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ABSTRACT
We discuss and compare three methods to generate holograms for optical tweezers: simple round-
ing, Floyd–Steinberg error diffusion dithering and mixed-region amplitude freedom (MRAF). These
schemes are optimized for producing large arrays of tightly focused luminous spots. The algorithms
are compared in terms of their speed, efficiency and accuracy, for periodic arrangements of traps; an
arrangement of particular interest for the trapping andmanipulation of single laser-cooled atoms in
the field of quantum computing. We simulate the image formation using each of a binary amplitude
modulating digital mirror device (DMD) and a phase modulating spatial light modulator (PSLM) as
the display element. While a DMD allows for fast frame rates, the slower PSLM is more efficient and
provides higher accuracy with a quasi-continuous variation of phase. We discuss the relative merits
of each algorithm for use with both a DMD and a PSLM, allowing one to choose the ideal approach
depending on the circumstances.
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1. Introduction

Since their invention by Ashkin (1), optical tweezers have
had an enormous impact in diverse fields from biology
to quantum physics (see (2) for a review). The underly-
ing mechanism is the optical gradient force, which acts
on polarizable particles such as living cells (3), nanoscale
tools (4) or single atoms (5), causing them to be trapped
at the point of highest intensity of a tightly focused light
beam. The potential energy of such a particle is propor-
tional to the intensity of the trapping light at the position
of the particle.

Much effort has been devoted to designing dynamic
potential landscapes for dipole trapping andmoving large
numbers of laser-cooled atoms. Regular arrays of thou-
sands of potential wells have been created using optical
lattices (6,7), microlens arrays (8) and diffractive optical
elements (9). However, these methods are limited in that
the trapping sites can only be moved in unison, not indi-
vidually. A second approach is to use an acousto-optic
deflector (AOD) to generate a steerable trapping beam
which can be used to ‘paint’ time-averaged potentials
(10–12). In one demonstration (13) the authors gener-
ate 32 movable trapping beams using frequency shift key
modulation. However, the time averaging is only valid if
one stays clear of any parametric heating, i.e. when the
oscillation frequency of the trapped atoms is much lower
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than the rate of frequency shifting, which is ultimately
limited by the rise time of the AOD.

A third, more flexible approach to optically trap and
manipulate atoms is to use a spatial light modulator
(SLM) to create the desired potential landscape, either by
direct imaging (14) or by displaying a hologram which is
converted into the desired intensity landscape after prop-
agation through the optical system (15,16). The holo-
graphic technique concentrates a large fraction of the
optical power in the active trapping sites and allows for
three-dimensional positioning, but requires one to cal-
culate the hologram. Many techniques that have been
developed for the manipulation of polystyrene beads in
optical tweezers (17,18) can therefore be adapted for the
use with laser-cooled atoms. However, one has to bear
in mind some essential differences: (a) atoms moving
under the laws of classical mechanics can be consid-
ered point-like, with an extend much smaller than the
size of any focal spot; (b) some sub-recoil laser cool-
ing techniques reach temperatures well below 1mK or
even quantum degeneracy, with atoms occupying well-
defined motional quantum states; (c) atomic dipole traps
operate in vacuum and are a priori fully conservative,
i.e. normally without any molasses or other viscous envi-
ronment damping or disturbing the atomic motion; (d)
light forces on atomsmay result in accelerations of several
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thousand g; (e) main loss mechanisms for laser-cooled
atoms are collisions with the hot background gas, reso-
nant light scattering, and parametric heating caused by
changes in the trapping potential at frequencies close to
the oscillation frequencies of the atom in the trap.

There are two broad categories of SLMs: phase mod-
ulators (PSLMs) such as ferroelectric modulators (19)
and liquid crystal displays (20), and amplitude mod-
ulators such as digital mirror devices (DMDs) (21).
Holographic optical tweezers typically use a PSLM,
with an iterative phase retrieval algorithm such as the
Gerchberg–Saxton algorithm (22), variants thereof (23),
mixed-region amplitude freedom (MRAF) (24), offset
MRAF (25), or conjugate gradient minimization (26)
to calculate the hologram. In principle, an independent
modulation of amplitude and phase could be achieved
using a series of modulators. However, this is not com-
mon practice due to increased losses and an unavoidable
cross talk.

Here we investigate the feasibility of using either a
PSLM, which is quasi-continuous with m>200 phase
levels between 0 and 2π , or a binary amplitude modu-
lating DMD, for the controlled dipole trapping of laser-
cooled atoms in a holographic optical tweezers arrange-
ment. We consider three algorithms for hologram gen-
eration: one from the class of iterative algorithms men-
tioned above, and two that are considerably faster.

The simulation and benchmarking of algorithms pre-
sented here has been the key to successfully trap and
manipulate single atoms laser-cooled to less than 100µK
in aDMD-controlled arrangement of optical dipole-force
traps (15), and only recently our considerations lead to
the implementation of arbitrary trapping patterns for sin-
gle atoms using a PSLM, see Figure 3(b). Furthermore,
in view of the very general nature of our considerations,
we expect these to apply also to other fields, like, e.g.
to the manipulation of mesoscopic particles in viscous
environments at room temperature.

We point out briefly that we do disregard conju-
gate gradient minimization. This algorithm has recently
gained attention for use with PSLMs (26,27). However, its
main selling point is that it offers simultaneous control of
the amplitude and phase of the potential landscape. Since
we are primarily interested in the accuracy of the algo-
rithms in terms of amplitude, the latter does not fit well
into this discussion and would not be done justice by the
comparison.

We now discuss how to use a DMD or PSLM to holo-
graphically generate large arrays of individually movable
trapping sites.We begin with a brief overview of the prin-
ciples of holographic imaging. Next, we describe several
different algorithms for calculating artificial holograms
for a phase or amplitude modulating device and show

how to apply these to physicalmodulators that either per-
mit binary amplitude modulation or quasi-continuous
phase modulation. Finally, we present a benchmark of
the different algorithms comparing their numerical com-
plexity, efficiency of use of laser power and accuracy of
the resulting trapping potentials.

2. Principles of holographic imaging

The general idea in holographic imaging is to artificially
produce an optical field H(x, y), the hologram, which
after propagation through the optical system results in
a desired optical field F(x′, y′), the image. The problem
can be divided into two parts (28): the computational
problem of how to calculate the required optical field;
and the representational problem of how to display the
complex-valued field using a physical light modulator.
The latter modulates either amplitude or phase, which
is far from ideal and normally results in artefacts when
forming images (29). The mitigation of these is what
necessitates the elaborate algorithms discussed here.

2.1. The hologram of a single trap

The standard experimental setup used for holographic
optical tweezers is shown in Figure 1. The image F(x′, y′)
may be calculated from the hologram H(x, y) using the
Fresnel diffraction integral (28). If we form the image in
the focal plane of the lens, this simplifies to a Fourier
transform. Hence, given a desired image plane situated in
the focal plane of the lens, the required hologram is given
by the inverse Fourier transform of this image plane.

We now consider the hologram field of a single
diffraction-limited trap

H(x, y) = A exp
(
i
2π
fλ

(
x′
0x + y′

0y + z′
0
2f

(x2 + y2)
))

,

(1)

where A encodes the trap amplitude and phase, x′
0, y

′
0, z

′
0

are its coordinates relative to the focal point of the lens of
focal length f, λ is the wavelength of the light, and x and
y are the coordinates in the plane of the modulator. The
two terms linear in x and y account for the lateral position
of the trap, while the quadratic (x2 + y2) term introduces
a small defocus which allows the trap to be moved in and
out of the focal plane by a distance z′

0. Neglecting the
quadratic term, the image plane is a Fourier transform
of H(x, y), and the resulting F(x′, y′) is a delta function
spot at the location (x′

0, y
′
0). In reality, the spot is an Airy

pattern whose width is determined by the limiting aper-
ture of the setup. Furthermore, since only the intensity of
the image |F(x′, y′)|2 is relevant for trapping, we are free
to choose any phase arg(A) for the trap.
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Figure 1. The basic experimental setup required for testing the holographic optical tweezers. A collimated beamof laser light is incident
on the SLM. The light after the SLM is focused through a lens to form traps in the focal plane, where a CCD camera is placed to image the
traps. In the case of a DMD, only the light in the ‘1’ state would be sent through the lens; light in the ‘0’ state would be reflected out of the
setup. Left: sample hologram patterns corresponding to a target image consisting of a 2 × 2 grid of traps, displayed on a 32 × 32 pixel
device for simplicity. Right: the actual image planes generated by each of the holograms. In the case of the DMD, we see light in the−1,
0 and+1 diffraction orders, while for the PSLM the power all goes to the+1 order.

For multiple traps, we extend the above as follows. We
want to set the magnitudes of all traps to be equal, such
that the total power is distributed evenly. Additionally,
we wish to set the phase of each trap to a random value
between 0 and 2π . This is done to prevent the amplitude
maxima of all of the individual trap holograms from con-
structively interfering, which we will see would exacer-
bate the problems caused by the limitations of a physical
light modulator. Additionally, it helps to avoid systematic
near-field coherence effects close to the image or focal
plane, such as the period doubling in the Talbot–Lau
effect (30).

2.2. Representing a complex-valued hologram

As we have said, the physical device used to create the
hologrammay only modulate either the amplitude or the
phase of the light, but not both simultaneously. A DMD
consists of a large array of micro-mechanical mirrors in
which eachmirror can be switched between two different
angles, which we refer to as ‘0’ and ‘1’. A mirror in the ‘1’
position reflects light through the remainder of the opti-
cal setupwhereas amirror in the ‘0’ position deflects light
towards a beam stop, thus acting as a binary amplitude
modulator. A typical full frame rate for such a device is
20 kHz. In contrast, PSLMs are 1–2 orders of magnitude
slower, but they offer the advantage of improved control
over the hologram, since despite no amplitude control,
they permit a quasi-continuous modulation of the phase
between 0 and 2π . In a liquid crystal PSLM, an applied
voltage across each of the pixels of the device causes the
phase of the light traversing that pixel to be modulated
by an amount proportional to that voltage. For a digitally

controlled PSLM, the standard response time is 10ms,
and 256 phase levels are the norm.

For a single trap, we see from Equation (1) that the
amplitude required is constant, and so modulating the
phase of the hologram H(x, y) is sufficient to reproduce
the trap in the image plane when Fourier transformed.
For a PSLM, the approach is thus to simply round the
phase value required at each pixel to the nearest value
that the device can produce. With over 200 phase levels,
this is effectively just directly displaying the phase value
required for each pixel. The theoretical maximum power
in this case is 100% of the power incident on the device.

This is in contrast to the binary amplitude modulat-
ing DMD. For the latter, the simplest way to represent
the hologram is to map all pixels whose phase is between
−π/2 and π/2 to the ‘1’ state, and all other pixels to the
‘0’ state. This results in the maximum possible amount of
optical power being directed into the trap, since all pixels
in the ‘1’ state interfere constructively, and all those that
would interfere destructively are in state ‘0’. The result
is a top hat grating where the fraction of power in the
nth diffraction order is given by 1

4 sinc
2(nπ/2). The trap

is produced in the+1 diffraction order, with a theoretical
maximum power of 1/π2 ≈ 10.1%. We necessarily also
have an equivalent trap in the −1 order, separated by the
same distance as our desired trap from a bright 0th order
spot. We see this in the obtained image planes depicted
in Figure 1. Furthermore, there will be small fractions of
the power in higher diffraction orders. For either type of
modulator, we refer to this simple hologram generation
method as the rounding algorithm, though we note that
for a PSLM there is no real algorithm involved and the
effects of rounding are negligible.
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For the case of multiple traps, the problem of repre-
senting the complex hologram with an amplitude-only
or phase-only modulator is more difficult. Due to the
nature of Fourier transforms, the hologram required is
effectively the sum of the holograms required for each
individual trap. However, the technical limitations of the
hologram representation on either a DMD or a PSLM
result in additional unwanted ghost traps and drastic
variations in intensities of the traps. These artefacts arise
from two sources: the quantization of continuous pixel
values to discrete values, and the fact that either any
pixel amplitudes outside the range (0, 1) are truncated
(DMD) or amplitude variations are ignored altogether
(PSLM).

3. Algorithms for improved hologram
generation

To overcome the problems faced in representing holo-
grams for multiple traps, we discuss two more sophis-
ticated algorithms for hologram computation. The first
is a dithering algorithm based on Floyd–Steinberg (31)
which we refer to as error diffusion dithering, and the
second is an iterative Fourier transform algorithm (IFTA)
called theMRAF algorithm (24). Both do reach the accu-
racy needed to manipulate laser-cooled atoms and are
therefore widely applied in this area. We now describe
each of these algorithms.

3.1. Floyd–Steinberg error diffusion dithering

Dithering algorithms seek tominimize artefacts bymim-
icking continuous greyscales on a discretized phase-only
or amplitude-only modulator. For each pixel, the desired
pixel value is set to the closest value that can be dis-
played by the device. The error, that is the difference to
the desired value, is then compensated for using some of
the neighbouring pixels. For example, on a DMD, a 50%
greyscale could be represented by alternating pixel values
between ‘0’ and ‘1’.

We use an error diffusion dithering algorithm based
on Floyd–Steinberg (31). For either type of modula-
tor, the first step is to create a target image F. We set
each pixel containing a trap to exp(iθn)/

√
N, where θn

is a random phase and N is the total number of traps.
Next, we perform an inverse Fourier transform on the
array to find the hologram H. For a DMD, we take
the real part of the complex-valued hologram field and
scale it to the range [0, 1]. For a PSLM, we keep the full
complex field and scale it to have a maximum inten-
sity of 1. The pixels are then processed according to a
path consisting of a sequence of scan lines, illustrated
in Figure 2(a). The error is calculated as ‘desired value’

minus ‘displayed value’. This error is distributed to the
connected neighbours which have not yet been pro-
cessed, with the error coefficients (fractions of the error
sent to each pixel) proposed in (31). These coefficients
are shown in Figure 2(b). For example, processing pixel
(i, j) gives 7/16 of its error to pixel (i + 1, j), which is the
next pixel to be processed. When processing this pixel,
the input value to be rounded is then equal to its original
value plus the error fraction given to it from pixel (i, j)
(and also pixels (i, j − 1), (i + 1, j − 1) and (i + 2, j − 1),
which would already have been processed).

This process of error distribution is illustrated pictori-
ally in Figure 2(b). For an amplitudemodulator, the error
is a scalar: the difference between the (scaled) real part of
the hologram field at that pixel and whichever is closer to
this out of the available levels ‘0’ and ‘1’. For a phasemod-
ulator, the vector corresponding to the complex value
of the hologram field at that pixel is approximated by
the equivalent vector of unit length (i.e. a vector with
the same phase, rounded to the nearest available phase
level, but now with amplitude 1). Then the vector error in
approximating this pixel is distributed. For the next pixel
to be processed, the starting point is the original vector
for that pixel plus the vectors corresponding to the error
fractions accumulated fromneighbours that have already
been processed.

3.2. Mixed-region amplitude freedom

The MRAF algorithm is an example of a class of algo-
rithms known as IFTAs, the best known of which is the
Gerchberg–Saxton algorithm (22). All IFTAs are broadly
similar, in that they exploit phase freedom in the image
plane in order to minimize the difference between the
desired and obtained intensity distribution in the output
image.

The first step in an IFTA is to define a target image, as
in the dithering algorithm already discussed. Next comes
the iterative part of the algorithm. The image plane is
inverse Fourier transformed to get the hologram, and the
relevant constraints in the hologram plane are applied.
For a DMD this amounts to taking the real part of the
hologram and rounding to ‘0’ or ‘1’, while for a PSLM
the amplitude information is discarded and the phase is
rounded to the nearest available level. This newly con-
strained hologram plane is Fourier transformed to get
the first iteration of the image. A figure of merit is calcu-
lated, comparing the obtained image to the target. If the
figure of merit has converged sufficiently, or passed some
threshold value, the iterative process is ended. Otherwise,
the image is combined in some way with the desired tar-
get, and the iterative process is started again. The generic
IFTA is illustrated in Figure 3.
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Figure 2. Error diffusion dithering algorithm for hologram generation. (a) The order in which pixels are processed in the algorithm is a
sequence of scan lines across the array. (b) The error in rounding a given pixel is shared amongst the neighbouring pixels in the ratios
shown. The pixel with a dot is currently being processed. The error distribution is represented pictorially for an amplitude and a phase
modulator. In the amplitude case, the greyscale pixel values for the real part of the hologram field are rounded to zero (black) or one
(white), and the scalar error is shared to the neighbours. In the phase case, the vector corresponding to the hologram field at each pixel is
approximated by a vector of amplitude one with the nearest phase displayable by the PSLM, and the vector error relative to the original
vector (before setting the amplitude to one) is shared to the neighbours.

Figure 3. General inverse Fourier transform algorithm for hologram generation. The iterative loop is repeated until the figure of merit
reaches some criteria, signalling that either all or part of the image plane intensity closely enough resembles that of the target image
plane. (a) Combining the generated and target intensities in the specific case of theMRAF algorithm. The signal region is set to the target
intensity, while the noise region is left equal to the generated intensity. (b) Fluorescence image of single rubidium atoms laser-cooled
with a magneto-optical trap and an optical molasses to less than 100µK and then trapped in the resulting intensity pattern (individual
trap depth 780µK, trapwaist 1.2µm, trap to trap distance 5µm, oscillation frequency 75 kHz, and fluorescence on the D2 line registered
for 1 s through a lens system of NA= 0.45 while driving the atomic resonance with I = 3Isat at a detuning� = −3γ ).
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The step that defines MRAF in particular is the way
in which the current iteration’s image plane is combined
with the target. In the Gerchberg–Saxton algorithm, the
intensity everywhere is set to the desired intensity at that
location (while the phases are left unchanged so that they
may evolve as needed). In contrast, in MRAF we divide
the image plane into two regions: one that we consider to
be important and refer to as the signal region, and one
that we consider unimportant and refer to as the noise
region. The goal is to improve the accuracy in the sig-
nal region at the expense of less accuracy in the noise
region. As such, the algorithm uses a mixing parame-
ter p to control the fraction of power in each of the two
subsets of the image plane (24). Mathematically, for each
pixel (i′, j′) in the image plane we define a signal-region
masking matrix:

Mreg(i′, j′) =
{
1 if (i′, j′) ∈ signal region,
0 otherwise.

(2)

Then the rth iteration’s image plane |F(r)|eiθ(r)
im is com-

bined with the target intensity distribution |F0|2 accord-
ing to

F(r) =
(√

p|F0| � Mreg + √
(1 − p)|F(r)|�

× (1 − Mreg)
)
eiθ

(r)
im , (3)

where F(r) is the calculated image plane after the rth iter-
ation, and � represents element-wise multiplication. In
effect, the amplitudes of the pixels in the signal region are
set back to those of the corresponding pixels in the tar-
get, while those of the pixels in the noise region are left
unchanged, with overall multiplicative factors from the
mixing parameter. The phases are left unchanged in both
regions. This step is illustrated visually in Figure 3(a). By
decreasing the power directed into the signal region, i.e.
by lowering the parameter p, the accuracy achievable in
the signal region may be improved.

4. Comparison of the algorithms

All of the algorithms have similar capabilities: they can
be used to position a large number of traps in two dimen-
sions (and indeed this can be extended by a small amount
into three dimensions by superposing a lens pattern on
the calculated hologram). Furthermore, they all suffer
from the same set of problems as a result of the phys-
ical limitations of the modulator: variation of the opti-
cal power between traps, loss of power in the form of
noise and ghost traps, and when using a DMD, further
loss of power into unwanted diffraction orders. We eval-
uated the performance of each of the algorithms with

a numerical simulation for a periodic square lattice of
traps, with four dark pixels between each trap pixel. This
type of grid layout is an arrangement of particular inter-
est for many applications of optical tweezers, including
quantum computing.

The relevant things to compare are efficiency (what
fraction of the power ends up in the traps), speed of cal-
culation and accuracy (how much power variation there
is between traps). Furthermore, we consider how the effi-
ciency and accuracy scale with the number of traps. In
the case of MRAF, rather than using a figure of merit to
determine when iterations should be ceased, we instead
artificially stop the iterations after some number and use
the figure of merit to investigate how the image accuracy
is affected by the number of iterations we perform.

For MRAF, we use a signal area consisting of 200 ×
200 pixels, or approximately 15% of the total area of
512 × 512 pixels. We use a mixing parameter of p=0.7
for our comparison. The authors of (25) find that maxi-
mum accuracy may, in general, be achieved for a param-
eter of 0.4, but we find for our trap grids that up to
0.7 makes little difference to the accuracy whilst almost
doubling the efficiency.

We begin by considering computation speed. This
is hard to quantify, since it depends on the quality of
code and the machine on which it is executed. Thus
we quote speeds as the algorithmic complexity, assum-
ing that the only significant time costs are for Fourier
transforms, Floyd–Steinberg error distribution, and the
element-wise matrix multiplication used in the masking
of MRAF. For a 2D array of P pixels in total, the time for
a two-dimensional discrete Fourier transform scales as
P log P, while error distribution and element-wise matrix
multiplication both scale as P. The relative speeds of
the algorithm are shown in Table 1. Because the MRAF
algorithm is iterative with Fourier transforms every iter-
ation, and the Fourier transform scales least favourably
with the number of pixels, MRAF is by far the slowest
algorithm.

Knowing that MRAF is comparatively slow as a result
of its iterative nature, we now ask just how many iter-
ations are necessary. As a measure of accuracy, we use
the coefficient of variation cv of the intensities at the trap
locations:

cv = σ

〈I〉 =

√
1
N

∑
n∈traps(In − 〈I〉)2

〈I〉 , (4)

i.e. the standard deviation of the intensities divided by
the mean trap intensity. Here N is the number of traps
in the grid, In is the intensity of the nth trap, and 〈I〉 is
the mean trap intensity. Empirically we find that all the
algorithms reproduce the dark pixels between traps well,
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Table 1. A comparison of the speed and efficiency of each of the
three algorithms. P is the number of pixels used in the calculation,
and k is the number of iterations of the MRAF algorithm. MRAF
is substantially slower than the other two algorithms. Dithering is
the least efficient. For all three algorithms, we get a 90% loss in
power for a DMD as compared to a PSLM. Note that the efficiency
for MRAF is imposed by our choice of p= 0.7, as this maximizes
the accuracy.

Rounding Dithering MRAF

Computational speed PlogP PlogP + P k × (PlogP + P)

Efficiency 0.9 0.4 0.7
PSLM Accuracy (4 × 4 traps) 0.35 0.10 0.14

Accuracy (20 × 20 traps) 0.38 0.19 0.16
Efficiency 0.1 0.04 0.07

DMD Accuracy (4 × 4 traps) 0.35 0.11 0.13
Accuracy (20 × 20 traps) 0.39 0.23 0.15

and struggle with producing equal powers between the
traps. Sometimes unwanted ghost traps are produced, but
these are far enough away from the target traps that they
do not cause any problems besides loss of power into the
target traps. Hence considering only the trap pixels in
ourmetric makes sense. Furthermore, this metric has the
advantage of being an intrinsic property, and onewhich is
completely independent of the efficiency of an algorithm
and the total input light power.

Figure 4 shows how the coefficient of variation varies
with numbers of iterations of the MRAF algorithm. We
see that after five iterations, the speed of convergence
starts to drop rapidly and we get diminishing returns. By
around 15–20 iterations, further improvements are fairly
negligible.

Wenowconsider the accuracy of theMRAFalgorithm,
as compared to each of error diffusion dithering and

simple rounding. For this comparison, we use 20
iterations of MRAF. The accuracy as calculated by
Equation (4) for each algorithm, as a function of num-
ber of traps, is shown in Figure 5. Overall, we see that the
dithering algorithm performs best for small numbers of
traps, but above a certain point its performance is over-
taken by that of the MRAF algorithm. For a DMD, this
point is for a 6 × 6 grid or greater, while for a PSLM
MRAF only performs better for 16 × 16 grids or bigger.

At very small trap numbers, we observe some interest-
ing behaviour. All of the algorithms do substantially bet-
ter below a 4 × 4 grid, and further, MRAF and error dif-
fusion dithering are outperformed by the simple round-
ing algorithm. The reason for this becomes clear whenwe
consider how we are calculating our errors, and look at
the signal region of the image plane generated by MRAF,
say, for the first few iterative steps. This is shown for a 2 ×
2 grid in Figure 6(a). For the first iteration, the traps look
good, but there are many additional ghost traps within
the signal region. Overall, the region gets improved with
subsequent iterations. However, the variation between
trap intensities gets worse, because the algorithm does
not know that the trap pixels are any more important to
us than the non-trap pixels. As a result, the trap pixels
are sacrificed to some extent to enable the overall sim-
ilarity of the signal region to the target signal region to
improve with more iterations, but the coefficient of vari-
ation for the traps increases. This behaviour is not seen
for larger trap numbers, as then the initial iteration does
not do a good job of creating equal intensity traps, and so
the biggest improvement the algorithm can make to the
signal region is to try and equalize these intensities. This
is shown for a 6 × 6 grid of traps in Figure 6(b).

Figure 4. Error in approximating the desired image plane as a function of number of iterations of the MRAF algorithm, calculated via
Equation (4) for a binary DMD (left) and a PSLM with 256 levels (right). In each case the traps were arranged in a square grid. The PSLM
converges more consistently, but the overall degree of convergence is similar in each case. The rate of convergence is approximately
independent of the number of traps (particularly for the PSLM); after approximately five iterations we get diminishing returns on further
iterations, and by 20 iterations the further improvements are negligible. The results here were averaged over 1250 runs of the simulation
for each number of traps.
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Figure 5. Accuracy of each of the algorithms as a function of number of traps. Each data point is the median average over 1250 runs
of the simulation, with error bars at the inter-quartile range. (a) 2 × 2 grid up to 30 × 30 grid of traps. We see that for large numbers of
traps, error diffusion dithering continues to get worse as more traps are added, while above 25 traps, MRAF and rounding barely change.
Regardless of the type of modulator, MRAF performs best for large numbers of traps, though the crossover between dithering andMRAF
occurs at a much smaller trap number for an amplitude modulator. (b) A closer look at grids from 2 × 2 up to 5 × 5. For a 2 × 2 grid the
rounding algorithm outperforms the others, and all algorithms do substantially better.

Figure 6. Convergence of the MRAF algorithm for (a) a 2×2 grid of traps, (b) a 6 × 6 grid of traps. Only the signal region, and not the
noise region, is shown here.

Efficiency of the algorithms, i.e. howmuch of the input
light ends up in the traps, is also a practical concern. For
most applications, input power will be restricted in some

way, and there may be problems associated with power
being directed to unwanted locations. The efficiencies of
each of the algorithms are summarized in Table 1. In each
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case, the efficiencies for aDMDare an order ofmagnitude
worse than those for a PSLM, as explained in Section 2.2.
The dithering algorithm is less efficient than the others
for both types of modulator. The reason for this is that, in
essence, the dithering process pushes the noise into high
frequency components, which are directed away from the
traps. The MRAF efficiency is not particularly good for
comparison, as this is artificially imposed by our choice
of a mixing parameter p=0.7. We note that by increas-
ing the value of p, the efficiency of the algorithm may be
increased at the expense of the accuracy.

5. Conclusion

In conclusion, we have shown that either a DMD or a
PSLM may be used to holographically generate arrays of
light spots ideally suited for holding laser-cooled atoms
in optical tweezers. The DMD is fast, but inefficient in
comparison to the slower PSLM. We have demonstrated
a number of algorithms for hologram computation and
discussed their merits. For large numbers of traps (6 × 6
grid or greater for a DMD, or 16 × 16 grid or greater
for a PSLM), MRAF gives the most accurate results. For
smaller numbers of traps, error diffusion dithering per-
forms better. The trade-off is an almost 50% loss of power
compared to MRAF, and the lower consistency of the
accuracy, particularlywhenusedwith an amplitudemod-
ulator. For very small numbers of traps (2 × 2 grid) the
simple rounding algorithmworks better than either of the
more sophisticated algorithms.
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