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Diabetes is a metabolic disease that can lead to the non-enzymatic glycation of 

serum proteins such as human serum albumin (HSA).  Previous studies have indicated 

that glycation can affect the structure and function of these proteins.  This dissertation 

describes the development of tools and techniques based on high performance affinity 

chromatography (HPAC) and multidimensional mass spectrometry to analyze the effects 

of glycation on the function and structure of HSA. 

 A major portion of this research involved the utilization of HPAC to examine the 

effect of glycation on the binding of three second-generation sulfonylurea drugs and one 

third-generation sulfonylurea drug.  These studies were conducted with HSA containing 

various levels of glycation.  Frontal analysis and zonal elution competition studies were 

used to profile the binding properties of the drugs at the major and minor binding sites on 

samples of normal HSA and glycated HSA.  Various trends in the binding affinity were 

observed for these drugs at the levels of glycation that were examined.  

 A second portion of this research involved the development of an on-line 

immunoextraction format in HPAC for examination of drug-protein interactions with 



normal and glycated HSA.  This study utilized a polyclonal anti-HSA antibody HPAC 

column to extract and bind normal HSA or glycated HSA.  The adsorbed HSA or 

glycated HSA columns were then tested and used in a number of chromatographic 

formats to examine drug-protein interactions. 

 Finally, a third portion of this research involved the use of multidimensional mass 

spectrometry to qualitatively profile the structure of HSA through sequence analysis.  

This work obtained sequence analysis results that were comparable to those found in a 

previous method involving matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry.  In addition, collision-induced dissociation was used to confirm the identity 

of several peptide sequences that could be used as internal calibrants for future work 

involving glycated HSA. 
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CHAPTER 1 

GENERAL INTRODUCTION 

Note: Portions of this chapter have appeared in R. Matsuda, J. Anguizola, K.S. Hoy, D.S. 

Hage, “Analysis of drug-protein interactions by high-performance affinity: Interactions of 

sulfonylurea drugs with normal and glycated human serum albumin”, Methods 1286 

(2015) 255-277. 

 

1.1  HPAC and the Analysis of Drug-Interactions with Glycated HSA 

Many biological systems involve interactions between small solutes and proteins.  

Examples include the binding of low mass antigens to antibodies, enzymes to substrates, 

hormones to receptors, and drugs to plasma proteins [1,2].  Various techniques have been 

developed to examine and characterize these interactions.  These methods have ranged 

from fluorescence spectroscopy [3-6], circular dichroism [5], ultrafiltration [6-8] and 

equilibrium dialysis [4,9-12] to chromatographic and electrophoretic techniques such as 

size exclusion chromatography, capillary electrophoresis, and affinity capillary 

electrophoresis [13-24].   

One type of chromatography that has been used to examine the binding of 

proteins with drugs and small solutes is high-performance affinity chromatography 

(HPAC).  Fig. 1-1 shows a scheme of the basic operations of HPAC.  Affinity 

chromatography is a type of liquid chromatography that utilizes an immobilized and 

biologically-related binding agent (e.g., an antibody, enzyme or transport protein) as the 

stationary phase [1].  This method makes use of the specific, reversible interactions that 

occur in many biological interactions by immobilizing one of the pairs of interacting 

substances onto a support and placing this binding agent within a column.  The
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Figure 1-1. General scheme of an HPAC column system for utilizing an immobilized 

binding agent to recognize and separate a target from other non-retained 

sample components.   
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immobilized binding agent, or affinity ligand, is then allowed to interact with the 

corresponding targets and binding partners as these are applied to the column in the 

mobile phase or as injected samples [1,25].    

In traditional affinity chromatography, large and non-rigid support materials such 

as agarose or carbohydrate-based gels are typically used.  These materials are 

inexpensive and allow for separations to be performed under gravitational force or 

through use of a peristaltic pump [1,26,27].  However, these same supports can have poor 

mass transfer properties and often require the use of low back pressures or flow rates, 

making them most useful for preparative work or sample pretreatment [1].  In HPAC, the 

support is instead a more rigid and efficient material such as HPLC-grade silica, a 

perfusion support or a monolithic medium.  The better mass transfer properties and 

improved stability of these materials to high flow rates or high back pressures allows the 

use of these supports with HPLC systems [26,27].     

Affinity chromatography and HPAC have been frequently used to separate, 

purify, or examine specific analytes in biological samples [1,26-36].  It is also possible to 

use these methods, and in particular HPAC, to examine drug- or solute-protein 

interactions.  Information that can be provided by affinity chromatography and HPAC on 

these interactions include the number of sites that are involved in a binding process and 

the equilibrium constants that describe this binding.  It is also possible to determine, 

through the use of site-specific probes, the equilibrium constants that are present for a 

target at specific sites on a protein, the location of these sites, and the types of 

interactions that one solute may have with another at these sites [1,21,37,38].  A major 

advantage of using HPAC for these studies is that it is a high-throughput technique that 
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can be easily automated.  In addition, HPAC has the capability of using the same 

immobilized biological agent and column for up to hundreds of experiments.  These same 

features provide this method with good precision and allow short analysis times to be 

obtained during binding studies [1,21]. 

 The analysis of drug-protein interactions by HPAC has been of interest for some 

time because of the information this method can provide on the transport, distribution and 

metabolism of drugs [2,39].  It has also been found that HPAC can be used to 

characterize changes in drug-protein interactions that can result from metabolic processes 

or disease [13-20,40].  Diabetes is one metabolic disease whose effects on drug-protein 

binding have been investigated by HPAC [13-20].  Diabetes is characterized by elevated 

levels of glucose in the bloodstream, which can result in the glycation of serum proteins 

[3,41-44].  Glycation is a non-enzymatic process that occurs through the addition of 

reducing sugars to free amine groups on proteins.  The initial product of this reaction is a 

reversible Schiff base, which can later rearrange to create a stable Amadori product, or 

ketoamine, as shown in Fig. 1-2 [45-47].  Additional processes such as oxidation, 

dehydration and cross-linking can also occur to form advanced glycation end-products 

(AGEs) on proteins [48].   

Recent studies have suggested that glycation related-modifications can affect the 

structure and function of transport proteins such as human serum albumin (HSA) [13-

20,49,50].  A structure of HSA is shown in Fig. 1-3.    HSA is the most abundant protein 

in plasma and is responsible for the transportation of many drugs and solutes in blood 

[51].  Reports have indicated that there is a 2- to 5-fold increase in the amount of HSA 

that is glycated in diabetic patients when compared to non-diabetic individuals [52].  
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Figure 1-2. General reactions involved in the glycation of HSA to form an Amadori 

product, or ketoamine.  This figure was adapted and reproduced with 

permission from Ref. [16] 



7 

 

 

 

 

 

 

 

 

 



8 

 

 

 

 

 

 

 

Figure 1-3. A structure of HSA that includes the  location of several lysines that often 

take part in glycation and the location of the major drug binding sites of 

this protein (i.e., Sudlow sites I and II).  Each subdomain of HSA is shown 

in a different color.  This structure was generated using Protein Data Bank 

(PDB) file ID: 1A06 and reproduced with permission from Ref. [48].   



9 

 

 

 



10 

 

Mass spectrometric studies have shown that glycation can occur at or near Sudlow sites I 

and II, which are the major drug binding sites on HSA [49,50].  Binding studies using 

methods like HPAC have also revealed that glycation-related modifications at these sites 

can affect the binding of various drugs and solutes with HSA [3,13-20,42-44].  For 

instance, some of these studies have shown that the affinity at Sudlow sites I or II can 

change by 0.6- to 6-fold for some drugs in the presence of glycated HSA versus normal 

HSA [48].   

 

1.2 Approaches for Preparing Normal and Glycated HSA Columns 

1.2.1 Support Materials 

HPLC-grade porous silica is commonly used as the starting support material for 

many HPAC applications [1,25-27].  However, other HPLC supports that can be 

modified for use with immobilized proteins could also have been employed, such as 

perfusion supports, polymer-based monoliths, or silica monoliths [53,54].  There are a 

variety of techniques that can be used to covalently attach a protein to silica or other 

HPLC-grade supports [1,25-27].  One commonly used method is the Schiff base method 

(see Fig. 1-4), which first involves conversion of the silica into a diol-bonded form 

[55,56].  These diol groups create a support that has low non-specific binding for many 

biological agents but can also be easily modified for the immobilization of proteins or 

other binding agents [1,25-27].  For instance, in the Schiff base method these diol groups 

are oxidized by periodic acid to form aldehyde groups, which can then react with free 

amine groups on a protein [55,57].  The resulting Schiff base can then be reduced upon 

formation by using a mild reducing agent like sodium cyanoborohydride to form a stable 

secondary amine linkage.  The remaining aldehyde groups can later be reduced to
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Figure 1-4. Reactions involved in the immobilization of HSA to diol-bonded silica. 
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alcohols by adding a stronger reducing agent, such as sodium borohydride [57].  Studies 

have indicated that both the glycation and the Schiff based method involve free amine 

groups on HSA, however, studies based on mass spectrometry have shown that different 

residues on HSA tend to be utilized for these two processes [49,50,58].  These studies 

also indicated that immobilization through the Schiff base method also involves residues 

other than those found at the N-terminus or the lysines that are located at Sudlow Site I 

and II [45].   

 

1.2.2 Protein Isolation and Preparation  

The degree of isolation and preparation that is needed for a protein as a binding 

agent will depend on the specific protein that is to be examined by HPAC.  Several 

reports have utilized both normal HSA, in vitro glycated HSA, and in vivo glycated HSA 

samples as immobilized binding agents [1-20].  In one of these studies, various 

preparations of glycated HSA that had glycation levels similar to those found in 

individuals with pre-diabetes, controlled diabetes, or advanced/poorly controlled diabetes 

were prepared in vitro [13].  The in vitro glycated HSA sample with a glycation level 

representative of a prediabetic state was prepared under proprietary conditions [13,45].  

This method involved a mixture of a fixed concentration of glucose with HSA that was 

incubated at 37 °C for a period of time that was less than one week [13,45].   The other in 

vitro glycated HSA samples were prepared by using a modified version of previously 

published methods [13,59,60].  In this procedure, glucose concentrations typical of those 

seen in blood for patients with controlled diabetes or advanced diabetes (15 or 30 mM) 

were incubated with a physiological concentration of HSA at 37°C for 4 weeks [13].   

In a study involving in vivo glycated HSA, samples of glycated HSA were 
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isolated from pre-existing plasma or serum samples that had been obtained from patients 

known to have diabetes [20].  A polyclonal anti-HSA antibody column was used to 

extract HSA and glycated HSA from plasma or serum, according to the scheme shown in 

Fig. 1-5 [20].  The extracted HSA and glycated HSA was then dialyzed against water or a 

neutral pH buffer, lyophilized, and stored at -80°C until further use.    

 

1.3 Frontal Analysis Studies 

 Frontal analysis is a commonly used HPAC chromatographic format that can be 

used to obtain drug-binding parameters.  A typical chromatographic system for use in a 

frontal analysis experiment is shown in Fig. 1-6(a).  This type of system and experiment 

can be used to obtain information on the binding strength and binding capacity of a 

column that contains an immobilized affinity ligand as this ligand interacts with a 

solution of the analyte that is applied in the mobile phase [1,25-27].  A typical HPAC 

system like the one in Fig. 1-6(a) contains two pumps, a switching valve, a column, and a 

detector.  This particular system can be used for a situation in which the analyte can be 

eluted in the presence of the application buffer under isocratic conditions, as was true for 

the various drugs and probes that were examined within the cited examples [13-20].  In 

this situation, one of the pumps is used to apply the analyte solution and the other pump 

is used to pass only an application buffer through the column.  Additional pumps can be 

added to the system for experiments that involve more than one analyte or if a buffer with 

a different pH or composition is required for analyte elution.  The valve in this system 

functions to switch between the application of the analyte solution and the buffer, or 

eluting solution, to column.  An absorbance detector is often used to monitor the analyte 

elution in this type of system; however, detection based on fluorescence, near-infrared
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Figure 1-5. Scheme for the immunoaffinity purification and isolation of HSA and in 

vivo glycated HSA (gHSA) from the serum or plasma of patients with 

diabetes, as described in Ref. [20]. 
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Figure 1-6. (a) A typical chromatographic system used in frontal analysis experiments 

and (b) representative results for the application of tolbutamide to an 

HPAC column containing normal HSA.  In (a) a valve is used to switch 

the mobile phase from the application buffer to a solution that contains the 

analyte to be applied to the column.  A second valve change is used to 

change the mobile phase back to original buffer and allow regeneration of 

the column.  The results in (b) were obtained by using a 2.0 cm × 2.1 mm 

i.d. HSA column at 0.50 mL/min.  The concentrations of tolbutamide in 

(b) were 200, 100, 50, 20, and 10 µM (top-to-bottom).  The plot in (b) is 

reproduced with permission from Ref. [15]   
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fluorescence, chemiluminescence, or mass spectrometry could also be utilized in some 

cases [2].   

Some typical chromatograms that have been obtained by HPAC and frontal 

analysis are shown in Fig. 1-6(b).  This type of study involves the continuous application 

of a known concentration of the analyte to the column, with the analyte then being 

allowed to bind and eventually saturate sites on the immobilized binding agent within the 

column.  As shown in Fig. 1-6(b), this process results in the formation of a breakthrough 

curve.  If a local equilibrium is present between the applied analyte and the immobilized 

binding agent (i.e., relatively fast association and dissociation kinetics are present on the 

time scale of the experiment), the position of the mean point of this breakthrough curve 

can be related to the concentration of the applied analyte, the equilibrium constant(s) for 

the analyte with the immobilized binding agent, and the number and amount of binding 

sites for the analyte within the column [1,25-27].   

The mean position of the breakthrough curves obtained from frontal analysis 

experiments that have been carried out over a suitable number and range of analyte 

concentrations can be analyzed according to various binding models.  For example, if a 

single-site interaction occurred between the analyte (A) and the immobilized binding 

agent (or affinity ligand, L), the data for this type of interaction can be described by the 

expressions shown in Eqs. 1 and 2 [1,25-27,64].   

   𝑚𝐿𝑎𝑝𝑝 =
𝑚𝐿𝐾𝑎[A]

(1+𝐾𝑎[A])
          (1) 

1

𝑚𝐿𝑎𝑝𝑝
=

1

(𝐾𝑎𝑚𝐿[A])
+

1

𝑚𝐿
          (2) 

Eq.1 provides a non-linear description of this binding model, and Eq. 2 is a linear double-

reciprocal transform of Eq. 1.  In both of these equations, mL represents the total moles of 
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binding sites for the analyte in the column, Ka is the association equilibrium constant for 

the analyte at these sites, and mLapp is the moles of applied analyte required to reach the 

central point of the breakthrough curve at a given molar concentration of the analyte.  

Equivalent expressions can be derived and used for the situation in which the 

concentration and volume of the applied analyte are used in place of the moles of the 

applied analyte [1,25-27,61]. 

A fit of either Eqs. 1 or 2 to the data for a single-site system can allow the values 

of Ka and mL to be obtained.  For instance, a plot of 1/mLapp vs. 1/[A] that is made 

according to Eq. 2 should provide a linear relationship for a single-site system, giving a 

slope that is equal to (1/Ka mL) and an intercept that is equal to (1/mL).  The value of Ka in 

this situation can be determined by dividing the intercept by the slope, while mL can be 

found by taking the inverse of the intercept [1].  Fig. 1-7(a) shows some frontal analysis 

data that were examined by using a double-reciprocal plot.  A non-linear plot fit to Eq. 1 

can also be used to obtain the equilibrium constants and moles of sites that are involved 

in a drug-protein interaction, as shown in Fig. 1-8(a). 

Similar expressions to those in Eqs. 1 and 2 can be developed for systems that 

involve multisite interactions.   

𝑚𝐿𝑎𝑝𝑝 =
𝑚𝐿1𝐾𝑎1[A]

(1+𝐾𝑎1[A])
+

𝑚𝐿2𝐾𝑎2[A]

(1+𝐾𝑎2[A])
          (3) 

  
1

𝑚𝐿𝑎𝑝𝑝
=

1+𝐾𝑎1[A]+𝛽2𝐾𝑎1[A]+𝛽2𝐾𝑎1
2[A]2

𝑚𝐿𝑡𝑜𝑡{(𝛼1+𝛽2−𝛼1𝛽2)𝐾𝑎1[A]+𝛽2𝐾𝑎1
2[A]2}

         (4) 

Examples for a two-site system are shown in Eqs. 3 and 4 [62,63].  In these equations, 

Ka1 and Ka2 represent the association equilibrium constants for the highest and lowest 

affinity binding sites for analyte A on the column, respectively, while mL1 and mL2 are the 

moles of these two types of binding sites.  In Eq. 4, β2 represents the ratio of the
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Figure 1-7. Example of double-reciprocal plots for frontal analysis studies examining 

(a) the binding of warfarin to HSA at various levels of glycation, and (b) 

the binding of acetohexamide to normal HSA.  The inset in (b) shows the 

linear fit for the lower values of 1/[acetohexamide].  Reproduced with 

permission from Refs. [13,18].   
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Figure 1-8. Fit of frontal analysis data obtained for glibenclamide on an HPAC 

column containing normal HSA when analyzed by (a) a single-site binding 

model based on Eq. 1 or (b) a two-site binding model based on Eq. 3.  The 

insets show the corresponding residual plots, where each point represents 

the average of four experiments.  Reproduced with permission from Ref. 

[19].  
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association equilibrium constants for the low vs. high affinity sites, where β2 = Ka2/Ka1.  

The fraction of all binding regions that are the high affinity sites is represented by α1, 

where α1 = mL1/mLtot [1,25-27,62]. 

Fig. 1-7(b) shows an example of a double-reciprocal plot that was obtained for a 

system with multisite binding [14].  Unlike a single-site system, a multisite interaction 

would be expected to have deviations from a linear response at high analyte 

concentrations (or low 1/[A] values), as shown in the inset of Fig. 1-7(b). However, at 

low analyte concentrations (or high values of 1/[A]), the relationship of 1/mLapp vs. 1/[A] 

does approach a linear response, as indicated by Eq. 5 [62,63].   

lim[A]→0
1

𝑚𝐿𝑎𝑝𝑝
=

1

𝑚𝐿𝑡𝑜𝑡(𝛼1+𝛽2−𝛼1𝛽2)𝐾𝑎1[A]
+

𝛼1+𝛽2
2−𝛼1𝛽2

2

𝑚𝐿𝑡𝑜𝑡(𝛼1+𝛽2−𝛼1𝛽2)2         (5) 

As the concentration of the analyte approaches zero and the value of 1/[A] increases, the 

apparent value of Ka that is obtained from the slope and intercept of this linear region has 

been shown to provide a good estimate for the association equilibrium constant of the 

high affinity site in a multisite binding system [62,63].  A non-linear plot of the data 

according to Eq. 3 can be used to provide information on the equilibrium constants and 

moles of active binding for the two-sites of interaction, as shown in Fig. 1-8(b).   

 

1.4. Zonal Elution Competition Studies 

Another commonly used technique in HPAC is zonal elution competition studies, 

which can also be used to examine the interactions between a drug and a protein 

[1,25,61].  A typical chromatographic system that could be used for this type of 

experiment is shown in Fig. 1-9(a). This type of system and experiment can be used to 

obtain information on the site-specific binding of a drug with a protein or immobilized 

agent, and on the type of competition this drug may have for other drugs or solutes at this
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Figure 1-9. (a) A typical chromatographic system for zonal elution competition 

studies and (b) representative results obtained for injections of R-warfarin 

in the presence of acetohexamide in the mobile phase on an HPAC column 

containing normal HSA.  In (a) the competing agent is in the mobile 

phase, while the different probes are injected onto the column.  The results 

in (b) are for acetohexamide concentrations of 20, 10, 5, 1 or 0 µM (top to 

bottom), using a 2.0 cm × 2.1 mm i.d. HSA column at 0.50 mL/min.  The 

vertical dashed line is shown for reference and demonstrates how the 

retention time for the injected probe changes as the concentration of 

acetohexamide is varied in the mobile phase.  The plot in (b) is reproduced 

with permission from Ref. [14]. 
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site [1,25-27].   A chromatographic system for zonal elution competition studies usually 

contains at least one HPLC pump, an injector, a chromatographic column, and detector.  

The pump functions to apply an injected sample of the probe or a mobile phase 

containing a competing agent through the column under isocratic conditions.  Additional 

pumps may be used to allow for the automated application of various concentrations of 

the competing agent, the use of more than one competing agent, or the use of gradient 

elution for removal of a retained solute from the column.  In these latter situations, a 

valve can be included to switch between the various mobile phases or competing agent 

solutions.  Injection of the sample can be carried out with a manual system or by using an 

autosampler [13-20].  Various detection modes can be utilized to monitor elution of the 

probe, including absorbance, fluorescence, chemiluminescence or mass spectrometry 

[61].   

In a typical zonal elution competition study, a small plug of a site-specific probe 

is injected onto the affinity column in the presence of a known concentration of a 

competing agent in the mobile phase.  Fig. 1-9(b) shows a typical zonal elution 

competition experiment.   The retention factor (k) for the injected probe is found by using 

Eq. 6, where tR or VR are the measured retention time or retention volume of the probe, 

and tM or VM represent the measured void time or void volume of a non-retained solute 

[1].   

                                                     𝑘 =
𝑡𝑅−𝑡𝑀

𝑡𝑀
=

𝑉𝑅−𝑉𝑀

𝑉𝑀
          (6) 

As shown in Fig. 1-9(b), as the concentration of the competition agent is 

increased, the retention time for the probe decreased.  A shift in the retention factor for 

the probe as the concentration of the competing agent is varied could be used to 
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determine if direct or allosteric competition is occurring between the probe and the 

competing agent at their sites of interaction on the column [45].  For example, if direct 

competition is present for these agents at a single site on an immobilized protein, Eq. 7 

can be used to describe the interaction of the probe and competing agent at their common 

site of interaction.   

                                                     
1

𝑘
=

𝐾𝑎I𝑉𝑀[I]

𝐾𝑎A𝑚𝐿
+

𝑉𝑀

𝐾𝑎A𝑚𝐿
         (7) 

According to this equation, such a system should result in a linear relationship between 

1/k for the probe and the concentration of the competition agent, [I] [1,25,61].    In this 

equation, KaA and KaI represent the association equilibrium constants for the probe and 

competing agent, respectively, and all other terms are as defined previously.  Fig. 1-10 

provides examples of plots that were obtained by using Eq. 7 [20].  The ratio of the slope 

to the intercept for a linear fit to this plot can be used to determine the association 

equilibrium constant for the competing agent at its site of competition with the probe 

[1,61].   

 

1.5 Overview of Dissertation 

 The purpose of this chapter was to provide the reader with an overview of the 

methods in HPAC for examining the binding by sulfonylurea drugs and other solutes 

with normal HSA and glycated HSA.  The methods for preparing the chromatographic 

supports and samples were discussed as well as the different chromatographic approaches 

for using these columns, were considered.  This dissertation will further discuss the 

utilization and development of tools based on HPAC for the analysis of drug-protein 

interactions with normal and glycated HSA.  In addition to these HPAC methods, a



30 

 

 

 

 

 

 

 

Figure 1-10. Analysis of results for zonal elution competition studies between (a) 

tolbutamide and R-warfarin and (b) acetohexamide and L-tryptophan on 

columns that contained in vivo glycated HSA samples.  These results are 

for two different in vivo samples of glycated HSA, as represented by (■) 

and (●).  Reproduced with permission from Ref. [20].  



31 

 

 



32 

 

structural analysis method based on multidimensional mass spectrometry will also be 

described. 

 Chapter 2 is a review that describes the techniques and methods that can be used 

to profile metabolite-protein interactions, as well as a summary of the information that 

can be obtained by examining these interactions.  In addition, the effects of metabolic 

disease on these interactions are described.   

Chapters 3-6 describe the use of HPAC to profile the binding of various second-

generation sulfonylurea drugs (i.e., gliclazide, glibenclamide, and glipizide) and a third-

generation sulfonylurea drug (i.e., glimepiride) to normal HSA and samples of HSA with 

various levels of in vitro glycation.  Frontal analysis will be used to determine the overall 

binding of these sulfonylurea drugs to normal and glycated HSA.  Various site-specific 

probes will be used in zonal elution competition studies to determine the site-specific 

binding of these sulfonylurea drugs to the different forms of HSA.  The data from these 

experiments will be fit to various binding models to determine the types of interactions 

that can occur between these drugs with normal and glycated HSA.  The results from 

these studies will indicate how the effects of glycation can affect the binding of these 

sulfonylurea drugs to HSA.   

Chapter 7 discusses the development of an on-line immunoextraction technique 

for examining drug-protein interactions.  The goal of this work will be to develop a 

method that can be used to directly use serum samples for HPAC studies with in vivo 

glycated HSA.  The extraction and chromatographic techniques used to evaluate this 

method will be described.   

Chapter 8 describes the use of multidimensional mass spectrometry and nano-
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electrospray ionization quadrupole time-of-flight mass spectrometry to qualitatively 

examine the structure of HSA.  Sequence analysis of the structure of HSA will be 

conducted by this method, with the results being compared to those that were obtained in 

previous studies involving matrix–assisted laser desorption/ionization time-of-flight mass 

spectrometry.  In addition to these results, analysis of several peptides on HSA will be 

conducted through collision induced dissociation, in which these peptides could be used 

for future work with glycated HSA.   
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CHAPTER 2: 

METABOLITE-PROTEIN INTERACTIONS 

Note: Portions of this chapter have appeared in R. Matsuda, C. Bi, J. Anguizola, M. 

Sobansky, E. Rodriguez, J. Vargas-Badilla, X. Zheng, B. Hage, D.S. Hage, “Studies of 

metabolite protein interactions: A review”, J. Chromatogr. B 968 (2014) 49-63. 

 

2.1  Introduction 

 Metabolomics is a field that involves the study of low mass compounds (i.e., 

metabolites) that are produced through metabolic processes [1,2].   Metabolites are part 

of a collection of chemicals known as the “metabolome”, which can include small 

molecules that are found in cells, tissues, organs, or biological fluids.  The area of 

metabolomics is of interest because the identity and concentration of metabolites can 

provide information about cellular activity and can be directly related to processes such 

as protein and gene expression [1-3].  This means that metabolomics can provide 

information on the phenotypes of individuals at the molecular level [3].  In addition, the 

characterization and examination of metabolites could lead to new discoveries in 

biomedical research and personalized medicine [1,3]. 

 Research in metabolomics began in the late 1990s and early 2000s, with the 

emphasis at that time being on the effects of different metabolites on the gene expression 

of bacteria and yeast [1].  The first examples of metabolomic studies utilized two-

dimensional thin-layer chromatography separations to characterize metabolites in 

samples.  This provided researchers with evidence that variation in the concentrations of 

metabolites can affect cellular activity [1,4-6].  Further progress in the area of analytical 

methods such as structural characterization and separation methods has resulted in the 
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development of new instruments and techniques that can be used to provide high 

resolution information and data from complex samples such as tissues and cells [1,2].   

Research in metabolomics can involve either targeted or untargeted approaches 

[7].  In a targeted approach, researchers use qualitative techniques such as nuclear 

magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) for the 

identification, quantification, and structural characterization of specific metabolites.  This 

information can be used to examine specific classes of metabolites and to provide 

information on the biochemical pathways that are involved in metabolism [2].  In an 

untargeted approach, scientists use global profiling to analyze the group of chemicals in a 

metabolome as a whole.  This second approach is less specific and sensitive than the 

targeted approach but allows for the highest possible coverage of the metabolites that 

may be involved in biochemical pathways [7].   

 A significant amount of recent research has been devoted to metabolic profiling, 

or the identification and measurement of the different metabolites that are present and 

produced in the metabolome [8].  However, it is also important to consider the 

interactions that occur between metabolites and biological agents, such as the binding of 

cofactors to enzymes, hormones to receptors, and drugs or their metabolites to proteins 

[8].  Information on these interactions can be combined with the structural data to provide 

a better understanding of the regulatory networks and connections in biological pathways.  

Such information, in turn, could provide a better understanding of how healthy and 

disease states differ at the molecular level and could provide vital data that can be used 

for pharmaceutical development [7,9].    

This chapter will look at previous studies that have examined biological 
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interactions as related to metabolites and proteins as binding agents.  This will include an 

overview of the various methods and techniques that have been used in this work to study 

metabolite-protein interactions.  A summary will also be provided of the different types 

of metabolite-protein binding interactions that have been investigated with these 

approaches.  In addition, the possible effects that metabolic diseases may have on these 

interactions will be considered.  

   

2.2 Techniques for examining metabolite-protein interactions 

The characterization of metabolite-protein interactions can provide a better 

understanding in clinical diagnostics of the cellular activity and the biochemical 

pathways that are present in various medical conditions [1-3,9].  There are many methods 

that can be used to examine the binding of metabolites with proteins.  These methods 

may involve the direct examination of binding that occurs between proteins and low mass 

drugs, hormones and their metabolites, or may involve an examination of the free 

concentrations of these molecules [9-12].  The approaches that are used for this purpose 

can be divided into three categories: in vitro, in vivo and in silico techniques [9,11-46]. 

 

2.2.1 In vitro methods for studying metabolite-protein interactions  

In vitro methods are the most popular techniques used to characterize metabolite-

protein interactions.  This approach involves the use of standard, well-controlled 

conditions and reagents that are used in the laboratory to mimic conditions seen in 

biological systems.  To examine metabolite-protein interactions, in vitro methods may 

use a binding assay (e.g., one based on ultrafiltration or equilibrium dialysis) to examine 

an interaction or to identify the chemicals that are involved in this process [9].  This 
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approach can provide information such as the strength of the interaction, as well as the 

thermodynamics and kinetics of binding and possible conformational changes that occur 

as a result of the interaction [13-15].  Alternatively, an in vitro study may make use of a 

method that directly examines the structure of a protein and a bound metabolite, such as 

occurs in X-ray crystallography or NMR spectroscopy [1,16-20].  Other methods may 

examine the protein-metabolite complex, as demonstrated with mass spectrometry [24-

29].  

There are many in vitro approaches that can be used to examine the binding of 

proteins with small molecules and their metabolites.  For instance, radiometry and 

fluorimetry can be used with a binding assay by employing labeled metabolites that 

contain either a radioisotopic label or fluorophore, respectively [10,21-23].  These labeled 

metabolites are then incubated with proteins and the signal that is produced from the label 

is measured, such as through a displacement assay or a proteome microarray [10,23].  

Radioisotopic labeling has been applied to enzymes to determine their activity in 

metabolomic reactions [9].  An example involved the screening of potential inhibitors for 

an enzyme, in which the substrate was radioactively labeled and the resulting metabolite 

profiles were analyzed and measured [21].  Fluorescence labeling can provide similar 

results to radiolabeling; however, this method can also be used to identify and determine 

the location of a binding site for a metabolite on a protein, such as by observing the 

displacement of specific probes that are bound to known locations on a protein [10].   

Surface plasmon resonance (SPR) and calorimetry are two other methods that can 

provide information on the strength of protein-metabolite binding and the 

thermodynamics or kinetics of this interaction [13-15].  Studies based on SPR utilize an 
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immobilized protein on a sensor chip, in which changes in the resonance energy (e.g., 

from binding of the protein with a target) are detected [9].  The change in this signal is 

related to the mass of the bound metabolites and can be used to determine the equilibrium 

constants for this process or, if examined over time, the association and dissociation 

kinetics that occur between the metabolite and protein [9].  The reaction between a 

metabolite and protein can result in heat being absorbed or given off [9,13].  Calorimetry 

can be used to measure the overall enthalpy of the binding reaction between a metabolite 

and a protein [13].   

NMR spectroscopy and X-ray crystallography are two tools that have been used 

to characterize the structures of metabolite-protein complexes [9,16-20].   NMR 

spectroscopy has often been used in recent years for characterizing and identifying 

metabolites in biological samples, but this method can also be used to examine 

conformational changes that occur during the binding of metabolites with proteins [18-

20].  X-Ray crystallography can also give structural information on such interactions by 

providing detailed information on the binding sites and active sites for hormones, drugs 

and their metabolites or related compounds on proteins and enzymes [16-17], as is 

illustrated in Fig. 2-1 [30]. 

Mass spectrometry can not only be used as a tool for analyzing the structure and 

identity of metabolites, but it can be used to analyze metabolite-protein interactions in 

which information about enzymatic processes or binding by small molecules is generated 

[9].  Experiments utilizing various types of mass spectrometry, such as quadrupole mass 

spectrometry or matrix-assisted laser desorption/ionization time-of-flight mass 

spectrometry (MALDI-TOF MS), have allowed for analysis of the reaction kinetics and
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Figure 2-1. Crystal structure for the complex of human androgen receptor ligand-

binding domain with testosterone (Testo).  Reproduced with permission 

from Ref. [30]. 
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determination of the products produced from enzyme-substrate reactions [7,24,25].  

Further analysis through high resolution mass spectrometers (e.g., an orbitrap or Fourier 

transform ion cyclotron resonance mass spectrometry) has resulted in the identification of 

intermediate steps in enzymatic reactions from an accurate analysis of enzymatic 

activities [26-29].   

Various separation techniques can also be used to examine metabolite-protein 

interactions.  Examples of traditional methods often utilized for this purpose are 

equilibrium dialysis, ultrafiltration, and ultracentrifugation [9,31-33].  Equilibrium 

dialysis and ultrafiltration can be used to separate protein-bound metabolites from free 

metabolites through the use of a semipermeable membrane.  These methods are 

commonly applied to determine the affinity of proteins with drugs and small solutes, but 

can also be employed to examine the interactions of metabolites with proteins [31].  

Ultracentrifugation can be used to provide a similar separation of free and protein-bound 

forms of a metabolite by utilizing a gravitational field in combination with a density 

gradient to separate these fractions [9,32].  However, each of these methods have 

limitations, such as  difficulties in detecting small free solute fractions, undesirable 

adsorption of solutes onto the membrane (e.g., in ultrafiltration or equilibrium dialysis), 

or overestimation of the free fraction due to release of the bound solute during the 

separation process [33]. 

Various chromatographic techniques have also been employed to separate free 

and protein-bound metabolite fractions [34].  As an example, size exclusion 

chromatography (SEC) can be applied to this type of analysis when metabolite-protein 

complexes and free metabolites have a sufficiently large difference in size.  In this type of 
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study, metabolites or small molecules are incubated with a protein, and SEC can be used 

to remove the small molecules from proteins [34].  Such a method can be used for either 

the isolation and preparation of metabolite-protein complexes, which can then be 

analyzed by other methods, or can be used in binding studies to provide information on 

the association equilibrium constant for a metabolite-protein interaction [8,34,35].   

Affinity chromatography and high-performance affinity chromatography (HPAC) 

have also become popular for analyzing solute-protein interactions [35-38].  These 

affinity methods have an immobilized biological molecule, such as a protein, as the 

stationary phase.  When used in a low-performance setting, affinity chromatography can 

be used in a similar way as SEC in that it can be used for preparation and purification.  

The use of more rigid and efficient supports in HPAC allows this approach to be used as 

a rapid and relatively high-throughput method for providing information about solute-

protein interactions.  This information can include data on the affinity, thermodynamics 

and kinetics of these processes, as well as information on the types of sites that are 

involved in the interaction (see Fig. 2-2) [35-39].   

Capillary electrophoresis (CE) is another separation method that can be used to 

examine metabolite-protein binding [9,37,40,41].  One way this method can be used is to 

separate the free and bound metabolites through the differences in their size-to-charge 

ratios.  This approach can be utilized to determine the affinity of metabolite-protein 

binding or combined with other methods such as mass spectrometry to examine the free 

and bound metabolites [41].  One form of CE is affinity capillary electrophoresis (ACE), 

in which a biological molecule such as a protein is used as a running buffer additive, thus 

making it possible to obtain data on the interactions of solute components with this
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Figure 2-2. Example of a competition study using high-performance affinity 

chromatography to examine the interactions of an injected site-selective 

probe with a solute that is present at a known concentration in the mobile 

phase.  This example shows the change in the retention factor (k) that was 

measured for R-warfarin as a probe for Sudlow site I of human serum 

albumin (HSA) in the presence of various concentrations of tolbutamide as 

a competing agent.  These results were obtained for columns that 

contained two clinical samples of HSA that had different levels of 

modification due to glycation.  Adapted with permission from Ref. [39].   
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additive [40].  Like HPAC, ACE is a relatively fast method and can be used with small 

amounts of sample for the screening or analysis of metabolite-protein interactions 

[38,40]. 

   

2.2.2 In vivo methods for studying metabolite-protein interactions  

Although in vitro methods can provide detailed information about metabolite-

protein interactions, in vivo analysis can provide a better description for the metabolite-

protein interactions that occur within a biological sample [8,9].  This is particularly true 

in a situation where a protein may undergo post-translational modifications that result in 

changes in the protein’s interactions with solutes such as drugs and their metabolites [9].  

In vivo methods are often similar to techniques used for in vitro studies but must be able 

to work with complex samples.  In many cases, clinical samples from patients can be 

obtained and analyzed through approaches such as labeling, NMR or MS structural 

characterization, and affinity separation methods.  By utilizing in vivo studies, researchers 

are better able to understand the effect of disease states on metabolite-protein 

interactions, as well as related biochemical pathways and regulatory processes [9,39]. 

 

2.2.3 In silico methods for studying metabolite-protein interactions  

Another area of examining metabolite-protein interactions is through in silico 

tools [9].  These methods utilize computational schemes to determine the docking 

configurations of a metabolite’s binding sites on proteins or enzymes, as obtained 

through the use of molecular modeling or quantum mechanics [42,43].  This approach 

can provide information about the structure of a metabolite-protein complex at a given 

binding site through an analysis of the most thermodynamically-favorable configurations.  
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These computational methods can result in docking predictions that have a 1.5 to 2 Å 

accuracy with success rates of 70-80% [43].  If the location of a binding site is not known 

in advance, a homology method can be used to predict binding sites on a protein through 

the use of the protein’s amino acid sequence and chemical structures of the metabolites 

[44].  This method can allow for accurate prediction of ligand-binding proteins and 

enable the development of a database for these peptide sequences selected for binding to 

different metabolites [9,45].   These in silico methods can be combined with in vitro 

analysis to optimize the structural characterization of metabolite-protein interactions, as 

demonstrated in NMR experiments [46].   

 

2.3 Interactions of proteins with hormones and related metabolites 

Hormones are chemicals that are secreted by endocrine glands.  Hormones play a 

significant role in many regulation pathways, including metabolism, growth and 

development [47,48].  Examples of low mass hormones include various types of steroids 

(e.g., estrogens and testosterone) or thyroid hormones (e.g., thyroxine) [49-52].  As these 

chemicals enter the circulation, they are carried to their target tissue or organ to produce 

an effect.  Many low mass hormones are transported in the bloodstream through their 

binding to serum proteins [51,52].  These transport proteins may bind to a broad range of 

hormones and other targets, as occurs for human serum albumin (HSA), or they may be 

specific for a given hormone or group of hormones, as is the case for thyroxine-binding 

globulin (TBG) [49].  Once it has been delivered to its target tissue or organ, the hormone 

can then bind with a receptor to produce an effect. This section will consider interaction 

studies that have been reported for several types of hormones or their metabolites with 

serum proteins and hormone receptors. 
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2.3.1 Thyroid hormones 

Thyroid hormones are a group of iodothyronine compounds that are responsible 

for metabolism, growth, development, and the regulation of iodine within the body [47].  

Many of these hormones are bound in the bloodstream to both HSA through low-to-

moderate affinity interactions and to transthyretin or TBG through higher affinity 

processes [48,49].  An important compound in this group is the hormone L-thyroxine (L-

3,5,3’,5’-tetraiodothyronine, or T4), which can be metabolized to form L-3,5,3’-

triiodothyronine (T3) [53,54].  Both T4 and T3 are actively involved in regulatory 

processes and are more than 99% bound to transport proteins in blood [49,53,54].   

Several studies have explored the structural differences between thyroid 

hormones and related compounds as they bind to serum proteins or cell surface receptors 

[53-55].  One report utilized HPAC to characterize the binding of T4, T3 and related 

compounds with HSA; the results were used to examine both the affinity constants and 

thermodynamic properties of these compounds in their interactions with this protein [54].  

Some typical results that were obtained in competition studies and through the use of site-

specific probes are provided in Table 2-1.  The results indicated that these thyroid 

hormones were interacting with HSA at both of the major drug-binding sites o (i.e., 

Sudlow sites I and II) [53,54].   A comparison of the data obtained for the thyroid 

hormones and their metabolites indicated that the number and position of iodines, the 

phenol group, and the thyronine backbone were all important during the binding of these 

compounds to HSA [54].  Structural studies have also been carried out through the use of 

modeling and crystallographic data to examine the binding of thyroxine and related 

compounds to a cell surface receptor for thyroid hormones on αvβ3 integrin [55].  
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2.3.2 Steroid hormones 

The protein binding of steroid hormones and their metabolites has also been 

characterized through a variety of techniques.  As an example, the crystal structure of the 

serum transport protein sex-hormone binding globulin (SHBG) was determined for a 

complex of this protein with 5α-dihydrotestosterone [56].  SHBG is an important binding 

agent in blood for many sex hormones and related compounds, including estradiol, 

testosterone, androste-5-ene-3β,17β-diol, and 5α-dihydrotestosterone [47,49,56].  The 

information that was obtained from the crystal structure for the 5α-

dihydrotestosterone/SHBG complex was compared with the results of previous binding 

studies for steroid hormones with SHBG [57,58], and this allowed a model for the 

binding sites for these compounds to be developed.  This model gave good agreement 

with prior data from site-directed mutagenesis [59-61] and photolabeling experiments 

[62,63] that have been conducted with SHBG [58].  

Another structural study looked at the interactions between the human androgen 

receptor (AR) ligand-binding domain and several androgen-related steroid hormones and 

metabolites [30].  The compounds that were examined included testosterone, 

dihydrotestosterone, and tetrahydrogestrinone.  An example of some of the results was 

provided earlier in Fig. 2-1.  Both the binding affinity and structural characteristics for 

the complexes of these agents with AR were explored.  Tetrahydrogestrinone was found 

to have the highest affinity for the AR ligand-binding domain.  This strong binding was 

thought to be due to the presence of greater van der Waals interactions for this compound 

than for the other steroids that were studied.  Dihydrotestosterone had a higher affinity 

than testosterone, an effect that was proposed to be due to the stronger electrostatic 
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interactions between the structure of dihydrotestosterone and the AR binding domain 

[30]. 

 

2.4 Interactions of proteins with fatty acids and related metabolites 

Fatty acids can also have significant binding to proteins.  These compounds are 

carboxylic acids that contain hydrocarbon chains with lengths of 4 to 36 carbons.  In 

some fatty acids, the hydrocarbon chain is unbranched and fully saturated, such as 

myristic acid (C14:0).  In others, the chain contains one or more double bonds, as is the 

case of linoleic acid (C18:2) [48].  Long chain fatty acids (i.e., fatty acids with chains 

containing 16-20 carbons) are particularly critical for a diverse set of cellular and 

metabolic functions.  For instance, long chain fatty acids act as fuel that can be stored as 

triacylglycerols (or triglycerides) and that can be used to generate ATP through -

oxidation in mitochondria and peroxisomes.  In addition, fatty acids are the precursors of 

phospholipids and glycolipids, which are needed for the construction of membranes [64]. 

Long chain fatty acids such as oleic (C18:1), palmitic (C16:0), linoleic (C18:2), 

stearic (C18:0), arachidonic (C20:4) and palmitoleic (C16:1) are crucial intermediates in 

lipid metabolism [65].  They tend to have low solubility in water and are typically bound 

in plasma to proteins, with less than 0.1% being present as non-bound, or “free”, fatty 

acids.  Most of the long chain fatty acids in the blood are transported by HSA [65-68].  

HSA carries between 0.1 and 2 mol of fatty acids under normal physiological conditions.  

However, this value can rise to as high as 6 mol fatty acid per mol of HSA in the 

peripheral vasculature during fasting or exercise or disease states such as diabetes, liver 

and cardiovascular disease [67].  

Many recent studies have attempted to locate fatty acid binding sites on HSA by 
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using X-ray crystallography or NMR spectroscopy [67,69-73].  In addition, site-directed 

mutagenesis has been utilized with these methods to see how specific sequence changes 

will affect HSA’s binding properties and structure [67,69].  Such studies have revealed 

that five to seven binding sites on HSA may be occupied by medium and long-chain fatty 

acids [71].  These binding sites are asymmetrically distributed across the three domains 

of HSA, with three of these sites overlapping Sudlow sites I and II [70].  All of these sites 

have similar structural interactions with fatty acids, providing a deep hydrophobic pocket 

for the methylene tail and containing two or three polar surface residues nearby which 

provide a binding location for the carboxylic head group of the fatty acid.  

A variety of techniques have also been employed to estimate the binding 

constants for fatty acids at their sites on HSA.  The strongest of these interactions have 

association equilibrium constants that range from 10
5
 and 10

8
 M

-1
 [66,74-77].  It has been 

observed for fatty acids with multiple binding sites on HSA that the value of the 

individual association constants for each mole of added fatty acid increased as the length 

of the fatty acid chain was raised [71].  It was later found that the association equilibrium 

constant for the first bound fatty acid increases with chain length but that this increase 

does not necessarily occur in a linear fashion; instead, the affinity is generally dependent 

on the hydrophobic portion of the fatty acid and how it interacts with HSA [69].  It has 

further been demonstrated that some fatty acids can have direct competition with drugs 

on HSA or can lead to allosteric effects during these binding processes [72,74,75,78]. 

 

2.5 Interactions of proteins with drugs and related metabolites 

Numerous studies have examined the interactions of drugs and their metabolites 

with proteins.  Like low mass hormones, many drugs and their metabolites are 



59 
 

 
 

transported throughout the body through the use of serum transport proteins.  

Approximately 43% of the 1500 most commonly used pharmaceutics have at least 90% 

binding to such binding agents [35,79].  These interactions usually involve proteins that 

can bind to a broad range of targets, such as HSA and alpha1-acid glycoprotein (AGP), 

and can play a significant role in determining the activity, distribution, rate of excretion 

or metabolism, and toxicity of many pharmaceutical agents in the body [80].  In recent 

years there has also been interest in how the presence of drug metabolites can affect the 

distribution, apparent activity, and protein interactions of the parent drug [81].  

 

2.5.1 General effects of metabolites on drug-protein interactions 

Many studies have investigated the difference between drugs and their 

metabolites in their overall binding in serum or to specific serum proteins.  For instance, 

equilibrium dialysis was used to examine the binding of propisomide and its major 

metabolite to human serum and isolated serum proteins such as AGP [82] and the binding 

of acetohexamide and its metabolite (-)-hydroxyhexamide to HSA [83].  Another study 

utilized a similar approach to investigate the binding by tolterodine and its 5-

hydroxymethyl or N-dealkylated metabolites to human serum, HSA and AGP [84].  

Equilibrium dialysis was also used to measure the binding of tizoxanide, an active 

metabolite of the drug nitazoxanide, with albumin and AGP [85].   

A few studies have been conducted to provide a more detailed comparison of the 

binding regions and binding constants for drugs and their metabolites on serum proteins.  

As an example, HPAC and competition studies have been used to compare the binding 

regions on HSA for the drug phenytoin and its two major metabolites: 5-(3-

hydroxyphenyl)-5-phenylhydantoin and 5-(4-hydroxyphenyl)-5-phenylhydantoin (i.e., m-
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HPPH and p-HPPH, respectively) [81,86].  In an examination of both the major and 

minor drug binding regions of HSA, phenytoin was found to have direct binding at 

Sudlow site II and the digitoxin site, with association equilibrium constants at these 

regions in the range of 0.65-1.04 × 10
4
 M

-1
 at 37 ºC and pH 7.4 (see Table 2-2).  The 

same drug had allosteric effects plus possible direct binding at Sudlow site I and the 

tamoxifen site [86].  However, m-HPPH and p-HPPH only had significant interactions 

with Sudlow site II, with binding constants of 0.32-0.57 × 10
3
 M

-1
 for this region [81].  

Thus, the parent drug and its metabolites not only had different affinities for HSA but 

also had differences in the number of interaction sites [81,86].  

 

2.5.2 Effects of chirality on drug metabolite-protein binding   

 Another factor to consider for drug- and drug metabolite-protein binding is the 

effect of chirality on these interactions.  Chiral drugs have been estimated to represent 

40-50% of all drugs that are currently on the market [87,88].  The separate chiral forms 

for some drugs can exhibit a wide variation in their toxicology, pharmacokinetics and 

metabolism.  In the extreme case, one enantiomer may produce the desired function in 

treatment while another may be inactive or even produce undesirable toxic effects.  This 

is because numerous biomolecules (i.e., enzymes and plasma proteins) work as chiral 

selectors, which can produce different binding or metabolic processes to occur for each 

chiral form of a drug [89-95]. 

These differences have made it possible in the past to use protein-based HPLC 

columns, such as those containing serum proteins, for separating the various chiral forms 

of many drugs [93-95].  The same approach has been utilized to separate and measure 

chiral drugs and their metabolites in biological samples.  For instance, an AGP column
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was recently used with fluorescence detection to measure the enantiomers of tramadol 

and its two major metabolites, O-desmethyltramadol and N-desmethyltramadol, in 

plasma samples (see Fig. 2-3).  This method was then used to examine the 

pharmacokinetics for each of these compounds in the body [96]. A similar approach has 

been used with LC-MS to examine the chiral forms of methadone and its metabolites 2-

ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine and 2-ethyl-5-methyl-3,3-diphenyl-1-

pyrroline in hair samples from patients undergoing methadone maintenance therapy 97].   

 As has been observed for their parent drugs, the different forms of a chiral 

metabolite can also differ in how they interact with proteins.  One report compared the 

chiral forms of oxybutynin and its metabolite, N-desethyloxybutynin, in their binding and 

competition on HSA and AGP.  The results showed that the affinity of oxybutynin 

enantiomers on AGP was much higher than on HSA, and that the enantiomers of N-

desethyloxybutynin and oxybutynin were all bound by the same site on AGP [33].  

Another study involving the phenytoin metabolites m-HPPH and p-HPPH compared the 

dissociation rates of the chiral forms of these metabolites from an HPLC column 

containing immobilized HSA [98].  Dissociation rate constants of 8.2-9.6 s
-1

 were 

obtained at pH 7.4 and 37º C for the enantiomers of m-HPPH, while values of 3.2-4.1 s
-1

 

were obtained for the enantiomers of p-HPPH.  These results were then used along with 

separate estimates of the association equilibrium constants to also compare the 

association rate constants for these metabolites and their enantiomers [98]. 

 

2.5.3. Use of binding data to characterize protein interaction sites for drug metabolites   

A number of reports have used binding data for drugs, their metabolites and 

related analogs to learn about the binding site of these compounds on a protein.  Binding
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Figure 2-3.  Chiral separation and analysis of tramadol and its major metabolites using 

HPLC and a column containing immobilized APG as stationary phase.  

The results in (a) are for a blank human plasma sample.  The results in (b) 

are for a plasma sample taken from a volunteer 2.5 hours after receiving a 

100 mg dose of racemic tramadol.  Symbols: enantiomers of tramadol, 

+(T) and –(T); enantiomers of the metabolite O-desmethyltramadol, 

+(M1) and –(M1); enantiomers of the metabolite N-desmethyltramadol, 

+(M2) and –(M2); and internal standard (fluconazol), IS.  Adapted with 

permission from Ref. [96].  
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and retention data that have been acquired by HPAC have been used to examine the 

binding of several types of compounds with immobilized serum proteins.  This approach 

has been used to examine the binding of warfarin and coumarin compounds to HSA [99-

101], as well as the binding of L-tryptophan and various indole compounds to this protein 

[102-104].  The same general method has been used to compare the binding of several 

sulfonylurea drugs with HSA and various preparations of glycated HSA [39,105-110]. 

If a relatively large group of compounds is considered in a binding study, the 

results can be used to create a quantitative structure-retention (or reactivity) relationship 

(QSRR) to describe the site at which these agents are binding to a protein [111-114].  For 

instance, binding studies based on HPLC or CE using serum proteins can be used to 

mimic biological systems and to quickly study how changes in the structure of an applied 

drug or analog will alter these interactions [115,116].  This format has been used to build 

models that describe the binding of HSA with benzodiazepines [117-119].  Such an 

approach has also been utilized to examine the binding of AGP with beta-adrenolytic 

drugs, antihistamines, amino alcohols, cyclic vinca alkaloid analogs, and quinazolone 

derivatives [116,120-125].  

 

2.6  Interactions of proteins with xenobiotics and related metabolites 

The term “xenobiotics” refers to chemicals that are produced synthetically and 

that are not normally found in biological organisms [126].  Drugs represent one type of 

xenobiotic, but others include environmental pollutants and food additives [126-128].  

When they enter the body, xenobiotics can be metabolized through various enzymatic 

processes.  The resulting metabolites, in turn, can sometimes interact with proteins and 

compete for endogenous compounds for common binding agents [126,129].   
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Several studies have examined the effects that xenobiotics and their metabolites 

may have on hormone-protein binding [127,130,131].  For example, the effect of 

polybrominated diphenyl ethers (PBDEs) on the binding of thyroid hormones to serum 

proteins has been examined [131].  It has been suggested in several studies that 

environmental exposure to PBDEs can result in decreased thyroid hormone 

concentrations in serum, leading to possible neurotoxicity and behavioral effects [131-

133].  This effect may be linked to the fact that, when metabolized, PBDEs become 

hydroxylated and produce a chemical structure similar to that of T4 and its metabolites.   

It has been further found that PBDE metabolites are able to bind to T4-binding proteins in 

serum, which could result in the displacement of thyroid hormones.  One study examined 

the binding of transthyretin and TBG with fourteen hydroxylated PBDE compounds 

through various methods.  A fluorescence displacement assay indicated that hydroxylated 

PBDEs could compete with T4 for binding sites on transthyretin, while work with circular 

dichroism indicated that hydroxylated PBDEs could bind to the same sites as T4 on TBG 

and transthyretin [131].  Binding and competition with T4 has also been noted for some 

polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), and related 

metabolites or compounds with human thyroid receptor, TBG, and transthyretin [130]. 

Another report examined the effects for a number of xenobiotics and their 

metabolites on the binding of 17β-estradiol to the estrogen receptor and on the binding of 

5α-dihydrotestosterone to the androgen receptor, androgen-binding protein, and SHBG 

[127].  Compounds that were tested included hexachlorocyclohexane, DDT, 

methoxychlor, pentachlorophenol, and nonylphenol.  It was found that some of these 

xenobiotics and metabolites could cause a significant decrease in the binding of 5α-
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hydrotestosterone or 17β-estradiol to their binding proteins.  It was further found that 

binding by these xenobiotic agents could be selective for the steroid receptors and 

binding proteins that were tested [127].   

 Polyphenolic compounds are flavonoids that are often used as dietary 

supplements [128].  Ultrafiltration and CE were used to examine the binding of these 

compounds to the human serum proteins HSA and AGP.  Although similar in structure, 

these compounds did vary in their affinity towards HSA, with a high level of binding 

being observed for those compounds with hydrophobic properties and a carbonyl at a 

certain key position in their structure.  It was further noted that these hydrophobic 

properties did not play a major role in the ability of polyphenolic compounds to bind with 

AGP [128].   

 

2.7  Variations in protein structure and binding due to metabolic processes 

Another way in which changes in metabolites may affect solute protein 

interactions is through changes that are created in the structure of the protein.  In some 

cases, these changes may be a direct result of the modification of a protein by a 

metabolite (e.g., glycation, as discussed in the next section) [39,80,93,134].  In others, 

this change may be a response to differences in a protein’s environment that are created 

as the metabolic profile is altered (e.g., as might occur through oxidation) [135,136].  

This section will discuss both types of effects using changes that have been observed in 

serum transport proteins and binding agents as examples.   

 

 

2.7.1.   Human serum albumin 

One protein that has been found to be altered by some metabolic disease is HSA.  
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As has been indicated earlier, HSA is a serum protein that plays a fundamental role in the 

reversible binding and transport of metabolites, drugs and various endogenous ligands, 

such as fatty acids [65,137].  HSA is normally found in blood at concentrations ranging 

from 30-50 g/L and accounts for approximately 60% of the total serum protein content 

[65].  Binding to HSA is known to greatly influence the pharmacokinetics and activity of 

many common drugs [49,138-140].  In addition, HSA can increase the solubility of 

lipophilic drugs, sequester toxins, and act as an important antioxidant in plasma [49,65]. 

Several past studies have noted that the chemical modification of HSA can alter 

its binding to drugs, hormones and other solutes.  For instance, the reaction of HSA with 

p-nitropheny acetate, which is thought to mainly modify Tyr-411 at Sudlow site II, can 

change the binding of various solutes with this protein [141].  The modification of Trp-

214 by o-nitrophenylsulphenyl chloride has been demonstrated to change the 

stereoselectivity and binding affinity of Sudlow site I of HSA [142].  Similar work has 

been presented that has examined the effects of modifying the lone free cysteine group on 

HSA by reacting this protein with ethacrynic acid [143,144].       

Diabetes is a metabolic disease in which the structure of HSA can be modified.  

This disease is actually a group of disorders that are characterized by abnormal high 

levels of blood glucose (i.e., hyperglycemia) that result from insulin deficiency and/or 

insulin resistance [145].  Many of the long term complications of diabetes, such as heart 

disease and nerve damage, are associated with the non-enzymatic glycation of proteins 

[145,146].  Glycation starts with the nucleophilic attack of a reducing sugar (e.g., 

glucose) onto some of the primary amine groups on proteins to form a reversible Schiff 

base (see Fig. 2-4).  This intermediate can then slowly rearrange to form a more stable 
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Figure 2-4. Reactions involved in the early stages of glycation of a protein, using 

human serum albumin (HSA) as an example [105,145].  This figure has 

been reproduced with permission from Ref. [105]. 
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Amadori product [145-147].  Oxidation of the Amadori products or free sugars can also 

generate reactive α-oxaloaldehydes that can react with both lysines and arginines on 

proteins to form advanced glycation end-products (AGEs) [147]. 

In recent years, it has been found that glycation can affect the binding of several 

endogenous and exogenous solutes with HSA.  For example, L-tryptophan is an essential 

amino acid [148] and has been extensively used as a site-selective probe for Sudlow site 

II of glycated HSA and normal HSA [105-108,149].  Recent binding studies using 

glycated HSA with levels of modification similar to those found in diabetes found an 

increase of 4.7- to 5.8-fold in the affinity of L-tryptophan for this protein at 37 °C 

[106,149].  Sulfonylurea drugs are a group of anti-diabetic drugs that are used in the 

management of type 2 diabetes; these drugs are also highly bound to serum proteins such 

as HSA.  Binding studies based on HPAC have found that glycation can affect the 

binding strength of these drugs to HSA, with both the degree of glycation and the specific 

type of drug influencing the size of the change [39,105-110].  

As indicated in the last section, fatty acids are the major endogenous ligands of 

HSA and are also known to have many binding sites on this protein [75].  Reports that 

have examined the combined effect of glycation and the presence of various fatty acids 

on the binding of sulfonylurea drugs to HSA have found that glycation increases the 

overall affinity of these drugs to HSA, while the addition of increasing amounts of fatty 

acids causes a decrease in affinity [74,76].  It has further been noted that glycation could 

produce changes of at least 3- to 5-fold in the affinities of some fatty acids at their sites of 

competition with sulfonylurea drugs when comparing the binding of these solutes to 

normal HSA [76].             
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Methylglyoxal is a highly reactive metabolite of glucose that has been implicated 

in several chronic diseases associated with diabetes [150,151].  The elevated 

concentrations of methylglyoxal in diabetes patients can also lead to protein modification 

and the formation AGEs through the reaction of methylglyoxal with arginine or lysine 

residues.  A recent report using quantitative MS and multiple reaction monitoring found 

that a major site for modification by methylglyoxal on HSA occurs at Arg-257, which is 

located in Sudlow site I.  Molecular modeling conducted in the same study indicated that 

a decrease in binding by warfarin may occur due to these modifications when comparing 

glycated HSA and normal HSA [151]. 

 

2.7.2.  Alpha1-acid glycoprotein 

A second type of serum transport protein that can be affected by metabolic 

diseases is AGP.  AGP is an acute-phase protein that is responsible for binding and 

delivering numerous basic and neutral drugs in the bloodstream [121].  The concentration 

of AGP in blood can vary over a wide range and is affected by systemic tissue injury, 

inflammation and infection.   In addition, the glycosylation of AGP can be altered in 

some disease states, such as rheumatoid arthritis, systemic lupus erythematosus and 

autoimmune thyroid disease [152].  These changes are important because they can also 

alter the binding of drugs to AGP.  As an example, the affinity of disopyramide for AGP 

has been found to be affected by the biantennary glycan structures for this protein 

[153,154].  It has also been reported that genetic variants of AGP can have a significant 

effect on binding by chiral drugs such as disopyramide and warfarin [153,155].   

A number of reports have looked at how changes in AGP binding can affect 

parent drugs compared to their metabolites.  One study evaluated the effect of AGP on 
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lidocaine and its active metabolites monoethylglycinexylidide and glycinexylidide during 

continuous epidural anesthesia in infants and young children.  The results indicated the 

AGP concentration in plasma could be used as an index to monitor and prevent the 

toxicity caused by the accumulation of monoethylglycinexylidide during the continuous 

administration of lidocaine [156].  Another report looked at the concentrations of 

vecuronium and its metabolite 3-OH desacetylvecuronium in children who were 

receiving phenytoin or carbamazepine for chronic anticonvulsant therapy [157].  These 

last two drugs were of interest because many anticonvulsant drugs have been shown to 

increase the concentration of AGP in plasma, which can then increase protein binding to 

cationic drugs and alter their distribution.  It was found that the increase in AGP 

concentration associated with the anticonvulsant therapy did not significantly contribute 

to resistance to vecuronium [158]. 

 

2.7.3.  Lipoproteins   

Lipoproteins are another set of binding agents in serum that can be affected by 

metabolic diseases.  Lipoproteins are macromolecular complexes of proteins and lipids 

that transport hydrophobic lipids and related compounds, such as cholesterol and 

triglycerides, throughout the body [158-161].  Lipoproteins are also known to interact 

with several basic and neutral hydrophobic drugs in blood [99,162-172].  Examples of 

drugs that bind to lipoproteins are propranolol and verapamil [37,162-169,173-175]. 

Lipoprotein concentrations in blood can vary with different disease states.  For 

example, the levels of low-density lipoprotein (LDL) in plasma can increase in diseases 

such as atherosclerosis and hyperlipidemia [176].  In addition to changes in the levels of 

lipoproteins in the circulation, metabolic diseases often result in modifications in 
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lipoprotein structures.  For instance, increased amounts of LDL that have been modified 

by AGEs are found in diabetics and non-diabetics with renal failure.  Glycation of LDL 

may lead to the formation of foam cells and an increase in atherosclerosis.  In addition, 

glycated LDL is more susceptible to further modifications due to oxidation [135].  

The oxidation of lipoproteins occurs through free radicals, such as peroxyl 

radicals, which are released from cells and chemical reactions [136].  These radicals can 

react with lipoproteins, depleting the particle’s antioxidant defense and initiating 

oxidation of the lipid core.  In the later stages of this process, the surface protein also 

becomes modified.  The oxidation of lipoproteins, specifically LDL, leads to 

atherosclerosis [136].  In addition to the increased risk of atherosclerosis, oxidized 

lipoproteins may also impact the ability of the complexes to bind and carry basic and 

neutral drugs throughout the body [176].    

The effects of LDL oxidation on drug binding have been evaluated by using CE 

and using verapamil and nilvadipine as models for basic and neutral drugs, respectively 

[176].  It was found that the affinity of these drugs increased with the amount of LDL 

oxidation.  In addition, the binding of verapamil was increased more than it was for 

nilvadipine, suggesting that basic drugs were more sensitive to oxidation effects.  No 

stereoselective binding was detected between LDL and these model drugs at any 

oxidation state [176].  However, other studies based on HPAC have noted different 

binding for the chiral forms of some drugs to LDL [174,175].   

 

2.8 Conclusion 

The field of metabolomics has seen great growth in recent years because of the 

wealth of information it can provide about biochemical pathways and processes.  This 



75 
 

 
 

review examined previous reports that have looked at the interactions of metabolites with 

proteins.  The first topic discussed was an overview of techniques that have been used to 

characterize and study metabolite-protein binding.  These methods have been used in 

vitro and in vivo studies to provide information on the structures of metabolite-protein 

complexes and to examine the nature of metabolite-protein interactions.  Computational 

studies using in silico tools have been used to provide additional data on metabolite-

protein complexes and interactions. 

This review next described numerous studies that have investigated the binding of 

various types of small solutes and their metabolites with proteins.  This included work 

that has been carried out with hormones, fatty acids, drugs or other xenobiotics, and their 

metabolites with transport proteins and receptors. These examples have considered the 

structures of the resulting solute-protein complexes, the nature of the binding sites, the 

strength of these interactions, the variations in these interactions with solute structure, 

and the kinetics of these reactions.  Studies that have examined the effects of various 

metabolic processes on the structure and activities of proteins, and on the corresponding 

interactions of solutes with these proteins, were also summarized.     

 Although most past work in metabolomics has been concerned with the structure 

and analysis of metabolites, research in metabolite-protein interactions is still a relatively 

new area.  Based on the research that has already been carried out, it is already clear that 

data on metabolite-protein interactions can provide useful information on biological 

processes that involve hormones, drugs and other low mass solutes.  It is further expected 

that this type of research will continue to grow in the future as metabolomics becomes 

more widely used in biomedical research, pharmaceutical science, and personalized 
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medicine.   

 

2.9 References 

1. R. Kaddurah-Daouk, B.S. Kristal, R.M. Weishiboum, Metabolomics: a global 

biochemical approach to drug response and disease, Ann. Rev. Pharmacol. 

Toxicol. 48 (2008) 653–683. 

2. N.L. Kuehnbaum, P.B. Mckibbin, New advances in separation science for 

metabolomics: resolving chemical diversity in post-genomic era, Chem. Rev. 113 

(2013) 2437−2468. 

3. G.J. Patti, O. Yanes, G. Siuzdak, Metabolomics: the apogee of the omics triology, 

Nature Rev. Mol. Cell Biol. 13 (2012) 263-269. 

4. H. Tweeddale, L. Notley-McRobb, T. Ferenci, Effect of slow growth on 

metabolism of Escherichia coli, as revealed by global metabolite pool 

("metabolome") analysis, J. Bacteriol. 180 (1998) 5109-5116. 

5. S.G. Oliver, M.K. Winson, D.B. Kell, F. Baganz, Systematic functional analysis 

of the yeast genome, Trends Biotechnol. 16 (1998) 373-377. 

6. H. Tweeddale, L. Notley-McRobb, T. Ferenci, Assessing the effect of reactive 

oxygen species on Escherichia coli using a metabolome approach, Redox Rep. 4 

(1999) 237-241. 

7. D.Y. Lee, B.P. Bowen, T.R. Northen, Mass spectrometry-based metabolomics, 

analysis of metabolite-protein interactions, and imaging, Biotechniques 49 (2010) 

557-565. 

8. X. Li, T.A. Gianoulis, K.Y. Yip, M. Gerstein, M. Synder, Extensive in vivo 

metabolite-protein interactions revealed by large-scale systematic analyses, Cell 



77 
 

 
 

143 (2010) 639-650. 

9. G.X. Yang, X. Li, M. Synder, Investigating metabolite–protein interactions: an 

overview of available techniques, Methods 57 (2012) 459-466. 

10. G. Sudlow, D.J. Birkett, D.N. Wade, Further characterization of specific drug 

binding sites on human serum albumin, Mol. Pharmacol. 12 (1976) 1052–1061. 

11. W. Clarke, A.R. Choudhuri, D.S. Hage, Analysis of free drug fractions by ultra-

fast immunoaffinity chromatography, Anal. Chem. 73 (2001) 2157-2164. 

12. W. Clarke, J.E. Schiel, A. Moser, D.S. Hage, Analysis of free hormone fractions 

by an ultrafast immunoextraction/displacement immunoassay: studies using free 

thyroxine as a model system, Anal. Chem. 77 (2005) 1859-1866. 

13. A. Daddaoua, T. Krell, C. Alfonso, B. Morel, J.L. Ramos, Compartmentalized 

glucose metabolism in Pseudomonas putida is controlled by the PtxS repressor, J. 

Bacteriol. 192 (2010) 4357–4366. 

14. A. Frostell-Karlsson, A. Remaeus, H. Roos, K. Andersson, P. Borg, M. 

Hamalainen, R. Karlsson, Biosensor analysis of the interaction between 

immobilized human serum albumin and drug compounds for prediction of human 

serum albumin binding levels, J. Med. Chem. 43 (2000) 1986–1992. 

15. J.E. Gestwicki, H.V. Hsieh, J.B. Pitner, Using receptor conformational change to 

detect low molecular weight analytes by surface plasmon resonance, Anal. Chem. 

73 (2001) 5732–5737. 

16. R.A. Palmer, H. Niwa, X-ray crystallographic studies of protein–ligand 

interactions, Biochem. Soc. Trans. 31 (2003) 973–979. 

17. N.A. Larsen, J.M. Turner, J. Stevens, S.J. Rosser, A. Basran, R.A. Lerner, N.C. 



78 
 

 
 

Bruce, I.A. Wilson, Crystal structure of a bacterial cocaine esterase, Nature 

Struct. Biol. 9 (2002) 17–21. 

18. M. Vogtherr, K. Saxena, S. Hoelder, S. Grimme, M. Betz, U. Schieborr, B. 

Pescatore, M. Robin, L. Delarbre, T. Langer, K.U. Wendt, H. Schwalbe, NMR 

characterization of kinase p38 dynamics in free and ligand-bound forms, Angew. 

Chem. 45 (2006) 993–997. 

19. M. Betz, K. Saxena, H. Schwalbe, Biomolecular NMR: a chaperone to drug 

discovery, Curr. Opin. Chem. Biol. 10 (2006) 219–225. 

20. L. D’Silva, P. Ozdowy, M. Krajewski, U. Rothweiler, M. Singh, T.A. Holak, 

Monitoring the effects of antagonists on protein-protein interactions with NMR 

spectroscopy, J. Am. Chem. Soc. 127 (2005) 13220–13226. 

21. I. Schuster, H. Egger, D. Bikle, G. Herzig, G.S. Reddy, A. Stuetz, P. Stuetz, G. 

Vorisek, Selective inhibition of vitamin D hydroxylases in human keratinocytes, 

Steroids 66 (2001) 409–422. 

22. M.S. Goncalves, Fluorescent labeling of biomolecules with organic probes, 

Chem. Rev. 109 (2009) 190–212. 

23. H. Zhu, M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. 

Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, P. Miller, R.A. Dean, M. 

Gerstein, M. Snyder, Global analysis of protein activities using proteome chips, 

Science 293 (2001) 2101–2105. 

24. A. Liesener, U. Karst, Monitoring enzymatic conversions by mass spectrometry: a 

critical review, Anal. Bioanal. Chem. 382 (2005) 1451–1464. 

25. Y. Yu, K.S. Ko, C.J. Zea, N.L. Pohl, Discovery of the chemical function of 



79 
 

 
 

glycosidases: design, synthesis, and evaluation of mass-differentiated 

carbohydrate libraries, Org. Lett. 6 (2004) 2031–2033. 

26. M.A. Fischbach, H. Lin, D.R. Liu, C.T. Walsh, In vitro characterization of IroB, a 

pathogen-associated C-glycosyltransferase, Proc. Natl. Acad. Sci. USA 102 

(2005) 571–576. 

27. V.N. Morozov, T.Y. Morozova, K.L. Johnson, S. Naylor, Parallel determination 

of multiple protein metabolite interactions using cell extract, protein microarrays 

and mass spectrometric detection, Rapid Comm. Mass Spectrom. 17 (2003) 

2430–2438. 

28. T. Furuya, T. Nishi, D. Shibata, H. Suzuki, D. Ohta, K. Kino, Characterization of 

orphan monooxygenases by rapid substrate screening using FT-ICR mass 

spectrometry, Chem. Biol. 15 (2008) 563–572.  

29. D.J. Clarke, A.A. Stokes, P. Langridge-Smith, C.L. Mackay, Online quench-flow 

electrospray ionization Fourier transform ion cyclotron resonance mass 

spectrometry for elucidating kinetic and chemical enzymatic reaction 

mechanisms, Anal. Chem. 82 (2010) 1897–1904. 

30. K.P. De Jesus-Tran, P. Cote, L. Cantin, J. Blanchet, F. Labrie, R. Breton, 

Comparison of crystal structures of human androgen receptor ligand-binding 

domain complexed with various agonist reveals molecular determinants 

responsible for binding affinity, Protein Sci. 15 (2006) 987-999. 

31. K. Vuignier, J. Schappler, J.L. Veuthey, P.A. Carrupt, S. Martel, Drug-protein 

binding: a critical review of analytical tools, Anal. Bioanal. Chem. 398 (2010) 

53–66. 



80 
 

 
 

32. K.M. Comess, M.E. Schurdak, M.J. Voorbach, M. Coen, J.D. Trumbull, H. Yang, 

L. Gao, H. Tang, X. Cheng, C.G. Lerner, O. McCall, D.J. Burns, B.A. Beutel, An 

ultraefficient affinity-based high-throughout screening process: application to 

bacterial cell wall biosynthesis enzyme MurF, J. Biomol. Screen. 11 (2006) 743–

754. 

33. A. Shibukawa, Y. Yoshikawa, T. Kimura, Y. Kuroda, T. Nakagawa, I.W. Wainer, 

Binding study of desethyloxybutynin using high-performance frontal analysis 

method, J. Chromatogr. B 768 (2002) 189-197. 

34. I. Muckenschnabel, R. Falchetto, L.M. Mayr, I. Filipuzzi, SpeedScreen: label-free 

liquid chromatography-mass spectrometry-based high-throughput screening for 

the discovery of orphan protein ligands, Anal. Biochem. 324 (2004) 241–249. 

35. D.S. Hage, J.A. Anguizola, A.J. Jackson, R. Matsuda, E. Papastavros, E. 

Pfaunmiller, Z. Tong, J. Vargas-Badilla, M.J. Yoo, X. Zheng, Chromatographic 

analysis of drug interactions in the serum proteome, Anal. Methods 3 (2011) 

1449-1460. 

36. D.S. Hage, Affinity chromatography: a review of clinical applications, Clin. 

Chem. 45 (1999) 593-615. 

37. D.S. Hage, High-performance affinity chromatography: a powerful tool for 

studying serum protein binding, J. Chromatogr. B 768 (2002) 3–30. 

38. D.S. Hage, S.A. Tweed, Recent advances in chromatographic and electrophoretic 

methods for the study of drug-protein interactions, J. Chromatogr. B 699 (1997) 

499-525. 

39. J. Anguizola, K.S. Joseph, O.S. Barnaby, R. Matsuda, G. Alvarado, W. Clarke, 



81 
 

 
 

R.L. Cerny, D.S. Hage, Development of affinity microcolumns for drug-protein 

binding studies in personalized medicine: interactions of sulfonylurea drugs with 

in vivo glycated human serum albumin, Anal. Chem. 85 (2013) 4453-4460. 

40. N.H.H. Heegard, C. Schou, in: D.S. Hage (Ed.), Handbook of Affinity 

Chromatography, 2nd ed., CRC Press, Boca Raton, 2006, Chap. 26. 

41. T. Hoffmann, M.M. Martin, CE-ESI-MS/MS as a rapid screening tool for the 

comparison of protein-ligand interactions, Electrophoresis 31 (2010) 1248–1255. 

42. H. Sun, D.O. Scott, Structure-based drug metabolism predictions for drug design, 

Chem. Biol. Drug Des. 75 (2010) 3–17. 

43. D.B. Kitchen, H. Decornez, J.R. Furr, J. Bajorath, Docking and scoring in virtual 

screening for drug discovery: methods and applications, Nature Rev. Drug 

Discov. 3 (2004) 935–949. 

44. M.J. de Groot, F. Wakenhut, G. Whitlock, R. Hyland, Understanding CYP2D6 

interactions, Drug Discovery Today 14 (2009) 964–972. 

45. S. Mandava, L. Makowski, S. Devarapalli, J. Uzubell, D.J. Rodi, RELIC - a 

bioinformatics server for combinatorial peptide analysis and identification of 

protein-ligand interaction sites, Proteomics 4 (2004) 1439–1460. 

46. I. Bertini, M. Fragai, A. Giachetti, C. Luchinat, M. Maletta, G. Parigi, K.J. Yeo, 

Combining in silico tools and NMR data to validate protein-ligand structural 

models: application to matrix metalloproteinases, J. Med. Chem. 48 (2005) 7544–

7559. 

47. T.L. Lemke, D.A. Williams, V.F. Roche, S.W. Zito, Medicinal Chemistry, 6th 

ed., Lippincott Williams and Wilkins, Philadelphia, 2008. 



82 
 

 
 

48. D.L. Nelson, M.M. Cox (Eds.), in: Lehninger Principles of Biochemistry, 6th ed. 

W.H. Freeman Publishers, New York, 2005. 

49. N.W. Tietz (Ed.), Textbook of Clinical Chemistry, Saunders, Philadelphia, 1986. 

50. W. Clarke, (Ed.), Contemporary Practice in Clinical Chemistry, 2
nd

 ed., AACC 

Press, Washington, DC, 2011. 

51. A.G. Gornall, (Ed.), Applied Biochemistry of Clinical Disorders, 2
nd

 ed., 

Lippincott, Philadelphia, 1986. 

52. D.C. Anderson, Sex-hormone-binding globulin, Clin. Endocrinol. 3 (1974) 69-96. 

53. B. Loun, D.S. Hage, Characterization of thyroxine-albumin binding using high-

performance affinity chromatography I. Interactions at the warfarin and indole 

sites of albumin, J. Chromatogr. 579 (1992) 22S-235. 

54. B. Loun, D.S. Hage, Characterization of thyroxine-albumin binding using high-

performance-affinity chromatography II. Comparison of the binding of thyroxine, 

triiodothyronines and related compounds at the warfarin and indole sites of 

human serum albumin, J. Chromatogr. B 665 (1995) 303-311. 

55. V. Cody, P.J. Davis, F.B. Davis, Molecular modeling of the thyroid hormone 

interaction with αvβ3 integrin, Steroids 72 (2007) 165-170. 

56. I. Grishkovskaya, G.V. Avvakumov, G. Sklenar, D. Dales, G.L. Hammond, Y.A. 

Muller, Crystal structure of human sex hormone-binding globulin: steroid 

transport by laminin G-like domain, EMBO J. 19 (2000) 504-512. 

57. J.M. Renoir, C. Mercier-Bodard, E.E. Baulieu, Hormonal and immunological 

aspects of the phylogeny of sex steroid binding plasma protein, Proc. Natl. Acad. 

Sci. USA 77 (1980) 4578-4582. 



83 
 

 
 

58. A.J.C. Westphal, Steroid-Protein Interactions II, Springer-Verlag, Berlin, 

Germany, 1986. 

59. W.P. Bocchinfuso, G.L. Hammond, Steroid-binding and dimerization domains of 

human sex hormone-binding globulin partially overlap: steroids and Ca
2+

 stabilize 

dimer formation, Biochemistry 33 (1994) 10622–10629. 

60. W.P. Bocchinfuso, S. Warmels Rodenhiser, G.L. Hammond, Structure/function 

analyses of human sex hormone-binding globulin by site-directed mutagenesis, 

FEBS Lett. 301 (1992) 227–230. 

61. L.M. Sui, A.W. Cheung, P.C. Namkung, P.H. Petra, Localization of the steroid-

binding site of the human sex steroid-binding protein of plasma (SBP or SHBG) 

by site-directed mutagenesis, FEBS Lett. 310 (1992) 115–118. 

62. C. Grenot, A. de Montard, T. Blachere, M.R. de Ravel, E. Mappus, C.Y. 

Cuilleron, Characterization of Met-139 as the photolabeled amino acid residue in 

the steroid binding site of sex hormone binding globulin using delta 6 derivatives 

of either testosterone or estradiol as unsubstituted photoaffinity labeling reagents, 

Biochemistry 31 (1992) 7609–7621. 

63. D. Kassab, S. Pichat, C. Chambon, T. Blachere, M. Rolland de Ravel, E. Mappus, 

C. Grenot, C.Y. Cuilleron, Photoaffinity labeling of homologous Met-133 and 

Met-139 amino acids of rabbit and sheep sex hormone-binding globulins with the 

unsubstituted Delta 6-testosterone photoreagent, Biochemistry 37 (1998) 14088–

14097.  

64. J.E. Schaffer, Fatty acid transport: the roads taken, Am. J. Physiol. Endocrinol. 

Metab. 282 (2002) E239-E246. 



84 
 

 
 

65. T. Peters, Jr., All About Albumin: Biochemistry, Genetics, and Medical 

Applications, Academic Press, San Diego, 1996. 

66. G.V. Richieri, A.M. Kleinfeld, Unbound free fatty acid levels in human serum, J. 

Lipid Res. 36 (1995) 229-240. 

67. J.R. Simard, P.A. Zunszain, C.-E. Ha, J.S. Hang, N.V. Bhagavan, I. Petitpas, S. 

Curry, J.A. Hamilton, Locating high-affinity fatty acid-binding sites on albumin 

by X-ray crystallography and NMR spectroscopy, Proc. Natl. Acad. Sci. USA 102 

(2005) 17958-17963. 

68. V.T. Chaung, M. Otagiri, How do fatty acids cause allosteric binding of drugs to 

human serum albumin? Pharm. Res. 19 (2002) 1458-1464. 

69. U. Kragh-Hansen, H. Watanabe, K. Nakajou, Y. Iwao, M. Otagiri, Chain length-

dependent binding of fatty acid anions to human serum albumin studied by site-

directed mutagenesis, J. Mol. Biol. 363 (2006) 702-712. 

70. I. Petitpas, T. Grune, A.A. Bhattacharya, S. Curry, Crystal structures of human 

serum albumin complexed with monounsaturated and polyunsaturated fatty acids, 

J. Mol. Biol. 314 (2001) S955-S960. 

71. A.A. Bhattacharya, T. Grüne, S. Curry, Crystallographic analysis reveals common 

modes of binding of medium and long-chain fatty acids to human serum albumin, 

J. Mol. Biol. 303 (2000) 721-732. 

72. J.R. Simard, P.A. Zunszain, J.A. Hamilton, S. Curry, Location of high and low 

affinity fatty acid binding sites on human serum albumin revealed by NMR drug-

competition analysis, J. Mol. Biol. 361 (2006) 336-351. 

73. S. Curry, H. Mandelkow, P. Brick, N. Franks, Crystal structure of human serum 



85 
 

 
 

albumin complexed with fatty acid reveals an asymmetric distribution of binding 

sites, Nature Struct. Biol. 5 (1998) 827-835. 

74. J.A. Anguizola, S.B.G. Basiaga, D.S. Hage, Effects of fatty acids and glycation on 

drug interactions with human serum albumin, Curr. Metabolomics 1 (2013) 239-

250. 

75. A.A. Spector, Fatty acid binding to plasma albumin, J. Lipids Res. 16 (1976) 165-

179. 

76. S.B. Basiaga, D.S. Hage, Chromatographic studies of changes in binding of 

sulfonylurea drugs to human serum albumin due to glycation and fatty acids, J. 

Chromatogr. B 878 (2010) 3193-3197. 

77. E.J. Demant, G.V. Richieri, A.M. Kleinfeld, Stopped-flow kinetic analysis of 

long-chain fatty acid dissociation from bovine serum albumin, Biochem. J. 363 

(2002) 809-815. 

78. T.A.G. Noctor, I.W. Wainer, D.S. Hage, Allosteric and competitive displacement 

of drugs from human serum albumin by octanoic acid, as revealed by high-

performance liquid affinity chromatography, on a human serum albumin-based 

stationary phase, J. Chromatogr. 577 (1992) 305-315.  

79. N.A. Kratochowil, W. Huber, F. Muller, M. Kansy, P.R. Gerber, Predicting 

plasma protein binding of drugs: a new approach, Biochem. Pharmacol. 64 (2002) 

1355–1374. 

80. D.S. Hage, J. Anguizola, O. Barnaby, A. Jackson, M.J. Yoo, E. Papastavros, E. 

Pfaunmiller, M. Sobansky, Z. Tong, Characterization of drug interactions with 

serum proteins by using high-performance affinity chromatography, Curr. Drug 



86 
 

 
 

Metab. 12 (2011) 313-328. 

81. C.M. Ohnmacht, S. Chen, Z. Tong, D.S. Hage, Studies by biointeraction 

chromatography of binding by phenytoin metabolites to human serum albumin, J. 

Chromatogr. B 836 (2006) 83-91. 

82. R. Zini, J. Barre, G. Defer, J.P. Jeanniot, G. Houin, J.P. Tillement, Protein binding 

of propisomide, J. Pharm. Sci. 74 (1985) 530-533. 

83. Y. Imamura, Y. Kojima, H. Ichibagase, Effect of simultaneous administration of 

drugs on absorption and excretion. XIX. Binding of acetohexamide and its major 

metabolite, (-)-hydroxyhexamide, to human serum albumin, Chem. Pharm. Bull. 

33 (1985) 1281-1284. 

84. I. Påhlman, P. Gozzi, Serum protein binding of tolterodine and its major 

metabolites in humans and several animal species, Biopharm. Drug Dispos. 20 

(1999) 91-99. 

85. Z. Zhao, F. Xue, L. Zhang, K. Zhang, C. Fei, W. Zheng, X. Wang, M. Wang, Z. 

Zhao, X. Meng, The pharmacokinetics of nitazoxanide active metabolite 

(tizoxanide) in goats and its protein binding ability in vitro, J. Vet. Pharmacol. 

Ther. 33 (2009) 147-153. 

86. J. Chen, C. Ohnmacht, D.S. Hage, Studies of phenytoin binding to human serum 

albumin by high-performance affinity chromatography, J. Chromatogr. B 809 

(2004) 137-145. 

87. Q. Shen, L. Wang, H. Zhou, H. Jiang, L. Yu, S. Zheng, Stereoselective binding of 

chiral drugs to plasma proteins, Acta Pharmacologica Sinica 34 (2013) 998-1006. 

88. B.S. Sekhon, Exploiting the power of stereochemistry in drugs: an overview of 



87 
 

 
 

racemic and enantiopure drugs, J. Mod. Med. Chem. 1 (2013) 10-36. 

89. M.F. Landoni, A. Soraci, Pharmacology of chiral compounds: 2-arylpropionic 

acid derivatives, Curr. Drug Metab. 2 (2001) 37-51. 

90. D.E. Drayer, Clinical pharmacology through the looking glass: reflections on the 

racemate vs enantiomer debate, Clin. Pharmacol. Ther. 40 (1986) 125-133. 

91. J. Patocka, A. Dvorak, Biomedical aspects of chiral molecules, J. Appl. Med. 2 

(2004) 95-100. 

92. F. Jamali, R. Mehvar, F.M. Pasutto, Enantioselective aspects of drug action and 

disposition: therapeutic pitfalls, J. Pharm. Sci. 78 (1989) 695-715. 

93. S. Patel, I.W. Wainer, W.J. Lough, in: D.S. Hage (Ed.), Handbook of Affinity 

Chromatography, 2nd ed., CRC Press, Boca Raton, 2006, Chap. 21. 

94. S. Patel, I.W. Wainer, W.J. Lough, in: D.S. Hage (Ed.), Handbook of Affinity 

Chromatography, 2nd ed., CRC Press, Boca Raton, 2006, Chap. 24. 

95. D.S. Hage, Chromatographic and electrophoretic studies of protein binding to 

chiral solutes, J. Chromatogr. A 906 (2001) 459-481.  

96. Y.H. Ardakani, R. Mehvar, A. Foroumadi, M.-R. Rouini, Development and 

validation of a rapid HPLC method for simultaneous determination of tramadol, 

and its two main metabolites in human plasma, J. Chromatogr. B 864 (2008) 109-

115. 

97. T. Kelly, P. Doble, M. Dawson, Chiral analysis of methadone and its major 

metabolites (EDDP and EMDP) by liquid chromatography–mass spectrometry, J. 

Chromatogr. B 814 (2005) 315-323. 

98. Z. Tong, D.S. Hage, Characterization of interaction kinetics between chiral 



88 
 

 
 

solutes and human serum albumin by using high-performance affinity 

chromatography and peak profiling, J. Chromatogr. A 1218 (2011) 6892-6897. 

99. B. Loun, D.S. Hage, Chiral separation mechanisms in protein-based HPLC 

columns. I. Thermodynamic studies of (R)- and (S)-warfarin binding to 

immobilized human serum albumin, Anal. Chem. 66 (1994) 3814-3822. 

100. B. Loun, D.S. Hage, Chiral separation mechanisms in protein-based HPLC 

columns. II. Kinetic studies of R- and S-warfarin binding to immobilized human 

serum albumin, Anal. Chem. 68 (1996) 1218-1225. 

101. K.S. Joseph, A.C. Moser, S. Basiaga, J.E. Schiel, D.S. Hage, Evaluation of 

alternatives to warfarin as probes for Sudlow site I of human serum albumin: 

characterization by high performance affinity chromatography, J. Chromatogr. A 

1216 (2009) 3492-3500. 

102. J. Yang, D.S. Hage, Characterization of the binding and chiral separation of D- 

and L-tryptophan on a high-performance immobilized human serum albumin 

column, J. Chromatogr. 645 (1993) 241-250. 

103. J. Yang, D.S. Hage, Effect of mobile phase composition on the binding kinetics of 

chiral solutes on a protein-based HPLC column: interactions of D- and L-

tryptophan with immobilized human serum albumin, J. Chromatogr. A 766 (1997) 

15-25. 

104. M.L. Conrad, A.C. Moser, D.S. Hage, Evaluation of indole-based probes for 

studying drug binding to human serum albumin in high-performance affinity 

separations, J. Sep. Sci. 32 (2009) 1145-1155. 

105. R. Matsuda, J. Anguizola, K.S. Joseph, D.S. Hage, High-performance affinity 



89 
 

 
 

chromatography and the analysis of drug interactions with modified proteins: 

binding of gliclazide with glycated human serum albumin, Anal. Bioanal. Chem. 

401 (2011) 2811-2819. 

106. A.J. Jackson, J. Anguizola, E.L. Pfaunmiller, D.S. Hage, Use of entrapment and 

high-performance affinity chromatography to compare the binding of drugs and 

site-specific probes with normal and glycated human serum albumin, Anal. 

Bioanal. Chem. 405 (2013) 5833-5841.  

107. K.S. Joseph, D.S. Hage, Characterization of the binding of sulfonylurea drugs to 

HSA by high-performance affinity chromatography, J. Chromatogr. B 878 (2010) 

1590-1598. 

108. R. Matsuda, J. Anguizola, K.S. Joseph, D.S. Hage, Analysis of drug interactions 

with modified proteins by high-performance affinity chromatography: Binding of 

glibenclamide to normal and glycated human serum albumin, J. Chromatogr. A 

1265 (2012) 114-122. 

109. K.S. Joseph, J. Anguizola, A.J. Jackson, D.S. Hage, Chromatographic analysis of 

acetohexamide binding to glycated human serum albumin, J. Chromatogr. B 878 

(2010) 2775-2781. 

110. K.S. Joseph, J. Anguizola, D.S. Hage, Binding of tolbutamide to glycated human 

serum albumin, J. Pharm. Biomed. Anal. 54 (2011) 426-432. 

111. R. Kaliszan, Retention data from affinity high-performance liquid 

chromatography in view of chemometrics, J. Chromatogr. B 715 (1998) 229-244. 

112. M. Markuszewski, R. Kaliszan, Quantitative structure-retention relationships in 

affinity high-performance liquid chromatography, J. Chromatogr. B 768 (2002) 



90 
 

 
 

55-56. 

113. I.W. Wainer, Enantioselective high-performance liquid affinity chromatography 

as a probe of ligand-biopolymer interactions: an overview of a different use for 

high-performance liquid chromatographic chiral stationary phases, J. Chromatogr. 

A 666 (1994) 221-234. 

114. R. Kaliszan, Quantitative structure-retention relationships, Anal. Chem. 64 (1994) 

A619-A627. 

115. R. Kaliszan, Chromatography and capillary electrophoresis in modelling the basic 

processes of drug action, Trends. Anal. Chem. 18 (1999) 400-410. 

116. R. Kaliszan, Chemometric analysis of biochromatographic data - implications for 

molecular pharmacology, Chemometr. Intell. Lab. Systems 24 (1994) 89-97. 

117. R. Kaliszan, A. Kaliszan, T.A.G. Noctor, W.P. Purcell, I.W. Wainer, Mechanism 

of retention of benzodiazepines in affinity, reversed phase and adsorption high 

performance liquid chromatography in view of quantitative structure retention 

relationships, J. Chromatogr. 609 (1992) 69-81. 

118. R. Kaliszan, T.A.G. Noctor, I.W. Wainer, Stereochemical aspects of 

benzodiazepine binding to human serum albumin. 2. Quantitative relationships 

between structure and enantioselective retention in high-performance liquid 

affinity-chromatography, Mol. Pharmacol. 42 (1992) 512-517. 

119. R. Kaliszan, T.A.G. Noctor, I.W. Wainer, Quantitative structure-enantioselective 

retention relationships for the chromatography of 1,4-benzodiazepines on a 

human serum-albumin based HPLC chiral stationary phase - an approach to the 

computational prediction of retention and enantioselectivity, Chromatographia 33 



91 
 

 
 

(1992) 546-550. 

120. A. Nasal, A. Radwanska, K. Osmialowsk, A. Bucinski, R. Kaliszan, G.E. Barker, 

P. Sun, R.A. Hartwick, Quantitative relationships between structure of β-

adrenolytic and antihistamine drugs and their retention on an α1-acid glycoprotein 

HPLC column, Biomed. Chromatogr. 8 (1994) 125-129. 

121. R. Kaliszan, A. Nasal, M. Turowski, Quantitative structure-retention relationships 

in the examination of the topography of the binding site of antihistamine drugs on 

alpha(1)-acid glycoprotein, J. Chromatogr. A 722 (1996) 25-32. 

122. A. Karlsson, A. Aspegren, Enantiomeric separation of amino alcohols on protein 

phases using statistical experimental design. A comparative study, J. Chromatogr. 

A 866 (2000) 15-23. 

123. R. Kaliszan, A. Nasal, M. Turowski, Binding site for basic drugs on alpha 1-acid 

glycoprotein as revealed by chemometric analysis of biochromatographic data, 

Biomed. Chromatogr. 707 (1995) 211-215. 

124. I. Fitos, J. Visy, M. Simonyi, J. Hermansson, Chiral high-performance liquid 

chromatographic separations of vinca alkaloid analogues on alpha 1-acid 

glycoprotein and human serum albumin columns, J. Chromatogr. A 609 (1992) 

163-171. 

125. K. Gyimesi-Forras, G. Szasz, A. Gergely, M. Szabo, J. Kokosi, Study on the 

sorption properties of alpha1-acid glycoprotein (AGP)-based stationary phase 

modified by organic solvents, J. Chromatogr. Sci. 38 (2000) 430-434.  

126. C.H. Johnson, A.D. Patterson, J.I. Idle, F.L. Gonzalez, Xenobiotic metabolomics: 

major impact on the metabolome, Annu. Rev. Pharmacol. Toxicol. 52 (2012) 37-



92 
 

 
 

56.   

127. B.J. Danzo, Environmental xenobiotics may disrupt normal endocrine function by 

interfering with the binding of physiological ligands to steroid receptors and 

binding proteins, Environ. Health Perspect. 105 (1997) 294-301. 

128. A. Diniz, L. Escuder-Gilabert, N.P. Lopes, R.M. Villanueva-Camanas, S. 

Sagrado, M.J. Medina-Hernandez, Characterization of interactions between 

polyphenolic compounds and human serum proteins by capillary electrophoresis, 

Anal. Bioanal. Chem. 391 (2008) 625-632. 

129. C.J. Omiecinski, J.P. Vauden Huevel, G.H. Perdew, J.H. Peters, Xenobiotic 

metabolism, disposition, and regulation by receptors: from biochemical 

phenomenon to predictors of major toxicities, Toxicol. Sci. 120 (2011) S49-S75. 

130. A.O. Cheek, K. Kow, J. Chen, J.A. McLachlan, Potential mechanisms of thyroid 

disruption in humans: interaction of organochlorine compounds with thyroid 

receptor, transthyretin, and thyroid-binding globulin, Environ. Health Perspect. 

107 (1999) 273-278. 

131. J. Cao, Y. Lin, L. Guo, A. Zhang, Y. Wei, Y. Yang, Structure-based investigation 

on the binding interaction of hydroxylated polybrominated diphenyl ethers with 

thyroxine transport proteins, Toxicol. 277 (2010) 20-28. 

132. J.R. Fowles, A. Fairbrother, L. Baecher-Steppan, N.I. Kerkvliet, Immunologic 

and endocrine effects of the flame-retardant pentabromodiphenyl ether (DE-71) in 

C57BL/6J mice, Toxicol. 86 (1994) 49–61. 

133. S. Hallgren, T. Sinjari, H. Hakansson, P.O. Darnerud, Effects of polybrominated 

diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid 



93 
 

 
 

hormone and vitamin A levels in rats and mice, Arch. Toxicol. 75 (2001) 200–

208.  

134. D.S. Hage, J. Austin, High-performance affinity chromatography and 

immobilized serum albumin as probes for drug- and hormone-protein binding, J. 

Chromatogr. B 739 (2000) 39-54. 

135. I. Tabas, Nonoxidative modifications of lipoproteins in atherogenesis, Annu. Rev. 

Nutr. 19 (1999) 123-139. 

136. C.A. Cobbold, J.A. Sherratt, S.R.J. Maxwell, Lipoprotein oxidation and its 

significance for atherosclerosis: a mathematical approach, Bull. Math. Biol. 64 

(2002) 65-95. 

137. C. Bertucci, E. Domenici, Reversible and covalent binding of drugs to human 

serum albumin: methodological approaches and physiological relevance, Curr. 

Med. Chem. 9 (2002) 1463-1481. 

138. G.A. Ascoli, E. Domenici, C. Bertucci, Drug binding to human serum albumin: 

abridged review of results obtained with high-performance liquid chromatography 

and circular dichroism, Chirality 18 (2006) 667–679. 

139. X.M. He, D.C. Carter, Atomic structure and chemistry of human serum albumin, 

Nature 358 (1992) 209-15. 

140. G. Fanali, A. di Masi, V. Trezza, M. Marino, M. Fasano, P. Ascenzi, Human 

serum albumin: from bench to bedside, Mol. Aspects Med. 33 (2012) 209-290. 

141. T.A.G. Noctor, I.W. Wainer, The in situ acetylation of an immobilized human 

serum albumin chiral stationary phase for high-performance liquid 

chromatography in the examination of drug-protein binding phenomena, 



94 
 

 
 

Pharmaceut. Res. 9 (1992) 480-484. 

142. A. Chattopadhyay, T. Tian, L. Kortum, D.S. Hage, Development of tryptophan-

modified human serum albumin columns for site-specific studies of drug-protein 

interactions by high-performance affinity chromatography, J. Chromatogr. B 715 

(1998) 183-190. 

143. D.S. Hage, J. Chen, in: D.S. Hage (Ed.), Handbook of Affinity Chromatography, 

2nd ed., CRC Press, Boca Raton, 2006, Chap. 22. 

144. C. Bertucci, B. Nanni, A. Raffaelli, P. Salvadori, Chemical modification of 

human albumin at Cys34 by ethacrynic acid: structural characterization and 

binding properties, J. Pharm. Biomed. Anal. 18 (1998) 127-136. 

145. J. Anguizola, R. Matsuda, O.S. Barnaby, K.S. Hoy, C. Wa, E. DeBolt, M. Koke, 

D.S. Hage, Review: glycation of human serum albumin, Clin. Chim. Acta 425 

(2013) 64-76.  

146. J.W.L. Hartog, A.A. Voors, S.J.L. Bakker, A.J. Smit, D.J.V. Veldhuisen, 

Advanced glycation end-products (AGEs) and heart failure: pathophysiology and 

clinical implications, Eur. J. Heart Fail. 9 (2007) 1146-1155. 

147. P.J. Thornalley, A. Langborg, H.S. Minhas, Formation of glyoxal, methylglyoxal 

and 3-deoxyglucosone in the glycation of proteins by glucose, Biochem. J. 344 

(1999) 109-116. 

148. D.M. Richard, M.A. Dawes, C.W. Mathias, A. Acheson, N. Hill-Kapturczak, 

D.M. Dougherty, L-Tryptophan: basic metabolic functions, behavioral research 

and therapeutic indications, Int. J. Tryptophan Res. 2 (2009) 45-60. 

149. K.S. Joseph, D.S. Hage, The effects of glycation on the binding of human serum 



95 
 

 
 

albumin to warfarin and L-tryptophan, J. Pharm. Biomed. Anal. 53 (2010) 811-

818. 

150. M.J. Kimzey, H.N. Yassine, B.M. Riepel, G. Tsaprailis, T.J. Monks, S.S. Lau, 

New site(s) of methylglyoxal-modified human serum albumin, identified by 

multiple reaction monitoring, alter warfarin binding and prostaglandin 

metabolism, Chem. Biol. Int. 192 (2011) 122-128. 

151. D. Tang, J.-X. Zhu, A.-G. Wu, Y.-H. Xu, T.-T. Duan, Z.-G. Zheng, R.-S. Wang, 

D. Li, Q. Zhu, Pre-column incubation followed by fast liquid chromatography 

analysis for rapid screening of natural methylglyoxal scavengers directly from 

herbal medicines: case study of Polygonum cuspidatum, J. Chromatogr. A 1286 

(2013) 102-110. 

152. F. Ceciliani, V. Pocacqua, The acute phase protein α1-acid glycoprotein: a model 

for altered glycosylation during diseases, Curr. Protein Pept. Sci. 8 (2007) 91-108. 

153. Y. Kuroda, Y. Kita, A. Shibukawa, T. Nakagawa, Role of biantennary glycans 

and genetic variants of human alpha1-acid glycoprotein in enantioselective 

binding of basic drugs as studied by high performance frontal analysis/capillary 

electrophoresis, Pharm. Res. 18 (2001) 389-393. 

154. S. Kishino, A. Nomura, S. Itoh, T. Nakagawa, Y. Takekuma, M. Sugawara, H. 

Furukawa, S. Todo, K. Miyazaki, Age- and gender-related differences in 

carbohydrate concentrations of alpha1-acid glycoprotein variants and the effects 

of glycoforms on their drug-binding capacities, Eur. J. Clin. Pharmacol. 58 (2002) 

621-628. 

155. T. Nakagawa, S. Kishino, S. Itoh, M. Sugawara, K. Miyazaki, Differential 



96 
 

 
 

binding of disopyramide and warfarin enantiomers to human alpha(1)-acid 

glycoprotein variants, Br. J. Clin. Pharmacol. 56 (2003) 664-669. 

156. Y. Kakiuchi, Y. Kohda, M. Miyabe, Y. Momose, Effect of plasma alpha1-acid 

glycoprotein concentration on the accumulation of lidocaine metabolites during 

continuous epidural anesthesia in infants and children, Int. J. Clin. Pharmacol. 

Ther. 37 (1999) 493-498. 

157. S.G. Soriano, L.J. Sullivan, K. Venkatakrishnan, D.J. Greenblatt, J.A. Martyn, 

Pharmacokinetics and pharmacodynamics of vecuronium in children receiving 

phenytoin or carbamazepine for chronic anticonvulsant therapy, Br. J. Anaesth. 86 

(2001) 223-229. 

158. J.R. McNamara, G.R. Warnick, G.R. Cooper, A brief history of lipid and 

lipoprotein measurements and their contribution to clinical chemistry, Clin. Chim. 

Acta 369 (2006. 369) 158-167. 

159. A. Jonas, in: D.E. Vance, J.E. Vance (Eds.), Biochemistry of Lipids, Lipoproteins, 

and Membranes, Elsevier-Science Publishers, Amsterdam, 2002, p. 483. 

160. M. Barklay, in: G.J. Nelson (Ed.), Blood Lipids and Lipoproteins Quantitation, 

Composition, and Metabolism, Wiley-Interscience, New York, 1972, p. 587. 

161. K.M. Wasan, S.M. Cassidy, Role of plasma lipoproteins in modifying the 

biological activity of hydrophobic drugs, J. Pharm. Sci. 87 (1998) 411–424. 

162. P.N. Durrington, in: P.N. Durrington (Ed.), Lipoproteins and Lipids, Wright, 

London, 1989, p. 255. 

163. R.J. Havel, J.P. Kane, in: C.R. Scriver, A.L. Beaudet, W.S. Sly, D Valle (Eds.), 

The Metabolic and Molecular Basis of Inherited Disease, McGraw-Hill 



97 
 

 
 

Professional, New York, 1995, p. 1129. 

164. V.R. Skipski, in: G.J. Nelson (Ed.), Blood Lipids and Lipoproteins Quantitation, 

Composition, and Metabolism, Wiley-Interscience, New York, 1972, p. 587. 

165. T.C. Kwong, Free drug measurements: methodology and clinical significance, 

Clin. Chim. Acta. 151 (1985) 193–216. 

166. S. Glasson, The distribution of bound propranolol between the different human 

serum proteins, Mol. Pharmacol. 17 (1980) 187–191. 

167. T. Ohnishi, N.A.L. Mohamed, A. Shibukawa, Y. Kuroda, T. Nakagawa, S. El 

Gizawy, H.F. Askal, M.E. El Kommos, Frontal analysis of drug–plasma 

lipoprotein binding using capillary electrophoresis, J. Pharm. Biomed. Anal. 27 

(2002) 607–614. 

168. N.A.L. Mohamed, Y. Kuroda, A. Shibukawa, T. Nakagawa, S. El Gizawy, H.F. 

Askal, M.E. El Kommos, Enantioselective binding analysis of verapamil to 

plasma lipoproteins by capillary electrophoresis-frontal analysis, J. Chromatogr. 

A 875 (2000) 447–453. 

169. N.A.L. Mohamed, Y. Kuroda, A. Shibukawa, T. Nakagawa, S. El Gizawy, H.F. 

Askal, M.E. El Kommos, Binding analysis of nilvadipine to plasma lipoproteins 

by capillary electrophoresis-frontal analysis, J. Pharm. Biomed. Anal. 21 (1999) 

1037–1043. 

170. H.S. Kim, I.W. Wainer, Rapid analysis of the interactions between drugs and 

human serum albumin (HSA) using high-performance affinity chromatography 

(HPAC), J. Chromatogr. B 870 (2008) 22–26. 

171. F. Hollósy, K. Valkó, A. Hersey, S. Nunhuck, G. Kéri, C.J. Bevan, Estimation of 



98 
 

 
 

volume of distribution in humans from high throughput HPLC-based 

measurements of human serum albumin binding and immobilized artificial 

membrane partitioning, Med. Chem. 49 (2006) 6958-6971. 

172. L. Buchholz, C.H. Cai, L. Andress, A. Cleton, J. Brodfuehrer, L. Cohen, 

Evaluation of the human serum albumin column as a discovery screening tool for 

plasma protein binding, Eur. J. Pharm. Sci. 15 (2002), 209–215. 

173. S. Chen, M.R. Sobansky, D.S. Hage, Analysis of drug interactions with high 

density lipoproteins by high-performance affinity chromatography, Anal. 

Biochem. 397 (2010) 107-114. 

174. M.R. Sobansky, D.S. Hage, Identification and analysis of stereoselective drug 

interactions with low density lipoprotein by high-performance affinity 

chromatography, Anal. Bioanal. Chem. 403 (2012) 563-571. 

175. M.R. Sobansky, D.S. Hage, in: Advances in Medicine and Biology, Vol. 53, L.V. 

Berhardt (Ed.), Nova Science, Hauppage, 2012, Chapter 9. 

176. Y. Kuroda, B. Cao, A. Shibukawa, T. Nakagawa, Effect of oxidation of low-

density lipoprotein on drug binding affinity studied by high performance frontal 

analysis-capillary electrophoresis, Electrophoresis 22 (2001) 3401-3407.   

 



99 
 

 
 

CHAPTER 3: 

HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY AND THE 

ANALYSIS OF DRUG INTERACTIONS WITH MODIFIED PROTEINS:  

BINDING OF GLICLAZIDE WITH GLYCATED HUMAN SERUM ALBUMIN  

Note: Portions of this chapter have appeared in R. Matsuda, J. Anguizola, K.S. Joseph, 

D.S. Hage, “High-performance affinity chromatography and the analysis of drug  

interactions with modified proteins: Binding of gliclazide with glycated human serum 

albumin”, Anal. Bioanal. Chem. 401 (2011) 2811-2819. 

 

3.1 Introduction 

 The American Diabetes Association reports that an estimated 25.8 million 

children and adults in the U.S. have diabetes, representing almost 8.3% of the population 

[1].  Diabetes is a health condition that is related to insulin deficiency or a resistance to 

insulin.  This disorder results in an increased level of glucose in blood.  There are two 

main types of diabetes.  Type I diabetes (i.e., juvenile or insulin-dependent diabetes) is 

caused when the immune system attacks pancreatic beta cells and results in little or no 

production of insulin.  These patients require insulin for treatment.  Type II diabetes (i.e., 

non-insulin dependent or adult onset diabetes) is the most common type of diabetes and is 

created by insulin resistance [1].   

 Type II diabetes is frequently treated by using sulfonylurea drugs [2].  

Sulfonylurea drugs increase the amount of insulin that is released from beta cells in the 

pancreas, which helps control the buildup of glucose in blood.  Gliclazide (see Fig. 3-1) is 

a second generation sulfonylurea drug that is taken orally.  Second-generation 

sulfonylurea drugs like gliclazide have a better effectiveness than first-generation
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Figure 3-1. Structure of gliclazide. 
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sulfonylurea drugs (e.g., acetohexamide and tolbutamide) in the treatment of diabetes and 

are more easily excreted by the body [3].   

Sulfonylureas such as gliclazide are known to be tightly bound to serum proteins 

when these drugs are in blood.  The most abundant serum protein is human serum 

albumin (HSA) [4-10], which is also the main carrier protein for sulfonylurea drugs in the 

circulation [4].  HSA has a mass of 66.5 kDa and has two major binding sites for drugs: 

Sudlow sites I and II [4].  Sudlow site I is located in subdomain IIA of HSA and is known 

to bind a variety of drugs, such as warfarin, azapropazone, phenylbutazone, and salicylate 

[5].  Sudlow site II is in subdomain IIIA of HSA and has been shown to bind to 

ibuprofen, fenoprofen, ketoprofen, benzodiazepines, and L-tryptophan [5].  Both Sudlow 

sites I and II have also been found to bind to the first-generation sulfonylurea drugs 

acetohexamide and tolbutamide [6,7]. 

Glycation is a type of protein modification that is believed to alter the interactions 

of some drugs with HSA.  Glycation occurs when the presence of glucose in blood leads 

to the non-enzymatic addition of glucose with proteins.  This process initially occurs 

through a reaction between glucose or a reducing sugar and a free amine group on a 

protein (see Fig. 3-2) [8-13].  Normal individuals have 6-13% of their HSA in a form that 

is glycated in blood [8,9,11].  A person with diabetes has approximately 20-30% or more 

of their HSA in a glycated form [8,9,11].  In addition, it is known that both Sudlow sites I 

and II can be modified as a result of glycation [8-13] and that this modification can affect 

the binding of first-generation sulfonylurea drugs at these sites [6,7].  Although the 

pharmacokinetics and overall serum protein binding of gliclazide has been previously 

examined for healthy and diabetic subjects [14,15], no detailed information was provided 
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Figure 3-2. General reactions involved in the glycation of HSA. 
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in this prior work on the strength of this binding with HSA or on the effects of glycation 

on gliclazide-HSA interactions.    

The purpose of this study will be to use high-performance affinity 

chromatography  (HPAC) to examine the binding of gliclazide to normal HSA and HSA 

that has been modified in vitro to contain various stages of glycation [16-18].  HPAC is a 

type of HPLC that uses an immobilized biological molecule (e.g., HSA) as the stationary 

phase [16].  It is known from prior work that HPAC can be used with HSA columns to 

provide precise and fast measurements of drug-protein interactions with results that give 

good agreement with those obtained for soluble HSA [17].  Other advantages of using 

HPAC for this type of research are its ease of automation and its ability to use the same 

preparation of a protein for hundreds of experiments [16-18].  Recent work with HPAC 

as a screening method has indicated that significant changes can occur in the binding of 

gliclazide with HSA during glycation, resulting in trends similar to those seen for 

acetohexamide and tolbutamide [19].  This chapter will examine these interactions in a 

quantitative manner by first using the method of frontal analysis (or frontal affinity 

chromatography) to determine the overall equilibrium constants and binding capacities 

for gliclazide with normal HSA and glycated HSA.  Competition studies will then be 

conducted to examine the specific binding of gliclazide at Sudlow sites I and II on HSA 

at various stages of glycation.  The results should be useful in determining how glycation 

can affect the binding of gliclazide, and related drugs, to HSA during diabetes.  This 

chapter will also illustrate how HPAC can be used as a tool to examine the overall 

binding and site-selective interactions of drugs or other solutes with modified proteins.  
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3.2 Experimental 

3.2.1 Chemicals 

 The gliclazide (≥ 99.9% pure), R-warfarin (≥ 97%), L-tryptophan (≥ 98%), D-(+)-

glucose (99.5%), sodium azide (>95%), HSA (essentially fatty acid free, ≥ 96%), and 

commercial sample of in vitro glycated HSA (Lot 058K6087) were from Sigma-Aldrich 

(St. Louis, MO, USA).  Nucleosil Si-300 (7 µm particle diameter, 300 Å pore size) was 

obtained from Macherey-Nagel (Düren, Germany).  Reagents for the bicinchoninic acid 

(BCA) protein assay were from Pierce (Rockford, IL, USA).  A fructosamine assay kit, 

which was used for measuring glycation levels, was purchased from Diazyme 

Laboratories (San Diego, CA, USA).  All aqueous solutions were prepared using water 

from a Nanopure system (Barnstead, Dubuque, IA, USA) and were filtered through 0.20 

µm GNWP nylon membranes from Millipore (Billerica, MA, USA).   

 

3.2.2 Instrumentation 

 The HPLC system consisted of a DG-2080-53 degasser, two PU-2080 pumps, an 

AS-2057 autosampler, a CO-2060 column oven, and a UV-2075 absorbance detector 

from Jasco (Tokyo, Japan), plus a Rheodyne Advantage PF six-port valve (Cotati, CA, 

USA).   Chromatograms were collected using EZChrom Elite v3.2.1 (Scientific Software, 

Pleasanton, CA, USA) and Jasco LC Net.  Non-linear regression was carried out by using 

Data Fit 8.1.69 (Oakdale, PA, USA).   

 

3.2.3 Methods 

 Nucleosil Si-300 silica was converted into a diol-bonded form, and HSA was 

immobilized onto the diol-bonded silica through the Schiff base method, as described 
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previously [20-23].  A control support was prepared in the same manner but with no HSA 

being added during the immobilization step (Note: Although free amine groups are 

involved in both the Schiff base immobilization method and glycation, these processes 

tend to involve different residues on HSA [6,7,21]).  All supports were downward slurry 

packed into separate 2.0 cm × 2.1 mm I.D. columns at 3500 psi (24 MPa).  A pH 7.4, 

0.067 M potassium phosphate buffer was used as the packing solution.  The columns 

were stored at 4 °C and all experiments were performed over the course of less than 500 

sample applications, with the columns being routinely washed and used with sterile pH 

7.4, 0.067 M phosphate buffer.  No significant changes in binding properties were noted 

under these conditions during the course of this study [22].   

 A BCA assay was used to directly determine the immobilized protein content for 

each support, using HSA or glycated HSA as the standard and the control support as the 

blank.  The amount of protein in the normal HSA support was 38 (± 3) mg HSA/g silica.  

Three glycated HSA supports, each having different levels of modification, were used.  

The first glycated HSA sample (gHSA1) was purchased from Sigma and was prepared 

under proprietary conditions.  The second and third samples (gHSA2 and gHSA3) were 

prepared in vitro as described previously [6,7,21] and using conditions similar to those 

found in the serum of patients with controlled or advanced diabetes [24].  The amount of 

protein on these glycated HSA supports was 29 (± 4), 47 (± 8), or 40 (± 3) mg HSA/g 

silica, respectively; this amount corresponded to 10.9-17.6 nmol protein within a 2.0 cm 

× 2.1 mm I.D. column.   

 The level of glycation for each HSA sample was determined in replicate through 

the use of a fructosamine assay [6,7].  The gHSA1 sample was found by this assay to 
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contain 1.31 (± 0.05) mol hexose/mol HSA and represented mildly glycated HSA, as 

might be present in pre-diabetes or early stage diabetes.  The gHSA2 sample contained 

2.34 (± 0.13) mol hexose/mol HSA and was representative of many patients with 

controlled diabetes [26].  The gHSA3 sample had 3.35 (± 0.14) mol hexose/mol HSA and 

represented a situation found in patients with uncontrolled or advanced diabetes [27].   

 Solutions of gliclazide, R-warfarin, and L-tryptophan were prepared in pH 7.4, 

0.067 M potassium phosphate buffer.  The same buffer was used as the application and 

elution buffer in the chromatographic studies.  The mobile phases were filtered using a 

0.2 µM nylon filter and degassed for 10-15 min before use.  All experiments were carried 

out at 37 °C and 0.5 mL/min, which has been shown in prior work to allow for the 

measurement of reproducible retention factors, binding capacities, and association 

equilibrium constants during frontal analysis and zonal elution studies for the types of 

columns that were used in this report [23,24]. 

 The columns were first equilibrated with pH 7.4, 0.067 M potassium phosphate 

buffer.  In the frontal analysis experiments, a switch was then made to the same buffer 

that contained a known concentration of gliclazide.  Once a breakthrough curve had 

formed, pH 7.4, 0.067 M potassium phosphate buffer was then passed again through the 

column to elute the retained drug.  Concentrations of 1-200 µM gliclazide were used in 

these experiments and the elution of gliclazide was monitored at 250 nm.  Although 

gliclazide is a weak acid with a pKa of 5.8 [25], less than a 0.05 unit change in pH 

occurred when this drug was added to the pH 7.4 phosphate buffer over the entire tested 

range of gliclazide concentrations.  Each frontal analysis experiment was performed in 

quadruplicate and the central location of each breakthrough curve was determined using 
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the equal area method and PeakFit 4.12 (Jandel Scientific Software, San Rafael, CA, 

USA) [16].  Based on the results that were obtained for the control column, a correction 

was made for non-specific binding of gliclazide to the support by subtracting the control 

results from the data for a column containing normal HSA or glycated HSA.  Non-

specific binding to the support made up approximately 39% of the total binding for 1 µM 

gliclazide on an HSA column and was easily corrected by this approach, as noted 

previously for related drugs on similar columns [6,7]. 

 The zonal elution studies were carried out in quadruplicate using R-warfarin as a 

site-specific probe for Sudlow site I and L-tryptophan as a probe for Sudlow site II [5].  

During these experiments, 1-20 µM gliclazide was placed into the mobile phase as 20 µL 

injections of 5 µM R-warfarin and L-tryptophan were made (i.e., sample conditions found 

earlier to represent linear elution conditions on the types of columns that were examined 

in this study) [23].  The elution of R-warfarin or L-tryptophan was monitored at 308 nm 

or 280 nm, respectively.  Sodium nitrate was injected and monitored at 205 nm as a non-

retained solute; this solute has been found in numerous studies to be a good index of the 

void volume and void time for similar HSA columns (e.g., see Refs. [17-24]).   Data from 

the competition studies were fit to exponentially-modified Gaussian curves and analyzed 

using PeakFit v4.12. 

 

3.3 Results and Discussion  

3.3.1 Frontal analysis studies 

 The first set of experiments used frontal analysis to examine the overall binding 

of gliclazide to samples of either normal or glycated HSA within HPAC columns.  This 

work was used to provide initial estimates of the association equilibrium constants and 
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moles of binding sites for gliclazide with these protein preparations.  Some typical 

chromatograms that were generated for normal HSA during these experiments are given 

in Fig. 3-3(a).  The resulting data were first analyzed by using a one-site binding model, 

as represented by Eqs. (1) and (2) [16-18].   

One-site model:            𝑚𝐿𝑎𝑝𝑝 =
𝑚𝐿𝐾𝑎[A]

(1+𝐾𝑎[A])
          (1) 

1

𝑚𝐿𝑎𝑝𝑝
=

1

(𝐾𝑎𝑚𝐿[A])
+

1

𝑚𝐿
           (2) 

The term mLapp in Eqs. (1) and (2) represents the apparent moles of the applied analyte 

(i.e., gliclazide) that were required to reach the central point of a breakthrough curve at a 

given concentration of analyte in the mobile phase, [A] [17].  The association equilibrium 

constant and total moles of binding sites for the analyte in the column are described in 

Eqs. (1) and (2) by Ka and mLtot.   

Similar equations can be created for systems with multiple binding sites, as shown 

for a two-site model in Eqs. (3) and (4) [16-18]. 

Two-site model:  𝑚𝐿𝑎𝑝𝑝 =
𝑚𝐿1𝐾𝑎1[A]

(1+𝐾𝑎1[A])
+

𝑚𝐿2𝐾𝑎2[A]

(1+𝐾𝑎2[A])
           (3) 

  
1

𝑚𝐿𝑎𝑝𝑝
=

1+𝐾𝑎1[A]+𝛽2𝐾𝑎1[A]+𝛽2𝐾𝑎1
2[A]2

𝑚𝐿{(𝛼1+𝛽2−𝛼1𝛽2)𝐾𝑎1[A]+𝛽2𝐾𝑎1
2[A]2}

            (4) 

These equations now include two association equilibrium constants (Ka1 and Ka2), which 

represent the high and lower affinity sites in the column.  The amounts of these two types 

of sites, in moles, are described by mL1 and mL2.  The α1 in Eq. (4) is the ratio of the moles 

of active binding sites high affinity site to the all of the active binding sites (i.e., α1 = 

mL1/mLtot).  The term β2 in Eq. (4) is the ratio of the association equilibrium constants for 

the low versus high affinity sites, or β2 = Ka2/Ka1.   

Fig. 3-3(b) shows a typical binding isotherm that was obtained when the frontal 
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Figure 3-3. (a) Example of frontal analysis studies for gliclazide on a normal HSA 

column and (b) a binding isotherm that was generated from such a study.  

The results in (a) were obtained at gliclazide concentrations of 200, 100, 

50, 20, 10, and 5 µM (top-to-bottom).  The best-fit line in (a) was 

generated by using Eq. (1) and a one-site model; further details on this fit 

are given in the text.  The inset in (b) shows the corresponding residual 

plot. 
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analysis data for the normal HSA column were examined according to Eq. (1).  The use 

of non-linear regression gave a best-fit line for Eq. (1) that had a correlation coefficient of 

0.998 (n = 10).  The best-fit parameters for this line provided a Ka value of 1.9 (± 0.1)  

10
4
 M

-1
 and a value for mLtot of 3.0 (± 0.1)  10

-8
 mol.  The binding data were also 

examined by using double-reciprocal plots of 1/mLapp vs. 1/[A], as illustrated in Fig. 3-

4(a) for the normal HSA column. According to Eq. (2), this type of plot should result in a 

linear relationship if one-site binding is present between the applied analyte and 

immobilized binding agent [17].  The plot that was obtained in this case gave a linear 

response (correlation coefficient, 0.999 for n = 7) at the lowest analyte concentrations, or 

highest values of 1/[A].  However, a small amount of curvature at lower values of 1/[A] 

was observed.  According to Eq. (4), this curvature indicates that some multi-site 

interactions were present.   

The linear behavior seen in Fig. 3-4(a) at high values of 1/[A] (or low values of 

[A]) is predicted by Eq. (5) [16].  It is known from previous work that this linear range 

lim[A]→0
1

𝑚𝐿𝑎𝑝𝑝
=

1

𝑚𝐿(𝛼1+𝛽2−𝛼1𝛽2)𝐾𝑎1[A]
+

𝛼1+𝛽2
2−𝛼1𝛽2

2

𝑚𝐿(𝛼1+𝛽2−𝛼1𝛽2)2       (5) 

will be seen for any system with multiple and independent binding sites and can be used 

to estimate the association equilibrium constant for the highest affinity sites in the system 

[16].  From this linear range, an estimate of 3.4 (± 0.1) × 10
4
 M

-1 
was obtained for the 

average Ka of gliclazide at its high affinity sites on HSA.        

Because the plots in Fig. 3-3(b) and 3-4(a) suggested that multi-site binding was 

present for gliclazide with HSA, the frontal analysis data were next examined by using a 

two-site model.  The resulting fit that was obtained for gliclazide with normal HSA is 

shown in Fig.3-4(b).  The two-site model provided a slightly better fit than the one-site 
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Figure 3-4.  (a) A double-reciprocal plot for data obtained from frontal analysis 

experiments that examined the binding of gliclazide with normal HSA, 

and (b) analysis of the binding isotherm for gliclazide and normal HSA 

when using a two-site model.  The best-fit line in (a) was generated by 

using the data at 10-200 µM gliclazide to the right of this plot.  The inset 

in (a) shows the small deviations from linearity that occurred at low values 

of 1/[Gliclazide].  The inset in (b) provides the residual plot for the fit of a 

two-site model to the frontal analysis data.   
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model, giving a correlation coefficient of 0.999 (n = 10).  The better agreement of this fit 

with the data was more clearly indicated in the residual plots for Fig. 3-3(b) and 3-4(b) 

(see insets), in which the two-site model gave a more random distribution of data points 

about the best-fit line.  The better fit of the two-site model was also apparent when 

comparing the sum of the squares of the residuals for Figures 3(b) and 4(b), in which the 

two-site model gave a much smaller value than the one-site model (i.e., 3.77 × 10
-12

 vs. 

1.34 × 10
-9

).  Similar results were obtained when examining the binding of gliclazide 

with a column containing glycated HSA (e.g., using a sample of gHSA3).  No further 

improvement in the fit was noted when using a higher-order model, so a two-site model 

was utilized in all further binding studies with gliclazide and normal HSA or glycated 

HSA.  

The association equilibrium constants that were obtained by frontal analysis for 

the two-site model with gliclazide and normal HSA were 7.1 (± 1.9) × 10
4
 M

-1
 and 8.9 (± 

1.5) × 10
3
 M

-1
.  The corresponding values for glycated HSA, using the gHSA3 column as 

an example, were 1.0 (± 0.8) × 10
5
 M

-1
 and 5.7 (± 3.9) × 10

3
 M

-1
.  A summary of the 

results that were obtained at pH 7.4 and 37°C is provided in Table 3-1.  These values 

were similar to those that have been reported when using a two-site model to describe the 

interactions of tolbutamide and acetohexamide with normal HSA or glycated HSA [6,7].  

The relative amounts of the two groups of binding sites were estimated to be 7.1 (± 2.2) × 

10
-9

 mol and 2.7 (± 0.1) ×10
-8 

mol for normal HSA, with values of 5.6 (± 3.8) × 10
-9

 mol 

and 2.6 (± 0.4) ×10
-8 

mol being obtained for gHSA3.  Based on the protein content of the 

HPAC columns, these results corresponded to specific activities of 0.50 (± 0.16) and 1.90 

(± 0.16)
 
mol/mol normal HSA or 0.38 (± 0.25) and 1.71 (± 0.29)

 
mol/mol gHSA3.  Given 
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Table 3-1. Best-fit parameters obtained for a two-site model for the binding of 

gliclazide with normal HSA and gHSA3 at pH 7.4 and 37 ºC
a 

 

Type of HSA Ka1 

(M
-1

 × 10
4
) 

mL1 

(mol × 10
-9

) 

Ka2 

(M
-1

 × 10
4
) 

mL2 

(mol × 10
-9

) 

Normal HSA 7.1 (± 1.9) 7.1 (± 2.2) 0.89 (± 0.15) 27 (± 1) 

gHSA3 10.0 (± 0.8) 5.6 (± 3.8) 0.57 (± 0.39) 26 (± 4) 

 

a
The values in parentheses represent a range of ±1 S.D., as based on error propagation and the precisions of 

the best-fit slopes and intercepts obtained when using Eq. (3) for n = 10.  
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the fact that HSA which has been immobilized by the Schiff base method is roughly 50-

60% active, these results and those obtained by ultrafiltration indicated that 1-2 major 

binding sites and 2-3 or more weaker binding regions were involved in the interactions of 

gliclazide with normal HSA or glycated HSA.  Similar conclusions have been reached 

when examining the interactions of acetohexamide and tolbutamide by this approach with 

normal HSA or glycated HSA [6,7].   

 

3.3.2 Zonal elution studies with gliclazide at Sudlow site I   

 Competition studies based on zonal elution experiments were next used with the 

HPAC columns to identify specific sites for gliclazide on normal HSA and glycated 

HSA.  These experiments were first conducted by using R-warfarin as a site-selective 

probe for Sudlow site I.  This region was of interest because it has recently been proposed 

to be one of high affinity sites on HSA for sulfonyurea drugs such as acetohexamide and 

tolbutamide, as determined through zonal elution studies [6,7].  A typical set of 

chromatograms for this type of experiment is shown in Fig. 3-5, in which a small amount 

of R-warfarin was injected into the presence of mobile phases that contained various 

concentrations of gliclazide as a competing agent.  Sodium nitrate was also injected as a 

non-retained solute to determine the void time, which was then used to calculate the 

retention factor (k) for R-warfarin.   

Eq. (6) can be used in this type of experiment to describe a system in which direct 

competition at a single-site is involved in the binding of the injected probe A and the

competing agent I that has been added to the mobile phase [7].     

1

𝑘
=

𝐾𝑎I𝑉𝑀[I]

𝐾𝑎A𝑚𝐿
+

𝑉𝑀

𝐾𝑎A𝑚𝐿
               (6) 

The terms KaA and KaI in Eq. (6) represent the association equilibrium constants for the 
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Figure 3-5. Typical zonal elution competition studies on a normal HSA column using 

R-warfarin as an injected site-specific probe and gliclazide as a mobile 

phase additive.  The results in (a) are for gliclazide concentrations of 20, 

10, 5, 1 or 0 µM (top to bottom). The vertical dashed line is shown for 

reference and demonstrates how the retention time for the injected probe 

changed as the concentration of gliclazide was varied in the mobile phase.   
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probe and competing agent, respectively, and VM is the void volume.  According to Eq. 

(6), a plot of 1/k versus the competing agent concentration [I] should produce a linear 

relationship for a system with single-site competition [7].  The value of KaI can be 

obtained from this plot by determining the ratio of the slope to the intercept.  In this way 

it is possible to specifically examine the binding of the mobile phase additive I at its site 

of competition with the injected probe. 

As shown in Fig. 3-6(a), a linear fit to Eq. (6) was obtained for gliclazide on each 

column that contained normal HSA or glycated HSA when R-warfarin was used as an 

injected probe for Sudlow site I.  The best-fit lines for these plots had correlation 

coefficients in the range of 0.960 to 0.998 (n = 5-6).  The corresponding residual plots 

gave only random variations in the data about the best-fit lines, and the sums of the 

squares for the residuals were between 1.0 × 10
-5

 and 1.7 × 10
-3

.  All of these results 

confirmed that gliclazide and R-warfarin had direct competition at Sudlow site I on both 

normal HSA and glycated HSA.  Binding at Sudlow site I has also been noted for 

acetohexamide and tolbutamide on normal HSA and glycated HSA [6,7].       

 The association equilibrium constants for gliclazide at Sudlow site I, as 

represented in this case by KaI in Eq. (6), where determined on the various HSA columns 

from the best-fit lines in Fig. 3-6(a).  The results that were obtained at pH 7.4 and 37°C 

are summarized in Table 3-2.  An association equilibrium constant of 1.9 (± 0.1) × 10
4
 M

-

1
 was measured for gliclazide with normal HSA.  This result is slightly lower than the Ka 

values of 4.2-5.5 × 10
4
 M

-1 
that have been reported for tolbutamide and acetohexamide at 

the same site on normal HSA [6,7].       

A comparison was next made for the association equilibrium constants that were
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Figure 3-6. Plots prepared according to Eq. (6) that showing how the reciprocal of the 

retention factor for (a) R-warfarin or (b) L-tryptophan changed on HSA or 

glycated HSA columns as the concentration of gliclazide was varied in the 

mobile phase.  These results are for normal HSA (♦), gHSA1 (■), gHSA2 

(▲), and gHSA3 (●).  
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Table 3-2.  Association equilibrium constants measured at pH 7.4 and 37 ºC for 

gliclazide at Sudlow sites I and II for normal HSA and in vitro glycated 

HSA
a
   

Type of HSA    Sudlow Site I   Sudlow Site II 

     Ka (× 10
4 

M
-1

)   Ka (× 10
4 

M
-1

) 

Normal HSA    1.9 (± 0.1)   6.0 (± 0.5) 

gHSA1    1.8 (± 0.2)   4.6 (± 0.4) 

gHSA2    3.6 (± 0.3)   7.6 (± 0.6) 

gHSA3    2.1 (± 0.2)   3.8 (± 0.4) 

 

a
The values in parentheses represent a range of ±1 S.D., as based on error propagation and the precisions of 

the best-fit slopes and intercepts obtained when using Eq. (6) for n = 5-6.  
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determined for gliclazide at Sudlow site I in going from normal HSA to the glycated 

HSA samples.  There was no significant difference in the Ka values for normal HSA and 

gHSA1 or gHSA3.  However, there was a 1.9- to 2.0-fold increase in the Ka for gliclazide 

at Sudlow site I in going from normal HSA or gHSA1 to gHSA2 and a similar decrease 

in affinity in going from gHSA2 to gHSA3.  These differences were all significant at the 

95% confidence level.  This change in affinity with the level of glycation for HSA has 

also been noted for acetohexamide and tolbutamide, although the degree and direction of 

this change does vary from one type of sulfonylurea drug to the next [6,7].  It has been 

proposed in earlier work that these alterations in affinity are related to the extent and 

types of glycation products that form at or near Sudlow site I as the level of HSA 

glycation is altered [6,7,28,29].   

 

3.3.3 Zonal elution studies with gliclazide at Sudlow site II 

 Competition studies on the HPAC columns were also carried out using L-

tryptophan as a site-selective probe for Sudlow site II.  This site was of interest because it 

also has been demonstrated to be one of high affinity sites on HSA for acetohexamide 

and tolbutamide [6,7].  The results of these experiments were again plotted and analyzed 

through the use of Eq. (6).  All of the normal HSA or glycated HSA columns gave a 

linear response to this equation, as illustrated in Fig. 6(b), with correlation coefficients 

that ranged from 0.967 to 0.996 (n = 5-6).  The corresponding residual plots all gave a 

random distribution of the data points about the best-fit lines and the sum of the squares 

of the residuals for these best-fit lines ranged from 4.3 × 10
-4

 to 1.7 × 10
-4

.  The 

agreement of these plots with the behavior predicted by Eq. (6) indicated that gliclazide 

and L-tryptophan had direct competition at Sudlow site II.  The same conclusion has been 
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reached when the same approach was used to examine the binding of acetohexamide and 

tolbutamide at Sudlow site II [6,7].     

The results from the plots in Figure 3-6(b) were used to determine the association 

equilibrium constants for gliclazide at Sudlow site II on each normal HSA or glycated 

HSA column.  These results are included in Table 2.  The Ka value of 6.0 (± 0.5) × 10
4
 M

-

1
 that was determined for gliclazide at Sudlow site II on normal HSA at pH 7.4 and 37 °C 

agreed with the average association equilibrium constant that was estimated by frontal 

analysis for the high affinity sites of gliclazide on this protein.   In addition, the Ka 

determined for gliclazide at Sudlow site II on normal HSA was slightly lower than the 

affinities of 5.3-13 × 10
4
 M

-1 
that have been measured for tolbutamide and acetohexamide 

at the same site [6,7].       

All of the glycated HSA samples had affinities at Sudlow site II that were in the 

range of 10
4
-10

5 
M

-1 
for gliclazide.  However, the size of these values varied with the 

extent of glycation. For instance, there was a decrease of 1.3-fold in Ka for gliclazide at 

Sudlow site II in going from normal HSA to gHSA1.  This change was similar to what 

has been seen for acetohexamide with the same samples of normal and glycated HSA, in 

which a 1.6-fold decrease in affinity was observed [6].  There was a 1.6-fold increase in 

Ka between gHSA1 and gHSA2, or a 1.3-fold increase between normal HSA and gHSA2.  

This was followed by a 2-fold decrease in Ka in going from gHSA2 to gHSA3, or a 1.6-

fold decrease between normal HSA and gHSA3.  These differences were all significant at 

the 95% confidence level.  As stated in the previous section, these changes in affinity 

with glycation are thought to be due to differences in the glycation products that are 

formed at or near specific regions on HSA as the overall level of glycation for this protein 
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is increased [6,7,28,29].        

 

3.4 Conclusion 

 This chapter utilized HPAC as a tool to examine the binding of gliclazide to 

normal HSA and HSA with various levels of glycation.  Frontal analysis experiments 

indicated that gliclazide was binding with normal HSA and glycated HSA through a two-

site model that involved both high and lower affinity sites.  There were one or two high 

affinity regions with an average association equilibrium constant of approximately 7.1-10 

× 10
4
 M

-1
 and two or more low affinity sites with an average association equilibrium 

constant of 5.7-8.9 × 10
3
 M

-1
 at pH 7.4 and 37 °C.  

 Zonal elution studies demonstrated that gliclazide was binding to both Sudlow 

sites I and II in normal HSA and glycated HSA.  The association equilibrium constants 

for these sites were in the range of 10
4
-10

5
 M

-1
.  The binding of gliclazide at Sudlow sites 

I and II for normal HSA gave association equilibrium constants of 1.9 × 10
4
 M

-1
 and 6.0 

× 10
4
 M

-1
, respectively.  Two of the glycated HSA samples (i.e., gHSA1 and gHSA3) had 

similar affinities to normal HSA for gliclazide at Sudlow site I; however, one of the 

protein samples (gHSA2) had a 1.9-fold increase in affinity for gliclazide at this site.  All 

of the glycated HSA samples differed from normal HSA in their affinity for gliclazide at 

Sudlow site II.  These data indicate that modifications due to glycation can have different 

effects on the interactions of gliclazide with HSA at separate binding sites on this protein.  

These results are in agreement with previous data that have been obtained with 

acetohexamide and tolbutamide [6,7] and with structural studies that have examined the 

glycation products that can form at or near Sudlow sites I and II [28,29].  Similar studies 

with in vivo glycated HSA are now in progress to further characterize these effects and to 
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determine their possible clinical significance. 

The experiments in this chapter illustrated how HPAC could be used to provide 

detailed information on the binding of a drug or solute with a modified protein.  This 

included data on the overall model, equilibrium constants and amount of binding sites for 

a drug-protein interaction.  It was also demonstrated how HPAC can be used to examine 

the changes in interactions that occur at specific regions on a protein (e.g., Sudlow sites I 

and II of HSA).  The methods used in this study were relatively fast (i.e., taking only 

minutes per sample) and were easily automated.  The small amounts of protein in the 

HPAC columns and the ability to reuse these columns for hundreds of binding 

experiments made this approach more attractive than ultrafiltration for work with 

valuable or limited samples of modified proteins.  The techniques used in this study are 

not limited to gliclazide and normal HSA or glycated HSA but could be used with many 

other types of biological interactions.  These features should result in the further use of 

HPAC for biointeraction analysis.    
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CHAPTER 4: 

ANALYSIS OF DRUG INTERACTIONS WITH MODIFIED PROTEINS BY  

HIGH-PERFORMANCE AFFINITY CHROMATOGRAPHY:  

BINDING OF GLIBENCLAMIDE TO NORMAL AND GLYCATED HUMAN 

SERUM ALBUMIN  

Note: Portions of this chapter have appeared in R. Matsuda, J. Anguizola, K.S. Joseph, 

D.S. Hage, “Analysis of drug interactions with modified proteins by high-performance 

affinity chromatography: Binding of glibenclamide to normal and glycated human serum 

albumin”, J. Chromatogr. A 1265 (2012) 114-122.  

 

4.1 Introduction 

The International Diabetes Federation reported in 2011 that 366.2 million people 

in the world are affected by diabetes [1].  A total of 25.8 million are affected by diabetes 

in the United States alone [2].  Diabetes is a condition that is caused by high glucose 

levels in blood and has two major forms [3].  Type I diabetes (i.e., juvenile onset or 

insulin-dependent diabetes) affects 5-10% of diabetic patients and is caused when 

pancreatic beta cells (i.e., insulin-producing cells) are attacked by the immune system [2].  

Most of the remaining 90-95% of diabetic patients suffer from type II diabetes (i.e., non-

insulin dependent or adult onset diabetes), which is caused by insulin resistance [1,2].   

Sulfonylurea drugs are oral medications that are commonly used to treat type II 

diabetes.  These drugs lower blood glucose levels by increasing the amount of insulin that 

is produced by pancreatic beta cells [4].  According to the biopharmaceutical 

classification system, sulfonylurea drugs are listed as class II drugs with high 

permeability and low solubility [5].  Fig. 4-1 shows the core structure of a sulfonylurea 
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Figure 4-1. Structure of glibenclamide.  The region within the dashed box shows the 

core structure of a sulfonylurea drug.  
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drug, which is composed of phenylsulfonyl and urea groups, both which are hydrophilic 

[6,7].  Various non-polar functional groups can be found on either side of this core 

structure and contribute to both the effectiveness and metabolism of these drugs [6-8].  

Glibenclamide, or glyburide (see Fig. 4-1), is a popular second-generation sulfonylurea 

drug.  Second-generation sulfonylurea drugs like glibenclamide are more easily excreted 

and can be prescribed in lower doses than first-generation sulfonylureas (e.g., 

tolbutamide and acetohexamide) [8].  For instance, glibenclamide has a therapeutic level 

in serum of 0.08-0.4 M versus 60-215 or 185-370 M for acetohexamide and 

tolbutamide, respectively [9].   

Although sulfonylurea drugs are used to lower blood glucose levels, 

hypoglycemia is a relatively common side effect if the apparent dose of these drugs is too 

high.  This situation occurs in 2-20% of patients, depending on the type of sulfonylurea 

being used [10].  One factor that will affect the free fractions of these drugs in the 

circulation, and their apparent dose, is the level of binding by these drugs with serum 

proteins, especially with human serum albumin (HSA) [6,9-12].  HSA (molar mass, 66.5 

kDa) is the most abundant protein in plasma and is responsible for transporting various 

fatty acids, low mass hormones, and drugs in the circulation [11-19].  There are two main 

drug binding sites on HSA: Sudlow sites I and II.  Sudlow site I is found in subdomain 

IIA and binds to bulky heterocyclic anionic drugs such as warfarin, azapropazone, 

phenylbutazone and salicylate [12,13].  Sudlow site II is located in subdomain IIIA and 

can bind to ibuprofen, fenoprofen, ketoprofen, benzodiazepine, and L-tryptophan, among 

other solutes [12,13].  Recent studies have shown that both of these sites have 

interactions with first-generation sulfonylurea drugs, tolbutamide and acetohexamide, and 
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the second-generation drug gliclazide [14-16].  Other studies have found that some drugs 

can bind to a separate region on HSA known as the digitoxin site [17-22], but no previous 

reports have examined the interactions of sulfonylureas at this site.   

The elevated levels of glucose in blood during diabetes can lead to a protein 

modification known as glycation [23-28].  Glycation is a non-enzymatic process in which 

amine groups can undergo the formation of a reversible Schiff base with the open chain 

form of a reducing sugar.  The Schiff base can later rearrange to form a more stable 

Amadori product.  Patients with diabetes are estimated to have 20-30% or more of HSA 

in a glycated form, while individuals without diabetes may have 6-13% of HSA glycated 

[23,24,26].  Previous work has suggested that glycation can alter the interactions between 

HSA and some solutes.  For instance, it has been shown in chromatographic studies that 

glycation can alter the ability of Sudlow sites I and II on HSA to bind with sulfonylurea 

drugs [14-16].  Experiments based on fluorescence spectroscopy, circular dichroism, and 

theoretical calculations have also found that glycation and related modifications can 

affect intermolecular interactions between drugs and HSA, including possible changes in 

the binding of drugs at Sudlow site I of this protein [29,30]. 

The purpose of this study is to use high-performance affinity chromatography 

(HPAC) to examine the binding of glibenclamide to HSA at various stages of glycation.  

HPAC is a chromatographic technique that uses an immobilized biological molecule as 

the stationary phase [31-33].  Previous studies have shown that columns containing 

normal HSA or glycated HSA can provide good precision and fast analysis times for 

studies of drug-protein interactions [14-16], while also giving good correlation with 

solution-based methods (e.g., equilibrium dialysis, ultrafiltration, or spectroscopic 



138 
 

 
 

methods) [32,33].  In addition, HPAC is easy to automate and can be used with various 

detection schemes, including absorbance, fluorescence or mass spectrometry [31-38].  

HPAC has been used previously in detailed studies that have examined the effects of 

glycation on the binding of HSA to other sulfonylurea drugs [14-16], as well as the 

effects of some specific modifications on drug-protein interactions (e.g., the selective 

modification of Tyr-411, Trp-214, or Cys-34 on HSA) [39-41].  However, this approach 

has only been used in screening studies with glibenclamide and required a solubilizing 

agent for work with this relatively low solubility drug [42].  These conditions and the 

lack of more complete binding information have, in turn, made it difficult in prior work 

to directly compare the overall interactions of HSA with this drug and with other 

sulfonylureas.   

This chapter will seek to overcome these prior limitations by examining how 

HPAC can be adapted for providing more complete information on the protein binding of 

relatively low solubility drugs such as glibenclamide.  For instance, this approach will be 

modified and explored for use with such a drug in the methods of frontal analysis and 

zonal elution to look at both the global and site-specific changes in binding that may 

occur for glibenclamide with normal HSA versus in vitro glycated HSA.  These 

experiments should help indicate how HPAC can then be modified for use with other 

non-polar drugs.  In addition, this work should provide useful data on how glycation can 

alter the binding of glibenclamide or related drugs to HSA and lead to a more complete 

understanding of how glycation can alter the binding and transport of such drugs in the 

circulation. 
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4.2 Experimental 

4.2.1 Reagents 

The glibenclamide (≥ 99.9% pure), R-warfarin (≥ 97%), L-tryptophan (≥ 97%), 

digitoxin (97% pure), β-cyclodextrin (> 98% pure), D-(+)-glucose (≥ 99.5%), sodium 

azide (95%), HSA (essentially fatty acid free, ≥ 96%), and commercial sample of in vitro 

glycated HSA (Lot 058K6087) were obtained from Sigma-Aldrich (St. Louis, MO, 

USA).  The Nucleosil Si-300 (7 µm particle diameter, 300 Å pore size) was purchased 

from Macherey-Nagel (Düren, Germany).  Reagents for the bicinchoninic acid (BCA) 

protein assay were from Pierce (Rockford, IL, USA).  For the measurement of glycation 

levels, a fructosamine assay kit was obtained from Diazyme Laboratories (San Diego, 

CA, USA).  All aqueous solutions were prepared with water from a Nanopure system 

(Barnstead, Dubuque, IA, USA) and filtered through a 0.2 µm GNWP nylon membrane 

from Millipore (Billerica, MA, USA). 

 

4.2.2 Apparatus 

The chromatographic system was comprised of a DC-2080 degasser, two PU-

2080 pumps, an AS-2057 autosampler, a CO-2060 column oven, and a UV-2075 

absorbance detector from Jasco (Tokyo, Japan), which included a Rheodyne Advantage 

PF six-port valve (Cotati, CA, USA).  EZ Chrom Elite software v3.21 (Scientific 

Software, Pleasanton, CA, USA) and Jasco LC Net were used to control the system.  

Chromatograms were analyzed through the use of Peak-Fit 4.12 (Jandel Scientific 

Software, San Rafael, CA, USA).  Data Fit 8.1.69 (Oakdale, PA, USA) was utilized to 

perform non-linear regression. 
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4.2.3 Methods 

For the sake of comparison, the in vitro glycated HSA samples used in this work 

were the same as employed in previous HPAC studies with other sulfonylurea drugs [14-

16,43].  Although many prior studies have used in vitro glycated HSA for binding studies 

like those described in this report [14-16,30,44], it has also been suggested in recent work 

with related modifications that in vivo glycated HSA may provide a better model for 

representing drug-protein interactions that occur at physiological conditions [44].  To 

minimize differences due to the use of in vitro glycated HSA in this study, conditions for 

preparation of the glycated HSA samples were selected to closely mimic the glucose and 

protein concentrations and reaction conditions that are present in blood.  The gHSA1 was 

purchased from Sigma and was glycated under proprietary conditions; this support had a 

measured glycation level of 1.31 (± 0.05) mol hexose/mol HSA, as might be found in a 

patient with prediabetes, and represented mildly glycated HSA [14-16,43].  The gHSA2 

and gHSA3 samples were prepared in vitro as described previously [14,15,43] and 

represented glycation levels of patients with controlled or advanced diabetes [45,46].  

These two preparations contained 2.34 (± 0.13) and 3.35 (± 0.14) mol hexose/mol HSA, 

respectively [14,15].  It has been found in separate, ongoing studies based on mass 

spectrometry and ultrafiltration and HPAC that these protein preparations have similar 

modification patterns and binding properties to samples of in vivo HSA with comparable 

levels of glycation [47-51], thus making these preparations reasonable models for the 

types of binding studies that are described in this report.    

Diol-bonded silica was produced from Nucleosil Si-300 silica according to the 

literature [52].  The Schiff base method was used to immobilize HSA or glycated HSA 
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onto the diol-bonded silica, also as reported previously [53-55].  Using the same 

procedure, control supports were prepared with no protein being added during the 

immobilization step.  Although both the Schiff base immobilization method and glycation 

involve free amine groups on proteins, these processes tend to involve different residues 

on HSA [49-51].  A BCA assay was carried out in triplicate to determine the protein 

content of each support, using soluble HSA as the standard and samples containing the 

control support as the blanks.  The support containing normal HSA was found previously 

with this assay to have a protein content of 38 (± 3) mg HSA/g silica.  The three types of 

glycated HSA supports that were prepared (referred to later in this report as gHSA1, 

gHSA2 and gHSA3) were found to have protein contents of 29 (± 4), 47 (± 8), or 40 (± 3) 

mg HSA/g silica [14,43].   

All of the supports were downward slurry packed into separate 2.0 cm  2.1 mm 

I.D. columns at 3500 psi (24 MPa) using pH 7.4, 0.067 M potassium phosphate buffer.  

These columns were then stored at 4 °C in the same pH 7.4 phosphate buffer.  Each 

column was used in fewer than 500 sample applications and was routinely washed with 

pH 7.4, 0.067 M phosphate buffer.  Throughout the course of this study, no significant 

changes in binding properties were noted for any of these columns, as reported previously 

for similar systems [53].  

The R-warfarin, L-tryptophan, glibenclamide and digitoxin samples were 

prepared in pH 7.4, 0.067 M potassium phosphate buffer.  The limited solubility of 

digitoxin (i.e., roughly 4 mg/L) [56] required the addition of 0.88 mM β-cyclodextrin to 

increase the solubility of this drug, as described in prior work [20-22].  The R-warfarin 

and digitoxin solutions were used within two weeks of preparation, and the L-tryptophan 
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solutions were used within one day of preparation, respectively [43,57].  Due to the low 

solubility of glibenclamide in water, the procedure for preparing solutions containing this 

drug were altered from those used in previous studies with other, more soluble 

sulfonylurea drugs.  Previous HPAC studies with acetohexamide, tolbutamide and 

gliclazide could be carried out by preparing overnight, with stirring at room temperature, 

solutions that contained up to 200-1000 M of these drugs in a pH 7.4, 0.067 M 

phosphate buffer [14-16].  Glibenclamide was much less soluble under the same 

conditions and additional steps had to be taken to provide a suitably broad range of 

concentrations for use in methods such as frontal analysis.  -Cyclodextrin has previously 

been employed as a solubilizing agent for glibenclamide in screening studies [42]; 

however, this approach alters the apparent retention of the applied drug onto the column 

and requires relatively complex procedures to correct for this effect and carry out more 

detailed binding studies [31-38].  In this current study, solutions of glibenclamide were 

instead prepared without the use of any solubilizing agent by utilizing both stirring and 

sonication in a covered container that was kept for 5-7 days at 35-50 °C.  It was found 

that a stable stock solution containing up to 50 µM glibenclamide could be prepared 

under these conditions, as confirmed by absorbance measurements and dilution studies.  

This stock solution was then used directly or diluted to make working solutions for 

frontal analysis and zonal elution experiments involving HPAC.   

The mobile phases used in the chromatographic studies were based on pH 7.4, 

0.067 M potassium phosphate buffer, which was used to apply the samples and to elute 

retained analytes under isocratic conditions.  The solutions used in the chromatographic 

system were filtered through a 0.2 µm nylon filter and were degassed for 10-15 min 
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before use.  All experiments were carried out at a physiological temperature of 37 °C and 

using a flow rate of 0.5 mL/min.  Prior work on similar columns has shown that frontal 

analysis and zonal elution studies performed under these flow rate conditions allow for 

the reproducible measurements of retention factors, binding capacities, and association 

equilibrium constants [14-16,43,55,57].   

  In the frontal analysis experiments, the columns were first equilibrated with pH 

7.4, 0.067 M potassium phosphate buffer.  Using a six-port valve, a switch was made 

from this pH 7.4 buffer to a solution containing a known concentration of glibenclamide 

in the same buffer.  After a breakthrough curve was formed and a stable plateau had been 

reached, a switch was made back to the pH 7.4, 0.067 M potassium phosphate buffer to 

elute the retained drug.  These frontal analysis experiments were carried out using sixteen 

sample solutions that contained 1-50 µM glibenclamide, with the elution of 

glibenclamide being monitored at 250 nm.  All experiments were performed in 

quadruplicate and the central point of each breakthrough curve was determined by using 

the equal area function of Peak Fit 4.12.  A correction for non-specific binding (e.g., 41% 

of the total binding seen on the HSA column for 50 µM glibenclamide) was made by 

subtracting the results for the control column from the data for each column containing 

normal HSA or glycated HSA, according to methods described in Refs. [14,16].  

The zonal elution competition studies were carried out by utilizing R-warfarin as a 

site-specific probe for Sudlow site I of HSA, L-tryptophan as a probe for Sudlow site II, 

and digitoxin as a probe for the digitoxin site [12,13,20-22].  Mobile phases containing 1-

20 µM glibenclamide were used in these experiments.  These concentrations were used to 

dilute the site-specific probes to a concentration of 5 µM.  During these studies, a 20 µL 
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sample of 5 µM R-warfarin, L-tryptophan and digitoxin was injected onto each column 

and monitored at 308 nm, 280 nm, or 205 nm, respectively.  Sodium nitrate, which was 

monitored at 205 nm, was injected at a concentration of 20 µM and used as a non-

retained solute [32,38,42,43].  All of these injections were performed in quadruplicate on 

each protein column or control column.  The central moments for the resulting peaks 

were determined by using PeakFit v4.12 and an exponentially modified Gaussian curve 

model.   

 

4.3. Results and Discussion 

4.3.1 Frontal analysis studies 

 Frontal analysis was used to first examine the overall binding of glibenclamide to 

the normal HSA and glycated HSA columns.  These experiments used HPAC to examine 

the global binding of glibenclamide with these proteins by providing information on the 

number of binding sites and association equilibrium constants for these sites.  Fig. 4-2 

shows some typical breakthrough curves that were produced in these studies, which 

typically required 5-20 min to obtain.  The moles of drug that were required to reach the 

central point of each breakthrough curve were measured as a function of the 

concentration of the applied drug.  The results were then fit to various binding models.   

Eqs. (1) or (2) were used to see how such data agreed with a model that involved 

the interactions of glibenclamide at a single type of binding region on HSA or glycated 

HSA [32,38].   

One-site model:            

   𝑚𝐿𝑎𝑝𝑝 =
𝑚𝐿𝐾𝑎[A]

(1+𝐾𝑎[A])
           (1) 
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Figure 4-2.  Example of frontal analysis studies for glibenclamide on a normal HSA 

column at pH 7.4 and 37 ºC.  These results were obtained at 0.5 mL/min 

and using glibenclamide concentrations of 50, 20, 10, and 5 µM (top-to-

bottom).  The small initial step changes shown to the left occurred at or 

near the column void time and probably represent only a small difference 

in composition and background absorbance of each drug solution versus 

the application buffer; these small step changes were not included in the 

data analysis and integration of the much larger frontal analysis curves 

that are shown to the right.  
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1

𝑚𝐿𝑎𝑝𝑝
=

1

(𝐾𝑎𝑚𝐿[A])
+

1

𝑚𝐿
          (2) 

In these equations, the term mLapp represents the measured moles of applied drug that was 

required to reach the central point of the breakthrough curve at a given molar 

concentration of the applied drug, [A] [32,38].  The association equilibrium constant and 

total moles of binding sites for this interaction are represented by terms Ka and mL, 

respectively.   

A two-site binding model was also used to examine the data, as described by Eqs. 

(3) and (4) [32,38].    

Two-site model:  

          𝑚𝐿𝑎𝑝𝑝 =
𝑚𝐿1𝐾𝑎1[A]

(1+𝐾𝑎1[A])
+

𝑚𝐿2𝐾𝑎2[A]

(1+𝐾𝑎2[A])
         (3) 

  
1

𝑚𝐿𝑎𝑝𝑝
=

1+𝐾𝑎1[A]+𝛽2𝐾𝑎1[A]+𝛽2𝐾𝑎1
2[A]2

𝑚𝐿{(𝛼1+𝛽2−𝛼1𝛽2)𝐾𝑎1[A]+𝛽2𝐾𝑎1
2[A]2}

            (4) 

In these equations, Ka1 and Ka2 represent the association equilibrium constants for the two 

classes of sites, while the moles of these two groups of sites are described by the terms 

mL1 and mL2.  Eq. (4) also includes the term α1, which represents the fraction of all 

binding sites for the drug that are made up of its highest affinity regions (e.g., α1 = 

mL1/mLtot if Ka1 and mL1 are used to refer to the highest affinity sites).  In a similar manner, 

the ratio of the association equilibrium constants for the low versus high affinity sites is 

represented by β2, where β2 = Ka2/Ka1 in the case where Ka1 refers to the highest affinity 

sites and Ka2 refers to the lower affinity sites [32,38].   

Previous results with other sulfonylurea drugs have indicated that these solutes 

tend to follow a two-site binding model during their interactions with both normal HSA 

and glycated HSA [14-16,58].  Fig. 4-3 shows the results that were obtained when using
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Figure 4-3. Data obtained for glibenclamide on a normal HSA column as fit to (a) a 

one-site binding model generated by using Eq. (1) or (b) a two-site 

binding model generated by using Eq. (3).  The insets in (a) and (b) show 

the corresponding residual plots.  Each point represents the average of four 

runs, with typical relative standard deviations that ranged from ±0.02% to 

±7.9% (average, ±1.9%).   
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non-linear regression and the non-transformed data from a frontal analysis experiment 

with glibenclamide and the normal HSA column; similar trends were seen for glycated 

HSA.  In each case, lower concentrations were used in this work with glibenclamide than 

in previous experiments with other sulfonylurea drugs [14-16] due to the lower solubility 

of glibenclamide in an aqueous solution.  To help compensate for this lower range and 

provide good estimates of the binding parameters for the system, a greater number of 

concentrations were tested in the given range and more replicates were used at each 

concentration (e.g., sixteen tested concentrations versus nine to fifteen and four replicates 

versus three for most of the previous experiments in Refs. [14-16]).  Furthermore, several 

samples were at the lower end of this concentration range to better examine the stronger 

binding that was observed for glibenclamide with HSA when compared with previously-

examined sulfonylureas [14-16].  Under these conditions, a two-site binding model was 

again found to give a better fit than a one-site binding model for the glibenclamide data in 

Fig. 4-3(b), with a correlation value of 0.997 (n = 16) versus 0.952, respectively.  As 

shown by the insets to Fig. 4-3, residual plots for the two-site model gave a more random 

distribution of the residuals about the best-fit line when compared to the results for the 

one-site model and a smaller sum of the squares of the residuals (i.e., 3.0  10
-18 

vs. 4.9  

10
-17

).   

The presence of more than one group of binding sites for glibenclamide on 

normal HSA was confirmed when using Eqs. (2) and (4) and a double reciprocal plot of 

1/mLapp vs. 1/[A] as an alternative route to examine the data.  When this type of plot was 

made (see Fig. 4-4), a linear relationship was seen as the value of 1/[A] increased, with 

clear deviations being noted at smaller values of 1/[A].  If one-site binding were present,
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Figure 4-4.  A double-reciprocal plot for frontal analysis experiments that examined 

the binding of glibenclamide with normal HSA.  The data in this plot were 

the same as utilized in Fig. 4-3.  The best-fit line was generated by using 

the data for 0.5-5 µM glibenclamide and gave a correlation coefficient of 

0.996 (n = 7).       
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a linear response at all values of 1/[A] would have been expected in such a plot, as 

predicted by Eq. (2).  The fact that deviations from linearity were seen at small values for 

1/[A] meant that at least two groups of sites were involved in this interaction, as indicated 

by Eq. (4) (note: similar deviations from linearity are expected for higher-order binding 

models) [32,38].  The linear response that was noted at higher values of 1/[A] in Figure 

4-4 is predicted even for models involving multiple binding sites, as shown by Eq. (5) 

[59,60].   

                 lim[A]→0
1

𝑚𝐿𝑎𝑝𝑝
=

1

𝑚𝐿(𝛼1+𝛽2−𝛼1𝛽2)𝐾𝑎1[A]
+

𝛼1+𝛽2
2−𝛼1𝛽2

2

𝑚𝐿(𝛼1+𝛽2−𝛼1𝛽2)2       (5) 

In addition, it is known from this linear region that an estimate can be made for the 

association equilibrium constant of the highest affinity sites in the column [59,60].  Using 

the linear region of Fig. 4-4, the value of Ka1 was found to be approximately 6.4 (± 0.5)  

10
5 

M
-1

 for the normal HSA column, where the value in parentheses represents a range of 

 1 S.D.  This value for Ka1 is comparable to a binding constant of 7.6  10
5 

M
-1

 at 37 °C 

and pH 7.4 that has been previously reported for glibenclamide with normal HSA when 

using a one-site binding model [61].   

Use of the two-site model in Eq. (3) and the non-transformed frontal analysis data 

provided association equilibrium constants of 1.4 (± 0.5)  10
6 

M
-1

 and 4.4 (± 1.0)  10
4 

M
-1

 for the binding of normal HSA with glibenclamide at pH 7.4 and 37° C (see Table 4-

1).  The mL values for these sites were 1.1 (± 0.2)  10
-8

 mol and 3.1 (± 0.1)  10
-8

 mol, 

respectively, in the column that was used for this experiment.  It was noted in this case 

that the result for Ka1 was roughly 10-fold higher than the corresponding values for the 

high affinity sites that have been measured on an identical column and under the same 

mobile phase conditions for other sulfonylurea drugs (i.e., tolbutamide, acetohexamide 
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Table 4-1. Best-fit parameters obtained for a two-site model for the binding of 

glibenclamide with normal HSA and gHSA3 at pH 7.4 and 37ºC
a 

Type of HSA Ka1 

(M
-1

 × 10
6
) 

mL1 

(mol × 10
-8

) 

Ka2 

(M
-1

 × 10
4
) 

mL2 

(mol × 10
-8

) 

Normal HSA 1.4 (± 0.5) 1.1 (± 0.2) 4.4 (± 1.0) 3.1 (± 0.1) 

gHSA3 1.9 (± 1.5) 0.9 (± 0.3) 7.2 (± 2.8) 2.4 (± 0.2 

 

a
The values in parentheses represent a range of ±1 S.D., as based on error propagation and the precisions of 

the best-fit slopes and intercepts obtained when using Eq. (3) for n = 16.  
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and gliclazide) [16,58] (Note: a lower retention for glibenclamide on an HSA column was 

noted versus these other drugs in the screening studies described in Ref. [42], but in 

thisearlier case the apparent retention for glibenclamide was lowered by the presence of 

-cyclodextrin as a solubilizing agent).  An increase in affinity for glibenclamide to HSA 

when compared to first-generation sulfonylurea drugs has been noted previously and was 

expected due to the larger aromatic groups that are present in glibenclamide versus these 

other agents [61].     

The specific activity based on the protein content for this column at the high and 

lower affinity sites were 0.63 (± 0.09) and 1.73 (± 0.07) mol/mol normal HSA, 

respectively.  This result suggested that one high affinity region existed on HSA with a 

binding constant in the range of 10
6 

M
-1

, along with several lower affinity regions with 

binding constants between 10
4 

and
 
10

5 
M

-1
.  For comparison, analysis of the same data by 

using a one-site model resulted in an intermediate value for Ka1 of 2.0 (± 0.3)  10
5 

M
-1

, a 

value for mL1 of 3.3 (± 0.1)  10
-8 

mol, and a relative activity of 1.8 (± 0.1) mol/mol 

normal HSA. 

Frontal analysis experiments were also performed with glibenclamide and a 

highly glycated HSA sample (gHSA3).  Plots prepared according to Eqs. (1-4) gave 

trends similar to those shown for normal HSA in Fig. 4-3 and 4-4.  For each type of plot, 

the glycated HSA column again gave the best-fit to a two-site model (see summary in 

Table 4-1).  The one-site model gave a correlation coefficient of 0.976 (n = 16) in 

comparison to a correlation coefficient of 0.994 for a two-site model for this column.  

Residual plot analysis for the two different models showed a random distribution for the 

two-site model and a smaller sum of the squares of the residuals when compared to the 
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one-site model (i.e., 8.5  10
-18 

vs. 3.7  10
-17

).  The association equilibrium constants 

obtained for this column when using Eq. (3) and a two-site model were 1.9 (± 1.5)  10
6 

M
-1

 and 7.2 (± 2.8)  10
4 

M
-1

.  Based on the measured levels of these sites and the 

column’s known protein content, the relative activities for these sites were found to be 

0.45 (± 0.16) and 1.20 (± 0.11) mol/mol gHSA3, which were consistent with the results 

observed for normal HSA.  Analysis of the same data according to a double reciprocal 

plot gave deviations from linearity that confirmed at least two groups of binding sites 

were present.  The linear region of this latter plot was again used with Eq. (5) to estimate 

Ka1 for the high affinity sites, giving a value of 6.8 (± 0.4)  10
5 

M
-1

.  This result was 

comparable to the binding constant that was estimated by the same approach for the high 

affinity sites of glibenclamide with normal HSA.   

 

4.3.2 Binding of glibenclamide at Sudlow site I 

 Competition studies and zonal elution were next used to test for any changes that 

may have occurred in the binding of glibenclamide at specific binding sites on normal 

HSA or glycated HSA.  These experiments used site-specific probes to examine the 

competition between the injected probe and a competing agent, such as a drug that was 

placed at a known concentration in the mobile phase.  R-Warfarin was employed as a 

site-specific probe for Sudlow site I in these studies, while the mobile phase contained 

glibenclamide as a competing agent.  Sudlow site I was of interest in this work because 

previous studies with other sulfonylurea drugs have shown that this region has a 

relatively high affinity for these solutes on both normal HSA and glycated HSA [14-

16,58].  Examples of some results that were obtained in this report with glibenclamide are 

given in Fig. 4-5(a).  In both these zonal elution studies and those described in the 
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following sections, the same range in concentrations for glibenclamide as a competing 

agent was used as in prior work with other sulfonylurea drugs [14-16,58] because this 

range was well within the solubility limit of glibenclamide.  However, the number of 

concentrations that were tested in this range was increased (from five-to-six up to seven-

to-eight) and the number of replicates was increased (from three to four) to allow for 

more precise estimates to be obtained for the binding parameters of this system.      

When analyzing data like that given in Fig. 4-5, direct competition between an 

injected site-specific probe and a competing agent for a common binding site on an 

immobilized protein should result in a decrease in the retention factor (k) for the probe as 

the molar concentration of the competing agent ([I]) is increased [15,32].  The change in 

k as a function of [I] for a system with competition at a single type of site is described by 

Eq. (6).  This equation predicts that a linear relationship will be formed for such a system 

when a plot is made of 1/k versus [I].   

1

𝑘
=

𝐾𝑎I𝑉𝑀[I]

𝐾𝑎A𝑚𝐿
+

𝑉𝑀

𝐾𝑎A𝑚𝐿
               (6) 

In this equation, KaA and KaI are the association equilibrium constants for the injected 

probe and competing agent, respectively, at their site of competition.  The term VM is the 

column void volume, and mL represents the moles of common binding sites in the 

column.  According to this relationship, the ratio of the slope to the intercept for the best-

fit line can be used to find KaI, which provides information on the association equilibrium 

constant for the agent in the mobile phase at its specific site of competition with the 

injected probe.   

 Examination of the specific changes in binding at Sudlow site I for glibenclamide 

by this approach gave linear relationships according to Eq. (6) for the columns that 
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Figure 4-5. Plots prepared according to Eq. (6) that show how the reciprocal of the 

retention factor for (a) R-warfarin or (b) L-tryptophan changed on normal 

HSA or glycated HSA columns as the concentration of glibenclamide was 

varied in the mobile phase.  These results are for normal HSA (●) and 

gHSA2 (▲).  Each point in these plots is the mean of four runs, with 

relative standard deviations in (a) that ranged from ±0.3% to ±2.6 

(average, ±2.1%) and in (b) that ranged from ±2.2% to ±15.4 (average, 

±7.1%).  The correlation coefficients for the normal HSA and gHSA2 

plots in (a) were 0.966 (n = 6) and 0.975 (n = 8), respectively, while the 

correlation coefficients in (b) were 0.970 (n = 7) and 0.993 (n = 8).   
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contained either normal HSA or glycated HSA and under the drug concentrations that 

could be employed in these studies.  These lines had correlation coefficients that ranged 

from 0.966 to 0.992 (n = 6-8).  Residual plots gave random distributions for the data 

about the best-fit lines and sums for the squares of the residuals that ranged from 2.9  

10
-7

 to 2.3  10
-5

.  The results for all the tested columns were found to fit with a direct 

competition model for glibenclamide and R-warfarin at Sudlow site I.  Similar previous 

experiments have noted that related drugs such as tolbutamide, acetohexamide and 

gliclazide also bind to this site on HSA [14-16].   

 In the next stage of this work, the association equilibrium constants that were 

obtained from Eq. (6) were used to see how the binding of glibenclamide at Sudlow site I 

was affected as the level of glycation for HSA was varied.  The results are summarized in 

Table 4-2.  The site-specific association equilibrium constant that was measured by this 

approach for glibenclamide at Sudlow site I of normal HSA was 2.4 (± 0.3)  10
4 

M
-1 

at 

pH 7.4 and 37 ºC.  This value was slightly smaller than association equilibrium constants 

of 4.2-5.5  10
4 

M
-1

 that have been reported for normal HSA with the first-generation 

sulfonylurea drugs tolbutamide and acetohexamide but was similar to an association 

equilibrium constant of 1.9  10
4 

M
-1

 that has been measured at this site for gliclazide, 

another second-generation sulfonylurea drug [14-16,58]  This binding constant is lower 

than the values of 0.64-1.4  10
6 

M
-1

 which were estimated in Section 4.3.1 for the high 

affinity sites of glibenclamide with normal HSA, indicating that other regions probably 

made up the high affinity sites for this drug.  It was further noted that this affinity was in 

the same general range as the value of 4.4 (± 1.0)  10
4 

M
-1 

that was obtained in Section 

4.3.1 for the lower affinity sites of glibenclamide with normal HSA.
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Table 4-2.    Local association equilibrium constants obtained for glibenclamide at 

specific binding regions of normal HSA and glycated HSA at 37 °C and 

pH 7.4 

Type of HSA   Sudlow site I  Sudlow site II          Digitoxin site 

     Ka ( 10
4 

M
-1

)  Ka  10
4 

M
-1

)  Ka ( 10
6 

M
-1

)  

 

Normal HSA   2.4 (± 0.3)  3.9 (± 0.2)  2.1 ± (0.8) 

gHSA1   2.5 (± 0.1)  16.7 (± 0.4)  1.7 ± (0.8) 

gHSA2   4.1 (± 0.7)  23.3 (± 0.8)  1.1 ± (0.4) 

gHSA3   4.5 (± 0.3)  17.8 (± 0.4)  1.2 ± (0.2) 

 

a
The values in parentheses represent a range of ±1 S.D., as based on error propagation and the precisions of 

the best-fit slopes and intercepts obtained when using Eq. (6) for n = 5-8. 
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The association equilibrium constant for glibenclamide at Sudlow site I for 

normal HSA was next compared to values measured at the same site for each glycated 

HSA sample.  There was no significant increase in the association equilibrium constant 

for glibenclamide at Sudlow site I in going from normal HSA to gHSA1.  However, a 

1.7- to 1.9-fold increase in the association equilibrium constant was noted between 

normal HSA and gHSA2 or gHSA3, which was significant at the 95% confidence level.  

A change in affinity with the level of glycation has also been observed at Sudlow site I 

for tolbutamide, acetohexamide, and gliclazide [14-16], as well as for other drugs (e.g., 

meloxicam and warfarin) [30].  These changes have been suggested to be due to 

variations in the extent and types of modifications that occur at Sudlow site I during the 

glycation process [14-16,30,49-51]. 

 

4.3.3 Binding of glibenclamide at Sudlow site II 

 Competition experiments were also performed for glibenclamide using L-

tryptophan as a probe for Sudlow site II of HSA.  Previous studies have shown that this 

site is another region that has moderately strong binding to other sulfonylurea drugs [14-

16,58].  Fig. 4-5(b) shows some examples of the data that were obtained for normal HSA 

and glycated HSA in these experiments.  All of the results gave a linear responses when 

fit to Eq. (6), with correlation coefficients that ranged from 0.968 to 0.993 (n = 7-8).  The 

corresponding residual plots gave a random distribution of the points about the best-fit 

lines.  It was determined from these results that glibenclamide was competing with L-

tryptophan and was binding directly to Sudlow site II on both normal HSA and glycated 

HSA. 

 The site-specific association equilibrium constants that were determined for 
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glibenclamide at Sudlow site II through these competition studies are summarized in 

Table 4-2.  The affinity for glibenclamide at Sudlow site II of normal HSA was 3.9 (± 

0.2)  10
4 

M
-1

, which is similar to values of 5.3-13  10
4 

M
-1

 that have been reported at 

this site for acetohexamide, tolbutamide and  gliclazide [14-16,58].   However, this result 

is still much lower than the high affinity constant of 0.64-1.4  10
6 

M
-1

 that was estimated 

for glibenclamide with HSA in Section 4.3.1.  Thus, this indicated that another region on 

this protein besides Sudlow sites I or II also had strong interactions with glibenclamide.  

The binding constant for glibenclamide to Sudlow site II of normal HSA was instead a 

better fit with the value of 4.4 (± 1.0)  10
4 

M
-1 

that was measured in the frontal analysis 

studies for the lower affinity regions of HSA.  This similarity, when combined with the 

results in Section 4.3.2 and the moles of low affinity regions that were determined in 

Section 4.3.1, suggested that both Sudlow sites I and II made up the lower affinity sites 

that were detected during the frontal analysis experiments.  This model also fits with the 

observation that the value for Ka2 in Table 4-1 increased significantly in going from 

normal HSA to gHSA3, because a large increase was also seen in Table 4-2 for the 

association equilibrium constant of glibenclamide at Sudlow site II between normal HSA 

and gHSA3.    

 Table 4-2 shows how the affinity for glibenclamide with HSA at Sudlow site II, 

as determined from the best-fit lines obtained with Eq. (6), changed as the level of 

glycation for HSA was increased.  The columns containing gHSA1, gHSA2 and gHSA3 

had a 4.3-, 6.0- or 4.6-fold increase in affinity for glibenclamide at Sudlow site II versus 

normal HSA.  All of these differences were significant at the 95% confidence level.  This 

trend is similar to the large increases in affinity that have been observed for L-tryptophan 
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with the same samples of glycated HSA [62].  Tolbutamide has also been noted to have a 

modest increase in affinity at this site during the glycation of HSA [15], while 

acetohexamide and gliclazide have been found to have a moderate decrease in affinity or 

a mixed change in binding strength as the levels of glycation for HSA are varied [14,16].   

 

4.3.4 Binding of glibenclamide at the digitoxin site   

 To help locate the high affinity region for glibenclamide on HSA, digitoxin was 

also used as a site-specific probe for HSA [17-22].  Fig. 4-6 provides some typical results 

that were obtained for normal HSA and glycated HSA.   When Eq. (6) was used to 

analyze these results, all of the normal and glycated HSA columns gave a linear response.  

The best-fit lines had correlation coefficients that ranged from 0.994 to 0.999 (n = 4-5), 

and the residual plots gave a random distribution for the data about the best-fit lines.  

These results indicated that glibenclamide and digitoxin had direct competition on the 

tested columns, confirming that glibenclamide was binding to the digitoxin site of HSA.  

This result is supported by a previous observation that glibenclamide and first-generation 

drugs such as tolbutamide appear to bind to different numbers of sites and through 

different mechanisms with HSA, with non-polar interactions being important for 

glibenclamide and ionic forces playing a greater role for tolbutamide [61].  This model 

and the observed binding of glibenclamide to the digitoxin site is also consistent with the 

fact that this site is known to bind other large, relatively hydrophobic drugs such as 

digitoxin and acetyldigitoxin [17-22]. 

The association equilibrium constants for glibenclamide at the digitoxin site were 

next calculated from the best-fit lines of plots like those in Fig. 4-6.  The results are 

summarized in Table 4-2.  In this case, the association equilibrium constant measured for 
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Figure 4-6.  Plots prepared according to Eq. (6) that show how the reciprocal of the 

retention factor for digitoxin on HSA or glycated HSA columns changed 

as the concentration of glibenclamide was varied in the mobile phase.  

These results are for normal HSA (●) and gHSA3 (♦).  The correlation 

coefficients for these plots were 0.998 (n = 5) and 0.999 (n = 5), 

respectively.  Each point in these plots is the mean of four runs, with 

relative standard deviations that ranged from ±0.6% to ±4.6 (average, 

±1.8%).     
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glibenclamide at the digitoxin site of normal HSA was 2.1 (± 0.8)  10
6 

M
-1

.  This value 

was now statistically identical to the association equilibrium constant of 1.4 (± 0.5)  10
6 

M
-1

 that had been previously estimated by frontal analysis for the high affinity sites of 

glibenclamide on normal HSA.  The same group of experiments suggested that there may 

have been a decrease of 1.2- to 1.9-fold in affinity at the digitoxin site for glibenclamide 

when going from normal HSA to gHSA1, gHSA2 or gHSA3.  None of these individual 

differences were significant at the 90% or 95% confidence level; however, the overall 

trend of a decrease in affinity with an increase in the level of HSA glycation was 

significant at the 90% confidence level when the complete set of samples was considered.     

 

4.4 Conclusion 

 This report illustrated how HPAC could be modified for use with relatively low 

solubility drugs such as glibenclamide and used as a tool to examine variations in drug 

interactions with modified proteins, as demonstrated by using this approach to investigate 

the changes that occur in the binding of glibenclamide to HSA at various stages of 

glycation.  Frontal analysis studies were used to estimate the affinity and moles of 

binding sites for glibenclamide with HSA.  The results showed that binding with normal 

HSA and glycated HSA followed a two-site model in which interactions occurred at both 

high and lower affinity sites.  The association equilibrium constants for the high affinity 

regions were in the range of 1.4-1.9  10
6 

M
-1

 at pH 7.4 and 37ºC for columns containing 

normal HSA or glycated HSA.  The lower affinity regions had association equilibrium 

constants that increased from 4.4  10
4 

M
-1

 to 7.2  10
4 

M
-1

 for the same columns.   

 The binding of glibenclamide to normal HSA and glycated HSA at Sudlow sites I 

and II and at the digitoxin site was confirmed through the use of zonal elution 
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competition studies.   The affinities for glibenclamide at Sudlow sites I and II of normal 

HSA were 2.4  10
4 

M
-1

 and 3.9  10
4 

M
-1

, respectively.  These values were consistent 

with values that were estimated for the lower affinity sites in the frontal analysis 

experiments.  As the level of glycation was increased, a 1.7- to 1.9-fold increase in 

affinity was seen for glibenclamide at Sudlow site I for HSA with moderate to high levels 

of glycation.  An even larger change was noted at Sudlow site II, in which an increase in 

affinity of 4.3- to 6.0-fold was observed versus normal HSA for all of the tested glycated 

HSA samples.  The association equilibrium constant for glibenclamide at the digitoxin 

site of normal HSA was 2.1  10
6 

M
-1

, which fit with the value that was measured for the 

high affinity sites by frontal analysis.  Further studies indicated that glycation may have 

lead to a slight decrease in affinity for glibenclamide at the digitoxin site, but this change 

was not significant at the 95% confidence level for any individual sample of glycated 

HSA.   

The results of this report are of clinical interest for several reasons.  First, the 

large changes in binding seen for glibenclamide with glycated HSA, especially at Sudlow 

site II, are of clinical interest because they would be expected to alter the affective dose 

of the drug by changing the drug’s free fraction in the circulation.  This is potentially 

important for sulfonylurea drugs like glibenclamide because of the high level of plasma 

protein binding of this drug, the relatively narrow therapeutic range of this drug in serum, 

and the undesirable effects that occur if such the apparent activity of this drug levels fall 

below or above this range (i.e., hyperglycemia or hypoglycemica) [9-11].  The fact that 

the major binding regions on HSA are affected to different extents by glycation is also of 

interest in that it implies that drug-protein interactions at these sites will vary as well for 
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drugs like glibenclamide.  Finally, this work confirms that many sulfonylurea drugs can 

bind to Sudlow sites I and II but also demonstrates for the first time that the digitoxin site 

can play a major role in these interactions in the case of glibenclamide. 

These results also illustrate how HPAC can be modified and used for examining 

the interactions of relatively non-polar drugs like glibenclamide with modified proteins 

and to provide a quantitative analysis of the changes in binding for such drugs that may 

occur both globally and at specific interaction sites.  These efforts were aided by many of 

the potential advantages of HPAC for drug-binding studies.  For instance, the ability of 

HPAC to be used with detection methods such as UV/visible absorbance spectroscopy 

[31-33,35,39-42] made it possible to look at the low-to-moderate concentrations of 

glibenclamide that were required for the frontal analysis and zonal elution experiments in 

this report.  The good precision and fast analysis times of HPAC [31-33], along with the 

ability to reuse normal HSA or glycated HSA columns over hundreds of experiments [14-

16], made it convenient to use more replicates and sample concentrations with these 

columns without the need for additional protein.  Furthermore, this last feature made it 

possible to use the same protein preparations as in work with previous sulfonylurea drugs 

[14-16,58], allowing a direct comparison to be made in the binding properties of 

glibenclamide versus these other drugs.  The ability to easily combine this method with 

new probes (e.g., digitoxin) for examining newly-identified drug-protein interaction sites 

was further illustrated in this report.  The approaches used here for such experiments are 

not limited to glibenclamide and HSA but could be adapted for use with systems that 

involve other drugs or modified proteins.  Based on these features, it is expected that 

HPAC will continue to grow in applications and as a powerful technique for examining 
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these and additional types of biological interactions. 
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CHAPTER 5: 

ANALYSIS OF GLIPIZIDE BINDING TO NORMAL AND GLYCATED HUMAN 

SERUM ALBUMIN BY HIGH-PERFORMANCE AFFINITY 

CHROMATOGRAPHY 

Note: Portions of this chapter have appeared in R. Matsuda, Z. Li, X. Zheng, D.S. Hage, 

“Analysis of Glipizide Binding to Normal and Glycated Human Serum Albumin by 

High-Performance Affinity Chromatography”, Anal. Bioanal. Chem. (2015) In press. 

 

5.1 Introduction 

 An estimated 366 million people in the world and 25.8 million people in the 

United States are affected by diabetes [1,2].  Diabetes is a disease that is associated with 

elevated levels of glucose in the blood stream, which can result in non-enzymatic protein 

glycation [3-8].  Glycation involves the reaction between glucose and free amine groups 

on proteins [3-8].  This process initially results in the formation of a Schiff base, which 

can undergo further rearrangement to form a stable Amadori product.  Glycation has been 

a topic of growing interest due to its possible effect on proteins and tissues [9].  One 

protein that has been examined in recent years in such work is human serum albumin 

(HSA), with diabetic patients having a 2- to 5-fold increase in the amount of glycated 

HSA versus persons who do not have diabetes [10]. 

 HSA is the most abundant serum protein [11,12].  This protein has a single chain 

of 585 amino acids and a molecular weight of 66.5 kDa [11,12].  HSA is involved in 

several physiological processes, including the transportation of low mass substances such 

as hormones, fatty acids, and drugs [5,11,13-16].  There are two major binding sites for 

drugs on HSA:  Sudlow sites I and II [11,17,18].  Drugs that bind to Sudlow site I include 
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bulky heterocyclic anionic drugs such as warfarin, azapropazone, phenylbutazone, and 

salicylate [11,13,17,19], while drugs or solutes such as ibuprofen, fenoprofen, 

ketoprofen, benzodiazepine, and L-tryptophan bind to Sudlow site II [11,13,17,20].  

There are also other regions on HSA that can bind to fatty acids and to drugs like 

tamoxifen or digitoxin [13-16,21-23]. 

 Sulfonylurea drugs are orally-administered drugs that are commonly used to treat 

type II diabetes [2,24].  The core structure of a sulfonylurea drug is shown in Fig. 5-1.  

Sulfonylurea drugs are known to bind tightly to serum proteins, and especially to HSA 

[9].  Several studies have recently examined the binding of sulfonylurea drugs to HSA 

and glycated forms of this protein [25-33].  Some common first-generation sulfonylurea 

drugs (e.g., tolbutamide and acetohexamide) and a number of second-generation drugs 

(e.g., gliclazide and glibenclamide) have all been found to bind at both Sudlow sites I and 

II on normal HSA and glycated HSA [25-30].  Glibenclamide has also been found to 

interact with the digitoxin site of HSA [30].   

 The purpose of this report is to examine binding by glipizide to normal HSA and 

HSA at various stages of in vitro glycation.  Glipizide (see Fig. 5-1) is a second-

generation sulfonylurea drug that has a limited solubility in water (approximately 20 

mg/L) and is relatively lipophilic (log P, 2.31).  These properties have made it difficult to 

work with this drug under physiological conditions and when using some traditional 

methods for binding studies (e.g., fluorescence spectroscopy) [33-37]. An alternative 

approach that will be used in this report for such studies is high-performance affinity 

chromatography (HPAC).   

HPAC is a type of HPLC that uses an immobilized biologically-related agent
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Figure 5-1. Structure of glipizide.  The section in the dashed box shows the common 

core structure of all sulfonylurea drugs. 
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(e.g., HSA) as a stationary phase to retain specific analytes in applied samples [39,40].  

HPAC has frequently been used in the past for the isolation and analysis of specific 

targets; however, this technique can also be employed for characterizing biological 

interactions [39-41].  This has included the recent use of HPAC in examining the effects 

of glycation on the binding of several first- and second-generation sulfonylurea drugs to 

HSA [25-32].  Some advantages of HPAC for this type of work are its ability to 

determine both the strength of a drug-protein interaction and the number or location of 

these binding sites [39-40].  Recent studies have also demonstrated that HPAC can be 

used with drugs that have limited solubility in aqueous buffers [30].   

This report will use HPAC to examine both the overall binding and site-specific 

interactions of glipizide with HSA, based on the methods of frontal analysis and zonal 

elution competition studies.  These experiments will be conducted with both normal HSA 

and with HSA that has been prepared in vitro to have levels of glycation that are 

representative of those found in pre-diabetes or diabetes.  HPAC will be used to identify 

the major binding sites for glipizide on HSA and to characterize the affinities of these 

sites for this drug, or the interactions between such sites during the binding of glipizide 

with HSA.  These experiments should provide a better understanding of how HPAC can 

be used to examine binding by drugs that may have relatively complex interactions with a 

protein.  The results should also help to build a more complete picture of how non-

enzymatic glycation may alter the binding of drugs such as glipizide to HSA and affect 

the serum protein binding and transport of such a drug during diabetes.   
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5.2 Experimental 

5.2.1 Chemicals 

The glipizide (≥ 96% pure), R-warfarin (≥ 97%), racemic warfarin (≥ 99%), L-

tryptophan (≥ 97%), digitoxin (≥ 97%), tamoxifen (≥ 99%), β-cyclodextrin (> 98%), D-

(+)-glucose (≥ 99.5%), sodium azide (95%), and HSA (essentially fatty acid free, (≥ 

96%) were purchased from Sigma Aldrich (St. Louis, MO, USA).  Nucleosil Si-300 (7 

µm particle diameter, 300 Å pore size) was obtained from Macherey-Nagel (Düren, 

Germany).  A fructosamine assay kit was purchased from Diazyme Laboratories (San 

Diego, CA, USA) and was used to measure the modification levels of the in vitro 

glycated HSA samples.  Reagents for the bicinchoninic acid (BCA) protein assay were 

obtained from Pierce (Rockford, IL, USA).  A Milli-Q-Advantage A 10 system (EMD 

Millipore Corporation, Billerica, MA, USA) was used to purify the water that was 

utilized to make all aqueous solutions, which were also filtered through 0.20 µm GNWP 

nylon membranes from Millipore.  

 

5.2.2 Instrumentation 

 The chromatographic system was purchased from Jasco (Tokyo, Japan) and 

consisted of two PU-2080 pumps, a DG-2080 degasser, an AS-2057 autosampler, a CO-

2060 column oven, and an UV-2075 absorbance detector.  A Rheodyne Advantage PF 

six-port valve (Cotati, CA, USA) was also included in the system.  The system was 

controlled by Jasco LCNet through use of ChromNav software.  PeakFit 4.12 (Jandel 

Scientific Software, San Rafael, CA, USA) was used to analyze the chromatograms.  

Non-linear regression analysis was carried out by using Data Fit 8.1.69 (Oakdale, PA, 

USA).  
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5.2.3 In-vitro Glycation of HSA 

 Two samples of glycated HSA (referred to here as gHSA1 and gHSA2) were 

prepared in vitro at a physiological concentration and pH, according to previously-

published procedures [28,42,43].  During the preparation of these samples, all materials 

used for this procedure (e.g., glassware and spatulas) were first sterilized through 

autoclaving to prevent bacterial growth during the glycation process.  A sterile pH 7.4, 

0.20 M potassium phosphate buffer was also prepared in this manner.  Further prevention 

of bacterial growth was achieved through the addition of 1 mM sodium azide to this 

buffer.   

Normal HSA (i.e., 840 mg) was placed into a 20 mL portion of the pH 7.4 buffer 

(giving a final concentration of 42 mg/L HSA) along with either a moderate or high 

concentration of D-glucose (i.e., 5 or 10 mM).  These mixtures were incubated for four 

weeks at 37 °C to allow glycation to occur.  The samples were then lyophilized and 

stored at -80 °C until further use.  A fructosamine assay was performed in duplicate 

according to a previous procedure [28] and used to determine the glycation level of these 

HSA samples.  The measured glycation levels for the normal HSA, gHSA1 and gHSA2 

were 0.24 (± 0.13), 1.39 (± 0.28) and 3.20 (± 0.13) mol hexose/mol HSA, respectively.   

 

5.2.4 Preparation of Supports and Columns 

 The chromatographic supports were prepared by first converting Nucleosil Si-300 

silica into a diol-bonded form and then immobilizing HSA or glycated HSA to this 

material through the Schiff base method [44-47].  Although free amine groups are 

involved in both the Schiff base immobilization method and glycation, these processes 

tend to involve different residues on HSA, making the resulting protein support a good 
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model for the soluble forms of normal HSA or glycated HSA [25-32,48].  A control 

support was prepared in this manner; however, no protein was added during the 

immobilization step in this latter case.  A BCA assay was performed to determine the 

protein content of each final support.  This assay was performed in triplicate with soluble 

HSA being used as the standard.  The control support was used as a blank.  The measured 

protein content was 97 (± 2), 85 (± 4), and 95 (± 4) mg HSA/g silica for the normal HSA, 

gHSA1, and gHSA2 supports, respectively.   

A portion of each support was downward slurry packed into a separate 2.0 cm × 

2.1 mm i.d. stainless steel column at 3500 psi (24 MPa) and using a packing solution that 

was pH 7.4, 0.067 M potassium phosphate buffer.  The packed columns and any 

remaining support were stored at 4 °C in pH 7.4, 0.067 M phosphate buffer until further 

use.  These columns remained stable throughout the course of this entire study (i.e., over 

the course of 500 sample applications) and with no significant changes being noted in 

their binding properties during the described experiments, as reported in prior work with 

similar columns [25-30,49].   

 

5.2.5 Chromatographic Studies 

 The solutions of glipizide, R-warfarin, racemic warfarin, L-tryptophan, digitoxin, 

and tamoxifen were prepared in pH 7.4, 0.067 M phosphate buffer.  Digitoxin and 

tamoxifen have limited solubility in aqueous solutions (i.e., around 4 mg/L and 0.17 

mg/L, respectively), so a solubilizing agent (i.e., β-cyclodextrin) was also placed into 

their solutions [50,51].   Digitoxin was prepared in a 0.88 mM β-cyclodextrin solution, 

and tamoxifen was prepared in a 2.2 mM β-cyclodextrin, as described previously [21-23].  

The racemic warfarin, R-warfarin, digitoxin, and tamoxifen solutions were prepared and 
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used within two weeks of preparation [28,49,52].   Solutions of L-tryptophan in pH 7.4, 

0.067 M phosphate buffer are known to be stable for a period of about 2-9 days, so these 

particular solutions were used within one day of preparation [28,52,53].  Glipizide 

required additional steps to place this drug into an aqueous solution [30].  To do this, a 

stock solution containing 50 µM glipizide in pH 7.4, 0.067 M phosphate buffer was first 

made by dissolving this drug through the aid of repeated 4 h periods of sonication over 5 

days.  This stock solution was then used to prepare diluted working solutions of glipizide 

for the chromatographic experiments.  All of the glipizide solutions were used within 2 

weeks of preparation.  Although sulfonylurea drugs are weak acids (e.g., the pKa of 

glipizide is 5.9), the drug concentrations that were used in these experiments had little or 

no effect on the final pH of the buffered solutions [33,54].   

 The mobile phases used for the chromatographic experiments were prepared in or 

diluted with pH 7.4, 0.067 M phosphate buffer.  The same buffer was used as the 

isocratic application/elution buffer during sample injection or application.  All of the 

mobile phases were passed through a 0.2 µm filter and degassed for 10-15 min prior to 

use.  The chromatographic experiments were carried out at a typical flow rate of 0.50 

mL/min and at a temperature of 37 °C.  As has been demonstrated with similar columns 

and systems, these experimental conditions have been shown to provide reproducible 

results in the measurement of drug-binding parameters such as retention factors, binding 

capacities and association equilibrium constants [25-30].  

 Prior to all chromatographic studies, the columns were first equilibrated with pH 

7.4, 0.067 M phosphate buffer.  In the frontal analysis experiments, a six-port valve was 

used to switch the mobile phase from the pH 7.4 buffer to a solution that contained a 
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known concentration of glipizide in this buffer.  The elution of glipizide was monitored at 

254 nm.  As shown in Fig. 5-2(a), the application of each glipizide solution resulted in 

the formation of a breakthrough curve.  After a stable plateau had been reached in the 

breakthrough curve, a valve was used to switch the column back to pH 7.4, 0.067 M 

phosphate buffer to elute the retained drug and regenerate the column.   

Frontal analysis was carried out on each normal HSA or glycated HSA column 

and a control column by using twelve solutions of glipizide with concentrations that 

ranged from 0.5 to 50 µM.  These conditions were all in the linear range of the detector, 

and the experiments at each drug concentration were carried out in quadruplicate.  The 

breakthrough curves were processed by using the first derivative function of PeakFit 

4.12, followed by analysis of this derivative using the equal area function to determine 

the mean point of the curve [52].  The results that were obtained at each concentration of 

glipizide on the control column were subtracted from the results obtained on the normal 

HSA or glycated HSA column to correct for the system void time and non-specific 

binding of the drug to the support.  Non-specific binding to the support made up 50-56% 

of the total binding observed when applying a 50 µM solution of glipizide to the normal 

HSA or glycated HSA columns.  This level of non-specific binding was similar to results 

obtained in prior research with glibenclamide, which successfully used the same 

approach to correct for such binding on HPAC columns [30].   

Zonal elution competition studies, as illustrated in Fig. 5-2(b), were carried out by 

using R-warfarin and L-tryptophan as site-specific probes for Sudlow sites I and II, while 

digitoxin and tamoxifen were used as probes for the digitoxin and tamoxifen sites [21-

23,25-30].  These competition studies were performed using eight solutions that
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Figure 5-2. Typical experimental formats and results for (a) frontal analysis and (b) 

zonal elution competition studies.  These results were obtained for 

glipizide on 2.0 cm × 2.1 mm i.d. columns containing normal HSA.  The 

results in (a) are for glipizide concentrations of 20, 10, 5, 2.5, or 1 µM 

(top-to-bottom).  The results in (b) were obtained using R-warfarin as an 

injected site-specific probe for Sudlow site I and in the presence of 

glipizide concentrations in the mobile phase of 20, 10, 5, 2.5, or 1 µM 

(left-to-right).  Other experimental conditions are given in the text. 
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contained 0.0 to 20.0 µM glipizide in the mobile phase.  These solutions were also used 

to dilute and prepare 5 µM samples of each probe compound, which were found to 

provide linear elution conditions for these compounds.  The probe samples were applied 

to each column as 20 µL injections and were monitored at 308, 280, 205, or 205 nm for 

R-warfarin, L-tryptophan, digitoxin or tamoxifen, respectively.  Sodium nitrate was used 

as a non-retained solute and was applied at a concentration of 20 µM and using an 

injection volume of 20 µL, while being monitored at 205 nm [38-41].  The experiments at 

each concentration of glipizide and with each site-specific probe were performed in 

quadruplicate for the normal HSA or glycated HSA columns and control column.  The 

central point of each peak was determined by using the equal area function of PeakFit 

4.12 [52].   

 Similar competition studies were carried out in quadruplicate by using glipizide as 

the injected probe and racemic warfarin or tamoxifen as the competing agent.  The 

mobile phases in these experiments contained one of eight concentrations for racemic 

warfarin that ranged from 0.0 to 20.0 µM or one of eight concentrations for tamoxifen 

that ranged from 0.0 to 10.0 µM.  Samples containing 5 µM glipizide were prepared with 

each of these mobile phases and were applied using a 20 µL injection volume, with the 

glipizide being monitored at 254 nm. Other conditions and procedures, including the use 

of sodium nitrate as a non-retained solute, where the same as described for the other 

zonal elution competition studies. 

 

5.3 Theory 

5.3.1 Frontal Analysis  

The method of frontal analysis was used to provide initial estimates for the 
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binding constants and amount or types of binding sites for glipizide with normal HSA or 

glycated HSA [38-41,52].  Fig. 5-2(a) shows the general format of this approach and 

some typical chromatograms that were produced by this method.  In this type of 

experiment, a series of breakthrough curves were produced when known concentrations 

of glipizide were continuously applied to a column.  The mean position of each 

breakthrough curve was then determined, which occurred around 4-8 min for the results 

that are given in Fig. 5-2(a).   

In a system where relatively fast association and dissociation kinetics are present 

between the applied drug or analyte (A) and the immobilized protein or ligand (L), the 

mean position of the corresponding breakthrough curves can be related to the 

concentration of the applied analyte, the association equilibrium constant(s) for this 

analyte with the ligand, and the moles of binding sites for the analyte in the column [38-

41,52].  For example, if binding by A occurs at a single type of site on L, this system can 

be described by the one-site binding model that is represented by Eqs. (1) and (2) [38-

41,52].   

   𝑚𝐿𝑎𝑝𝑝 =
𝑚𝐿𝐾𝑎[A]

(1+𝐾𝑎[A])
          (1) 

1

𝑚𝐿𝑎𝑝𝑝
=

1

(𝐾𝑎𝑚𝐿[A])
+

1

𝑚𝐿
          (2) 

In these equations, mLapp refers to the moles of applied analyte that are required to reach 

the central point of the breakthrough curve at a given molar concentration of the analyte, 

[A].  The association equilibrium constant and total moles of active binding sites for this 

interaction are represented by Ka and mL, respectively.  Eq. (2) is the double-reciprocal 

form of Eq. (1), which predicts that a linear relationship should be present in a plot of 

1/mLapp versus 1/[A] for this type of system.  The value of mL in this plot is given by the 
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inverse of the intercept, and Ka can be obtained by taking the ratio of the intercept over 

the slope. 

 Similar relationships can be used to describe more complex interactions, like the 

two-site system that is represented by Eqs. (3-4) [38-41,52].   

𝑚𝐿𝑎𝑝𝑝 =
𝑚𝐿1𝐾𝑎1[A]

(1+𝐾𝑎1[A])
+

𝑚𝐿2𝐾𝑎2[A]

(1+𝐾𝑎2[A])
           (3) 

  
1

𝑚𝐿𝑎𝑝𝑝
=

1+𝐾𝑎1[A]+𝛽2𝐾𝑎1[A]+𝛽2𝐾𝑎1
2[A]2

𝑚𝐿{(𝛼1+𝛽2−𝛼1𝛽2)𝐾𝑎1[A]+𝛽2𝐾𝑎1
2[A]2}

            (4) 

In these equations, Ka1 and Ka2 are the association equilibrium constants for the two 

types of binding sites for A in the column [38-41,52].  The binding capacities of these 

sites are described by mL1 and mL2, respectively.  The double-reciprocal form of Eq. (3) is 

shown in Eq. (4), where α1 is the fraction of all binding sites for A that consist of the 

highest affinity site for A, and β2 is the ratio of the association equilibrium constants for 

the lower versus higher affinity sites, where β2 = Ka2/Ka1 and Ka1 > Ka2 [38-41,52].   

 Results plotted according to Eq. (4) would be expected to give a non-linear 

response over a broad range of concentrations for A; this feature has been used in prior 

studies to determine whether multi-site interactions are taking place between an analyte 

and an immobilized protein [38-41,52].  These deviations are most apparent at high 

concentrations of [A], or low values of 1/[A].  However, a plot of 1/mLapp versus 1/[A] in 

even a multi-site system can approach a linear response at low concentrations of A, or 

high 1/[A] values, as is indicated by Eq. (5) [38-41,52].   

                 lim[A]→0
1

𝑚𝐿𝑎𝑝𝑝
=

1

𝑚𝐿(𝛼1+𝛽2−𝛼1𝛽2)𝐾𝑎1[A]
+

𝛼1+𝛽2
2−𝛼1𝛽2

2

𝑚𝐿(𝛼1+𝛽2−𝛼1𝛽2)2       (5) 

If data from the linear range in a plot of 1/mLapp versus 1/[A] are analyzed according to 

Eq. (5) for a multi-site system, the apparent association equilibrium constant that is 
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obtained from the ratio of the intercept over the slope can provide an initial estimate for 

the association equilibrium constant for the highest affinity sites in this system [38-

41,52].  

 

5.3.2 Zonal Elution Competition Studies 

 Zonal elution can be used to determine the affinity of an analyte at a specific 

region on an immobilized binding agent [25,38-41,52].  This type of experiment involves 

the injection of a small plug of a site-specific probe onto the column, while a known 

concentration of the competing agent (e.g., the analyte) is applied in the mobile phase 

[38-41,52].  Examples of some typical chromatograms that are obtained in such an 

experiment are included in Fig. 5-2(b).  In this current report, such a method generally 

provided results within 4 to 10 min of sample injection.  In this type of experiment, the 

retention of the probe is examined as the concentration of the competing agent is varied 

[38-41,52].  This retention is usually expressed in terms of the retention factor (k) for the 

probe, as is calculated from the measured mean retention time for the probe (tR) and the 

void time (tM) of the system, where k = (tR - tM)/tM [23].   

The change in the value of k as the concentration of the competing agent (I) is 

varied is next examined according to various binding models.  For instance, these results 

can be analyzed by using Eq. (6) and looking at the fit of this equation to a plot of 1/k 

versus the molar concentration of the competing agent, [I] [38-41,52].   

1

𝑘
=

𝐾𝑎I𝑉𝑀[I]

𝐾𝑎A𝑚𝐿
+

𝑉𝑀

𝐾𝑎A𝑚𝐿
               (6) 

In this equation, the association equilibrium constants for the probe and competition 

agent at their site of competition are described by KaA and KaI.  The term VM is the 

column void volume, while mL is the total active moles of the common binding site in the 
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column.  If a linear response with a positive slope is obtained for a plot that is made 

according to Eq. (6), the results can be said to follow a model in which the probe and 

competing agent are interacting directly at a single type of site on the immobilized 

binding agent.  In addition, the ratio of the slope versus the intercept from this plot can be 

used to determine the association equilibrium constant for the competing agent at its site 

of direct competition with the probe [38-41,52]. 

 Deviations from the linear response that is predicted by Eq. (6) can occur if 

binding is occurring at multiple sites or if allosteric effects are present during the binding 

of the probe and competing agent [25,38-41,55].  Eq. (7) provides an alternative 

relationship that can be used to describe such data when the probe and competing agent 

are binding to two separate but allosterically-linked sites [23,25].       

        
𝑘0

𝑘−𝑘0
=

1

𝛽I→A−1
• (

1

𝐾𝑎IL[I]
+ 1)           (7) 

In this equation, the association equilibrium constant for the competing agent is 

represented by KaIL.  The term k0 is the retention factor for the probe in the absence of the 

competing agent, and k is the retention factor for the probe in the presence of a given 

concentration of the competing agent.  The term βI


A is the coupling constant for the 

allosteric effect of I on the interaction of A to the immobilized binding agent [23].  A plot 

of k0/(k - k0) vs. 1/[I] according to Eq. (7) should result in a linear relationship for a 

simple allosteric interaction, where the slope and intercept can be used to determine the 

coupling constant (βI


A) for this interaction and the association equilibrium constant for 

the competing agent at its binding site [23,25].  A value of βI


A that is greater than 1 

indicates that a positive allosteric effect is occurring, while 0 < βI


A < 1 indicates that a 

negative allosteric effect is present.  A value of βI


A that is equal to zero is obtained when 
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direct competition is taking place between A and I, and the presence of no competition is 

represented by a value of βI


A that is equal to 1 [23].   

 Competition studies can also be conducted by injecting a small plug of the analyte 

onto the column in the presence of known concentrations of a site-specific probe in the 

mobile phase [39].  The retention factor for an analyte that interacts with n independent 

sites can be represented by the sum of the retention factors for these individual sites (k1 

through kn), as is shown in Eq. (8).  This equation can further be expanded into Eq. (9) if 

an agent is also present in the mobile phase that can compete at one or more of these sites 

[39].   

𝑘A = 𝑘1 + … 𝑘𝑛             (8) 

𝑘A =
𝐾𝑎A1𝑚𝐿1

𝑉𝑀(1+𝐾𝑎I1[I])
. . . +

𝐾𝑎A𝑛𝑚𝐿1

𝑉𝑀(1+𝐾𝑎I𝑛[I])
          (9)  

In Eq. (9), KaA1 through KaAn are the association equilibrium constants for the analyte at 

site 1 through n, and KaI1 through KaIn are the association equilibrium constants for the 

competing agent at the same sites [39]. 

 

5.4 Results and Discussion 

5.4.1 Frontal Analysis using Normal HSA 

 Frontal analysis was first used to examine the overall binding of glipizide to 

columns containing either normal HSA or in vitro glycated HSA.  Examples of such 

experiments are shown in Fig. 5-2(a).  Previous studies have found that other 

sulfonylurea drugs tend to interact with both normal HSA and glycated HSA at two 

general classes of sites: a set of moderate-to-high affinity sites and a larger group of weak 

affinity regions [25-27,29,30].   

In this report, the results from frontal analysis experiments with glipizide were fit 
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to various binding models.  Fig. 5-3(a) shows the best-fit line that was obtained for 

glipizide and normal HSA when using a one-site model, as described by Eq. (1).  This fit 

resulted in a correlation coefficient of 0.9979 (n = 12).  The same data were also fit to a 

two-site model, as described by Eq. (3) and shown in Fig. 5-3(b).  This model gave a 

slightly higher correlation coefficient of 0.9998 (n = 12).  Residual plots, as provided by 

the insets of Fig. 5-3, indicated that the data had a more random distribution about the 

best-fit line for the two-site model than for the one-site model.  In addition, the sum of 

the squares of the residuals was lower for the two-site model vs. the one-site model (i.e., 

3.6 × 10
-19

 vs. 5.3 × 10
-18

).  The presence of multi-site binding was confirmed by plotting 

the data according to Eq. (2) or Eq. (4), which resulted in deviations from a linear 

response at high glipizide concentrations (see Appendix 5.7).  All of these results 

indicated that the two-site model was a better description than the one-site model for the 

binding of glipizide with normal HSA.  The use of higher order models (e.g., a three-site 

model) did not result in any improved fit to this data.   

The two-site model was next used to estimate the average association equilibrium 

constants and moles of sites that were involved in the interactions of glipizide with 

normal HSA.  The results of this fit gave a value for Ka1 of 2.4 (±  0.8) × 10
5
 M

-1
 for the 

group of relatively high affinity sites and a value for Ka2 of 1.7 (± 0.4) × 10
4
 M

-1
 for the 

lower affinity sites.  A comparable estimate of 1.1 (± 0.1) × 10
5
 M

-1
was obtained for Ka1 

from the linear region of a plot that was made according to Eq. (5) (see Appendix 5.7).  

In addition, these Ka1 values were in the same general range as an overall association 

equilibrium constant of 3.7 × 10
5
 M

-1
 that has been reported for glipizide with normal 

HSA in solution, as determined by fluorescence spectroscopy at 37 °C and in pH 7.4, 
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Figure 5-3. Analysis of frontal analysis data for the binding of glipizide with normal 

HSA by using (a) a one-site model or (b) a two-site model.  These results 

are for twelve solutions of glipizide with concentrations ranging from 0.5 

to 50 µM that were applied to a 2.0 cm × 2.1 mm i.d. normal HSA 

column.  Other experimental conditions are given in the text.  The insets in 

(a) and (b) show the residual plots for the fits of the data to the given 

binding models.  Each data point is the average of four values, with 

relative standard deviations ranging from ± 0.3-4.6%.   
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0.10 M phosphate buffer [33].   

The Ka1 values that were determined for the high affinity sites of glipizide were 

similar to or up to 3.4-fold larger than values that have been measured by frontal analysis 

for the high affinity sites of acetohexamide, tolbutamide, and gliclazide with normal HSA 

[25-27,29].  This strong binding by glipizide may be due to the large and relatively non-

polar side chains that are present in glipizide [56], which have been proposed to be 

important in the interactions of this drug with HSA [33].  The Ka1 values estimated for 

glipizide were up to an order of magnitude lower than the average Ka1 that has been 

reported for the high affinity sites of normal HSA with glibenclamide, another second-

generation drug [30].  However, glibenclamide is known to have an additional high 

affinity site (i.e., the digitoxin site) that significantly increases its overall affinity for 

normal HSA when compared with many other sulfonylurea drugs [30]. 

The normal HSA column was estimated through the frontal analysis data to have 

a binding capacity of 8.9 (± 3.0) × 10
-9

 mol for glipizide at its highest affinity sites and 

6.0 (± 0.3) × 10
-8

 mol at its lower affinity sites.  Based on the known protein content of 

the column, the specific activities for these sites were 0.24 (± 0.08) and 1.6 (± 0.1) 

mol/mol HSA, respectively.  These values indicated that at least one major binding site 

was involved in the higher affinity interactions, with a larger group of sites taking part in 

the weaker affinity interactions.  These results and overall trends are comparable to those 

that have been obtained in previous frontal analysis studies involving normal HSA and 

other sulfonylurea drugs [25-27,29,30].   

 

5.4.2 Frontal Analysis using Glycated HSA  

 When examining the interactions of glipizide with two samples of in vitro 
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glycated HSA (i.e., gHSA1 and gHSA2), the two-site model again gave a better fit for the 

frontal analysis data than a one-site model.  The correlation coefficients obtained for the 

frontal analysis data with glipizide and gHSA1 were 0.9964 (n = 12) for the one-site 

model and 0.9997 (n = 12) for the two-site model.  Similar results were obtained for 

gHSA2, with correlation coefficients of 0.9978 (n = 12) for the one-site model and 

0.9999 (n = 12) for the two-site model.  The residual plots for both types of glycated 

HSA gave a more random distribution of the data about the best-fit line for the two-site 

model than for the one-site model.  The data for gHSA1 and gHSA2 also had a lower 

sum of the squares of the residuals for the two-site model than the one-site model (i.e., 

5.6 × 10
-19

 vs. 6.9 × 10
-18

 for gHSA1 and 4.1 × 10
-19

 vs. 1.9 × 10
-18

 for gHSA2.  These 

results confirmed that glipizide also interacted with the glycated HSA samples according 

to a two-site model. 

Table 5-1 includes the binding parameters that were obtained for glipizide with 

the glycated HSA samples when using the two-site model.  The average association 

equilibrium constants that were measured for glipizide at its higher and lower affinity 

sites on gHSA1 were 2.8 (± 1.1) × 10
5
 M

-1
 and 2.5 (± 0.5) × 10

4
 M

-1
, respectively.  The 

corresponding values for gHSA2 were 6.0 (± 2.2) × 10
5
 M

-1
 and 3.7 (± 0.2) × 10

4
 M

-1
.  

The average association equilibrium constants that are shown in Table 5-1 for the highest 

affinity sites were 1.2-fold higher for gHSA1 and 2.5-fold higher for gHSA2 than the 

value that was measured for normal HSA.    The apparent increase in affinity for gHSA1 

was not statistically significant at the 95% confidence level; however, the increase seen 

for gHSA2 was significant.  Previous studies involving other sulfonylurea drugs have 

noted an increase in the average Ka at the highest affinity sites for these drugs on glycated   
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Table 5-1. Association equilibrium constants (Ka) and binding capacities (mL) 

determined for glipizide with normal HSA or glycated HSA when using a 

two-site binding model
a 

Type of HSA Ka1 

(M
-1

 × 10
5
) 

mL1 

(mol × 10
-9

) 

Ka2 

(M
-1

 × 10
4
) 

mL2 

(mol × 10
-8

) 

Normal HSA 2.4 (± 0.8) 8.9 (± 3.0) 1.7 (± 0.4) 6.0 (± 0.3) 

gHSA1 2.8 (± 1.1) 9.7 (± 3.8) 2.5 (± 0.5) 6.3 (± 0.2) 

gHSA2 6.0 (± 2.2) 4.2 (± 1.2) 3.7 (± 0.2) 5.9 (± 0.1) 

 

a
These results were measured at 37 C in the presence of pH 7.4, 0.067 M potassium phosphate buffer.  The 

values in parentheses represent a range of ±1 S.D., as based on error propagation and the precisions of the 

best-fit slopes and intercepts when using Eq. (3) (n = 12).  The glycation levels for gHSA1 and gHSA2 

were 1.39 (± 0.28) and 3.20 (± 0.13) mol hexose/mol HSA, respectively. 

  



202 
 

 
 

HSA versus normal HSA [26,27,29,30].  It has been suggested that such changes in 

affinity, if present, may be a result of alterations in the amount or types of glycation 

products that are present at or near these binding regions as the level of HSA glycation is 

varied [57,58]. 

The specific activities for the columns containing glycated HSA were determined 

from the measured binding capacities and protein contents for these columns.  The higher 

and lower affinity sites in the gHSA1 column had binding capacities of 9.7 (± 3.8) × 10
-9

 

and 6.3 (± 0.2) × 10
-8

 mol, respectively, with specific activities of 0.30 (± 0.11) and 2.0 

(± 0.1) mol/mol gHSA1.  The gHSA2 column had binding capacities for the same sites of 

4.2 (± 1.2) × 10
-9

 and 5.9 (± 0.1) × 10
-8

 mol, with specific activities of 0.12 (± 0.03) and 

1.7 (± 0.1) mol/mol gHSA2.  These results were similar to those obtained for the normal 

HSA column and in prior work with other sulfonylurea drugs [25-27,29,30].  These 

results again indicated that at least one type of site was involved in the higher affinity 

interactions and that more sites were involved in the weaker affinity interactions. 

 

5.4.3 Competition Studies at Sudlow Site II 

Zonal elution competition studies were used to help identify the binding sites for 

glipizide on HSA and to measure the affinity of glipizide at these sites.  Sudlow site II 

has been found in previous work to be one of the regions that often takes part in the 

moderate-to-high affinity interactions of other sulfonylurea drugs with normal HSA and 

glycated HSA [25-27,29,30].  It has recently been determined in solution-phase 

displacement experiments that glipizide also binds to Sudlow site II on normal HSA [33].  

In this current report, interactions at Sudlow site II were examined by using L-tryptophan 

as a probe for this site [25-30].   
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Competition studies between L-tryptophan with glipizide were carried out on 

columns that contained either normal HSA or glycated HSA.  The data were then 

analyzed according to Eq. (6), as illustrated in Fig. 5-4(a).  A linear response was 

observed for glipizide on all of the normal HSA or glycated HSA columns, with 

correlation coefficients that ranged from 0.9137 to 0.9643 (n = 8).  It was concluded from 

these results that L-tryptophan and glipizide had direct competition at Sudlow site II on 

both normal HSA and glycated HSA.     

 Table 5-2 shows the association equilibrium constants for glipizide that were 

measured at Sudlow site II on these various columns.  The values that were obtained were 

1.1 (± 0.1) × 10
4
 M

-1
 for normal HSA, 1.2 (± 0.1) × 10

4
 M

-1
 for gHSA1, and 1.4 (± 0.2) × 

10
4
 M

-1
 gHSA2.  The change in affinity between normal HSA and gHSA1 (9%) was not 

statistically different at either the 95% or 90% confidence level.  However, a significant 

increase (at both confidence levels) of 27% or 17% was observed in this affinity at 

Sudlow site II when going from normal HSA or gHSA1 to gHSA2.  In addition, these 

affinity values were approximately 3.5- to 12-fold lower than association equilibrium 

constants that have been measured for other first- or second-generation sulfonylurea 

drugs at Sudlow site II of normal HSA [26,27,29,30]. 

 It has been suggested based on solution-phase displacement studies that Sudlow 

site II is the major binding site for glipizide on normal HSA [33].  However, the 

association equilibrium constants measured here for glipizide at Sudlow site II of normal 

HSA and glycated HSA were an order of magnitude lower than the binding constants that 

were estimated for the highest affinity sites, as determined by frontal analysis (see Table 

5-1 and Appendix 5.7).  This comparison indicated that although Sudlow site II was  
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Figure 5-4. Plots prepared according to Eq. (6) for zonal elution competition data 

obtained for glipizide and using (a) L-tryptophan as an injected probe for 

Sudlow site II on a 2.0 cm × 2.1 mm i.d. gHSA2 column or (b) digitoxin 

as an injected probe for the digitoxin site on a 2.0 cm × 2.1 mm i.d. 

normal HSA column.  Other experimental conditions are given in the text.  

The equation for the best-fit line in (a) is y = [2.2 (± 0.3) × 10
3
] x + [0.2 (± 

0.1)], with a correlation coefficient of 0.9707 (n = 7).  The dashed 

reference line in (b) is the result expected for a system with no 

competition between the injected probe and competing agent.  The error 

bars represent a range of ± 1 S.D.  Each point is the average of four values 

with relative standard deviations that ranged from (a) ± 0.5-4.8% or (b) ± 

0.5-5.0%. 
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binding to glipizide, some other region was also present that had an even higher affinity 

for this drug.  The location of this additional site was explored in the following sections 

by using probes for other regions of HSA.  

 

5.4.4 Competition Studies at the Digitoxin Site 

The digitoxin site of HSA has been observed in prior work to have strong binding 

to the sulfonylurea drug glibenclamide [30].  As a result, competition studies were also 

conducted to examine the binding of glipizide at this site and by using digitoxin as a site-

specific probe [21].  Injections of digitoxin onto the normal HSA column and in the 

presence of various concentrations of glipizide gave only a random variation in retention 

of ± 6.3%, as demonstrated by a plot that was made according to Eq. (6) in Fig. 5-4(b).  

Similar results were obtained for the columns containing gHSA1 or gHSA2, which gave 

random variations in the retention for digitoxin of ± 4.6% and ± 9.5%, respectively.  

These results indicated that glipizide was not interacting with the digitoxin site of either 

normal HSA or glycated HSA.  

 

5.4.5 Competition Studies at Sudlow Site I 

 Competition studies were next carried out at Sudlow site I by using R-warfarin as 

a site-specific probe for this binding region [19,23,28].  Previous work involving other 

sulfonylurea drugs have consistently noted that these drugs have direct competition for 

warfarin at this site and that this region has moderate-to-high affinity interactions for this 

class of drugs [25-27,29,30].  This site has further been identified, through solution-phase 

displacement studies, as a binding region for glipizide on normal HSA [33]. 

Data from competition studies using glipizide as a mobile phase additive and R-  
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Figure 5-5. Plots prepared according to (a) Eq. (6) and (b) Eq. (7) for zonal elution 

competition studies using glipizide as a competing agent and R-warfarin as 

an injected probe for Sudlow site I.  These results were obtained on a 2.0 

cm × 2.1 mm i.d. column containing normal HSA.  Other experimental 

conditions are given in the text.  The error bars represent a range of ±1 

S.D.  Each point is the average of four values with relative standard 

deviations that ranged from (a) ± 0.3-3.4% or (b) ± 1.7-2.0%.  The 

equation for the best-fit dashed line in (a) is y = [8.0 (± 0.1) × 10
2
] x + [1.3 

(± 0.1) × 10
-2

], with a correlation coefficient of 0.9999 (over the four 

points on the left side of this plot).  The equation for the best-fit dashed 

line in (b) is y = [-6.5 (± 0.3) × 10
-6

] x + [-2.5 (± 0.1)], with a correlation 

coefficient of 0.9978 (over the four points on the left side of this plot).   
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warfarin as an injected probe compound were plotted according to Eq. (6).  An example 

of such a plot is shown in Fig. 5-5(a), as generated using the normal HSA column.  In 

previous studies with other sulfonylurea drugs, linear behavior and a positive slope has 

been seen for such plots, indicating that R-warfarin was competing directly with these

drugs [25-27,29,30].  The corresponding plot for glipizide was also linear with a positive 

slope at gliclazide concentrations up to about 5 µM, with deviations from linearity 

occurring at higher glipizide concentrations.  Similar results were obtained for the 

glycated HSA columns.  These results suggested that glipizide was in direct competition 

with R-warfarin at Sudlow site I at low glipizide concentrations.  Such behavior agreed 

with the results from prior solution-phase displacement studies [33].   

   The deviations from linearity that were seen in plots like Fig. 5-5(a) could have 

been produced by an allosteric interaction between the injected probe and glipizide as the 

concentration of this drug was increased [25,55].  This effect may be related to the ability 

of glipizide to induce a conformational change as a result of binding by this drug to HSA, 

as has been proposed from solution-phase studies [33].  The presence of an allosteric 

interaction was tested by plotting the zonal elution data according to Eq. (7).  As is shown 

in Fig. 5-5(b), the resulting graph of k0/(k - k0) vs. 1/[Glipizide] for the normal HSA 

column gave a linear relationship with a negative slope at low values of 1/[Glipizide].  

The two glycated HSA columns gave similar linear relationships.  Deviations from 

linearity were observed at higher high values of 1/[Glipizide], as demonstrated in Fig. 5-

5(b).  These deviations occurred at the same glipizide concentrations that were in the 

linear range of plots made according to Eq. (6), as based on a direct competition model.  

The linear region in plots made according to Eq. (7) gave correlation coefficients that 
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ranged from –0.7452 to -0.9975 (n = 4) for the normal HSA and glycated HSA columns.   

The linear fits obtained with Eq. (7) were used to estimate the association 

equilibrium constants for glipizide at the site that was taking part in this allosteric 

interaction (see Table 5-2).   The same fits were used to find the coupling constants for 

the allosteric effect of glipizide on the binding of R-warfarin with normal HSA or 

glycated HSA.  The association equilibrium constant that was measured for glipizide at 

its interaction region on normal HSA was 3.9 (± 0.2) × 10
5
 M

-1
.  This value was similar 

to the overall association equilibrium constant that has been reported for the binding of 

glipizide with normal HSA in solution [33] and the value obtained in this current report 

for the high affinity regions of glipizide with normal HSA.  The coupling constant that 

was measured for this site with R-warfarin was 0.60 (± 0.03), with the latter value 

representing a negative allosteric effect.  The association equilibrium constants for 

glipizide at the corresponding interaction sites on gHSA1 and gHSA2 were 3.2 (± 0.2) × 

10
5
 M

-1
 and 3.9 (± 0.3) × 10

5
 M

-1
, with coupling constants of 0.66 (± 0.05) and 0.62 (± 

0.05), respectively.  There was an 18% decrease in affinity for glipizide and this 

interaction in going from normal HSA to gHSA1, and a similar increase between gHSA1 

and gHSA2.  Both of these changes were significant at the 95% confidence interval.  No 

changes in affinity were observed between normal HSA and gHSA2.  In addition, all of 

the coupling constants measured between glipizide and warfarin were statistically 

equivalent at the 95% confidence interval. 

Binding by glipizide at Sudlow site I was confirmed by carrying out a reverse 

competition study.  This was done by injecting a small amount of glipizide as the probe 

and by using racemic warfarin as the competing agent in the mobile phase.  The 
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measured retention factor for glipizide was also corrected for the binding of this drug to 

Sudlow site II and to its weak affinity regions; this was accomplished by using Eq. (9) 

with the results of the competition studies at Sudlow site II and the binding constants in 

Table 5-1 for the weak affinity sites that were measured by frontal analysis.  The 

resulting corrected retention factors gave linear plots when analyzed according to Eq. (6) 

(see Appendix 5.7.3), as would be expected if direct competition were occurring between 

glipizide and warfarin in the region of Sudlow site I.  Furthermore, the association 

equilibrium constants that were estimated for glipizide at Sudlow site I from these results 

were consistent with the range of values that were obtained when using R-warfarin as the 

injected probe and glipizide as the competing agent.         

 

5.4.6 Competition Studies at the Tamoxifen Site 

Because some allosteric effects were observed for glipizide at Sudlow site I, 

additional experiments were used to explore whether glipizide had similar effects at other 

sites on HSA.  The tamoxifen site of HSA was of particular interest since previous 

studies have shown that Sudlow site I and this site are allosterically-linked [23,59,60].  

These studies were originally carried out by using tamoxifen as a site-specific probe [23] 

and glipizide as a competing agent.  When the results were analyzed according to Eq. (6) 

and a direct-competition model, the plot that was obtained for normal HSA gave a non-

linear response with a negative slope, as shown in Fig. 5-6(a).  This plot indicated that a 

positive allosteric interaction was present between glipizide and tamoxifen [23].  Similar 

trends were seen for the glycated HSA columns.  

The same competition data were analyzed by using Eq. (7).  As shown by the 

example in Fig. 5-6(b), a linear fit was noted for a plot of k0/(k-k0) vs. 1/[Glipizide] for 
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Figure 5-6. Plots prepared according to (a) Eq. (6) or (b) Eq. (7) for zonal elution 

competition studies using glipizide as a competing agent and tamoxifen as 

an injected probe for the tamoxifen site.  These results were obtained on a 

2.0 cm × 2.1 mm i.d. column containing normal HSA.  Other experimental 

conditions are given in the text.  The error bars represent a range of ±1 

S.D.  Each point is the average of four values with relative standard 

deviations that ranged ± 1.5-10.6%.  The equation for the best-fit solid line 

in (b) is y = [3.4 (± 0.1) × 10
-6

] x + [1.4 (± 0.3) × 10
-1

], with a correlation 

coefficient of 0.9990 (n = 7).   
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the normal HSA column, with the same behavior being seen on the glycated HSA 

columns.  These plots had correlation coefficients ranging from 0.9976 to 0.9988 (n = 7).  

These fits were used to find the association equilibrium constant for glipizide at the site 

that had an allosteric effect on the tamoxifen site.  The results are included in Table 5-2.  

The corresponding association equilibrium constant that was measured for glipizide when 

using normal HSA was 4.1 (± 0.9) × 10
4
 M

-1
.  The coupling constant of this region with 

the tamoxifen site was 8.0 (± 1.7).  gHSA1 and gHSA2 had association equilibrium 

constants of 7.8 (± 1.1) × 10
4
 M

-1
 and 5.2 (± 1.3) × 10

4
 M

-1
, respectively, for glipizide 

during this allosteric interaction, as well as coupling constants of 5.1 (± 0.7) and 6.1 (± 

1.5).  The 1.9-fold increase in the affinity between normal HSA and gHSA1 was 

significant at the 95% confidence interval.  The 1.3-fold increase in affinity between 

normal HSA and gHSA2 was not significant at the 95% confidence level but was 

significant at the 90% confidence level.  Significant differences at the 95% confidence 

level were also present in the coupling constants between normal HSA and gHSA1or 

gHSA2. 

Reverse competition studies were conducted by using glipizide as the injected 

probe and tamoxifen as the competing agent.  The retention factors for glipizide were 

again corrected for the binding of this drug at Sudlow site II and at its weak affinity 

regions, as described in the previous section.  A plot using these corrected values was 

then made according to Eq. (6).  This plot resulted in a non-linear relationship (see 

Appendix 5.7.4) which further indicated that positive allosteric interactions where 

occurring between the binding region for glipizide on HSA and the tamoxifen site. 

Similar results were obtained for glycated HSA.  The same type of positive allosteric 
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effect on tamoxifen has been noted to occur during the binding of warfarin at Sudlow site 

I of HSA [23].   

 

5.5 Conclusion 

 This report utilized HPAC to examine the binding of glipizide to normal HSA and 

HSA with various levels of in vitro glycation.  The results of frontal analysis experiments 

indicated that glipizide was interacting with both normal HSA and glycated HSA at a 

series of relatively high affinity regions that had average association equilibrium 

constants in the range of 2.4–6.0 × 10
5
 M

-1 
at pH 7.4 and 37 ºC.  These values were in 

good agreement with a previous estimate that has been made for the overall affinity of 

glipizide with normal HSA in solution [33].  This drug was also found to have a large set 

of weak affinity regions that had association equilibrium constants in the range of 1.7–3.7 

× 10
4
 M

-1
.   

 Zonal elution competition studies were used to provide more detailed information 

on the interactions of glipizide with specific sites of normal HSA or glycated HSA.   Fig. 

7 summarizes the results of these experiments.  This drug was found to bind to Sudlow 

site II with an affinity of 1.1-1.2 × 10
4
 M

-1
 for both normal HSA and glycated HSA.  The 

same proteins had estimated affinities of 3.2-3.9 × 10
5
 M

-1
 for normal HSA and glycated 

HSA, which agreed with the values for the high affinity regions that were obtained by 

frontal analysis.  Up to an 18% decrease in the affinity for glipizide was observed at 

Sudlow site I in going from normal HSA to glycated HSA, while up to a 27% increase 

was noted at Sudlow site II.  Glipizide had no appreciable interactions at the digitoxin site 

and was found to have positive allosteric effect for the binding of tamoxifen at its site on 

HSA.  A negative allosteric effect was also observed between glipizide and the binding of 



217 
 

 
 

 

 

 

 

 

 

 

 

Figure 5-7. Summary of the association equilibrium constants, coupling constants and 

binding sites determined in this report for glipizide in its interactions with 

HSA.  The values and results given in bold are for normal HSA.  The 

values given in parentheses are for glycated HSA.  
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R-warfarin at Sudlow site I.   

 The results from this study demonstrate how HPAC can be used to examine the 

overall binding affinity and site-specific binding for drugs with relatively complex 

interactions with proteins, including modified proteins such as glycated HSA.  In 

addition, the results from this study show how glycation, at levels comparable to those 

present in diabetes, can alter the binding of drugs with HSA.  The type of binding data 

that was obtained in this report should be useful in future work in determining how the 

effective dosage of a drug like glipizide may be affected as the concentration of blood 

glucose and levels of protein glycation change in diabetic patients [9,25-31].  In addition, 

the methods that were used in this study are not limited to glipizide and normal HSA or 

glycated HSA, but could also be applied to other drugs or modified proteins.  These 

features should make this approach, and the data it can provide, of interest in areas such 

as biointeraction studies, the screening of drug candidates, and personalized medicine 

[9,31].    
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5.7 Appendix 

5.7.1 Analysis of Frontal Analysis Data According to Eq. (5) 

Frontal analysis data for the binding of glipizide with normal HSA and glycated 

HSA were also examined by using plots produced according to Eqs. (2) or (4).  A typical 

double-reciprocal plot of 1/mLapp vs. 1/[A] for such as a system is given in Fig. 5-8.  As is 
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shown in this figure, a linear response was noted at low concentrations of glipizide, or 

high 1/[Glipizide].  However, at higher concentrations, or lower values for 1/[Glipizide], 

deviations from the linear response was observed.  This deviation confirmed that 

glipizide was interacted at more than one type of site on normal HSA or glycated HSA.   

The linear region that was noted at the higher values of 1/[Glipizide] were used 

with Eq. (5) to provide an estimate for the association equilibrium constant for the high 

affinity sites of glipizide on these proteins.  In Fig. 5-8, the best-fit line over this linear 

region gave a correlation coefficient of 0.9971 (n = 6) and an estimated association 

equilibrium constant of 1.1 (± 0.1) × 10
5
 M

-1
.  Similar linear fits to the lower 

concentration data were observed for gHSA1 and gHSA2, which gave correlation 

coefficients of 0.9994 (n = 6) and 0.9992 (n = 6), respectively.  The corresponding 

association equilibrium constants that were estimated for the high affinity sites were 1.1 

(± 0.1) × 10
5
 M

-1
 for gHSA1 and 1.2 (± 0.1) × 10

5
 M

-1
 for gHSA2.  All of the values were 

statistically identical to each other at the same at the 95% confidence interval.   

 

5.7.2 Zonal Elution Competition Studies at Sudlow Site I 

The linear region obtained in Fig. 5-5(a) for the normal HSA column at low 

glipizide concentrations had a correlation coefficient of 0.9999 (n = 4).  The ratio of the 

slope and intercept for this linear region gave an association equilibrium constant of 6.1 

(± 0.1) × 10
4
 M

-1
 for glipizide at Sudlow site I of normal HSA.  The binding of glipizide 

to Sudlow site I of gHSA1 and gHSA2 also gave linear relationships over a similar 

concentration range and when plotted according to Eq. (6).  The correlation coefficients 

for these linear regions were 0.9854 (n = 5) and 0.9999 (n = 4), respectively.  The 
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Figure 5-8. Results of frontal analysis experiments for the binding of glipizide to a 2.0 

cm × 2.1 mm i.d. normal HSA column, as analyzed according to a double-

reciprocal plot and Eq. (4).  These results are for twelve glipizide 

concentrations that ranged from 0.5 to 50 µM.  The inset shows the 

deviations occurring at low 1/[Glipizide] values from the best-fit line (as 

given in the above graph) that was determined from the linear region at 

high values of 1/[Glipizide]. 
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association equilibrium constants that were determined for these regions were 4.4 (± 0.4) 

× 10
4
 M

-1
 for gHSA1 and 6.7 (± 0.1) × 10

4
 M

-1
 for gHSA2.     

The linear plots that were obtained by fitting Eq. (7) and that are described in 

Table 5-2 and the main text for glipizide and R-warfarin were obtained at moderate-to- 

high concentrations of glipizide.  When similar plots of k0/(k - k0) vs. 1/[Glipizide] were 

made over the entire data set, linear relationships were still obtained with negative slopes 

and coefficients that ranged from 0.9933 to 0.9980 (n = 7).  The association equilibrium 

constant and coupling constant that were obtained from the expanded fit for glipizide at 

Sudlow Site I on normal HSA was 8.9 (± 1.4) × 10
4
 M

-1 
and 0.32 (± 0.05).  The 

corresponding values for gHSA1 were 20.0 (± 2.9) × 10
4
 M

-1
 and 0.62 (± 0.05), while the 

values for gHSA2 were 15.2 (± 2.0) × 10
4
 M

-1 
and 0.44 (± 0.05). 

0.1) × 10
4
 M

-1
 for gHSA2.     

 

5.7.3 Reverse Competition Studies using Glipizide and Warfarin 

In the reverse zonal elution competition studies that were conducted between 

glipizide and warfarin, the part of the retention factor that was due to the interaction of 

glipizide at Sudlow Site II was estimated by using Eq. (9) along with the binding 

parameters given for glipizide at this site in Table 5-2 and the measured retention of L-

tryptophan in the absence of glipizide.  The contribution to the retention due to the weak 

affinity sites for glipizide was estimated by using Eq. (9) and the binding parameters in 

Table 5-1 that were measured for glipizide at these sites.  The interaction at Sudlow Site 

II was found from these estimates to make up 11-40% of the total retention seen for 

glipizide on the normal HSA column in the presence of the various applied 



231 
 

 
 

concentrations of warfarin; the weak affinity interactions made up 2-6% of the total 

retention under the same conditions.   

Plots of the inverse of the corrected retention factor for glipizide, as obtained in 

these reverse competition studies, were made versus the concentration of warfarin in the 

mobile phase. A typical result is provided in Fig. 5-9, which provided a linear fit for the 

normal HSA column with a correlation coefficient of 0.9874 (n = 8).  This linear fit 

confirmed that glipizide was competing with warfarin at Sudlow site I.  Similar results 

were obtained for the gHSA1 and gHSA2 columns, which gave correlation coefficients 

of 0.9917-0.9930 (n = 8).  The association equilibrium constant that was estimated for 

warfarin from these plot were in the range of 1.2-1.3 × 10
5
 M

-1
, which was comparable to 

a previously-reported association equilibrium constant for warfarin at Sudlow site I of 2.4 

(± 0.4) × 10
5
 M

-1
 [19,49].  The association equilibrium constants that were measured for 

glipizide at Sudlow site I from the same plots were 8.4-9.5 × 10
5
 M

-1
, which also should 

reasonable agreement with the results that had been obtained by normal zonal elution 

competition studies. 

 

5.7.4 Reverse Competition Studies using Glipizide and Tamoxifen 

 Reverse competition studies similar to those described in the previous section 

were also conducted in which tamoxifen was used as the competing agent and glipizide 

was the injected probe.  In this case, the retention factor due to interactions at Sudlow site 

II made up 11-42% of the total retention seen for glipizide, while the weak affinity 

interactions made up 2-6%.  Plots of the inverse of the corrected retention factor for 

glipizide versus the concentration of tamoxifen in the mobile phase resulted in non-linear 

plots (see Fig. 5-10), as observed for both normal HSA and glycated HSA.  This behavior  
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Figure 5-9. A typical plots of 1/(kGlipizide, Corrected) versus concentration of warfarin, as 

obtained in reverse competition studies.  These results are for eight 

warfarin concentrations that ranged from 0 to 20 µM.  .  The equation for 

the best-fit line was y = [2.6 (± 0.2) × 10
3
] x + [0.02 (± 0.01)], with a 

correlation coefficient of 0.9874 (n = 8).  The error bars represent a range 

of ± 1 S.D.  Each point is the average of four values with relative standard 

deviations that ranged from ± 0.3-6.1%. 
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Figure 5-10. Results of plots of 1/(kGlipizide,Corrected)  versus the concentration of 

tamoxifen.  These results are for eight warfarin concentrations that ranged 

from 0 to 10 µM. The error bars represent a range of ± 1 S.D.  Each point 

is the average of four values with relative standard deviations that ranged 

from ± 0.7-3.2%. 
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again suggested that allosteric interactions were present between glipizide and tamoxifen 

during their binding to normal HSA and glycated HSA.   
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CHAPTER 6: 

ANALYSIS OF MULTI-SITE DRUG-PROTEIN INTERACTIONS BY HIGH-

PERFORMANCE AFFINITY CHROMATOGRAPHY: 

BINDING BY GLIMEPIRIDE TO NORMAL OR GLYCATED HUMAN SERUM 

ALBUMIN 

Note: Portions of this chapter have appeared in R. Matsuda, Z. Li, X. Zheng, D.S. Hage, 

“Analysis of multi-site drug-protein interactions by high-performance affinity 

chromatography: binding by glimepiride to normal or glycated human serum albumin”, J. 

Chromatogr. A (2015) Submitted. 

 

6.1 Introduction 

The sulfonylureas are a class of drugs that are commonly used to treat type II 

diabetes.  These drugs stimulate the secretion of insulin from beta cells in the pancreas to 

alleviate elevated levels of glucose in the blood stream [1].  These drugs are often divided 

into groups such as “first-generation” and “second-generation”, which differ in their 

effectiveness for treatment and their ability to be metabolized by the body [2-4].  

Glimepiride (see Fig. 6-1) is a third-generation sulfonylurea drug that can be used at even 

lower dosages than second-generation drugs like gliclazide and glibenclamide [1].  The 

effectiveness of glimepiride is similar to that of glibenclamide; however, glimepiride can 

be taken only once daily, while glibenclamide and other sulfonylurea drugs are 

administered 1-2 times per day [1]. 

First- and second-generation sulfonylurea drugs are known to bind to and be 

transported by human serum albumin (HSA), the most abundant protein in blood plasma 

[5-13].  Such binding is an important function of HSA, which aids in the transportation of
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Figure 6-1. Structure of glimepiride.  The section in the dashed box shows the core 

structure of a sulfonylurea drug.   
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many endogenous and exogenous substances throughout the body (e.g., drugs, low mass 

hormones, and fatty acids)[14-19].  Sudlow sites I and II are the two main binding sites 

for drugs on HSA [14,20,21].  Bulky heterocyclic anionic drugs such as warfarin, 

azapropazone, phenylbutazone, and salicylate tend to bind at Sudlow site I [14,17,20,22].  

Ibuprofen, ketoprofen, benzodiazepines, and L-tryptophan are examples of drugs and 

solutes that bind to Sudlow site II [14,17,20,23].  There are some additional sites on HSA 

that have been reported for drugs such as tamoxifen and digitoxin (i.e., the tamoxifen and 

digitoxin sites) [24-26].  A number of first- and second-generation sulfonylurea drugs 

have been reported to bind to Sudlow sites I and II; glibenclamide has also been found to 

bind at the digitoxin site [4-7,9-13].   

Several recent reports have found that the binding of sulfonylurea drugs to HSA 

can be affected by non-enzymatic glycation [6,7,9-13,27,28].  Glycation occurs when 

glucose reacts with free amine groups on a protein such as HSA [16,29-33].  A Schiff 

base is initially formed by this reaction and can later rearrange to form a more stable 

Amadori product, or ketoamine [16,29-33].  There is roughly a 2- to 5-fold increase in the 

amount of glycated HSA in patients with diabetes versus normal individuals [34].  

Structural studies based on mass spectrometry have shown that some of these glycation-

related modifications can occur at or near Sudlow sites I and II [13,35-37]. 

The goal of this study is to investigate the possible multi-site binding of 

glimepiride to HSA and in vitro glycated HSA through the use of high-performance 

affinity chromatography (HPAC).  HPAC is a liquid chromatographic technique that 

utilizes an immobilized biological molecule (e.g., HSA) as the stationary phase [38].  

One application of HPAC is as a tool for studying biological interactions [38-41].  In the 
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use of HPAC to study drug interactions with normal HSA, it has been frequently noted 

that the binding parameters that can be obtained are comparable to those of traditional 

solution-phase techniques or reference methods (e.g., equilibrium dialysis and 

ultrafiltration) [38-44].  It has also been found recently that HPAC can be used to profile 

drug interactions with glycated HSA [6-13]. 

Glimepiride has a limited solubility in an aqueous solution (e.g., < 1 mg/L in 

water) [45].  Previous work based on fluorescence spectroscopy has used relatively non-

polar solvents (e.g., 2.5-10% dimethyl sulfoxide) to make it possible to investigate the 

interactions of this drug with normal HSA [46-48].  The work described in this chapter 

will use HPAC to examine these interactions directly in aqueous solutions and at a 

physiological pH, while also expanding such studies to include glycated HSA.  Various 

HPAC methods (e.g., frontal analysis and zonal elution competition studies) will be used 

to examine the overall binding and interactions at specific sites for glimepiride on normal 

HSA and glycated HSA.  A comparison between the binding by glimepiride with normal 

HSA and glycated HSA will be made, as well as with data from previous reports that 

have examined the binding of first- and second-generation sulfonylurea drugs to similar 

protein preparations [5-7,9-13,27].  These experiments should provide a more complete 

picture of how glimepiride and sulfonylurea drugs interact with HSA and of how 

glycation may affect these processes.  In addition, the results obtained with various 

HPAC methods for glimepiride should provide useful information on how similar tools 

might be used in examining additional multi-site interactions involving other proteins or 

classes of drugs.  
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6.2 Experimental 

6.2.1 Chemicals 

Glimepiride (≥ 96% pure) was purchased from Santa Cruz Biotechnology (Dallas, 

Texas, USA).  The racemic warfarin (≥ 99%), R-warfarin (≥ 97%), L-tryptophan (≥ 

97%), digitoxin (≥ 97%), tamoxifen (≥ 99%), β-cyclodextrin (> 98%), D-(+)-glucose (≥ 

99.5%), sodium azide (95%), and HSA (essentially fatty acid free, ≥ 96%) were from 

Sigma Aldrich (St. Louis, MO, USA).  Nucleosil Si-300 (7 µm particle diameter, 300 Å 

pore size) was purchased from Macherey-Nagel (Düren, Germany).  In vitro glycated 

HSA samples were purified through the use of Econo-Pac 10DG desalting columns from 

Bio-Rad Laboratories (Hercules, CA, USA) and Slide-A-Lyzer digest 7K dialysis 

cassettes (7 kDa MW cutoff; 0.5-3, 3-12 or 12-30 mL sample volumes) from Thermo 

Scientific (Rockford, IL, USA).  A fructosamine assay kit, obtained from Diazyme 

Laboratories (San Diego, CA, USA), was used to measure the modification levels of the 

in vitro glycated HSA samples.  A bicinchoninic acid (BCA) protein assay was used to 

determine the protein content of the chromatographic supports; the reagents for this assay 

were obtained from Pierce (Rockford, IL, USA).  All aqueous solutions were prepared in 

water that was purified by a Milli-Q-Advantage A 10 system (EMD Millipore 

Corporation, Billerica, MA, USA).  The same solutions were filtered through 0.20 µm 

GNWP nylon membranes from EMD Millipore prior to use. 

 

6.2.2 Apparatus 

 The HPLC system was composed of two PU-2080 pumps, a DG-2080 degasser, 

an AS-2057 autosampler, a CO-2060 column oven, and an UV-2075 absorbance detector 

from Jasco (Tokyo, Japan).  This system also included a Rheodyne Advantage PF six-
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port valve (Cotati, CA, USA).  Jasco LC Net and ChromNav software were used to 

control the HPLC system.  The chromatograms were analyzed by using Peakfit 4.12 

software (Jandel Scientific Software, San Rafael, CA, USA). DataFit 8.1.69 (Oakdale, 

PA, USA) was used for data analysis by non-linear regression. 

 

6.2.3 In vitro Glycation of HSA 

 In vitro glycated HSA was prepared at physiological concentrations of HSA and 

glucose, as described previously [8,49,50], to prepare samples that were representative of 

glycation levels that are found in patients with prediabetes or confirmed diabetes.  These 

two samples will be referred to in this study as “gHSA1” and “gHSA2”, respectively.  To 

prevent bacterial growth during the glycation process, all materials (e.g., glassware and 

spatulas) were first sterilized in an autoclave.  A pH 7.4, 0.20 M potassium phosphate 

buffer, for use in this procedure, was prepared that contained 1 mM sodium azide.  This 

buffer was also sterilized in an autoclave to prevent bacterial growth. 

 The in vitro glycated HSA was prepared by adding 840 mg of normal HSA to 

either a solution containing 15 mM glucose (for gHSA1) or 30 mM glucose (for gHSA2) 

that was prepared in the sterile pH 7.4, 0.20 M phosphate buffer.  The final HSA 

concentration of the glycated solutions was 42 mg/L of HSA. These mixtures were then 

incubated for four weeks at 37 °C.  The protein samples were later purified through the 

use of size exclusion chromatography by using desalting columns and pH 7.4, 0.067 M 

potassium phosphate buffer to remove the excess glucose [8].  The collected samples 

were dialyzed against water using a volume that was 200-500 times the volume of sample 

to remove any remaining glucose or phosphate salts [8]. The resulting protein solutions 

were then lyophilized and stored at -80 °C until further use.   
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A fructosamine assay was conducted in duplicate to determine the glycation level 

of the in vitro glycated samples, as described previously [8].  The measured glycation 

levels were 1.39 (± 0.28) and 3.20 (± 0.13) mol hexose/mol HSA for gHSA1 and gHSA2, 

respectively.  The glycation level for the normal HSA was 0.24 (± 0.13) mol hexose/mol 

HSA. 

 

6.2.4 Column preparation 

 The chromatographic supports were made from Nucleosil Si-300 silica that had 

been converted into a diol-bonded form [51-53].  Supports containing normal HSA or 

glycated HSA were immobilized to this modified support through the Schiff base method 

[53].  A previous study that determined which amine groups on HSA are involved in the 

Schiff base method has found that these residues tend to be different from those that are 

involved in glycation [54].  Control columns were prepared by the same immobilization 

procedure but with no protein being added during the immobilization step.  The protein 

content for the final supports was determined through a BCA assay.  This assay was 

conducted in triplicate, with soluble and normal HSA being used as the standard and the 

control support being used as the blank.  The protein content for the individual supports 

was 97 (± 2), 85 (± 4), and 95 (± 4) mg HSA/g silica for the normal HSA, gHSA1, and 

gHSA2 supports, respectively.  

 The supports were downward slurry packed using pH 7.4, 0.067 M potassium 

phosphate buffer as the packing solution.  The supports were placed into separate 2.0 cm 

× 2.1 mm i.d. stainless steel columns at 3500 psi (24 MPa).  All of the columns and 

support materials were stored in pH 7.4, 0.067 M phosphate buffer at 4 °C until further 

use.  Previous work has found that such columns can be stable over the course of up to 
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500 sample applications without any appreciable changes in their drug-binding properties 

[55]. 

 

6.2.5 Chromatographic studies 

 The glimepiride, racemic warfarin, R-warfarin, L-tryptophan, digitoxin and 

tamoxifen solutions were each prepared in pH 7.4, 0.067 M phosphate buffer.  The 

limited solubility of glimepiride in this buffer required similar methods of solution 

preparation to those described for a related drug with low solubility, glibenclamide [10].  

This procedure involved preparing the solutions of glimepiride in such a buffer by using 

repeated 4 h periods of stirring and sonication on a daily basis and in a covered container 

held at 35-50 °C for 5 days.    This method allowed for the preparation of a stable 50 µM 

glimepiride solution, which could then be used in further dilution steps to prepare 

working solutions for the chromatographic studies.  Although glimepiride is a weak acid 

(pKa, 6.3), the pH of the final buffered solutions was not affected by the presence of this 

drug at the concentrations of this agent that were employed in this study [46]. 

Digitoxin and tamoxifen also have limited solubility in aqueous solutions (e.g., 

around 4 mg/L and 0.17 mg/L in water, respectively).  These drugs were dissolved by 

adding a solubilizing agent (i.e., β-cyclodextrin) [56,57].  A 25 µM stock solution of 

digitoxin was prepared in pH 7.4, 0.067 M phosphate buffer that contained 0.88 mM β-

cyclodextrin; a stock solution of 10 µM tamoxifen was prepared by also adding 2.2 mM 

β-cyclodextrin to the pH 7.4, 0.67 M phosphate [24-26]. Racemic warfarin and R-

warfarin solutions were prepared in the pH 7.4, 0.067 M phosphate buffer by stirring 

overnight.  The glimepiride, tamoxifen, digitoxin, racemic warfarin, and R-warfarin 

solutions were used within two weeks of preparation [8,55,58].  Previous studies have 
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shown that solutions of L-tryptophan in pH 7.4 phosphate buffer are only stable for a 

period of 2-9 days, so these solutions were prepared and used within one day of 

preparation [8,58,59].  

 The pH 7.4, 0.067 M phosphate buffer was also used as the mobile phase in the 

chromatographic experiments for both sample application and isocratic elution.  Prior to 

use, the mobile phases and applied solutions were passed through 0.2 µm filters and 

degassed for 10-15 min.  All of the chromatographic experiments were carried out at 0.50 

mL/min and 37 °C. Previous studies have indicated that reproducible drug binding 

parameters (e.g., retention factors, binding capacities and association equilibrium 

constants) can be obtained on comparable HSA columns under the same chromatographic 

conditions [5-11]. 

 Frontal analysis experiments were conducted by first equilibrating each column 

with the pH 7.4, 0.067 M phosphate buffer.  A switch was then made, through the use of 

a six-port valve, to the same buffer that contained a known concentration of glimepiride 

(i.e., one of twelve solutions containing 0.5-50 µM glimepiride).  This application step 

resulted in the formation of a breakthrough curve as the elution of glimepiride was 

monitored at 255 nm, as is shown in Fig. 6-2(a).  Following the formation of this 

breakthrough curve and a stable plateau, a switch was made back to only pH 7.4, 0.067 M 

phosphate buffer; this buffer was passed through the column to allow for elution of the 

retained glimepiride and regeneration of the column.  The same experiments were 

conducted on the control column.  Each concentration of glimepiride was run in 

quadruplicate for the various HSA columns and the control column.    

The first derivative of each breakthrough curve was found through the use of the 
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smoothing function of Peakfit 4.12, and the mean of this derivative was determined by 

utilizing the equal area function [58].  A correction for the system void time and non-

specific binding by glimepiride to the support was made by subtracting the breakthrough 

time for the control column from the breakthrough times for columns that contained 

normal HSA or glycated HSA.  Roughly 42-45% of the measured binding for 50 µM 

glimepiride was due to non-specific interactions on the normal HSA or glycated HSA 

columns.  This was similar to levels of non-specific binding that have been noted for 

glibenclamide on the same types of column, and for which a correction was successfully 

made by also using binding data obtained from control columns [10]. 

 In the zonal elution competition studies, R-warfarin was used as a probe for 

Sudlow site I, while L-tryptophan was used as a probe for Sudlow site II [5-11].  Two 

other minor sites on HSA are the digitoxin and tamoxifen sites, which were investigated 

by using tamoxifen and digitoxin as site-specific probes, respectively [24-26].  These 

competition studies were conducted by using eight mobile phases that contained 0.0 to 

20.0 µM glimepiride in pH 7.4, 0.067 M phosphate buffer.  The probe samples were 

made using the same competing agent concentrations as were present in the mobile phase 

and were applied in 20 µL injections.  The elution of R-warfarin, L-tryptophan, digitoxin 

and tamoxifen was monitored at 308, 280, 205, or 205 nm, respectively.  The void time 

was determined by making a 20 µL injection of 20 µM sodium nitrate, which was used as 

a non-retained solute that was monitored at 205 nm.  The experiments for each probe 

were conducted in quadruplicate in each mobile phase and on all of the columns, 

including the control column.  Peakfit 4.12 was used to determine the central point of 

each peak by using the equal area function [58]. 
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Figure 6-2. (a) Example of a frontal analysis experiment and (b) analysis of such data 

by using Eq. (2).  These results were obtained for glimepiride on a 2.0 cm 

× 2.1 mm i.d. column containing normal HSA.  Other experimental 

conditions are given in the text.  The glimepiride concentrations in (a) 

were 50, 30, 20, 10, or 5 µM (top-to-bottom).  The results in (b) are for 

twelve glimepiride concentrations ranging from 0.5 to 50 µM.  The inset 

in (b) shows the deviations occurring at low 1/[Glimepiride] values from 

the best-fit line that was determined from a linear region at high values of 

1/[Glimepiride]. The data points in (b) represent an average of four runs 

with relative standard deviations that ranged from 0.04-3.2%. 
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 Similar competition studies were carried out by using racemic warfarin and 

tamoxifen as competing agents in the mobile phase while glimepiride was injected as the 

probe.  Eight mobile phase solutions containing racemic warfarin were made, using 

warfarin concentrations ranging from 0.0 to 20.0 µM.  Experiments with tamoxifen 

acting as the competing agent made use of a set of eight solutions that contained 0.0 to 

10.0 µM of this drug in the mobile phase.  These warfarin and tamoxifen solutions were 

used to prepare 5 µM samples of glimepiride.  A 20 µL portion of these glimepiride 

samples were then injected into their corresponding mobile phases and onto each column 

while the elution of glimepiride was monitored at 255 nm.  Sodium nitrate was again 

used as a non-retained solute and was injected under the same chromatographic 

conditions.  These experiments were performed in quadruplicate for all of the mobile 

phases and columns.  The central point of the peak for glimepiride was determined by 

using the equal area function of Peakfit 4.12 [58]. 

 

6.3  Results and Discussion 

6.3.1 Determination of Overall Binding Model 

  Frontal analysis was first used to profile the overall interactions between 

glimepiride and normal HSA or glycated HSA.  This method was used to provide 

information about the overall number and general types of binding sites for these 

interactions [38-41,58].  Examples of these experiments are shown in Fig. 6-2(a), in 

which the mean breakthrough times occurred within 4-12 min after the application of 

glimepiride to the normal HSA column.  The mean point of each breakthrough curve was 

used to determine the moles of applied drug that were required to reach that point at the 

given concentration of glimepiride.  These results were then fit to various binding models 
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to determine the number of binding sites and equilibrium constants for the system [38-

41,58]. 

These data were first examined by using a binding model for a one-site reversible 

interaction, as represented by the equivalent expressions in Eqs. (1-2) [38-41,58].   

      𝑚Lapp =
𝑚L𝐾a[A]

(1 + 𝐾a[A])
          (1) 

  
1

𝑚Lapp
=

1

(𝐾a𝑚L[A])
+

1

𝑚L
          (2) 

In these equations, mLapp represents the moles of applied analyte or drug that were 

required to reach the mean point of the breakthrough curve at a given molar concentration 

of the analyte, [A] [38-41,58].  The terms Ka and mL represent the association equilibrium 

constant and total moles of active binding sites for this interaction.  Eq. (1) can be 

rearranged into Eq. (2) by taking the reciprocal of both sides of Eq. (1) [38-41,58].    

 Similar models can be employed for drug-protein interactions that occur at 

multiple binding sites.  For instance, Eqs. (3-4) describe a system with interactions that 

occur at two types of regions [38-41,58].   

𝑚Lapp =
𝑚𝐿1𝐾𝑎1[A]

(1+𝐾𝑎1[A])
+

𝑚L2𝐾𝑎2[A]

(1+𝐾𝑎2[A])
          (3) 

  
1

𝑚Lapp
=

1+𝐾𝑎1[A]+𝛽2𝐾𝑎1[A]+𝛽2𝐾𝑎1
2[A]2

𝑚L{(𝛼1+𝛽2−𝛼1𝛽2)𝐾𝑎1[A]+𝛽2𝐾𝑎1
2[A]2}

          (4) 

In these equations, the association equilibrium constants for the two regions are given by 

Ka1 and Ka2, and the moles of these regions are described by mL1 and mL2 [38-41,58].  The 

alternative terms that appear in Eq. (4) are α1, which is the fraction of all binding sites 

that consist of the highest affinity regions, or α1 = mL1/mL, where Ka1 and mL1 are the 

binding parameters for the high affinity sites [38-41,58].  Eq. (4) also includes the term 

β1, which is the ratio of the association equilibrium constants for the lower versus higher 
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affinity sites, or β2 = Ka2/Ka1 for Ka1 > Ka2 [38-41,58]. 

 Previous studies with both first- and second-sulfonylurea drugs have found that 

these drugs interact with both normal and glycated HSA through a two-site model [5-

7,9,10].  The presence of two more groups of binding sites for glimepiride was tested by 

first plotting its frontal analysis data according to Eq. (2) [5-7,9,10].  This equation 

predicts that a plot of 1/mLapp versus 1/[A] will result in a linear relationship for a system 

with a single group of binding sites.  However, as is illustrated in Fig. 6-2(b) for normal 

HSA, deviations from linearity were noted in these plots at low values of 1/[Glimepiride], 

or at high concentrations of this drug [5-7,9,10].  The same type of behavior was seen on 

the glycated HSA columns.  These deviations indicated that a multisite interaction was 

occurring between glimepiride and normal HSA or glycated HSA.   

The same data were next examined by using non-linear regression and Eqs. (1) or 

(3).  The fits that were obtained for glimepiride with normal HSA are shown in Fig. 6-3.  

The best-fit line for the two-site model gave a correlation coefficient of 0.9992 (n = 12), 

which was higher than the correlation coefficient of 0.9609 that was obtained for the one-

site model.  The residual plot for two-site model also resulted in a more random 

distribution of the data points about the best-fit line when compared to the fit for the one-

site model (see insets for Fig. 6-3).  In addition, the sum of the squares of the residuals 

for each fit was much smaller for the two-site model than for the one-site model (i.e., 

2.5× 10
-18

 vs. 1.3 × 10
-16

).  The use of higher-order models (e.g., three-site binding) did 

not result in any further improvement in the fit of this data set.  All of this information 

indicated that glimepiride was interacting with normal HSA through two general groups 

of sites, as has been noted for other sulfonylurea drugs [5-7,9,10].   
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Figure 6-3. Comparison of frontal analysis data analyzed by (a) a one-site model or 

(b) a two-site model for the binding of glimepiride with normal HSA.  

These results are for twelve solutions of glimepiride with concentrations 

ranging from 0.5 to 50 µM and that were applied to a 2.0 cm × 2.1 mm i.d. 

normal HSA column. Other experimental conditions are given in the text.  

The residual plots for each fit are provided in the insets.  Each data point is 

the average of four values, with relative standard deviations that ranged 

from ± 0.04-3.2%.   

 

 

 

 

 

 

 



254 
 

 
 

 

 

 

 



255 
 

 
 

 Similar results were obtained for glimepiride with the glycated HSA columns.  

For both types of glycated HSA, the two-site model gave a better fit than the one-site 

model (e.g., correlation coefficients of 0.9987 vs. 0.9450 for gHSA1, and 0.9993 vs. 

0.9555 for gHSA2).  A more random distribution about the best-fit line was noted in each 

case for the two-site model over the one-site model.  The sums of the squares of the 

residuals again had much smaller values for the two-site model than the one-site model 

(i.e., 5.1 × 10
-18

 vs. 2.6 × 10
-16

 for gHSA1 and 2.7 × 10
-18

 vs. 1.7 × 10
-16

 for gHSA2).  

These general trends agreed with behavior that has been observed for other sulfonylurea 

drugs with similar preparations of glycated HSA [6,7,9,10]. 

 

6.3.2 Estimation of Overall Binding Constants and Amount of Binding Sites 

 The frontal analysis data and a two-site model were next used to estimate the 

overall association equilibrium constants for glimepiride with normal HSA or glycated 

HSA.  A summary of the results is provided in Table 6-1.  The two groups of sites that 

were present were divided into a set of relatively high affinity regions and a group of 

weaker binding sites, as represented in Table 6-1 by the association equilibrium constants 

Ka1 and Ka2, respectively.  The values of Ka1 and Ka2 that were obtained for normal HSA 

and glimepiride were 9.2 (± 0.9) × 10
5 

M
-1 

and 7.4 (± 4.5) × 10
3 

M
-1

.  These two types of 

sites were present in about a 1:2.6 ratio on the normal HSA column.  Using a one-site 

model, a global affinity of 1.4 × 10
5
 M

-1 
has previously been reported for this same 

reported at the highest affinity sites for several other sulfonylurea drugs with normal 

HSA (i.e., acetohexamide, tolbutamide, and gliclazide) [5-7,9].  The structure of 

glimepiride contains more non-polar functional groups than these other sulfonylurea 

drugs, which could have attributed to this larger affinity.  Such a model agrees with a
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Table 6-1. Association equilibrium constants (Ka) and binding capacities (mL) 

determined for glimepiride with normal HSA or glycated HSA when using a 

two-site binding model
a 

Type of HSA Ka1 

(M
-1

 × 10
5
) 

mL1 

(mol × 10
-8

) 

Ka2 

(M
-1

 × 10
3
) 

mL2 

(mol × 10
-8

) 

Normal HSA 9.2 (± 0.9) 3.1 (± 0.1) 7.4 (± 4.5) 8.0 (± 3.2) 

gHSA1 10.6 (± 1.5) 3.1 (± 0.2) 5.9 (± 4.4) 12.4 (± 6.7) 

gHSA2 11.8 (± 1.5) 2.8 (± 0.2) 16 (± 5) 6.3 (± 0.8 

 

a
The results were measured at 37 C in the presence of pH 7.4, 0.067 M potassium phosphate buffer.  The 

values in parentheses represent a range of ±1 S.D., as based on error propagation and the precisions of the 

best-fit slopes and intercepts when using Eq. (3) (n = 12).  The glycation levels for gHSA1 and gHSA2 

were 1.39 (± 0.28) and 3.20 (± 0.13) mol hexose/mol HSA. 
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previous report that has suggested hydrophobic interactions play an important role in the 

binding of glimepiride with normal HSA [46].  The Ka1 value for glimepiride with normal 

HSA was also 1.5-fold lower than the highest affinity interactions of this protein with 

glibenclamide, which is another relatively non-polar sulfonylurea drug [10].  This latter 

difference may be attributed to the fact that glibenclamide has its strongest binding to the 

digitoxin site on HSA, which is separate from the regions that have been found to bind 

most sulfonylurea drugs [10].  

The values of Ka1 and Ka2 that were measured for glimepiride with gHSA1 were 

10.6 (± 1.5) × 10
5 

M
-1 

and 5.9 (± 4.4) × 10
3 

M
-1

, and the values that were obtained for 

gHSA2 were 11.8 (± 1.5) × 10
5 

M
-1 

and 1.6 (± 0.5) × 10
4 

M
-1

.  When comparing the 

values for the highest affinity sites (Ka1), a 15 to 28% increase in affinity was observed 

when comparing gHSA1 or gHSA2 to normal HSA.  These differences were significant 

at the 95% confidence interval.  Differences in affinity due the changes in the glycation 

level of HSA have been noted with similar protein preparations and other sulfonylurea 

drugs; these changes have been suggested to be due to the effects of glycation-related 

modifications that occur at or near the drug binding sites of HSA [6,7,9,10,36,37].   

 The fit of the frontal analysis data to a two-site model was also used to determine 

the moles of binding sites that were present for each group of sites on the normal HSA 

and glycated HSA columns.  These results are included in Table 6-1 and were in the 

general range of 30-125 nmol protein, with the higher and lower affinity sites being 

present in ratios that ranged from 1:2.3 to 1:4.0.  Based on the known protein content of 

each column, it was possible to further determine the specific activity for each type of 

site.  For instance, the specific affinities for the high and low affinity sites in the normal 
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HSA column were 0.67 (± 0.03) and 1.8 (± 0.7) mol/mol HSA.  The corresponding 

specific activities for the gHSA1 column were 0.78 (± 0.05) and 3.1 (± 1.7) mol/mol 

HSA, and the values for gHSA2 column were 0.63 (± 0.04) and 1.3 (± 0.2) mol/mol 

HSA.  These results were comparable to those acquired in previous work with other 

sulfonylurea drugs [6,7,9,10] and indicated that the high affinity interactions involved at 

least one major binding site, while the low affinity interactions involved a larger group of 

weaker binding sites. 

 

6.3.3 Interactions with Sudlow Site II 

 The binding of glimepiride at specific sites on HSA was evaluated through the use 

of zonal elution competition studies.  An example of such a study is shown in Fig. 6-4.  

This type of experiment involves the injection of a small plug of a probe compound (A) 

in the presence of a known concentration of a potential competing agent (I) in the mobile 

phase [38-41,58].  The retention time (tR) for the probe is measured under each set of 

conditions and is used along with the column void time (tM, or the elution time of a non-

retained solute such as sodium nitrate) to find the retention factor (k) for the probe, where 

k = (tR - tM)/tM [38-41,58].  The change in the retention factor for the probe as the 

concentration of the competing agent is varied is then examined to obtain information on 

the type of interaction that is taking place between the probe and competing agent as they 

both bind to the column [38-42].    

If direct competition exists between the probe and competing agent at a single 

type of site and the probe has no other binding sites, Eq. (5) can be used to describe the   

interaction between these two agents [38-41,58].   
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Figure 6-4. Example of a zonal elution competition study.  These results were 

obtained using R-warfarin as an injected site-specific probe for Sudlow 

site I and glimepiride concentrations in the mobile phase of 20, 10, 5, 2.5, 

or 1 µM (left-to-right).  Other experimental conditions are given in the 

text.  The vertical dashed line is shown for reference and indicates the 

position of the peak for R-warfarin in the presence of 1 µM glimepiride in 

the mobile phase.  
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1

𝑘
=

𝐾𝑎I𝑉M[I]

𝐾𝑎A𝑚L
+

𝑉M

𝐾𝑎A𝑚L
             (5) 

The terms KaA and KaI in Eq. (5) are the association equilibrium constants for the probe 

and the competing agent at their site of competition [38-41,58].  The void volume is 

represented by VM, and mL is the total moles of common binding sites in the column.  If a 

linear response is obtained for a plot of 1/k versus [I], the association equilibrium 

constant for the competing agent at its site of competition with the probe can be 

determined by taking the ratio of the slope over intercept [38-41,58]. 

Previous studies have found that Sudlow site II is a high or moderate affinity site 

for many first- and second-generation sulfonylurea drugs [5-7,9,10].  Based on these past 

reports, competition studies with glimepiride were conducted on columns containing 

normal HSA or glycated HSA and by using L-tryptophan as a site-specific probe for 

Sudlow site II [5-11].  As is shown in Fig. 6-5(a), a linear response was observed when 

the experimental data for all of the columns were fit to Eq. (5), with correlation 

coefficients that ranged from 0.9958 to 0.9996 (n = 8).  These results indicated that 

glimepiride was competing directly with L-tryptophan for Sudlow site II in each of the 

preparations of normal HSA or glycated HSA.  This agrees with previous solution-phase 

displacement studies, which have also indicated that glimepiride interacts at Sudlow site 

II of normal HSA [46]. 

The best-fit lines in Fig. 6-5a were used to determine the association equilibrium 

constants for glimepiride at Sudlow site II for normal HSA and glycated HSA (see Table 

5-2).  The association equilibrium constant that was obtained for glimepiride at this site 

on normal HSA was 4.2 (± 0.6) × 10
5 

M
-1

.  This value makes this site part of the higher 

affinity regions that were observed in the frontal analysis studies.  This result is 7- to 32-
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Figure 6-5. Fit to a direct competition model, as described by Eq. (5), for competition 

data obtained with (a) L-tryptophan or (b) digitoxin as site-specific probes 

and glimepiride as a competing agent on 2.0 cm × 2.1 mm i.d. columns 

containing normal HSA (●), gHSA1 (■), or gHSA2 (▲).   Other 

experimental conditions are given in the text.  The equations for the best-

fit lines in (a) are y = [1.7 (± 0.1) × 10
5
] x + [0.4 (± 0.1)], with a 

correlation coefficient of 0.9969 (n = 8) for normal HSA; y = [1.0 (± 0.1) 

× 10
5
] x + [0.2 (± 0.1)], with a correlation coefficient of 0.9958 (n = 8) for 

gHSA1; and y = [9.5 (± 0.1) × 10
4
] x + [0.3 (± 0.1)], with a correlation 

coefficient of 0.9996 (n = 8) for gHSA2.  The dashed reference line in (b) 

is the result expected for a system with no competition between the 

injected probe and competing agent.  Each point is the average of four 

values with relative standard deviations that ranged from (a) ± 0.5-20% or 

(b) ± 0.5-4.9%.  



263 
 

 
 



264 
 

 
 



265 
 

 
 

fold higher than association equilibrium constants that have been reported for first- and 

second-generation sulfonylurea drugs at the same site on normal HSA [5-7,9,10].  As 

noted earlier, this difference may be due to the relatively non-polar side chains on 

glimepiride and their contribution to the interactions of this drug with HSA [46].    

Similar association equilibrium constants at Sudlow site II to those found for 

normal HSA were obtained for gHSA1 and gHSA2, which gave values of 4.5 (± 0.8) × 

10
5 

M
-1

 and 3.7 (± 0.1) × 10
5 

M
-1

, respectively.  No significant differences were observed 

at the 95% confidence interval when comparing the values for normal HSA and gHSA1.  

However, a 12 to 18% decrease, which was significant at the 95% confidence level, was 

observed when comparing gHSA2 with normal HSA or gHSA1.  Previous work with 

other sulfonylurea drugs have found that either an increase or decrease in affinity can 

occur as the level of glycation is increased [6,7,9,10].  These changes have been 

attributed to differences in the types of modifications or extent of glycation that occur at 

or near Sudlow site II [36,37]. 

 

6.3.4 Interactions with the Digitoxin Site 

The second-generation sulfonylurea drug glibenclamide has been found in prior 

work to interact strongly at the digitoxin site of normal HSA and glycated HSA [10].  

Thus, competition studies were next performed with glimepiride and by using digitoxin 

as a probe for this binding site [10].  Some typical results are shown in Fig. 6-5(b).  The 

data indicated that the presence of glimepiride in the mobile phase had no detectable 

change on the retention of digitoxin.  The retention factor for digitoxin showed only 

random variations of ± 8.1% for normal HSA, ± 5.7% for gHSA1, and ± 4.0% for 

gHSA2 over the range of glimepiride concentrations that were used in these competition 
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experiments.  It was determined from these results that glimepiride was not binding to or 

interacting with the digitoxin site on the normal HSA or glycated HSA columns.   

 

6.3.5 Interactions with Sudlow Site I 

Sudlow site I is another region of normal HSA and glycated HSA that has been 

found to have strong interactions with first- and second-generation sulfonylurea drugs [5-

7,9,10].  Solution-phase displacement studies have also indicated that glimepiride 

interacts at Sudlow site I [46].  The binding of glimepiride at this region was first 

examined in this chapter by carrying out a competition study that used R-warfarin as a 

site-specific probe for Sudlow site I [5-11].   

The data from these experiments were plotted according to Eq. (5).  Previous 

studies have shown that many sulfonylurea drugs compete directly with R-warfarin for 

Sudlow site I [5-7,9,10], as would be indicated by a linear fit in a plot made according to 

Eq. (5).  However, the response that was obtained for glimepiride gave clear deviations 

from linearity in such a graph, as is demonstrated for the gHSA1 column in Fig. 6-6(a).  

The same behavior was seen for the normal HSA and gHSA2 columns.  This result 

indicated that a more complex interaction than simple direct competition was occurring 

between glimepiride and R-warfarin as they were each binding to these columns.  The 

type of behavior that is seen in Fig. 6-6(a) could have been caused by a negative 

allosteric effect by glimepiride during the binding of R-warfarin to HSA, as has been 

noted between some other solutes that bind to this protein [26].  This type of behavior is 

also consistent with fluorescence studies which have noted a conformational change that 

occurs upon the binding of glimepiride to normal HSA [46].   

Eq. (6) was used to further examine this data and to test for the presence of an  
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Figure 6-6. Zonal elution competition studies using glimepiride as a competing agent 

and R-warfarin as an injected probe for Sudlow site I.   These results were 

obtained on a 2.0 cm × 2.1 mm i.d. gHSA1 column.  Other experimental 

conditions are given in the text.  The data from these experiments were fit 

to (a) a direct competition model, as described by Eq. (5), or (b) an 

allosteric model, as described by Eq. (6).  Each point is the average of four 

values with relative standard deviations that ranged from (a) ± 0.3-8.7% or 

(b) ± 0.02-11%.  The equation for the best-fit line in (b) is y = [-1.0 (± 0.1) 

× 10
-6

] x + [-1.2 (± 0.1)], with a correlation coefficient of 0.9976 (n = 7). 
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allosteric interaction between glimepiride and R-warfarin [26].   

        
𝑘0

𝑘 − 𝑘0
=

1

𝛽I→A − 1
∙ (

1

𝐾aI[I]
+ 1)          (6) 

The term k0 in Eq. (6) is the retention factor for the injected probe (A, which was R-

warfarin in this case) in the presence of no competing agent, and k is the retention factor 

for the same probe in the presence of a given mobile phase concentration of the 

competing agent (I, which was glimepiride in this experiment).  The term KaI is the 

association equilibrium constant for the competing agent at the site at which it is binding 

during the allosteric interaction.  The allosteric effect of this competing agent on binding 

by the probe to the immobilized agent is described by the coupling constant βI


A.  A 

value of βI


A that is greater than zero but less than 1 indicates that a negative allosteric 

effect is present between I and A [26].  A positive allosteric effect is present when βI


A is 

greater than 1, direct competition between the probe and competing agent is present when 

βI


A is equal to 0, and no competition is present when βI


A is equal to 1 [26].  According 

to Eq. (6), a linear response should be obtained for any of these systems when a plot is 

made of k0/(k - k0) vs. 1/[I].  The slope and intercept from the fit of the data to Eq. (6) can 

then be used to determine the value of KaI for the competing agent and the coupling 

constant βI


A [26]. 

 Fig. 6-6(b) shows the plot of k0/(k - k0) vs. 1/[Glimepiride] that was obtained 

when R-warfarin was injected as a probe onto a normal HSA column.  Similar plots were 

obtained with the glycated HSA columns.  Each of these graphs gave a linear relationship 

with correlation coefficients that ranged from -0.9937 to -0.9998 (n = 7).  Table 6-2 lists 

the association equilibrium constants and coupling constants that were determined from 

these plots.  The results for normal HSA gave an association equilibrium constant of 5.5 
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(± 0.3) × 10
5 

M
-1

 for glimepiride and a coupling constant of 0.13 (± 0.01) for its effect on 

R-warfarin, which indicated that negative allosteric effects were taking place between 

these two solutes.  Similar results were obtained for gHSA1 and gHSA2, which gave 

association equilibrium constants of 11.5 (± 0.1) × 10
5 

M
-1

 and 12.4 (± 0.1) × 10
5 

M
-1

 for 

glimepiride, respectively, and coupling constants of 0.14 (± 0.01) and 0.13 (± 0.01).  

These KaI values were in the same range as the Ka1 values that were measured for 

glimepiride in the frontal analysis studies (see Table 6-1).  This similarity indicated that 

this interaction site was one of the high affinity regions for glimepiride on normal HSA 

and glycated HSA.  

A comparison was also made between the results that were obtained according to 

Eq. (6) for the normal HSA versus glycated HSA columns.  For instance, a 2.1-fold 

(110%) increase was observed when comparing the affinity of glimepiride at the site on 

normal HSA and gHSA1 that had the allosteric effect on binding by R-warfarin.  The 

affinity for glimepiride at the same region on gHSA2 was 2.3-fold (125%) higher than it 

was for normal HSA.  All of these differences were significant at 95% confidence 

interval.  However, there was no significant difference in the coupling constants between 

glimepiride and R-warfarin for these columns.   

 The next item considered was whether this allosteric effect between glimepiride 

and warfarin was occurring at different regions within Sudlow site I or between Sudlow 

site I and a separate site on HSA.  This was examined by using reverse competition 

studies in which glimepiride was now the injected probe and racemic warfarin was used 

as the competing agent in the mobile phase.  Eqs. (7-8) show how the overall retention 

factor (k) for an analyte with more than one possible binding site (e.g., glimepiride) is 
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related to the sum of the retention factors for this analyte at a series of n independent sites 

(k1…kn).  Eq. (8) is an expanded form of Eq. (7) which also makes it possible to consider 

the effects of a competing agent on binding by the analyte at one or more of these sites.   

   𝑘 = 𝑘1 + … 𝑘𝑛             (7) 

𝑘 =
𝐾aA1𝑚L1

𝑉M(1+𝐾𝑎I1[I])
. . . +

𝐾aA𝑛𝑚L𝑛

𝑉M(1+𝐾𝑎I𝑛[I])
          (8)  

In these equations, the association equilibrium constants for the analyte at sites 1 through 

n are described by KaA1 through KaAn, while KaI1 through KaIn represent the association 

equilibrium constants for the competing agent at the same sites.   

To examine the interactions of glimepiride at Sudlow site I during these reverse 

competition experiments, the measured retention factor for glimepiride was corrected for 

the known interactions of this drug at Sudlow site II and at its weak affinity regions.  

These corrections were made based on the binding constants that were obtained for these 

other regions in Sections 6.3.2 and 6.3.3.  The corrected retention factors for glimepiride 

were then used along with a plot made according to Eq. (5) to examine the interactions 

between warfarin and glimepiride at Sudlow site I.  These plots were linear at low 

concentrations of warfarin but deviated from linearity at higher concentrations (see 

Appendix 6.6).  This behavior indicated that warfarin and glimepiride were competing at 

Sudlow site I, but that allosteric effects between these two agents were also occurring at 

their individual binding regions at this site.      

 

6.3.6 Interactions with the Tamoxifen Site 

Previous studies have shown that the binding of warfarin to Sudlow site I is 

allosterically-linked to the tamoxifen site of HSA [26,60].  Thus, zonal elution 

competition experiments were conducted to see if glimepiride and tamoxifen (i.e., a 
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probe for the tamoxifen site) [61,62] also had allosteric interactions on normal HSA or 

glycated HSA.  When Eq. (5) was used to analyze the results from these experiments, the 

plots that were obtained had negative slopes, as shown by the example in Fig. 6-7(a).  

This behavior meant that there was an increase in the binding strength of tamoxifen to 

HSA as the mobile phase concentration of glimepiride was increased, which could have 

been caused by a positive allosteric effect between glimepiride and tamoxifen [26].  

Further analysis of this behavior was carried out by fitting the data to Eq. (6).  

Fig. 6-7(b) shows a typical graph that was obtained.  Plots of k0/(k-k0) vs. 1/[Glimepiride] 

gave linear fits with positive slopes and correlation coefficients that ranged from 0.9982-

0.9992 (n = 7) for the normal HSA and glycated HSA columns.  The best-fit line to Eq. 

(6) gave an association equilibrium constant for glimepiride of 4.1 (± 0.9) × 10
4
 M

-1
 at its 

region of interaction with tamoxifen on normal HSA.  The coupling constant for this 

interaction was 9.5 (± 2.2), which represented a positive allosteric interaction [60].  

Similar results were obtained for the gHSA1 and gHSA2 samples, which resulted in 

coupling constants of 6.3 (± 0.9) and 4.6 (± 0.5), respectively, along with association 

equilibrium constants for glimepiride of 7.9 (± 0.9) × 10
4
 M

-1
 and 12.2 (± 1.4) × 10

4
 M

-1
. 

These results were compared for normal HSA and glycated HSA.  A 1.9- or 3.0-

fold increase in the association equilibrium constant for glimepiride during this 

interaction was observed in going from normal HSA to gHSA1 or gHSA2, respectively.  

Each of these differences was significant at the 95% confidence interval.  The coupling 

constants for the same interactions showed an overall decrease due to glycation.  A 34-

52% decrease in this value was noted in going from normal HSA to gHSA1 or gHSA2.  

These changes were also significant at the 95% confidence interval.   
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Figure 6-7. Zonal elution competition studies using glimepiride as a competing agent 

and tamoxifen as an injected probe for the tamoxifen site.  These results 

were obtained on a 2.0 cm × 2.1 mm i.d. column containing normal HSA.  

Other experimental conditions are given in the text.  The data from these 

experiments were fit to (a) a direct competition model, as described by Eq. 

(5), or (b) an allosteric model, as described by Eq. (6).  Each point is the 

average of four values with relative standard deviations that ranged from 

(a) ± 0.8-6.8% or (b) ± 1.5-32%.  The equation for the best-fit solid line in 

(b) is y = [2.9 (± 0.1) × 10
-6

] x + [1.2 (± 0.1) × 10
-1

], with a correlation 

coefficient of 0.9991 (n = 7).    
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The interaction between glimepiride and the tamoxifen site on normal HSA and 

glycated HSA was further investigated by using reverse competition studies, in which 

glimepiride was the injected probe and tamoxifen was the competing agent.  Corrections 

to the overall retention factor for glimepiride for the interactions of this drug at Sudlow 

site II and its weak affinity regions were again made, as described in the previous section, 

and plots were prepared according to Eq. (5).  These graphs gave non-linear relationships 

for all of the normal HSA and glycated HSA columns (see Appendix 6.6), which 

confirmed that allosteric interactions were taking place between glimepiride and 

tamoxifen during their binding to these columns.  

 

6.4  Conclusion 

 This chapter explored the use of HPAC to examine the binding of glimepiride, a 

third- generation sulfonylurea drug, to normal HSA and HSA with various levels of in 

vitro glycation.  Previous studies based on fluorescence spectroscopy have suggested that 

glimepiride is capable of interacting at both Sudlow sites I and II of normal HSA [46].  

The use of HPAC allowed a more detailed analysis of these interactions and for these 

studies to be extended to glycated HSA.  Frontal analysis, which was used to study the 

overall interactions of glimepiride with normal HSA and glycated HSA, indicated that 

glimepiride had a set of both high affinity sites (Ka, 9.2-11.8 × 10
5
 M

-1
) and lower affinity 

regions (Ka, 5.9-16 × 10
3
 M

-1
) on these proteins.   

 Site-specific studies were also conducted through the use of zonal elution 

competition experiments.  A summary of the results that were obtained is given in Fig. 6-

8.  Glimepiride was found to bind to Sudlow site II with an association equilibrium 

constant of 4.2 × 10
5 

M
-1

 for normal HSA.  No significant changes in this affinity were 
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Figure 6-8. Summary of the association equilibrium constants, coupling constants and 

binding sites for glimepiride in its interactions with HSA.  The values for 

normal HSA are provided first for reference, followed by the range of 

values that were measured for gHSA1 and gHSA2, as given in 

parentheses.  The Ka values that are provided for Sudlow site I are based 

on the best-fit values that were obtained from Eq. (6).  
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observed for moderately glycated HSA; however, a small decrease in affinity was 

observed for more highly glycated HSA.  No interactions were found for glimepiride at 

the digitoxin site of normal HSA or glycated HSA.  Results from the competition studies 

at Sudlow site I indicated that negative allosteric interactions were occurring between 

glimepiride and R-warfarin, which was used as a probe for this site.  Based on these 

competition studies, the association equilibrium constant for glimepiride at Sudlow site I 

was estimated to be 5.5 × 10
5 

M
-1

 for normal HSA, with around a two-fold increase in 

affinity being noted for glycated HSA.  Glimepiride was also found to have positive 

allosteric interactions with the tamoxifen site of HSA.   

Changes in these interactions are of interest because they could have an effect on 

the free fraction, or effective dose, of such a drug when it is used to treat type II diabetes 

[6-13].  The results of this study also demonstrate how HPAC can be used to examine 

complex drug-protein interactions.  The methods that were used here to profile the 

binding of glimepiride with normal HSA and glycated HSA are not limited to this drug or 

type of protein but could also be adapted for use with other drugs and types of modified 

proteins.  
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6.6 Appendix 

6.6.1 Reverse Competition Studies using Glimepiride and Warfarin 

The retention factor for glimepiride at Sudlow site II was determined by using the 

binding constants found in the competition studies with L-tryptophan, as are provided in 

Table 6-2.  The retention factor for glimepiride at its weak affinity sites was determined 

from the binding parameters and frontal analysis experimental results that are shown in 

Table 6-1.  Binding at Sudlow site II made up between 6 and 71% of the total retention 

factor measured for glimepiride in the presence of the various concentrations of warfarin 

that were present in the mobile phase during the reverse competition studies.  The 

contribution of the weak affinity interactions made up 2 to 20% of the total retention for 

glimepiride under the same conditions.   
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An example of a plot of the reciprocal of the corrected retention factor for 

glimepiride (1/kGlimepiride,Corrected) versus the concentration of warfarin in the mobile phase 

is shown in Fig. 6-9.  A linear region was seen in these plots at low warfarin 

concentrations, which gave correlation coefficients ranging from 0.9788 to 0.9999 (n = 4) 

for the normal and glycated HSA columns.  The association equilibrium constants that 

were estimated from this region for warfarin were 1.5 (± 0.1) × 10
5
 M

-1
 for normal HSA,  

1.6 (± 0.1) × 10
5
 M

-1
 for gHSA1, and 2.3 (± 0.4) × 10

5
 M

-1
 for gHSA2.  These values 

were comparable to previously-reported association equilibrium constants of 2.3-2.7 × 

10
5
 M

-1
 for warfarin at Sudlow site I of normal HSA or glycated HSA [8,22].  This 

confirmed that both glimepiride and warfarin were binding to and competing at Sudlow 

site I under these conditions.  However, non-linear behavior was seen at higher warfarin 

concentrations, which supported a model in which allosteric interactions were also 

occurring between the binding regions for glimepiride and warfarin within Sudlow site I.    

 

6.6.2 Reverse Competition Studies using Glimepiride and Tamoxifen 

Reverse competition studies were also conducted with glimepiride and tamoxifen.  

The retention factor for glimepiride in the presence of tamoxifen was again corrected by 

subtracting the contribution from Sudlow site II, as determined from the binding 

parameters in Table 6-2, and the contribution from the weak affinity sites for glimepiride, 

as determined by using the binding parameters in Table 6-1.  Between 6 and 40% of the 

total retention factor for glimepiride during the reverse competition studies was due to 

binding by this drug at Sudlow site I, while the weak affinity regions contributed to 1 to 

10%.  As shown in Fig. 6-10, a plot of 1/kGlimepiride,Corrected versus the concentration of 

tamoxifen resulted in a non-linear relationship.  This behavior confirmed that allosteric 
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Figure 6-9. Plot of 1/(kGlimepiride,Corrected) versus the concentration of warfarin in the 

mobile phase during a reverse competition study.  The error bars represent 

a range of ± 1 S.D.  Each point is the average of four values with relative 

standard deviations that ranged from ± 0.4-7.5%. 
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Figure 6-10. Plot of 1/(kGlimepiride,Corrected)  versus the concentration of tamoxifen in the 

mobile phase during a reverse competition study.  The error bars represent 

a range of ± 1 S.D.  Each point is the average of four values with relative 

standard deviations that ranged from ± 0.5-10.2%. 
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effects were present during the interactions of tamoxifen and glimepiride with normal 

HSA or glycated HSA. 
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CHAPTER 7: 

ANALYSIS OF DRUG-PROTEIN BINDING USING ON-LINE 

IMMUNOEXTRACTION AND HIGH-PERFORMANCE AFFINITY 

CHROMATOGRAPHY: STUDIES WITH NORMAL AND  

GLYCATED HUMAN SERUM ALBUMIN 

 

7.1 Introduction 

Drugs, low mass hormones, and fatty acids are commonly distributed throughout 

the body through their binding to serum transport proteins such as human serum albumin 

(HSA) [1].  HSA is the most abundant protein in plasma and accounts for approximately 

60% of the total protein content in serum [1,2].  HSA has a molecular weight of 66.5 kDa 

and consists of 585 amino acids [3,4].  There are two major binding sites on HSA, 

Sudlow sites I and II [1,3-6].  Sudlow site I is found in subdomain IIA of HSA and is 

known to bind to anticoagulant drugs such as warfarin and anti-inflammatory drugs such 

as azapropazone [1,3,7].  Sudlow site II is found in subdomain IIIA and binds to drugs 

such as ibuprofen, as well as the essential amino acid L-tryptophan [1,3,8].   

Recent studies have shown that proteins like HSA can be affected by diseases 

such as diabetes [9-29].  Diabetes results in elevated levels of glucose in the bloodstream 

and can lead to the non-enzymatic glycation of proteins, which is the result of the 

addition of reducing sugars to free amine groups on a protein.  This reaction initially 

forms a reversible Schiff base; this product can later rearrange to form a more stable 

Amadori product [11-16,30,31].  Modifications caused by glycation can occur at or near 

Sudlow sites I and II [3,27-30].   Patients with diabetes have been shown to have a 2- to 

5-fold increase in the amount of HSA that is present in the glycated form when compared 
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to healthy individuals [33].  Recent studies have examined the effects of glycation on the 

structure and function of HSA and have found that glycation can have an effect on the 

affinity of various sulfonylurea drugs for this protein [18-26]. 

High-performance affinity chromatography (HPAC) is a liquid chromatographic 

technique that utilizes an immobilized biological molecule as a stationary phase [34-36].  

HPAC is commonly used for the separation, purification or analysis of specific analytes; 

however, HPAC can also be utilized to examine drug-protein interactions [34-36].  These 

types of studies have resulted in the determination of drug-binding parameters by HPAC 

that are comparable to those obtained by commonly-used reference methods such as 

ultrafiltration [34-36].  It has also been found that HPAC can be used with covalently 

immobilized samples of HSA and glycated HSA to determine the effects of non-

enzymatic glycation on drug interactions with these proteins [18-26]. 

Immunoextraction is a method in which immobilized antibodies against a given 

target compound are used to isolate this target from a sample [37].  Antibodies are 

glycoproteins that have highly selective interactions with their targets (or antigens) and 

are part of the normal immunological response to foreign agents [38].  Due to their high 

specificity and strong binding, antibodies are often used for the purification and isolation 

of biologically-related targets such as proteins, hormones, and enzymes [37,38].  For 

instance, antibodies have been used in low-performance supports for the selective 

isolation of HSA and glycated HSA from serum or plasma samples, such as those 

acquired from patients who suffer from diabetes [23].   

 The purpose of this study is to develop and examine an automated and on-line 

route for examining drug-protein interactions with normal or modified proteins.  HSA 
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and glycated HSA will be used as model proteins for this work.  Fig. 7-1 shows the 

general scheme for the method that will be developed and tested in this chapter.  First, 

antibodies against the desired proteins (e.g., polyclonal anti-HSA antibodies) will be 

immobilized onto a support that is suitable for use in HPAC.  Next, this support will be 

placed into a column and used for the extraction and isolation of the desired target protein 

(e.g., HSA or glycated HSA) from applied samples.  The resulting column containing the 

extracted and adsorbed protein will then be tested for use in various formats that are often 

utilized in examining drug-protein binding by HPAC.  For instance, frontal analysis will 

be used to examine the overall affinity and binding capacity for each type of adsorbed 

protein for some model drugs, while zonal elution competition studies will be used to 

examine site-specific changes in the binding of drugs to specific sites (e.g., at Sudlow 

sites I and II) on the absorbed protein.  Information from these experiments should make 

it possible in the future to modify this approach for work with other proteins or modified 

binding agents that are of interest in clinical or pharmaceutical studies or biomedical 

research. 

 

7.2 Experimental 

7.2.1 Materials 

 The polyclonal anti-HSA antibodies (goat, fractionated antiserum, lyophilized), 

Goat IgG (reagent grade, ≥95% (SDS-PAGE), essentially salt-free, lyophilized powder) 

protein G Sepharose (recombinant protein expressed in E. coli, support in aqueous 

ethanol suspension), HSA (essentially fatty acid free, ≥ 96%), gliclazide (≥ 99.9%),  

racemic warfarin (≥ 98%), L-tryptophan (≥ 98%), D(+)-glucose (99.5%), and sodium 

azide (> 95%) were purchased from Sigma-Aldrich (St. Louis, MO, USA).  Nucleosil Si-
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Figure 7-1.  General scheme for studying drug-protein interactions through 

immunoaffinity chromatography.  
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1000 (7 µm particle diameter, 300 Å particle size) was obtained from Macherey-Nagel 

(Duren, Germany).  Reagents for the bicinchoninic acid (BCA) protein assay were from 

Pierce (Rockford, IL, USA).  The fructosamine assay kit was purchased from Diazyme 

Laboratories (San Diego, CA, USA).  All aqueous solutions were prepared using water 

from either a NANOpure system (Barnstead, Dubuque, IA, USA) or a Milli-QAdvantage 

A 10 system (EMD Millipore Corporation, Billerica, MA, USA) and filtered through 0.20 

µm GNWP nylon membranes from Millipore.  

 

7.2.2 Instrumentation 

 The chromatographic system consisted of a DC-2080 degasser, two PU-2080 

pumps, an AS-2057 autosampler, a CO-2060 column oven, and a UV-2075 absorbance 

detector from Jasco (Tokyo, Japan).  This system also included a Rheodyne Advantage 

PF six-port valve (Cotati, CA, USA).  EZ Chrom Elite software v.3.21 (Scientific 

Software, Pleasonton, CA, USA) and Jasco Chrom Nav software (Tokyo, Japan) were 

used for system control.  Chromatographic data were analyzed by using PeakFit 4.12 

(Jandel Scientific Software, San Rafael, CA, USA) and Microsoft Excel (Microsoft, 

Redmond, WA, USA).  Non-linear regression was carried out by using DataFit 8.1.69 

(Oakdale, PA, USA).  

 

7.2.3 Antibody purification 

 The anti-HSA polyclonal antibodies were isolated from goat anti-HSA serum by 

using protein G Sepharose (see Appendix 7.6.2 for a schematic of this approach and notes 

on the selectivity of this isolation method).  Prior to use, the protein G Sepharose was 

provided commercially in an aqueous ethanol suspension.  This suspension was washed 5 
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times with water and three times with pH 7.4, 0.067 M potassium phosphate buffer, as 

described by the manufacturer’s preparation procedure to remove the storage solvent.  A 

100 mg portion of the lyophilized anti-HSA goat serum was dissolved in 2 mL of pH 7.4, 

0.067 M potassium phosphate buffer and added to approximately 2 mg of the prepared 

protein G Sepharose support.  The sample and support were allowed to mix for 2 h at 

room temperature, followed by centrifugation at 7500 rpm for 5 min.  The non-retained 

serum components that remained in solution were removed by decanting.  The support 

was washed with 2 mL of pH 7.4, 0.067 M potassium phosphate buffer prior to another 

centrifugation and decanting step.  This step was repeated twice.  Three 1 mL portions of 

pH 2.5, 0.10 M potassium phosphate buffer were added to and mixed with this support to 

release anti-HSA antibodies that were bound to the protein G Sepharose, with each 

addition of this buffer being followed by another centrifugation step and collection of the 

supernatant.   

The collected supernatants were pooled and adjusted to pH 6.0 by slowly adding a 

small amount of pH 8.0, 0.10 M potassium phosphate buffer.  After adjusting its pH, the 

solution of antibodies was immediately used for immobilization, as described in Section 

7.2.4.  A BCA assay was used in triplicate with goat IgG as the standard to determine the 

amount of antibodies that were obtained from the goat anti-serum by using the protein G 

Sepharose for their isolation.  The results indicated that 100 mg of the goat serum 

resulted in 39.3 (± 0.1) mg of isolated antibodies.     

 

7.2.4 Preparation of immunoextraction columns 

Nucleosil Si-1000 was converted into a diol-bonded form according to the 

literature [39].  The anti-HSA antibodies that were isolated in Section 7.2.3 were 
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immobilized onto this support by using the Schiff base method, which was conducted 

according to previous methods [40-43].  A control support was prepared in the same 

manner but with only buffer and no antibody solution being added during the 

immobilization step.  The final immunoextraction support was stored in pH 7.4, 0.067 M 

potassium phosphate buffer at 4 °C until further use. 

A BCA assay was performed in triplicate to determine the antibody content of the 

final immunoextraction support.  The goat anti-serum containing the anti-HSA polyclonal 

antibodies was used as the standard in which the actual amount of anti-HSA antibodies 

was corrected by using the value determined in from the BCA assay experiment in 

section 7.2.2.  The control support was used as the blank.  For this assay, the 

immunoextraction support containing the immobilized anti-HSA antibodies and the 

control support were dissolved in pH 7.4, 0.067 M potassium phosphate buffer. The 

average protein content for two batches of the immunoextraction support was 28.1 (± 2.1) 

mg antibodies/g silica, with a range of 23 to 34 mg antibodies/g silica.  This value is a 

corrected value based on the actual content of the isolated antibodies. 

The immunoextraction and control supports were downward slurry packed into 

separate 1.0 cm or 2.0 cm × 2.1 mm I.D. columns at 4000 psi (28 MPa) using pH 7.4, 

0.067 M potassium phosphate buffer as the packing solution.  The packed columns were 

stored at 4 °C in the same pH 7.4 potassium phosphate buffer.  Each column was used for 

500 sample applications or less and was routinely washed with pH 7.4, 0.067 M 

potassium phosphate buffer.   

 

7.2.5  Preparation of glycated HSA 

The glycated HSA sample was prepared in vitro by using a previous procedure 
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[22,42,43].  This sample was prepared in sterile pH 7.4, 0.20 M potassium phosphate 

buffer that also contained 1 mM sodium azide (i.e., an antibacterial agent) and 10 mM D-

glucose in the presence of 42 g/L (0.63 mM) HSA (i.e., a typical HSA concentration 

found in humans under normal physiological conditions).  This solution was allowed to 

incubate at 37 °C for 4 weeks.  After incubation, the protein preparation was lyophilized 

and stored at -80 °C until further use.  A portion of this preparation was analyzed by a 

fructosamine assay to determine the glycation level of the modified HSA [22].  This level 

of glycation was 3.20 (± 0.13) mol hexose/mol HSA, which is similar to that obtained in 

prior binding studies also involving in vitro glycated HSA [22].   

 

7.2.6 Evaluation of immunoextraction columns 

All solutions and samples used in the chromatographic studies described here and 

in Section 7.2.7 were prepared in pH 7.4, 0.067 M potassium phosphate buffer.  This 

buffer was also used as the application buffer.  All drug solutions and mobile phases were 

filtered using a 0.2 µM nylon filter and degassed for 10-15 min prior to use in 

chromatographic studies.  The warfarin solutions were used within one week of 

preparation [45], the gliclazide solutions were used within two weeks of preparation [20], 

and the L-tryptophan solutions were prepared fresh daily [46].  All chromatographic 

experiments were performed at 37 °C.  

The binding capacity for the immunoextraction columns was determined by 

frontal analysis [34,45], using solutions containing 5.0 µM HSA or glycated HSA in pH 

7.4, 0.067 M potassium phosphate buffer.  The anti-HSA immunoextraction column was 

first equilibrated with the pH 7.4 phosphate buffer at 0.10 mL/min.  A switch was then 

made to apply the HSA or glycated HSA solution at 0.10 mL/min.  This resulted in the 
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formation of a breakthrough curve, which was monitored at 280 nm [34,35].  

Chromatograms for these studies can be found in the Appendix 7.6.3.  These experiments 

were performed in quadruplicate, with the central location of each breakthrough curve 

being determined by using the equal area method [34,35].  A pH 2.5, 0.10 M potassium 

phosphate buffer was used to elute the adsorbed HSA or glycated HSA, and pH 7.4, 

0.067 M potassium phosphate buffer was used to regenerate the column prior to 

additional studies.  Similar experiments were performed on a control column to correct 

for the system void time and any non-specific binding of the HSA or glycated HSA to the 

system.  The non-specific binding of these proteins was found to negligible, giving a 

breakthrough time similar to the void time of the system.  

The capture efficiency for the immunoextraction columns was measured by 

injecting 20 µL of 5.0 µM HSA or glycated HSA (i.e., 6.67 µg) at 0.05 to 0.50 mL/min in 

the presence of the pH 7.4 application buffer.  This amount of injected protein was 

equivalent to the amount of found in 0.13-0.19 µL of undiluted serum containing 35-50 

g/L HSA.  The elution profiles were monitored at 280 nm.  Chromatograms for these 

studies can be found in the Appendix 7.6.3. The mobile phase was later switched to a pH 

2.5, 0.10 M potassium phosphate buffer to elute the adsorbed HSA or glycated HSA from 

the column.  The column was then regenerated with the pH 7.4, 0.067 M potassium 

phosphate buffer prior to the injection of the next sample.  This process was also carried 

out on the control column.  Injections containing 20 µL of pH 7.4, 0.067 M potassium 

phosphate buffer were also performed on the immunoextraction columns and the control 

columns at the various flow rates to correct for the background response of the buffer.  

The elution profiles for the injected samples and buffer were analyzed and fit to 
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exponentially-modified Gaussian curves [34,35].   

 

7.2.7 Chromatographic binding studies 

Prior to the drug-protein binding studies, HSA or glycated HSA was applied to an 

immunoextraction column under the same conditions described in Section 7.2.6 for the 

binding capacity measurements.  In the frontal analysis experiments, the 

immunoextraction columns containing adsorbed HSA or glycated HSA were placed into 

pH 7.4, 0.067 M potassium phosphate buffer at 0.10 mL/min.  A switch was then made to 

a solution prepared in the same pH 7.4 buffer but that contained a known concentration of 

the drug of interest (e.g., warfarin or gliclazide), which was also applied at a flow rate of 

0.10 mL/min.  Once a breakthrough curve had been formed and a stable plateau had been 

reached, the pH 7.4, 0.067 M phosphate buffer alone was passed through the column at 

0.25 mL/min to elute the retained drug.  The flow rate was then returned to 0.10 mL/min 

prior to application of the next drug solution.   

The frontal analysis studies used ten drug solutions containing 0.5-50 µM 

warfarin or fourteen solutions containing 0.5-200 µM gliclazide.  The elution of warfarin 

was monitored at 308 nm, and the elution of gliclazide was detected at 250 nm.  All 

frontal analysis experiments were carried out in quadruplicate, with the central point of 

each breakthrough curve being determined by the equal area method [34,35].  The same 

solutions were also applied to a control column to correct for the void time of the system 

and any non-specific binding of the drug [18-22].  Non-specific binding made up only 

4% of the total binding seen for the 50 µM warfarin solution and 0.7% of the total 

binding seen for 200 µM of gliclazide when applied to the immunoextraction columns 

containing adsorbed HSA or glycated HSA.    
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Competition studies based on zonal elution experiments were also conducted on 

the immunoextraction columns containing adsorbed HSA or glycated HSA.  The studies 

were performed in quadruplicate using 0-20 µM gliclazide as the competing agent in the 

pH 7.4 application buffer.  These solutions were applied to the columns at 0.1 mL/min for 

warfarin which was used as probe for Sudlow site I of HSA/glycated HSA and 0.05 

mL/min for L-tryptophan used as probe for Sudlow site II [5-8].  The mobile phases 

containing gliclazide were also used to prepare the 5 µM samples of warfarin or L-

tryptophan that were used for these injections.  The injection volume was 20 µL, and the 

warfarin or L-tryptophan were monitored at 308 or 280 nm, respectively.  Sodium nitrate 

was also injected as a non-retained solute and was monitored at 205 nm [34,35].  The 

central moment for each peak was found by using a fit to exponentially-modified 

Gaussian peaks with the automatic baseline correction function of PeakFit v4.12 [34,35]. 

Similar chromatographic studies were also carried out using the control column in which 

a correction was made for the non-specific binding by subtract the control results from 

the results with the immunoextraction columns containing the protein. 

 

7.3 Results and Discussion 

7.3.1 Characterization of immunoextraction column 

The binding capacity of an anti-HSA immunoextraction column was measured for 

both HSA and glycated HSA by using frontal analysis.  The estimated binding capacity 

for HSA and glycated HSA was 0.34-0.42 nmol, or roughly 23-28 µg.  This was the 

equivalent to the amount of HSA/glycated HSA that would be found in 0.45-0.80 µL of 

undiluted serum sample that contained 35-50 g/L of HSA.   

When this binding capacity was combined with the known protein content of the 
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immunoextraction support, it was determined that 13-16% of the immobilized antibodies 

were able to bind to the HSA and glycated HSA samples.  Some of the remaining 

antibodies may have been inactive or not accessible to the HSA/glycated HSA.  These 

two factors probably accounted for 72% of the non-binding antibodies, as based on prior 

work with other antibodies using similar supports using the same immobilization method 

[47].  The rest of the non-binding antibodies were probably directed against other target 

antigens, as would be obtained along with the anti-HSA antibodies when using protein G 

for their isolation from serum.  The binding capacity that was obtained in this work was 

sufficient for the initial design and testing of the immunoextraction/HPAC system for 

drug-protein binding studies.   

The extraction efficiency was determined by injecting 0.10 nmol (or ~6.6 µg) of 

HSA or glycated HSA onto the immunoextraction column or control column at 0.05 to 

0.50 mL/min.  Table 7-1 summarizes the extraction efficiencies that were measured.  The 

time at which all of the non-retained columns were passed and eluted from the column 

ranged from 5 min at a flow rate of 0.05 mL/min to 1 min at a flow rate of 0.5 mL/min.  

Additionally, the back pressures obtained during the experiments ranged from 14 to 160 

psi (0.1 to 1.1 MPa).  When using HSA, an extraction efficiency of 90 (± 5)% was seen at 

an injection flow rate of 0.05 mL/min, with a decrease in this value to approximately 60 

or 70% at 0.50 or 0.25 mL/min.  A similar trend was observed for glycated HSA, with a 

maximum extraction efficiency of 93 (± 1)% being measured at 0.05 mL/min flow rate, 

and with a small decrease in this value to roughly 80 or 90% at 0.50 or 0.25 mL/min.  

The results were consistent with those that were predicted by using a second-order 

adsorption-limited rate model and a previously measured association rate constant of 4.8
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Table 7-1.   Capture efficiency for normal HSA or glycated HSA on polyclonal anti-

HSA immunoextraction columns
a 

         Flow rate                      Capture efficiency (%)   

    (mL/min)                                         HSA             Glycated HSA  

   

0.05    89.7 (± 4.9)   93.4 (± 0.6)   

0.10    81.6 (± 0.8)   93.4 (± 0.1)  

0.25    69.5 (± 7.5)   90.4 (± 0.4) 

0.50    59.5 (± 2.0)   79.4 (± 0.4) 

 

a
These results were obtained at 37 C and in the presence of pH 7.4, 0.067 M potassium phosphate buffer.  

The values in parentheses represent a range of ± 1 S.D. (n = 4). 
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× 10
4
 M

-1
 s

-1
 for HSA with a comparable preparation of immobilized polyclonal 

antibodies [48].  Based on the results from the column binding capacity and extraction 

efficiency experiments, the drug-binding experiments were performed by saturating the 

immunoextraction columns with the HSA or glycated HSA samples through the same 

method as the binding capacity experiments.  

 

7.3.2 Frontal analysis drug binding studies 

 Frontal analysis experiments using some model drugs (i.e., warfarin and 

gliclazide) were used to examine the overall binding of these drugs to the 

immunoextraction columns containing either adsorbed HSA or glycated HSA.  Frontal 

analysis has been used in previous work with the same drugs and more traditional 

columns containing immobilized HSA or glycated HSA [18-22].  Fig. 7-2(a) shows 

frontal analysis results that were obtained when using the immunoextraction/HSA 

method for drug-protein binding studies.   

As is done with more traditional columns, the data that were obtained were fit to 

various binding models to determine the number of interaction sites that were present and 

the association equilibrium constants for these sites [34,35].  Traditional columns contain 

a uniform distribution of protein throughout the entire column [34,35].  Eq. 1 shows the 

binding isotherm that can be used with the frontal analysis data obtained from traditional 

columns to describe the binding of an analyte at a single site of interaction.   

   𝑚𝐿𝑎𝑝𝑝 =
𝑚𝐿𝐾𝑎[A]

(1+𝐾𝑎[A])
          (1) 

In this equation, mLapp represents the apparent moles of applied analyte that are required 

to reach the central point of the breakthrough curve at a given concentration of analyte in 

the  mobile phase, which is represented by [A] [34,35].  The term Ka is the association
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Figure 7-2. (a) Typical frontal analysis chromatograms obtained for various 

concentrations of warfarin applied at 0.10 mL/min to a 1.0 cm × 2.1 mm 

i.d. immunoextraction column containing adsorbed HSA, and (b) a plot 

prepared according to Eq. 2 for examining binding of warfarin to normal 

HSA that had been adsorbed to an anti-HSA immunoextraction column.  

The error bars for each data point in (b) represent ± 1 S.D. for the average 

of four replicate experiments. 
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equilibrium constant for this interaction.  The mL is the moles of active binding sites for 

A.   

However, the adsorbed proteins bound to an immunoextraction column are 

present in a non-uniform distribution throughout the column, where there is more 

adsorption of the protein at the start of the column then at the end, as depicted in step 2 of 

Fig. 7-1.  Although the amount of protein in the column and binding capacity may be 

affected by the different distributions of protein throughout the column, the association 

equilibrium constant for this interaction is unaffected. Eq. 2 is an expanded form of Eq.1 

that allows for the presence of a non-uniform distribution of the binding agent.  

   𝑚𝐿𝑎𝑝𝑝 = (𝑚𝐿1 + ⋯ 𝑚𝐿𝑛)
𝐾𝑎[A]

(1+𝐾𝑎[A])
         (2) 

The equation is mathematically equivalent to Eq. 1, with the total moles of active sites 

now being represented as the summation of the individual binding capacities for different 

regions or types of sites within the column (i.e., mL1 through mLn).   

A linear form of the single-interaction binding isotherm can be developed by 

taking the reciprocal of both sides of Eq. 1, which provides the result that is shown in Eq.  

3.   

         
1

 𝑚𝐿𝑎𝑝𝑝
=

1

(𝐾𝑎𝑚𝐿[A])
+

1

𝑚𝐿
        (3) 

This equation predicts that a system with a single type of interaction between A and L 

should result in a linear relationship between 1/mLapp and 1/[A], with the inverse of the 

intercept providing the value of mL and the ratio of the intercept over the slope providing 

Ka [34,35].  For interactions involving multiple binding sites, similar equations can be 

developed, as described in Eqs. 4 and 5 [34,35].  These equations are an expanded form 

of Eqs. 1 and 3, in which the mL1 and mL2 refer to the summation of the binding capacities 
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for interactions occurring at a group of high and low affinity sites in a column, while Ka1 

and Ka2 describe the association equilibrium constants for the respective binding sites.   

𝑚𝐿𝑎𝑝𝑝 =
𝑚𝐿1𝐾𝑎1[A]

(1+𝐾𝑎1[A])
+

𝑚𝐿2𝐾𝑎2[A]

(1+𝐾𝑎2[A])
          (4) 

  
1

𝑚𝐿𝑎𝑝𝑝
=

1+𝐾𝑎1[A]+𝛽2𝐾𝑎1[A]+𝛽2𝐾𝑎1
2[A]2

𝑚𝐿𝑡𝑜𝑡{(𝛼1+𝛽2−𝛼1𝛽2)𝐾𝑎1[A]+𝛽2𝐾𝑎1
2[A]2}

         (5) 

The mLtot is representative of the total summation of all of the binding capacities that 

occur at the different sites.  The fraction of all of the binding capacities with respect to 

the high affinity region (α1) can be represented by α1 = mL1/mLtot [34,35,49,50].  Also in 

Eq. 5, β2 is representative of the ratio of the association equilibrium constants for low 

versus the high-affinity sites, which can be described by β2 = Ka2/Ka1 [34,35,49,50]. 

 The frontal analysis data that were obtained in this report for warfarin with the 

HSA or glycated HSA that was adsorbed to immunoextraction columns was fit to a 

single-site model, described by Eq. 3.  The fit of the frontal analysis data to Eq. 3 for 

HSA are shown in Fig. 7-2(b).  Similar results were acquired for glycated HSA.  

According to Eq. 3, a plot of 1/mLapp vs. 1/[A] should result in a linear fit for a system 

with a 1:1 interaction [34,35,49,50].  The best-fit lines for warfarin with the adsorbed 

samples of HSA and glycated HSA were linear with correlation coefficients of 0.9970 (n 

= 6) and 0.9979 (n = 6), respectively.  The association equilibrium constants determined 

by the best-fit lines for the adsorbed HSA and glycated HSA were 2.4 (± 0.4) × 10
5
 M

-1
 

and 2.0 (± 0.3) × 10
5
 M

-1
, respectively, while the estimated moles of active binding sites 

were 2.4 (± 0.1) × 10
-10

 mol and 2.8 (± 0.1) × 10
-10

 mol, respectively.  A summary of the 

results are shown in Table 7-2.  These values were then used to determine an estimated 

specific activity for warfarin on the different columns by using the amount of adsorbed 
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Table 7-2. Association equilibrium constants (Ka) and binding capacities (mL) 

measured for warfarin with HSA or glycated HSA adsorbed onto 

polyclonal anti-HSA immunoextraction columns
a
 

Type of HSA
b
    Ka (× 10

5
 M

-1
)   mL (× 10

-10
 mol)  

HSA     2.4 (± 0.4)   2.4 (± 0.1) 

Glycated HSA    2.0 (± 0.3)   2.8 (± 0.1) 

a
The results were measured at 37 C in the presence of pH 7.4, 0.067 M potassium phosphate buffer and 

were obtained from a double-reciprocal plots that were analyzed according  to a single-site model, as 

described by Eq. 4. The values in parentheses represent a range of ± 1 S.D., as based on error propagation 

and the precisions of the best-fit slopes and intercepts when using Eq. 2 (n = 6). 

b
The protein content for the HSA column was 0.34 (± 0.03) nmol protein.  The protein content for the 

glycated HSA column was 0.42 (± 0.02) nmol protein, with a level of glycation of 3.20 (± 0.13) mol 

hexose/mol HSA. 
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HSA or glycated HSA.  The specific activities ranged from 0.48-0.71 mol/mol of HSA 

and glycated HSA, which indicated that a single-site was involved in the interaction 

between warfarin and the absorbed HSA and glycated HSA samples.   

The Ka values obtained for the fit to the linear region of Eq. 3 were comparable to 

the previously reported average association equilibrium constant of 2.4 (± 0.4) × 10
5
 M

-1
 

for the binding of racemic warfarin to HSA [7,22].  In a previous report with more 

traditional HPAC columns it was found that the levels of glycation similar to those used 

in this study did not have any appreciable effect on the association equilibrium constants 

for warfarin with HSA [22].  The Ka values from this study ranged from 2.3 × 10
5
 to 2.7 

× 10
5
 M

-1
.  The results in this current study also found that association equilibrium 

constants determined for warfarin with the adsorbed samples of HSA and glycated HSA 

were statistically identical at the 95% confidence interval.  Thus, the results for warfarin 

indicated that the use of immunoextraction could be used to adsorb a protein such as 

HSA for use in frontal analysis studies of drug-protein interactions. 

The relative precision for the Ka values determined for warfarin on the adsorbed 

HSA and glycated HSA columns was ± 15-17% and was only slightly higher than 

relative precisions of ± 8.6-11% that have been reported previously when using more 

traditional HPAC columns [7,22].  The binding capacities that were obtained previously 

with other HPAC columns had relative precisions of ± 8.7-10.1% [7,22], which compared 

well with the relative precisions of ± 3.5-4.2% that were obtained in this study.  It was 

further found that the columns containing adsorbed samples of HSA or glycated HSA 

were stable and had similar lifetimes to those noted for more traditional HPAC columns 

[7,22].  However, one major advantage of using immunextracted proteins over 
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covalently-immobilized proteins is that the proteins used in this report could be eluted 

periodically from the column and replaced with a fresh or alternative protein sample for 

use in further drug-protein binding studies. 

 

7.3.3 Frontal analysis studies with gliclazide 

Gliclazide was another drug and model solute that was used to evaluate the 

combined immunextraction/HPAC system for biointeraction analysis.  This drug and 

related sulfonylurea drugs have been shown in previous frontal analysis work to have two 

general classes of binding sites with both HSA and glycated forms of HSA: a set of well-

defined moderate-to-high affinity sites and a larger set of weaker affinity interactions [18-

22].  Some typical results that were generated with gliclazide in this study are shown in 

Fig. 7-3.  These results were fit to both one-site and two-site binding models, as described 

by Eqs. 2 and 4 and given in Fig. 7-3(a-b).   

The presence of multi-site interactions was confirmed by comparing the fits of 

Eqs. 2 and 4 to the gliclazide data.  For instance, the correlation coefficient obtained with 

Eq. 2 and the single-site model was 0.9939 (n = 12) for HSA, while a  fit of the same data 

to Eq. 4 and a two-site model gave a correlation coefficient of 0.9999 (n = 12).  As shown 

in the insets of Fig. 7-3, the residual plot for the two-site model gave a more random 

distribution of the data about the best-fit line than was seen for the one-site model.  The 

sum of the squares of the residuals for the two-site model was also much smaller than the 

one-site model (i.e., 1.3 × 10
-23

 vs. 1.9 × 10
-21

).  All of the results confirmed that a model 

based on two binding sites was a better description for this interaction than a one-site 

model.  The same data were also fit to Eq. 3 by using a double-reciprocal plot, as 

provided in the Appendix 7.6.4, which also indicated that multi-site interactions were 
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Figure 7-3. Fit of frontal analysis data obtained for gliclazide on an immunoextraction 

columns containing HSA when analyzed by (a) a single-site binding 

model based on Eq. 2 or (b) a two-site binding model based on Eq. 4.  The 

insets show the corresponding residual plots.  Each point represents the 

average of four experiments in which the typical relative standard 

deviations ranging from 3.6 to 11.5% (average, ± 7.5%).   
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present. 

The values of Ka1 and mL1 for the high affinity sites in this system were first 

estimated from the linear portion of a plot made according to Eq. 3, giving values of 4.1 

(± 1.4) × 10
4
 M

-1
 and 2.4 (± 0.1) × 10

-10
 mol, respectively.  When using Eq. 4, the 

association equilibrium constants for the higher affinity sites and lower affinity sites in 

the same system were determined to be 4.1 (± 0.5) × 10
4
 M

-1
 and 4.2 (± 2.9) × 10

2
 M

-1
, 

respectively.  The moles of active binding sites for the two-site model were found from 

this latter fit to be 1.8 (± 0.2) × 10
-11

 mol and 5.2 (± 3.1) × 10
-9

 mol, respectively.   

The results for the glycated HSA sample followed a similar trend to HSA sample.  

A fit of the linear portion of a plot according to Eq. 3 resulted in initial estimates of Ka1 

and mL1 for the high affinity sites of 3.9 (± 1.1) × 10
4
 M

-1
 and 2.2 (± 0.1) × 10

-10
 mol, 

respectively.  The data were also fit to the two-site model which gave a better fit than a 

one-site model, with a higher correlation coefficient of 0.999 (n = 12), a more random 

distribution of the results about the best-fit line, and a lower sum of the squares of the 

residuals (i.e., 2.4 × 10
-23 

vs. 5.7 × 10
-22

).  The fit to the two-site model for glycated HSA 

gave association equilibrium constants of 4.9 (± 1.4) × 10
4
 M

-1
 and 3.6 (± 0.6) × 10

3
 M

-1 

for gliclazide at the higher affinity sites and lower affinity binding sites, respectively.  

The moles of active sites for these higher and lower affinity sites were 1.1 (± 0.3) × 10
-10

 

mol and 1.0 (± 0.1) × 10
-9

 mol, respectively.  A summary of the results from the two-site 

model for gliclazide with both HSA and glycated HSA is provided in Table 7-3.   

 The results from the immunoextraction/HPAC methods were comparable to those 

from a previous study involving more traditional HPAC columns.  This prior work 

produced an estimate of 3.4–10.0 × 10
4
 M

-1 
for the average association equilibrium 
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Table 7-3. Association equilibrium constants (Ka) and binding capacities (mL) 

obtained for gliclazide on immunoextracted samples of HSA or glycated 

HSA
a 

Type of HSA
b 

Ka1 

(M
-1

 × 10
4
) 

mL1 

(mol × 10
-11

) 

Ka2 

(M
-1

 × 10
2
) 

mL2 

(mol × 10
-9

) 

HSA 4.1 (± 0.2) 1.8 (± 0.2) 4.2 (± 2.9) 5.2 (± 3.1) 

Glycated HSA 4.9 (± 1.4) 11.0 (± 3.0) 36.0 (± 6.0) 1.0 (± 0.1) 

 

a
The results were measured at 37 C in the presence of pH 7.4, 0.067 M potassium phosphate buffer.  The 

values in parentheses represent a range of ±1 S.D., as based on error propagation and the precisions of the 

best-fit slopes and intercepts when using Eq. 3 (n = 12). 

b
The protein content and level of glycation for these protein samples were the same as listed in Table 2. 
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constant of the higher affinity binding sites for gliclazide with HSA and highly glycated 

HSA [20], which agrees well with the value of 4.1 × 10
4
 M

-1
 that was obtained in this 

current report when using immunoextraction and HPAC.   

The specific activity for each type of immobilized protein was determined from 

an estimate of the adsorbed protein and the measured binding capacities of these 

columns.  In previous work with immobilized HSA, a specific activity of 0.50 (± 0.16) 

mol/mol HSA was obtained for the gliclazide high affinity sites [22].  This prior result 

was equivalent, at the 95% confidence level, to the value of 0.52 (± 0.06) mol/mol HSA 

obtained in this report using immunoextraction and an adsorbed sample of HSA.  The 

adsorbed sample of glycated HSA gave a specific activity for the high affinity sites of 

0.25 (± 0.08) mol/mol HSA, which was similar to a value measured by traditional HPAC 

with more highly glycated HSA [20].  As has been noted in previous studies, the results 

for both the HSA and glycated HSA followed a model in which these proteins had one or 

two major binding sites for gliclazide and two or more weaker binding regions [20].  The 

results also indicated that comparable specific activities for these drug-binding studies 

were obtained when using immunoextraction versus studies involving covalently 

immobilized forms of HSA and glycated HSA.   

 The relative precisions that were obtained for Ka and mL values for the high and 

low affinity binding sites, as measured when using a two site model and 

immunoextraction, where also compared to the previous values that have been obtained 

in work with the traditional columns using covalent protein immobilization [20].  The 

relative precision for association equilibrium constants determined at the high affinity 

sites when using immunoextraction was ± 4.9-29%, and the relative precision for values 
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at the low affinity regions was ± 17-69%.  These values were similar to relative 

precisions of ± 8.0-27% and ± 17-68%, respectively, that have been noted for the same 

drug-protein systems when using covalent immobilization [20].  The precisions of the 

binding capacities were also similar in these two approaches.  The immunoextraction 

method gave precisions for these binding capacities of ± 11-27% for the high affinity 

sites and ± 10-60% for the low affinity regions, which were comparable to the range of 

precisions obtained by covalent immobilization [20].  Furthermore, the similarities in 

precision indicate the feasibility of using the online immunoextraction for analysis of 

drug-binding interactions. 

 

7.3.4 Zonal elution competition studies 

Another method that was tested for use with the immunoextraction/HPAC method 

was a zonal elution competition study.  This type of experiment has been used with 

HPAC columns made through covalent immobilization to examine site-specific changes 

in drug-protein interactions, including changes that may occur due to HSA glycation [18-

22].  For instance, previous competition studies using gliclazide and other sulfonylurea 

drugs have found that these drugs can bind to both Sudlow sites I and II of HSA and 

glycated HSA, by using warfarin as a probe for Sudlow site I and L-tryptophan as a probe 

for Sudlow site II [18-22].   

In a zonal elution competition study, a small amount of a probe for a given 

binding site (e.g., warfarin or L-tryptophan) is injected onto a column that contains the 

protein or binding agent of interest.  These injections are made in the presence of various 

known concentrations of a possible competing agent (e.g., gliclazide) in the mobile 

phase.   The retention factor (k) of the probe is then measured at each competing agent 



321 
 

 

concentration and used to determine whether the probe and competing agent had a 

common binding site on the affinity column [34,35].   

If direct competition exists between the competing agent and the probe, then a 

decrease in the retention factor for the probe should occur as the concentration of the 

competing agent is increased.  This change in retention can be described as a function of 

the concentration of the competing agent [I], as is illustrated in Eq. 6 for a system in 

which I and A have a single site of competition and A has no other types of binding sites 

in the column [34,35].   

                                                     
1

𝑘
=

𝐾𝑎I𝑉𝑀[I]

𝐾𝑎A𝑚𝐿
+

𝑉𝑀

𝐾𝑎A𝑚𝐿
         (6) 

In Eq. 6, the association equilibrium constants for the probe and the competing agent at 

their site of competition are given by the terms KaI and KaA.  The term VM represents the 

column void time, and mL is the moles of the common binding sites in the column.  Eq. 6 

predicts that a system with 1:1 competition should give a linear relationship between 1/k 

and [I].  In addition, the ratio of the slope over the intercept for the best-fit line in such a 

plot can be used to obtain the value of KaI at the site of competition [34,35]. 

As shown in Fig. 7-4, linear fits were obtained according to Eq. 6 with the 

immunoextraction/HPAC system for zonal elution competition studies involving 

gliclazide and both HSA and glycated HSA when using warfarin and L-tryptophan as 

probes for Sudlow sites I and II.  The best-fit lines in the competition studies with 

warfarin gave correlation coefficients of 0.977 (n=6) and 0.985 (n=7) for HSA and 

glycated HSA.  The best-fit lines for the experiments performed with L- tryptophan and 

gliclazide gave coefficients of 0.995 and 0.994 (n=7) for HSA and glycated HSA, 

respectively.  The residual plots for all of these linear fits gave random variations in the 
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Figure 7-4. Results for zonal elution competition studies between gliclazide and (a) 

warfarin or (b) L-tryptophan as injected probes on immunoextraction 

columns that contained adsorbed HSA (♦) or glycated HSA (■).  These 

data were fit to the direct competition model in Eq. 6.  The error bars for 

each data point represent ± 1 S.D. for the average of four replicates for 

each experiment. 
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data about the best-fit lines.  In addition, the sums for squares of the residuals that ranged 

from 0.010 to 0.114 for the experiments performed with warfarin and from 1.90 to 3.37 

for the experiments performed with L-tryptophan.  This type of fit and linear behavior 

was similar to that seen in prior work with the same probes and gliclazide or other 

sulfonylurea drugs on more traditional HPAC columns containing covalently 

immobilized samples of HSA or glycated HSA [18-22].  

The association equilibrium constants for gliclazide at Sudlow sites I and II of the 

adsorbed HSA or in vitro glycated HSA samples were determined from the slopes and 

intercepts from the plots.  These values are summarized in Table 7-4.  The value that was 

found for gliclazide with HSA at Sudlow site I was 3.4 (± 0.3) × 10
4
 M

-1
, and the 

association equilibrium constant at Sudlow site II was 8.1 (± 0.4) × 10
4
 M

-1
.  The 

association equilibrium constant results for Sudlow sites I and II of the glycated HSA 

sample were 2.5 (± 0.2) × 10
4
 M

-1
 and 7.7 (± 0.4) × 10

4
 M

-1
, respectively.  These results 

were similar to the ranges of values that have been obtained in previous work with 

covalently immobilized samples of HSA or glycated HSA that had slightly lower or 

higher levels of modification (i.e., 2.1-3.6 × 10
4
 M

-1
 at Sudlow site I and 3.8-7.6 × 10

4
 M

-

1
 at Sudlow site II) [20].  

 

7.4 Conclusion 

This chapter examined the development and use of on-line immunoextraction 

with HPAC for examining drug-protein interactions, using HSA and glycated HSA as 

model proteins for this work.  Columns containing polyclonal anti-HSA antibodies were 

prepared that had extraction efficiencies of 90-93% for samples of HSA and glycated 

HSA.  The binding capacities for both proteins on the immunoextraction columns ranged 
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Table 7-4.  Association equilibrium constants (Ka) measured for gliclazide at Sudlow 

sites I and II on immunoextracted samples of glycated HSA or normal 

HSA
a
 

Type of HSA
b
                          Ka (× 10

4
 M

-1
)  

                                                 Sudlow site I           Sudlow site II  

HSA     3.4 (± 0.3)   8.1 (± 0.4)  

Glycated HSA    2.5 (± 0.2)   7.7 (± 0.4) 

a
These results were measured at 37 C in the presence of pH 7.4, 0.067 M potassium phosphate buffer.  The 

values in parentheses represent a range of ± 1 S.D., as based on error propagation and the precisions of the 

best-fit slope and intercepts obtained when using Eq. 6 (n = 7-8). 

b
The protein content and level of glycation for these protein samples were the same as listed in Table 2. 



326 
 

 

from 0.34-0.42 nmol.   

Frontal analysis experiments examined the binding of warfarin and gliclazide 

tothe adsorbed samples of HSA or glycated HSA on the immunoextraction columns.  

Similar binding behavior and affinities for both types of drugs were seen when 

comparing the immunoextracted proteins versus prior data have been obtained with 

comparable samples of proteins but using covalent immobilization.  Zonal elution 

competition studies were also used to examine the site-specific binding of gliclazide with 

the adsorbed samples of HSA and glycated HSA at Sudlow sites I and II.  The resulting 

association equilibrium constants were also in the same range as determined in previous 

studies when using covalently immobilized HSA or glycated HSA.  The experiments in 

this chapter demonstrated how immunoextraction can be combined with HPAC to isolate 

proteins such as HSA and then use the adsorbed proteins in drug-binding studies.  This 

general approach could be extended to other proteins or modified proteins, which could 

in turn be used in clinical or pharmaceutical studies or biomedical research in areas such 

as personalized medicine.   
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7.6 Appendix 

7.6.1 Structures of Representative Sulfonylurea Drugs 

 The core structure of a sulfonylurea drug is composed of a phenysulfonyl and 

urea functional group, in which various non-polar groups can be placed on either side of 

the core structure, as is shown in Fig. 7-5.  Some examples of first-generation 

sulfonylurea drugs (e.g., acetohexamide and tolbutamide) and second-generation 

sulfonlylurea drugs (e.g., gliclazide and glibenclamide) are also shown in Fig 7-5.  

 

7.6.2 Affinity Purification of Anti-HSA Antibodies 

Fig. 7-6 summarizes the scheme that was used in this work for isolating 

polyclonal anti-HSA antibodies from anti-HSA goat antiserum.  Other types of antibodies 

and immunoglobulins, besides the anti-HSA antibodies were also probably isolated by 

using the protein G Sepharose.  However, control experiments indicated that the presence 

of such non-specific antibodies only affected the final, maximum binding capacity that 

could be obtained for HSA on the final immunoextraction column and did not affect the 

drug-protein binding studies that were later conducted with these columns.   

 

7.6.3 Immunoextraction Experiments 

Fig. 7-7(a) shows some typical breakthrough curves that were for the binding of 

normal HSA or glycated HSA to the immunoextraction column or to a control column.   

The mean breakthrough points in these curves were used to determine the binding 

capacity of the immunoextraction column, as described in the main body of the text.  Fig. 

7-7(b) shows some typical elution profiles that were obtained during the capture
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Figure 7-5. Core structure of a sulfonylurea drug and some representative first-

generation and second-generation sulfonylurea drugs.  
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Figure 7-6. General procedure involved in the extraction of polyclonal anti-HSA 

antibodies from goat serum. 
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Figure 7-7. Typical chromatograms obtained for (b) frontal analysis studies and (b) 

capture efficiency experiments performed on a 1.0 × 2.1 mm i.d. 

immunoextraction column containing anti-HSA polyclonal antibodies 

(dashed line) or a control column (solid line).  The results in (a) were 

obtained for a 5 µM solution of HSA that was applied at 0.10 mL/min.  

These results in (b) are for 20 µL samples of 5 µM HSA that were injected 

at 0.05 mL/min.   
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efficiency experiments with normal HSA or glycated HSA on the control column or 

immunoextraction column.  

 

7.6.4 Frontal Analysis Studies 

The frontal analysis data for gliclazide were analyzed according to both Eqs. (1-2) 

and Eq. (4-5).  Fig. 7-8 shows the results that were obtained when these data were 

examined according to Eq. 2.  A system with single-site binding would be expected to 

give a linear relationship for this type of plot [20].  A linear region with a correlation 

coefficient of 0.9948 (n = 13) was seen at high values for 1/[Gliclazide] in this plot; 

however, deviations from linearity were also observed at high concentrations of 

Gliclazide, or at low values of 1/[Gliclazide].  This type of behavior indicated that multi-

site interactions were taking place between this drug and its binding protein in the column 

[20].
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Figure 7-8. Fit of frontal analysis data obtained for gliclazide on an immunoextraction 

columns containing HSA and when analyzed according to a single-site 

binding model, as based on Eq. 2.
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CHAPTER 8: 

QUALITATIVE STRUCTURAL ANALYSIS OF HUMAN SERUM ALBUMIN BY 

NANO-ELECTROSPRAY IONIZATION QUADRUPOLE TIME-OF-FLIGHT 

MASS SPECTROMETRY 

 

8.1 Introduction 

Mass spectrometry (MS) has become an important analytical tool for the 

examination of complex protein samples [1].  This is mainly due to the discovery and 

development of new tools and techniques in the field of MS that have made it possible to 

identify proteins along with providing structural information on a protein’s primary 

sequence and post translational modifications (PTMs) [2].  The structure of a protein 

plays a major role in gene and cellular regulation, in which PTMs that occur on the 

primary sequence can affect a protein’s folding, conformation, stability and function 

[1,2]. 

Human serum albumin (HSA) and related serum proteins have been of growing 

interest with regards to PTMs.  For instance, non-enzymatic glycation has been shown to 

affect the function and structure of such proteins [3-28].   HSA is the most abundant 

protein in blood plasma, occurring at concentrations of 35-50 g/L, and accounting for 

60% of the total protein content in serum [29,30].  HSA plays a role in processes such as 

the regulation of osmotic pressure, the control of pH in blood, and the transportation of 

many low mass substances (e.g., hormones, fatty acids, and drugs) [29,30].  HSA has a 

molecular weight of 66.5 kDa and is composed of a single peptide chain of 585 amino 

acids [29,30].  HSA is a good candidate for structural investigations through MS because 

it has a heterogeneous amino acid composition with no repeating sequences [2].   
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Several previous studies have utilized matrix-assisted laser desorption/ionization 

time-of-flight mass spectrometry (MALDI-TOF MS) to investigate the structure of HSA 

[2,21,25-28,32-37].  In this prior work, the matrix composition, type of enzymatic digest 

and purification conditions were altered and optimized to obtain high sequence coverage 

for this protein [2].  It was found that the use of multiple enzyme digests improved the 

number of identifiable peptides and allowed for an increase in sequence coverage when 

compared to the use of a single type of enzymatic digest.  It was also found that high 

sequence coverage for a relatively high molecular weight protein such as HSA was 

attainable through this approach [2].  These pretreatment and analysis conditions were 

then used for both qualitative and semi-quantitative studies of glycation sites on HSA and 

for quantification of the extent of glycation on this protein [25,26].   

However, there are some limitations in the use of MALDI-TOF MS for such 

work.  For instance, the presence of peptides as only singly-charged ions in MALDI-TOF 

MS tends to limit the ability of this method to be used in the further analysis of these 

peptides by tandem MS (MS/MS) techniques such as collision induced dissociation 

(CID) and electron transfer dissociation (ETD) [31,32,38].  Fragmentation methods such 

as CID are charge driven and, therefore, singly-charged peptides (e.g., as obtained in 

MALDI) can result in a limited number of fragment ions [38].  Multiply-charged 

peptides, on the other hand, can allow for several pathways of fragmentation due to the 

heterogeneous locations of the charges that are present in such peptides, leading to a 

greater variety of fragmentation products for characterization by MS/MS [31,32,38]. 

An alternative method to MALDI-TOF MS for examining a protein such as HSA 

would be to use electrospray ionization (ESI) to produce ions.  Both MALDI and ESI are 



345 
 

 

soft ionization methods with limited fragmentation of ions during the ionization process; 

however, multiply-charged ions are often produced by ESI [31].  The same types of TOF 

mass analyzers can be used with both of these ionization sources, which can provide 

good detection limits and the capability of examining proteins with a wide mass range, 

while also producing results with high-mass accuracy and resolution [2, 31].   Some 

important advantages of using ESI-TOF are that this method can be easily coupled to 

separation techniques such as liquid chromatography and capillary electrophoresis.  In 

addition, other types of mass analyzers such as quadrupole mass analyzers can be coupled 

with ESI-TOF to perform MS/MS experiments [8, 39-41].   

The purpose of this study was to qualitatively analyze the structure of HSA 

through the use of high resolution nano-electrospray quadrupole time-of-flight mass 

spectrometry (nano-ESI-QTOF MS).  Although previous studies have reported high 

sequence coverage for HSA when using MALDI-TOF MS [2], the work in this chapter 

will consider whether a reduction in the sample preparation time and number of 

pretreatment steps can be attained and still be used to achieve comparable sequence 

coverage of HSA through the use of nano-ESI-QTOF MS [2].  The sequence coverage 

obtained from both individual enzymatic digests and the combined results for multiple 

enzymes will be examined.   This MS/MS method will then be used to fragment peptides 

from HSA through CID to obtain and confirm the sequences for these peptides.  Some of 

the peptide ions will also be considered for use as internal calibrants in future work to aid 

in the correction of mass spectra for improved sequence coverage or analysis of glycated-

related modifications on HSA.   
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8.2 Experimental 

8.2.1 Materials 

The HSA (essentially fatty acid free, ≥ 96% pure), ammonium bicarbonate, 

iodoacetamide (IAM), urea, guanidine hydrochloride, dithiothreitol (DTT), and formic 

acid (96%) were purchased from Sigma Aldrich (St. Louis, MO, USA).  Trypsin (MS 

grade, > 95% specificity), endoproteinase Lys-C (Lys-C, MS grade, > 90% specificity), 

endoproteinase Glu-C (Glu-C, MS grade, > 90% specificity), and HPLC grade 

acetonitrile were obtained from Thermo Fisher Scientific (Rockford, IL, USA). A Milli-Q 

Advantage A 10 system (EMD Millipore Corporation, Billerica, MA, USA) was used to 

prepare water for all aqueous solutions.   

 

8.2.2 Apparatus 

ZipTipµ-C18 pipette tips (5.0 µg capacity) were purchased from Millipore 

(Billerica, MA, USA).  All MS and MS/MS experiments were carried out using a Synapt 

G2-S HDMS quadrupole time-of-flight (QTOF) hybrid mass spectrometer (Waters, 

Manchester, UK).  The mass spectrometer was controlled by Mass-Lynx v4.1 (Waters, 

Milford, MA, USA).  A home-built static nano-ESI stage was fit to the inlet of the MS 

instrument to allow for nanoliter sample delivery [42-46].  This stage was used to deliver 

a capillary potential for ESI through a platinum wire that was placed in contact with the 

analyte solution and placed within an emitter [42-46].  The emitters were prepared in-

house from 1.5-1.8 × 100 mm Corning Pyrex melting point capillaries (Corning, NY, 

USA) through the use of a vertical micropipette puller (David Kopft Instruments, 

Tujunga, CA, USA).  A Speed Vac SC110 (Thermo Savant, Holbrook, NY, USA) was 

used to dry the pretreated and digested proteins. 
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8.2.3 Sample Digest and Purification 

8.2.3.1  Pretreatment Method 1 

 HSA was pretreated and digested through a previously-published procedure [2].  

Fig. 8-1 gives a flow chart for the processes that were involved in this method. This 

procedure involved dissolving 3 mg of HSA in a denaturating buffer that contained 6 M 

guanidine HCl in pH 8.5, 100 mM ammonium bicarbonate buffer.  A 15 µL portion of 

1.0 M DTT in pH 8.5, 100 mM ammonium bicarbonate buffer was added to this mixture 

and allowed to react for 30 min at 37 °C.  Next, a 36 µL portion of 1.0 M IAM, prepared 

in 1.0 M sodium hydroxide, was added to the mixture and allowed to react at room 

temperature in the dark for 30 min.  An additional 150 µL of 1.0 M DTT was added to 

react with the excess IAM.  Dialysis was then conducted with 400 µL of the pretreated 

protein mixture.  This involved the use of a 0.5 mL dialysis cassette, in which the sample 

was dialyzed against three fresh portions of 1000 mL water for 4 h each at room 

temperature.   The sample was then removed from the dialysis cassette and divided into 

40 µL aliquots.  The divided samples were dried under vacuum, giving a final mass for 

each sample of 100 µg.  Separate portions of this sample were used later for three 

different enzymatic digests. 

The sample used for the digest made with trypsin was reconstituted in 100 µL 

water.  The trypsin was prepared in water at a concentration of 1 µg/µL.  This enzyme 

solution was added to a 100 µg protein sample in a 3.33 µL portion and allowed to react 

for 18 h at 37 °C [2,25].  The Lys-C solution and enzyme/protein mixture were prepared 

in a manner similar to the trypsin solution and protein/trypsin mixture, except 5 µL of 

Lys-C (1 µg/µL) was added to the protein sample [2,25].   
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Figure 8-1. Comparison of the pretreatment and digestion procedures used in this 

study (i.e., “Pretreatment Method 1” and “Pretreatment Method 2”). 
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The Glu-C and Glu-C/protein mixtures were prepared in a similar fashion, with 

the protein sample being reconstituted in 100 µL water and the Glu-C being prepared at a 

concentration of 1 µg/µL in water [2,25].  However, a 10 µL portion of the enzyme 

solution was now added to the protein sample and allowed to react for 8 h at 37 °C 

[2,25].  This was followed by the addition of a separate 5 µL portion of the enzyme 

solution, after which the digestion mixture was allowed to react for an additional 18 h at 

37 °C [2,25].   

A 10 µL portion of concentrated formic acid was added to each enzyme/protein 

mixture after the given digestion times.  Each digested sample was divided into 10 µL 

aliquots and stored at -80 °C until further use.   

 

8.2.3.2  Pretreatment Method 2  

HSA was also pretreated and prepared according to a second previously-published 

procedure for protein digestion [42].  A flow chart for this procedure is also included in 

Fig. 8-1.  In this case, HSA was pretreated to prepare a sample for three types of digests.  

A 1 mg sample of HSA was dissolved in a denaturing buffer that contained 8 M urea in 

pH 7.4, 50 mM ammonium bicarbonate buffer.  This solution was used to prepare three 

pretreated samples.  Using separate vials, a 10 µL portion of the denatured protein 

solution, containing approximately 100 µg HSA, was combined with 40 µL of 8 M urea 

in pH 7.5, 50 mM ammonium bicarbonate buffer and 10 µL of DTT in pH 7.5, 50 mM 

ammonium bicarbonate buffer.  This mixture was incubated at 55 °C for 1 h.  A 10 µL 

portion of 500 mM IAM in pH 7.5, 50 mM ammonium bicarbonate buffer was then 

added to each mixture, followed by incubation of the new mixtures at room temperature 

for 1 h.  An additional 175 µL of pH 7.5, 50 mM ammonium bicarbonate buffer was then 
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added to dilute the urea in each mixture [42].   

The trypsin, Lys-C and Glu-C solutions were prepared in water at a concentration 

of 0.5 µg/µL and added to the pretreated protein samples in 5 µL portions [42].   These 

mixtures were incubated at 37 °C for 18 h.  Each digest was dried under vacuum to a 

final volume of approximately 10 µL.  The dried samples were reconstituted in 0.1% 

formic acid to a final volume of 100 µL and stored at 0 °C until future use. 

 ZipTipµ-C18 pipette tips were used to purify these digests prior to their analysis 

by MS.  The digests were thawed to room temperature prior to being applied to these 

pipette tips.  The ZipTipµ-C18 pipette tips were first wetted with 10 µL of 100% 

acetonitrile and washed with 10 µL of 0.1% formic acid in water.  A 10 µL portion of a 

reconstituted digest was then loaded onto the tip.  The tip was washed using 10 µL of 

0.1% formic acid and eluted with 20 µL of an 80:20 acetonitrile:water mixture containing 

0.1% formic acid.  An alternative to the 80:20 acetonitrile:water mixture elution step 

involved splitting this elution step into additional fractions, such as those involving 

elution with 10:90, 20:80, 30:70, and 50:50 acetonitrile:water mixtures, as have been 

used in a previous study [2].  

 

8.2.4 Mass Spectrometry 

 A 10 µL portion of a protein digest was placed into an emitter through the use of a 

syringe. The emitter was then fit onto the nano-ESI stage.  The ESI source was controlled 

by MassLynx software and the ionization was carried out by applying a potential of +1.0-

1.4 kV.  Other ionization conditions included a sampling cone voltage of +10 V, a source 

offset of +10 V, and a source temperature of 80 °C.  The samples were sprayed for 10-30 

min, with this amount of time being dependent on the type of experiment that was being 
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performed (e.g., MS or MS/MS). 

All mass spectra were acquired by using MassLynx and a positive scan mode.  A 

5 min data acquisition time was used for the MS experiments that involved sequence 

analysis.  A 2 min data acquisition time was used to perform an initial scan of spectra 

when searching for precursor ions for MS/MS analysis; a 5 min data acquisition time was 

then used for the MS/MS experiment.  The mass range examined for each sample was 50-

2000 m/z.  Although some theoretically-predicted masses for peptides from HSA were 

higher than 2000 m/z, preliminary studies over a broader mass range of 50-5000 m/z 

indicated that the signals for these higher mass peptides were too low to be observed over 

the background response under the given experimental conditions used for the MS 

measurements.     

MS/MS experiments were carried out by using CID.  The instrument used in these 

experiments was equipped with a trap region comprised of a stacked ring ion guide, 

which served as the collision cell for CID.  The pressure of this cell was 5.0 × 10
-3

 mbar, 

with argon being used as the collision gas.  A quadrupole mass analyzer was used to 

select precursor ions that were identified from the sequence analysis experiments and that 

were selected from an initial MS scan of the protein digest.  The selected precursor ions 

were then subjected to fragmentation in the collision cell.  The collision energy that was 

used for the CID experiments ranged from +10-50 V and was dependent on the size and 

sequence length of the peptide [47,48].  Previous studies have shown that peptides with 

larger masses require a larger collision energy for fragmentation vs. peptides with smaller 

masses [47,48].   
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8.2.5 MS Calibration and Data Analysis 

 Before it was used to carry out a mass analysis for digested samples of HSA, the 

MS instrument was calibrated through use of MassLynx and a sample of cesium iodide 

(CsI).  CsI is commonly used as a calibrant in ESI-MS because of its ability to form 

cluster ions in an even manner and over a wide range of m/z values [49].  Cs and I also 

are monoisotopic, which allows for the production of symmetrical MS peaks from these 

atoms, an ideal property for calibrating an MS instrument for high resolution and high 

mass accuracy measurements [49].   

For this study, a 50 mg/mL solution of CsI was prepared in a 50:50 mixture of 

acetonitrile and water.  A 10 µL aliquot of this CsI solution was applied through the ESI 

source, which provided CsI cluster ions over the mass range of 200-3000 m/z.  The 

resulting spectrum was matched to a theoretical database found in the MassLynx 

calibrant library.  This process allowed for calibration of the instrument to a mass 

accuracy of less than 0.001 Da, or less than 5 ppm.  The calibrated mass spectrometer 

was then used for MS and MS/MS experiments with HSA. 

The data obtained from the MS experiments were acquired and analyzed through 

the use of MassLynx v4.1 and mMass v5.50 software (Open Source Mass Spectrometry 

Tool, M Strohalm, Prague, Czech Republic).  MassLynx was used to combine all of the 

acquired data and to obtain an average spectrum for a group of samples.  Each spectrum 

was then processed with the smoothing function of MassLynx, based on a 3 × 3 window 

with a 3 cycle smooth in a mean smoothing method.   

The resulting spectra were converted into text files and analyzed through the use 

of mMass software.  The spectra were processed with the peak picking tool found in 



354 
 

 

mMass, with this tool being was used to set the baseline of a spectrum and to allow peaks 

to be identified by varying the signal-to–noise ratio or intensity thresholds [50].  The 

baseline for all of the spectra that were processed in this study was set by varying the 

relative intensity threshold between 1 and 2%.  The deisotoping tool of mMass was used 

to remove unwanted isotope peaks and to set the peak’s charge, where the maximum 

allowed charge was +4.  The resulting peaks were then processed with the deconvolution 

tool in mMass to group them together according to their m/z values and peak widths.  The 

parameters for the deconvolution tool were selected for a monoisotopic mass type and a 

grouping window of 0.01 m/z [50].  No additional smoothing or baseline corrections were 

used in processing the spectra with mMass.  Once set, the peak picking function was used 

to identify peptide peaks throughout the entire spectrum. 

The sequence tool in mMass was used to compare the masses of the identified 

peptide peaks to the masses that were obtained for a theoretically predicted digest of HSA 

when using a given digestion enzyme.  The primary sequence of HSA is shown in Fig. 8-

2 [2,51].  To obtain a theoretically predicted digest, a “new” sequence was selected from 

the sequence tab in mMass and the complete sequence of HSA was entered into the 

sequence editor.  Next, the parameters for possible chemical modifications were selected 

from the sequence modification tab.  Because alkylation was carried out during sample 

pretreatment to cap reactive cysteines on HSA, a fixed iodacetamide modification on 

cysteine residues was first added to the list of sequence modifications.  The oxidation of 

methionines was another modification that was included in the list of possible chemical 

modifications; however, this was set as a variable modification.  

In the next step, the protein digest tab of mMass was selected and the digest
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Figure 8-2. Primary sequence of HSA [2,51] 
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parameters were set to search for monoisotopic masses with a maximum charge of +4.  

The number of allowed missed cleavage sites for the digest was set to three for a mass 

range going from 50 to 5000 m/z.  The individual enzymes that were used for the 

digestion were selected from the mMass database and used to predict the theoretical 

digestion pattern of HSA and the peptides that would be formed through digestion with 

these enzymes.  The predicted peptides were matched with the peak masses that were 

obtained in a processed experimental spectrum by using the match peptide function in 

mMass.  The tolerance for the search parameter was set to 50.0 ppm. 

Peptides were selected from an MS spectrum and examined through MS/MS 

analysis.  The spectra for the fragment ions from MS/MS experiments were processed in 

a similar way to that which was already described for an MS spectrum.  The spectra for 

each experiment were once again combined to produce an average spectrum by using 

MassLynx.  The data were then smoothed by using the same settings as already described 

for the MS spectra.  The data were also again converted into a text file and analyzed by 

mMass.  Following a similar peak picking parameter configuration to what was described 

previously, mMass was used to select peaks from a fragment ion spectrum.  The peptide 

sequence of the selected peptide was then entered into the sequence editor.  The expected 

or possible modifications to cysteine and methionine were again added for the selected 

peptide, using the same parameters as described for the sequence modification tab when 

examining MS spectra.  Next, rather than generating a theoretical digest, the peptide 

fragmentation tab was selected.  The parameters under this tab were set to look at 

monoisotopic masses with a maximum charge of +4 and with the b ion and y ion options 

both being selected.  The theoretically predicted fragments were then processed and 
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matched to the experimental spectrum for the fragment ions by using a tolerance of 50.0 

ppm. 

 

8.3 Results 

8.3.1 Sample Digestion and Purification 

 The digestion of HSA was first carried out by using “Pretreatment Method 1”, as 

described in Section 8.2.3.1 and Fig. 8-1 [2].  This procedure involved the pretreatment 

of HSA by means of alkylation and reduction, followed by dialysis to remove the 

unreacted and excess pretreatment agents and solvents.  The protein samples were then 

treated with three types of proteolytic enzymes.  The total time for the entire preparation 

procedure was 3-4 days.  In this method, MS analysis was performed on the digests 

without the use of any further purification steps.  

 Another procedure, “Pretreatment Method 2” (described in Section 8.2.3.2 and 

Fig. 8-1), was used to improve the sequence coverage and shorten the time needed to 

prepare the digested samples [42].  In this approach, the pretreatment and digestion 

processes were carried out sequentially in a single vial.  This procedure also used lower 

concentrations of the protein and pretreatment reagents than Pretreatment Method 1.  The 

pretreatment conditions for alkylation and reduction were similar to those in Pretreatment 

Method 1; however, the time for the reduction and alkylation steps was increased from 30 

min to 1 h.  In addition, the reduction of disulfide bonds by dithiothreitol was now carried 

out at 55 °C instead of 37 °C.  Dialysis was not used to remove the excess pretreatment 

reagents and solvents in this case.  Three samples consisting of the pretreated protein 

were again digested with three types of proteolytic enzymes.  One change to the digestion 

process was that the sample treated with Glu-C was now digested for the same amount of 
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time as the Lys-C and trypsin treated samples.  The pretreatment and digestion time was 

reduced to 1-2 days from the total time of 3-4 days that was used in Pretreatment Method 

1.  Prior to MS analysis, each sample was purified and fractionated by using the ZipTipµ-

C18 pipette tips. 

  

8.3.2 Comparison of Sequence Coverages for Various Digests 

MS analysis was conducted through the conditions that were described in Section 

8.2.4.  Sequence analysis was carried out for the protein digests by using a maximum 

50.0 ppm mass difference when comparing the peptide masses found for the sample to 

those that were predicted for a theoretical digest.  Fig. 8-3(a) shows a MS spectrum for a 

tryptic digest of HSA that was pretreated and digested according to Pretreatment Method 

1.  As shown in this figure, the spectrum of the tryptic digest gave relatively low S/N 

ratios for its peaks.  As described in Section 8.2.4, the cutoff relative intensity threshold 

during the analysis of this MS data was set between 1 and 2%.  Most of the peaks in the 

spectrum for the tryptic digest fell below this threshold and could not be differentiated 

from the background signal under these criteria.  Similar results were obtained during the 

MS analysis of the Glu-C and Lys-C digests that were prepared according to Pretreatment 

Method 1.  

Table 8-1 summarizes the MS results for the various digests that were prepared 

according to Pretreatment Method 1.  This method resulted in the identification of 42 

peptides in the tryptic digest, which corresponded to a sequence coverage of 36.9% for 

HSA.  The Glu-C and Lys-C digests had 43 and 21 identified peptides, respectively, 

which corresponded to sequence coverages of 39.1% and 32.1% for HSA.   

Similar MS experiments were conducted on digests that were prepared according
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Figure 8-3. Mass spectrum for a tryptic digest of HSA, as prepared according to (a) 

Pretreatment Method 1 and (b) Pretreatment Method 2, as described in 

Fig. 8-1.   
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to Pretreatment Method 2.  Fig. 8-3(b) shows a typical MS spectrum that was generated 

by this method for a tryptic digest of HSA.  The intensity of the mass peaks were higher 

and a lower background signal was now present in the mass spectrum for this sample 

when compared to the spectrum for the same type of enzyme that was obtained when 

using Pretreatment Method 1.  The increase in peak intensity and the decrease in the 

background signal may be attributed to the additional purification step that was used in 

Pretreatment Method 2 versus Method 1.  Similar mass spectra and improvements in the 

quality of the spectra were obtained for the Glu-C and Lys-C digests when using 

Pretreatment Method 2.   

A summary of the sequence coverage results that were obtained with Pretreatment 

Method 2 are included in Table 8-1.  The tryptic digest now resulted in 104 identified 

peptides, which corresponded to a sequence coverage of 86.0% for HSA.  The Lys-C 

digest resulted in 52 identifiable peptides and a sequence coverage of 84.1%.  The Glu-C 

digest gave 54 identifiable peptides and a sequence coverage of 78.2%.  Because there 

was both improved sequence coverage and an increase in the amount of the identifiable 

peptides when these digests were prepared using the Pretreatment Method 2, this was the 

method that was used for the preparation and digestion of protein samples in the 

remainder of this study.   

 Table 8-2 compares the results for the various digests, as prepared according to 

Pretreatment Method 2, with the results that were obtained in a previous study that used 

MALDI-TOF MS to examine HSA [2].  The previous MALDI-TOF MS method gave 

82.9% sequence coverage for HSA when using trypsin to prepare the digest, 77.6% 

sequence coverage when using Lys-C, and 64.6% sequence coverage when using Glu-C



364 
 

 



365 
 

 

 [2].  The numbers of identified peptides in these digests were 56, 41, and 28, respectively 

[2]. When compared to the results obtained here by using nano-ESI-QTOF MS, a greater 

number of identifiable peaks were observed for all of the digests in the nano-ESI-QTOF 

MS approach.  The various digests had similar sequence coverages in the two approaches 

except for the tryptic digest, which gave a slightly higher sequence coverage when using 

nano-ESI-QTOF MS.  Overall, these results showed that nano-ESI-QTOF MS could be 

used to obtain similar or higher sequence coverages to MALDI-TOF MS [2].   

To further compare the sequence coverage results for the nano-ESI-QTOF MS 

and MALDI-TOF MS methods, an additional set of experiments was conducted.  Instead 

of using a single elution step during the purification process, additional elution steps were 

now added to see if further improvements could be made in the sequence coverage.  A 

similar elution procedure to the previous MALDI-TOF MS study, as described in Section 

8.2.3.2, was used to prepare these samples [2].  The collected fractions for the various 

digests were analyzed using the same MS conditions as described for the nano-ESI-

QTOF MS method.  The combined results for the collected fractions gave sequence 

coverages of 83.2% for trypsin, 72.6% for Lys-C, and 91.5% for GluC.  These coverage 

results were slightly higher than both the single-elution step nano-ESI-QTOF MS method 

and MALDI-TOF MS method for the tryptic and Glu-C digests, but were slightly lower 

for the Lys-C digest.   

Overall, when compared to MALDI-TOF MS, the nano-ESI-QTOF MS method 

required a shorter preparation time, fewer pretreatment steps, and could utilize fewer 

types of digests to obtain higher sequence coverage.  Although previous work showed 

that high sequence coverage of HSA could be obtained by MALDI-TOF MS, in this prior 
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research the digested HSA samples were first separated and eluted as multiple fractions, 

which were then examined individually to acquire their mass spectra [2].  This procedure 

resulted in the production of several elution steps and samples that needed to be analyzed 

by MS.  Although this type of fractionation can increase the sequence coverage, as was 

also demonstrated by the nano-ESI-QTOF MS analysis of the fractionated samples, the 

use of a single elution step for purification prior to nano-ESI-QTOF MS also could 

provide relatively high sequence coverage for HSA.     

 In the previous MALDI-TOF MS procedure, 0.5 µL portions of the fractionated 

protein digests (at concentrations of ~0.822 µg/µL of tryptic digest, ~0.870 µg/µL of Lys-

C digest, and ~ 1.25 µg/µL of Glu-C) were individually mixed with the MALDI matrix 

and spotted onto a plate for MS analysis [2].  The use of multiple fractions increased the 

overall amount of sample that was needed for the MS analysis.  Although a 20 µL sample 

of the purified protein digest (at concentrations of ~ 1 µg/µL for each digest) was 

prepared for use in the nano-ESI-QTOF MS method, the sample could be placed directly 

into the nano-ESI emitter and sprayed in nanoliter volumes to obtain a mass spectrum.  In 

addition, the remaining sample from the nano-ESI emitter could be collected and stored 

for future experiments.   

Another difference in these methods was that the nano-ESI-QTOF MS 

experiments produced multiply-charged ions, which could be further analyzed through 

MS/MS [8,38].  This made this approach more convenient to use than MALDI-TOF MS 

to confirm the sequences of peptides in each digest through the use of MS/MS 

experiments. 

 



367 
 

 

8.3.3 Use of Multiple Enzyme Digests with nano-ESI-QTOF MS 

 The results for all the enzymatic digests were combined to determine the overall 

sequence coverage that could be obtained for HSA by nano-ESI-QTOF MS.  Fig. 8-4 

shows the total sequence coverage that was obtained when combining the results of the 

individual digests, as well as the results for the separate digests.  The total sequence 

coverage was 98.8% when combining all three types of digests, in which 578 out of the 

585 amino acids in HSA were represented.  The N-terminus and C-terminus were 

included in this sequence coverage.  The peptide sequence that was not covered 

corresponded to residues 535-541 (HKPKATK).  This coverage included 56 out of 59 

lysines in HSA and all of the arginine residues, which are of interest because lysine and 

arginine are potential sites for glycation [3].  Based on a recent review of the possible 

glycation sites on HSA, it was determined that the three missed lysine residues were not 

major sites for such modifications [3].   

The results for the sequence analysis for the fractionated digested samples were 

also combined to determine the overall sequence coverage from the three different 

digests.  These results gave an overall sequence coverage of 99.7%, in which a total of 

583 out of 585 residues in HSA were now covered.  The missing residues, however, came 

from a different region that was now at 312-313 (SK).  Previous reports have shown that 

K313 is susceptible to modification by glycation [3].   

In the previous MALDI-TOF MS method, 97.4% sequence coverage was 

obtained when combining data for the same group of enzymes [2].  In this case, all but 15 

out of the 585 amino acids were included, with the missing regions occurring at residues 

1-4 (DAHK), 314-317 (DVCK), and 535-541 (HKPKATK) [2].  The N-terminus was not
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Figure 8-4. Total sequence coverage of HSA that was obtained when combining the 

sequence coverages for tryptic (shown in underline), Lys-C (in bold), and 

Glu-C (in italics) digests.  These results were obtained using a tolerance 

level that was equal to a maximum 50.0 ppm mass difference for each 

positive match. 
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included in this coverage, but the C-terminal region was included.  All but 5 of the 59 

lysines and all of the arginines in HSA were included in this sequence coverage.  In the 

missed regions, K4, K536, K538, and K541 have been previously reported as glycation 

modification sites, but are not major sites for this process [3].  However, K317 is 

considered one of the major sites of glycation.  Neither the MALDI-TOF MS method nor 

the nano-ESI-QTOF MS method covered the region 535-541(HKPKATK) [2].  Although 

the fractionated nano-ESI-QTOF MS method covered this region, as described 

previously, the sequence coverage produced by this method resulted in another 

susceptible glycation site being missed.   

  

8.3.4 MS/MS for Internal Calibrants 

 As mentioned earlier, the ability to perform MS/MS experiments is an important 

advantage of using nano-ESI as an ionization source, in which information about the 

amino acid sequence can be obtained through the fragmentation of a peptide.  CID is one 

of the most common MS/MS techniques that is used for fragmentation [8].  In CID, an 

accelerated precursor ion is collided with a neutral collision target (e.g., argon).  This 

results in the partial conversion of kinetic energy to internal energy, resulting in 

fragmentation of the peptide [8].   

As is shown in Fig. 8-5, fragmentation in this process occurs at the peptide 

linkage and results in fragments known as “b ions” and “y ions” [47,48].  The type of ion 

that is produced will depend on which part of the peptide fragment retains the charge.  If 

the fragment containing the amino group retains the charge, then a b ion (or oxazalone 

ion) is formed.  If the fragment containing the carboxyl group retains the charge, then a y 

ion is formed.  The masses of the b and y ions can then be matched to a theoretical
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Figure 8-5. General scheme for fragmentation by CID. 
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fragmentation pattern for the peptide of interest to give the sequence [47,48]. 

 MS/MS experiments were performed with several peptides that were identified in 

the spectra from the various digests of HSA.  These experiments were performed not only 

to confirm the identity of the peptides but also to test the use of some of these peptides as 

potential internal calibrants.  The identification of possible internal calibrants was of 

interest because the same peptides could then be used in other spectra for the same 

protein to correct the masses of other peptides [52,53].  Internal calibrants can allow for 

improved mass accuracy when searching for differences between the masses of modified 

peptides and unmodified peptides, such as those that might be observed in glycation-

related modifications [3,25,26].  This improved mass accuracy should then allow for 

more accurate measurements of the masses of the modifications, which could be used in 

determining the types of PTMs that have occurred [52].  For instance, this improved mass 

accuracy would make it easier to differentiate between modifications that may have 

similar masses [52].   

There were around 6-7 unique peptides that were selected for HSA from each 

type of digest for use as possible internal calibrants.  One of these peptides, 337-348 

(RHPDYSVVLLLR), was selected because it contained no lysine residues; other 

peptides were simply selected because they represented masses from different regions of 

the mass spectrum.  Another important selection criterion was that each of these peptides 

had relatively high signal intensity.  A high signal intensity was desirable for later use of 

these peptides in MS/MS experiments to make it easier to see the mass spectra for their 

resulting fragment ions.   

An example of peaks that were selected as internal calibrants from the tryptic 
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digest of HSA is shown in Fig. 8-6; this figure is an enlarged version of the spectrum in 

Fig. 8-3(b), with the selected peaks now being labeled.  Each of the selected peptides was 

subjected to collision energies ranging from +10 to +50 V.  The collision energy that was 

employed was dependent on the degree of fragmentation for the peptide, where some 

peptides required more energy to increase the amount of fragment ions [48,49].   

 Table 8-3 summarizes the peptides, sequences, and peptide masses that were 

selected from each of the digests for testing and possible use as internal calibrants.  For 

the tryptic digest, a total of 6 peptides were selected.  An example of a MS/MS spectrum 

for a peptide with a mass of 734 m/z from this digest is provided in Fig. 8-7.  The b and y 

ions in this spectrum were identified by matching the masses of these ions to masses that 

were obtained for a theoretical fragmentation pattern for the suspected sequence of the 

peptide.  This method of analysis provided confirmation of the identity and sequence of 

the given peptide.  Similar methods of analysis were performed for the other selected 

peptides from the tryptic digest.  A total of 7 peaks each were similarly selected from the 

Lys-C and Glu-C digests of HSA.  Analysis of the fragment ion mass spectra for these 

digests and peptides was then carried out in the same way as described for the tryptic 

digest to confirm the identity and sequences of these selected peptides. 

 Internal calibration of spectra obtained from future work with HSA or glycated 

forms of HSA and similar enzymatic digests could be conducted by entering the peptide 

masses for the selected calibrants from the individual digests.  The masses of the internal 

calibrants could then be matched to masses from the experimental peak list, in which the 

correct mass of the calibrant could be entered as the theoretical mass for the selected 

peak.  The entire mass spectrum could then be adjusted based on these internal calibrants.    
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Figure 8-6. Mass spectrum of a trypsin-digested HSA sample, in which peaks that 

were selected for internal calibration are indicated by an asterisk (*).   
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Figure 8-7. MS/MS spectrum for the fragmentation of a peptide with a mass-to-charge 

ratio of 734 m/z.  This peptide corresponded to the 373-348 region of 

HSA, which has a sequence of RHPDYSVVLLLR.  
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To illustrate this approach, a preliminary study was carried out in the analysis of 

another set of trypsin, LysC, and Glu-C digests of HSA.  As demonstrated in the residual 

plot in Figure 8-8, there was a large 75 ppm deviation away from the best-fit line for the 

residuals that was obtained after performing a sequence analysis match between a mass 

spectrum of a Glu-C digest of HSA and theoretically predicted Glu-C digest.  Similar 

deviations were observed in the analysis of the trypsin and Lys-C digests.  If the sequence 

analysis was conducted using a 50 ppm mass tolerance, a lower sequence coverage would 

be obtained because a majority of the masses would be found outside of the search mass 

tolerance range.  The sequence coverage could be improved by calibrating and correcting 

the mass spectrum with the internal calibrants.  As shown in the other set of residuals in 

the plot in Fig. 8-8, the residuals in the calibrated data set were now centered about the 

best-fit line.  A smaller mass difference was also apparent and, therefore, a lower mass 

tolerance could have been used during the sequence analysis.  Similar results were 

obtained when the internal calibrants were implemented in work with the trypsin and 

Lys-C digests.   

To further illustrate the use of internal calibration and sequence coverage at a 

lower mass tolerance, an analysis was conducted on the calibrated mass spectra for the 

trypsin, Lys-C and Glu-C digests by using a 25 ppm mass tolerance.  The individual 

digests had sequence coverages of 79.8% for trypsin, 86.5% for Lys-C and 78.9% for 

Glu-C with a 96.1% total sequence coverage when the results were combined.  These 

results were comparable to previous results with both the MALDI-TOF MS and nano- 

ESI-QTOF MS methods that were obtained when using a 50 ppm mass tolerance [2].   
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Figure 8-8. Residual plots mass differences between an experimentally prepared 

digests with the masses from a theoretically predicted digest.  The plots 

are for the uncalibrated (■) and calibrated spectra (♦) mass difference 

results.  
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8.4 Conclusion 

 This study examined the use of nano-ESI-QTOF MS to obtain a high sequence 

coverage for the analysis of HSA, which was used here as a model for a relatively high 

molecular weight protein.  The methods used for the pretreatment and digestion of this 

protein were varied and optimized to decrease the preparation time and improve the 

sequence coverage.  The final optimized conditions gave high sequence coverages for 

individual digests based on trypsin, Lys-C or Glu-C, which result in sequence coverages 

that ranged from 78.2-86.0%.  These results were comparable to those obtained in a 

previous study that used MALDI-TOF MS for the same protein [2].  A sequence 

coverage of 98.8% was obtained when combining the results for all of these digests.  This 

sequence coverage was slightly higher than the value of 97.4% that has been obtained by 

MALDI-TOF MS [2] and slightly lower than the 99.7% sequence coverage that was 

obtained when using nano-ESI-QTOF MS with peptide fractionation.  These results 

indicated that comparable or slightly higher sequence coverages for a high molecular 

weight protein such as HSA could be obtained by using nano-ESI-QTOF MS vs. 

MALDI-TOF MS.   

Nano-ESI-QTOF MS was also found to have several advantages over MALDI-

TOF MS in this type of analysis.  One advantage was that nano-ESI-QTOF MS required 

fewer samples and fractionation steps than the previous MALDI-TOF MS method [2].  

This also created the need for less sample preparation time.  Further investigation of the 

peptides that were detected in the digests for HSA by nano-ESI-QTOF MS was carried 

out by using CID to determine which of these peptides could be used as internal 

calibrants for MS/MS experiments.  This resulted in 6-7 peptides being selected from 
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each digest for use as internal calibrants in future MS studies.  MS/MS studies confirmed 

the identities of these peptides by matching the fragment ions for these peptides to a 

theoretical list of possible fragment ions.  As shown in preliminary work, these peptides 

could be used to internally calibrate and correct MS spectra, which could then be used for 

the analysis of PTMs.    Although this study focused on the use of nano-ESI-QTOF MS 

for the structural investigation of HSA, the same methods could also be applied to other 

proteins with relatively high molecular weights. 
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CHAPTER 9 

SUMMARY AND FUTURE WORK 

 

9.1 Summary 

 Metabolic diseases such as diabetes can affect the structure and function of serum 

proteins such as human serum albumin (HSA).  The work described by this dissertation 

included the utilization and development of new tools and techniques based on high-

performance affinity chromatography (HPAC) and multi-dimensional mass spectrometry 

to examine the effects of diabetes on the structure and function of HSA.  As shown 

through various studies, HPAC was used as a tool to see how drug-protein interactions 

were affected by glycation.  Multi-dimensional mass spectrometry was used as a 

technique to qualitatively examine the structure of HSA.   

 The first chapter provided a general introduction on the use of HPAC for 

examinating the effects of glycation on drug-protein interactions.  A brief overview of the 

glycation process was discussed, which included information on sulfonylurea drugs and 

the structure of HSA.  This overview was followed by a discussion of the preparation of 

the various types of supports that were used to examine drug-protein interactions with 

glycated HSA.  Lastly, various chromatographic approaches such as frontal analysis and 

zonal elution were described and used to illustrate how HPAC could be used as a tool to 

determine drug-binding information regarding the effect of glycation on drug-protein 

interactions.   

 Chapter 2 provided an overview of metabolite-protein interactions, which first 

included an overview of the techniques used to profile metabolite-protein interactions, 

such as in vitro, in vivo, or in silico techniques.  A discussion of various metabolite-
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protein interactions, such as those involving metabolites from hormones, fatty acids, 

drugs, and xenobiotics, was included.  This chapter also contained a summary of the 

effects of metabolic processes on the structures of various proteins, which included HSA, 

α1-acid glycoprotein, and lipoproteins.  It was also shown how the information obtained 

from profiling metabolite-protein interactions could be used in biomedical and 

pharmaceutical research, as well as in the development of tools for personalized 

medicine. 

Glycation of HSA, as occurs in diabetes, has been shown to affect the binding of 

various drugs and solutes to this protein.  Chapters 3-6 included four studies that involved 

the use of HPAC to examine the effects of glycation on the binding of three second-

generation sulfonylurea drugs (i.e., gliclazide, glibenclamide, and glipizide) and a third-

generation sulfonylurea drug (i.e., glimepiride) to HSA and HSA with various levels of in 

vitro glycation.  The results demonstrated the ability of HPAC to provide a complete 

binding profile for these sulfonylurea drugs with HSA and glycated forms of HSA.  The 

results also showed how HPAC could be used to quantitatively measure changes in 

binding affinity for the sulfonylurea drugs as the level of protein glycation was varied.  A 

0.6- to 6-fold change in affinity was observed for the interactions of the sulfonylurea 

drugs at specific sites on glycated HSA when compared to HSA.  The extent of the 

changes in affinity varied from one drug to the next.  The results indicated that glycation 

can affect the binding of sulfonylurea drugs to HSA, which in turn could alter the 

effective dose or free concentration of such a drug.  Additionally, the information 

obtained from the studies with these drugs could be used to improve the use of these 

drugs in the treatment of diabetes for personalized medicine and illustrate how complex 



395 
 

 

drug-protein interactions with other proteins can be examined by HPAC for 

pharmaceutical research. 

 The development of an on-line immunoextraction approach for examining drug-

protein interactions was discussed in Chapter 7.  The purpose of this approach was to 

simplify the extraction of HSA from serum samples and to use HPAC to study drug-

protein interactions with the extracted protein.  Several extraction methods were 

evaluated and tested by using a number of chromatographic approaches for examining 

drug-protein interactions.  Overall, the results indicated that online immunoextraction 

was a feasible technique that could be used to examine drug-protein interactions with 

extracted proteins, and could be subsequently applied to work with serum samples. 

 Finally, Chapter 8 examined the use of multidimensional mass spectrometry as a 

method to qualitatively analyze the structure of HSA.  The technique of nano-

electrospray ionization time-of-flight mass spectrometry was used to examine and 

analyze the sequence of HSA.  The results were comparable to a previous method that 

used matrix–assisted laser desorption/ionization time-of-flight mass spectrometry to 

qualitatively profile the structure of HSA.  Experiments were also conducted through the 

use of collision induced dissociation to further examine and identify the amino acid 

composition of peptides throughout the structure of HSA.  These selected peptides could 

be used as internal calibrants to correct and calibrate mass spectra to further improve the 

mass accuracy of sequence analysis experiments.  In addition, the internal calibrants 

could be used to accurately identify and locate glycation-related modifications that could 

be found throughout the structure of glycated HSA. 

 



396 
 

 

9.2 Future work 

 The work provided in this dissertation focused on the development and utilization 

of new-tools for examining the structure and function of HSA.  Several studies examined 

the use of HPAC for studying the binding of various sulfonylurea drugs to in vitro 

samples of glycated HSA.  Another study involved the development of a format that 

could be used to examine in vivo samples from patients with diabetes.  This work also 

examined the use of multidimensional mass spectrometry for analysis of the structure of 

HSA.  These tools could be used to further explore the possible applications of HPAC in 

personalized medicine, while also providing information on the effects of diabetes on the 

structure and function of HSA. 

 The use of HPAC for examining the drug-protein interactions is not only limited 

to sulfonylurea drugs and HSA, but can be expanded to other drugs and solutes that are 

capable of binding to HSA.  Drugs such as glitazones (i.e., rosiglitazone and 

pioglitazone) and meglitanides (i.e, repaglinide and nateglinide) are also used to treat 

type II diabetes [1,2].  All of these drugs are tightly bound to HSA (i.e., >98% bound).  

Therefore, similar HPAC studies could be conducted to explore the binding of these 

drugs with normal HSA and in vitro glycated samples of HSA.  In addition to examining 

the effects of glycation on HSA, the effects of other metabolic processes on drug-protein 

interactions could also be profiled.  Examples could include examination of the changes 

in the interactions between solutes and variants of α1-acid glycoprotein or the effects of 

lipoprotein oxidation on drug-protein binding [3].   

 The online-immunoextraction method could also be applied in future studies that 

use in vivo glycated HSA samples from patients with diabetes to further explore possible 
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applications in the area of personalized medicine.  The immunoextraction method could 

be used to extract samples of HSA from the serum samples for use in various 

chromatographic formats to determine drug-binding information.  The ability to use the 

antibody/protein complex as an HPAC support should allow for the capability to profile 

the binding of various sulfonylurea drugs, in which the information provided by the 

experiments would then have the potential to determine the optimum treatment plan for a 

patient with diabetes.   

 Lastly, ongoing work is being conducted with multidimensional mass 

spectrometry for the examination of glycation-related modifications on HSA.  These 

studies are utilizing the internal calibrants that were identified from the mass 

spectrometric analysis of HSA to correct and internally calibrate spectra obtained from 

experiments with both normal and glycated HSA samples.  The corrected spectra can 

then be compared to determine unique glycated peptides that would then be further 

analyzed through MS/MS methods for identification of the glycation-related 

modifications.   
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