH)3 isn’t a thermally stable material, initially transformed into CuO.  However, 

when fructose or glucose were intentionally included as additives in the inks, IPL 

Processing provided direct conversion of the Cu2(OH)3NO3 into Cu.  Between the two 

sugars, fructose was more advantageous as it led to faster reduction and lower sheet 

resistances, with the lowest sheet resistance being 0.224 Ω/□. 

Graphene oxide was reduced with Intense Pulsed Light Processing to explore 

potential towards scalable conductive films without the need for harsh/toxic reductants.  

The graphene oxide films on displayed a four magnitude decrease in sheet resistance from 

55.1 MΩ/□. to 2280 Ω/□ after IPL.  Plastic substrates required less energy to display 

reduction, with a four magnitude decrease in sheet resistance (62.5 MΩ/□. to 3.43 kΩ/□.) 

after IPL.  When combined with Cu(OH)2 nanowires at weight percentages of 1.82%, 

8.47%, and 32.65%, films exhibited decreased sheet resistances by 25%, 45%, and 66%, 

respectively. 
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CHAPTER 1: INTRODUCTION 

The scale of energy humans consume per year is in the terawatt (1012) range - 

~18TW.  The only renewable energy source with the potential to reach this range is solar, 

as the solar insolation reaching the Earth’s surface to be absorbed by oceans and land is 

~89 PW (or 89,000 TW).  Dedication to developing solar has been adopted into policies 

by several governments, such as from the US DOE SunShot Vision Study in 2012 

(http://energy.gov/eere/sunshot/sunshot-vision-study), which set a goal of solar energy 

meeting “14% of the U.S. electricity needs by 2030 and 27% by 2050”.  To meet these 

goals, there must be proactive investigation into technologies that increase the economic 

viability of solar energy conversion.  The grand challenge of this dissertation is to make 

solar energy economical, which has been also been identified by the National Academy of 

Science and Engineering (http://engineeringchallenges.org/challenges/solar.aspx).   

The bulk of photovoltaics in the market (above 90%) are based off crystalline 

silicon heterojunction technology that use grid of finely deposited lines of silver.  Silver is 

traditionally used in PV manufacturing due to its inherent stability in this demanding 

application. The deposition of silver is accomplished using pastes followed by thermal 

treatment to produce conductive lines in a high throughput process.1  It should be noted 

that these grids are not continuous transparent conductive films (TCFs) but rather rely on 

the unshaded areas between grid-lines for the passage of light. Efforts to drive down the 

cost of the silver include reducing silver usage through optimizing the screen printing 



2 

 

process and utilizing other schemes employed in the microelectronics industry. However, 

silver has several shortfalls as it often fails to meet the cost requirements for low value 

applications, especially as the demand for this currently is growing with the rise of ever-

smaller electronic devices.  Additionally, the photovoltaics industry utilizes approximately 

10 percent of the annual worldwide silver production with double digit compound annual 

growth rate expected to continue for the foreseeable future.2  Therefore adaption to lower 

cost earth abundant materials including carbon, copper, or nickel to replace silver, are 

necessary to achieve sustainable production and maintain positive profit margins. Figure 1 

depicts the relative abundance of the elements in Earth’s crust, where it can be seen that 

Cu and C have several magnitudes higher abundance than Ag and In.   

 

Figure 1: Relative abundance of the chemical elements in Earth’s upper continental crust 

(http://pubs.usgs.gov/fs/2002/fs087-02/) 

 

http://pubs.usgs.gov/fs/2002/fs087-02/
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A disadvantage to using copper as a direct replacement to silver in PV is related to 

its copper that diffuse rapidly in Si3, and leading to device failure/decreased performance 

through formation of copper-silicate4 at the p-n junction and lower performance due to 

increased recombination of the minority carriers.5  Methods to overcome this include low 

temperature deposition techniques and incorporation of diffusion barrier layers.  This has 

been addressed in the literature through multiple investigations such as diffusion barriers 

for copper6-7, copper contamination detection8, and the rich chemistry of copper in 

crystalline silicon9. 

Summary of challenges: 

 Economic Challenges 

The typical implementation of several materials, including Ag & In for solar can 

have quite significant price fluctuations over time that make it difficult to have viable costs 

for large scale production.  Therefore, other materials are needed for enticing economic 

growth for photovoltaics, especially to be competitive with the cost of burning fossil fuels. 

The alternative materials would provide additional aid to the cost competitiveness if they 

are also beneficiaries efficient roll-to-roll production. 

 Material and Chemical Use 

Several solar energy technologies currently being researched utilize elements that are 

not Earth abundant. In addition, some of the processes required in solution phase 

depositions have significant environmental concerns. Thus it will necessary to research and 

develop more compatible mechanisms to reduce the toxicity of the types of chemistry and 

processes involved. 
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 Thermal Processing 

Thermal processing is almost always utilized during the processing of thin films, 

especially those deposited as solutions, which require evaporation of solvents/organics. 

The heating step is often the rate limiting process and many times is accomplished in batch 

fashion.  However, if newer technologies can rapidly evaporate of solvents/organics, 

reduction and sintering then it could significantly lower costs of processing and increase 

throughput.  

A. Highlights of Engineering Opportunities for Conductive Films in 

Photovoltaic (PV) Applications 

One field where conductive thin films are currently being implemented is 

photovoltaic (PV) applications.  Current PV technologies include Crystalline Si (c-Si), 

Thin Film PV (represented as CdTe), and Organic PV, which are displayed in Figure 2.  

The c-Si PV technology utilize metal mesh grids that are narrowly pattered with line widths 

(~100 µm) to take advantage of the bare space in-between the lines for light to pass through 

into the device.  However, Thin Film and Organic PV utilize a transparent conductive 

oxide, mainly Indium-doped Tin Oxide (ITO).  The metal mesh grids and transparent 

conductive oxide could both be potentially replaced by the conductive thin films 

investigated in this study. 
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Figure 2:  Structures of three types of photovoltaic (PV) cells featuring 

crystalline silicon (left -http://solarlove.org/concepts-photovoltaic-technology/), 

thin film technology represented by CdTe (center - http://www.energy.gov/eere/sunshot/cadmium-

telluride), and organic (right - http://www.energy.gov/eere/sunshot/cadmium-telluride) 

 

B. Motivation for study of IPL Processing Oxide & Hydroxide Forms of 

Conductive Precursors 

In the past few years there has been an interest in the rapid sintering of nanoparticles 

using intense pulsed light (IPL) of non-coherent white light.10 This process, also known as 

photonic sintering and flash sintering, delivers rapid and high energy pulses of light to 

nanocomposite thin films. The absorbed light is transferred almost immediately to heat, 

sintering neighboring nanoparticles and resulting in a conductive film.  IPL Processing is 

a method that rapidly delivers large amounts of energy as an incoherent light spectrum 

ranging from UV to visible to infrared light.  The pulses are typically on the time-scale of 

milliseconds and over areas of tens of square inches.  These approaches allow for on 

demand customization of the patterns and use of more affordable substrates, leading to 

c-Si PV
Thin Film 

PV
OPV
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reduced costs of a number of fields such as photovoltaics, touchscreens, flexible 

electronics, flexible displays, and wearable technology.   

The purpose of utilizing short light pulses instead of a constant light source is that 

the heating is localized into the films.  Therefore, the nanomaterials can be sintered/reduced 

due to the heat transfer being faster than diffusion of oxygen into their crystal lattices.  

Additionally, the localized heating enables the use of flexible/plastic substrates as their 

temperature is kept low enough to prevent deformation/melting.  The process differs 

significantly from laser sintering techniques in two distinct details 1) a much larger 

spectrum of light spanning from the ultraviolet (UV) to the near infrared (NIR) is used and 

2) the processing area is significantly larger. Additionally, the nanoparticles can be 

deposited using well known traditional solution-phase printing techniques over large areas. 

This makes the IPL process very interesting for scalable manufacturing especially roll-to-

roll production.11  Conductive patterns printed using solution-based processes has the 

capability to drastically reduce production costs. This is especially relevant for large scale 

applications such as photovoltaics (PV) in which high throughput, efficient materials usage 

and low energy techniques are needed to reduce the overall costs.  The main goal of this 

dissertation is to explore engineering electrical and optical properties of thin films through 

scalable processes and Earth abundant materials. 
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C. Proposed Concepts for Conductive Films via Intense Pulsed Light 

 

Figure 3: (A) A Cu-ammonia complex, capped with a surfactant, is formed at the start of the synthesis. 

(B) The complex is oxidized, forming Cu2O nanoparticles. Ni2+ ions are added and adsorb on the 

surface of the Cu2O. (C) Further addition of the reducing agent results in the formation of a NiO layer 

on the nanoparticles. (D-E) The inks are then ultrasonically sprayed on the substrate. (F) An IPL 

process reduces and sinters the film. 

The first approach focused on how copper could potentially serve as a substitute 

for silver for applications like c-Si photovoltaic applications, where preventing oxidation 

of Cu and Cu diffusion into the Si are engineering challenges for long-term device 

performance.  This was done through sonochemical encapsulation of Cu2O NPs with NiO 

to create core-layer nanostructures, which were deposited with spray deposition and 

subsequently reduced & sintered via IPL Processing. (Figure 3) Ni was utilized as it has 

been suggested as a one of the suitable diffusion barrier layers for the Cu interface on a Si 

substrate and is an earth abundant material.12 Deposition from solutions in a single step 

would offer a significant advantage to the deposition of conductive traces to Si substrates, 
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in which Cu has high diffusivity. IPL Processing had not previously implemented for core-

layer nanostructure thin films. 

 
Figure 4: Overview schematic of Cu2NO3(OH)3 conversion into conductive copper from synthesis to 

deposition and IPL processing (featuring SEM images of the samples) envisioned for future scaled, 

commercial applications.  The Cu2NO3(OH)3 is formed through a copper salt and hydroxide salt 

reaction.  

The second approach expanded upon the previous work through innovating a 

simpler synthesis of a copper precursor with better solution stability that doesn’t require 

the use of a harsh reducing agent and deeper exploration of organic deposition on the 

reducing environment induced by IPL Processing via intentional inclusion of a sugar 

(either fructose or glucose).(Figure 4)  Depending on the desired printing method, additives 

could be added to the dispersion or the Cu2(OH)3NO3 could be separated from the water 

prior to formulation.  For example, to formulate a screen printed paste, the Cu2(OH)3NO3 
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precipitate is mixed with the chosen organic, deposited as an additive pattern, and then 

subsequently IPL processed to create conductive copper. 

 

Figure 5: Conceptualization of 2D GO nanosheets and 1D Cu(OH)2 nanowires changing with IPL 

Processing 

The third approach is to implement graphene oxide with copper hydroxide 

nanowires to be reduced via Intense Pulsed Light Processing. (Figure 5)  This is significant 

as the first two approaches focused on addressing challenges for the metallization of c-Si 

PV, but have limited capabilities to address the optical transmittance demands of Thin Film 

PV and OPV.  Graphene oxide is highly stable in aqueous solutions and when reduced, has 

high optical transmittance, though its sheet resistance suffers from discontinuities for large 

area.  However, combined together with high aspect ratio Cu NWs (after the solution stable 

Cu(OH)2 is reduced via Intense Pulsed Light Processing) to help to connect the reduced 
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graphene oxide nanosheets, the sheet resistance of films without too great of decrease 

optical transmittance. (Figure 6) 

 

Figure 6: Conceptualization of hybridization of GO nanosheets and Cu(OH)2 nanowires together to 

create TCFs 

D. Objectives for this Study of Nanomaterials & IPL Processing  

The overall objective of this dissertation is to research the scalable manufacturing 

of conductive films overall large areas using roll-to-roll technologies. A number of state 

art processes require high temperatures and harsh chemicals that often add costs and 

limitations to substrates. Solution phase processes can address these issues, but often do 

not result in industrial applicable films. Specific objectives of this work are: 

1. Explore the solution phase synthesis of stable oxide/hydroxide materials for large 

area depositions, through techniques that enable morphology and compositional 

control within an aqueous system. 

2. Research the impact of IPL Processing as a means to reduce the deposited films 

rapidly, over a range of materials and morphologies.  

3. Develop synergistic schemes to improve the deposition of thin films and enable the 

IPL technology.  



11 

 

4. Create thin films for flexible polymer substrates using the localized heating offered 

by IPL Processing. 

5. Combine knowledge of single systems into hybrid films via IPL Processing. 

E. Outline of Dissertation 

This dissertation is comprised of eight chapters.  Chapter 1 introduces conductive thin 

films and inks via Intense Pulsed Light and highlights importance to commercial/industrial 

applications.  Chapter 2 reviews state of the art conductive thin films, including materials, 

synthesis, deposition, and reduction & processing methods.  Chapter 3 describes specific 

experimental methods and details of the work.  Chapter 4 explores an ink composed of 

Cu2O nanoparticles encapsulated with a NiO layer for preventing copper diffusion into Si 

towards c-Si PV applications.   Chapter 5 will explore the use of a Cu2NO3(OH)3 based ink 

and how the intentional inclusion of select sugars enhances the rapid transformation into 

elemental Cu.  Chapter 6 will describe IPL Processing of earth abundant and aqueously 

stable nanomaterials of 2D GO and 1D Cu(OH)2 NWs to create conductive films.  Chapter 

7 will provide conclusions of the work and Chapter 8 will give recommendations for future 

study. 

F. Impact of Dissertation 

Historically, some of the first uses of nanomaterials were for uses in photography 

and stained glass windows and now nanomaterials are being developed to envision a 

vibrant and colorful picture of the future.  This work is the embodiment of applying our 

time, intellect, and effort into assisting with at least one the great challenges we face as a 

society, energy.  The broader impacts of the study are derived from the use of intense, 
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exhaustive, and deep levels of science working towards a contemporary real world 

solution.  The application based interest people would have of things such as flexible 

electronics could be worn or have higher resiliency for dynamic living is incredibly high.  

A possible replacement of silver pastes and ITO would allow for increased commercial 

viability of solar cells and flexible electronics.  Deeper understanding of IPL processing 

will allow for scalable manufacturing with reduced capital costs and commercial costs.  

Since the feedstocks are abundant materials, a wider array of people would have access to 

creating their own solutions to combatting global warming and energy deficits. 

The human consumption of energy has dramatically increased in the last several 

hundred years, mainly through the combustion of fossil fuels.  This has led to many modern 

innovations such as lighting, heating and air conditioning, refrigeration, medicine, 

transportation, computers and integrated circuits, and the internet.  However, these 

innovations came with a cost.  While our potential quality of life has greatly increased, 

great dangers to our existence have grown too through stronger and more efficient 

instruments of destruction and death, extinction of other lifeforms, imbalance of 

ecosystems, pollution of our air/waters/lands, damage to the ozone layer from 

chlorofluorocarbons (CFCs) used in early refrigeration starting in 1929 and greatly 

increased abundance of greenhouse gases in our atmosphere.  The latter has recently 

crossed a threshold of the CO2 concentration in the atmosphere breaking 400 ppm – which 

many deem as a point of irreversibility.  With the increased greenhouse concentration 

comes new realities for the human race with the acidification of the oceans (through their 

absorption of CO2) and disappearance of coral reefs, melting of the polar ice caps causing 

receding coastlines from rising ocean levels, higher average global temperatures and more 
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extreme & chaotic weather patterns – which is particularly prolific in the recent years’ 

hurricanes.  For instance, in 2006 Hansen, Sato et. al stated that throughout 30 years, there 

was a ~.2°C increase in the global surface temperature per decade.13 

 Additionally, there are inequitable disparities access to modern energy 

infrastructures and consumption.  This can be exemplified visually by lighting seen through 

satellite imagery of the globe at night from NASA, which is displayed in Figure 7.  Certain 

regions, such as Western Europe and the Eastern United States, vividly outshine most of 

the map despite their smaller relative population when compared to the scale of global 

human population.  These regions consume disproportionate amounts of energy, as the 

populations of these regions are quite small.   

 

Figure 7:  NASA Satellite imaging of Earth at Night  

 The developed countries of the world have been the main consumers of energy, 

though the bulk (other countries) surpassed their usage in the 2000’s as seen in Figure 8 

from the 2013 U.S. Energy Information Administration, International Energy Outlook.  

Where OECD stands for Organisation for Economic Co-operation and Development and 
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consists mainly of Western European countries and North America plus Japan and 

Australia. 

 

Figure 8: EIA comparison of world energy consumption of OECD and non-OECD countries 
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CHAPTER 2: BACKGOUND 

Nanotechnology has been a great asset for development of research into sustainable 

solutions.  Nanotechnology is defined by having at least one of the three dimensions having 

length of less than 100 nm.  At these sizes the behavior of these nanomaterials can change 

dramatically from their bulk material properties.  This is exemplified by the electrical 

conductivity of 2D sheets of carbon (graphene) and metal nanoparticles having a reduced 

melting point.  On a broad scale, nanomaterials could also reduce the amount of material 

needed through extremely efficient, low-waste processes.  However, the production of bulk 

materials for macro-scaled devices using nanomaterials often carries the requirement of 

downstream processing to increase the grain size and reduce losses at grain interfaces.  The 

specific area this work has focused on is the creation of new knowledge regarding 

production of conductive films employing nanomaterial inks via Intense Pulsed Light 

Processing.  

 Historically, conductive networks have been dominated by metals, though 

nanomaterials can play a role in future developments.  For starters, the production of 

conductive metal traces and films for electronics onto various substrates is typically 

accomplished through physical, vapor, and electrodeposition routes. These techniques have 

gained widespread acceptance in a number of applications in electronics, but often require 

very specific environments and have very exacting tolerances that drive up costs. This is 

not generally an issue for high value electronics, but can be a limiting factor for more 
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pedestrian applications. Recently, there has been interest in depositing these conductive 

patterns utilizing more versatile techniques such as screen, inkjet and aerosol jet printing 

and the use of non-metals that conduct electricity well. These techniques are used in a 

number of low cost manufacturing industries and are much more amenable to continuous 

processing. Quite a lot of technology has been established into the production of these inks 

and supported by several global companies (such as Dupont, Dow, Kodak and etc.).  As 

the size of devices continue to shrink they require ever finer line widths and thickness, 

making it is apparent that incorporation of nanomaterials becomes a natural fit in 

formulation of inks. 

To introduce nanomaterials into the ink formulations, it is important to consider 

that inks and pastes are designed specifically for the desired deposition technique and 

intended application within/as a device.  Inks are composed of the functional nanomaterials 

but also can include multiple components such as carriers, precursors, additives and 

enhancements to assist with the reproducibility and precision of deposition and/or chemical 

transformations and/or sintering during post processing. Carriers can include solvents (to 

be removed by evaporation), stabilizers, binders, surfactants and viscosity modifiers.  To 

avoid the need for extraneous/exhaustive investigation for every ink, the inclusion of 

precursors that exhibit higher solution stability such as an oxide or hydroxide of the 

conductive material are of interest.  Oxide and hydroxide forms of materials are particularly 

advantageous for aqueous solutions due to H-bonding with the polar water molecules, 

leading to increased solution stability and environmentally benign processes.  

Following deposition however, the conductive precursors must be reduced and/or 

sintered for the films to exhibit excellent electrical conductivity and performance.  
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Traditional methods of reduction and sintering would negate some of the aforementioned 

benefits of continuous processing by becoming a rate-limiting step in the process and 

requiring temperatures that would irreversibly damage most flexible substrates.  However, 

there are alternative technologies to help alleviate that challenge such as Intense Pulsed 

Light (IPL) Processing.  IPL Processing can be used in place of traditional thermal 

sintering14 in ovens that are typically used for sintering15 and could significantly reduce 

processing times16.   

Certain applications (i.e. thin film or organic photovoltaics and touchscreens) have 

an additional need from their conductive films for device performance, known as optical 

transmittance or transparency.  The main material currently used for transparent conductive 

films (TCFs) is Indium-doped Tin Oxide (ITO) as its performance on both of these aspects 

is substantially high.  However, ITO falls short of an ideal solution due to the conditions 

of deposition (typically done through sputtering under vacuum), is costly to make, can have 

significant price fluctuations as the price of indium may change rapidly, and it is brittle – 

preventing robust usage and repeated bending of flexible substrates.   

Two essential properties of TCFs are sheet resistance and optical transmittance.  

Sheet resistance, represented as Rs, is the electrical resistivity of a material over an area, 

providing units of Ω/□, where ρresistance = electrical resistance and tfilm=film thickness. 

(Equation 1) Since the film thickness is in the denominator, thicker films lead to lower 

sheet resistance values. 

film

resisance
s

t
R


  Equation 1 

Optical transmittance of TCFs are typically compared utilizing 550 nm, as the solar 

spectrum on Earth exhibits its maximum radiation in visible green light wavelengths. 
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(Figure 9)  It is noted that full understanding of the optical performance requires evaluation 

of transmittance over the broader spectrum.  Transmittance is calculated through Beer-

Lambert Law, shown as Equation 2, where I0 = initial incident of light, I1 = resultant 

incident of light, α = absorption coefficient of the material and tfilm = film thickness.  As 

absorption coefficient is a material property, the film thickness within the exponential 

function becomes the key variable for obtaining a desired optical transmittance.  It should 

also be noted that this creates a nonlinear relationship between optical transmittance and 

sheet resistance of films.  Select state of the art materials utilized in TCF applications are 

displayed in Table 1. 

)exp(
0

1

filmt
I

I
T    

Equation 2 

 

Figure 9: ASTM G173-03 Reference Spectra 
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Table 1:  Characteristics of several TCF technologies 

 Sheet Resistance 

(Ohm/□) 

Transmittance 

(550nm) 

Citation 

Indium-doped Tin 

Oxide (ITO) 

15.0 

 

35.5 

85% 

 

91.9% 

17 

 
18 

Aluminum-doped 

Zinc Oxide (AZO) 

7.85 x 103 91.84% 19 

ZnO 1.88 x 105 92.20% 19 

Cu Nanowires  

(Cu NW) 

5 

141 

 

9 

17 

55 

 

51.8 

67% 

90% 

 

88% 

92% 

94% 

 

90.9% 

20 

 

 
21 

 

 

 
18 

Reduced Graphene 

Oxide (rGO) 

12.2 x 103 

 

1.1 x 104 

4.3 x 104  

102 – 103 

 

9.85 x 103 

 

36.6 x 103 

87.9% 

 

87% 

73% 

80% 

 

94.2% 

 

95.5% 

17 

 
22 
23 
24 

 
25 

 
26 

PEDOT:PSS 3 x 105 98% 21 

Ag Nanowires 

(Ag NW) 

34.4 

 

 

21.8 

86% 

 

 

76.3% 

17 

 

 
25 

CVD Graphene 350 

200 

280 

90% 

85% 

76% 

27 
28 
29 

Carbon Nanotubes 2.1 x 103 

7.5 x 102 

6.9 x 102 

72% 

53% 

50% 

 
30 

rGO/Ag NW 4.7 68.1% 17 

Cu NW / Graphene 53.8 89.3% 18 

Cu NW / 

PEDOT:PSS 

24 

46 

91% 

93% 

21 
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Performance of transparent conductive films (TCFs) has be evaluated through a 

figure of merit (FTC), displayed as Equation 3, and the corresponding optimal film thickness 

for performance, displayed as Equation 4, described by Haacke in 1976.31  

s

TC
R

T
F   

Equation 3 



1
max t  Equation 4 

For proper understanding the performance of TCFs, it is important to incorporate 

the film thickness with the transparency and sheet resistance.  To find the figure of merit 

at 90% transmissivity (ϕTC), the equations can be adjusted to Equation 5 & Equation 6 (for 

reference, ϕTC of ITO= .052).  Where T10 = transparency with 10% loss and 10

maxt = the 

maximum film thickness for a 10% loss in transparency. The figure of merit previously 

described has the advantage of analyzing performance while incorporating the film 

thickness, it however can be difficult to use for a system with GO because the extent of 

reduction will affect the absorption.   

)exp(
10

filmfilm

s

TC tt
R

T
   

Equation 5 

10

110

max t  Equation 6 

Therefore, another ‘Figure of Merit’ (FOM) calculation has been utilized in the 

literature, for example by Kwan, Le et. al in 2016, where Z0 = impedance of vacuum 

(376.73 Ω). (Equation 7)  

𝐹𝑂𝑀 =
𝑍0

2 ∗ 𝑅𝑆 ∗ (
1

√𝑇
− 1)

 Equation 7 

With this equation, again the higher numbers indicate higher performance.  In that 

same study FOM values were reported for rGO films reported in the range of .189 to 0.232, 
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70.0 for Ag NWs, and 134.4 to 189.9 for their hybrid Ag NW/rGO films (whereas a typical 

FOM value for ITO would be 297).17  FOMs of the aforementioned TCFs in Table 1 have 

been calculated and are displayed in Figure 10. 

 

Figure 10: Calculated FOMs using Equation 7 for the TCFs referenced in Table 1 

A flowchart of the remaining sections of this chapter is displayed below. (Figure 

11)  Firstly, Materials will be discussed, followed by the Synthesis of copper nanomaterials 

and graphene oxide, then by solution phase deposition, and lastly Reduction and Processing 

Methods. 

 

Figure 11:  Flowchart of Concepts in Background Section 
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A. Types of Conductive Materials  

1) Metal Materials and their Nanowire 1-D Embodiments 

Metals are electrically conductive due their metallic bonding, where electrons are 

able to move as their conduction band is below the highest energy of the valance band.  

Nanowires (NW) made with metals are utilized for TCFs due to their morphology allowing 

for decreased coverage, while still maintaining excellent electrical conductivity.  The high 

aspect ratios help to maximize the distance that the electrons can travel with a finite amount 

of material.  Many of the studies in the literature have been conducted on Ag NWs.  

However, Nam and Lee in a 2016 review discussed how Cu NWs have gained attention as 

a substitute for Ag NWs due to advantages in cost and abundance with similarly high 

performance.32 

Zhu et al. (2013) created transparent electrodes with ‘self-welding’ Ag NWs 

through rod-coating (in two orthogonal directions) followed by a plasma irradiation 

treatment (75 W, 1 hr) to remove the PVP polymer coating without oxidizing the NWs 33 

Sachse et al. created Cu NW transparent electrodes without the use of hydrazine in 

2014 and produce an organic solar cell with 3% efficiency.  The films were spray coated 

though not conductive afterwards.  The electrodes were then subject to pressing (increased 

conductive performance more than it decreased transmissivity) and reduction at higher 

temperatures to reach these performance levels.34  

2) Metal Oxides Implemented as TCF Materials 

Indium-doped tin oxide (ITO) is the most widely used transparent conductive film 

for modern applications such as touch-screens in mobile phones.  The transparency of ITO 
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is due to the large band gap of tin oxide, which classifies it as an insulator.  However, 

through doping with indium, the material becomes electrically conductive without losing 

a significant amount of transmittance.  FTO is similar to ITO except it has been doped with 

F, to provide higher temperature stability.  Aluminum dope zinc oxide (AZO) is another 

metal oxide that can be used for TCF applications.35 

3) Carbon-Based & Organic Materials  

i. Graphene 

Graphene, an atomic sheet of carbon, is one of the most marvelous material 

discoveries of the modern age and nanotechnology.  Its thickness has been measured as 

0.34 nm in the literature23 and a single layer absorbs 2.3% of light, with five layers 

absorbing nearly 12%.36   At this scale, the interlocked carbon atoms behave counter-

intuitively as the material is incredibly strong, quite transparent, has displayed a potentially 

controllable work function37, exhibits a high thermal conductive, is flexible, and is 

theoretically the most electrically conductive material known to man.  Due to these 

phenomenal properties, it has inspired enthusiasm in a myriad of applications from 

biological sensors and cancer treatments38 to supercapacitors, lithium ion batteries, light 

adsorbing paint, membranes, solar cells (such as dye-sensitized solar cells39), displays that 

bend40, and whatever the limits of our imaginations are.  One current/specific application 

that graphene is particularly well-suited for is use as an electrically conductive and 

transparent material known as transparent conductive coatings (TCCs) or Transparent 

conductive electrodes (TCEs).41  It is noted that the notations of TCCs, TCEs, and TCFs 

are used interchangeably in the literature, though this dissertation focused on the use of 

TCFs exclusively. 



24 

 

Pristine graphene is grown through a chemical vapor deposition (CVD) on Cu 

foil.42  Ni foil can also be used.  The graphene is grown in a furnace around 1000°C wherein 

a H2/Ar environment, CH4 is introduced.  At these temperatures, the solid state diffusion 

of carbon into the copper crystal lattice begins to happen, as the diffusion is faster and there 

is a higher solid state solubility.  The furnace is then cooled and depending on the cooling 

rate, the diffused carbon will migrate towards the surface of the carbon foil.  In order to 

transfer these graphene films to a flexible substrate, a plastic is placed onto the graphene 

side of the copper foil and then the entire copper foil is etched away in a solution, leaving 

the graphene on the plastic without inducing significant stresses on the film.   

ii. Graphene Oxide/Reduced Graphene Oxide 

 Graphene Oxide (GO) is a 2D material composed of bonded carbon atoms featuring 

oxygen-based functional groups, whose removal transitions the material to become 

reduced graphene oxide (rGO).(Figure 12)  It is prepared through the chemical-oxidative 

exfoliation of graphite via the Hummer’s Method.43  When reduced, it becomes conductive 

and has prospects for use in TCFs.44  Motivation for application of rGO is in part due to its 

potential as a replacement of PEDOT:PSS in polymer solar cells.45  rGO varies 

significantly from pristine graphene due to the distortions of the carbon chains during the 

synthesis’ chemical oxidation.46  A 2016 literature article showed that GO/rGO have many 

potential applications ranging from TCFs and conductive inks to bio-medicine, separation 

membranes, energy storage, and even anticorrosion technology or fire-retardants.47 GO 

exhibits fluorescence in water solutions was found to originate from e-s transitioning from 

oxidized/non-oxidized regions48 and it has been reported that its fluorescence is pH 

dependent49. For bio-medical applications, there have been articles looking at how the 
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toxicity of GO is based on the oxidative method for synthesis 50 and how it could affect 

brain function51. 

 

Figure 12:  Illustration of chemical structure of GO and rGO post-reduction52 

GO can either be deposited and subsequently reduced or reduced prior to 

deposition.  For example, An, Kim et al. in 2015 inkjet printed rGO, obtaining a resistivity 

of .0013 Ω∙m.53 A typical rGO film with a 550nm transparency of 94% has a sheet 

resistance of 49.2 kΩ/□.54  In 2016, Wei, Yu et al. observed electron hopping in rGO.55  

During the deposition of GO films, it is very important that the GO sheets are left in a flat 

orientation and sheet stacking is minimized.  One cause of stacking GO sheets is interstitial 

water molecules between the sheets, as large amount of water is absorbed to the sheets 46 

and has been shown to cause stacking.56  Sheets that are deposited as a single layer provide 

lower sheet resistance and higher transparency.  Within the literature, they are several 

approaches to overcome this challenge such as adjusting hydrophobicity or hydrophilicity 
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with a surfactant and modification of pH,57 capillary force driven self-assembly at liquid-

air interfaces to make GO thin films,58 spin-coated sol-gel silica and GO composites,59 

Meyer-rod surface tension driven flat deposition of rGO,60 Langmuir-Blogett adsorption,61 

and altering the GO sheet sizes62-63.  Doping surface bonds of GO can also be modified 

with reagents (such as SOCl2).
23   

iii. Carbon Nanotubes 

Carbon nanotubes are sp2 carbon ring based nanomaterials that are essentially 

rolled-up sheets of graphene.  They can be multi-walled (with several layers) and have 

varying diameters.  They have been studied in the literature as thin films deposited by rod 

coating64 and spray coating30, as two examples. 

iv. PEDOT:PSS 

Organic molecules can conduct electrons when an electron 

is excited from its highest occupied molecular orbital (HOMO) to 

its lowest unoccupied molecular orbital (LUMO).   

A widely used conductive copolymer is poly(3,4-

ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS).  

The transparency of this material comes from the organic bonds absorbing light mainly in 

the infrared region of the electromagnetic spectrum. It is fabricated as a copolymer to assist 

with its solution stability in polar solvents, such as water, through the SO3 functional 

groups contributed by the incorporation of polystyrene sulfonate.  The use of an organic 

TCF is highly preferable for organic light emitting diode (OLED) and organic photovoltaic 

(OPV) applications.  They are also advantageous for future roll-to-roll processing on 

Figure 13: Structure of 

mers in PEDOT:PSS 
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flexible plastic substrates, as they do not require ample post-processing to become 

conductive and are chemically similar to the plastic substrates themselves. 

4) Hybridization of TCF Materials  

Hybrid technologies are combinations of technologies to overcome a challenge for 

specific applications, such as greater flexibility or lower cost.  Performance of these hybrids 

can depend on lattice defects and grain boundaries.65-66  Layani et al. in 2014 discussed 

materials/structures for TCFs, mentioning some hybrid structures, which could potentially 

rival ITO.67  One consideration for proper understanding of hybrid schemes is to also take 

into account how materials interact with themselves first, for example Cu NWs inter-NW 

resistance has been studied in the literature.68  Another consideration for hybrid devices is 

that they are electrically compatible materials whose band gaps/work functions have good 

alignment.  This leads to Ohmic contacts, if the difference is less than .3eV, with minimal 

contact resistance.  In 1977, Michaelson reported the work function the elements as C – 

5.0 eV, Cu – 4.65 eV, Ag – 4.26 eV, and Au – 5.1 eV.69 

Copper NWs were combined by Kholmanov et al. in 2013 to create hybrid 

structures though the copper nanowires were spray coated and then graphene oxide was 

deposited with spin-coating separately (treated with hydrazine vapor for 24 hours and 

annealed at 400°C for 4 hrs under 5% H2) and dry transferred with PMMA onto the NW 

film.  Hydrazine used to prevent oxidation of the purchased NWs.  The films also showed 

a beneficial behavior of reduced sheet resistance loss when left at 60°C in ambient 

atmosphere, increasing their stability so the use in commercial applications is more 

viable.26 
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Kwan, Le et al. utilized spray coating to deposit layers of Ag NWs followed by 

spray coating rGO and were able  to show that the rGO coated Ag NWs exhibited better 

suvivability under conditions which would normally lead to oxidation, resulting in 

increased resistivity.17  Kholmanov, Stoller et al. created spin-coated TCFs with Ag NWs 

and gold rGO.54  They found that the Ag NWs had Ag NW / Ag NW contact resistance 

junction of 61 Ω and 77 Ω.   Mayousse, Celle et al. in 2014 utilized hydrothermally 

synthesized Cu NWs that were subsequently covered by a 50 nm spin-coated PEDOT:PSS 

layer to create flexible TCFs with a sheet resistance of 55 Ω/□. at 94% transmittance.21  

They also applied an acid treatment with glacial acid acetic, which helped to remove both 

the octadecylamine and surface oxide to improve performance and enable Ohmic contact.  

Additional examples of hybridized TCFs are graphene w/ PEDOT:PSS70, metal NWs with 

CVD graphene71, Graphene on metal grids72, GO and  polymers73, graphene-silica 

composites 59, rGO and Ag NWs films74, graphene-stabilized copper nanoparticles75, and 

GO-Ag nanoparticles76. 

B. Solution Phase Synthesis of Earth Abundant Precursor Nanomaterials 

1) Solution Phase Synthesis of Copper Nanomaterials 

Copper NPs have gained momentum due to their potential as a replacement of silver 

in printed electronics.77 Syntheses have been conducted with various techniques including 

chemical reduction (such as with NaBH4
78-79, hydrazine80-81 and L-ascorbic acid82), 

polyol83-85, microwave assisted polyol86-87, alcohol reduction88, electrochemical 

deposition89, electrolysis90, hydrothermal91-92, metal vapor93, photochemical94, reverse 

micellar synthesis,95-96, sonochemical93, thermal reduction97and thermal decomposition of 
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a precursor98-99.  Additionally, there are two reports for the synthesis of Cu2O@NiO core-

layer nanostructures grown using a heated bath containing a solution of mixed metal salts. 

As a result, core-layer structures with diameters less than 100nm were formed, with a Cu-

Ni alloy interface.100-101   

The synthesis of metal NWs is typically done through a polyol method, which 

incorporated PVP as a driving force for one directional growth and to form a thin outer 

layer on the NWs, protecting them from oxidation.  In 2005 Chang et al. created copper 

nanowires by reacting hydrazine with a Cu(NO)3
 and NaOH in the presence of 

ethylenediamine (EDA), which formed complexes with the copper ions and aided in the 

formation of the nanowires.  They found that a high amount of NaOH was necessary to 

prevent the formation of copper hydroxide.  The EDA was needed to limit the morphology 

growth as nanoparticles were made if it was too low.  However, if the concentration of 

EDA was too high, nanowires were not formed and rather the synthesis created 2D 

nanodisks.102   

Liu et al. in 2003 were able to avoid the harsh reducing reagents while synthesizing 

Cu NWs through hydrothermal synthesis of copper nanowires was performed by by 

complexing the aqueous Cu2+ ions with glycerol prior to reacting with OH- and HPO3
2+.  

Glycerol was added as 40%vol for the reaction and to increase the viscosity; resulting in a 

higher NW stability.  Reaction times however, were 20 hours.92  Shi et al. in 2005 

implemented a hydrothermal reaction taking 48 hours utilizing octadecylamine as a 

capping agent.103  Cu NWs were also produced by Jin et al. in 2011 by using 

hexadecylamine as a capping agent and glucose as the reducing agent for 6 hours at 

100°C.104  Zheng, Liang et al. in 2014 proposed that the wastewater from Cu NWs 
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syntheses, still containing ethylenediamine and concentrated NaOH, can be reused for the 

synthesis after removal of the produced Cu NWs by addition of more hydrazine and 

ethylenediamine to help alleviate challenges associated with scaling the synthesis of Cu 

NWs. 105 

 There are also multiple investigations into the synthesis of copper oxide 

nanomaterials with methods such as aqueous reduction method through the use of a 

NaBH4
106 or sonochemical Synthesis CuO107.  Cupric and cuprous oxide NWs were created 

by Sunkara, Vendra et al. in 2013 with a wet chemical oxidation (with hydrogen peroxide 

and ammonium bisulphate) of copper foil under basic conditions to create Cu(OH)2 NWs 

and then subjected to oxidation with atmospheric plasma.  The application to 

photoelectolysis was also investigated and showed higher performance than with thin 

films.108  Cu2O NWs were prepared by Orel, Anžlovar et al in 2006 with copper acetate 

and diethylene glycol reacting at 190°C for 6 hours.109 

Copper Hydroxide, Cu(OH)2, is sometimes used as a template for creation of CuO 

or Cu NWs.  However, other morphologies can be obtained such as leaf-like structures.110 

Cu(OH)2 NW bundles were created by Li et al in 2010 in an aqueous mixture of Cu(NO)3 

and NaOH with PEG200 (polyethylene glycol 200) directed Growth at ambient conditions 

in 4 hours.  The Cu(OH)2 transformed into CuO if the reaction was left to go on for 8hrs.111   

Copper Nitrate Hydroxide (CNH) can also be produced, typically through reacting 

copper nitrate and sodium hydroxide or potassium hydroxide.  To produce Cu2NO3(OH)3, 

rather than CuOH2, the molar ratios and time of reaction are changed. The coppers are 

coordinated through either two OH- groups or an OH- group and a NO3
- group.112  In 2004, 

Park and Kim created unidirectionally aligned Cu(OH)2 nanorods from a two dimensional 
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copper hydroxyl nitrate.113  Cu2NO3(OH)3 has been synthesized in various morphologies 

such as microcrystals114, nanoplatelets115, and nanorings116. 

2) Graphene Oxide (GO) Synthesis Methods 

 GO is typically produced with a modified hummer method, which was originally 

published by Hummer and Offeman in 195843.  Although, there are methods which date 

back to from 1939 117 and 1898 118. The method chemically exfoliates graphite through 

utilization of strong oxidation reagents and features a reaction between H2SO4 and 

KMnO4.
119 There are several modifications to the original method and recommendations 

in the literature, such as Marcano, Kosynkin et. al. in 2010 who discussed that the synthesis 

of GO could be improved from the typical Hummer’s Method by excluding NaNO3 and 

increasing the KMnO4 molar ratio.120 Centrifugation separation is typically used to 

cleaned-up and isolate the reaction’s product of high quality GO.121  Removal of ‘oxidative 

debris’ after synthesis has also been shown to help produce higher quality GO.122 

C. Solution Phase Deposition 

1) Ink Formulation to Enable Solution Phase Deposition 

For formulation of inks, the main considerations are the concentration of solids, 

choice of solvent(s), and the addition of selected additives.  The surface tension and 

viscosity are two important properties of an ink.  The shear rates will vary between 

deposition methods.  The magnitude of the shear rates will indicate the potential for control 

over factors (such as film thickness and orientation of materials) of that deposition method. 
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2) Importance of Substrate Choice on Film Deposition 

Each type of substrate will have a different surface energy.  The surface energy of 

the substrate will affect film wetting.  The surface energy can be decreased through use of 

surface treatments.  One vastly used technique is oxygen plasma treatment, which 

significantly reduces the surface energy of substrates.  Substrates are chosen for a variety 

of reasons however, depending on the application and processing therein.  For instance, if 

a high temperature sintering process is needed then a plastic substrate would not suffice.  

For glass, the two main types are borosilicate, which has a better thermal coefficient of 

expansion, and soda-lime glass that has higher optical transparency and is more favorable 

for aqueous inks (due its higher polar interactions of surface energy).  For plastics, 

polyethylene terephthalate (PET) is typically the choice as it has a relatively high glass 

transition temperature ~150°C.  There are additional options however, such as a cellulosic 

based plastic (like TOPAS 6015).  Plastic substrates are being widely explored as they 

enable flexible application, are typically lower cost, and roll-to-roll continuous processing. 

3) Solution Phase Deposition Methods 

For spin-coating, a small amount of the ink solution is placed onto the substrate, 

covering the surface.  The substrate is then rotated at high rotations per minute (rpm), 

typically ranging from 1,000 rpm to 5,000 rpm.  It is noted that spin-coating is difficult to 

scale for large area coatings as it typically has a high amount of materials waste (above 

90%), becomes increasingly sensitive to surface disconformities, and is a batch process.  

Screen printing utilizes high viscosity pastes typically ranging from 102-105 centipoise 

(cP).  The higher viscosities are essential for control of patterns.   
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Ultrasonic spray deposition is an improved deposition method of typical spray 

technique.  The utilization of ultrasonic nozzle to induce droplet atomization, combined 

with air jets, allows for a high level of control.  (Figure 14)  

  

Figure 14:  Depiction of Ultrasonic Spray Deposition 

The governing equations for Ultrasonic Spray Deposition have been described by 

Majumder, Rendall et. al. in 2010 for single walled carbon nanotube films, showing how 

the processing parameters can be optimized to control droplet drying time to improve 

quality of films.30 

Rod-coating (or the Meyer Rod technique) is based upon the inks being confined 

to a small region/volume by a spiraled rod (around the main cylinder), as seen in Figure 

15.  The evaporative forces and surface interactions help to control deposition.  The 

diameter of the rod is a crucial variable to the resulting film thicknesses (there are upwards 

of 90 to choose from).  Other variables and ways to control the deposition process include 

the solution concentration, choice of substrate, substrate surface modification treatments, 

doping of the pre-deposited graphene oxide material, and choice of solvent(s). Rod-coating 

has been utilized in the literature for depositing GO, for example in 2012 by Wang, Liang 

et al., where they also modeled how to calculate the drying time and thickness of films.60   
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Figure 15:  Depiction of a Rod-coating tool 

 

Figure 16: Depiction of close-up of the spiraled rod of a Rod-coating tool 

D. Reduction and Processing Methods   

Intense pulsed light (IPL) Processing has been utilized as a rapid and scalable 

technique to accomplish the heat treatment.11, 123  IPL is an emerging advanced 

manufacturing process that illuminates light from a xenon strobe over a wide area, which 

induces localized temperature increases.124 The IPL process is particularly advantageous 

as an alternative method of sintering metal nanoparticles, as the rapid pulses would 

significantly reduce processing times16 and is applicable to flexible substrates125-126, which 

would be irreversibly damaged by traditional thermal sintering14.  Sintering is the process 

of combining particles (typically metal powders) into a bulk or porous structure without 

the need to completely melt the material through solid state diffusion.127  There are several 

in-depth studies of IPL sintering mechanisms in the literature including nucleation through 

flash sintering128 and nanogranulation of metal alloy on carbon nanotubes129. 

IPL processing has been used predominately for the sintering of metals such as 

gold130-131, Nickel (Ni)10,  Ag132-137, and Cu 91, 106, 138-141.  There are various examples in the 

literature of IPL Processed with multiple variations of types of ink compositions and 
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morphologies such as Ag micro-flakes with resin142, Ag NWs143, Ag NWs for touch pads143 

Ag NWs144, Ag NWs on polymer substrates145, ‘strongly adhesive’ Ag NWs 146, Ag on 

different substrates 137, Ag nano-ink133, Ag NWs w/ Graphene Encapsulation147.  Outside 

of metals, additional materials have been studied in the literature including semiconductors 

such as CdS148-149 and CdTe148, 150, CoO/Nickel nanoflakes151, photo-oxidation of 

Silicon152, and Si NPs153 and also for annealing graphene154.  IPL processing has also been 

used for direct integration with solar cells such as creating  a Cu(In,Ga)Se2 alloy155, 

processing a CuIn1-xGaxSe2 ink for gravure printing156, CIGS Particles157, dodecylamine 

capped CIGS NPs158, perovskites 159, and buffer layers for organic photovoltaics.160 

Song, Han et al. in 2016 showed that masked IPL processing of Ag NWs or Cu 

NWs films on transparent polymer films could be used to selectively pattern the NWs due 

to the increased adhesion during processing.161  They also studied how the sheet resistance 

of films changed with use of different pulse durations (500, 1000, and 2000 microseconds) 

and found that 500 microsecond pulse durations with a three second interval between 

pulses didn’t cause thermal damage to the films and their sheet resistance was maintained. 

IPL processing of copper nanoparticles has enabled the sintering of copper, without 

the use of an inert environment or vacuum because the time-frame of heating and cooling 

is faster than the oxidation of the copper.139 Forgoing the use of inert environments and 

vacuum processes is enticing for scaled manufacture due to the associated costs.  IPL 

sintered copper nanoparticles have shown very good conductivities16 and sintering/melting 

at 318°C162.  Utilizing inks with metal nanoparticles decreases the required sintering 

temperature, due to the increased surface to volume ratio of the particle and quantum 

confinement, resulting in the particles having a low melting point temperature.  This 
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phenomenon has been reported for a number of nanoparticles, including gold163 and 

copper91. However, the solution stabilized copper nanoparticles were susceptible to 

oxidation and agglomeration.   

To counter oxidation, the synthesis/deposition of copper nanoparticles used harsh 

reducing agents of hydrazine164 and sodium borohydride78, 106.  Additives such as PVP85 or 

CTAB165 can increase the solution stability and control the particle size of the copper 

nanoparticles, but there is an inherent tradeoff when adding large molecules and polymers 

on the resulting porosity/conductivity of IPL processed films.166  To overcome the 

agglomeration and oxidation challenges of copper during synthesis and deposition, it is 

advantageous to use cuprous oxide106, 167, cupric oxide168, or copper salts/complexes such 

as Cu ion inks 169, Cooper Nitrate Hydroxide170, and Copper Carboxylate166.  During IPL 

Processing, decomposition of organic molecules has been shown to induce a reducing 

environment. (Table 2) 

Table 2:  Selected examples of organic decomposition during IPL Processing  

Reduction of GO to rGO is an exothermic reaction that releases CO2, H2O, and 

CO.52  Typical reduction methods of graphene oxide films involve high temperature 

vacuum annealing and/or use of chemical reducing agents.172-173  Temperatures needed to 

remove most/all of the oxygen functional groups are above 1000°C.60, 174 Chemical 

Material Organics Reference 

Cu (native Cu2O shell) PVP 91 

Cu2O Tergitol and ethylene glycol 106 

Cu2O@NiO Tergitol and ethylene glycol 167 

Cu2NO3(OH)3 Fructose or glucose 170 

Cu(HCOO)2, Cu(CH3COO)2 

Cu(C17H33COO)2 
Metal-organic copper complex 171 
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reagents include hydrazine63, 175, NaBH4
62, N,N-dimethylacetamide 176-177, metals178 (such 

as Al74 and Cu179), HI acid180, ascorbic acid (Vitamin C)17, alkaline conditions181, 

glucose182, hydrothermal ‘green’ reduction183.  There have been a few examples in the 

literature which explore photoreduction methods such as UV Light Pulses184, pulsed laser 

radiation of a solution containing ammonia185, camera flashes52, 186, sunlight compared to 

UV light and a laser 187, and UV-assisted in TiO2 suspension188. 

IPL processing reduces GO films directly with UV light and by increasing the 

thermal energy.  The ability of GO to absorb light increases as it reduces.44  The increased 

absorption occurs due to the reformation of π-π bonds, which have higher energy, red-

shifting the absorbance.   Qualitatively, the reduction’s progress can be seen by a visual 

transformation of films from yellowish-brown to black.  Quantitatively, this can be 

captured experimentally with UV-Vis spectroscopy.  The increased absorbance of GO 

during reduction is advantageous for IPL processing; as sequential IPL pulses will be more 

effective in contributing to the reduction.  Literature values have reported that wavelengths 

below 520nm are required to contribute to reducing GO directly.76   

Raman spectroscopy is utilized to characterize carbon-based materials to help 

differentiate them (i.e. graphite, graphene oxide, reduced graphene oxide, and graphene).  

Raman spectroscopy is useful in this work for identifying GO’s extent of reduction189 and 

the number of layers190.  The main indicators are the defects (D) peak (~1350 cm-1) and 

graphite (G) peak (~1580 cm-1).190  The D peaks are representative of defects (like grain 

boundaries),189 while the G peaks are characteristic of carbon materials.  However, it 

should be noted that the laser wavelength utilized for excitation will alter the spectroscopic 

response of GO/rGO. 
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  FTIR can show diminishing oxygenated-functional Groups epoxides, carbonyls, 

alcohol’s, aldehyde’s and carboxylic acids.  XPS allows for analysis of the carbon to 

oxygen present in molecular bonds (~30% oxygen as synthesized GO) and how the carbon 

to oxygen ratio increased as GO is reduced.56 

Al-Hamry, Kang et. al. in 2016 utilized IPL processing on ~15-70 nm thick spin-

coated GO films and their findings of the reduction compared to traditional thermal 

treatments at 200°C and 400°C are displayed in Table 3.191 

Table 3:  Comparison of thermal and IPL Processing reduction of GO191 

 Sheet 

Resistance 

(Ω/□) 

Transparency 

(550 nm) 

C/O ration ID/IG ratio 

As dep GO  93.2% 1.5 1.45 

200°C 199 x 103 69.5% 1.7 1.7 

400°C 203 x 103 79.4% 2.3 1.1 

IPL 178 x 103 67% 3 1.1 

 

Park, Kim et. Al. in 2015 deposited GO through filter-deposition to create ~.5µm 

thick ‘self-standing’ GO films, which was IPL Processed with 1-5 pulses (5-20ms duration) 

and total energy densities of 20-40 Jcm-2, resulting in sheet resistances 17.55 Ω/□ – 78.78 

Ω/□. and analyzed the presence of monolayer rGO vs. multilayer rGO by the XRD peak 

ratio at 24.7° (002) to 43.4° (100).192 

Arapov et al. in 2016 photonically annealed binder-based graphene inks and 

subsequently implemented compression rolling, which helped increase the conductivity of 

their films as the proximity of the graphene sheets was reduced resulting in 1.4 Ω/ □, with 

a 25 µm thick film.193 
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CHAPTER 3: EXPERIMENTAL 

 In this chapter, the synthesis methods are described for each of the four 

nanomaterials studied in this dissertation, followed by deposition methods and IPL 

Processing.  

A. Solution Phase Synthesis of Cu2O-NiO core-layer Nanostructures 

Commercially available Tergitol NP-9 (Sigma Aldrich, 99%) was used as the 

capping agent for the synthesis of the copper oxide nanoparticles. Anhydrous copper nitrate 

(Cu(NO3)2, Alfa Aesar, 99.99 %), nickel nitrate hexahydrate (Alfa Aesar, 98 %), ethylene 

glycol (C2H6O2, Alfa Aesar, 99.5%), sodium borohydride (NaBH4, Sigma Aldrich, 98%) 

and ammonium hydroxide (Fisher Scientific, 29.18 %) were used in the synthesis of the 

Cu2O-NiO core-layer nanostructures.  

The synthesis of a copper dispersion by the reduction of Tergitol capped Cu2+ ions 

using NaBH4 solution has been described in an earlier work.106 For the synthesis, 5 ml of 

Tergitol NP-9 was added to a 50 ml aqueous solution of 0.1 M Cu(NO3)2, followed by 100 

ml of Ethylene glycol. The pH of the solution was adjusted from pH 7 to 11 by the drop-

wise addition of NH4OH. To this solution, 50 ml of aqueous NaBH4 (0.05 M) was added 

and the reaction was then stirred for 2 h in an inert atmosphere.  The Cu2O nanoparticles 

in the form of a black precipitate were isolated by centrifugation at 5000 rpm for 5 min. 

Although a black precipitate was observed, CuO peaks were not observed in the 

corresponding XRD characterization. 1.5 g of as obtained Cu2O nanoparticles was 
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dispersed into a 25 ml solution of acetone and nickel nitrate hexahydrate (Ni(NO3)2) * 

6H2O (1 mM, 5 mM, 10 mM and 20 mM) under ultra-sonication at a power of 10 Watt for 

one hour. Further, 25 ml of an aqueous solution of NaBH4 (1 mM, 5 mM, 10 mM and 20 

mM) was added to the respective solution and sonicated for one hour. It has been noted 

that the NaBH4 concentration for reduction of the metal ion is two-fold higher than the 

required concentration, in order for the excess H2 released by the decomposition of NaBH4 

helping to maintaining the reduction media and reducing the formation of surface oxide, as 

shown in our previous report.106 

By adjusting the concentrations of the reducing agent, NaBH4 and capping agent, 

Tergitol, to control the diameter. These nanoparticles were synthesized in a water/glycol 

(1:1 v/v) solvent (Figure 4A) and were capped with a layer of Tergitol (Figure 4B).  The 

Cu2O nanoparticles were then isolated from the solvents used during the synthesis and 

subsequently re-dispersed in a solution of acetone and Ni(NO3)2. Due to the solubility of 

Tergitol in acetone, Ni2+ ions were directly adsorbed on the surface of Cu2O particles 

(Figure 4C). To facilitate complete adsorption of the nickel ion on the cuprous oxide 

nanoparticles, the solution was then ultrasonically mixed for 1 hour under atmospheric 

conditions. 

An aqueous solution of NaBH4 was then added to the solution and was 

ultrasonically mixed for another hour. Initially the introduction of a reducing agent resulted 

in the formation of a Ni coating (Equation 8). However, the energy supplied to the system 

during ultrasonication in the presence of oxygen resulted in the oxidation of this coating 

(Equation 9). XRD, SEM and TEM results have all shown that no other Cu or Ni species 

(metal borides) were present in the final product. The concentration of the Ni(NO3)2 was 
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adjusted between 1 mM and 20 mM to control the thickness of the Ni layer.  These core-

layer nanostructures are the oxides of Cu and Ni (Cu2O@NiO) and are reduced during the 

IPL process. To make a film using these core-layer nanostructures, the dispersions are 

spray deposited onto a silicon substrate followed by intense pulsed light sintering (Figure 

3 D-F).   

 

Figure 3: (A) A Cu-ammonia complex, capped with a surfactant, is formed at the start of the synthesis. 

(B) The complex is oxidized, forming Cu2O nanoparticles. Ni2+ ions are added and adsorb on the 

surface of the Cu2O. (C) Further addition of the reducing agent results in the formation of a NiO layer 

on the nanoparticles. (D-E) The inks are then ultrasonically sprayed on the substrate. (F) An IPL 

process reduces and sinters the film. 
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B. Synthesis of Copper Nitrate Hydroxide Cu2NO3(OH)3 

Copper nitrate hydroxide was synthesized by the reaction of copper nitrate and 

potassium hydroxide.  Copper nitrate hydrate Cu(NO3)2∙2.5H2O, Alfa Aesar, 99.99%) was 

purchased from Alfa Aesar.  Potassium hydroxide pellets (KOH, 98%) was purchased from 

Sigma Aldrich.  24 g (0.103 mols) Cu(NO3)2∙2.5H2O was dissolved in 200 ml of deionized 

water. In a separate beaker 11.64 g (0.207 mols, 4.16 M) KOH was dissolved in 100 ml of 

deionized water. The Cu(NO3)2 solution was stirred using a magnetic stirrer and the KOH 

solution was added to the solution at a rate of 1.67 ml∙min-1 using a syringe pump.  After 

the all of the KOH was added to the solution, the mixture was then placed in an ultrasonic 

bath for 30 minutes. The pale light blue precipitate was isolated by centrifuging the mixture 

at 7000 rpm for 3 minutes. The precipitate was washed once with deionized water. 

C. Synthesis of Graphene Oxide via a Modified Hummer’s Method 

Graphite flakes (99.8%, metals basis) were purchased from Alfa Aesar.  Potassium 

permanganate (99.0%), sulfuric acid (98%), hydrogen peroxide (35%) and hydrochloric 

acid (37%) were purchased from Sigma-Aldrich.  All chemicals were used without 

additional purification.  Graphene oxide (GO) was synthesized through use of a modified 

Hummer’s Method.43 The produced GO exhibited a yellowish-brown color.  A typical 

procedure went as follows: 

1. 3g of graphite and 63 mL of H2SO4 were carefully placed in a 1,000 mL three 

necked flask and placed into a refrigerator overnight. 

2. The next day, the three necked flask was placed in an ice bath and under a water-

cooled condenser operating under full reflux. 
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3. 9g KMnO4 were slowly (approximately 15 minutes) added to the cooled flask – to 

prevent explosive by-product formation and facilitate the oxidative exfoliation. 

4. The ice bath is removed and replaced with a water bath (to help equalize the 

distribution of heat) with a thermometer to observe the temperature, still under full 

reflux conditions, put over a hot plate, and heated to 40°C. 

5. 138 mL of DI water were added, extremely slowly at first to prevent quenching the 

reaction, and then at a gradually increasing rate (~30 minutes) 

6. Temperature was increased to 90°C for 15 minutes 

7. A mixture of 420 mL of DI water and 30 mL H2O2 (refrigerated 30% solution) was 

added slowly (~45 minutes) 

8. Centrifugation for 5 minutes at 7,500 rpm to separate out the GO 

9. Washed with 3wt% HCl – remove unreacted graphite and metal contaminants (Na, 

Mn, etc.) 

10. Washed with DI water until pH was neutralized (7+ times) – checked with pH test 

strips 

D. Synthesis of Copper Hydroxide Nanowires (NWs) 

The Cu(OH)2 NWs were synthesized through a synthesis found in the literature for 

making Cu(OH)2/CuO NW bundles.111  PEG400 was utilized as the shaping agent due to 

its larger aspect ratio than the PEG200.  The synthesis materials are depicted as a cartoon 

in Figure 17.  
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Figure 17: Schematic of Cu(OH)2 NW Synthesis involving copper nitrate (copper precursor), NaOH 

(reactant), and PEG400 (as a shaping agent) 

A typical procedure goes for the synthesis of Cu(OH)2 NWs go as follows: 

1. 600 mL of DI water was added to a three necked flask 

2. 30 mL of PEG was added and magnetically stirred with patience as the polymer 

became part of the solution (instead of part of the problem) 

3. 3.6 g Cu(NO)3∙2.5H2O was added  

4. 6.0 g of NaOH was slowly added over 10 minutes 

5. Solution was stirred for four (4) hours 

6. The product was isolated via centrifugation at 6,500 rpm for 3 minutes (Figure 18) 

7. Washed with DI water until pH was neutralized - checked with pH test strips 
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Figure 18: Image of reaction vessel after Cu(OH)2 synthesis vessel (left) and in a centrifuge tube prior 

to centrifugation process (right) 

E. Procedures for Cleaning Substrates 

 Glass substrates were approximately 1” by 1” – cut with diamond scribe alignment 

system from VistaVision (soda-lime) microscopic glass slides purchased from VWR.  The 

substrates were then cleaned by sonication for 10 minutes in three different solutions 1) 

alkaline detergent 2) DI water 3) ethanol or isopropyl alcohol and subsequently air dried.  

The samples were then treated with an oxygen plasma treatment for 10 minutes to remove 

any residual organics. 

 Silicon substrates were cut with the same system as the glass substrates (except for 

the Si used for thermoelectric measurements).  The Si wafers were delicately moved with 

plastic tweezers, with the polished side being carefully placed on a ChemWipe, to prevent 

scratching.  They were cleaned with sonication in three different solutions 1) alkaline 

detergent, 2) deionized water, and 3) ethanol then subsequently air dried.   
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 PET substrates were cut with scissors and approx. 1” by 1” in size.  They were 

cleaned with the same procedure as the glass substrates with the exception of the oxygen 

plasma treatment being reduced to 2 minutes (from 10 minutes), to prevent warping.   

Cellulostic plastic (TOPAS 6015) substrates that were utilized were cut as 1” circles 

cleaned with sonication for 10 minutes in three different solutions 1) alkaline detergent 2) 

DI water 3) ethanol.  This type of plastic was used as it was more brittle than PET and 

could be cut with the circular cutter procured for the lab. 

F. Ink Formulation & Deposition 

1) Ultrasonic Spray Deposition of Cu2O-NiO core-layer 

Nanostructures 

The ink dispersions were sonicated using a Virsonic 100 Ultrasonic Cell Disrupter 

for at least 30 minutes prior to film deposition.  Films were fabricated from the different 

inks using a 48 kHz ultrasonic spray mounted on to a WideTrack Coating System (Sono 

Tek). The inks were sprayed onto glass substrates placed on a hotplate at 120°C. The films 

were labelled according to the concentration of nickel nitrate used to fabricate the Ni layer. 

The films had a thickness of approximately 1.5 – 3.0 μm as measured using a Tencor 

AlphaStep 500 contact profilometer.   

2) Screen Printing Cu2NO3(OH)3  

For deposition, 10 wt% monosaccharide was chosen to control the reducing 

atmosphere during the IPL process from decomposition and to increase the viscosity of the 

inks for screen printing. Inks were prepared by fructose or glucose with copper nitrate 

hydroxide through mixing 10 g (90 wt%) Cu2(OH)3NO3 with 1.01 g (10 wt%) 
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monosaccharide (fructose or glucose) with a mortar and pestle prior to printing for 15 min.  

The inks were then allowed to air dry to remove residual water after the centrifugation 

process prior to screen printing.  Inks were printed manually with a rubber squeegee onto 

a Ryonet 200 mesh grid.  Square films printed for investigation.  

3) Spin-coating GO 

 Two highly concentrated solutions were prepared with 8.095 g GO in 50 mL of 

ethanol.  It should be noted that the GO was still considerably enraptured with water and 

moist during the weighing process.  Of the 8.095 g in each solution, this would correspond 

to an estimated 2.835 g GO weight and an ink concentration of ~60 mg/mL.   The solutions 

were thick due to the relatively high concentration.  Prior to deposition they were sonicated 

for 10 minutes with bath sonication followed by 30 seconds with a more powerful probe 

sonicator (Hiescher UP200S, 200 W, 24 kHz) at 40% power.  The spin-coating deposition 

occurred at six different speeds (5,000; 4,000; 3,000; 2,000; 1,000; and 500 rpm), with 

matching accelerations, for 30 seconds.  Additional samples were produced at the 1,000 

rpm spin speed, specifically with the fructose-containing solution. 

4) Ultrasonic Spray Deposition & Rod-coating of GO 

  Ultrasonic Spray deposited GO films were fabricated with a 20 mg/mL GO ink 

(1.0 g GO in 40 mL H2O and 10 mL ethanol, with .200 g of added fructose) using a 48 kHz 

ultrasonic spray mounted on to a WideTrack Coating System (Sono Tek).  Specific 

variables used for this deposition are displayed in Table 4.  A higher concentration of 

fructose was used compared to the screen printed Cu2NO3(OH)3 to account for the GO 

source material having a large moisture content. The ultrasonic spray unit was operated 
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with glass and silicon substrates placed on a hotplate, set at 80°C. Prior to deposition, the 

inks were placed into a bath sonicator for 10 min and then subsequently placed into a 

powerful probe sonicator (Hiescher UP200S, 200 W, 24 kHz at 20% power for 90 seconds).  

The resultant ink exhibited high stability for months and has an observed black color.  

(Figure 19)  It is noted that the color appeared as a yellow-ish light brown at lower 

concentrations. 

Table 4:  Ultrasonic Spray Deposition Variables 

Variable Setting 

Nozzle Power 

Air jet force 

Distance to stage from spray nozzle 

Stage travel distance 

Stage speed 

Pause between passes 

Spray width 

Flow rate 

Number of passes 

Hot plate temperature 

5-8 W 

60 Lpm 

5” 

180 mm 

25 mm/s 

5 s 

4.5” 

1.0 mL/min 

1,2,3,5,7,10 

80°C 

 

 

Figure 19:  Photograph of 20 mg/mL GO solution displaying great ink stability nearly five months 

after it was formulated 
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Rod-coating, or ‘Meyer rod’, deposition can help to facilitate the deposition of 

nanoscale-thin graphene oxide films, which also have a horizontal sheet orientation.  This 

is an advantageous method over spin-coating deposition as it practical for scaling up and 

reduces wasted ink during deposition.  The setup utilized the Meyer rod and an automated 

film applicator was operable over an area that is 8” wide and 12” long.  Thin film deposition 

is done in a quick and repeatable fashion as the spiraled rods (around the main cylinder) 

confine the volume of ink over an area.  The evaporative forces and surface interactions 

would then help to control the sheet orientation.  The diameter of the rod was chosen as to 

be consistent with studies in the literature. 60 The solution concentration, choice of 

substrate, substrate surface modification treatments, doping of the pre-deposited graphene 

oxide material, and choice of solvent are examples of how the Meyer rod’s deposition 

process could be further optimized without the need of another diameter (as there are 

upwards of 90 to choose from).   

5) Spin-coated and drop-casted GO & Cu(OH)2 NW Mixtures 

The mixtures of GO and NWs at a concentration of 15-20 mg/mL were analyzed at 

68.35%, 91.53%, 98.18% and 100% GO, where the wt% GO of solutions was modified by 

adding .2 mL, 1.0 mL, and 5.0 mL from a 10 mg/mL solution of Cu(OH)2 NWs. Fructose 

was added (.10g) for use in facilitate reduction via organic decomposition during IPL 

Processing.  Samples were spun at 500 rpm, 1000 rpm, and 5000 rpm with matching 

accelerations for 30 s.  Even thicker deposits were created via hot-casting, where the glass 

substrates were pre-heated on an 80°C hotplate directly before spin-coating the samples at 

500rpm to further aid solvent evaporation.  Drop-casted samples were prepared by 

dropping 6-8 drops of the ink onto substrates heated by an 80°C hotplate.   
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G. IPL Processing Parameters and Techniques 

IPL Processing was performed with a Sinteron 2000 (Xenon Corporation), which 

emits incoherent white light ranging from 240 nm – 1000 nm.  (Figure 20)  Pulses were 

delivered at a pulse rate of 1.8 pulses per second, which is the factory setting for the 

equipment and used for all the materials studied in this dissertation.  IPL Processing utilized 

2044 μs pulses ranging from 589 J - 2070 J over an area of 1.9 cm x 30.5 cm, with energy 

densities of 10.1, 12.8, 15.8, 19.2, 22.9, 26.8, 31.1 and 35.7 Jcm-2. The processing stage 

was placed at the focal point distance of 1” from bottom of the xenon lamp’s window.  

Glass substrates were processed with maximum of 10 pulses in a row followed by a ten 

(10) second rest period to prevent the glass substrates from cracking, due to transient 

thermal conditions.  Incremental IPL Processing was also performed to gradually increase 

the energy density of the process, where at 10 pulses at each energy density were applied 

giving a total 80 pulses with a cumulative energy density of 1744 Jcm-2. (Figure 21)  

 

Figure 20: Emitted light Spectrum for Xenon 4.2" lamp utilized for IPL Processing 
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Figure 21:  Comparison of IPL Processing Energy Density Input versus time shown for forty 15.8 

Jcm=2 pulses (red), forty 35.7Jcm-2 pulses (blue), and Incremental (black).  Ther 

1) IPL Processing of Deposited Cu2O-NiO core-layer Films 

The Cu2O-NiO core-layer films were subjected into IPL Processing under a 

nitrogen atmosphere using an incremental procedure described previously.106  At each 

setting 10 pulses of light were applied.  In total 80 pulses of light with a total energy density 

of 1744 Jcm-2 was applied to each film.  The transformation of the oxidized core-layer 

nanoparticles into a bulk metallic film proceeds via two steps.  The first is the reduction of 

the Cu2O@NiO precursor to their metallic forms, followed by the sintering and 

coalescence of these particles to form electrical pathways. Both stages capitalize on the 

high surface area to volume ratio associated with nano-sized particles. The high surface 

area provides a larger interface for the adsorption of reducing gases, thereby increasing the 

rate of reduction. In addition, the high surface to volume ratios can create a significant 

depression in the melting point temperatures of the metals, with the melting point of Cu 

(TMpt. bulk ~ 1080°C) and Ni (TMpt. bulk ~ 1455°C) being reduced to approximately 800 
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and 1270°C for particles with a 4 nm radius.10, 140 When considering only the Cu2O system, 

both elevated temperatures and a reducing environment/atmosphere are needed for the 

reduction process to proceed.194-195 Finite element modelling has been used to predict the 

temperature rise induced by the IPL system in thin films deposited on glass substrates. This 

rise in temperature at the surface of the films was calculated to be higher than 800°C when 

multiple pulses of light with very short pulse durations were applied to the films.148  Kim 

et al’s study on the reduction of Cu2O to Cu under a flow of 5% hydrogen (H2 in helium), 

has shown that the reaction (Equation 10) proceeds without any intermediate phases being 

formed. 

Cu2O (s) + H2 (g) → 2 Cu (s) + H2O (g) 
Equation 10 

Under these conditions the temperature for the onset of Cu2O reduction occurred at 

approximately 300°C with an activation energy of 114.6 kJmol-1. Reduction of Cu2O has 

also been shown to occur at lower temperatures, however the induction period where H2 

adsorption and dissociation takes place increases and the rate of the reaction decreases; 

resulting in significantly longer processing times (tens of minutes vs. hours).194 The 

reduction of NiO to Ni using H2 proceeds via a similar route (Equation 11).196  

NiO (s) + H2 (g) → Ni (s) + H2O (g) 
Equation 11 

Similarly, to Cu2O, the reduction of NiO begins with an induction period where H2 

is adsorbed and dissociated on the surface.  This results in the “nucleation” of metallic Ni 

on the surface.  Further reduction of the material occurs at the Ni/NiO interface and as the 

rate of reduction is proportional to interface area, an autocatalytic reaction occurs. 

Therefore, the reduction of the oxide proceeds inwards towards the core of the particles as 

the H+ diffuses in and H2O diffuses out. The H2O released in both the Cu2O and NiO 
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reactions, results in a drop in the reduction rate in the closed systems as the H2O molecules 

adsorbed on the surface hinder the adsorption of H2. In the NiO system the activation 

energy for the reduction of the oxide to Ni is increased from approximately 85 kJmol-1 to 

127 kJmol-1 when H2O is added to the system.  Furthermore, the formation of a continuous 

metallic film on the surface is believed to hinder the diffusion of H2O out of the material. 

194, 196  

2) IPL Processing of Deposited Cu2NO3(OH)3 Films 

The thermal decomposition of Cu2(OH)3NO3 to CuO was observed when IPL 

Processed without a generated reducing environment.  IPL processed films have been 

shown to rise to high temperatures 300°C at an energy density of 8.3 Jcm-2 and 500°C at 

an energy density of 17.6 Jcm-2 for CdS.148  Cu2(OH)3NO3’s thermal decomposition values 

of 236-280°C116 were well within these temperature ranges and the thermal decomposition 

reaction of Cu2(OH)3NO3 can be represented by Equation 12.  At temperatures higher than 

250°C however, HNO3 converts to NO2, H2O and O2.
115  The formation reaction of cupric 

oxide would then be represented as Equation 13.114 

)(2)(3)()(332 2)( ggss
OHHNOCuONOOHCu   

Equation 12 

)(2)(2)(2)()(332 648)(4
gggss

OOHNOCuONOOHCu   
Equation 13 

The IPL Processing of Cu2NO3(OH)3 films was carried out under ambient 

atmospheric conditions with forty pulses at energy densities of 10.1, 12.8, 15.8, 19.2, 22.9, 

26.8, 31.1 and 35.7 Jcm-2. A 15 s rest period, where no pulses were applied, was used 

between each set of 10 pulses to prevent cracking of the glass substrates.  FTIR analysis 

was performed with samples processed at a constant energy density of 12.8 Jcm-2.  Figure 

22 displays an example of how a sample can exhibit a clear change in color through IPL 
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Processing.  The ultraviolet portion of spectrum is particularly essential to films that are 

optically transparent in the visible electromagnetic spectrum. 

 
Figure 22: Example of visible change of a Cu2NO3(OH)3 sample before (left) and after (right) IPL 

Processing 

3) IPL Processing of Deposited GO and GO & Cu(OH)2 Films 

The IPL Processing of GO films was conducted utilizing 2.044 ms pulses with 

energy densities of 10.1, 12.8, 15.8, 19.2, 22.9, 26.8, 31.1 and 35.7 Jcm-2.  They pulses 

were either applied with forty pulses of a specific energy density or in an incremental 

fashion, with ten pulses at each energy density.  IPL processing reduces the films directly 

with UV light and by increasing the thermal energy, where H2O and CO2 formation is 

possible through the removal of the GO’s oxygenated functional groups (i.e. alcohols, 

carboxylic acids, epoxides, and aldehydes).  (Equation 14) To enhance the capacity of IPL 

processing to reduce GO, an organic molecule was introduced.  Fructose was selected, as 

it was shown in previous work to be an advantageous additive since it has a relatively low 

thermal decomposition temperature and is readily available.  Fructose was incorporated at 

10 wt% of the GO present in the solutions prior to deposition, to be consistent with the 

wt% utilized in previous work.170  With fructose being included, the proposed mechanism 

is shown below using one of its decomposition products, folic acid, to model the reaction. 

(Equation 15) 
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22 COOHrGOGO   
Equation 14 

22 COOHrGOHCOOHGO   
Equation 15 

 

H. Characterization Instruments Utilized for Study 

A FEI Nova NanoSEM 600 (Figure 23) or a Tescan SEM (Figure 24) with an 

accelerating voltage of 1- 15 kV and a working distance of 5 - 6 mm was used to study the 

morphology of the nanomaterials, film deposition uniformity, and the extent of sintering.  

Technai G220 transmission electron microscope operated at 200 kV.  A drop of acetone 

with the dispersed powder was taken on a porous carbon film supported on a gold grid, and 

then dried in vacuum.  A Bruker AXS D8 X-ray diffractometer using Ni- filtered Cu-Kα 

radiation with a step size of 0.02° and a scan speed of .05 sec/step was utilized for x-ray 

diffraction characterization of the crystal lattices. (Figure 25)  Transparency measurements 

were performed with a Lambda 950 UV–vis spectrophotometer.  Sheet resistance 

measurements were carried out with a Four-point probe attached to a Keithley Model 2401 

SourceMeter.  An Alpha-Step 500 Surface Profiler was used to measure the thickness of 

films.  Simultaneous Differential Scanning Calorimetry and Thermogravimetric Analysis 

(SDT) with a heating rate of 10°C per min up to 800°C under 100 ml/min N2 flow.  Raman 

Spectroscopy was performed with a Renishaw inVia Raman Spectrometer and excited by 

a red laser (632nm), calibrated with Si to 520-521 cm-1, with 4 repetitions to increase 

signal-to-noise ratio. (Figure 26) Raman data was typically processed (smoothed, 

subtracted baseline, and normalized from 0 to 1). Presence of organic molecules were 

observed with a PerkinElmer Spectrum BX FT-IR spectrometer through use of KBr pellets.  

The potassium bromide (KBr, ≥99%, Sigma Aldrich) pellets were created by taking 15 mg 
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of KBr and adding 2% of a given sample, by physical removal from substrate, and then 

pressing at 5 tons for 10 minutes.  All Cu2NO3(OH)3 FTIR samples were done with a 

varying amount of pulses at an energy density of 12.8 Jcm-2 and normalized to account for 

weight variations. 

Thermoelectric measurements were performed as follows.  <100> p-type silicon 

(Si) wafers (1-10 Ωcm, 500 μm thick, Silicon Prime Wafers) were cut into approximately 

1.0 × 0.7 cm2 samples and were cleaned using the standard RCA cleaning method prior to 

measurement of the thermoelectric power.197 A solution containing ammonium hydroxide 

(10 ml, 28% NH3OH, Alfa Aesar), hydrogen peroxide (10 ml, 30% H2O2, J.T. Baker) and 

deionized water (50 ml) was heated to 70°C. The wafers were placed in the solution for 10 

minutes to remove organic contaminants from the surface. Following cleaning the rinsed 

wafers were etched in approximately 2.5 vol% Hydrofluoric acid (48% HF, Cole Parmer) 

solution for 10 minutes to remove native oxides from the surface. The wafers were then 

rinsed again with deionized water. A solution containing hydrochloric acid (10 ml, 37% 

HCl, Sigma Aldrich), H2O2 (10 ml) and deionized water (50 ml) was heated to 70°C. The 

wafers were placed in the cleaning solution for 10 minutes prior to deposition to remove 

ionic contaminants from the surface and create a thin passivation layer on the surface of 

the wafer.  Following cleaning the cut wafers were left bare or coated with either the basic 

Cu2O ink (i.e. no Ni layer) or Cu2O@NiO ink synthesized using 1 mM of the Ni salt. The 

wafers coated with the ink were then IPL treated under the conditions described above. 

Each wafer was mounted on to the sample holder and two, K-type thermocouples were 

connected along the length of the wafer using a small amount of high purity conductive 

silver paint. A small heater was positioned in direct contact to the Si, closest to the first 
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thermocouple. The sample holder was then inserted into a glass chamber and pumped down 

to 10-5 Torr. A Barnstead Themolyne 2100 Tube Furnace was used to heat the wafer to 

370°C (643 K) and cool it back to room temperature at a rate of 5°C/min. The small heater 

creates a localized temperature gradient along the length of the wafer. Subsequently 

majority charge carriers (holes) diffuse from the hot to the cold area, resulting in a potential 

difference. Both the temperature difference (∆T) and open circuit potential difference (∆V) 

along the length of the sample were measured simultaneously using Keithley source-meters 

(2400, 2410), nanovoltmers (2182A) and picoameters (6487), as well as a Fluke 8842A 

multimeter. The thermoelectric power of the sample at a given temperature was calculated; 

S = ∆V/∆T. 

  
Figure 23: Photo of FEI SEM Figure 24: Photo of Tescan SEM 

  
Figure 25: Photo of X-ray Diffraction Instrument Figure 26: Photo of Raman Spectrometer 
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CHAPTER 4: IPL PROCESSING Cu2O@NiO ENCAPSULATED NANOPARTICLES 

A. Introduction 

This chapter focuses on the prevention of Cu diffusion into Si by incorporating a 

thin Ni barrier layer around Cu nanoparticles, which was accomplished through solution 

phase process that synthesized copper oxide nanoparticles and then encapsulated them with 

a nickel oxide layer to form (Cu2O-NiO) core-layer nanostructure.  Synthesis was 

performed in the presence of a surfactant to control particle diameters and layer 

thicknesses. The process described here does not rely on the co-precipitation of metals in 

a single bath, has been carried out at room temperature, and do not require further 

processing prior to deposition. The room temperature process enables us to easily prevent 

the formation of alloys at the copper-nickel interface. The synthesis results in a simple 

technique (easily commercializable;) with highly controllable layer thicknesses on a 20 nm 

copper oxide nanoparticle. The deposited films are then subjected to IPL processing to 

reduce the oxides to their metallic form and sinter the films to yield highly conductive films 

in very short process times.  Films have been deposited onto silicon, and the copper-nickel 

structure reduced Cu diffusion into Si. The films are analyzed using transmission electron 

microscopy (TEM), X-ray diffraction (XRD), and Four Point Probe techniques. 
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B. Results and Discussion 

1) Synthesized of Cu2O-NiO core-layer Nanostructures 

TEM micrographs of the Cu2O@NiO nanostructures, synthesized using different 

concentrations of Ni(NO3)2; 1 mM, 5 mM and 20 mM are shown in Figure 27.  Figure 27a-

c shows that the size of Cu2O core nanoparticles were approximately 10-20 nm in size. The 

TEM micrographs were used to approximate the thickness of the NiO coating. The 

thickness of the NiO layer was observed to grow almost linearly as the Ni2+ concentration 

used in the reaction was increased. Average thicknesses of 5, 9, 15 and 20 nm were 

measured when Ni2+ concentrations of 1, 5, 10 and 20 mM were used. The corresponding 

high resolution images are also shown in the insets. From the images it is clear that the 

Cu2O nanoparticles exist as an agglomeration, and the NiO layers are formed around theses 

agglomerates.  

 

Figure 27: TEM micrographs of Cu2O@NiO nanostructures obtained using Ni2+ concentration of (a) 

1 mM, (b) 5 mM, and (c) 20 mM. The insets show high resolution TEM micrographs. 

Furthermore, TEM EDX studies on the Cu2O@NiO core-layer confirmed the 

presence of Cu and Ni (Figure 28). As expected the Cu2O/NiO ratio increased linearly with 

the Ni2+ concentration (Figure 28 inset). The results suggest that as the concentration of Ni 

ions in the reaction was raised, the thickness of the NiO layer in the Cu2O@NiO core-layer 
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nanoparticles increased. From these studies it appears that by tuning the initial 

concentration of Ni2+ ions, the thickness of the Ni layer can be controlled.   

 

Figure 28:  TEM-EDX pattern of samples (a) 1 mM, (b) 5 mM, (c) 10 mM and (d) 20 mM. The inset 

shows TEM-EDX quantification results: Ni/Cu atomic ratio 

The primary Cu2O nanoparticles were synthesized with Tergitol NP-9 and ethylene 

glycol, while the NiO coating was subsequently formed by transferring the Cu2O 

nanoparticles into an acetone and water based solution containing Ni2+ ions. The films were 

deposited from this acetone based solution onto substrates heated to approximately 120°C; 

driving off excess acetone and water. Consequently, this low temperature deposition results 

in residual chemicals of ethylene glycol and Tergitol surrounding the particles. Although 
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it is worth noting the adsorption of small amounts of acetone on the surface of the 

Cu2O@NiO particles is also possible. However due to their low volatility both ethylene 

glycol and Tergitol will be the primary constituents. Upon IPL treatment these organic 

residues surrounding the system are decomposed in to reducing gases. The temperature 

increase in the films is caused by the adsorption of intense pulses of white light with 

wavelengths ranging from 240 nm – 1000 nm, by the Cu2O@NiO particles. The pulses 

have a spectral distribution similar in shape to that of sunlight. However the Xenon 

spectrum contains a large amount of UV light with the irradiance peaking close to the 

visible region (~450 nm), before gradually tailing off into the IR region.198  NiO and Cu2O 

are known to have bulk bandgaps of 3.5 and 2.1 eV, respectively.199 Hence, the as-

deposited films are expected to adsorb a significant proportion of the energy supplied from 

the pulses.  

 

Figure 29: UV-Vis adsorption measurement of 1mM as deposited sample 

UV-Vis adsorption spectra of the 1 mM films showed good adsorption from the 

UV to IR region, with the films displaying highest absorption in the high energy (UV) 
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region. The gradual adsorption edge is a result of the light scattering by the nano-sized 

particles (Figure 29). Therefore, the nanoparticles absorb energies greater than or equal to 

their bandgap, promoting electrons across the bandgap. As the electrons relax to lower 

energy states, phonons are produced in the crystal lattice and cause a temperature rise in 

the material. The high intensity of the light pulses creates large number phonons which can 

elevate the temperature of the films from room temperature to several hundred degrees 

centigrade during the millisecond pulse.   

FTIR analysis of the as-deposited Cu2O@NiO films was performed to understand 

the point at which the IPL treatment removed the organic residues from the films. The 

FTIR spectrum of the as-deposited films clearly showed the presence of organic residues; 

with peaks for the O-H, C-H, C=O, C-O and C-H bonds being observed (Figure 30). The 

films were subsequently treated with one pulse of light using an energy density of 10.2 

Jcm-2
, resulting in a significant reduction in the peak intensity for all of the bonds. Thermal 

decomposition of ethylene glycol is reported to begin at temperatures greater than 240°C, 

primarily forming glycolic acid with small amounts of oxalic and formic acid.200 Therefore, 

one pulse of light at this intensity appears to be sufficient for the films temperature to reach 

the decomposition temperature of the organic components surrounding the nanoparticles.   

The IPL procedure used on these films, gradually ramps up the intensity of the light pulses.  

Increasing the number of pulses applied to the films to 5 pulses with an energy 

density of 10.2 Jcm-2, led to a further reduction in the FTIR peak intensity (Figure 30). 

Therefore, after initially decomposing the ethylene glycol, the glycolic acid can be further 

decomposed to CO, CO2, H2, CH4, CH3OH and CH2O. Tergitol NP-9’s largest component 

is nonylphenyl polyethylene glycol ether. This ether begins to decompose at approximately 
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250°C, forming CO, COx, NOx and hydrocarbons as its decomposition products. After a 

total energy input of 231 Jcm-2 (10 pulses × 10.2 Jcm-2 + 10 pulses × 12.9 Jcm-2) was 

applied to the films, the absence of peaks in the corresponding FTIR spectrum indicated 

that all of the organic residue had been removed and thermally decomposed to form the 

reducing atmosphere. The decomposition products for acetone also include CO, CH4, H2 

and C2H4.
201 Therefore it is clear that CO is a key component of the reducing gases. Both 

Cu2O and NiO will be reduced; with CO reacting with oxygen on the surface of the lattice 

(Equation 16 and Equation 17). 

Cu2O (s) + CO (g) → 2 Cu (s) + CO2 (g) 
Equation 16 

NiO (s) + CO (g) → Ni (s) + CO2 (g) 
Equation 17 
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Figure 30: FTIR spectrum (from top to bottom) of the as deposited, one IPL Pulse (energy density of 

10.2 Jcm-2), five IPL pulses (energy density of 10.2 Jcm-2), and twenty IPL pulses 1mM samples (ten 

pulses at an energy density of 10.2 Jcm-2 and ten pulses at an energy density of 12.9 Jcm-2). a) O-H 

bonds b) C-H alkane bonds c) C=O, C-O, and C-H bonds 
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The reducing gases formed during the IPL are adsorbed onto the surface of the 

particles, reducing the NiO to Ni. As the reaction progresses, gases diffuse into the core of 

the particles reducing both the NiO shell and the bulk of the particles (Cu2O). Increasing 

the thickness of the NiO oxide shell causes a number of effects on the system. (1) The 

overall particle size is increased; reducing the relative surface area available for the 

adsorption of gases, and (2) the reducing gases must diffuse and react with a relatively 

larger volume of material. Subsequently the increase in the thickness of the Ni shell results 

in the incomplete reduction of the Cu2O core.  

Investigations into the composition of the primary Cu based nanoparticles was 

previously reported.106   XRD investigations of the deposited films showed that the inks 

were composed of Cu2O and Cu in approximately a 2:1 ratio. The crystallites were 

orientated towards the (111) reflections for both cubic Cu2O ICDD (00-001-1142) and 

cubic Cu ICDD (00-001-1241). The application of the NiO coating shows no additional 

reflections corresponding to nickel compounds and no shifts in the positions of the Cu2O 

and Cu reflections in the XRD patterns of the as-deposited films (not shown).  Figure 31a 

shows the XRD diffraction patterns of the IPL treated films fabricated from 1 mM and 10 

mM Ni(NO3)2. All the IPL treated films displayed (111), (200), (220) and (311) reflections 

corresponding to cubic Cu2O (ICDD 00-001-1142) and Cu (ICDD 00-001-1241). Due to 

the relatively small quantities of Ni(NO3)2 used to synthesize the dispersions, no reflections 

for either NiO or Ni were observed.   
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Figure 31: (a) X-ray diffraction patterns of the films after IPL treatment formed using the 1 mM and 

10 mM inks. The inset shows the effect of the concentration of Ni nitrate solution on the 2θ position 

and FWHM of the Cu(111) reflection. The error bars were calculated from the standard deviation.  (b) 

Ratio of the intensity of the Cu(111)/Cu2O (111) reflections after IPL treatment vs. the concentration 

of nickel nitrate used to fabricate the nickel shell. The error bars were calculated using the standard 

error. (c) Resistivity of the IPL treated films vs. concentration of nickel nitrate used to fabricate the 

nickel shell. (The results at 0 mM Nickel nitrate were taken from a previous study).193 The error bars 

were calculated using the standard error. 
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Figure 31b also shows the effect of increasing the concentration of Ni salt on the 

ratio of the Cu(111)/Cu2O(111) reflections. The results demonstrate a significant decrease 

in this ratio as the thickness of the Ni layer was increased. Indicating the increasing 

thickness of the Ni layer is hindering the reduction of the Cu2O.  

Figure 31c shows the effect of the concentration of the Ni salt used to synthesize 

the layer on the resistivity, ρ of the films after IPL treatment. Using Ni salt concentrations 

of 5 and 10 mM, the ρ of the films remained above 102 Ωcm. By decreasing the 

concentration of Ni salt in the synthesis stage to 3 mM, the reduction in the thickness of 

the layer yielded a two orders of magnitude drop in ρ. Further reductions in the Ni2+ 

concentrations to 1 mM, produced a ρ similar in magnitude to the films produced without 

the Ni layer. Resistivity values for bulk Cu and Ni have been reported as 1.67 × 10-6 and 

6.8 × 10-6 Ωcm at 25°C.202  The films fabricated from the 1 mM Ni salt solutions are only 

one order of magnitude away from the bulk ρ of Ni due to the high porosity of these films. 

The films produced with thicker Ni layers demonstrate a significantly higher ρ due to the 

incomplete reduction of Cu2O.  

2) XRD Regression Analysis to determine if Cu-Ni alloy is formed 

The low temperature synthesis method described above produces a Cu2O core and 

a discrete NiO layer that does not appear to form an alloy, although literature reports on 

the synthesis of Cu@Ni core@shell nanoparticles have found an alloy at this interface.101, 

140  Although the relatively small difference in the atomic radii of Cu and Ni is known to 

result in the easy formation of solid solutions, it would appear as though the IPL Processing 

is preserving the distinct boundary between the metals at the interface.  Therefore, to 

investigate if Cu and Ni are alloying during the synthesis and subsequent IPL treatment, 
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the positions of the XRD reflections were analyzed further.  If alloying is present in the 

system, the reflections will broaden and shift between the corresponding positions for Cu 

and Ni. It was found, as detailed below, that both the position of the Cu (111) and the full 

width half maximums (FWHM) did not vary significantly with an increasing Ni salt 

concentration 

Integral Regression Analysis for the position of the Cu(111) reflection using a 95% 

confidence interval linear regression. Analysis of the data found the coefficients to be 

43.35° (intercept) and -0.0017°mM-1 (slope).  The position of the maximum peak for the 

pure copper at 2θ=43.3459° fell within the lower (43.305°) and upper (43.385°) bounds.  

The slope of zero fell within the lower (-0.009°mM-1) and upper (0.005°mM-1) bounds. 

The (111) reflection is expected to shift from a 2θ position of 43.19° for a 100% Cu system 

towards 44.60° for 100% Ni system, as Cu and Ni alloy.101 The position of the XRD 

reflections does not show an indication of Cu alloying with the Ni after IPL treatment 

(Figure 32 inset).  The value of the Cu (111) reflection falls within the lower and upper 

bounds for the intercept (Figure 32).  Additionally, the value of zero was also in between 

the lower and upper bounds for the slope.  Therefore, we fail to reject the null hypothesis 

that the Cu (111) reflection positions for all patterns are the same.   

A similar Integral Regression Analysis was performed for the full width half 

maximum (FWHM) of the Cu(111) reflection using a 95% confidence interval linear 

regression (Figure 33). Analysis of the data found the coefficients to be 0.289° (intercept) 

and 0.002°mM-1 (slope).  The position of the FWHM of pure copper at 2θ = 0.257° fell 

within the lower (.256°) and upper (.323°) bounds.  The slope of zero fell within the lower 

(-0.004°mM-1) and upper (0.008°mM-1) bounds.  The FWHM value observed in the Cu 
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films fell within the upper and lower bounds of the 95% confidence interval.  Additionally, 

a slope of zero also fell within the lower and upper bounds for the slope.  Therefore, the 

null hypothesis, that the broadness of the reflections is equal for all concentrations of the 

Ni salt, is failed to be rejected supporting the absence of a Cu-Ni alloy. Lastly, both data 

sets had residuals that did not show a recognizable pattern and were scattered randomly 

about the y-axis.  

 

Figure 32: (a) Maximum Peak Position of the Cu(111) reflection  versus the concentration of the nickel 

salt. (b) Residuals for the analysis of the Cu(111) reflection versus the concentration of the nickel salt. 

(c) Tabulated linear regression results. 

 

Figure 33: (a) FWHM of the Cu(111) reflection vs. the concentration of the Ni salt. (b) Residuals for 

the FWHM of the Cu(111) reflection vs. the concentration of the Ni salt.  (c) Tabulated linear regression 

results. 
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The final aim of these inks is to replace the Ag pastes currently utilized in the PV 

industry to make the front metal contacts on silicon solar cells. The close to the bulk value 

of Ag with an average ρ of approximately 3.0 × 10-6 Ωcm, meaning that the resistivity of 

our films are ~1.5 orders of magnitude higher.  One reason for the higher electrical 

resistance of the films is porosity, as seen through SEM imaging of the as-deposited and 

IPL Processed films for the 1mM inks. (Figure 34).  The as-deposited films display a degree 

of porosity, even before the films were IPL treated. After a total energy input of 231 Jcm-2 

was applied to the films, particle coalescence and melting was observed (Figure 34b). FTIR 

investigations found that at this point in the IPL process, all the organic residual had been 

removed from the film. However, removal of the organic materials also resulted in the 

formation of significantly larger pores in the film.  Increasing the energy density of the 

pulses even further resulted in further sintering and melting of the particles without 

significant changes to its porosity. We believe that optimizing the deposition and IPL 

conditions will result in lower porosity, resulting in a reduced ρ. 

 

Figure 34:  SEM images of the surface of the (a) as-deposited and (b & c) IPL treated films deposited 

using 1 mM inks. The films were treated using a total energy density input of (b) 231 Jcm-2 and (c) 

826.7 Jcm-2  
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3) Elemental Distributions throughout IPL Processing 

A closer examination of the nanostructures was done using STEM-EDX to map the 

distributions of the Cu and Ni metals after the IPL process for the 1 mM (Figure 35), 5 mM 

(Figure 36), and 20 mM (Figure 37) Ni2+ ion concentrations. The distribution of the metals 

after the IPL process for the material made using shows that the Ni encompasses the 

entirety of the Cu (Figure 34 d and e). Additionally, the Ni has formed a measureable layer 

that increases in thickness as the concentration of Ni2+ progresses from 1 mM to 20 mM. 

The layer of the 1 mM sample is very thin, much thinner that reported earlier. This confirms 

the Cu-Ni core-layer nanostructure thin film using ambient temperature routes/processing. 

 

Figure 35: Nanostructures obtained after IPL Sintering using an initial Ni2+ concentration of 1 mM; 

(a) TEM micrograph (a-inset) HRTEM micrograph, (b) STEM, (c) Ni-K maps, (d) Cu-K maps and (e) 

Cu-K and Ni-K overlaid micrographs. 
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Figure 36: Nanostructures obtained after IPL Sintering using initial Ni2+ with concentration of 5 mM 

(a) TEM micrograph, b) HRTEM micrograph, c) STEM, d) Ni-K mapping, e) Cu-K mapping f) Cu-K 

and Ni-K overlay mapped micrograph. 

 

Figure 37: Nanostructures obtained after IPL Sintering using initial Ni2+ with a concentration of 20 

mM; (a) TEM micrograph, (b) HRTEM micrograph, (c) STEM, (d) Ni-K maps, (e) Cu-K maps and (f) 

Cu-K and Ni-K overlaid micrographs. 
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4) Stability of Cu on Silicon 

The aim of this work is to provide an alternative to the silver-based pastes currently 

used in the mass production of crystalline silicon solar cells. However, the diffusivity of 

Cu into Si is known to be rapid in comparison to other elements such as silver. Therefore, 

if the Si is left unprotected Cu can diffuse to the p-n junction and shunt the device; resulting 

in a drop in cell efficiency. The diffusion of Cu in to Si follows an Arrhenius relationship 

as a function of temperature. Based on Fick’s first and second law the effective diffusivity 

of Cu in Si is governed by Equation 18.5  

𝐷(𝑐𝑚2 𝑠⁄ ) = 4.7 × 103𝑒𝑥𝑝 (
−0.43𝑒𝑉

𝑘𝐵𝑇
) 

Equation 18 

Where kB is Boltzmann’s constant and T is the temperature. In Si, Cu is known to 

diffuse rapidly through interstitial sites, forming positively charged ions (Cu+) at these 

positions. Consequently, it acts as a single electron donor in silicon, resulting in charge 

compensation in p-type Si. Substitutional diffusion of Cu on the other hand has been 

reported to be a significantly slower process. The solubility of Cu in Si is low and upon 

slow cooling it is found to precipitate near the surface, while fast cooling leads to the 

formation of Cu precipitates through the bulk of the material.5, 203-204 In addition the 

formation of Cu silicide’s has been observed at temperatures as low as 200°C, resulting in 

a change in the material’s electrical performance.205  

Figure 38 shows the thermoelectric power curves for the Si, Si/Cu and Si/Cu-Ni 

samples as a function of the temperature. The results were normalized to their 

thermoelectric power at 300 K, ((ST – S300K)/S300K). The temperature behavior of each 

sample is typical for a doped semiconductor. At room temperature, the density of the holes 
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is larger than that of the intrinsic electrons and holes, giving rise to a positive thermo power. 

As the temperature increases ionization of the remaining acceptor atoms initially causes an 

increase in the thermo power due to the promotion of additional holes (the Fermi level 

moves towards the valence band edge).  

 

Figure 38: Normalized thermoelectric power curves for the Si, Si/Cu and Si/Cu-Ni samples as a 

function of the temperature. The inset shows the setup for measuring the thermoelectric power. 

As the temperature increases further, the density of intrinsic holes and electrons 

becomes greater than that of the donor holes (extrinsic) causing the Fermi level to move 

towards the center of the bandgap. However, the electrons have a higher mobility than the 

holes in Si; therefore, contribution of the intrinsic electrons to the thermo power is greater 

than the intrinsic holes. Thus, at a certain temperature the thermo power changes sign, 

indicating that the transport is dominated by the intrinsic conduction of electrons that are 

thermally excited across the bandgap rather than the donated holes. Cu can also donate 

charge carriers to the semiconductor; as such the thermoelectric properties of the wafer are 

changed. Upon cooling the thermoelectric properties of the bare Si wafer does not change, 
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indicating no physical or chemical changes to the material have occurred. The Si/Cu 

sample on the other hand, demonstrates a large difference in its thermoelectric properties 

from its initial conditions; with a lower thermo power upon cooling. This indicates that Cu 

has diffused into the Si and the possible formation of Cu silicide.  Comparatively the 

Si/Cu@Ni shows very little to no change in its thermo power after heating, indicating that 

the Ni barrier layer is impeding Cu diffusion into the Si.  

C. Summary 

In summary, a new economical process was developed for the room temperature 

synthesis Cu2O-NiO core-layer nanostructures. While the second stage, involves 

controlling the Ni layer thickness by variation of the reactant concentrations (Ni(NO3)2 and 

NaBH4). Densification of the Cu2O@NiO core-layer film (fabricated by spray coating) and 

removal of the native oxide using the intense pulsed light sintering process is the final stage 

of the fabrication process. Lastly, the mitigation of Cu diffusion by the Ni layer has been 

investigated.  
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CHAPTER 5: IPL PROCESSING OF Cu2NO3(OH)3 ENHANCED WITH FRUCTOSE 

AND GLUCOSE TO FABRICATE ELEMENTAL Cu 

A. Introduction 

In this chapter, a room temperature aqueous synthesis of a copper precursor has 

been developed to aid in the solution stability of an ink and to enhance the transformation 

into bulk copper with the IPL process because applications in printed electronics and 

renewable energy technologies have shown a growing demand for scalable copper and 

copper precursor inks.  The alternative copper precursor ink of copper nitrate hydroxide, 

Cu2(OH)3NO3, was aqueously synthesized under ambient conditions with copper nitrate 

and potassium hydroxide reagents.  Films were deposited by screen-printing and 

subsequently processed with Intense Pulsed Light.  Through the IPL process, copper nitrate 

hydroxide was successfully converted into cupric oxide (CuO) or elemental Cu, depending 

on the ink composition.  The Cu2(OH)3NO3 quickly transformed in less than 30 seconds 

using forty (2 ms, 12.8 Jcm-2) pulses into CuO. At higher densities the sintering improved 

the bulk film quality.  For the direct formation of Cu, a reducing agent was required that 

wouldn’t hamper prospects as a scalable commercial process.  Therefore, the simple sugars 

fructose and glucose were added to the inks as organic molecule decomposition creates a 

reducing environment during IPL processing.  Fructose and glucose were chosen as they 

are readily available chemicals that can increase the viscosity of the inks and are thermally 

decompose below 200°C, well before the temperature range where copper nitrate 
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hydroxide becomes thermally unstable near 300°C.  The mechanisms of the synthesis, 

chemical and physical transformation, and reduction of copper nitrate hydroxide are 

thoroughly studied XRD, SEM, FTIR, and UV-Vis, which will lead to a pathway toward 

the scalable production of conductive copper thin films. 

B. Results and Discussion 

1) Synthesized Copper Nitrate Hydroxide 

The synthesis was designed to be simple and faster than a copper oxide synthesis 

while avoiding the addition of large organic molecules, harsh reducing agents, and 

polymers.  The synthesis of copper nitrate hydroxide is favorable over the synthesis of 

copper hydroxide as it provides a lower thermal decomposition temperatures of 236-280°C 

(copper nitrate hydroxide)116 and 400°C (copper hydroxide)110.  The technique utilizes the 

drop-wise addition of an aqueous potassium hydroxide solution into an aqueous solution 

of copper salt generating a localized increase in hydroxide ions surrounded by a much 

larger nitrate ion concentration, leading to the formation of Cu2(OH)3NO3 and prevention 

of Cu(OH)2 formation.  The coppers are coordinated through either two OH- groups or an 

OH- group and a NO3
- group.112  The reaction proceeds at ambient conditions, with copper 

(II) nitrate hemipentahydrate (Cu(NO3)2∙2.5 H2O) and potassium hydroxide reagents to 

form the Cu2(OH)3NO3 as shown in Equation 19. 

)(3)(332)(23 3)(3)(2
)( aqsaq KNONOOHCuKOHNOCu

aq
    Equation 19 

To confirm the presence of different material phases, X-Ray Diffraction (XRD) 

was employed.  XRD analysis of the as synthesized deposits displayed the strongest peak 

at 2θ=12.36° (d-spacing of 6.93 Å).  There was no apparent peak at 16.7135° (5.30 Å) 

(ICDD 00-013-0420), eliminating the presence of Cu(OH)2. Although copper hydroxide 



78 

 

hydrate’s, Cu(OH)2∙H2O, peak of 13.3294° (6.637 Å) (ICDD 00-042-0638) was similar, 

the results aligned more closely with the copper nitrate hydroxide, Cu2(OH)3NO3 peak of 

12.8045° (6.9078 Å) (ICDD 01-075-1779) (Figure 39a). The presence of copper nitrate 

hydroxide was also indicated by the UV-Vis absorption spectrum as the sample produced 

a broad peak ranging from approximately 550 nm – 850 nm (with a maximum at 650 nm) 

(Figure 39b). The increase in optical adsorption peak was consistent with the Cu(II) 

complex findings reported in the literature.16, 171  The increase in optical absorbance is 

advantageous for the IPL process, which relies on the absorption of visible light to initiate 

localized heating leading to decomposition and sintering.  That enhancement mitigates the 

decreased absorbance, which would typically be seen when using an alternative precursor 

as observed with similar copper(II) salt structures.171 

SEM micrographs of the synthesized Cu2(OH)3NO3 showed an assortment of 

morphologies (spherical, rod, platelet) (Figure 39c).  However, optimization to obtain a 

narrow dispersion of particle size and morphology was not a priority of this work since the 

focus is the mechanics of the IPL process of Cu2(OH)3NO3 to produce a Cu film where the 

IPL process is intended to modify the morphology of the deposited ink. 

Further characterization of the Cu2(OH)3NO3 was carried out through 

thermogravimetric analysis (TGA) (Figure 39d).   The first peak at 160°C is attributed to 

the weight loss of adsorbed water at approximately 17 wt%, which is similar to the value 

of 158°C observed in the literature.206  The remaining weight change of approximately 30% 

from 160°C to 250°C represented the thermal decomposition of Cu2(OH)3NO3 to CuO 

which is in agreement with reported values.114  
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Figure 39: Characterization of synthesized copper nitrate hydroxide a) XRD b) Absorbance c) SEM 

d) TGA 

2) Establishment of Baseline Conversion to CuO  

The as synthesized Cu2(OH)3NO3 was deposited as a screen printed film and 

subsequently subjected to IPL Processing, wherein a localized rise in temperature was 

induced.  This increase in temperature is high enough to both desorb water and convert the 

Cu2(OH)3NO3 to CuO.  The initial pulses are used to remove the adsorbed water, which 

occurs within the first five and 10 pulses as show in Figure 40.  Following water desorption, 

the Cu2(OH)3NO3 begins to undergo conversion as described by Equation 12 and Equation 

13. 
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Figure 40. FTIR of Cu2(OH)3NO3 with one (black), five (green), and ten (red) 12.8 Jcm-2 pulses of IPL 

processing 

The samples visually changed from a pale blue to black as the process proceeded, 

which serves as a visual indicator of the transformation of Cu2(OH)3NO3 to CuO.  The 

Cu2(OH)3NO3 transformation into CuO throughout the IPL process was monitored using 

XRD analysis (Figure 41a).  The IPL processed at an energy density of 10.1 Jcm-2 showed 

significant change in the crystal lattice to CuO.  At an energy density of 12.8 Jcm-2, at 

similar pulse number and rate, only trace amounts of Cu2(OH)3NO3 were present.  At 19.2 

Jcm-2, the Cu2(OH)3NO3 peaks are no longer present.  At higher energy densities than 19.2 

Jcm-2, there is little variation in the crystal structure.   

The resulting CuO films displayed significant sintering and melting with increasing 

energy density as shown in the SEM micrographs (Figure 41B).  Little to no changes were 

observed to the sintering with the application of forty 10.1 Jcm-2 pulses, though partial 

conversion to CuO were observed in the XRD.  At an energy density of 19.1 Jcm-2 (Figure 

41c), significant sintering was observed and, in certain areas of the film, melting.  

1000150020002500300035004000

One Pulse Five Pulses Ten Pulses
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Furthermore, at an energy density of 35.7 Jcm-2, vast areas of melting of the CuO are 

observed.  

 

Figure 41: A) XRD results with IPL processing of forty pulses at increasing energy densities B) SEM 

images of IPL processed copper nitrate hydroxide films with forty pulses at varying energy densities 

3) Direct Fabrication of Elemental through Intentional Inclusion of 

Fructose and Glucose for Enhanced IPL Processing 

The aim of this study was to investigate the potential for Cu2(OH)3NO3 as an 

alternative precursor for conductive copper that requires conversion to elemental copper.  

According to Equation 12 and Equation 13, the direct conversion to of Cu2(OH)3NO3 to 

elemental Cu was not expected nor was it observed.  However, it has been shown 

previously that conversion of CuO and Cu2O during the IPL process to Cu can be achieved 

through the addition of reducing agents.  The direct conversion of Cu2(OH)3NO3 can also 

be accomplished in the presence of a hydrogen atmosphere as modeled by Equation 20.  
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Four hydrogen atoms in total are needed to isolate the copper atoms.  The hydrogen atoms 

integrate with the nitrate group and three hydroxyl groups to transform to form nitric acid 

and water, respectively. 

322332 322)( HNOOHCuHNOOHCu   Equation 20 

The previous section showed that the oxidation of Cu2(OH)3NO3 occurred rapidly 

with CuO emerging at an energy density of 10.1 Jcm-2, which was the lowest energy density 

used in this work.  Therefore, the most efficient formation of copper requires that the 

reducing environment be induced prior to significant transformation of Cu2(OH)3NO3 to 

CuO.  The direct conversion of Cu2(OH)3NO3 to Cu would be favorable, as it would 

decrease the energy needed for conversion when compared to energy to convert into CuO 

and then reduce CuO into Cu.  A reducing environment can be established through the 

decomposition of organic molecules. (Table 2)  Therefore, it would be desirable to utilize 

organic molecules, which are abundant and cost efficient, and environmentally friendly.  

These criteria are met by both fructose and glucose.   

An analogous atomic representation of the overall transformation of Cu2(OH)3NO3 

with fructose or glucose leads to Equation 21, as both fructose and glucose have the same 

atomic structure (though differ in their molecular structure which leads to varying material 

properties).  According to equation 5, the molar ratio of Cu2(OH)3NO3 to monosaccharide 

is 18:1, setting the minimum amount of monosaccharide at 3.18 wt% to Cu2(OH)3NO3. A 

10 wt% monosaccharide concentration was used due to the high viscosity printing 

requirements, which is more than sufficient to create the reducing atmosphere upon 

decomposition. The decomposition leads further into smaller organic molecules throughout 

the process.   One of the main decomposition products is formic acid.207  The reduction 
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reaction for Cu2(OH)3NO3 be represented as Equation 22.  Equation 22 is similar to a Cu2O 

reduction mechanism from the literature.208  

3226126332 1824636)(18 HNOOHCOCuOHCNOOHCu   Equation 21 

322332 3222)( HNOOHCOCuHCOOHNOOHCu   Equation 22 

 

Figure 42: TGA and then the FTIR 12.8 Jcm-2 IPL processed fructose (left) and glucose samples (right) 

The most important differences between fructose and glucose for this study were 

the thermal decomposition temperature, enthalpy of decomposition, and resulting 

byproducts.  Thermogravimetric analysis (TGA) helped to identify how these differences 

affect the Cu2(OH)3NO3 reduction (Figure 42).  During the TGA analysis both the fructose 

and glucose samples displayed a similar behavior or weight change throughout the 150°C 

to 220°C range. The fructose sample had an additional weight change from 100°C to 120°C 

followed by a more rapid weight change from 125°C to 145°C. The largest peak is 
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attributed to fructose in 125°C to 145°C range. The glucose sample had very similar peaks 

though the peak was observed at 175°C compared to 145°C for the fructose sample.  The 

observed temperature difference of approximately 30°C is comparable to literature value 

differences of the thermal decomposition temperatures with 138.7°C (fructose) and 

166.4°C (glucose) resulting in a 27.7°C difference.209  The reported values are higher than 

the literature values as the thermal decomposition temperatures are known to vary with the 

heating rate.209  The observed weight losses (53% for fructose and 55% for the glucose) 

were larger than the 30% weight loss during conversion to CuO.  The increased weight loss 

was anticipated as the transformation of Cu2(OH)3NO3 to CuO versus Cu differs with an 

oxygen atom, the weight loss associated with the decomposition of fructose and glucose, 

and varying water contents in the samples. 

Fructose is known to thermally decompose (ΔHrxn=11.09 kcal/mol) into 

glyceraldehyde and 1,3-dihydroxyacetone while glucose (ΔHrxn=12.06 kcal/mol) 

decomposes into erythrose and glycolaldehyde.210  To confirm the formation of 

decomposition products by observing aldehyde and carboxylic groups, specific FTIR was 

performed with lower IPL processing than used anywhere else in the study with only five 

and ten pulses at an energy density of 12.8 Jcm-2 being applied.  FTIR analysis primarily 

displayed peaks characteristic of fructose and glucose with O-H bonds (3500-3200 cm-1) 

and C-C alkane bonds (3000-2800 cm-1).  With five and ten 12.8 Jcm-2 IPL pulses, the 

formation of characteristic bonds for the fructose and glucose decomposition, such as 

aldehyde and carboxylic acid groups (1750-1650 cm-1), began to emerge.  The 

Cu2(OH)3NO3 peaks of bonded O-H, Cu2(OH)3NO3 (1421 cm-1, 1047 cm-1, N-O bonds 

(1384 and 872 cm-1) also became more readily observed (Figure 43).  The observed O-H 
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bonds peaks showed a decreasing trend and an emergence of new peaks within the 1750 

cm-1 - 1650 cm-1 range.  These peaks are characteristic of functional groups containing 

double bonded oxygen molecules (aldehydes and carboxylic acids).  The presence of these 

peaks, at a relatively low total energy input of this study, suggests that the decomposition 

is happening prior to the conversion of copper hydroxide nitrate and leading towards a 

reducing environment. 

 

Figure 43: XRD results with IPL processing of forty pulses at increasing energy densities for fructose 

(left) and glucose (right). SEM images of fructose (F-a-c) and glucose (G-a-c) samples at different 

energy densities of IPL processing a) 12.8 Jcm-2 c) 15.8 Jcm-2 c) 35.7 Jcm-2  

The conversion to Cu happened at an IPL energy density of 12.8 Jcm-2 for fructose 

and 15.8 Jcm-2 for glucose as shown with XRD in Figure 43 as the strongest XRD peaks 

became 43.472 (111), 50.373 (200), and 73.995 which are consistent with the crystalline 

structure of Cu (ICDD 00-001-1241).  The XRD analysis did not show a significant 

presence of either Cu2O or CuO during the IPL reduction process.  Trace signs of Cu2O 
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can be seen in the XRD though they are associated with copper’s exposure to oxygen/water 

in the atmosphere. 

Higher IPL energy densities were studied to characterize the sintering of the formed 

films.  Since the fructose samples had an earlier conversion to Cu, a higher degree of 

sintering was observed in the fructose samples (Figure 43F-a-c) when compared to the 

glucose samples (Figure 43G-a-c) at the same energy density.  At an energy density of 12.8 

Jcm-2, SEM images of the fructose sample (Figure 43F-a) and glucose samples (Figure 

43G-a) begin to show a slightly higher porosity than the deposited films as the organic 

molecule decomposition leads to gas evolution and disruption of the films. At an energy 

density of 15.8 Jcm-2, the fructose sample (Figure 43F-b) show a higher degree of sintering 

and melting towards a bulk film while the glucose samples (Figure 43G-b) only have 

particle necking present and still maintain a resemblance to the deposited films.  At an 

energy density of 35.7 Jcm-2, both the fructose sample (Figure 43F-c) and glucose samples 

(Figure 43G-c) have a lower degree of porosity as the IPL processing provides the energy 

to sinter the Cu films. 

4) Sheet Resistance of Produced Conductive Cu Films 

As the fructose samples displayed the preferable results with an earlier onset of 

copper nitrate hydroxide converting into copper, the sheet resistance for these samples were 

measured throughout the IPL process. (Figure 44)  The sheet resistance of the films 

continued to decrease as the intensity of the pulse was increased with a sheet resistance of 

0.224 Ω/☐ at 35.7 Jcm-2. The bulk resistivity of the films can be found by the product of 

the sheet resistance and the film thickness (ρ = tRs), incorporating a thickness of 5.59µm, 
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the bulk resistivity for the 35.7 Jcm-2 sample is 1.251∙10-4
 Ω∙cm; within two magnitudes of 

bulk copper’s resistivity. The resistivity was lower than that of bulk copper, which can be 

attributed to the porosity of the deposited films.  Porosity of the films was caused by the 

volume change going from Cu2(OH)3NO3 to Cu and organic decomposition reactions 

leading to gas evolution. 

 

Figure 44:  Sheet Resistance of IPL processed fructose films with forty pulses at varying energy 

densities. 

C. Summary  

In summary, the Cu2(OH)3NO3 was formed through aqueous room temperature 

reaction with a copper salt and potassium hydroxide, which was deposited with screen-

printing. With inclusion of fructose or glucose, the materials transformed with IPL 

Processing to create conductive copper. A Copper oxide intermediary was not observed 

during Cu formation and fructose provided a faster reduction than glucose. 
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CHAPTER 6: REDUCTION OF GRAPHENE OXIDE NANOSHEETS AND Cu(OH)2 

NANOWIRES VIA INTENSE PULSED LIGHT PROCESSING 

A. Introduction 

In this chapter, graphene oxide (GO) films have been subjected to IPL Processing 

to cause their rapid reduction, which is indicated through changes in transparency, sheet 

resistance, and the Raman ID/IG peak ratio.  The addition of Cu(OH)2 NWs to the inks has 

also been shown to increase the performance of resultant films with lower sheet resistances. 

B. Results and Discussion 

1) Process Overview for IPL Processing of GO 

The main techniques used to study the effectiveness of IPL Processing to reduce 

the graphene oxide has broken down into three main steps: 1) Ink Preparation, 2) Spin 

Coating Deposition, and 3) IPL Processing. (Figure 45)  The reductive transformation of 

the GO to rGO is displayed as a shift in color from yellowish-brown to grey/black.  The 

ink was prepared by dispersing synthesized GO into ethanol (which is preferable to water 

for spin-coating deposition due to its lower surface tension).  A second GO ink was made 

with fructose (10 wt% of GO), as previous IPL work done in our lab observed that fructose 

in the ink aided reduction (of copper nitrate hydroxide to copper), to investigate if the 

reduction of GO could also be aided.  Fructose  enhanced the reduction capabilities of IPL 

processing due to it decomposing and creating a reducing environment.170 Spin Coating 
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deposition was then utilized at six different spin speeds.  At each spin speed, three IPL 

Processing Energy inputs were applied.   Additionally, lower sheet resistances were found 

with the samples containing fructose, which led to an additional analysis to understand how 

the transparency and sheet resistance of the films were changing with an IPL processing at 

eleven IPL Processing Energy inputs (with the redundancies). 

 

Figure 45: Overview schematic of spin-coated graphene oxide depositions and IPL processing 
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 Simultaneous thermogravimetric analysis and differential scanning calorimetry 

(SDT) of the as synthesized GO was performed. (Figure 46)  The sample showed a 

significant weight loss through 150°C due to the water content.  Above ~162°C through 

~718°C, the heat flow had positive yet lower absolute values.  The highest heat flow per 

weight observed was at ~200°C. 

The film thickness of the samples was measured at the six different spin speeds. 

(Figure 47)  Higher spin speeds led to thinner films, due the increased centripetal forces.  

The samples that were created with the solution containing fructose displayed smaller film 

thickness values and had smaller deviations.  This can be attributed, in part, due to the 

creation of more uniform films, as fructose acts as a binder, increasing film adhesion during 

deposition.  Optical transparency (550 nm) of the films also increased with increased spin 

speeds, as the transparency is a function of the film thickness. (Figure 48) The addition of 

fructose only slightly altered the deposited films, which was anticipated due to the 

relatively small quantity of fructose added to the ink.  It is interesting that the addition of 

fructose appeared to contribute to the deposition process, as it was introduced as a means 

to enhance the effectiveness of the IPL Processing through its decomposition.  Here it is 

seen that the additive of fructose can play a dual role throughout the process, aiding in both 

the spin-coating deposition and IPL Processing.  A deeper understanding of how the 

viscosity, surface tension, substrate adhesion, and extent of GrO nanosheet separation 

could prove beneficial to further development of smooth films. 

SEM images of the different spin speeds for samples containing fructose (Figure 

49).  The images show that there is presence of sheet stacking and, therefore, multiple 

layers of GO.  Additionally, lower spin speeds had better surface coverage. 
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Figure 46: SDT of the as synthesized GO weight% (top), first order derivative of the weight% with 

respect to temperature (middle), and the heat flow normalized by the weight (bottom) 



92 

 

 

Figure 47: Film thickness of the as deposited GO films (black circles) & with fructose (red diamonds) 

 

 

Figure 48: Transparency of deposited GO films (black circles) & with fructose (red diamonds) 
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Figure 49:  SEM Images of as deposited GO samples (with fructose) A) 5,000 rpm B) 4,000 rpm C) 

3,000 rpm D) 2,000 rpm E) 1,000 rpm F) 500 rpm 
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2) Reduction of GO with IPL Processing 

Sheet resistance of the samples after IPL processing samples was measured (Figure 

50).  The sheet resistance was found to decrease with decreasing spin speeds.   The addition 

of fructose produced lower sheet resistances, indicating higher performance.  Without 

fructose, the sheet resistance of samples without fructose could not be accurately measured 

above 2,000 rpm due to the limitations of the equipment’s compliance range.  The 500 rpm 

samples did not have conclusive results, which can be attributed to uneven film deposition 

at such low spin speeds. 

 

Figure 50: Comparison of sheet resistance IPL Processing Energy Density Inputs 1428 Jcm-2 and 1744 

Jcm-2, for both samples without fructose (black circles) and with fructose (red diamonds).  
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SEM images of the GO films before/ after IPL Processing with forty 35.7 Jcm-2 

pulses for spin speeds of 3,000 rpm and 1,000 rpm are displayed in Figure 51.  It can be 

seen the high energy density pulses did alter the films, which could be attributed to 

outgassing of H2O and CO2 vapors from the rapidly increased localized temperatures. 

 
Figure 51: SEM images of spin-coated GO (without fructose) at 3,000 rpm (top row) and 1,000 rpm 

(bottom row).  The corresponding as deposited samples shown firstly (left), followed by two images at 

different magnifications of the samples post IPL Processing (center and right). 

Figure 52 displays the observed transparency of the samples at select IPL Energy 

Density inputs, which exhibit a red shifting of the absorbance with an increasing extent of 

IPL Processing.  The increased absorption occurs due to the reformation of π-π bonds, 

which have higher energy, red-shifting the absorbance.  This can be seen visually as the 

color changes from yellowish-brown to black.  The increased absorbance is advantageous 

for IPL processing; as sequential IPL pulses will be more effective in contributing to the 

reduction.  Qualitatively, the reduction’s progress can be seen by a visual transformation 

of films from yellowish-brown to black.   
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Figure 52: Transparency vs. Wavelength for 1,000 rpm spin-coated GO with fructose as deposited 

(black) and at several IPL Energy Density Inputs 178.5 Jcm-2 (red), 357 Jcm-2 (yellow), 632 Jcm-2 (blue), 

714 Jcm-2 (purple), 1428 Jcm-2 (green), and 1744 Jcm-2 (brown).   

Figure 53 displays the transparency, sheet resistance, and Raman ID/IG peak ratio 

for the 1,000rpm samples with fructose with varying amount of IPL processing, shown as 

total energy density.  The transparency primarily displays a decreasing trend with 

increasing IPL processing.  However, there is an observable ‘knee’ found in the 

transparency in between a total energy density of 632.0 Jcm-2 and 714 Jcm-2 with the 

transparency changing from 48.07% to 9.74%.  This ‘knee’ has been observed in previous 

studies done in our lab for sheet resistance.106, 170  There was a corresponding knee of the 

sheet resistance, which decreased from 65.20 MΩ/□ to 20.11 kΩ/□.  
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Figure 53: (Top) Transparency (Middle) Sheet Resistance and (Bottom) Raman peak ratio (ID/IG) with 

increasing total induced energy density through IPL Processing 
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Profilometry measurements of the film thickness was performed with increasing 

IPL Energy Density Inputs. (Figure 54)  It can be observed that the higher IPL Processing 

Energy Density Inputs tended to also lead to an increased film thickness.  Specifically, the 

data closest to the observed ‘knee’ of 714 Jcm-2 and 1428 Jcm-2 that had exhibited improved 

sheet resistance, but also exhibited nearly a four-fold to five-fold increase in film thickness 

and higher variations in thickness measurements.    

 

Figure 54:  Film Thickness of 1,000 rpm spin-coated GO with fructose samples with increasing IPL 

Energy Density Input. 

The film thickness increase indicates that the film morphology was modified during 

IPL Processing under these conditions.  This was confirmed through SEM images of the 

films, which show that the films underwent a notable change in morphology. (Figure 55)  

However, the highest IPL Processing Energy Density Input of 1744Jcm-2
 did not have as 

drastic change in film thickness or morphology.  This is because the IPL Processing was 

performed in an incremental fashion.   

 



99 

 

 

Figure 55:  SEM imagery of 1,000 rpm spin-coated GO with fructose samples displaying film 

morphology at IPL Processing Energy Density Inputs of 632 Jcm-2 (left), 1428 Jcm-2 (center), and 1744 

Jcm-2.  It is noted that the IPL processing of the 1744 Jcm-2 sample was done with an incremental IPL 

Processing scheme, which resulted in maintaining the nanosheets’ orientations. 

 The use of step-wise increases of the Energy Density utilized for Incremental IPL 

Processing helped to preserve the film thickness and morphology because it gradually heats 

the films prior to the onset of the organic decomposition.  The lower Energy Density pulses 

help to remove the residual water of the deposited GO.  Then, as the Energy Density of the 

pulses continue to be increased step-wise, the reduction can proceed gradually.  The 

reduction’s gaseous products would less likely to delaminate the nanosheets from their 

horizontal orientation.  

3) Demonstrated Use of Flexible Plastic for IPL Processing GO 

Films 

Plastic substrates are interesting for IPL Processing due to potential scalability to 

roll-to-roll, flexible processing.  Plastic substrates differ glass during IPL Processing due 

to their lower thermal capacity and irreversible damage to the plastic itself if too high of a 

temperature reached.  However, the lower thermal capacity is advantageous as less energy 
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is lost to the substrate as a heat sink, leading to a more efficient process through a 

significant decrease of IPL Processing needed to facilitate the GO reduction. 

Figure 56 displays the results of the cellulosic plastic samples (TOPAS 6015).  It 

should be noted that the films did have a degree of macroscopic non-conformity.  It is noted 

that the energy densities of 15.8 Jcm-2 and 35.7 Jcm-2 did cause deformation of the plastic.  

The circular samples were thicker in the center as the vacuum suction of the substrates used 

during spin-coating to keep them in place affected the deposition process.  The 

transparency of the samples displayed a ‘knee’, decreasing between the 10.1 Jcm-2 and 15.8 

Jcm-2 total energy density, from 65.45% to 17.13%. The sheet resistance showed a 

complementary pattern to film transparencies as a significant decrease (four magnitudes) 

was observed in between the total energy densities of 10.1 Jcm-2 and 15.8 Jcm-2 (62.5 

MΩ/□ to 3.43 kΩ/□).    

It was also important to show that the reduced films on flexible substrates had 

bending capabilities.  This was done through a manual bending process while the film was 

an intermediary between a DC power supply and an LED. (Figure 57)  The LED light 

continued illumination throughout manually bending the rGO film.  Pictures are displayed 

below for the bending at three voltage settings (2.81 V, 8.13 V, and 15 V).  Without the 

film, the LED turned on ~1.5 V. 
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Figure 56: Cellulosic plastic sample (Top) film transparency and (Bottom) sheet resistance 

 

Figure 57: Bending of cellulostic plastic sample connected to a red LED and a DC Power Source at 

2.81 V (left) 8.13 V (middle) and 15.0 V (right) 
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4) Alternative Deposition Methods for Creation of GO Films 

In this subsection, results from Ultrasonic Spray Deposition and Rod-coating GO 

are briefly displayed.  Both of these deposition methods have a much higher potential for 

scaling to commercial applications than spin-coating.  The GO as deposited films that made 

with Ultrasonic Spray Deposition had high optical transparency values, which decrease 

significantly with IPL Processing at an Energy Density Input of 1428 Jcm-2. (Figure 58)  

These films all had measurable sheet resistance values (Figure 59), so their FOM could be 

calculated (Figure 60) with the highest value being close to the rGO FOM values discussed 

in Chapter 2.  Additionally, average thickness measurements (Figure 61) showed that each 

pass resulted approximately 40.8nm film thickness, and SEM imagery showed that the film 

coverage was better for two passes. (Figure 62) 

 

Figure 58: Transparency (550nm) vs. # of Ultrasonic Spray Deposition Passes of GO films as deposited 

(black circles) and after IPL Processing with a 1428 Jcm-2 Energy Density Input  (red diamonds). 
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Figure 59: Sheet Resistance versus # of Ultrasonic Spray Deposition passes of GO films after IPL 

Processing with an Energy Density Input of 1428 Jcm-2. 

 

Figure 60: Calculated Figure of Merit (FOM) versus # of Ultrasonic Spray Deposition passes of GO 

films after an IPL Processing Energy Density Input of 1428 Jcm-2. 
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Figure 61:  Average thickness versus # of Ultrasonic Spray Deposition Passes of GO films with error 

bars that indicate the standard deviation  of measurements and featuring a treadline to display the 

observed linear relationship of the number of passes to the recorded average thickness of the films (y 

intercept set to zero). 

 

Figure 62:  SEM Images of GO films fabricated with Ultrasonic Spray Deposition with 1 pass (top) 

and 2 passes (bottom) after IPL Processing with an Energy Density Input of 1428 Jcm2. 
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Deposition of GO films with Rod-coating was performed on a flexible plastic.  

These films displayed extremely high optical transparency and also exhibited similar trends 

to spin-coated GO films with decreasing transparency with increasing IPL Processing 

Energy Density Input. (Figure 63)  

 

Figure 63:  Transparency of Rod-coated GO films deposited on TOPAS 6015 with one pulse of varying 

Energy Density pulses of IPL Processing versus wavelength (400 nm - 800 nm).  The as deposited film 

(Black) displayed the highest transparency over the region.  The remaining three films displayed a 

lower transparency values with increased energy densities of 19.2 Jcm-2 (second – red diamonds), 26.8 

Jcm-2 (third – blue squares), and 35.7 Jcm2 (forth/bottom – purple triangles). 
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5) Cu(OH)2 NWs for Implementation for Engineering Hybridized 

Films 

SEM imagery of the as synthesized Cu(OH)2 NWs showed that they had diameters 

~10nm and lengths of ~1-2µm. (Figure 64)  It can be seen that the NWs did tend to 

bundle/agglomerate and not discretely separated.   

 

Figure 64:  SEM images of as synthesized Cu(OH)2 NWs. 

SDT of the as synthesized Cu(OH)2 NWs is displayed in Figure 65.  The Cu(OH)2 

NWs displayed a similar drop in weight to the as synthesized GO prior to ~150°C, which 

can be attributed to water and ethanol.  Between 150.90°C and 536.74°C, a positive heat 

flow per weight was observed meaning that the full reduction of Cu(OH)2 NWs to Cu is 

achieved at ~536.74°C.  Two peaks (~236°C and 312°C) can also be seen within this range 

for both the derivative weight change and heat flow per weight, which indicates that there 

are multiple phase transitions during the temperature increase.   
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Figure 65: SDT of as synthesized Cu(OH)2 NWs with the weight% (top), first order derivative of the 

weight% with respect to temperature (middle), and the heat flow normalized by the weight (bottom). 
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6) IPL Processing of Hybrid Films Deposited from Mixtures 

Containing GO and Cu(OH)2 NWs 

The 15-20 mg/mL hybrid inks were created with concentrations of GO and 

Cu(OH)2 of 68.35% GO, 91.53% GO, and 98.18% GO (by weight).  After these inks were 

drop-casted and subsequently IPL Processed, they displayed lower sheet resistances with 

higher relative Cu concentrations. (Figure 66)  This was anticipated due to the low sheet 

resistance of elemental Cu versus rGO. 

 

Figure 66:  Sheet Resistance after 1744 Jcm-2 Incremental IPL Energy Density Input versus wt% GO 

in solution. 

  Samples created by spin-coating at 500 rpm with pre-heated glass substrates at 

80°C to create thicker films.  They were then IPL Processed incrementally.  Sheet 

resistances were measurable for mixtures of 68.35% GO at the four highest energy density 

inputs and 91.53% GO at only for the highest energy density input). (Figure 67)  These 

samples were visually much thicker at their centers and that can be seen through the 
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contrast of the 68.35% GO sheet resistance measurements over different parts of the 

samples. (Figure 68) 

 

Figure 67: Rs comparison of spin-coated samples at concentrations of 91.53% GO (green squares) and 

68.35% GO (black circles) versus IPL Energy Density Input. 

 

Figure 68: Rs comparison of spin-coated 68.35% GO at the center (red squares) and over the entire 

samples (black circles) vs. IPL Energy Density Input. 
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peak of Cu, which located at 43.2° (ICDD 00-004-0836), increased dramatically with 

higher IPL Processing energy density inputs. 

 

Figure 69: XRD of 68.35% GO vs. IPL Energy Density Inputs of 632 Jcm-2 (green), 1428 Jcm-2 (purple), 

and 1744 Jcm-2 (red). 

The film morphology of 100% GO and 68.35% GO after incremental IPL 

Processing at a total energy density input of 1744 Jcm-2 was analyzed with SEM imagery. 

(Figure 70)  It can be seen that the hybrid mixture’s image hints at higher levels of material 

interconnectivity.  This indicates that the Cu NWs trend of lower sheet resistance with 

increasing Cu(OH)2 NWs concentrations in the inks could be attributed to an enhancement 

of the electrical conductivity both from the presence of conductive Cu but also from 

connecting the nanosheets.  The produced data had limited viability to describe the physics 

of a hybrid system due to the thickness of films needed for sheet resistance measurements.  

However, the further development of the hybridized system would need to explore the 

importance of contact resistance between rGO nanosheets and a Cu NWs and if there is 

Ohmic contact.  The anticipated electrical resistances are shown below in Figure 71. 
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Figure 70: SEM images of 100% GO (left) and 68.35% GO films after Incremental IPL Processing 

with an Energy Density Input of 1744Jcm-2. 

 

Figure 71: Schematic for current passing through a rGO nanosheet (grey) to a Cu NW (orange) and 

then to another rGO nanosheet (gray), with corresponding electrical resistances shown where R23 

and R45 are the contact resistances between the Cu and rGO. 
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C. Summary 

 In summary, this chapter has shown that IPL Processing has the ability to rapidly 

reduce GO into electrically conductive rGO and produced favorable results through 

addition of fructose into ink formulations.  This was shown by sheet resistance values that 

decreased four magnitudes.  Furthermore, the IPL Processing of GO films was improved 

by applying incremental pulses that were able to maintain film morphology.  The flexibility 

of these films was exemplified on a plastic substrate, which became electrically conductive 

with only one pulse of IPL Processing.  Lastly, the use of inks composed of GO and 

Cu(OH)2 NW mixtures did lead to better electrical performance of films.  
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CONCLUSIONS 

Intense Pulsed Light Processing has been implemented to three different 

morphologies and four materials to create conductive films.  The inks exhibited increased 

solution stability due to their oxide and hydroxide forms.   

The Cu2O-NiO core-layer nanostructures were synthesized using a room 

temperature solution based method, deposited with spray coating, and IPL Processed. The 

final dispersions can be easily deposited on to a substrate using evaporative solution-phase 

techniques; in this case an ultrasonic spray was used to deposit films. During the initial 

synthesis stage Cu2O nanoparticles were surrounded with a NiO layer. The subsequent IPL 

treatment reduced both oxides to their corresponding metal forms in less than 1½ minutes. 

In addition, the IPL process sinters neighboring particles and lowers the resistivity of the 

films. During stage two we controlled the thickness of the nickel layer. The processes were 

optimized so that the nickel layer uniformly coated the Cu2O particles, as well as providing 

a degree of control over the layer thickness. Finally, in stage three by measuring the 

thermoelectric properties of silicon before and after being heated with Cu and Cu-Ni 

depositions, we have shown that the nickel layer is able to mitigate the diffusion of Cu into 

silicon.  The next steps of this research are to investigate the decomposition of organic 

molecules throughout the IPL processing and discrete particles for isolated core/shell 

analysis. 
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Copper nitrate hydroxide was synthesized and successfully reduced into elemental 

copper, with the inclusion of fructose and glucose to decompose during the IPL process.  

The results shown help to further understand the reduction mechanism.  Copper nitrate 

hydroxide was not found to transform into an intermediary copper oxide throughout the 

process. This is significant since less energy is required which is favorable for its viability 

in future commercial applications.  As the copper nitrate hydroxide synthesized did convert 

to elemental copper only in the presence of the reducing agents, analysis of different 

organics, based on application, could be explored further.  The lowest resistivity measured 

was 0.224 Ω/☐.   

IPL processing of GO successfully reduced the material to rGO.  The results also 

indicated that there is potential for this method in the scalable production of TCFs.  The 

lowest sheet resistance achieved was Rs=5.499 kΩ/sq., with a transparency of %T (550nm) 

= 10.13% and the most transparent sample, with a significantly reduced sheet resistance 

(Rs=1.384 MΩ/sq.), exhibited a transparency at 550nm of 55.58%.  These findings are also 

enticing as application onto a flexible plastic substrate displayed the reduction after only a 

single pulse and could be bent without loss of conductance.  Combining the GO with copper 

hydroxide nanowires did lead to a conductivity enhancement.  



115 

 

 

RECOMMENDATIONS FOR FUTURE WORK 

The sheet resistances of the films could be improved by optimization of sugar ratios 

for both deposition and IPL Processing to enhance both film quality and efficient usage of 

energy, including modulating the number of pulses and the time interval between pulses 

affecting the local temperature rise in films for optimal processing.  Additionally, further 

investigation of the implementation of plastic/flexible substrates in roll-to-roll deposition 

and IPL Processing followed by robust bending tests would help to demonstrate cost and 

scale advantages towards commercialization.  As the substrates’ surface properties would 

be significantly different, investigation into surface modification of substrates and/or 

doping of GO to enhance chemical interactions to favor single layer, flat, deposition would 

be advantageous.  The performance of GO & Cu NW hybrids could be improved by the 

investigation into scalable and efficient synthesis of higher aspect ratio NWs with larger 

diameters closer to ~50 nm and lengths closer to ~100 μm).  Lastly, thermal/kinetic 

modeling of IPL Processing of the various nanomaterials, especially GO, would enable 

predictive processing parameters and deeper understanding of optimizing IPL Processing. 
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Synthesis Experience 

 Graphene Oxide via a modified Hummer’s Method 

 CuNO3(OH)3 Nanoparticles 

 Cu/Cu2O Nanoparticles via Reduction with NaBH4 

 Cu2O/NiO Encapsulated Nanoparticles 

 Cu(OH)2 Nanowires 

 TiO2 Nanoparticles 

 CVD Graphene 
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Teaching Experience 
Graduate Teaching Assistant (GTA), University of Louisville – Chemical Engineering  

 

Materials Science (CHE 253)              Summer 2016 

 Coached and coordinated thirteen (13) Undergraduate Teaching 

Assistants with fellow GTA to grade assignments and deliberating 

learning with students 

 Collaborated on grading examinations with fellow GTA and the Professor 

 Guest Lecture - Diffusion 

 

Modeling & Transport Phenomena (CHE 520)            Spring 2016 

 Formative Feedback and interpersonal interaction with in-class group 

assignments 

 Executing grading of in-class and take-home (combined 50% of total grade) 

 

Chemical Engineering Kinetics and Chemical Reactors (CHE 441)            Fall 2015 

 Collaborative relationship with Professor to establish  

 Taught two-lectures on determining rate-law 

 

Safety, Health, and the Environment (CHE 401)        Summer 2015 

 Graded work to facilitate learning and navigating “gray areas” of ethics 

 

Principles of Fluid Dynamics (CHE 331)        Summer 2015 

 Special Guest Lecture & Exam Review: Pedagogy & Exam Skills 

o Sample Activity for Student Engagement:  

 Notecards – Students were asked to give names (and 

pronunciations), reasoning for interest in chemical 

engineering, FUN FACT, and check-in upcoming exam 

 Created and distributed custom “Goodbye Letters” by hand – Positive 

Expression and Recognition of student growth & future potential 

 Provided flexible office hours and availability through various media 

 

Chemical Engineering Heat and Mass Transfer (CHE 433)         Spring 2015 

 Established office hours and flexible appointment times with students 

 Create own solutions for HW 

 Navigated conflicts between Professor/Self/Students/Administration to 

work towards equitable learning environment 

 

Chemical Engineering Kinetics and Chemical Reactors (CHE 441)            Fall 2014 

 Collaborated with Professor to implement student friendly alternative 

grading system focused on identifying and correcting errors rather than 

penalizing them 

 Executed problem sessions highlighting importance of problems and 

challenging areas  

 Administered office hours to facilitate student learning 
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Guest Speaker/Lecturer – GEARUP – (three-hour session)         2015 - 2016 

 Encouraged STEM to 28 low socioeconomic high school students 

 Coupled storytelling and learning the concept of evolution to engage 

inclusive learning environment 

 Hands-on chemistry demonstration and experiment to discuss creating 

scientific questions and utilizing the scientific method 
Guest Lecture – “Scale” for Sustainability Course             February 2016 

Upper Division Elective – Department of Sustainability and Urban Development 

 

Presentation at Kentucky Science Teacher Association (KSTA)               November 2015 

in collaboration with Kentucky Science Association (KSA) and WKU 

 

Co-Presenter - “What Floats Your Boat?” NGSS Lesson by KY Academy of Science 

Kerrie McDaniel (WKU), Amanda Fuller (KSA), and Gabriel Draper 

 

Guest Lecture – Chemical Engineering Thermodynamics II (CHE 312)     Summer 2015 

Created and Facilitated “Fugacity Feud” Interactive & Collaborative Game to 

both provide an examination review and also engage students 

 

Leadership Experience 
National Assistant Treasurer, (NOBCChE)                       2016 

 

President & Founder, Minority Association of Graduate Students (MAGS)           2015 - 2016 

 Established constitution, built a leadership team, and launched unique 

student organization 

 Collaborated with organizations such as Graduate Student Council, 

Counseling Center, and Cultural Center 
 Created Welcoming Event during Orientation specifically for Minority 

Graduate Students 

 Collaborated with Leadership Team to create Survey to identify key 

areas of need  

 

President & Founder, Native American Student Organization (NASO)           2012-2016 

 Visited Indiana University’s Health and Wellness Pow-wow 

 Recognized at Women’s Basketball Native American Appreciation Night 

(2014, 2015) 

 Walked out onto center court with other members/advisor 

 Designed and implemented cultural awareness events  

 Coordinated outreach with Aldente for middle school student after 

school activities outreach 

 

National Finance Chairperson, National Society of Black Engineers (NSBE)         2013-2014 

 Designed and facilitated Board of Corporate Affiliate (BCA) Meetings 

then produced Career Fair Preparation and Follow-up Guide for NSBE 

Membership based on recruiter input 

 Collaborated with NSBE World Headquarters (WHQ) staff and Finance 

Zone to make financial decisions 

 Lead and coordinated National Finance Committee consisting of six 
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Regional Finance Chairs and five full time WHQ employees on direction 

of corporate, university, and organizational partnerships 

 Coordinated consistency of partnership packets across the six Regions 

resulting in a 38% revenue increase 

 Increased number of BCA partners from 48 to 53 despite anticipated drop to 46 

 

Region III Finance Chairperson, National Society of Black Engineers (NSBE)         2012-2013 

 Represented 3,000-member region to corporate partners 

 Created templates and documentation for position transitions 

 Designed and distributed the Region III Corporate Partnership Packet 

raising $51,000 during the Fall Regional Conference 

 Fostered partnerships with 23 companies and four organizations 

 

Senior Design Project Team Lead                                                                                              2012 

University of Colorado at Boulder                                                                                                                    

 Simulated concentrated solar power plant configurations for molten 

nitrate salts, alumina, and two reduction/oxidation chemical cycles 

 Prepared Presentations, arranged meetings with company liaison, and 

constructed project timeline 

 Wrote professional reports summarizing project processes and goals 

detailed with equipment design, environmental and safety hazards, and 

economic analysis 

 Conducted presentation for professors and peers detailing project results 

 

Chapter President, NSBE University of Colorado at Boulder Chapter                             2011-2012 

 Developed an engineering Retention and Mentoring Program 

 Increased chapter size by 30%, fundraising by $12,000 (120%), and 

activity with the surrounding 

 community by 20% 

 

Marketing Chairperson, NSBE Region 6 Fall Regional Conference                                2011          

 Recruited seven committee members and facilitated weekly online meetings 

 Created a marketing competition, website, and fliers 

 Exceeded expected attendance of 300 attendees for conference by 182 

 

Vice President, NSBE University of Colorado at Boulder Chapter                       2010-2011 

 Established connections with on campus organizations in order to 

generate support and collaboration 

 Inspired superior communication within chapter executive board 

resulting a 50% increase in successful programs 

 

Resident Advisor, Housing and Dining                                                                             2009-2010 

 Coached and facilitated growth of 35 residents in residence hall 

 Collaborated with 14 RAs to create and deliver educational programs and 

presentations with guest speakers 

 Organized on campus, social events to support positive recreation among 

residents  
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Funding Board Representative, Residence Hall Association           2008-2009 

 Worked with six other students to manage a $5000 budget for on campus 

programs 

 

Engineering Quad Representative, Residence Hall Association           2008-2009 

 Advocated for supports and policy improvements benefiting engineering 

students 

 Robert’s Rules of Order 

 

Professional Development  
PLAN (Professional Development, Life Skills, Academic Development, Networking)  

University of Louisville - School of Interdisciplinary and Graduate Studies (SIGS) 

Graduate Teaching Assistant Academy                          2015-2016 

 Creating a Civil Classroom Culture: Classroom Management Strategies 

 Learning Science: Using What We Know about How Students Learn 

 Active Learning and Productive Discussions 

 Teaching for Your Peers: Micro-Teaching and Peer Feedback Session 

 Constructing Your Philosophy of Teaching Statement 

 Turning Motivation Research into Teaching Strategies You Can Use 

 Measuring Learning Using Formative Assessment Techniques 

 Integrating Technology into Your Classroom: A Panel Discussion 

 Teaching for Your Peers: Micro-Teaching and Peer Feedback Session 

Grant Writing Academy                               Fall 2015 

 Developing Your Idea 

 Finding Funding 

 Writing the Proposal 

 Building Your Budget 

 The Experts’ Perspective 

 Writing Center Workshopping 

 Post-Award Grant Management 

STEM Graduate Teaching Assistant Mini-Academy                   Summer 2015 

 Students Today: Understanding and Leveraging Characteristics of 

Today’s Students 

 Learning Science: Using What We Know about How Students Learn 

 Measuring Learning: Formative and Summative Assessment to Improve 

Student Learning 

 Experimenting with Interaction: Designing Activities for a Lab Course 

 Micro-Teaching: Teaching for and Providing Feedback to your Peers 

Graduate Teaching Assistants & Diversity               Spring 2015 

 Understanding the Implications of your Cultural Identities as the Instructor 

 Navigating Subtle Racism in the Classroom 

 Teaching as Social Justice: Creating Equitable Expectations as the Instructor 

 Handling Advisors’ and Professors’ Cultural Insensitivities Towards You 

 Navigating the Job Market: Networking and Interviewing as a Culturally 

Responsive Applicant  

 Looking Forward: Integrating Multiculturalism into a Teaching 

Philosophy 
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Human Resources (University of Louisville)             2015-2016 

 Keeping the PEACC: Green Dot Bystander Training  

 Qualities of an Effective Supervisor 

 Title IX Mandatory Reporter Training 

 Delivering Excellent Customer Service 

Conn Center for Renewable Energy               2015 - 2016 

 Sexual Harassment Awareness Training (minors on campus) 

COACh – Half-day workshop Conflict Resolution and Negotiations        2015 

 

Awards and Recognition 

 NOBCChE Advancing Science Award                             2016 

 School of Interdisciplinary Graduate Studies Dean’s Reception        2016 
o Certificate for Completion – GTA Academy 

o Certificate for Completion – Grant Writing Academy 

o Certificate for Completion – STEM GTA Mini-Academy 

o Certificate for Dedication – Professional Development 

o Certificate for Participation – M.A.G.S. Leadership 

 University of Louisville Student Awards            2016 
o M.A.G.S.  Diversity & Inclusion Award (Organization) 

o M.A.G.S. ft. Counseling Center, Graduate Student Council: 

Collaboration Event of the Year Award (Organization)   

 Student Leadership Profile            2016 

 Nomination for Faculty Favorite            2015 

 COACh Travel Award              2015 

 NOBCChE Advancing Science Award                             2015 

 Patent License Award presented at the Celebration of Faculty Excellence           2015 
“The President, Provost, and Executive Vice President for Research 

and Innovation with to acknowledge and comment the novel and useful 

creation developed through the scientific and investigative efforts of 

Delaina Amos, Gabriel Draper, and Thad Druffel as exemplified by the 

Exclusive License to Bert Thin Films, LLC for Novel Processes for the 

Synthesis and Deposition of Copper Nanoparticles executed on June 

30, 2015” 

 School of Interdisciplinary Graduate Studies Dean’s Reception             2015 
o Participation in Graduate Teaching Assistant & Diversity Workshops 

o Certificate for Dedication to Professional Development 

o Certificate for Participation – M.A.G.S. Leadership 

 3rd Place Poster Presentation at Conn Center RE3 National Workshop                         2015 

 Scholarship Award – University of Louisville – Student Awards                        2014 

 Honorary Mention at RE3 Workshop Poster Presentation                             2013 

 NSF/NOBCChE Advancing Science Award                      2013 

 Ethnic Minority Graduate Assistantship                                2012 

 NSBE Small Chapter of the Year (National)          2012 

 NSBE Third Place Retention Program (National)                          2012 

 BOLD Center Olympian Award                           2012 

 NACME Scholar                                                                            2011 
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Professional Society Memberships 
 Kentucky Academy of Science (KAS)            2014 - 2016 

 Golden Key Honor Society (UofL Chapter)            2014 - 2016  

 National Organization for the Professional Advancement of Black 

Chemists and Chemical Engineers (NOBCChE)           2013 - 2016 

 Omega Chi Epsilon (American Honor Society for Chemical Engineering)      2011 - 2012 

 National Society of Black Engineers (NSBE)          2008 - 2016      

 

Conference Attendance 
 UofL Celebration of Teaching and Learning            2016 

 Rumble Young Man Rumble           2015 

 Conn Center Renewable Energy Workshop         2013 & 2015 

 Biomimicry Symposium (Conn Center and Biology Department)       2015 

 NOBCChE National Convention           2013, 2015, & 2016 

 NSBE National Convention            2010 - 2014 

 

Misc. University of Louisville Campus Involvement 

 Cultural Center Search Committee (x2)                      2016 

 Commission on Diversity and Racial Equality (CODRE)                     2015 - 2016 

 Commission on the Status of Women (COSW)               2015 - 2016 

 Speed School Student Affairs Committee          2015 - 2016 

 Undocumented Student Resource Coalition           2015 - 2016 

 Speed School Supreme Court Justice for Student Government Association     2015 - 2016 

 Minority Association of Graduate Students          2015 - 2016 

 Science Policy and Outreach Group           2014 - 2016 

 Speed School Diversity Committee           2014 - 2016 

 Speed School Student Council            2014 - 2016 

 Entrepreneurship Club             2013 - 2014 

 Social Swat Team             2013 - 2016 

 African American Male Initiative/Student African American Brotherhood      2012 - 2016 

 Native American Student Organization             2012 - 2016 

 Ultimate Frisbee Team (Club)             2013 - 2016 

 

Misc. Community Engagement and Mentoring 

 Atkinson Elementary School – Mentoring Program         2015 - 2016 

 Volunteer Judge – Louisville Regional Science Fair         2015 - 2016 

 Rumble Young Man Rumble 5 (RYMR5) Planning Committee        2014 - 2015 

 Right Turn Mentoring Program – Mentor          2014 - 2015 

 Host/MC for Spotlight Interviews for 1LoveLou            2015 

 Alumni Mentor – ChemBio Eng. CU Boulder          2014 - 2015 
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