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ABSTRACT
We present a quantitative model for magneto-optical traps operating on narrow transitions, where
the transition linewidth and the recoil shift are comparable. We combine a quantum treatment of
the light scattering process with a Monte-Carlo simulation of the atomic motion. By comparing our
model to an experiment operating on the 5s2 1S0 → 5s5p 3P1 transition in strontium, we show that
it quantitatively reproduces the cloud size, position, temperature and dynamics over a wide range of
operating conditions, without any adjustable parameters. We also present an extension of the model
that quantitatively reproduces the transfer of atoms into a far off-resonance dipole trap, highlighting
its use as a tool for optimizing complex cold atom experiments.
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1. Introduction

The advent of laser cooling and trapping (1–4) was a
revolutionary advance leading to a plethora of ultra-cold
atomic experiments. The magneto-optical trap (5)
(MOT) is the workhorse for all experiments with cold
neutral atoms and has been extended to molecules in
recent years (6–9). Whilst quantitative theories of laser
cooling in the Doppler and sub-Doppler regimes have
existed for many years (10), a quantitative model for
the MOT is more challenging. The difficulty arises due
to the complex three-dimensional polarized light field
in the presence of a magnetic quadrupole field, and the
effects of optical pumping. In MOTs operating on strong
transitions, the re-scattering and absorption of lightmust
also be taken into consideration (11). Nonetheless, as the
technique is extended to more complex systems such as
molecules, there is a considerable interest in models with
the ability to quantitatively predict MOT properties.

One approach typically used to simulate MOT dy-
namics is to make simplifying assumptions about the
atomic system and perform a Monte-Carlo (12) integra-
tion of the classical equations of motion. This assumes
that the atoms experience an average force from the laser
beams. Wohlleben (13) and Chaudhuri (14) have used
thismethod to accurately simulate the atomic trajectories
of rubidium atoms in a 2D+ MOT. This method has also
been used to simulate loading into optical traps (15, 16).

CONTACT Matthew P. A. Jones m.p.a.jones@durham.ac.uk

For more complex systems where optical pumping must
be included, such as molecular MOTs, this model breaks
down. A more accurate model is produced using the
optical Bloch equations (17). By performing an adiabatic
elimination of the density matrix coherences, one is left
with a series of rate equations. Atutov (18) has shown
this model to be accurate at modelling a sodium MOT
involving optical pumping, whilst both Comparat (19)
and Tarbutt (20) have utilized this method to study the
formation of molecular MOTs.

Divalent atoms exhibit inter-combination lines that
are spin-forbidden by the usual electric dipole selection
rules, but which are weakly allowed through state mix-
ing, leading to very narrow transitions. These narrow
transitions enable the production of ‘narrow-line MOTs’
(nMOTs) where the dynamics are limited by photon
recoil, leading to sub-µK temperatures (21). The ability
to trap atoms at low temperatures has aided the field of
precision spectroscopy as the Doppler broadening due
to the motion of atoms is greatly reduced, leading to the
development of atomic clocks operating in the optical
domain (22). The narrow transition also facilitates the
creation of high-density atom clouds (23, 24), since the
radiation trapping that limits the density of conventional
MOTs is suppressed. This has led to a variety of studies
in the high-density regime, such as the study of quantum
degenerate gases (23, 25–28), multiple scattering (29–31)
and Rydberg blockade (32) to name but a few.
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As the transition linewidth in a nMOT is so small, the
transition is often power-broadened, which prevents the
conventional adiabatic elimination of the density matrix
coherences used to obtain a rate equationmodel (19, 20).
To address this, we develop a Monte-Carlo model which
is based upon the steady-state solution of the optical
Bloch equations.

The paper is structured as follows. We initially intro-
duce the concept of a nMOT in Section 2 and subse-
quently detail the model in Section 3. The experimental
configuration used to test themodel is detailed in Section
4. In Section 5, we compare the model to experimental
data. In Section 6, we explore future applications of this
model by simulating the loading of atoms into a far off-
resonance dipole trap (FORT).We conclude our findings
in Section 7.

2. Narrow-lineMOTs (nMOTs)

The experimental configuration for a nMOT is the same
as that for a conventional MOT (5), with atoms of mass
m cooled and confined by a combination of a quadrupole
magnetic field and laser beams (wavelength λ) with the
appropriate circular polarization. What makes nMOTs
distinctive is the ratio η = �/ωR, where � is the
natural linewidth of the cooling transition, and
ωR = (4π2

�)/(2mλ2) is the frequency shift due to the
atomic recoil following the absorption or emission of a
photon. In conventionalmagneto-optical traps operating
on strong dipole allowed transitions η � 1000. In this
regime a single scattering event does not significantly
alter the subsequent probability to scatter a photon, and
the effects of individual scattering events can be averaged
out, leading to the conventional semi-classical theory of
Doppler cooling (10).

Conversely, in anMOTη ≈ 1.This condition typically
only occurs when cooling on narrow dipole-forbidden
transitions. For example, the 88Sr 5s2 1S0 → 5s5p 3P1
transition that we consider in this paper has η = 1.6. In
this limit individual scattering events significantly alter
the subsequent probability of absorption, and the ulti-
mate limit of laser cooling is set by the recoil temperature
rather than the Doppler temperature (21).

Loftus et al. (24) showed that the behaviour of atoms in
a nMOT is governed by the scaled detuning
δ = |�|/�′ (S), where �′ (S) = �

√
1 + S is the power-

broadened linewidth, and� = ω−ω0 the laser detuning
with ω0 and ω the angular frequencies of the atomic
transition and the cooling laser, respectively. Here, the
parameter S = I/ISat is the intensity of the cooling light I
normalized by the saturation intensity ISat. Three regimes
can be identified.

(a) (b)

(c) (d)

Figure 1. Absorption images of the nMOT along with their
associated force curves. (a) and (b) correspond to S = 250 and
� = −2π × 110 kHz, whilst (c) and (d) correspond to S = 20
and� = −2π × 200 kHz. The force curve associated with S = 1
is also shown in (d) for comparison. The dashed ellipse in (a) and
(c) shows where�ωz = � in the quadrupole field with a vertical
gradient of 8 G/cm.

The regime that is closest to a conventional MOT
occurs when δ ≈ 1 and S >> 1. This is illustrated in
Figure 1(a) and (b).Here, thepower-broadened linewidth
dominates and the cloud forms close to the quadrupole
centre as atoms are resonant with all three pairs of laser
beams. In this ‘Doppler’ regime (I) the power-broadened
linewidth determines the temperature, and the atoms are
comparatively hot.

If � is increased such that δ � 1 but S > 1, then
the trap no longer forms at the quadrupole centre, but
is displaced to where the Zeeman shift �ωz = �. The
resulting resonance condition forms an elliptical ‘shell’
around the quadrupole centre. Since gravity is strong
compared to the light-induced forces, the atoms fall un-
der gravity until the resonance condition is met, form-
ing an elliptically shaped nMOT (shown in Figure 1(c))
where the atoms predominantly interact with the beam
that directly opposes gravity. This is seen by the clearly
separated force peaks displaced from the quadrupole zero
in Figure 1(d). We refer to this as the ‘power-broadened
regime’ (II).

Finally, the recoil dominated ‘quantum’ regime (III)
occurs when δ � 1, and S ≤ 1. As in the power-
broadened regime, theMOTposition is determined by�

and themagnetic field gradient. However, since a photon
recoil is sufficient to tune an atom out of resonance with
the nMOT beams, recoil effects dominate the scattering
behaviour of the atoms. This regime enables the lowest
temperatures, ultimately reaching half the photon recoil
limit, which for 88Sr is 460 nK (24).
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3. Modelling the cloud

In this paper, we explicitly consider nMOTs operating
on the lowest-lying intercombination lines in divalent
atoms such as the alkaline earths and Yb. These
J = 0 → J = 1 transitions are completely closed,1 and
there is no optical pumping or dark states, as shown in
Figure 2(a). Despite this apparent simplicity, it is still
very challenging to fully model the interaction of this
four-level system with the spatially varying quadrupole
field and laser polarization, since one must keep track of
complex spatially varying phases between the laser beams
that appear in theoff-diagonal terms in the atomicdensity
matrix. Therefore, we make a significant simplification
and treat each Zeeman transition as an independent two-
level system, as shown in Figure 2(b). This amounts to
non-conservation of population in the limit of S � 1
and also neglects Raman-like transitions related to co-
herences between Zeeman sub-levels. We expect that
this is a good approximation in regimes (II) and (III).
In these regimes, the atoms fall under gravity until the
resonance condition is met and predominantly interact
with the laser beam which opposes gravity. The Zeeman
splitting between the mj sublevels is much greater than
the transition linewidth, effectively isolating the three
Zeeman sublevels, of which the mj = −1 state is most
strongly driven due to the helicity of the laser beams.
However, we expect the model to fail in the ‘Doppler’
regime (I), and we show that this is indeed the case.

3.1. Mathematical formalism

We simulate the 88Sr 5s2 1S0 → 5s5p 3P1 nMOT using
the conventions anddefinitions shown inFigure 2(c). The
nMOT is constructed from three retro-reflected orthog-
onal laser beams in the laboratory co-ordinate system
r = (

x, y, z
)
where the unit vector directions x̂, ŷ and ẑ

are shown in Figure 2(c), and the origin of the coordinate
system is taken to be the zero of the quadrupole magnetic
field. Each circularly polarized laser beam i has angular
frequency ωi and wave-vector ki and the helicity of each
beam is illustrated in Figure 2(c). The nMOT quadrupole
field B is defined as B = γ

(
x x̂ + y ŷ − 2z ẑ

)
where γ is

the gradient of the magnetic field along the radial
(
x̂, ŷ

)
directions. The magnetic field splits the 3P1 state into
three Zeeman levels j with splittings �ωz = gμB |B| /�

where g = 3/2 is the g-factor and μB is the Bohr magne-
ton.

To reproduce themacroscopic dynamics of thenMOT,
the simulation is performed for ∼ 5000 atoms. Initially,
the atoms are uniformly, randomly placed into a user-
defined ellipsoid in the laboratory frame with position
r . The atoms are also assigned random velocity vec-

tors v taken from a 3D-Boltzmann distribution with a
user-defined initial temperature. These initial conditions
are chosen to be similar to the final nMOT to reduce
the processing time.2 Typically, an initial temperature of
T = 1 µK is used.

The total simulation time ttot is broken into time-steps
of length δt. At each time-step, the probability that each
atom scatters a photon from laser i via a transition j is
given by:

Pij = �eρ
ij
eeδt (1)

= �e

2
WjSδt

1 + WjS + 4
(
�i − ki · v − �ω

j
z

)2
/�2

e

,(2)

where ρ
ij
ee is the steady-state excited state population

derived from standard two-level optical Bloch equations
(17) and δt = 0.1/�e such that Pij 	 1.

The coupling strength Wj is dependent on the local
magnetic field and the polarization of the nMOT laser
beam. Due to the spatial inhomogeneity of the magnetic
field, Wj must be calculated as a function of position
for each laser beam. This is most easily performed by
entering a local atomic frame for the calculation. This
frame is defined such that the local z-axis ẑ′ is directed
along the local magnetic field vector. Firstly, the total
electric field for each laser beam E is defined in the
laboratory frame in the spherical basis ε̂q (33, 34) as:

E =
∑
q

Eqε̂q , (3)

where E = (E1, E0, E−1) and

E1 = − 1√
2

(Ex + iEy
)
, (4)

E0 = Ez , (5)

E−1 = 1√
2

(Ex − iEy
)
, (6)

where Ex,y,z is the electric field defined in cartesian co-
ordinates in the laboratory frame. A rotation is then
performed to enter the local co-ordinate system of each
atom to determine which transitions can be driven along
with the associated transition coupling strengths. The
rotation matrix is given by:

Mq
(
θ
) = UR

(
θ
)
U† , (7)

= 1
2

⎛
⎝1 + cos

(
θ
) −√

2 sin
(
θ
)
1 − cos

(
θ
)

√
2 sin

(
θ
)

2 cos
(
θ
) −√

2 sin
(
θ
)

1 − cos
(
θ
) √

2 sin
(
θ
)

1 + cos
(
θ
)

⎞
⎠ ,

(8)
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(a) (c)

(b)

Figure 2. (a) Energy level structure of the nMOT. �ωz is the Zeeman splitting due to the quadrupole field. (b) Simplified energy level
structure used in the simulation. (c) nMOT experimental schematic. The straight red and circular black arrows represent the laser beam
propagation direction and helicity, respectively.

where U is the transformation from the cartesian basis
to the spherical basis and R

(
θ
)
is the rotation matrix

which maps k̂i onto B by an angle θ . This leads to a new
polarization vector E ′ = MqE whereWj = ∣∣E j′∣∣2.

Once Pij is known, random sampling from an uniform
distribution is used to determine whether a scattering
event occurs or not. If no scattering event occurs, the
atom follows its initial trajectory defined in the laboratory
frame as

v′ = v + gδt (9)

r ′ = r + v′δt + 1
2

gδt2 , (10)

where g = g
(
0, 0,−1

)
is the acceleration due to gravity

and the prime notation represents the final atom position
or velocity after a time step δt. If a scattering event does
occur, the atom evolves as

v′ = v + � |ki |
M

(
k̂i + k̂s

)
+ gδt , (11)

where ki is the wavevector of the laser from which the
atom initially absorbed a photon with k̂i its associated
unit vector, and k̂s is a random unit vector representing
the direction of spontaneous emission.3

During each time step, the atomic positions and ve-
locities are recorded, yielding a complete trajectory of
each atom. A simulated absorption image of the nMOT
is constructed by histogramming the atomic positions
in the x̂ − ẑ plane and calculating the column density
along ŷ. This is then normalized such that comparisons
between theory and experiment can be made. A vertical

andhorizontal temperature (Tv andTh) is associatedwith
themotion in the x and z directions by fitting aMaxwell–
Boltzmann distribution to the vertical and horizontal
components of v. This allows us to obtain the spatial,
thermal and temporal dynamics of the atom cloud.

4. Experimental configuration

The experiment is described in detail elsewhere (35–38)
and so it is briefly summarized here. Initially, atoms from
a strontium oven were slowed using a Zeeman slower be-
fore a ‘blue-MOT’ was formed on the 5s2 1S0 → 5s5p 1P1
transition. Atoms in the blue-MOT were cooled to a
temperature of severalmK. After initial cooling, the blue-
MOT light was removed and cooling light at 689 nm,
which addresses the 5s2 1S0 → 5s5p 3P1 transition, was
applied. This light was artificially broadened to match
the Doppler-broadened profile of the atoms in the blue-
MOT. After sufficient cooling, the broadening of the
689 nm lightwas removed, leaving single-frequency light,
and a cold, dense nMOT. The nMOT was imaged using
absorption imagingon the 5s2 1S0 → 5s5p 1P1 transition.
Images are captured on a Pixelfly QE camera with a post-
magnification pixel-size of 8 µm. In order to measure
the temperature, the cooling light and quadrupole field
were switched off, and the atomic cloud was imaged
after a variable time-of-flight. By fitting the variation of
the cloud width with expansion time we determined the
temperature in the x̂ and ẑ directions in the conven-
tional way. The saturation parameter S is determined
independently by measuring the power and beam profile
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Figure 3. Experimental (top row) and theoretical (bottom row) absorption image as a function of nMOT beam detuning with S = 9. The
dashed purple line shows the resonance condition where� = �ωz .

of the nMOT beams after the vacuum chamber. The
uncertainty in this measurement is estimated to be±3%.

We are able to achieve a range of nMOTsizes, densities
and temperatures by varying the nMOT beam detuning,
power and the initial loading rate. We are able to achieve
nMOTs ranging in size from 1/e2 radii of 30 to 300 µm,
densities up to 1×1012 cm−3 and 3D temperatures as low
as 460 nK. The vertical magnetic field gradient is held at
8G/cm during the final stage of the nMOT.

5. Testing themodel

As discussed in Section 2, the properties of a nMOT are
significantly dependent on � and S. This strong param-
eter dependence allows us to test the accuracy of the
model in a wide variety of nMOT regimes. Firstly, we
test the model operating in regime (II) where the width
and position of the nMOT are strongly dependent on �.
The top row of Figure 3 shows experimental absorption
images of the nMOT at four different values of �. It
is clear that the MOT ‘sags’ under gravity and forms at
lower positions as � is decreased. The lower row of Fig-
ure 3 shows the theoretical absorption images obtained
from the simulation. We qualitatively observe excellent
agreement in position and shape of the nMOT in the
absence of fitting parameters.

In order to quantitatively compare the model to the
experimental data, the mean vertical position z̄ and full
width at half maximum (FWHM) of the nMOT are ex-
tracted numerically (without fitting) from the experi-
mental and theoretical data. The results are plotted as
a function of � in Figures 4 and 5, respectively. The
residuals normalized to their estimated uncertainties Rν

(39), are shown below each figure. The vertical FWHM
saturates as a function of � as the width is determined
by the temperature of the atoms. The horizontal FWHM

Figure 4. Experimental (blue triangles) and theoretical (purple
circles) vertical position of the nMOT as a function of nMOT
beam detuning. The lower plots show the normalized residuals
between theory and experiment, normalized to the error on the
experimental data. The dashed black lines show Rν = ±2.

on the other hand continually increases as the radius of
the resonant ellipse is proportional to �. We observe
excellent agreement between experiment and theorywith
no adjustable parameters. Although the nMOT position
is largely determined by the resonance condition, the
agreement that we observe indicates that our model also
successfully predicts the offset that results from the inter-
play between the cooling and trapping forces and gravity.

A more stringent test of the model is provided by
the temperature. Unlike the position, which is largely
determined by the resonance condition, the nMOT tem-
perature is strongly dependent on the intensity of the
cooling beams. As S and hence the normalized detuning
δ varies, the nMOT crosses between the different regimes
identified in Section 2.
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(a) (b)

Figure 5. Experimental (blue triangles) and theoretical (purple circles) vertical (a) and horizontal (b) FWHM of the nMOT as a function of
nMOT beam detuning. The lower plots show the normalized residuals between theory and experiment, normalized to the error on the
experimental data. The dashed black lines show Rν = ±2.

(a)

(b) (c)

Figure 6. (a) The blue squares and purple circles represent the
measured and simulated nMOT temperatures for S = 1.9. The
blue triangles and purple diamonds represent the measured and
simulated nMOT temperatures for S = 60. The dashed purple line
is a guide to the eye. (b) and (c) are the theoretical absorption
images for nMOT beam detunings of −2π × 220 kHz and
−2π × 40 kHz, respectively.

The dependence of the nMOT temperature on � for
two different values of S is shown in Figure 6(a). Firstly,
we consider a nMOT operating close to the quantum
regime with S = 1.9. The temperature is essentially in-
dependent of �, since as shown in Figure 4 the position
of the nMOT just tracks the resonance condition, and
the number of scattering events each atoms experiences
remains largely unchanged. In this regime, our model is
again in excellent agreementwith themeasurements with
no adjustable parameters.

(a)

(b)

Figure 7. Experimental (blue triangles) and theoretical (purple
circles) nMOT temperatures as a function of time after a decrease
(a) or increase (b) in nMOT laser beam power. The two nMOT
beam powers used here were S = 14 and 31. The normalized
residuals Rν , normalized to the error bars, are shown below each
figure. The dashed lines show Rν = ±2.

At higher intensity (S = 60) the nMOT operates in
the power-broadened regime (II). As expected the cloud
is hotter, and the temperature is also observed to be
largely independent of detuning again. The model is in
excellent agreement for |�| > 2π × 140 kHz, but begins
to deviate significantly from experiment close to reso-
nance. Here, the power-broadened linewidth begins to
approach the Zeeman splitting in the excited state. Thus,
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Figure 8. Theoretical nMOT dynamics of the simulated crossed FORT with a trap depth of 5 µK. The top and bottom row shows a
theoretical absorption image in the x̂ − ẑ and x̂ − ŷ plane, respectively. All images in each row have the same colour-scale in order to
show particle dynamics.

the nMOT crosses over into the conventional ‘Doppler’
regime (I) where the linewidth is dominant, forming near
the quadrupole zero, as shown in Figure 6(c). As a result,
our key assumption that the atoms scatter independently
on each of the three Zeeman transitions no longer holds,
and the model breaks down.

As well as the equilibrium properties, we have also
considered whether our model can reproduce the out-
of-equilibrium dynamics of the nMOT. To do this, we
looked at the response of the temperature to a sudden
increase or decrease in the power of the laser beams.
Initially, the nMOT was allowed to reach equilibrium at
S = S0. At t = 0, S is suddenly decreased (increased) to a
new value S′. Experimental measurements of the subse-
quent cooling (heating) are shown in Figure 7, along with
the results of the simulation.The agreement is excellent in
both cases. More quantitatively, the reduced chi-squared
statistics (39) were χ2

ν = 0.7 and 1.8, respectively, illus-
trating that our technique quantitatively reproduces both
the steady-state and dynamic properties of the nMOT.

In summary, in the regimes of interest for experi-
ment, where the nMOT is cold and dense, the results in
Figures 3–7 show that our approach yields highly accu-
rate quantitative predictions for the position, size, tem-
perature and dynamics of the nMOT, requiring knowl-
edge only of the experimental control parameters (inten-
sity, detuning and magnetic field gradient). The model
breaks down gradually at high intensity and close to
resonance, exhibiting significant deviations only when
�′(S) ≈ �, as expected.

6. Dipole trapping

Motivated by the quantitative agreement between the-
ory and experiment reported in Section 5, we have ex-

Figure 9. Experimental (blue triangles) and theoretical (purple
circles) temperatures of the atoms in the crossed FORT as a
function of trap depth. The dashed line is a linear fit to the
simulated atom temperature. Experimental data taken from (40).

tended our model to investigate the loading of atoms
into a far off-resonance dipole trap (FORT). Optimiz-
ing the transfer of atoms into such conservative traps
is useful in applications such as optical lattice clocks
andBose–Einstein condensation. Typically, the optimum
parameters are found using an experimental exploration
of a large parameter space. The ability to quantitatively
model the transfer process would, therefore, be a useful
tool.

To compare the model to experimental data, we sim-
ulated the experiment performed by Ido et al. (40). Their
FORT consisted of two crossed laser beams with 1/e2

radius of 28 µm, operating at 800 nm.At thiswavelength,
the differential ACStark shift between the ground and ex-
cited states is negligible, facilitating the simultaneous use
of trapping and Doppler cooling. The FORT was loaded
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by first forming a single-frequency nMOT operating at
� = −200 kHz with a total beam intensity of S = 18.
Whilst the nMOT was running, the FORT beams were
then applied for a total time of 35ms before the nMOT
beams were switched off. The temperature of the atoms
in the FORT was subsequently measured using time-of-
flight expansion.

We included the effect of the FORT beams in our
model by neglecting the small differential AC Stark shift
of the cooling transition, and considering only the con-
servative optical dipole force experienced by atoms in the
ground state. Thus, an extra acceleration is included in
the Newtonian dynamics part of the model, given by:

aDT(x, y, z) = 1
M

∇U
(
x, y, z

)
, (12)

where

U
(
x, y, z

) = U0

(
e−2

[(
x−x0

)2+(
z−z0

)2]
/w2

+ e−2
[(
y−y0

)2+(
z−z0

)2]
/w2

)
. (13)

U0 is the trap depth, x0, y0 and z0 are linear offsets
in the x̂, ŷ and ẑ directions, respectively and w is the
1/e2 radius of the FORT beams. Figure 8 shows the
simulated effect of applying the crossed FORT beams
to the nMOT as a function of time. The atoms clearly
move into the high-intensity region where the FORT
beams intersect.Wealso observe a small number of atoms
leaking into each individual FORT beam which is in
qualitative agreement with experimental observations.
Ido et al. typically capture ≈ 20% of the atoms from
the nMOT into the FORT. However, the model predicts
a value of approximately double this. We attribute this
difference to the lack of collisional losses in the model.

To make a quantitative comparison with experiment,
we simulate the temperature of atoms trapped in the
FORT as a function of U0. The experimental measure-
ments shown in Figure 9 exhibit a linear dependence,
with the temperature varying in the range 0.1 − 0.2 U0.
Also shown is the simulated temperature of the atoms
captured in the FORT. The error bars on the simulated
temperature result from the Maxwell–Boltzmann fit to
the velocity distribution.

We clearly observe excellent agreement between the-
ory and experiment, once again in the absence of any
adjustable fitting parameters. Along with the images in
Figure 8 these results show that it is the interplay be-
tween the optical dipole force and laser cooling that sets
the temperature, rather than truncation of the velocity
distribution or evaporative cooling.

Looking forward, these results illustrate that our
model could be a useful tool for optimizing the loading
parameters of FORTs and optical lattices, eliminating
the time-consuming trial and error approach often used
to explore the available parameter space. By adding in
a differential AC Stark shift, the model could be easily
extended to other trapping wavelengths.

7. Conclusions

In summary,wehave constructed a semi-classicalMonte-
Carlo simulation in order to model the dynamics of a
nMOT, in particular the 88Sr 5s2 1S0 → 5s5p 3P1 nMOT.
We observed excellent quantitative agreement between
theory and experiment without fitting parameters, repli-
cating the spatial, thermal and temporal dynamics of the
system. We have also shown that we can quantitatively
produce accurate results which simulate the loading of
a crossed FORT from an operational three-dimensional
nMOT.

In future, we aim to implement atom–atom interac-
tions into the model. It will, therefore, be possible to
fully simulate loading into an optical trap in high-density
regimes where atom–atom interactions become signif-
icant. This will further mitigate the trial-and-error ap-
proach of the best parameters for loading atoms into
optical traps from nMOTs. We may also be able to sim-
ulate the dynamics of a system with large atom–atom
interactions such as those displayed by Rydberg atoms,
leading to a greater understanding of strongly interacting
many-body systems.

Notes

1. This is only true for the bosonic isotopes.
2. The simulation is written in Python and makes use of

parallelization packages (psutil) in order to reduce the
computation time. A typical running time to simulate a
nMOTusing a standard desktop computer with an Intel
Core i5-4690 Processor with 5000 atoms up to a time of
15ms is ≈ 1 h.

3. The angular dependence of the spontaneous emission
rate is neglected. Although the atoms scatter predomi-
nantly on a σ− transition (in regime II and II), which
favours emission in the horizontal plane (by a factor of
2), the agreement we observe with the model suggests
that this effect is not significant.
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