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ABSTRACT
In this work we set out to evaluate the computational performance of several popular Monte Carlo
simulation programs, namely Cassandra, DL Monte, Music, Raspa and Towhee, in modelling gas adsorption
in crystalline materials. We focus on the reference case of CO2adsorption in IRMOF-1 at 208 K. To critically
assess their performance, we first establish some criteria which allow us to make this assessment on a
consistent basis. Specifically, the total computational time required for a program to complete a simulation
of an adsorption point, consists of the time required for equilibration plus time required to generate a
specific number of uncorrelated samples of the property of interest.Our analysis shows that across different
programs there is a wide difference in the statistical value of a single MC step, however their computational
performance is quite comparable. We further explore the use of energy grids and energy bias techniques,
as well as the efficiency of the parallel execution of the simulations. The test cases developed are made
openly available as a resource for the community, and can be used for validation and as a template for
further studies.

ARTICLE HISTORY
Received 4 May 2017
Accepted 17 July 2017

KEYWORDS
Benchmarking; grand
canonical Monte Carlo;
adsorption; computational
performance; sampling

1. Introduction

Recent advances in synthesis of novel porous materials, such as
metal–organic frameworks (MOFs), zeolitic imidazolate frame-
works (ZIFs) and polymers with intrinsic microporosity (PIMs)
have a profound impact on the way we now approach design of
technologies and applications based on these materials. Indeed,
it is not possible to test the thousands of already discovered
MOFs, ZIFs, PIMs and related materials in the context of each
potential application, while the best material for a particular
purpose may exist among those not yet synthesised, but hypo-
thetically possible structureswithin these classes.Hence the idea
of computational screening of materials, the new starting point
of process design and optimisation, which aims to identify the
best material or group of materials for a particular application
before the actual experimental effort is committed.

Broadly speaking, computational screening can be separated
into two phases. The first phase involves building a database
of possible structures, both real and hypothetical. The modular
nature of these new materials allows one to guess the structure
of not yet synthesised materials, using a systematic variation
and assembly of the building blocks through what can be best
described as molecular Lego approaches. In the second phase,
computationalmethods are used to assess the key characteristics
of the materials within the database, based on the performance
metrics associated with a particular application. Although in
principle this strategy can be employed in the context of any
application, the tunable porosity and surface area of MOFs and
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ZIFs makes them particularly interesting for adsorption appli-
cations, such as methane storage and carbon capture, and this
is what most of the recent screening studies have been focused
on. Prominent examples of this approach include studies from
Snurr and co-workers [1], Smit and co-workers [2] and Sholl
and co-workers [3]. For comprehensive reviews in the field
of molecular simulation of adsorption processes in MOFs see
Refs. [4–8].

Application of these virtual screening strategies is associated
with several challenges. Firstly, the screening algorithmsmust be
computationally efficient to be able to sieve through potentially
millions of structures under a number of conditions of interest;
secondly, the accuracy of the molecular simulation methods
crucially depends on the availability of accurate forcefields. Al-
though several groups have made substantial contributions to
the development of the parameters for several important classes
of materials [9–13], a fully comprehensive and transferrable
forcefield forMOFs, ZIFs and relatedmaterials remains elusive.
Finally, the third challenge is associatedwith the transition from
the predictions of the virtual screening to the actual processes
and applications [14,15]. At this stage a number of additional
factors, such as stability of the materials and cost, become im-
portant. This article deals with the first challenge, related to the
computational efficiency.

Unless one is interested in adsorption at very low pressures
(in other words, in the low loading, Henry’s law regime), cal-
culation of loading in a material at a specific pressure requires
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a grand canonical Monte Carlo (GCMC) simulation and its
variants, such as the configurational bias GCMC (CB-GCMC)
for flexible molecules. A recent special issue of molecular sim-
ulation reviewed several of the currently existing Monte Carlo
programs, presented by their developers [16]. It is quite clear
that different academic groups adopted different philosophies,
programming techniques, algorithms, and target problems in
the development of their computational tools. The special issue
also highlighted an important problem. In the field ofmolecular
dynamics (MD) healthy competition between several programs
and the appetite of the biological community for ever longer
trajectories and larger systems led to systematic assessment of
the computational efficiency of the programs, their propen-
sity to parallelism on different platforms [17] as well as the
development of documented case studies that can be used as
benchmarks [18].

No such effort has been undertaken in the community using
Monte Carlo programs in the context of adsorption problems.
Typically, the efficiency of the new programs is tested against
the existing in-house programs of a specific group, but the
efficiency and the accuracy of the programs fromacross different
groups has not been systematically assessed or explored. We
believe this is an important undertaking in order to establish
the best starting point and algorithms for the development of
the next generation of programs, to share best practices and
methodologies, and to establish references cases which can be
used by the developers around theworld to validate their results.

This defines the remit of the current article. Our original
idea was quite simple: to survey the existing, freely available
programs forGCMC simulations; explore how accurate they are
in reproducing reference data and how fast they are in a sense
of the computational resources required to get to the reference
data within a certain accuracy. This proved to be a challenging
task.

Firstly, it is important to explore how and why different
programs can deviate in their predictions and also the possible
extent of these deviations. Consider the adsorption of carbon
dioxide in aMOF, such as IRMOF-1 [19]whichwill be ourmain
case study as justified below. Of course for the comparison of
two programs we need to set all the parameters for the two runs
to identical values. This includes forcefield parameters, mixing
rules, distances for the potential cut-off and rules for handling
the potential beyond the cut-off distance, number of trialMonte
Carlo moves and the distribution of the weights among the
available moves, coordinates for the input crystal structure and
so on. This nevertheless leaves a substantial amount of technical
details outside of what a user of the program can control or may
be aware of. This includes conventions on the precision of the
irrational numbers and constants, such as Boltzmann constant
and π ; internal procedures for the control of a trial move accep-
tance ratio (which may or may not be automatically adjusted to
be at the optimum value). Although two programs may use the
Ewald summation to calculate the interactions involving partial
charges, the way parameters are set for this calculationmay vary
between the programs (i.e. there is some automatic adjustment
depending on the structure or the program uses some fixed,
pre-set values based on the experience with similar systems).
The actual access and control of these aspects of theMonteCarlo
simulation naturally depends on the specific program. From the

end user point of view, the understanding of these parameters
and methodology space, of what can and cannot be controlled,
heavily depends on high quality documentation associated with
the program and a decent collection of case studies illustrating
the role of different parameters.

Secondly, performance of a program depends on a substan-
tial number of factors that make consistent comparison quite
difficult. This include using (or not) pre-calculated potential
grids or maps as oppose to the on-the-fly calculation of all
interactions; using (or not) some additional biasing techniques;
using (or not) cell and neighbour lists; methods for calculation
of electrostatic interactions (Ewald and its variants vs. cut-
off based methods) and, of course, compilers, algorithms, in
other words aspects of the program that we actually want to
assess.

Finally, one has to define some meaningful criteria for two
simulations performed by two different programs to converge
to a result of the same statistical uncertainty. In general, this
analysis involves two steps. Firstly, it is important to establish
the duration of the equilibration stage of the simulations, within
which there is a systematic drift of the running average of
the property of interest. Secondly, within the sampling stage,
a sufficient number of uncorrelated samples of the property
of interest should be accumulated. Here, the main property of
interest is the amount of CO2adsorbed.

The time required for a simulation to equilibrate and the rate
at which uncorrelated data are produced is in fact a function
of the program, and this will be the basis of our assessment.
There is a substantial amount of research on convergence of the
Monte Carlo methods [20]. However, the idea to explore sta-
tistically independent samples of the system properties, surpris-
ingly, is still not a commonpractice in the adsorption simulation
community.

1.1. Grand canonical Monte Carlo simulations

Theproblemof interest here is the adsorptionof smallmolecules
(CO2, methane, hydrogen) in crystalline porous materials,
prompted by the recent surge of interest in computational
screening approaches to carbon capture, methane storage and
other applications. Within the scope of this study both the
adsorbatemolecules and the porousmaterial are treated as rigid
structures. The volume, V , and temperature, T , of the system
are fixed, and the specified value of the chemical potential, μ,
establishes thermodynamic equilibriumbetween the systemand
the bulk reservoir, serving as a source and sink of adsorbate
molecules. From the statistical–mechanical point of view, the
system corresponds to the grand-canonical ensemble (μVT),
for which Metropolis Monte Carlo method serves as a conven-
tional simulation technique of choice.

Within this method, configurations of the system are gener-
ated via a set of standard trial moves; translation, rotation (in
case of rigid molecular species), insertion and deletion, with the
following acceptance probability applied to ensure the Boltz-
mann distribution of the generated states:

(a) Translation: PACC(S → S′)

PACC(S → S′) = min
{
1, exp

(−β�U
)}

(1)
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(b) Rotation: PACC(S → S′)

PACC(S → S′) = min
{
1, exp

(−β�U
) sin θS

sin θS′

}
(2)

(c) Insertion: PACC(Na → Na + 1)

PACC(Na → Na + 1) = min
{
1,

βfV
Na + 1

exp
(−β�U

)}

(3)
(d) Deletion: PACC(Na → Na − 1)

PACC(Na → Na − 1) = min
{
1,

Na

βfV
exp (−β�U)

}

(4)

whereU represents the potential energy,Na, andV are the num-
ber of molecules and volume respectively, β is the reciprocal
thermodynamic temperature, 1/kBT, with kB being the Boltzmann
constant; θ is an Euler angle of the rigid body rotation as defined
in Ref. [21], f is the fugacity of the adsorbing species, which is
related to the chemical potential as:

f = qrot
β�3 exp

(
βμ

)
(5)

where qrot is the rotational partition function for a single rigid
molecule, equal to 1 for a single particle molecule, and � is the
thermal de Broglie wavelength:

� =
(

βh2

2πm

) 1
2

(6)

where h is Planck’s constant andm is the molecule mass [21].

2. Methodology

2.1. Case study: CO2adsorption in IRMOF-1

As has been already discussed in the introduction, computa-
tional screening and optimisation ofMOFs and ZIFs for carbon
capture applications has been a rapidly developing area of re-
search, driven by both the new opportunities emerging in the
material science and the societal importance of the problem. For
this reason, the adsorption of CO2in IRMOF-1 was selected as
the case study.

IRMOF-1 is one of the earliest reported MOFs, with a sub-
stantial amount of experimental and simulation data accumu-
lated on its structural and adsorptive properties [22–24].

The study of Walton et al. [24] provides one of the first
examples of both experimental and simulation studies of CO2
adsorption in a MOF (specifically, IRMOF-1). Six adsorption
isotherms were reported at 195, 208, 218, 233, 273 and 298K.
Two isotherms at lower temperatures (195 and 208K) feature
a sharp transition of the adsorbed density associated with the
capillary condensation of CO2 within the pores of IRMOF-
1. The authors argued that it was the Coulombic term of the
fluid–fluid interactions responsible for the shape of the
isotherms.

Following this original study, CO2 adsorption in IRMOF-1
at 208K has been used as a tutorial case study in Sarkisov’s

group for incoming research students and staff. The location
of the transition, as well as the other features of the isotherm,
proved to be sensitive to the parameters of the model, cut-off
distances, and interaction terms included. For example, in the
original study by Walton et al. [24] the Coulombic interactions
between CO2 and IRMOF-1 were not considered, and yet, if
included, they shift the isotherm toward lower pressure values.

In fact, one of the motivations for this study was the sig-
nificant amount of effort and attention to detail required for
different programs to generate exactly the same result. This
highlighted the importance of the consistency between the pa-
rameters and methods used, and prompted us to produce and
document this comparison for other available programs.Hence,
in the case study we will focus specifically on CO2adsorption at
208K.

2.2. Programs under consideration

The special issue of the Molecular Simulation [16], in partic-
ular the review by Dubbeldam et al. [25] and our own experi-
ence helped us to identify five commonly used, free programs
for molecular simulation of adsorption. All programs are dis-
tributed under a GNU GPL license, except DL Monte which is
distributed under a custom academic license which enables it
to be used freely for academic and other non-commercial work.
The license for DL Monte does not allow distribution of the
source code to third parties. This may lead to obstacles in the
future in reproducing scientific data which requires consistency
in both the simulation setups as well as in the program used to
execute these setups.

Theprograms studied and their relevent capabilities are sum-
marised in Table 1, while for the complete description of all
capabilities within each program we refer the reader to the
respective original publications. It should be emphasised that
at no point have we made any alterations to the source code of
the programs under study. We have downloaded each program
as it is made available to users and treated it strictly as a black
box.

All simulations were ran on identical hardware, using sin-
gle cores of Intel Xeon E5 2360 v3 nodes, running Scientific
Linux version 7.2. Each program was compiled using version
16.0 of the Intel compilers with the compilation flags ‘-O3
-xcore-AVX2 -ip -ipo’. This combination of software
and hardware is typical of most modern high performance CPU
based supercomputers.

2.2.1. Energy grids and energy-bias GCMC
The calculation of pairwise energies between atoms is by far
the single most time consuming step in the process of GCMC

Table 1. Summary of the GCMC programs studied.

Program Version License Citation Energy grid Parallel capability

Cassandra 1.2 GPL v3 Shah and Maginn [26] × OpenMP
DL Monte 2.0.1 Custom Purton et al. [27] × MPI
Music 4.0 GPL v2 Gupta et al. [28] � ×
Raspa 2.0 GPL v3 Dubbeldam et al. [29] � ×
Towhee 7.1.0 GPL v2 Martin [30] × MPI
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simulation. For a single fluid atom i the contribution to potential
energy can be expressed as:

U(ri) =
∑
j∈fluid

U(rij) +
∑
j∈solid

U(rij) (7)

where U represents the potential energy, r the position of an
atom, i and j are indices of the atoms, and the two summations
are performed over fluid atoms and solid atoms respectively.
Since the porous material considered in this study is treated as
a rigid structure, it is possible to precalculate and store solid–
fluid interactions. As described elsewhere [31], the simulation
volume can be divided into a regular grid and for each atom type
in the adsorbate the corresponding potential grid is calculated
by placing the probe atom onto each grid point and calculating
its interaction with the solid framework. In case of Coulombic
interactions the probe placed in the grid is a single +1 charge.
Although it requires a set of additional ‘upfront’ calculations,
this procedure is needed only once for all pressure points and
temperatures. The potential energy contribution of a single fluid
atom can then be given as:

U(ri) ≈
∑
j∈fluid

U(rij) + Ugrid(ri) (8)

where the summation is now only performed over other fluid
atoms, while the solid–fluid interaction is approximated by
interpolating within the potential grid, alleviating the need for
on-the-fly calculations of the solid–fluid interactions. We will
refer to this element of the simulation setup as an energy grid,
however it is also known as a potential map [28]. Of the pro-
grams examined in this work, only Raspa andMusic are capable
of using this technique.

Using energy grids also opens a possibility for the improve-
ment of sampling efficiency via so-called energy-biasing tech-
niques [32]. Here it is recognised that the solid structure of the
framework (zeolite or MOF) may occupy a substantial portion
of the simulation cell and choosing a position for the potential
molecule insertion at random will likely lead to a large number
of rejections (due to the positions overlapping with the struc-
ture of the material). Furthermore, certain positions within the
available porous space will be preferred for the insertion (at an
optimal distance from the atoms of the framework), compared
to other locations, such as in the center of a large cavity where
the interactionswith the framework structure can be quiteweak.
Hence the idea of the energy-biasing method: bias selection of
the trial locations for the molecule insertion towards regions
of favourable interaction with the framework structure. For
this the location of the insertion is selected from w cubelets
according to a weight assigned to each cubelet. Specifically,
this weight is based on the energy of interaction Ugrid(rz) of
the probe atom placed in the center of cubelet z within the
framework:

ηz = exp
(−βUgrid

(
rz

))
∑

y=1,w exp
(−βUgrid

(
ry

)) (9)

where the sum in the denominator is over all grids. Thismethod
requires a single energy grid for a probe atom of choice and

naturally, if the program uses energy grids in general, it should
also invoke energy biasing as described above since it does not
require any additional calculation. In particular, this approach
is used by Music [28].

2.2.2. Parallelism
Two of the programs investigated have the ability to accelerate
simulations through using multiple CPU cores. Cassandra uses
OpenMP to distribute the calculation of contributions to the
total energy, both Lennard-Jones and electrostatics. For the
Lennard-Jones contribution within the summation of Equation
(7), it is possible to assign cores to different j indices and cal-
culate each contribution simultaneously. For electrostatics an
Ewald summation is used, and it is possible to calculate different
k-vectors independently across different cores. OpenMP is a
shared memory protocol, which limits the extent to which the
problemcanbe split to thenumberof cores on a single node, typ-
ically around 12–24. DLMonte uses a similar strategy, however
it parallelises calculation of the electrostatic interactions only
and uses MPI, rather than OpenMP. Towhee also uses MPI, but
insteadof parallel executionof a single simulation, it runs several
parallel simulations for each point on the adsorption isotherm
in a so-called jobfarm or task-based parallelism fashion. MPI is
a distributed memory paradigm, and so there is no upper limit
on the number of cores which can be included, although there
will be inevitably diminishing returns in terms of computational
efficiency.

2.3. Forcefield and simulation setup details

For the selected systemof CO2in IRMOF-1 at 208Kwe consider
three different forcefield setups. In the first setup only Lennard-
Jones interactions between CO2 molecules and between CO2
and IRMOF-1 are considered. In the second setup, we further
include Coulombic interactions between the molecules of CO2.
The final setup has all interaction terms considered, including
the Coulombic CO2–IRMOF-1 contribution. This three-level
approach allows us to revisit the issue of the role of the different
terms in the adsorption behavior of CO2 in IRMOF-1 and
individually benchmark the computational cost associated with
the different terms of the interaction energy.

Pressures of 5, 10, 20, 30, 40, 50, 60, and 70 kPa aremodelled,
with the Peng–Robinson equation of state [33] used to calculate
the fugacity and chemical potential of the fluid phase across all
programs. The solid framework consists of 2 × 2 × 2 replicas
of the crystal unit cell for IRMOF-1, resulting in 3392 atoms
of the framework, and up to 1600 CO2molecules at the highest
loadings.HereweuseDREIDING[34] parameters for the atoms
of IRMOF-1, charges for IRMOF-1 fromYazaydın et al. [35] and
TraPPE [36] parameters for CO2.

While the exact implementation of the MCmoves is beyond
our control, we have attempted to make the simulation setups
as consistent as possible across all programs. All analysis in
this work is based on the number of MC steps. Raspa instead
defines simulation length as a number of cycles, where a cycle
is min (20,N) attempted MC moves, where N is the number
of molecules in the system. Throughout this work we have
translated cycles to steps through knowing the number of ad-
sorbed molecules. Each MC step has an equal probability of
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performing an insertion, deletion, rotation or translationmove.
All the parameters and the details of the simulation setups are
provided as case studies in Supplementary Material.

3. Defining computational performance

For anymeaningful comparison of the performance of different
simulation programs, we first need to precisely define how it
is measured. In benchmarks of MD simulations it is typical to
express performance as a measure of the number of time steps
that a program can complete in a given time [37]. Two different
programs using the time step of the same size and simulate
the same number of time steps should in principle explore the
same volume of the phase space and arrive at the same statistical
averages of the properties of interest. From this point of view,
the number of MD steps performed per unit time can be seen
as a direct measurement of data generated per unit time.

The situation is different in Monte Carlo simulations, where
each step represents an attempted change in the system which
may or may not be accepted. Equations (1)–(4) provide the
foundation for the most basic Metropolis algorithm, however
different programsmay havemore advanced acceptance criteria
which aim to increase the sampling efficiency through various
type of biasing. Although, more complex biasing moves may
come with an additional computational cost, the resulting sim-
ulation scheme may be much more efficient in sampling the
phase space.

Therefore depending on the exact implementation of MC
moves within a program a fixed number of steps may traverse
a differing volume of the phase space. This means that a direct
comparison of the rate with which an MC program performs
a fixed number of steps, similarly to MD simulations, is an
incomplete metric of performance. Instead, we must measure
both the rate with which steps are performed as well as the rate
with which these steps traverse the phase space to arrive to the
expected statistical averages. As we will further argue later in
this section, it is a product of these two rates which quantifies
the performance of the program.

EachGCMCsimulation consists of two stages. In the first, so-
called equilibration stage, the properties of the systemdrift from
the initial conditions until they stabilise around some average
values. Once the system reached this point, we can commence
the second, sampling stage, where statistical averages of the
properties of interest are accumulated. To assess computational
performance of the program we need to measure how long it
takes for the program to reach the sampling stage and then apply
our definition of the performance of a Monte Carlo simulation
in terms of data generated per MC step in the second stage of
the simulation.

In the following three sections we will describe our method-
ology formeasuring computational performance, fromdefining
the equilibration and sampling stages of a simulation, defining
the rate at which sampling occurs and the method by which
we timed these processes. We have endeavoured to make this
analysis as automated as possible, both to make the results as
impartial as possible and to ensure that this analysis can be
reproduced independently by other researchers. All preparation
of inputs and implementation of the analysis was achieved using
a combination of the Python packages datreant [38], matplotlib

Figure 1. (Colour online) Illustration of the procedure for the location of the
equilibration stage in an MC simulation. Data taken from a simulation at 70 kPa,
forcefield setup 1, performed using Music. The blue line represents the rolling
mean of the number of adsorbedmolecules (over 20,000 steps) as a function of the
number of MC steps. Instantaneous values of the number of adsorbed molecules
are not shown for clarity. The vertical dotted line indicates the final half of the
data-set, the horizontal black dashed line represents the value of the mean from
this region while the red dashed line underneath corresponds to two standard
deviations below the mean. The red dot delineates the equilibration and sampling
stages, according to the procedure described in the text.

[39], MDAnalysis [40,41], numpy [42] and pandas [43]. Ex-
amples of the analysis performed are also made available in
Supplementary Material.

3.1. Equilibration stage

In this section we explain how we determine the duration of
the equilibration stage in a GCMC simulation. Figure 1 shows
a typical evolution of the number of adsorbed molecules in the
system as a function of the number of MC steps. Initially the
system is empty, and as the simulation progresses the number
of molecules rapidly increases to about 135 molecules. For the
remaining part of the run, the instantaneous values of the num-
ber of molecules in the system fluctuate around some average
value. The visual inspection of Figure 1 gives us a fairly good
understanding of the boundary between the equilibration and
sampling stages. In fact, in the MC community such a visual
inspection is still commonly used to identify the number of
steps required for equilibration. However, we are interested in
having an automated procedure to identify this boundary.

This procedure works as follows. We first run a very long
simulation, typically around 250×106 MC steps. The results of
the second half of the long simulation are used to estimate the
mean and standard deviation of the number of molecules at this
pressure. At this stage it is important to emphasise that calcu-
lating the standard deviation in this fashion significantly un-
derestimates the true value, as there will be correlation between
data points, as we will discuss later in the article. However, for
the purposes of the algorithm that simply intends to locate the
equilibration stage this crude approach suffices.As an additional
test to ensure that the sampling stage is reached, a straight line
of best fit is constructed through the data in the second half of
the simulation and the difference between the starting point of
this line and final point of this line must be less than 5% of the
mean value.

We then consider a rolling mean average of the number of
molecules in the system using a window width of 20,000 MC
steps. Again, this number may seem rather arbitrary and the
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Figure 2. (Colour online) Illustration of the fitting of the ACF to an exponential
decay, using the same data shown in Figure 1. The blue section indicates the
portion used for the fitting, while the red section indicates the discarded portion of
the function. The truncation point is shown as black dashed lines. Black dotted line
indicates the function estimated by the fitting procedure.

statistical quality of this mean for different programs will be
different, but extensive testing of the approach on a number
of systems shows that it works well in practice. We then move
this rolling average backwards from the halfway point until it
falls below two standard deviations from the estimated mean
(Figure 1). According to our protocol, this point delineates
equilibrium and sampling stages. All MC steps before this point
belong to the equilibration stage, while all subsequent points are
considered to be within the sampling stage.

This process gives us, for each simulation condition in each
program, ameasure of thenumber ofMCsteps required to reach
the sampling stage. We acknowledge that the criteria for defin-
ing the two stages are fairly arbitrary and alternative algorithms
could have been used [44]. However it provided consistent and
sensible results across the data we examined. Moreover it could
be used in a fully automised fashion, removing any human
interaction in interpreting the results.

3.2. Sampling stage

As has been discussed, comparison of the computational perfor-
mance of GCMC programs cannot be based on a fixed number
ofMC steps, since it will produce averages of different statistical
quality and uncertainty. Instead we base this analysis on the
number of steps required for a program to generate a certain
number of independent, uncorrelated configurations.

For this we consider the normalised autocorrelation function
(ACF) of the number of molecules adsorbed, C(n), shown in
Equation (10).

C(n) = 〈Na(n0)Na(n0 + n)〉 − 〈Na〉2
〈N2

a 〉 − 〈Na〉2 (10)

where angular brackets denote an average over the ensemble, n
is the number of the MC steps and n0 denotes the starting step.

The ACF can then be fitted using a least squares regression
to an exponential decay with a constant τ , Equation (11). As
the ACF is inherently noisy for low values of C(n), we identify
the first point at which it falls below a value of 0.1 and only the
initial portion of the function is used for fitting. An example of
this procedure is illustrated in Figure 2.

Figure 3. (Colour online) Example of the BSE approach applied to the same data
shown in Figures 1 and 2.

C(n) ≈ exp
(
−n

τ

)
(11)

This then allows us to define the so-called statistical ineffi-
ciency, g [45,46]:

g = 1 + 2τ (12)

The value g is a measure of the number of MC steps required
to move to a statistically novel point in the simulation, with any
measurement inbetween being correlated and therefore yielding
no new information. If each step in the data were completely
decorrelated from the previous step, τ would be zero yielding
g = 1, ie that each step is statistically novel. With the increasing
correlation between subsequent data points, τ will also increase,
meaning that onemust look further ahead in the data for a novel,
uncorrelated sample.

Another approach to estimating autocorrelation in data are
the block standard error (BSE)method [47,48]. In this approach
the simulation trajectory of n MC steps is split into M blocks
of m steps, and the standard deviation of the block averages is
calculated (σm). This is repeated many times to measure BSE
(B) as a function ofm.

B(m) = σm√
M

(13)

For small values of m the standard error will be underesti-
mated due to significant correlation between the blocks. Asm is
increased to larger values than thememory in the data series (τ ),
the estimate of B will converge to the true value of the standard
error. An example of this function is shown in Figure 3.

Through comparing Figures 2 and 3, which operate on the
same data, we can see that both approaches yield approximately
the same value for g of around 1×106.However, we chose not to
use the BSE approach in our analysis for the following reasons.
In principle, for the BSE as a function of m, gradual increase
in B is to be followed by a plateau region. At higher values
of m a significant scattering in B is observed due to the small
number of blocks available. This makes it difficult, especially
in a fully automated procedure, to accurately locate the start of
the plateau region. We also observe that in the systems under
consideration much longer simulations are required to arrive
at the same estimate of τ compared to the direct calculation
of the ACF. Finally, one of the original arguments advocating
the use of BSE was the high computational cost associated
with directly calculating the ACF [47]. However, through the
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Wiener–Khinchin theorem [49] it is possible to calculate this
function in amuch faster way using the Fourier transformations
and on a modern desktop workstation it is now possible to
do this in a negligible amount of time. Overall, we find the
approach based on the ACF analysis easy to implement in a
fully automatic fashion, and this convenience provides the final
decisive argument in its favour.

3.3. Standard simulation length

Building on the ideas presented in the previous sections, we can
now define standard simulation length of a program:

n0 = neq + 20g (14)

where neq is the number of MC steps required for equilibration.
Both neq and g depend on the GCMC program and conditions
of the system. We arbitrarily adopt 20 as a factor for how
many statistically independent samples an MC program should
generate [48]. Other values could be used to achieve a different
level of certainty in the result, however this would affect the
timing of all programs equally. This definition of n0 makes it
possible to measure how long it takes for an MC program to
reach a result with a consistent statistical quality between the
programs, which in turn allows us to compareMC programs on
the same basis.

For the reasons advocated throughout the article, we delib-
erately avoid any discussion or presenting any results on the
acceptance ratio of the Monte Carlo moves. This property is
specific for each program implementation and bears no infor-
mation on the actual sampling efficiency of the simulation [50].

3.4. Benchmarking of the programs

With the properties introduced in the previous sections, we
can now describe the rules and formulae for the benchmarking
tests. In general we split benchmarking into measuring the time
required for the program to complete the equilibration stage
and the time required to generate a certain number (20 as a
convention here) of uncorrelated samples of the properties of
interest. The time required for equilibration is the CPU time,
teq, needed by a program to perform neq steps, as defined in the
previous sections. Furthermore, within the sampling stage we
can define the average CPU time per MC step:

t̄step = tntotal − teq
ntotal − neq

(15)

In this case, the time required to generate a single uncorre-
lated sample of the property of interest is:

tg = g × t̄step (16)

And therefore the total CPU time associated to perform a
standard length simulation for a given point on the adsorption
isotherm is:

tn0 = teq + 20tg (17)

All these benchmarks depend on the conditions within the
system, and particularly on the adsorbed density. For these

Figure 4. (Colour online) Adsorption isotherms for CO2in IRMOF-1 at 208 K,
simulation data taken from the Raspa results. Solid black: experimental isotherm
[24], Dash dotted red: Forcefield setup 1, Dashed blue: Forcefield setup 2 and
Dotted green: Forcefield setup 3.

reasons the benchmarking tests are performed individually for
eachpoint on the adsorption isotherm for eachprogram for each
setup of the forcefields, and repeated three times to exclude any
possibility of transient abnormal performance variation of the
CPU. It is also important to note that while for the estimation
of g and other aspects of the protocol, the data were saved very
frequently, in the benchmarking tests the data were saved at
much lower frequencies (but consistent among the programs)
to avoid heavy computational overheads of the I/O operations.

Two programs also have the option of using energy grids.
Additional benchmarking tests were performed for these two
programs. In these tests we do not account for the time required
to generate the grids, as in a long term where they are reused
many times for many simulations, this additional penalty is not
important anymore.

4. Results

4.1. Adsorption isotherms

Table 2 provides a complete summary of adsorption data for all
programs for each pressure point and forcefield setup consid-
ered. Given a small number of samples, all five programs show a
high degree of consistency with each other across all conditions.
This a very reassuring result as it provides an independent
validation for the existing programs and builds confidence in
their application. This also provides a valuable set of reference
data for further development and validation of new programs.

Adsorption isotherms for different forcefield setups are plot-
ted in Figure 4 along with the original experimental result from
Walton et al. [24] for completeness. Here we use the results
from Raspa, as on the scale of the graph the isotherms for
all five programs would be essentially indistinguishable. The
most complete forcefield (setup 3) includes both fluid–fluid
and solid–fluid electrostatic interaction terms, in addition to
the ubiquitous default Lennard-Jones interaction between all
species. This isotherm features a sharp step in the adsorbed
amount, occurring between 10 and 20 kPa, which corresponds
to the capillary condensation of CO2in the pores. In the absence
of the solid–fluid electrostatic term (setup 2) the isothermmain-
tains its shape but is shifted by 10 kPa to the right of the graph.
The experimental isotherm also features a sharp transition,
but compared to the result from the forcefield setup 2 it is
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Figure 5. (Colour online) Comparison of the number of steps to reach equilibrium (neq), statistical inefficiency (g) and standard simulation length (n0) for all programs.
Lower values indicate fewer steps required to equilibrate and sample. Circles: Setup 1; Diamonds: Setup 2; Triangles: Setup 3. Unfilled markers indicate the use of energy
biasing through energy grids. Results for two pressures are shown, with the full results given in Supplementary Material.

further shifted to higher pressures. The fluid–fluid electrostatic
interactions are indeed crucial for the capillary condensation
step and in the absence of this term (setup 1), the resulting
adsorption isotherm exhibits gradual increase in the adsorbed
amount without any transitions. From the confined phase be-
haviour perspective, this is likely because the quasi-CO2fluid
(CO2molecules without electrostatic interactions) is either very
close or above the confined critical point at 208K.

4.2. Analysis of neq and g

The top two panels of Figure 5 show the behaviour of neq
and g for different programs as a function of pressure across
all forcefield setups. For denser systems at higher pressures
it takes a larger number of steps to equilibrate and also to
accumulate sufficient number of uncorrelated samples. This is
not surprising, as in this regime acceptance ratios for all types
of MC moves tend to drop and the system remains in the same
configuration for longer periods of sampling. It is also clear
from Figure 5 that the addition of electrostatics in general have
a significant impact on the sampling metrics of the programs.

It is interesting to note that for Cassandra and DL Monte at
high pressure the order in the trend for g values of setups 2 and
3 is reversed, however the values are very close to each other
(the difference is comparable to the size of the symbol). Given
some uncertainty of the ACF fitting procedure (Equation (11)),
we believe this is most likely the source of this effect.

The standard simulation length, n0, is summarised for all
programs in the bottom panel of Figure 5. From this figure it be-
comes apparent that Raspa and Towhee both require relatively
fewer MC steps to produce the required amount of data. Both

from Figure 5 and the analysis of statistical inefficiency g , it is
clear that different programs require different numberof steps to
produce the comparable amount of useful data. This highlights
the importance of performing a proper statistical analysis of
the data, based for example on ACFs as is done here, to define
the characteristic correlations within a simulation. From this
perspective, reporting simulation length in terms of the total
number ofMC steps is ineffective andmisleading, as this is not a
transferablemetric. Instead, amuch bettermetric is themultiple
of the statistical inefficiency (g) of the property of interest, for
example 20 g as in this study.

We also note a clear relationship across all programs between
neq and g especially at higher pressures. For example in Figure 5
theprogramswith equilibration lengthof around10MMCsteps
also have a similar g length, while the programs with shorter
equilibration lengths also perform a statistical decorrelation
faster. This prompts us to speculate that the sampling rate in
MC steps of a program can be roughly assessed from neq alone.

4.3. Program timing

Now that we have defined the required number of MC steps to
perform equivalent simulations, we can proceed to measuring
the time this will take to calculate, this is shown in Figure 6.
Immediately apparent is that simulations at higher loadings take
longer to complete. This is not surprising as at higher loadings
larger number of intermolecular interactionsmust be calculated
with each MC move.

The time to produce samplingMC steps is shown in Figure 6
and from this we see again a large difference between programs
to performa seemingly similar task. This timehowever the order
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Figure 6. (Colour online) Top panel: time required to reach equilibrium, teq . Middle panel: time required to perform 1M sampling steps. Bottom panel: time required
to produce g sampling steps. Legend as in Figure 5, unfilled markers indicate the use of energy grids. Results for two pressures are shown, with the full results given in
Supplementary Material.

Table 2. Adsorption isotherm data for each program, reported as molecules per unit cell together with the standard error (σ/√
n, where σ is the standard deviation and n

the sample size). All results were generated using data from a standard length simulation (n0).

Pressure Music Raspa

(kPa) Cassandra DL Monte with grid with grid Towhee

Setup 1 (Only LJ interactions)
5 3.96± 0.16 4.49± 0.18 4.18± 0.11 4.10± 0.18 3.84± 0.14 3.77± 0.15 4.21± 0.20
10 8.44± 0.23 9.04± 0.32 8.63± 0.29 8.37± 0.25 8.43± 0.16 8.44± 0.16 9.06± 0.28
20 18.49± 0.36 19.06± 0.55 17.93± 0.37 18.82± 0.33 18.51± 0.45 18.54± 0.46 19.35± 0.32
30 31.84± 0.60 31.85± 0.61 30.54± 0.65 31.09± 0.53 30.80± 0.55 30.82± 0.55 31.09± 0.49
40 46.74± 0.82 47.21± 0.89 49.10± 0.76 49.09± 0.61 48.88± 0.80 49.28± 0.84 48.87± 0.62
50 81.84± 1.05 80.76± 1.30 78.41± 1.05 80.60± 1.18 81.51± 1.17 82.46± 1.08 86.76± 1.15
60 115.54± 0.94 118.33± 0.83 115.42± 1.21 117.91± 1.30 116.56± 0.86 117.19± 0.77 120.41± 0.94
70 132.96± 0.78 135.88± 0.88 132.38± 0.71 133.92± 0.62 133.03± 0.70 133.26± 0.65 135.81± 0.75
Setup 2 (As Setup 1 with fluid–fluid electrostatics)
5 4.47± 0.12 4.24± 0.18 4.26± 0.17 4.30± 0.11 4.29± 0.14 4.26± 0.14 4.47± 0.23
10 9.86± 0.26 9.45± 0.24 8.86± 0.26 9.12± 0.28 8.64± 0.23 8.66± 0.23 9.65± 0.33
20 26.77± 0.64 27.32± 0.70 25.33± 0.58 25.60± 0.57 26.48± 0.63 26.74± 0.65 26.47± 0.67
30 179.99± 0.40 178.37± 0.32 180.93± 0.44 178.74± 0.31 178.82± 0.47 179.15± 0.49 179.88± 0.52
40 185.79± 0.36 186.86± 0.32 185.28± 0.30 185.91± 0.25 185.35± 0.44 185.60± 0.40 185.98± 0.33
50 189.43± 0.27 190.19± 0.48 189.24± 0.19 190.90± 0.33 189.56± 0.36 189.69± 0.34 189.74± 0.36
60 192.29± 0.37 192.84± 0.31 192.89± 0.40 193.25± 0.35 192.28± 0.37 192.40± 0.35 192.51± 0.25
70 194.34± 0.37 194.62± 0.40 194.66± 0.34 195.03± 0.28 194.78± 0.38 194.76± 0.39 195.29± 0.32
Setup 3 (As Setup 2 with solid–fluid electrostatics)
5 7.69± 0.18 7.21± 0.23 7.81± 0.16 8.07± 0.20 7.33± 0.27 7.37± 0.26 8.11± 0.22
10 16.84± 0.42 15.91± 0.28 15.05± 0.27 16.71± 0.29 16.79± 0.30 16.74± 0.31 16.72± 0.36
20 167.04± 0.70 167.12± 0.65 166.89± 0.63 167.54± 0.82 168.86± 0.69 168.98± 0.66 168.82± 0.71
30 182.73± 0.39 183.19± 0.31 183.11± 0.46 183.74± 0.46 182.96± 0.41 183.14± 0.40 185.19± 0.47
40 189.76± 0.43 189.98± 0.43 189.13± 0.30 189.43± 0.36 189.41± 0.30 189.67± 0.28 189.44± 0.52
50 193.21± 0.28 193.59± 0.30 193.11± 0.41 193.51± 0.29 193.84± 0.35 194.10± 0.28 193.04± 0.28
60 195.72± 0.30 196.59± 0.29 196.43± 0.38 196.25± 0.33 196.33± 0.39 196.52± 0.39 195.62± 0.35
70 198.53± 0.35 199.86± 0.42 198.37± 0.36 198.12± 0.30 198.71± 0.42 198.80± 0.41 198.70± 0.32

of programs is reversed compared to Figure 5, which clearly in-
dicates that whilst programs such as Raspa and Towhee are able
to produce more data with a fixed number of steps, it also takes

longer to calculate such steps. Conversely we can see that the
two programs with the longest decorrelation times, Music and
DLMonte, are also the two fastest programs to complete a fixed
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Figure 7. (Colour online) The total time required to run an entire isotherm of
eight pressure points using standard simulation length. Legend as in Figure 5, with
unfilled markers showing the results for simulations using energy grids.

number of sampling steps. Clearly there is a difference between
the various programs in the definition of what constitutes a
single MC step, as without any biasing neq should be identical
between programs as it relies on random insertions. This again
underlines the importance of the steps to decorrelation (g)
as previously measured, by naively benchmarking the time to
perform a fixed number of MC steps we might arrive at the
wrong conclusion.

5. Final benchmarks

The total time required toobtain a complete adsorption isotherm
is presented in Figure 7. We note that simulations take much
longer than what would typically be expected from our expe-
rience, particularly for setup 3 that includes a complete set of
electrostatic interactions. Overall the combination of sampling
rate and CPU time per step has brought the programs remark-
ably close together compared to the differences seen in Figures
5 and 6. For example the relatively high computational cost per
step (t̄step) in Raspa has been balanced by the lower value of g
which gives each MC step performed a higher statistical value.
Between the programs, DL Monte, Music and Raspa (when
using an energy grid) all have comparable performance, with
Cassandra and Towhee performing slower.

5.1. Effect of using energy grids on the computational
performance

Based on the results shown in Figure 7 it is clear that the use
of energy grids provides a significant performance boost in all
cases. Calculating the required energy grids, two for Lennard-
Jones interactions and one for the electrostatic interactions,
takes 3.6 and 1.6 h in Raspa and Music respectively, which is
an insignificant amount of time when compared to the total
time of even a single simulation.

Overall Raspa simulations run approximately 1.6 times faster
when using energy grids across all forcefield setups. Music on
the other hand is about 4.0, 2.0 and 2.4 times faster when using
energy grids in forcefield setups 1, 2 and 3 respectively.

6. Computational performance from parallel
execution

As has previously been described, two of the programs investi-
gated can usemultiple cores for parallel execution.Whilst using
additional cores will almost always decrease the time needed to
perform a simulation, it is important to consider how efficiently
additional computational resources are being used. The strong
scaling efficiency, η, of a program running in parallel is defined
as [51]:

η
(
c
) = ideal run time

actual run time

=
trun(1)/c

trun(c)

(18)

where c is the number of cores and trun the runtime of a program
as a function of the number of computer cores used.

As an alternative to running a single simulation inparallel, we
can consider running different portions of the total number of
MC steps of a long run using different instances of a program. In
the context of adsorption simulation using GCMCmethods, we
also need to be aware that in the systemwhich is always initiated
from an empty unit cell, a certain portion of a single run will
be spent on the equilibration stage. For example a simulation
of 106 equilibration steps and 107 sampling steps could be split
into two simulations, consisting of 106 equilibration steps and
5×106 sampling steps each. As long as the smaller parallel runs
and one long run produce the same number of uncorrelated
samples, these two modes of execution are equivalent and this
approach is a common practice in the MD community [52]. In
the previous example of splitting a long run into two runs, this
doubles the number of steps and computational effort spent on
equilibration.

This is implemented in Towhee, however this can also be
done outside of the program by simply setting up and run-
ning multiple simulations as independent tasks. Mathemati-
cally, assuming trun is simply proportional to the number of
MC steps, the efficiency of these parallel tasks can be estimated
as

η(c) =
trun(1)/c

trun(c)

≈
(
neq + nsamp

)
/c

neq + nsamp/c
=

1 + nsamp
neq

c + nsamp
neq

(19)

where neq refers to the number of equilibration steps, and nsamp
the number of sampling steps. The efficiency at a given number
of cores can be seen to rely on the ratio of sampling steps to
equilibration steps, with relatively longer equilibration periods
leading to less efficient usage of parallel cores.

Splitting single simulations into separate tasks has previously
been dismissed due to the long equilibration times [27]. Our
previous results however show that typically neq and g are of the
same order of magnitude, therefore long equilibration stages
simply indicate that long sampling stages are also required.
In these circumstances, task based parallelism is a valid route
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Figure 8. (Colour online) Comparison of the efficiency of parallel computation in
different programs, measured for forcefield Setup 3 at 70 kPa. Task based efficiency
(as defined in Equation (19)) is shown in solid black for a nsamp/neq ratio of 20.
Cassandra: red dashed line; DL Monte: blue dotted line; Towhee: orange dash-
dotted line.

to accelerate simulations. Based on our previously discussed
observations and our defined standard simulation length (n0),
we have used a nsamp/neq ratio of 20 to estimate the efficiency of
task based parallelism.

From Figure 8 it can be seen that both Cassandra and DL
Monte do not efficiently use parallel cores, and these results
are in agreement with the previously published results for DL
Monte [27]. Under these circumstances, for the simulation of a
single pressure point, computational resources would be much
better used by runningmany serial tasks and collating the results
at the end of the simulations. This is shown in the results for
Towhee, where the efficiency is much greater than the other two
programs.

In the case of DL Monte, where only the electrostatic inter-
actions are parallelised, the poor efficiency can be explained by
considering Amdahl’s Law [53] which states that the limit of
speedup (s) for a program is given as:

s(c) = trun(1)
trun(c)

= p + (1 − p)
p/c + (1 − p)

lim
c→∞ s(c) = 1

1 − p

(20)

where p represents the fraction of the program’s runtime which
can be parallelised. If for instance the electrostatics took up 75%
of the programs run time [27], this would limit the potential
speed up to only 4, in the limit of infinite cores.

In the case of Cassandra, which parallelises all force calcu-
lations with OpenMP, the same argument cannot be made.
Previous attempts at a similar parallelisation scheme in MD
simulations have shown similar lacklustre results for systems of
a similar size, where it was observed that efficiency depended
heavily on system size [54].

7. Conclusion

The fact that all the programs tested produced the same results
for all conditions with a high level of consistency may seem
trivial, yet we believe it is very important, as such a compre-
hensive comparison has not been attempted earlier and it is
not done routinely by the MC program users. Furthermore,

this study provides a set of well documented program setups
and case studies, that can be used for further development and
validation. Finally, it creates certain confidence in the programs
currently employed by the MC community.

The benchmarking process did reveal some differences in
the overall performance of different programs, however this
variation was relatively small when considering the broader
picture of making a choice of which program to use. Whilst
in this work each program performed an identical simulation,
they also eachhave amultitudeof different other capabilities and
compatibility with other programs within the wider simulation
ecosystem. Also not assessed here was the entirely subjective
topic of how easy a given program is to correctly set up and use.
Equally as research projects get more mature, it is important to
consider how difficult a program will be to modify to allow it to
meet future,more specific needs.When selecting aMCprogram
to use all these various factors must also be taken into consider-
ation alongside considering the computational performance.

Whilst it is common to report the lengths of MC simulations
as a number of steps, we have shown that this metric is not
transferable between different programs, and therefore between
research groupswhohave built an intuition for a given program.
Instead, we argue it would be much more useful and important
for reproducibility of the results to report simulation length
as a multiple of g , along with the value of g for each specific
simulation, which reflects the quantity of sampling that has been
performed. When analysing a MC simulation, calculating the
length of the simulation in terms of g allows us to define if
enough data have been gathered and for the level of confidence
in the result to be quantified. We have found that for systems
of this type that g can be estimated as approximately the same
order of magnitude as neq, and this can be used to estimate
the required length of additional simulation required once a
simulation has reached equilibrium.

The varying relative value in data of an MC step simply
reflects the fact that there are different strategies to implement
an MC move. From a program development point of view
it would be very misleading to concentrate on the required
walltime for a single move in order to optimise the performance
of a program. Instead, the larger picture of the entire sampling
process must be considered. The choice of which MC moves to
use and the proportion of each move to use remains open for
investigation, however using the metrics developed in this work
it should now be possible to accurately quantify the effects these
movesmake. This will become especially true when considering
more complicatedMCmoves, such as configuration bias moves
for flexible molecules.

Our further recommendations can be summarised as fol-
lows. Energy grids must definitely be used when possible as
they clearly provide a quick and efficient way to substantially
increase computational performance of theMCprograms in the
context of adsorption problems. The scope for increasing per-
formance through parallelism within a program seems limited,
due mostly to the inherently small system sizes, and measured
performances of existing implementations showpoor efficiency.
In fact, we argue that in the context of adsorption problems and
computational screening ofmaterials, parallel execution ofmul-
tiple instances of the process offers much better efficiency and
overall speed up for a fixed amount of computational resources.
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