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The organisms of the genus Lysobacter have been recognized as prolific 

producers of bioactive secondary metabolites, making them potentially valuable as 

biocontrol agents and as sources of compounds for drug leads.  This study was aimed at 

understanding the regulatory mechanisms that underlie the production of secondary 

metabolites in our study organism, Lysobacter enzymogenes. Since secondary 

metabolism is energetically costly, we sought not only to elucidate the biosynthetic 

chemistry by which the bioactive molecules were constructed, but also the regulation of 

the biosynthetic machinery. The molecular mechanisms by which L. enzymogenes 

responds to environmental conditions and transduces signals leading to secondary 

metabolism has hitherto been almost entirely unexplored. In this thesis, we show how the 

tools of molecular biology and analytical chemistry have been used to investigate the 

regulatory mechanisms of this valuable organism.  
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Dedication 

They that go down the sea in ships, that 

do business in the great waters, behold 

the works of the LORD and His wonders 

in the deep. For He commandeth, and 

raiseth the stormy wind, which lifteth up 

the waves thereof; they mount up to the 

heaven, they go down again to the 

depths; their soul is melted because of 

trouble; they reel to and fro, and stagger 

like a drunkard, and are at their wits’ 

end. Then they cry unto the LORD in their 

trouble, and He bringeth them out of 

their distresses. He maketh the storm a 

calm, so that the waves thereof are still. 

Then are they glad because they be quiet; 

so He bringeth them unto their desired 

haven. O that they would praise the LORD 

for His goodness, and for His wonderful 

works to the children of men! Let them 

exalt Him also in the congregation, and 

praise Him in the assembly of the elders. 

(Psalm 107:23-32, KJV) 
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List of abbreviations 

DSF: diffusible signal factor 

cAMP: cyclic adenosine monophosphate 

c-di-GMP: cyclic-di-guanosine monophosphate 

CRP: cAMP-receptor protein 

Clp: CRP-like protein 

KR: β-ketoreductase 

DH: dehydratase 

KS: β-ketosynthase 

ACP: acyl carrier protein 

AT: acyltransferase/acetyltransferase 

HPLC: high-pressure liquid chromatography 

NMR: nuclear magnetic resonance 

TLC: thin-layer chromatography 

PCR: polymerase chain reaction 

LeC3: Lysobacter enzymogenes strain C3 

LeOH11: Lysobacter enzymogenes strain OH11 

LeDC: clp-deletion mutant of LeC3 

LeDCA: clp- and acetyltransferase-deletion mutant of LeC3 

Xcc: Xanthomonas campestris pv. campestris 

Xoo: Xanthomonas oryzae pv. oryzae 
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Figure 1: Activity of LeC3 wild-type and 

two LeDC Clp complementation strains 

against Fusarium verticilliodes. Clp-

deletion mutant LeDC [1, 3] shows no 

activity. (Y. Xie, unpublished data). 

 

Chapter 1: Introduction  

The genus Lysobacter was proposed in 1978 to encompass a number of gliding, Gram-

negative, high G+C content bacteria which, unlike the myxobacteria, were not known to 

produce fruiting bodies.[16-17] One of the most notable features of the lysobacters was 

their production of potent lytic enzymes and secondary metabolites and their resultant 

capacity to lyse a wide variety of prokaryotic and eukaryotic organisms: both Gram-

negative and Gram-positive bacteria (including the Gram-positive actinomycetes), yeasts, 

filamentous fungi, and nematodes fall within the scope of their predation. [16, 18-19] 

Although a large number of bioactive secondary 

metabolites from Lysobacter have been isolated 

[16, 20], their biosynthetic mechanisms have 

only recently been explored, and very little has 

been reported on the regulation of Lysobacter’s 

secondary metabolism. Our quest to understand 

the molecular logic behind Lysobacter 

enzymogenes’s secondary metabolism began with 

a transposon mutant of L. enzymogenes C3, 

dubbed Le 5E4, which exhibited decreased 

gliding motility, extracellular lytic enzyme production, and antimicrobial activity. It was 

shown that the transposon’s insertion prevented the 5e4’s transcription of two genes, 

separated by only 6 bases, which were predicted to encode a CRP-like protein (Clp) and a 

Gcn5-like N-acetyltransferase (AT), respectively.[3] Complementation of mutant 5E4 

with a chromosomally-inserted copy of the clp gene mostly restored the wild-type 
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  Figure 2: dihydromaltophilin  
  (heat-stable antifungal factor, HSAF) [15] 

 

phenotype, confirming the central role of the Clp protein in regulating L. enzymogenes 

C3’s antimicrobial properties.  

 L. enzymogenes C3 exhibits potent 

antifungal activity, which was shown to 

result at least in part from a heat-stable 

antifungal factor (HSAF) which Yu et al. 

isolated and identified as dihydromaltophilin 

(Figure 2), one of a family of bioactive polycyclic tetramate macrolactams (PTMs) 

isolated from a variety of marine and terrestrial sources. [15-16, 21] Yu et al. also 

identified dihydromaltophilin’s biosynthetic gene cluster in L. enzymogenes C3, 

representing the first biosynthetic genes reported for a natural product in the polycyclic 

tetramate macrolactam family. Importantly, it was observed that the transposon mutant L. 

enzymogenes 5E4, as well as the Clp-deletion mutant L. enzymogenes DC, failed to 

produce dihydromaltophilin and also lacked concomitant antifungal activity (Figure 1). 

[12] We hypothesized that the up-regulation of dihydromaltophilin’s biosynthetic genes, 

and perhaps the up-regulation of other biosynthetic gene clusters in L.enzymogenes, 

depended on the activity of the transcription factor, Clp.  
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1.1 Overview of studies of transcription factor Clp in the 

xanthomonads 

The clp homologous gene in both L. enzymogenes C3 (LeC3) and L. enzymogenes OH11 

(LeOH11) exhibits strong homology to the cAMP-receptor-like protein (clp) gene 

discovered in the plant pathogen Xanthomonas campestris pv. campestris (Xcc) (Figure 

3).[22] 

 

Figure 3: Annotation of clp homologues and loci. (A) clp and its surrounding genes in L. enzymogenes OH11 (B) 
clp and its surrounding genes in Xanthomonas campestris pv. campestris B100. C) ClustalW alignment of clp 
homologues, with key residues highlighted.[2-4, 10-11] 

 

C)  
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The protein products of the clp homologues are transcription factors which, in Xcc, participate in 

a complex system of regulation involving a small-molecule intracellular diffusible signal 

factor (DSF), a two-component system, a small-molecule second messenger (cyclic-di-

GMP), the transcription factor Clp, and the proteins encoded in its regulon. This 

remarkable system has been extensively studied and reported in the literature, and has 

been included in a number of reviews [14, 23-26] describing bacterial intercellular 

signalling via small molecules. This general process of intercellular communication is 

often called quorum sensing, as the signals are dependent on the concentration of 

bacterial cells which secrete the molecular signals into the environment.  

In 1997 it was observed that Xcc’s wild-type phenotype could be restored to Xcc 

strains with inactivated genes in the rpf  (regulation of pathogenicity factors) locus, by 

streaking the mutant strains adjacent to, but not touching, any other strain of Xcc, with the 

exception of Xcc mutants of the rpfF or rpfB gene.[27] These observations were 

consistent with the synthesis of a small molecule diffusible signal by the gene products of 

rpfF (predicted to be an enoyl-CoA hydratase) and rpfB (an acyl-CoA ligase), and the 

secretion and diffusion of the signal molecule to adjacent cells, where their detection led 

to the upregulation of genes associated with Xcc’s pathogenicity. Later investigations 

elucidated this signaling pathway in Xcc. The diffusible signal factor (DSF) was 

identified as cis-11-methyl-2-dodecenoic acid,[28] and DSF’s membrane-bound sensor 

kinase RpfC transduces the signal by phosphorylating the intracellular effector RpfG, a 

phosphodiesterase which hydrolyzes the second messenger bis-(3’,5’)-cyclic dimeric 

guanosine monophosphate (cyclic-di-GMP or c-di-GMP).[9, 29-32] Decrease in the 

intracellular concentration of c-di-GMP leads to upregulated transcription of genes 

involved in production of virulence factors [31] and other genes such as those involved in 
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resistance to oxidative stress and in flagellum synthesis.[30] This upregulated 

transcription is, at least in part, the work of Clp, a novel transcription factor which, like 

its namesake cAMP-receptor protein (CRP), recognizes a consensus DNA sequence 

TGTGA-N6-TCACA,[31] but unlike CRP, is negatively regulated by its small molecule 

second messenger.[1] When bound by c-di-GMP, the Clp dimer adopts an asymmetric 

conformation which does not bind its cognate DNA sequence; as intracellular c-di-GMP 

concentrations fall, the Clp dimer is freed to adopt its preferred, symmetrical 

conformation, in which it can enhance transcription of numerous genes.[1, 31] Key 

residue differences between Clp and CRP allow the former to adopt its DNA-binding 

conformation in the absence of any small-molecule effector,[33] and the solved crystal 

structure of the Clp dimer as well as in silico docking studies of Clp with c-di-GMP 

allowed the identification of the residues involved in c-d-GMP binding and in 

stabilization of the symmetric dimer in the absence of c-di-GMP.[1] Mutagenesis studies 

confirmed the roles of these key residues, as did the in vitro binding of symmetric Clp 

dimer to a promoter known to be upregulated by DSF completed the pathway.[1, 34] 

Additionally, Clp, or one of the transcription factors in its regulon, may upregulate its 

own transcription, adding an additional layer of autoinduction to the system.[31] One 

interesting and important aspect of the DSF/Clp signalling system involves the 

autosuppression of DSF synthesis effected by RpfC, the membrane-bound sensor kinase. 

In addition to possessing a phosphorelay domain which ultimately phosphorylates the 

phosphodiesterase RpfG, RpfC includes an intracellular receiver (REC) domain which 

was definitively shown to interact with the DSF synthase RpfF, isolating RpfF from its 

presumed enoyl-CoA substrate and preventing DSF production.[9] This interesting 
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negative regulation of DSF synthesis via RpfC/RpfF interaction was further demonstrated 

by the crystallization of RpfF, and in vivo testing of the RpfC REC domain’s interaction 

with RpfF via a bacterial two-hybrid assay.[8] Mutational analyses of the conserved 

residues involved in this interaction, as well as overexpression of RpfC’s REC 

domain,[8-9] confirmed that RpfC negatively regulates RpfF and thus DSF synthesis, and 

explained the observation that RpfC null mutants overproduce DSF.[9] 

 Although the rpf-Clp signaling system has been best studied in Xcc, other 

xanthomonads share conserved homologous genes similar to the rpf cluster and employ a 

similar system of quorum sensing and resulting gene upregulation,[14, 35] and diffusible 

signal molecules similar to DSF (cis-11-methyl-2-dodecenoic acid) have been isolated 

from species unrelated to the xanthomonads, including Burkholderia cenocepacia and 

Pseudomonas aeruginosa,[35] showing that small fatty acids may be a common method 

of intercellular communication among the Gram-negative bacteria.   

On the basis of the signaling system described in the Introduction and the 

observation that loss of its clp homologue abolished dihydromaltophilin production and 

antifungal activity in Lysobacter enzymogenes (Figure 4), we constructed a hypothesis of 

intercellular signaling in Lysobacter enzymogenes by which DSF, or a similar signaling 

molecule, served as the initiator for an intracellular cascade that leads to Clp’s 

upregulation of  the biosynthetic genes for dihydromaltophilin, either by direct interaction 

with the promoter of the biosynthetic genes, or by upregulating transcription factors 

which in turn upregulated the biosynthetic genes.  
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Figure 4: Effects of loss of clp on dihydromaltophilin (HSAF) production and antifungal activity.  

 

   

 

Top) Ethyl acetate extractions of 
dihydromaltophilin from L. enzymogenes 
strains grown in NYGB in which 109 mM 
glucose replaced glycerol as a carbon 
source. The two clp deletion strains, 
DCA2422 and DC211,[3] were grown at a 
later date but under identical conditions. 
See row 3 of Table 2 for HPLC conditions. 
  
Bottom) antagonism of L. enzymogenes C3 
strains against Fusarium verticillioides. 
Wild-type and clp complementations of 
DC211 exhibit strong antifungal activity, 
which LeDC211 entirely lacks. 

 



8 
 

 
 

1.2 Genetic evidence for a novel rpf system in Lysobacter enzymogenes 

1.2.1 Clp homologues 

The observation that Clp, a transcription factor known to influence antimicrobial activity 

and production of extracellular lytic enzymes in LeC3,[3] also appeared to be essential 

for the production of the heat-stable antifungal dihydromaltophilin, suggested the 

existence of an rpf system in L. enzymogenes which operates in a manner analogous to 

Xcc and the other xanthomonads in which diffusible signal factors had been reported. 

Since the rpf system appears to be essential for Xcc and related plant pathogens to carry 

out their life-cycles of transmission and host infection,[27, 36-37] we postulated that L. 

enzymogenes upregulated genes related to its antimicrobial capabilities in response to 

signals transduced via the rpf two-component system and the transcription factor Clp. 

Indeed, we considered the possibility that Clp might serve as a “master switch” for L. 

enzymogenes’ secondary metabolism, allowing this bacterial predator to coordinate 

attacks en masse on potential food sources.  

 Genomic data for  LeC3, in which dihydromaltophilin’s biosynthetic genes were 

initially identified, is limited to small nucleotide sequences surrounding the 

dihydromaltophilin gene cluster[15] and the clp homologue.[3] The genes surrounding 

LeC3’s clp homologue are remarkably similar to the arrangement surrounding Xcc’s clp 

gene (Figure 1), with the notable addition to LeC3 of a predicted acetyltranferase gene, 

immediately downstream and transcribed in the same direction as  clp and shown by 

Koboyashi et al. to be transcribed along with clp on the same mRNA transcript, 

suggesting that these two gene products have some functional link.[3]  
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In Figure 5, a sequence alignment[2] of the Clp homologues from the two L. 

enzymogenes strains[3-4] OH11 and C3 with Clp from Xcc ATCC 33913 and E. coli’s 

CRP reveals how strong the resemblance
1
 is:  

 

Comparison of the solved crystal structure of Xcc’s Clp[1] to the sequence of Le’s Clp 

revealed that residues predicted to be involved in stabilization of XccClp’s dimeric, 

symmetrical structure were conserved in LeClp, as were the other key residue 

differences[1, 34] between the cAMP-receptor protein (CRP) and Clp. A BLAST 

analysis[38] revealed that LeClp exhibits 79% identity and 85% similarity to XccClp, 

rendering it unlikely that LeClp differs biochemically from XccClp. 

                                                           
1
 The amino acid sequence of Clp is identical in the three strains of Xcc (B100, 8004, and ATCC 33913) found in 

Genbank. See protein accession numbers YP_001901908.1, NP_635866.1, and YP_241587.1  
(http://www.ncbi.nlm.nih.gov/genbank/) 

Figure 5: Three clp homologues compared to E. coli’s cAMP-receptor protein (CRP).[2-6] Residues highlighted in 
green are predicted to be involved in binding c-di-GMP; residues highlighted in blue participate in H-bonds or 
salt bridges to stabilize Clp’s intrinsic DNA-binding conformation. 

   

 

http://www.ncbi.nlm.nih.gov/genbank/
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1.2.2 rpf homologues  

The entire genome of Lysobacter enzymogenes OH11 was sequenced by Qian et al.,[39-

40] enabling a search for the clp homologue’s hypothetical rpf system partners. As 

expected, genes homologous to those in Xcc encoding the membrane-bound histidine 

kinase RpfC, phosphodiesterase RpfG, acyl-CoA ligase RpfB, and enoyl-CoA hydratase 

RpfF were discovered in LeOH11’s genomic sequence.[40] The rpfC and rpfG 

homologous genes were predicted to encode the two proteins of the two-component 

system, while rpfB and rpfF were proposed to be involved in synthesis of a fatty acid 

signal molecule similar to Xcc’s DSF. Alignments[2] of the gene products of these 

homologues against the amino acid sequences of Xcc’s enzymes revealed a high level of 

homology between the four pairs of homologues.  

A BLAST analysis of LeOH11’s homologue of XccRpfC (Genbank accession 

NP_637221),[5] the transmembrane sensor which detects extracellular DSF, revealed that 

the two proteins shared 57% identity and 70% similarity.[38] In addition, comparison of 

the key residues reported for XccRpfC’s REC domain[8] (highlighted in blue in Figure 6) 

and in its phosphorelay/transfer domains[9] (highlighted in yellow in Figure 6) showed 

that all of the latter were conserved in LeOH11’s RpfC homologue, and that most of the 

former were also conserved. 
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Figure 6: Comparison of rpfC homologues in LeOH11 and Xcc. Highlighted in blue are residues involved in 
interactions with DSF synthase RpfF; highlighted in green are the active residues of the histidine kinase.[8-9] 
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 RpfG, the intracellular response regulator which partners with RpfC in Xcc, has 

two domains: a CheY-like receiver domain[9] which interacts with RpfC’s 

phosphorelay/transfer domain, and an HD-GYP domain which possesses 

phosphodiesterase activity[29] against the intracellular second messenger cyclic-di-

GMP.[32] Intriguingly, Xcc’s RpfG was shown (via yeast two-hybrid studies) to interact 

 

 with and possibly inhibit a subset of proteins containing the GGDEF domain, which is 

associated with diguanylate cyclase (i.e. c-di-GMP synthesis) activity, indicating a 

further layer of regulation.[26, 41] Our BLAST analysis of LeOH11’s homologue of 

XccRpfG (Genbank accession NP_637219) showed a remarkable 80% identity and 92% 

similarity between the two proteins, and the key HD-GYP residues were conserved 

(Figure 7). Notably, however, the BLAST analysis ignores a long N-terminal addition to 

Figure 7: Comparison of rpfG homologues in LeOH11 and Xcc. The conserved HD-GYP residues are highlighted 
in yellow. 
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XccRpfG which ends with the methionine residue which corresponds with LeOH11’s 

predicted initial Met.   

 

 Reported studies of the rpf signaling system have focused heavily on XccRpfF, 

the essential DSF synthase which, as a predicted enoyl-CoA hydratase, probably modifies 

an acyl-CoA substrate to produce the fatty acid signal. A crystal structure of XccRpfF in 

complex with RpfC’s REC domain was published in 2010, providing insight into the 

important negative regulation which the membrane-bound sensor RpfC exerts upon the 

Figure 8: Comparison of rpfF homologues from LeOH11 and Xcc. Two conserved catalytic glutamate residues, 
characteristic of isomerases, are highlighted in yellow. Residues involved in interactions with RpfC are 
highlighted in blue, and residues of the predicted hydrophobic pocket for nascent DSF’s acyl chain are highlighted 
in green 
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synthesis of its own signal.[8] In addition, it was shown that RpfF possessed the two 

conserved glutamate residues associated with enoyl-CoA hydratase activity, as opposed 

to the single Glu residue expected in an enoyl-CoA isomerase.[8] These key catalytic 

residues, as well as the residues shown by mutagenesis studies to be required for 

association between RpfG and RpfC, were conserved in LeOH11 homologues of 

XccRpfF (Genbank accession NP_637222.1), and a BLAST analysis showed 52% 

identity and 70% similarity between the two proteins. In Figure 8, the conservation of the 

key residues is shown between LeOH11 and Xcc, as well as with homologues of RpfF 

found in several related species. The conservation of RpfF-like proteins illustrates the 

likely widespread distribution of DSF-like signals among bacteria.[14] 

 In Xcc, deletion of the gene rpfB, predicted to encode an acyl-CoA ligase, resulted 

in a mutant strain unable to restore a wild-type phenotype to rpfF mutants, showing that 

rpfB’s gene product is also involved in DSF biosynthesis.[27] XccRpfB (Genbank 

accession NP_637223) is expected to be an acyl-CoA ligase which supplies RpfF with its 

acyl-thioester substrate.[5] A BLAST comparison of LeOH11’s RpfB homologue with 

XccRpfB revealed a shared identity of 76% and similarity of 86%, and their strong 

similarity is illustrated by Figure 9. 
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 As summarized in Table 1, the genes of Xcc’s well-characterized rpf system show 

a very high degree of similarity to their four homologues in LeOH11. Based on this 

genetic evidence, we hypothesized that cell-cell signaling via a DSF-like molecule might 

be the key event in the upregulation of dihydromaltophilin’s biosynthetic genes by Clp. 

Figure 9: Comparison between rpfB homologues  from LeOH11 and Xcc 
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Table 1: BLAST analyses of clp and rpf homologues of LeOH11 and Xcc AT33913 

gene # residues predicted function identity Similarity 

LeClp 229 transcription 

factor 

179/227(79%) 193/227(85%) 

XccClp 230 

LeRpfC 730 transmembrane 

sensor 

409/721(57%) 511/721(70%) 

XccRpfC 726 

LeRpfG 338 response 

regulator 

271/337(80%) 313/337(92%) 

XccRpfG 378 

LeRpfF 286 enoyl-CoA 

hydratase 

142/274(52%) 194/274(70%) 

XccRpfF 273 

LeRpfB 558 acyl-CoA 

ligase 

425/560(76%) 486/560(86%) 

XccRpfB 560 

 
 

1.2.3 Homologues of Clp’s accompanying acetyltransferase 

Perhaps most intriguing aspect of LeOH11’s clp and rpf homologues is the presence of a 

putative acetyltranferase gene seven bases downstream from the clp’s stop codon and 

shown by Koboyashi et al. to be transcriptionally linked with clp.[3] Inactivation of clp 

and the acetyltransferase (by transposon insertion), followed by complementation with 

Clp, provided a phenotype with all of LeC3’s wild-type characteristics restored, except 

for a noticeable increase in gliding motility, [3] suggesting that the clp-linked 

acetyltransferase is involved in modulating this poorly-understood behavior. Some 

eukaryotic histone acetyltransferases have been implicated in direct modifications of the 

transcription machinery;[42] furthermore, direct acetylation of transcription factors by 

GCN5-like acetyltransferases has been reported in E. coli, adding yet another regulatory 

layer to gene expression.[43] We therefore speculated that Clp’s  
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Figure 10: Comparisons between LeC3's putative acetyltransferase and some of the most similar sequences 
returned by BLAST analysis. Conserved residues which we hypothesize are involved in acetyl-CoA binding are 
highlighted. 
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acetyltransferase might by some mechanism be involved in modulating expression in 

Clp’s regulon.  

The LeC3 acetyltransferase shows some homology with known GCN5 (general 

control non-repressed)-family of N-acetyltransferases, which are associated with histone 

acetylation in eukaryotes.[44] These enzymes generally feature a conserved mechanism: 

the acetyl-CoA substrate is bound by conserved motif, and acetylation of the accepting 

amine (usually a lysine residue) is activated by means of proton abstraction by a general 

base (usually a conserved glutamate residue).[45-46] However, a BLAST search reveals 

that the LeC3’s putative transferase shows strongest homology to a number of apparently 

uncharacterized acetyltransferases in bacteria, and its homology to the well-characterized 

HAT1 from eukaryote Saccharomyces cerevisiae is mostly limited to its putative acetyl-

CoA-binding region (Figure 10).[47] The alignments shown in Figure 10B include two 

yeast histone acetyltransferases (HATs) with solved structures[46-47], and a  careful 

comparison of the conserved acetyl-CoA-binding motif (R/HXXGXGXXL) between 

LeC3’s acetyltransferase and the solved eukaryotic HATs led us to propose a targeted 

inactivation of the LeC3’s acetyltransferase by deleting six residues (HGXGIG) involved 

in binding the enzyme’s co-substrate acetyl-CoA. However, we have so far been unable 

to recover a mutant bearing the expected deletion, which may suggest that expression of 

Clp without its acetyltransferase has adverse consequences. 
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Figure 11: DSF and analogous compounds extracted from 
culture supernatants of Gram-negative bacteria. [14] 

 

Chapter 2: Diffusible signal factors in Lysobacter enzymogenes 

Koboyashi et al. noted in 2005 that 

the effects of Clp’s deletion in Xcc 

paralleled those in LeC3: production 

of extracellular enzymes, pigment, 

and extracellular polysaccharides, as 

well as pathogenicity, appear to be 

regulated by Clp in both species.[3] 

We hypothesized that LeC3 and 

LeOH11 similarly use diffusible 

signal factors to coordinate their own 

pathogenicity against fungi or 

bacteria. The first diffusible signal factor identified from Xcc was cis-11-methyl-2-

dodecenoic acid,[28] but the application of improved extraction procedures to Xcc and 

other xanthomonads revealed several similar molecules which provided bioactivities 

similar, though sometimes to varying degrees, to the first DSF. Xanthomonas oryzae pv. 

oryzae (Xoo) produces three DSF-like signal molecules, including DSF itself and two 

fatty acid analogues.[37] Xylella fastidiosa secretes a fatty acid with DSF-like 

activity,[36] but unlike DSF, the signal molecule is an unsaturated fatty acid with a 

methyl branch on the antepenultimate rather than the penultimate carbon on the acyl 

chain.[48] Stenotrophomonas maltophilia produces eight fatty acid signal-like 

molecules,[49] including DSF itself which is involved in signaling for bacterial virulence 

and antibiotic resistance.[50] In all of these organisms, the DSF-like molecules are 
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associated with rpf homologues (Figure 11).[36-37, 50] Non-xanthomonads, such as 

species of the Burkholderia cepacia complex, also produce DSF and its analogues. [14, 

51] The use of small fatty acids as intercellular signals seems clearly to be widespread 

among the Gram-negative bacteria. 

2.1 Culturing conditions 

 In our search for DSF in L. enzymogenes, our basic assumption was that culturing 

conditions supporting production of dihydromaltophilin would also support production of 

DSF, since dihydromaltophilin was known to depend upon Clp, which in turn depended 

upon the DSF  

and rpf system, according to the hypothetical similarity between L. enzymogenes and Xcc. 

We first established that Clp was an absolute requirement for dihydromaltophilin 

production by culturing the LeC3 clp deletion mutant, LeDC211,[3] in various media 

(Figure 

12).

 

Figure 12: Dihydromaltophilin (HSAF) extracted LeC3 wild-type but absent from LeDC. [12] 

 



21 
 

 
 

Generally, the medium of choice for dihydromaltophilin production was tryptic soy broth 

(TSB) (17 g/L casein, 3 g/L soy peptone, 5 g/L sodium chloride, 2.5 g/L potassium 

phosphate monobasic, 2.5 g/L glucose) diluted tenfold and incubated at 28 °C with  

LeDC 

 

 

LeC3 wild-type 
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Figure 13: Dihydromaltophilin (HSAF) production in various media. HPLC conditions: row 3 of Table 2 

A) Ethyl acetate extraction of LeC3 grown in NYGB supplied with 200 mM glycerol 

(top) and in NYGB in which glycerol is replaced with 100 mM glucose. 

 

B) Extractions of dihydromaltophilin (HSAF) from LeC3 (top) and LeDC (bottom) in 

NYGB  in which glycerol is replaced with 40 mM maltose. 

 
C) Extractions of dihydromaltophilin (HSAF) from LeC3 (top) and LeDC (bottom) in 

NYGB in which glycerol is replaced with 40 mM lactose. 
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shaking for 2-3 days after inoculation with LeC3 or LeOH11 or mutants thereof.[15] 

Although 10% TSB was originally chosen because conditions of poor nutrition were 

thought to favor secondary metabolism, we discovered in the course of our experiments 

that media of considerably richer nutritional content strongly supported production of 

dihydromaltophilin and its analogues (Figure 13). NYGB (5 g/L peptone; 3 g/L yeast 

extract; 20 g/L glycerol), the medium used to cultivate Xcc and Xoo for DSF 

production,[28, 37] was found to support a high level of dihydromaltophilin production in 

L. enzymogenes. When 20 g/L glycerol (equivalent to 217 mM) was replaced with 108 

mM glucose, dihydromaltophilin production seemed, if anything, to increase (Figure 13A). 

Supplements with various carbohydrates (glycerol, glucose, maltose, and lactose) 

appeared generally to increase dihydromaltophilin production over that observed in 10% 

TSB, an observation which seemed to contradict the previous assumption that extremely 

poor media was necessary to encourage secondary metabolism in L. enzymogenes. 

Another possibility is that supplying an elevated level of carbohydrates induces 

dihydromaltophilin production by an unknown mechanism. 

The observation that rich nutritional conditions, which supported growth to 

extremely high optical densities, still supported secondary metabolism seemed to support 

our hypothesis that quorum sensing, mediated by a small DSF-like signal and L. 

enzymogenes’s analogues of the rpf/Clp system, led to upregulation of 

dihydromaltophilin’s biosynthetic gene machinery. No medium, poor or rich, was found 

which supported production of dihydromaltophilin in Le 5E4, LeDC211, or LeDCA2422, 

the Clp disruption/deletion mutants provided by Koboyashi et al,[3] suggesting that the 

dihydromaltophilin biosynthetic genes lies completely in Clp’s regulon, upregulated 
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either directly or by a downstream transcription factor, and that there is no alternative 

regulation pathway circumventing Clp that leads to dihydromaltophilin’s biosynthesis.  

2.2: Extraction of DSF-like molecules using ethyl acetate 

Isolation of the diffusible signal factors has generally relied on the difference in polarity 

between the fatty acid signaling molecules and their aqueous milieu. In the original 

extraction of DSF from Xcc, the bacteria were grown to a high optical density, removed 

by centrifugation, and the supernatant twice extracted by 0.3 volumes of ethyl acetate 

(equilibrated with NaHCO3 solution), and the residue redissolved and fractionated on a 

column of silica gel 60.[27] Sufficient DSF for structural determination was obtained 

from ethyl acetate extractions of 30 L of an rpfC mutant of Xcc (which, lacking RpfC’s 

RpfF-repressing domain, overproduces DSF), followed by purification using flash 

chromatography and HPLC, which yielded ~2 mg of pure material.[28] Because of the 

fatty acids’ relatively low pKa (<4.5), reducing the pH of the supernatant to ~4.0 ensured 

that any free fatty acids were fully neutralized, preventing the ionized carboxylate from 

favoring the aqueous phase over the organic phase during partition.[37]  

 Our extractions of cultures of Lysobacter enzymogenes C3 or OH11 followed this 

protocol closely. LeC3 or OH11 (wild-type or mutant strains) were grown in NYGB to 

maximum optical density (OD600 ≈ 1.8), which generally took 48-72 hrs. at 28-30 °C, in 

an incubator with shaking at 200 rpm. Centrifugation was carried out at 4000 rpm in a 

Sorvall Legend RT centrifuge (radius = 21.3 cm for swinging bucket rotor [52]) at 4 °C, 

and 37% HCl was added to the supernatant until the pH   4 (determined visually by 

pHydrion 1-to-12 litmus paper (MicroEssential Laboratories, New York)). The 

supernatant was then extracted with an equal volume of ethyl acetate ( 99.5%, Sigma-
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Aldrich), and the aqueous and organic phases allowed to partition. The organic phase was 

then separated from the aqueous phase using a separatory funnel; at this stage, an 

emulsion often formed that could be minimized by vigorously swirling the ethyl 

acetate/aqueous phase mixture in the separatory funnel before draining the aqueous 

phase. The ethyl acetate was then evaporated using rotary evaporation apparatus (Büchi 

Rotovapor R-200) with a water bath set at 40 °C, and the yellowish residue stored at 

room temperature while the ethyl acetate was re-used to do a second extraction of the 

aqueous phase. Once the second extraction was complete, the combined residues (we 

expected around 200 mg from an ethyl acetate extraction of a 72-hr, 500 mL NYGB 

culture) were redissolved in small volumes (~1-5 mL) of methanol, ethyl acetate, or 

dichloromethane, and subjected to further separations or evaluations for biological 

activity. 

2.3 Extract fractionation and isolation of compounds of interest by HPLC 

and flash chromatography 

Numerous variations of standard separation techniques were attempted in our effort to 

isolate a DSF-like molecule from cultures of LeC3 or LeOH11. Because we could not be 

certain that the hypothetical diffusible signal factor produced by L. enzymogenes would 

be identical to any of the known DSFs, we focused on those fractions containing the 

hydrophobic metabolites similar to the original DSF, cis-11-methyl-2-dodecenoic acid. 

Throughout 2011 and the first half of 2012, we were able to purchase small amounts (~2 

mg) of synthetic DSF from Cayman Chemical,[53] but an interruption in the availability 

of feedstock of DSF synthesis interfered with continuation of experiments using this 

chemical. However, we were able to use our available supply of DSF to as an HPLC 
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standard, helping to identify the fractions in which a Lysobacter DSF would most likely 

be present. 

 After redissolving the residues of the ethyl acetate extractions in the chosen 

solvent, we usually reserved a small portion of the crude extract for a direct test of 

biological activity (described below). The remaining crude extract was further 

fractionated into increasingly hydrophobic portions, using flash chromatography, high-

pressure liquid chromatography (HPLC), thin-layer chromatography (TLC), or a 

combination of these methods. Several different HPLC methods were used, based on the 

requirements of the extraction and on the availability of HPLC columns. Most often, we 

used a program developed for separating metabolites extracted from LeC3, and 

specifically for detecting dihydromaltophilin and its analogues. We used water and 

acetonitrile as solvents A and B, respectively, with each solvent containing 0.025% (v/v) 

trifluoroacetic acid, which we later replaced with 0.05% formic acid. The separations 

were generally carried out on a Varian Prostar HPLC system, with some done on an 

Agilent 1220 Infinity LC system. All solvents were filtered before use. The programs are 

summarized in Table 2: 
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Following the reported methods of DSF detection, the detector wavelength was usually 

212 nm,[37] but was occasionally set at 220 nm. HPLC was sometimes used for 

fractionation of the samples, by collecting the peaks as they emerged from the UV 

detector and evaporating the water-acetonitrile solvent using an air stream at room 

temperature (Figure 14). In all of the methods cited in Table 2, synthetic DSF eluted after 

dihydromaltophilin and its analogues, allowing us to concentrate on compounds which 

Table 2: columns and methods used for HPLC of L. enzymogenes culture extracts 

Method Column Solvent A Solvent B Conditions 

1. C3 4.6 mm x 250 

mm C18, 5 

um particle 

size, Grace 

Alltima 

H2O 

(+0.05% 

formic acid or 

0.025% TFA) 

CH3CN 

(+0.05% formic 

acid or 0.025% 

TFA) 

0-10 min, 5-40% B; 10-15 min, 40-80% B; 

15-20 min, 80% B; 20-21 min, 80-100% B; 

21-23 min, 100% B; 23-25 min, 100-5% B 

2. C3-std 4.6 mm x 250 

mm C18, 5 

um particle 

size, Grace 

Alltima 

H2O 

(+0.05% 

formic acid or 

0.025% TFA) 

CH3CN 

(+0.05% formic 

acid or 0.025% 

TFA) 

0-10 min, 5-40% B; 10-15 min, 40-80% B; 

15-20 min, 80% B; 20-21 min, 80-100% B; 

21-23 min, 100% B; 23-28 min, 100-5% B; 

28-30 min, 5% B 

3. C3-

for150mm 

4.6 mm x 150 

mm C18, 5 

um particle 

size,  Zorbax 

H2O 

(+0.05% 

formic acid or 

0.025% TFA) 

CH3CN 

(+0.05% formic 

acid or 0.025% 

TFA) 

0-5 min, 5-40% B; 5-15 min, 40-60% B; 15-

16 min, 60-100% B; 16-17 min, 100-5% B; 

17-20 min, 5% B 

4. New  4.6 mm x 250 

mm C18, 5 

um particle 

size, Grace 

Alltima 

H2O 

(+0.05% 

formic acid or 

0.025% TFA) 

CH3CN 

(+0.05% formic 

acid or 0.025% 

TFA) 

0-10 min, 5-20% B; 10-13 min, 20-70% B; 

13-17 min, 70-95% B; 17-20 min, 95% B; 20-

22 min, 95-5% B; 22-27 min, 5% B 

5. Dihydro-

maltophilin 

detection in 

75mm 

(DM75) 

4.6 mm x 50 

mm C18, 2.7 

um particle 

size, Agilent 

Poroshell 

 

H2O 

(+0.05% 

formic acid or 

0.025% TFA) 

CH3CN 

(+0.05% formic 

acid or 0.025% 

TFA) 

0-5 min, 5-40% B; 5-15 min, 40-50% B; 15-

20 min, 50-90% B; 20-25 min, 90-5% B; 25-

30 min, 5% B 
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eluted late in each run.                   

 

 Extracts of large cultures of L. enzymogenes (0.5-2 L) were initially fractionated 

using flash chromatography, with silica gel 60 (mass of silica gel = mass of dried residue 

× 30) packed in 40 mL hexane serving as the stationary phase. The crude residue (~200 

mg) was redissolved  in dichloromethane and slowly spotted and dried onto 200 mg of 

Figure 14: HPLC analysis of ethyl acetate extracts of L. enzymogenes. Method 2, Table 2 

A) Ethyl acetate extractions of LeC3 (top) and LeOH11 (bottom) wild-type strains grown 

in 10% TSB supplemented with 5 mM lactose. Unusually, LeOH11 failed to produce 

dihydromaltophilin (HSAF) in this experiment.  

 

B) Peaks purified by HPLC from LeOH11. Synthetic DSF serves as a standard. 
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silica gel to allow the sample to be dry-loaded onto the silica gel column. The column 

was then washed with successive 100-mL volumes of hexane/acetone, in ratios of  4:1, 

3:1, 2:1, and finally 100% acetone. Eluents were collected in 10-mL volumes, and the 

presence of metabolites in each 10-mL elution was monitored by thin-layer 

chromatography (TLC). The same solvent system used for elution was used for the TLC 

analysis of each 10-mL fraction. The samples were spotted onto silica gel TLC plates and 

allowed to develop for 10 minutes at room temperature. After drying, the plates were 

visualized by immersion is solid I2 and then in 5% H2SO4 in ethyl acetate, followed by 

drying over a hot plate. Metabolites were then viewed under visible or ultraviolet (λ = 

254 nm) light. HPLC analysis clarified the compounds in each fraction (Figure 15). 

 

 Combined with the ethyl acetate extractions 

described in Chapter 2.5, these protocols were 

designed to extract fatty acid-type metabolites from 

the supernatants of Lysobacter cultures. The utility 

of these measures is demonstrated by the successful 

extraction, purification, and spectroscopic identification of two relatively nonpolar acids, 

vanillic acid (1) and pyrrole-2-carboxylic acid (2) (Figure 16) from the supernatant of 

Figure 15: Extract from LeC3 fractionated by flash chromatography. Method 2, Table 2 

 
 

 

Figure 16: vanillic acid (1) and pyrrole-2-
carboxylic acid (2) 
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LeC3 cultured in NYGB medium. These two metabolites were initially of some interest 

because of the possibility of their involvement in some type of intercellular signaling, 

although their dissimilarity to fatty acid-type signal molecules made it seem quite 

unlikely that either molecule was involved in recognition by a Lysobacter homologue of 

RpfC, the transmembrane DSF sensor.  

2.4: MS and LC-MS analysis 

For mass analysis of the compounds in the fractionated extracts of L. enzymogenes 

culture, we optimized a method of liquid chromatography-mass spectrometry (LC-MS) 

using an Agilent 1220 Infinity LC high-pressure liquid chromatography system interfaced 

with a Finnigan LCQ ion trap mass spectrometer. A 250 mm × 1.0 mm chromatography 

column (octadecylsilyl (C18) stationary phase, 5 μm particle size) was purchased from 

Grace Davidson and used for all LC-MS experiments. Reported fatty acid analyses by 

mass spectrometry usually involved dissolving the samples in methanol or acetonitrile, 

with 5 mM ammonium acetate to favor deprotonation of the fatty acid.[54] Negative-

mode electrospray ionization (ESI) is the method of choice for anionic species like fatty 

acid conjugates,[54-58] so we expected to observe mostly the [M – H
+
]

-
 peak for acidic 

analytes. Based on mass spectrometer conditions reported in the literature [57-58] and 

our own experimentations with synthetic DSF (Cayman Chemical, Ann Arbor, Michigan) 

and with 10-undecenoic acid, we found that ionization and detection were optimized 

under the following conditions: the capillary temperature was set at 220 °C and the 

capillary voltage at -42 V. The tube lens offset was varied between -20 and -30 V and the 

injection flow rate was usually 10 μL/min when we directly injected pure, or nearly pure,  
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Figure 17: mass spectra of standard fatty acids 

A) 30 μM synthetic DSF (Cayman Chemical, Ann Arbor) 

 
B) 58 μM 10-undecenoic acid (Sigma)
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samples into the mass spectrometer. Fatty acid samples were dissolved in methanol with 

5 mM ammonium acetate, and sample concentrations were 30-60 μM (Figure 17).  

When possible, we also performed tandem MS/MS in the same instrument by 

isolating the [M – H
+
]

-
 fragment and performing collision-induced dissociation (CID) 

with a collision energy of 40-50%. Appearance of an of intense peak 44 mass units 

lighter than the isolated [M – H
+
]

-
 peak strongly suggested that the ion of interest had 

fragmented to carbon dioxide and an alkyl group, confirming that the isolated ion was a 

deprotonated carboxylic acid (Figure 18, Figure 21). All mass spectra were analyzed using 

XCalibur software.  

Conditions were also optimized for LC-MS analysis of sample fractions 

containing several compounds. Combinations of acetonitrile and water, or methanol and 

water, were tested in the optimization process, Several isocratic programs were tested, 

Figure 18: MS/MS analysis of a standard fatty acid (10-undecenoic acid) 
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but we were able to obtain adequate separations of the Lysobacter culture extracts by 

switching to a gradient program (“Gradient4@0.05”) with the following parameters: 

from 0-15 minutes solvent B increased from 1% to 40%; 15-25 min., solvent B increased 

to 80%; 25-30 min., solvent B increased to 100%; 30-45 min., solvent B decreased to 

1%; 45-60 min., solvent B was held constant at 1%. Because pure water with 5 mM 

ammonium acetate was found to support rapid bacterial growth, we chose 22% methanol 

in water, with 5 mM ammonium acetate, as Solvent A, with 100% methanol with 5 mM 

ammonium acetate as Solvent B. This program, combined with the mass spectra 

conditions described above, allowed for the separation and analysis of the fractionated 

extracts from L. enzymogenes cultures (Figure 19). 

 

Figure 19: LC-MS analysis of LeC3 extract containing pyrrole-2-carboxylic acid. Formic acid was consistent 
contaminant under these conditions. 

 
   Absorbance at 212 nm   ESI mass spectrum 
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For high-resolution mass spectrometry, we submitted pure samples first screened 

on the Finnigan LCQ ion trap to the Nebraska Center for Mass Spectrometry. Data from a 

Synapt time-of-flight mass spectrometer provided mass spectra at a resolution of 433 

ppm using negative mode ESI. Only samples purified by HPLC were submitted for high-

resolution mass spectra analysis. The identity of the isolated vanillic acid was confirmed 

by its exact mass (Figure 20) and by the identical retention times of a synthetic standard 

and the isolated compound. 

Careful analysis of the 

masses and retention times of 

compounds from the L. 

enzymogenes culture extracts 

provided no clear indications 

of a DSF-like molecule. Our 

search specifically for a 

hydrophobic compound with a 

nominal mass between 200 and 

300 with the mass spectral 

characteristics of a fatty acid 

did not yield any good 

candidates.  

 

  

Figure 20: high-resolution mass spectrum of isolated vanillic acid 
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Figure 21: isolated vanillic acid from fractionated extract 

A) ESI mass spectrum of isolated vanillic acid 

 

B) Tandem MS/MS of isolated vanillic acid. Loss of CO2 provides the base 

peak. 
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2.5: NMR analysis 

Nuclear magnetic 

resonance analysis of 

samples, purified by HPLC 

as described above and 

dissolved in deuterated 

methanol (final 

concentration 20 mg/mL) 

were submitted to the 

Department of Chemistry 

Research Instrumentation 

Facility for analysis on a 

Bruker AVANCE DRX 

500 MHz NMR 

instrument. 
1
H and 

13
C 

NMR data were combined 

with mass spectral and 

HPLC retention time 

information in an effort to 

identify purified 

compounds, but only the 

identity of pyrrole-2-

carboxylic acid was 

Figure 22: 
1
H and 

13
C NMR data for isolated pyrrole-2-carboxylic acid 

A) 1
H NMR spectrum of pyrrole-2-carboxylic acid 

 
B) 13

C NMR spectra of pyrrole-2-carboxylic acid 
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unambiguously confirmed by NMR spectroscopy (Figure 22). None of the isolated 

compounds yielded spectrometric data which appeared to be similar to fatty acid-type 

DSF-like molecules.  
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2.6: Bioassay screening for fractions with DSF-like activity 

Several methods of screening crude cellular extracts for DSF-like molecules with 

signaling actiivty have been reported in the literature. All make use of an Xcc transposon-

disruption mutant of the rpfF gene, Xcc 8523, which is unable to synthesize DSF,[27] and 

therefore lacks several of the phenotypic traits of Xcc wild-type. Exogenous DSF, from 

another bacterial strain co-cultured with Xcc 8523, or from extracted or synthesized 

compounds, can restore these phenotypes in a semi-quantifiable manner. The first bio-

detection assay reported by Barber et al. involved the restoration of endoglucanase or 

protease production to Xcc 8523 cultured on plates containing 0.5% skimmed milk (to 

reveal protease production) or carboxymethylcellulose (sensitive to endoglucanases). 

Quantification of the DSF dose dependence of the restoration required measurement of a 

“hydrolysis zone” around the DSF-rescued colony of Xcc 8523.[27]  

An improved bioassay procedure was constructed by Slater et al. by fusing a 

region of DNA containing a Clp-cognate promoter and ribosome binding site (RBS) with 

the coding sequence of E. coli’s β-glucuronidase (gusA) and cloning the fusion construct 

into a broad-host-range vector, pLAFR6, and transforming the resulting plasmid (named 

pL6engGUS) into the rpfF mutant strain Xcc 8523, yielding a biosensing strain Xcc 

8523/pL6engGUS. In the presence of exogenous DSF, Xcc 8523/pL6engGUS up-

regulates the gusA gene and produces β-glucuronidase, which can in turn cleave the 

chromophore from 5-bromo-4-chloro-3-indolyl-b-D-glucuronide (X-GlcA) and produce a 

blue halo around the DSF-sensing colony.[29] The level of gusA induction is related to 

the dose of DSF. This biosensing system was employed in the detection of DSF in the 
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process of its structural elucidation,[28] and to identify DSF and structural analogues 

from Xanthomonas oryzae pv. oryzae[37] and the Burkholderia cepacia complex.[51]  

Notably, the promoter and RBS chosen for constructing the biosensor Xcc 

8523/pL6engGUS was from the gene for Xcc’s major endoglucanase, engXCA, the 

transcription of which was later shown to be up-regulated by the direct binding of Clp to 

two conserved sites near its -35 sequence.[59] The endoglucanase encoded by engXCA is 

an extracellular 53-kDA protein which is one of wild-type Xcc’s major virulence 

factors,[59] and studies of its regulation contributed to elucidation of the DSF/rpf 

signaling system and its relationship to the transcription factor Clp.  

 A variation of the DSF biosensor detection method was constructed by Newman 

et al. at UC Berkeley during studies of the insect-vectored plant pathogen Xylella 

fastidiosa. The same promoter-containing sequence (~378 bp) from the engXCA gene 

was fused to a promoterless gfp gene on a plasmid conferring spectinomycin and 

streptomycin resistance, and the resulting construct (pKLN55) was mated into the rpfF 

mutant Xcc 8523.[36] The biosensing strain Xcc 8523/pKLN55 expresses green 

fluorescent protein (GFP) in the presence of exogenous DSF, and indeed the plasmid 

pKLN55 provides a hypothetical method of directly detecting the presence of active Clp 

by the upregulation of the gfp gene and the resulting expression of green fluorescent 

protein. In 2010, the lab of Steven Lindow at UC-Berkeley graciously provided us with 

the biosensor strain Xcc 8523/pKLN55, and we subsequently developed a similar 

procedure for exogenous DSF detection. 

 Following the protocol described by Newman et al., we inoculated liquid NYGB 

medium with biosensing strain Xcc 8523/pKLN55 and incubated for 24 hours at 30 °C. 
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Using a micropipette, 5-10 μL of biosensor culture was spotted onto LB plates along with 

a control or a putative source of DSF or DSF analogues. The biosensor was incubated at 

28-30 °C for a further 48 hours, then visualized using confocal microscopy. An excitation 

wavelength of 489 nm applied to the biosensor and expressed GFP emitted a wavelength 

of 509 nm. The method of visualization proved to be important. High magnification of 

the biosensor made distinguishing between controls difficult, as individual cells 

occasionally express GFP even in the presence of negative controls, and this background 

fluorescence could not be distinguished from that induced by DSF detection. We chose to 

use minimal magnification (10X) of individual “colonies” spotted onto the LB, and 

visualize the GFP expression of entire colonies against the background of the agar. 

Negative controls were used to set a zero point of GFP expression, and GFP expression 

of experimental plates was compared to that of the negative control. For a positive 

control, to test the continued utility of the biosensor strain under our chosen growth 

conditions, we placed 1-2 μL of synthetic DSF (Cayman Chemical; diluted to 470 or 47 

μM) dissolved in ethyl acetate on a sterile paper disc near the spotted biosensor 

“colonies.”  

 While some individual bioassays yielded apparently positive results (Figure 24) in 

which crude extracts from L. enzymogenes induced levels of GFP in the biosensor Xcc 

8523 (pKLN55); the result could not be replicated, and seemed to be discredited by 

moderate levels of GFP in other negative controls (Figure 25). It became clear that the 

level of GFP expression in the biosensing strain could vary between plates, and GFP 

induction by the same extract could disappear after a few days (Figure 23).  
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Because the high production of dihydromaltophilin in L. enzymogenes C3 and OH11 

wild-type strains might interfere with attempts to purify a DSF-like molecule, we carried 

out several extractions using the LeC3 ΔKR mutant, in which the β-ketoreductase domain 

of dihydromaltophilin’s polyketide synthase had been inactivated by a targeted mutation 

Figure 25: Biosensor’s GFP expression suggests detection of an extracted L. enzymogenes DSF 

 

Figure 23: a false positive 

 

Figure 24: Instability of apparently positive bioassay results 
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(see Chapter 5). Crude extracts of LeC3 ΔKR appeared to induce a moderate level of 

GFP expression in the biosensor (Figure 26) in a manner similar to what had been 

observed in the wild-type strains, but HPLC analysis of the crude extract did not present 

any candidate peaks in for a DSF-like molecule. Further fractionation of the extract 

yielded samples which failed to induce GFP in the biosensor (Figure 27), and even the 

crude extract could not replicate it previous level of GFP induction. 

 

Figure 26: Bioassay of crude extract from LeC3 ΔKR 
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These results suggested either induction by a highly unstable DSF-like molecule—much 

more unstable than DSF itself, which retained its bioactivity for many months when 

stored in ethyl acetate at -20 °C, and has been reported to be chemically and thermally 

robust[27]—or else that the low and variable levels of GFP induced in the biosensor by L. 

enzymogenes extracts were nonspecific and thus not replicable. A third possibility—that 

L. enzymogenes produces a DSF-like molecule that is both unstable and sufficiently 

dissimilar to DSF to limit recognition and response by the biosensor Xcc 8523 

(pKLN55)—cannot be absolutely discounted; but HPLC analysis of the fresh L. 

enzymogenes extracts designed to recover hydrophobic carboxylic acids revealed a 

conspicuous absence of any notable peaks corresponding to the elution times of fatty 

acid-type compounds (Figure 28). It is also possible that production of DSF-like 

molecules in L. enzymogenes is extremely low under the conditions tested. 

Figure 27: Further fractionations of LeC3 ΔKR extract 

 



44 
 

 
 

 

Although positive controls using synthetic DSF always provided high levels of GFP 

expression, none of our experimental results showed unambiguously positive results in 

which extracts of L. enzymogenes cultures induced levels of GFP expression comparable 

with the positive control. Low but varying levels of GFP expression was often observed 

even in negative controls (i.e. when the biosensor was exposed to sterile media, pure 

methanol, or pure ethyl acetate), and distinguishing a weakly positive signal from a 

negative signal became a disturbingly subjective exercise. Analysis of all the results 

appears to support the conclusion that none of the tested Lysobacter strains, either as co-

cultures with the biosensor or as crude or fractionated extracts added to the plate, induced 

GFP expression significantly and unambiguously above background. This conclusion is 

strengthened by comparison of our Lysobacter results with the positive results reported 

by the Lindow lab using Xylella.[36] Although contradicting our hypothesis that L. 

enzymogenes possesses a cell-cell signaling system analogous to the rpf/Clp system in 

Xcc, this conclusion concurs with our failure to detect any significant DSF-like 

compounds during HPLC and MS analysis of Lysobacter culture extracts.  

Figure 28: HPLC analysis of LeC3 ΔKR extract compared with the retention times of known fatty acids (DSF and 
10-undecenoic acid) 
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2.7: Summary of results 

In summary, we believe that these data demonstrate the utility of the isolation and 

analytical techniques applied to the extracts of Lysobacter enzymogenes cultures. Our 

failure to detect any DSF-like molecules using these techniques do not, of course, 

preclude their presence in these cultures, perhaps at concentrations below the detection 

limits; nor can we exclude the possibility that DSFs are present only at specific times in 

the growth curve, or are produced under different growth conditions than those we tested, 

supplying some signal entirely unrelated to dihydromaltophilin production. However, the 

data we have amassed here seems to indicate that production of dihydromaltophilin does 

not correlate with any accumulation of a DSF-like molecule in the culture supernatant, 

and therefore suggests that the Clp homologue in L. enzymogenes operates independently 

of the gene products of the rpf homologues. Genetic experiments, discussed in Chapter 3, 

further support this hypothesis, and even suggest that the Clp homologue in L. 

enzymogenes may be constitutive in nature, acting in a [c-di-GMP]-insensitive manner. 

The two representative molecules discussed in the chapters on analytical 

techniques are interesting in their own right, despite the absence of any apparent 

connection to Clp or dihydromaltophilin production in L. enzymogenes. Free pyrrole-2-

carboxylic acid has been isolated from several bacterial species,[60] and its biosynthesis 

from proline, prior to incorporation into larger natural products, has been investigated in 

a number of biosynthetic pathways.[61-64] We were intrigued by the fact that pyrrole-2-

carboxylic acid is known to furnish the precursor for pyrrole moieties in several 

interesting natural products,[61, 65] including the narrow-spectrum antibiotic 

hormaomycin which also serves as a signaling molecule, inducing morphological 
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alterations and secondary metabolism in Streptomyces species.[63] The functional 

parallels between hormaomycin and DSF led us to suspect that pyrrole-2-carboxylic acid 

might function independently, either (or both) as a signal or an antibiotic; or it might be 

incorporated into a larger, more labile metabolite with signaling or bioactive properties. 

A search of LeOH11’s genomic sequence, using proline dehydrogenase CloN3 (from the 

biosynthetic gene cluster of the pyrrole-containing antibiotic chlorobiocin [66]) to 

interrogate the genome, revealed a set of genes which appeared to encode enzymes 

possibly associated with the biosynthesis of pyrrole-2-carboxylic acid, closely coupled 

with a nonribosomal peptide synthase (NRPS) predicted to activate cysteine. We 

speculate that this cluster encodes enzymes for the incorporation of pyrrole-2-carboxylic 

acid into a larger structure, which might degrade into pyrrole-2-carboxylic acid as the 

Lysobacter culture ages. Inactivation of the key genes in this cluster, and examination of 

the resulting LeOH11 mutants for loss of pyrrole-2-carboxylic acid and possibly other 

morphological changes, might reveal a pyrrole-containing bioactive or signaling 

metabolite.  

Vanillic acid (1) (Figure 16) is suspected to contribute the benzoic moiety to L. 

enzymogenes’s distinctive yellow pigment, which is believed to be a non-brominated aryl 

polyene similar to xanthomonadin.[67] The gene cluster for yellow pigment biosynthesis 

in LeOH11 has been located by our group and confirmed by mutagenesis studies. While 

the yellow pigments of Xanthomonas species, the xanthomonadins, contain a brominated 

benzoic moiety,[68-69] mass spectral analysis of the Lysobacter analogues of 

xanthomonadin indicated an absence of bromination, and analysis of the LeOH11 gene 

cluster associated with the yellow pigment suggested the likely presence of an O-
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methylated moiety. While we have not established any connection between the presence 

of free vanillic acid in the supernatant of L. enzymogenes cultures and the yellow 

pigmentation of L. enzymogenes cells, it is interesting to note the similarities between the 

xanthomonadin precursor, 3-hydroxybenzoic acid (sometimes designated diffusible factor 

(DF) in the literature [70-71]). The diffusible factor, 3-hydroxybenzoic acid (Figure 29), in 

addition to serving as the precursor of xanthomonadin biosynthesis, appears to have some 

overlapping function with the unsaturated fatty acid DSF, in that DF is reported to 

“modulate bacterial survival, H2O2  resistance, and 

virulence [7],” although it remains unclear whether DF is 

serving as a true signal in its own right, or whether the 

observed phenotypes derive entirely from the loss of DF 

in DF-deficient mutants. We have not pursued further 

studies of the effects of vanillic acid on L. enzymogenes morphology or secondary 

metabolism, but it remains a point of interest with possible connection to the intercellular 

signaling of this species.  

 

Figure 29: 3-hydroxybenzoic acid,  
Xcc's diffusible factor (DF) [7] 
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Chapter 3: Rational engineering of Clp 

Because the Clp-dependence of dihydromaltophilin production was so well established, 

we attempted a genetic approach, complementary to our experiments with the DSF/rpf 

system of Lysobacter, to probe the mechanisms of Clp’s regulation. The relationship 

between Clp, the RpfC/RpfG two-component system, and the RpfF/RpfB DSF 

biosynthetic system has been well studied and largely elucidated in Xcc, in which Clp 

responds to the intracellular concentration of cyclic-di-GMP, an ubiquitous bacterial 

second messenger which is synthesized by GGDEF protein domains and degraded by 

EAL or HD-GYP protein domains, thus transducing extracellular stimuli and regulating 

numerous complex processes.[72-73] Understanding Clp’s response to c-di-GMP in Xcc 

led us to attempt in vivo modifications of Clp in L. enzymogenes, which might support 

our hypothesis of the rpf/Clp relationship in L. enzymogenes. By changing the behavior 

of the transcription factor Clp, we sought to elucidate the nature of the intracellular 

portion of this regulatory network. 

3.1: A proposal for a constitutive Clp transcription factor 

A major advance in the understanding of DSF signaling in Xcc was the 

publication of the solved crystal structure of Xcc’s Clp in 2010, along with biochemical 

experiments which demonstrated the effects of c-di-GMP on Clp’s activity.[1] Wild-type 

XccClp, along with several mutant versions, were expressed in E. coli BL21, purified, 

and crystallized, and subjected to X-ray diffraction to a resolution near 2.3 Å. The crystal 

structure of XccClp provided a template for modeling the binding of c-di-GMP with Clp 

in silico, and electrophoresis mobility shift assays (EMSA) using the pure protein in the 

presence of varying concentrations of c-di-GMP revealed that XccClp’s binding to the 
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engA promoter DNA[59] is actually inhibited by c-di-GMP.[1] In independent 

experiments, the Clp homologue from Xanthomonas axonopodis pv. citri was also 

expressed in vitro and found to be inhibited by elevated c-di-GMP concentrations.[74] 

EMSA experiments, using wild-type Clp and some targeted alanine mutants of Clp, 

revealed that binding of the allosteric inhibitor c-di-GMP could be much reduced by 

replacing with alanines the key residues which in silico analysis indicated were involved 

in interactions with c-di-GMP.[1]  

3.1.1 Design and construction of the constitutive Clp mutants 

Alignments of the Clp homologues from LeC3 and LeOH11 with XccClp revealed a very 

high degree of overall similarity and, more importantly, the almost total conservation of 

those residues which the XccClp dimer’s crystal structure and in vitro mutagenesis 

studies had shown to be essential for binding to c-di-GMP and for maintaining the Clp 

dimer’s intrinsic DNA-binding conformation in the absence of c-di-GMP (Figure 5).[2-6] 

Key residues involved in Clp’s DNA-binding conformation were identified from the 

crystal structure, which, when compared and contrasted with the crystal structure of the 

cAMP-receptor protein (CRP) from E. coli, revealed the steric and electronic effects 

which stabilized Clp in its DNA-binding conformation without the presence of any small-

molecule effector.[1] The key residue involved in Clp’s intrinsic DNA-binding 

conformation was found to be Glu-99, which corresponded to CRP’s Ser-84. In E. coli’s 

CRP, Ser-84 is heavily involved in interactions with CRP’s effector, cyclic AMP; but in 

XccClp, the Glu-99 residue presents a larger, negatively-charge side chain which is 

flipped in the opposite direction, interacting with Arg-150 to form a salt bridge which is 

not possible in E. coli’s CRP, in which Glu-130 is the residue corresponding with 



50 
 

 
 

XccClp’s Arg-150.[1] Indeed, Xcc mutants in which Glu-99 was “restored” to serine 

exhibited altered virulence and decreased upregulation levels of Clp’s regulon,[34] 

supporting the involvement of Glu-99 in stabilizing the DNA-binding conformation. 

Elsewhere, the replacement of CRP’s Ala-145 with Val-165 (Val-164 in LeClp) provides 

the steric interactions needed to stabilize Clp’s α-helices in their DNA-binding position; 

also, Arg-195 and Asp-162 participate in salt bridges or H-bonding which are not 

possible in CRP. Indeed, substituting Gly-142 in CRP with an aspartate residue had been 

previously shown to eliminate CRP’s activity dependence upon cAMP; and CRP’s Gly-

142 corresponds with XccClp’s Asp-162.[22] In summary, all of the residues implicated 

in stabilizing the DNA-binding conformation of XccClp are conserved in LeClp, and all 

of the residues involved in binding to the allosteric inhibitor c-di-GMP are conserved 

between the two proteins, except for the substitution of XccClp’s key Asp-70 with Glu-69 

in LeClp. These comparisons strongly support our hypothesis that LeClp is a c-di-GMP 

receptor protein which is active when intercellular c-di-GMP concentration is below the 

binding threshold. 

Molecular modeling studies indicated that the key residues involved in 

interactions between the Clp dimer and c-di-GMP include Asp-70 (corresponding to Glu-

69 in L. enzymogenes), Arg-154 (Arg-153 in L. enzymogenes), Arg-166 (Arg-165 in L. 

enzymogenes), and Asp-170 (Asp-169 in L. enzymogenes). Alanine substitutions for these 

four residues, and the alanine substitution of both R-166 and D-170, generated five 

mutant versions of Clp which exhibited from 8- to 27-fold elevations in the in vitro 

dissociation constants (KD) of c-di-GMP with Clp, confirming the in silico experiments 

which showed that these four residues are essential for Clp’s binding to its inhibitor.[1] 
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The alanine-substitution mutants which showed the greatest decrease in binding affinity 

for c-di-GMP were the D70A mutant (27-fold reduction in binding) and the double 

mutant R166A/R170A (25-fold reduction in binding). However, all of these alanine 

mutants also suffered some loss of in vitro binding to their cognate DNA sequence (the 

engA promoter [59]).  

We reasoned that selected mutations of one or more of these four conserved 

(except for change of XccClp’s D70 to E69 in LeClp) residues would result in a 

constitutively active Clp, which, if expressed in L. enzymogenes, would have the same 

effects on L. enzymogenes as of a constant high concentration of its hypothetical 

diffusible signal factor (which would be detected by the RpfC/RpfG two-component 

system and lead, by decrease of intercellular [c-di-GMP], to activated Clp). While Chin et 

al. had only expressed their “constitutive” Clp mutants in vitro,[1] we decided to attempt 

in vivo expression of similar c-di-GMP insensitive, constitutively active Clp mutants in 

the hope that such L. enzymogenes Clp mutants would mimic the behavior of wild-type L. 

enzymogenes in the presence of its hypothetical DSF.  

 To choose the best residues to target for substitution in the constitutive Clp 

mutants, we consulted the data provided by Chin et al. from GemDock modeling of c-di-

GMP binding to Clp, as well as the biochemical data for Clp and its inhibitor.[1] Asp-70, 

in addition to forming a salt bridge with Arg-166, interacts via H-bonds with N1 and N2 

atoms of one guanine of c-di-GMP, which binds in the cis-conformation with the two 

guanine bases stacked on top of one another. Arg-166 also forms an H-bond with the top 

guanine base via O6. The atom O6 of the bottom guanine base forms an H-bond with an 

amide of the peptide backbone, and Arg-154’s side chain interacts twice, by an H-bond  



52 
 

 
 

 

Figure 30:  GEMDOCK modeling of c-di-GMP docked to XccClp. Figure 5 from [1], reprinted by permission (license number 
3102080210510, 4 Mar. 2013, Elsevier Ltd. Kidlington, Oxford, UK). A) XccClp dimer with c-di-GMP docked. B) Specific 
interactions between c-di-GMP and XccClp dimer. C) Rotation of XccClp’s helices in response to c-di-GMP docking (apo-
XccClp in red, XccClp/c-di-GMP complex in blue). 
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between a guanido NH and c-di-GMP’s phosphate oxygen, and by π-π interaction 

between the guanido group and the six-membered ring of the bottom guanine. Asp-170 

forms a salt bridge with Arg-154 (Figure 30).[1] These interactions “firmly wedge” the c-

di-GMP inhibitory ligand between two α-helices of each Clp monomer, setting off a 

cascade of interactions which alter the dimer’s overall conformation and prevent DNA 

binding. While it was tempting to consider the construction of Clp mutants in which the  

polarity of the key residues was reversed (for example, by substituting Arg-154 (Arg-153 

in LeClp) with glutamate), thus actively setting up repulsions between Clp and its 

inhibitor, we judged that the danger of thereby disrupting the native DNA-binding 

conformation outweighed the possible benefits. In addition, by choosing to attempt in 

vivo expression of simple alanine substitutions, we were able to benefit from the in vitro 

characterizations of such mutants by Chin et al, which provided data (via isothermal 

titration calorimetry) for the binding of the alanine mutants both to Clp’s cognate DNA 

and to c-di-GMP, although the two sets of data were obtained under different buffer 

conditions (low salt (80 mM NaCl, 20 mM Tris (pH 8.0), 20 mM LiCl) and high salt (250 

mM NaCl, 20 mM Tris (pH 8.0), 100 mM LiCl), respectively). The data thus reported are 

summarized in Table 3: 

Table 3: Comparisons of selected residues’ effects on DNA- and inhibitor-binding 

affinities. [1] 

Clp version 

in vitro Kd 

(c-di-GMP) 

in vitro Kd  

(DNA promoter binding) 

Kd-inhibitor/ 

Kd-DNAsubstrate 

analogous 

 LeClp  

mutation 
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native Clp 

3.5uM  

(1-fold) 14 nM (1.0-fold) 250 - 

D70A 

95 uM  

(27-fold) 28 nM (2.0-fold) 3392 E69A 

R154A 

30 uM  

(8-fold) 19 nM (1.4-fold) 1578 R153A 

R166A 

40 uM  

(11-fold) 25.6 nM (1.8-fold) 1562 R165A 

D170A 

38 uM  

(11-fold) 17 nM (1.2-fold) 2235 D169A 

R166A/D170A 

88 uM  

(25-fold) 25.2 nM (1.8-fold) 3492 

R165A/ 

D169A 

 

 The ideal in vivo constitutive Clp would have maximum affinity for its cognate promoter 

and minimum affinity for its inhibitor. Table 3 shows that the double alanine mutant 

combines these two quantities to the greatest extent, but we were put off by the relatively 

serious effect on DNA affinity and (more especially) by the relative difficulty of 

simultaneously introducing two single-residue substitutions. We chose to attempt in vivo 

expression of the D70A Clp mutant (E69A in LeClp), which exhibits the lowest affinity 

for the inhibitor, and of the R154A mutant (R153A in LeClp) which might still exhibit 

some of c-di-GMP’s inhibitory effects. 

The effects of such a constitutive Clp on living bacterial cells were uncertain. 

Should the mutant Clp misfold and lose all activity, we would have expected the mutants 
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to exhibit the well-documented phenotype of the Clp-deletion mutants (loss antifungal 

activity and gliding motility, increased yellow pigment production, and increased 

extracellular polysaccharide production [3]). Another possibility was that heightened Clp 

activity would prove fatal, perhaps as a result of excessive secondary metabolism, with a 

concomitant high expenditure of energy on non-essential functions or overproduction of 

toxic compounds. Thirdly, the presence of an uninhabitable Clp might result in a “super-

predator,” a L. enzymogenes mutant which exhibited very high (but non-fatal) production 

of bioactive compounds such as dihydromaltophilin and its analogues, but possibly other 

secondary metabolites as well. We had previously noted, by investigation of the 

sequenced genome of LeOH11, the presence of several gene clusters, seemingly 

associated with secondary metabolites, whose products were unknown (Liangcheng Du, 

Guoliang Qian, unpublished data). We also considered the possibility that we might be 

able to observe the production of new metabolites, or the dramatic increase in metabolites 

previously observed, in the extraction profiles of the proposed constitutive Clp mutants, 

which might lead to the identification of novel bioactive natural products.  

 Construction of the two constitutive Clp mutants of L. enzymogenes followed a 

standard protocol for bacterial mutagenesis. Genomic DNA was isolated from Lysobacter 

enzymogenes C3 using standard procedures and used as template for PCR to amplify the 

entire 690-bp Clp gene, which was double-digested with EcoRI and XhoI (New England 

Biolabs) and ligated into broad-host-range suicide vector pEX18Gm[75] which was cut 

with the same restriction enzymes. The resulting vector pEX18Gm-Clp served as 

template for a mutagenesis procedure using QuikChange II site-directed mutagenesis kit 

(Agilent Technologies, catalog #200523) to change the codon for Glu-69 from GAG to 
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GCC, and the codon for Arg-153 from CGC to GCG, using primer pairs E69A/E69A-r 

and R153A/R153-r. Because direct transformations of the provided E. coli XL-1 Blue 

competent cells using the mutagenesis PCR mixture were not successful, we used the 

mutagenesis PCR mixture as template for amplification of the mutated Clp gene and 

prepared mutagenic plasmids pEX18Gm-ClpE69A and pEX18Gm-ClpR153A, following 

the same procedures and conditions previously used to prepare pEX18Gm-Clp. These 

mutagenic plasmids were transformed into chemically competent E. coli S17-1 cells 

using heat shock, and transformants were selected on LB agar plates supplemented with 

25 μg/mL gentamicin. The two mutagenic plasmids were mini-prepped and sequenced to 

verify the integrity of the base sequence. Plasmid pEX18Gm-ClpE69A contained no 

errors and the codon for Glu-69 was changed to encode alanine as designed; pEX18Gm-

ClpR153A contained the expected codon change for Arg-153 to alanine, but also 

included a silent mutation in Ala-129’s codon, from GCG to GCA. Although aware of the 

possibility that recombination would take place at the site of the silent mutation instead of 

at the site of the targeted codon for Arg-153, we proceeded to use both mutagenic 

plasmids for conjugation between plasmid-containing E. coli S17-1 and Lysobacter 

enzymogenes C3. Multiple single colonies of transformed LeC3 were selected on 10% 

TSB agar plates supplemented with 25 μg/mL gentamicin, as well as 25 μg/mL 

kanamycin which L. enzymogenes naturally resists. These putative single-crossover 

recombinants were confirmed by PCR (using 1-2 μL of raw culture as template) to 

contain the expected pEX18Gm-ΔClp plasmid inserted into the Clp gene; the single-

crossover recombinants were then inoculated into 10% TSB with no antibiotics, 

incubated for 24 hours at 30 °C with shaking, diluted 1000 to 5000 times in 10% TSB 
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supplemented with 10% sucrose (to encourage double-crossover recombination to take 

place) and grown a further 6 hours before being plated out on 10% TSB agar plates 

supplemented with 10% sucrose. Single colonies were putative double-crossovers 

containing Clp E69A or R153A mutations. These were grown in 10% TSB supplemented 

with 25 μg/mL kanamycin and 10% sucrose and used for a diagnostic PCR which 

amplified an 1147-bp region extending upstream and downstream of the 690-bp Clp 

gene. These 1147-bp sequences were purified and sequenced to check for the presence of 

the mutant Clp sequence. 

 Although multiple double-crossovers mutants were isolated by this method, we 

were unable to locate any that carried the desired mutation, either for Glu-69 or Arg-153 

(although several were found which contained the silent Ala-129 mutation). This led us to 

suspect that the mutant Clp sequences might be sufficiently harmful to the cell that the 

second recombination event strongly selected against the Clp mutants in favor of 

reversions to wild-type Clp sequence. Another possibility was that the placement of the 

two mutations was too near either end of the homologous region, and that the second 

crossover was thus more likely to simply eliminate the inserted plasmid rather than 

introduce the desired mutation. To test which of these hypothetical situations was 

responsible for our failure to isolate any Clp mutants, we subcloned the portion of the Clp 

gene containing the introduced mutations from the pEX18Gm-ΔClp  plasmids into the 

vector pHmgA-P-Clp2, described below. 

 The vector pHmgA-P (Figure 31) was constructed in our lab to serve as an easily-

selected expression vector designed to insert directly into L. enzymogenes’s genome. Into 

the suicide vector pJQ200SK[13] a 667-bp portion of the L. enzymogenes homologue of 
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the homogentisate 1,2-dioxygenase (hmgA) gene was cloned by means of SacI/SpeI 

double-digestion and ligation, and a 538-bp region lying upstream from the 

dihydromaltophilin gene cluster in L. enzymogenes OH11 was cloned into the vector by 

SacI/BamHI digestion and ligation. This 538-bp region contains the putative promoter for 

L. enzymogenes’s dihydromaltophilin biosynthetic genes, and was positioned to lie just 

upstream from the multiple-cloning-site (MCS) of pJQ200SK. The resulting vector 

pHmgA-P could therefore accept any genes of interest, which would presumably be 

under the control of the dihydromaltophilin promoter and would be expressed in L. 

enzymogenes under any conditions which favored production of dihydromaltophilin; 

indeed, we regarded it as likely that this promoter actually contained a Clp binding site, 

although several analyses failed to identify any obvious Clp-cognate sequence. 

Additionally, single-crossover recombination at the HmgA homologue produces a mutant 

which cannot process homogentisic acid (a catabolite of tyrosine) to 

maleylacetoacetate,[76] resulting in homogentisate’s accumulation within the cells and 

the eventual appearance of a reddish-brown halo around the single-crossover 

transformant. Thus, the use of vector pHmgA-P provides a platform for the expression of 

genes in L. enzymogenes with a facile selection of genomic insertion mutants by means of 

the appearance of the red/brown pigmentation.  
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The vector pHmgA-P-Clp2 was constructed in our lab to restore the clp gene to 

the clp-deletion mutant of LeC3 constructed by Koboyashi et al: LeDC211 (Yunxuan 

Xie, unpublished data, [3]). Because the dihydromaltophilin promoter (which is 

putatively Clp-dependent) aboard pHmgA-P could not be upregulated in Clp-deficient 

mutant, pHmgA-P was provided with the entire gene sequence employed by Koboyashi 

et al. in their complementation of the clp-deletion DC211, which included 200-bp ahead 

of the start codon and 18-bp following the stop codon, thus supplying vector pHmgA-P-

Clp2 which successfully restored antifungal activity, gliding motility, and the other wild-

type phenotypes to the clp mutant DC211 (see Figure 1). 

This “DC-clp2” complementation mutant served as the negative control for the 

expression of the two constitutive Clp genes, Clp E69A and Clp R153A. The two 

mutation-containing sequences were subcloned from pEX18Gm-ClpE69A or pEX18Gm-

ClpR153A into pHmgA-P-Clp2, using the clp gene’s naturally-occurring BsiWI and PstI 

sites, and E. coli S17-1 strains containing the new pHmgA-P-ClpE69A and pHmgA-P-

ClpR153A were used to introduce the vectors into Koboyashi’s clp-deletion mutant 

LeDC211. Resulting transformants were selected on 10% TSB agar plates containing 25 

μg/mL gentamicin and 25 μg/mL kanamycin; single colonies were picked up and grown 

Figure 31: Map of pHmgA-P-Clp2, constructed from LeC3 inserts cloned into pJQ200SK [13] 
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in 10% TSB with 40-50 μg/mL gentamicin, and confirmed by PCR, sequencing, and the 

appearance of the reddish-black pigmentation to be DC211 mutants with the constitutive 

Clp constructs inserted into the hmgA homologue. 

Although this approach suffered from the possible obscuring of effects on 

pigment production (due to the slow increase in the reddish-brown pigment), it had the 

important advantage of directly selecting for the constitutive Clp mutants on gentamicin-

containing plates; by linking the expressible constitutive clp constructs with gentamicin 

resistance, we were able to answer the question of whether the introduction of a 

constitutive Clp protein would prove fatal to L. enzymeogenes cells. This question turned 

out to be answered in the negative, and we were able to isolate true complementation 

mutants, confirmed by PCR and sequencing (Figure 32), and to partially characterize the 

bioactive properties of the constitutive Clp mutants. 

 

  

Figure 32: Electrophoresis confirms generation of mutagenic plasmid inserted into LeDC mutants. The 
amplicons shown were sequenced to confirm their identity. 
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3.1.2 Analysis of constitutive Clp mutants 

The transformants, once the integrity of their mutant clp genes had been confirmed by 

sequencing, were subjected to a number of bioactivity and biochemical assays to evaluate 

the effects of the mutations. Since the replacement of Glu-69, or Arg-153, with alanine 

was expected to result in a Clp transcription factor which could not be inhibited by 

normal concentrations of cyclic-di-GMP, we expected that any genes in Clp’s regulon 

would be permanently upregulated without regard to environmental stimuli (or the 

absence thereof).  

 Our primary interest was in comparing the level of antifungal activity between the 

LeDC211 mutants complemented with the different versions of Clp. Complete restoration 

of antifungal activity by the restoration of Clp would indicate that the expression of the 

dihydromaltophilin biosynthetic genes had returned to wild-type levels. On the other 

hand, the failure of the Clp-complemented LeDC strains to exhibit antifungal activity 

would indicate either a misfolded or inactive Clp protein. Since we were using a 

construct that had successfully restored Clp to clp mutants of LeC3 in the experiments of 

Koboyashi et al.,[3] we did not expect a failure of clp upregulation to play a role in the 

mutants’ phenotypes.  

 Antifungal bioactivity assays were carried out using the filamentous fungus 

Fusarium verticilliodes. Mycelia from a previously-cultured plate of F. verticilliodes 

were transferred to the center of a 10% TSB agar plate and allowed to grow at 30 °C for 

24-48 hours. L. enzymogenes strains were cultured in liquid 10% TSB at 30 °C, with 

appropriate antibiotics (25 μg/mL kanamycin for all wild-type or mutant strains; 25-50 

μg/mL gentamicin for pHmgA-P-ΔClp mutants) for 24 hours. 1-5 μL of the L. 
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enzymogenes culture were pipetted near the edge of the 10% TSB agar plate on which F. 

verticilliodes was growing radially from the center, and the agar plates were incubated at 

30 °C for 2-5 days until fungal growth had reached the edge of the agar plate. L. 

enzymogenes strains possessing antifungal activity traced out a clear zone of inhibition 

where fungal growth was entirely absent, while strains lacking antifungal activity were 

tightly surrounded by the advancing mycelia (Figure 33).  

Figure 33: Antifungal activity of wild-type LeC3 compared to clp-deletion mutant LeDC211 and strains 
complemented with the constitutive Clp mutants (E69A and R153A). 

   

Left: Wild-type and clp-deletion compared to Clp-E69A and Clp-R153A complementations. 

These mutants did not cross over at the hmgA homologue. Right: Clp-E69A and R153A 

mutants which underwent hmgA insertion are compared to wild-type and deletion strains. 
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These assays reveal that, although antifungal activity had clearly been restored to 

the Clp-complemented strains of LeDC211, there was no manifest difference in the 

bioactivity of those LeDC strains complemented with the constitutive Clp (E69A or 

R153A) and those which were complemented with the wild-type sequence of clp; 

additionally, no major difference could be detected between LeC3 wild-type and any of 

the Clp-complementation strains (Figure 33, Figure 34), although the constitutive Clp 

mutants may have provided a slightly larger inhibition zone than LeDC complemented 

with the wild-type clp sequence. Considering the level of c-di-GMP insensitivity 

displayed by the XccClp analogues of these alanine mutant Clp proteins, this lack of any 

alteration in morphology or bioactivity 

suggested the possibility that LeClp 

may already be constitutive (i.e. 

insensitive to inhibition by c-di-GMP) in L. enzymogenes; or, at least, the DNA-binding 

activity of Clp is, by some mechanism, decoupled from L. enzymogenes analogue of 

Xcc’s rpf system involving RpfC/RpfG and RpfF/RpfB. In support of this theory, we 

Figure 34: Antifungal activity of LeOH11 compared to 

three mutants of rpf homologues. Loss of rpfB, rpfF, and 

rpfG does not cause any significant loss of antifungal 

activity. To prevent diffusion of any DSF-like molecule 

from wild-type LeOH11 to the mutant strains, agar was 

cut out between each strain. 

 

 

 

Figure 35: Antifungal activity of LeC3 and three 
strains of clp-deletion mutant LeDC211 
complemented with wild-type Clp, constitutive 
Clp-E69A, and constitutive Clp-R153A 
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carried out a further assay of the antifungal bioactivity of LeOH11 mutants
2
 of rpfG 

(encoding the response regulator phosphodiesterase [32]), rpfF (encoding the DSF 

synthase, an enoyl-CoA hydratase [51]), and rpfB (encoding a putative acyl-CoA ligase). 

Surprisingly, we observed no significant loss of antifungal activity in these mutants 

which, presumably, lack a functional rpf-like signaling system (Figure 35). The inhibition 

zones observed in these antifungal activities can be confidently attributed to 

dihydromaltophilin production by means of comparison with the LeC3 ΔKR mutant, 

which cannot synthesize dihydromaltophilin but retains an active Clp and all other forms 

of antimicrobial activity. The ΔKR mutant produces no inhibition zone, but can repel the 

advance of the fungal mycelia by direct contact, as the Lysobacter colony glides across 

the agar surface (Figure 36).  

The successful inhibition of F. 

verticilliodes by the LeΔRpfF deletion 

mutant lent support to the implications 

of our previous observation that ethyl-

acetate extractions of this same mutant 

revealed no major decrease in the 

concentration of dihydromaltophilin. 

Although this mutant is expected to be 

incapable of producing a diffusible 

signal factor similar to Xcc’s cis-11-

                                                           
2
 The rpfG and rpfF mutants were supplied by Zhou Xue. 40. Guoling Qian, Y.W., Yiru Liu, Feifei Xu, 

Yawen He, Liangcheng Du, Jiaqin Fan, Baishi Hu, Fengquan Liu, Lysobacter enzymogenes uses two distinct 
cell-cell signaling for differential regulation of metabolite biosynthesis. 2013. The rpfB mutant was 
generated by a gene-disruption strategy in our lab by Haotong Chen. 

Figure 36: Antifungal activity of LeC3 ΔKR compared wild-
type LeC3 and to rpfF and rpfG  mutants of LeOH11. 
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methyl-dodecen-2-oic acid, it remained capable of a high level of dihydromaltophilin 

production and concomitant antifungal activity; and so, presumably, its Clp transcription 

factor had retained its ability to upregulate the dihydromaltophilin gene cluster. 

Additionally, none of the other phenotypic traits characteristic of the LeDC clp-deletion 

mutant (increased yellow pigment, loss of gliding motility, increased “stickiness” due to 

high extracellular polysaccharide production [3]) were observed in any of the rpf (rpfG, 

rpfF, rpfB) mutants, as would have been expected were there strict coupling between Clp 

and the rpf signaling system. 

 Notably absent from our experiments is a Lysobacter enzymogenes mutant of the 

rpfC homologue, which encodes the putative transmembrane receptor which transduces 

the signal from extracellular [DSF] to the intracellular response regulator RpfG. The rpfC 

mutant is currently under construction in the Du lab. If its phenotype coincides with that 

of the other rpf homologue mutants in L. enzymogenes, it will further confirm our theory 

that Clp is decoupled from the rpf system in L. enzymogenes, and may indeed act 

constitutively, independent of any small-molecule effector. It should be noted, however, 

that RpfC negatively regulates DSF production in Xcc and other DSF-producing 

xanthomonads,[9, 37] so if a Lysobacter DSF-like signaling molecule is ever to be 

identified, it would be most likely be detected in cultures of the rpfC-homologue mutant 

of L. enzymogenes.  

 A crude extraction of the metabolites present in the Clp-complemented LeDC 

mutants was carried out with the purpose of screening for any new metabolites and for 

any metabolites which displayed altered production levels. The LeDC mutant 

complemented with pHmgA-P-Clp2 (the wild-type Clp sequence) served as the negative 
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control, against which the two LeDC mutants complemented with either pHmgA-P-

ClpE69A or pHmgA-P-ClpR153A were compared for any notable differences. The Clp-

complemented LeDC cultures were grown under conditions expected to result in 

dihydromaltophilin production: in NYGB for 60 hours at 30 °C, with shaking at 200 rpm. 

In an effort to extract as many different metabolites as possible, we extracted the crude 

cultures with equal volumes of butanol at both high and low pH. The natural pH of 

mature Lysobacter cultures is between 8 and 9, so the first extraction was carried out 

directly on the crude cultures; 37% HCl was then used to lower the pH to 4, and the 

butanol extraction repeated. The butanol layers were allowed to separate for ~1 hour, then 

collected using a separatory funnel and a clean round-bottomed flask. Equal volumes of 

double-distilled water were added to the butanol and the butanol:water mixture removed 

by rotary evaporation at 55 °C. Remaining liquid was evaporated using a gentle air 

stream, and the remaining residue was redissolved as much as possible in 1.5 mL 

methanol. After centrifugation to pellet any suspended particles, the supernatant was 

investigated by HPLC.  Although we do not regard this experiment as definitive, the 

absence of any notable difference between the metabolite profiles of the wild-type Clp- 

and the constitutive Clp-complementation LeDC mutants lends support to our theory that 

either Clp is already constitutive, or else the intracellular concentration of [c-di-GMP] is 

kept low by some system other than the protein products of the rpf homologues, during 

the conditions in which L. enzymogenes’s secondary metabolism is active. 
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3.2: Summary of results: a qualified conclusion 

Taken together, our data suggest that the relationship between the clp homologue in 

Lysobacter enzymogenes and the upregulation of the dihydromaltophilin gene cluster is 

not subject to the upstream control of a signaling system similar to the DSF/rpf system in 

Xanthomonas campestris pv. campestris and other xanthomonads. This conclusion is 

directly at odds with our original hypothesis, but none of our data hitherto have supplied 

unambiguous support for a direct link between a diffusible signal factor and the 

production of dihydromaltophilin in L. enzymogenes C3 or OH11. It remains to form a 

hypothesis to explain this anomaly: why L. enzymogenes, a xanthomonad with highly 

homologous genes to all of the necessary components of DSF quorum sensing in Xcc, 

should apparently exhibit no connection between the two main portions (clp and the four 

genes of the rpf cluster) of that signaling system. While research on this question is still 

ongoing, and we do not in any sense exclude the possibility that other experimental 

conditions or improved techniques might yet establish the original hypothesis, we may 

nonetheless formulate alternative hypotheses to account for our observations hitherto.  

 The different ecological niches occupied by the plant pathogen Xcc and the 

bacterial predator L. enzymogenes may hold the clue to this enigma. While Xcc and other 

phytopathogenic xanthomonads appear to depend heavily upon their DSF-signaling 

mechanisms to coordinate the different phases of transmission to and infection of their 

hosts,[77-78] L. enzymogenes leads a very different lifestyle and may not require this sort 

of coordinated behavior; or, if it does, it is possible that we have not identified the phases 

or conditions under which its DSF-signaling mechanisms come into play. 
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We cannot exclude that some sort of structural deficiency in L. enzymogenes (i.e., 

mutations in one or more of the genes in the rpf system) which alter or abolish the 

activity of the protein products of the rpf homologues. Our analysis of the nucleotide and 

amino acid sequences failed to uncover any obviously major differences between the two 

sets of homologues, but we do remark two differences of note between XccClp and 

LeClp. Firstly, as discussed previously, the key aspartate (D70) which in XccClp interacts 

with c-di-GMP inhibitor is replaced with a glutamate (E69) in LeClp. Although the 

activity of the side-chains is identical, it is possible that the greater size of the glutamate 

exerts enough of a steric effect to destabilize the binding of the c-di-GMP, making LeClp 

partially or completely insensitive to intracellular [c-di-GMP]. Secondly, one key 

difference between XccClp and E. coli’s cAMP-receptor protein is XccClp’s substitution 

of a threonine residue (Thr-149) for the serine (Ser-129) found in E. coli’s CRP.[34] In 

LeClp, Ser-148 is the residue corresponding with XccClp’s Thr-149 and with E. coli 

CRP’s Ser-129 (Figure 5). This alteration, at a position that appears to be involved in 

binding of either c-di-GMP or cAMP to these small-molecule receptor proteins, was 

regarded as sufficiently important to be tested by mutagenesis studies by Tao et al., but 

mutation of Thr-149 back to serine did not result in any decrease of inhibition by c-di-

GMP of the T149S Clp in vitro.[34] Based on this result, we suspect that LeClp’s Ser-148 

does not render it insensitive to inhibition by c-di-GMP. Other key residues predicted by 

XccClp’s crystal structure and molecular modeling to be involved in c-di-GMP binding 

are strictly conserved in LeClp, as are residues involved in stabilizing Clp’s DNA-

binding conformation. It remains possible that LeClp contains one or more variant 

residues, important either to DNA-binding or c-di-GMP inhibition, which have hitherto 
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escaped attention. Since no crystal structure of XccClp bound to c-di-GMP is yet 

available, we must postpone judgment on the likelihood of this possibility.  

Perhaps the greatest deficiency in our investigation to this point has been the 

absence of any sort of characterization of the rpfC homologue in L. enzymogenes. Since 

the transmembrane sensor RpfC negatively regulates DSF biosynthesis in Xcc,[8] it 

would in retrospect have been useful to begin our search for a Lysobacter DSF with a 

mutant containing an inactivated rpfC gene. Final judgment on the existence and activity 

of a DSF-like signal molecule in L. enzymogenes probably awaits characterization of 

such an rpfC mutant. 

While the energetic expense of secondary metabolism suggests that L. 

enzymogenes should possess some sort of regulatory mechanism for its activation or 

deactivation, this bacterium’s predatory nature may demand a more or less continuous 

output of the secondary metabolites and lytic enzymes which have been shown to be 

under the control of Clp.[3] This possibility is supported by our experiments, in which we 

encountered difficulty in discovering conditions in which L. enzymogenes did not 

produce dihydromaltophilin. A number of different media containing different carbon 

sources were tested, all of which supported at least some level of dihydromaltophilin 

production and in which, therefore, we may safely assume Clp was active and 

uninhibited. While our research focused on deciphering the system by which L. 

enzymogenes’s secondary metabolism was regulated, it is an ironic possibility that this 

predator may have dispensed (partially or completely) with such regulation to 

accommodate its aggressive lifestyle. 
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Chapter 4: Future prospects  

Confirmation of LeClp’s constitutive nature could be easily evaluated via electrophoresis 

mobility shift assays (EMSA), as has been carried out on XccClp and its mutants.[1, 34] 

Native LeClp has already been expressed as a His6-tagged protein in E. coli BL21 and 

purified in our lab (Haotong Chen, unpublished data), following the procedure employed 

by Chin et al. prior to their crystallization of XccClp.[1] Analysis of this purified protein, 

along with its (as yet) not purified E69A and R153A “constitutive” mutants, by EMSA 

would reveal whether or not LeClp is sensitive to inhibition by c-di-GMP in vitro. We 

have proposed several DNA sequences as targets for LeClp binding, including several 

sites in the 538-bp “HSAF promoter” region which was installed in the vector pHmgA-P 

and which is predicted by in silico analysis [79-80] to contain the promoter for 

dihydromaltophilin’s biosynthetic gene cluster. As a likely positive control, the promoter 

used so frequently with XccClp, that of the engA gene in Xcc,[29, 36, 59] could be 

assayed for binding to LeClp in vitro. Indeed, the binding of this promoter to LeClp could 

be directly assayed in vivo by expressing a modified version of the Clp-linked DSF 

reporter pKLN55 constructed by Newman et al. in L. enzymogenes C3 or OH11, although 

an appropriate antibiotic selection marker might need to be cloned into pKLN55 to render 

it suitable for expression in L. enzymogenes.[36] EMSA experiments could directly verify 

that LeClp is c-di-GMP-insensitive and thus, most likely, constitutive in L. enzymogenes. 

If, as expected based on its similarity to XccClp, wild-type LeClp proves to be 

inhibited by c-di-GMP in vitro in a manner similar to XccClp, further experiments in vivo 

might reveal to what extent LeClp is inhibited under the conditions in which L. 

enzymogenes has been found to produce dihydromaltophilin. A fascinating experiment 
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carried out by Tao et al. which might be replicated in L. enzymogenes was the 

heterologous expression in Xcc of the protein products of genes PA5487 and PA3947 

from Pseudomonas aeruginosa PA14.[34] While PA5487 encodes a GGEEF-domain-

containing protein which was shown to have diguanylate cyclase activity, PA3947 

encodes an EVL-domain-containing protein which serves as a c-di-GMP 

phosphodiesterase,[81] and in trans expression of each enzyme in L. enzymogenes would 

be expected to yield mutants with high or low c-di-GMP concentrations, respectively. A 

constitutive LeClp would show no response to the elevated c-di-GMP concentrations in 

the Le-PA5487 mutant, and transcription of the dihydromaltophilin gene cluster, 

dihydromaltophilin production, and antifungal activity would be expected to remain 

unaltered. A c-di-GMP-sensitive LeClp would likely result in a Le-PA5487 mutant which 

exhibits the same phenotype as the clp-deletion mutant LeDC211.[3] Additionally, these 

two P. aeruginosa genes could be co-expressed with a Clp reporter construct similar to 

pKLN55,[36] which places GFP-expression under the control of the Clp-cognate engA 

promoter, and levels of GFP expression monitored to evaluate the extent of Clp’s activity 

in the presence or absence of c-di-GMP in vivo. Finally, the effects of the in trans 

expression of these two genes from P. aeruginosa PA14 might also be evaluated in L. 

enzymogenes mutants expressing the constitutive Clp E69A and Clp R153A alleles, 

revealing whether or not these two mutant versions of Clp are subject to inhibition by c-

di-GMP. Direct measurement of the activity of Clp and its mutants in vivo could also by 

achieved by measuring the transcription level of selected portions of the 

dihydromaltophilin gene cluster, using reverse-transcription PCR. Additionally, a 
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remarkable method of tracing the intracellular production of c-di-GMP using fluorescent 

RNA-based biosensors has recently been reported.[82] 

 One final experiment in the same vein would be the expression of XccClp in the 

clp-deletion mutant LeDC211. If some intrinsic feature of LeClp prevents its being 

subject to c-di-GMP inhibition, expression of XccClp might “re-couple” Clp’s activity to 

L. enzymogenes’s homologues of the rpf system, placing dihydromaltophilin production 

and its accompanying phenotype under the control of a diffusible signal factor. 

 There remains the intriguing possibility that the dissimilarity between L. 

enzymogenes and Xcc, despite the striking similarity between their clp and rpfC/G/F/B 

homologues, can be traced in whole or in part to LeClp’s accompanying N-

acetyltransferase. Direct modification of transcription factors by acetylation has been 

reported in E. coli,[43] and biochemical or genetic experiments directed at determining 

this acetyltransferase’s molecular target might elucidate much that still remains unclear 

regarding this pathway. 

 In Stenotrophomonas maltophilia WR-C, DSF-like extracellular fatty acids 

produced by homologues of rpfF and rpfB were found to be involved in “flagella-

independent surface translocation,”[49] and it was previously reported by Koboyashi et 

al. and confirmed in our lab that the clp-deletion mutant LeDC211 lacked the gliding 

motility observed in wild-type LeC3.[3] It is, therefore, not unprecedented to supposed 

that the rpf homologues in L. enzymogenes serve a purpose quite different from 

intercellular signaling, and the connection between the clp and rpf homologues in L. 

enzymogenes is much more indirect than in Xcc. Although we have not observed any 

significant morphological differences between the wild-type LeOH11 and its rpf-



73 
 

 
 

inactivated mutants, experiments designed specifically to evaluate motility might provide 

clues as to the primary function of the rpf homologues in L. enzymogenes. 
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Chapter 5: Appendix 

In addition to investigating the relationship between L. enzymogenes’s clp and rpf 

homologues to dihydromaltophilin production, we carried out investigations on the 

biosynthetic mechanism of dihydromaltophilin.  

5.1 Targeted mutagenesis of dihydromaltophilin polyketide synthase 

The biosynthetic gene cluster for dihydromaltophilin in L. enzymogenes C3 was 

identified in 2007, and found to encode a large hybrid nonribosomal peptide synthetase-

polyketide synthase (NRPS-PKS) along with four putative oxidoreductases and a putative 

sterol desaturase,[15] an architecture which was found to be common to other producers 

of polycyclic tetramic macrolactam natural products.[21] Subsequent gene inactivation 

and heterologous expression showed that the sterol desaturase was responsible for 

installing the β-hydroxyl group on the ornithine moiety,[83] and that the NRPS module 

alone was responsible for the condensation of two amide bonds and a Dieckmann 

cyclization which yielded the tetramic acid moiety joining two polyketides and the 

ornithine residue.[39] In contrast to the type I modular PKS usually found in bacteria, in 

which multiple PKS modules are present and each is responsible for a single round of 

elongation and processing of the nascent polyketide,[84] the dihydromaltophilin PKS 

included only a single module, containing predicted β-ketoreductase (KR) and 

dehydratase (DH) tailoring domains in addition to the essential β-ketosynthase (KS), 

acyltransferase (AT), and acyl carrier protein (ACP) domains.[15] It appeared that the 

dihydromaltophilin PKS was an iterative type I, uncommon in bacteria but frequently 

seen in fungi,[84] but although the three essential domains apparently acted iteratively, it 

was not clear whether the two tailoring domains (KR and DH) acted only once on the 
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nascent polyketide, or whether the polyketide was reduced to a polyenoic acid by 

multiple tailoring steps. As the initially proposed biosynthetic pathway for 

dihydromaltophilin called for an unknown PKS to supply the second polyketide, which 

clearly differed from the first,[15] it seemed possible that the dihydromaltophilin PKS 

produced a polyketide with only one double bond, which then participated in the 

proposed mechanism shown in Figure 37. If this were the case, inactivation of the KR or 

DH domains of the PKS module might result in analogues of dihydromaltophilin in 

which an α,β-enoate moiety was replaced with a β-ketone or β-hydroxyl group, 

respectively(Figure 38).  

 

Figure 37: initially proposed mechanism of dihydromaltophilin biosynthesis [15] 
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In other modular bacterial polyketide synthases, targeted inactivation of the processing 

domains had resulted in the production of natural product analogues containing 

unprocessed keto or hydroxyl groups,[85-86] but such biosynthetic manipulations are not 

expected to succeed in the case of iterative PKSs. However, the possibility that the 

dihydromaltophilin PKS’s tailoring domains, like those of modular PKSs, acted only 

once on the nascent polyketide, suggested that genetic manipulations of the NRPS-PKS 

gene might yield mutants of L. enzymogenes C3 which produced the proposed analogues 

in Figure 38. 

5.1.1 Construction of L. enzymogenes C3 ΔKR mutant 

Yu et al. had reported the consensus conserved residues of all of the major domains of 

the hybrid PKS-NRPS, including the PKS’s KR and DH tailoring domains, and we 

proposed a targeted deletion of seven residues of the conserved, glycine-rich NADPH-

binding site of the KR domain (Figure 39).  

Figure 38: possible dihydromaltophilin analogues 

A) proposed analogue resulting from inactivated KR domain 

 

B) proposed analogue resulting from inactivated DH domain 
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To generate the DNA fragment containing the 21-bp deletion, we employed the 

mutagenesis method “splicing by overlap extension.” Briefly, PCR primers were 

designed upstream and downstream of naturally-occurring KpnI and ApaI restriction 

sites, respectively. Partially-overlapping forward and reverse primers spanning the site 

targeted for deletion. Two separate PCRs generated the upstream (615-bp) and 

downstream (455-bp) fragments, both containing the sequence with the 21-bp deletion. 

These fragments were purified and combined for a slicing PCR, which fused the two 

fragments together into a single mutagenic fragment (978-bp). This fragment was 

purified and digested with KpnI and ApaI restriction enzymes (New England Biolabs), 

and ligated into the KpnI/ApaI double-digested cloning vector pGem5zf(+) (Promega) 

and transformed into chemically competent E. coli XL-1 Blue. Single colonies which 

grew on LB agar supplemented with 50 μg/mL ampicillin were picked up and 

miniprepped, and the insertion of the mutagenic DNA fragment confirmed by digestion 

Figure 39: Partial map of 13.5-kb region of LeC3 hosting dihydromaltophilin biosynthetic genes (Figure 5 from 
[15]). Reprinted by permission from the American Society for Microbiology. 
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with KpnI and ApaI. After sequencing confirmed its fidelity, the DNA insert was 

subcloned into the suicide vector pJQ200SK,[13] and the resulting mutagenic plasmid 

pJQ200SK-KR transformed into E. coli S17-1 and transferred in L. enzymogenes C3 by 

conjugation. Single colonies which appeared on 10% TSB agar plates supplemented with 

20 μg/mL gentamicin and 25 μg/mL kanamycin represented single-crossover 

recombinants of LeC3, which were confirmed by PCR. The single-crossover mutants 

were grown in liquid 10% TSB supplemented with 25 μg/mL kanamycin and 5% sucrose, 

and re-streaked onto agar plates supplemented with 5% sucrose to encourage double-

crossover heterologous recombination. Double-crossover recombinants were confirmed 

by loss of gentamicin resistance and by sequencing of the KR region to verify the 

installation of the 21-bp deletion. 

5.1.2 Analysis of LeC3 ΔKR mutant 

Once confirmed, the in-frame deletion LeC3 ΔKR mutant was characterized by assaying 

its antifungal activity and its level of dihydromaltophilin production. Antifungal assays 

were carried  
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out using Fusarium verticilliodes as described in Chapter 4, and extraction of 

dihydromaltophilin by ammonium sulfate precipitation followed the protocol described 

by Yu et al.[15] Cultures of the L. enzymogenes strains were grown in liquid 10% TSB 

supplemented with 5 mM lactose for 4 days at 28 °C with shaking, and the supernatant 

Figure 40: Comparisons of LeC3 wild-type to LeC3 ΔKR mutant 

A) Extractions of dihydromaltophilin from the mutant and from wild-type. 

 

B) Antagonism toward Fusarium verticilliodes. The ΔKR mutant lacks wild-

type’s inhibition zone, but appears to retain “close-range” antifungal activity, 

perhaps the result of secreted lytic enzymes. 
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collected by centrifugation (10,000 × g, 30 min.) at 4 °C. Ammonium sulfate was added 

to the supernatants to a final concentration of 0.5 g/mL and vortexed until complete 

dissolution, and the solution was incubated overnight at 4 °C. The precipitate was 

collected by centrifugation (10,000 × g, 25 min.) at 4 °C and resuspended in 200 μL 

100% methanol, and after a short (~30 min.) incubation at room temperature the 

suspension was centrifuged (10,000 × g, 10 min.) at room temperature to separate the 

precipitate and the methanol fraction. The methanol fraction was collected and 

concentrated to ~100 μL by evaporation. Results are summarized in Figure 40, which 

showed that the LeC3 ΔKR mutant had lost all dihydromaltophilin production, and no 

new peaks were observed that seemed to correspond with a dihydromaltophilin analogue. 

5.1.3 Conclusion and utility of LeC3 ΔKR mutant 

The inability of the L. enzymogenes C3 ΔKR to produce any analogues of 

dihydromaltophilin, and its complete loss of antifungal activity, supported our suspicions 

that the dihydromaltophilin PKS was an iterative single-module PKS which probably 

generates a polyenoic thioester intermediate. The absence of any other PKS anywhere 

near the dihydromaltophilin biosynthetic gene cluster in LeOH11,[39] and a similar 

absence reported for the frontalamide cluster by Blodgett et al,[21] strongly suggests that 

the single-module PKS possesses the remarkable ability to synthesize both polyketides. If 

this is the case, the differences between the two polyketide moieties are most likely 

attributable to the timing of tailoring domains’ activities and possibly to the hybrid PKS-

NRPS’s sensitivity to the increasing chain length of the nascent macrolactam. Although 

complete elucidation of the biosynthetic mechanism awaits successful biochemical 

characterization of the polyketide synthase and the accompanying oxidoreductases, an 
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alternative mechanism in which two polyenoic intermediates appear has already been 

proposed (Figure 41).[16] 

 

The LeC3 ΔKR mutant has proven valuable as a negative control for dihydromaltophilin 

production. Possessing all of the wild-type’s regulatory mechanisms, antibiotic resistance 

and sensitivities, and other phenotypes, the ΔKR mutant remains our most reliable “wild-

type-like” non-producer of dihydromaltophilin. 

Figure 41: latest proposed mechanism of dihydromaltophilin biosynthesis. Copied by permission from [16]. 
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