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          Electronics, sensors and energy storage devices are the new waves behind 

economic development, security and communication1. Engineering small sizes of 

electronic, sensors and energy storage devices is the hurdle limiting efficient, portable 

and vast applications of Nano-devices for economic, security and communication 

advancement2. Silicon the major material used in transistors has approached its limit to 

fabricated Nano-devices3. The discovery of free standing, one atomic layer thick and  

two-dimensional graphene sheets with high conductivity, inert, high specific surface 

area, stable and high tensile strength material  in 2004 has shown capabilities to 

replaced silicon in electronics, sensors and energy storage devices4. Graphene and 

carbon nanotubes allotropes of carbon have gained momentum as the best materials for 

the advancement of electronics, sensors and energy storage sectors. Research has 

shown that 3D structuring of graphene and carbon nanotubes will expand their 

properties as well as applications. Unfortunately there is no technology to synthesize 

these materials in 3D and in bulk for applications in electronics, sensors and energy 

storage devices. Here, we present new technologies to synthesize new 3D materials of 

graphene, carbon nanotubes, manganese dioxide and tungsten trioxide. We also 

illustrate some of the possible applications of some of these materials in sensor and 

electrochromic devices.  
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Chapter 1                                       

 Introduction  

          Gordon Moore the co-founder of Intel predicted in 1965 that the numbers of 

integrated transistors per circuit will continue to double5. This prediction is now known as 

Moore’s law and is the mainframe, per-transistor performance, cost scaling that has 

ushered into nanotechnologies of total integrated systems6 Silicon, a semiconductor with 

a tunable indirect band gap, exhibits suitable operating temperature range of -55 to 

125°C, and low current leakages. Silicon transistors stand out over germanium 

transistors that exhibit poor operating temperatures1-3, high current leakages (screw 

dislocation), low power, low current gains and low operating frequencies. Silicon chips 

with the best technology have shown to be the safest material for integrated transistor 

circuits7. In respect to other semiconductors, silicon is a cheap, abundant material and 

has advanced technology that makes silicon suitable for integrated transistors and 

untouchable8. Over the past decade, silicon integrated transistors have double but the 

decrease in the size of transistors is a treat to the future of silicon transistors. The 

limitation of silicon technology (top-down synthesis) and physical properties of silicon is 

the problem for scientist and engineers to continue sizing down the size of integrated 

transistors9.  

           To keep pace with the demand for small size electronics, energy storage and 

sensor devices, engineers are turning to new materials that can substitute silicon. Few  

nanometer-thick silicon film have been synthesized for integrated transistors10. The 

diamond cubic crystals structure of silicon and the limitations offered by technology 

(wavelength of the laser, size of tools) makes it harder to synthesize atomic layer thin 
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film of silicon for device fabrications5,6-11. Thin film silicon and one-atomic layer thick 

silicon and phosphorus have been studied as the alternative material12,13-14. Scientific 

communities have hypothesized the need for a single layer semiconductor. In 2004, 

Geim and Novoselov  demonstrated that graphene a two dimensional one atomic layer 

material has the potential to replace silicon in integrated transistors4-15. A lot has been 

done to bridge the gap between graphene and silicon in integrated transistors16. Much 

still have to be done to replace silicon with graphene17-18. The applications of graphene 

into integrated transistors, energy storage, sensors and biological engineering are 

overwarming19-20. 

1. 1. 0 Study of Graphene  

          Graphene, a two-dimensional hexagonal lattice structure and one atomic layer 

thick, is an allotrope of carbon. Graphene is the building block of graphite, carbon 

nanotubes, fullerene and charcoal21. Graphene is made up of sp2 hybridized carbon 

atoms that are connected in a hexagonal pattern. Graphene also known as a miracle 

material because of its extraordinary properties make graphene an applicable material 

across wide fields. Graphene exhibits extremely high electrical and thermal 

conductivity22-23 high tensile strength (high modulus constant) by unit mass22, high 

thermal stability24-25 and high transparency26. Some of graphene’s applications include 

biological, electronics, medicine, light photodiode, energy storage, sensors and 

environmental applications5,27-28.The effective properties of graphene are attributed to 

the Dirac band structure and the  in plane conductivity of graphene29. 

1. 1. 1 Applications of Graphene 
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          Graphene’s lightweight, atomic layer thick, high conductivity, flexibility and 

durability make it  applicable to the environment, sensors, health, electronics15,30. High 

mechanical stability of graphene, low reactivity (inert), transparency and conductivity 

make graphene suitable for light processing applications, screens displays, electric 

circuits, sensors and solar cells27.  

1. 1. 2 Graphene for Electronic devices  

          The zero-band gap of graphene makes graphene more of a metallic material than 

a semiconductor. Graphene is known as the lightest material that exhibit a Dirac 

fermions level band gap 4. The Dirac band structure of graphene and its aromaticity 

(delocalized electrons) contribute to the high electrical conductivity of  graphene by 

modulating the electronic state of graphene around the Fermi level31-32. Graphene exhibit 

high charge carrier mobility suitable for fast integrated transistors but are hindered but 

their zero band gad18,27-28.Engineering graphene nanoribbons and graphene composite 

materials are the alternate ways to improve on the quality and quantity of graphene band 

gap semiconductor33.  

1.1.1 Graphene for Sensor devices 

          Combustible, flammable, toxic, Oxygen depletion and unwanted gases have been 

known to cause unnecessary fire hazards to both lives and properties. Gas sensors are 

used in every environment namely homes, institutions and companies to avoid fire or 

suffocation from poisonous gases like carbon monoxide15,34. The high electrical, inert 

and thermal conductivity of graphene make this material highly sensitive to doping. 

Different gases exhibit unique finger print signal (reversible doping) over graphene 

substrate and can be used to determine their presence or absence. Graphene gas 
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sensors function via molecular adsorption, piezoelectric effect, photovoltaic cells and 

body motion generating unique signal34,35-36. 

1. 1. 3 Graphene for energy storage devices 

          Transition metal oxides and hydrides have been used over the century as energy 

storage devices37. Cost, weight, toxicity, hazards and low power density are the common 

factors that plague transition metals oxides and hydrides in energy storage devices31,37-

38. Transition metal oxides and hydrides devices exhibit high energy density with medium 

power density. Manganese and nickel oxides (hydrides) have been studied and are used 

as energy storage materials because of their reactivity, abundant, low toxicity and high 

activity39-40. Metal oxides and hydrides are heavy and expensive as such are not suitable 

for lightweight-pocket devices41-2 making graphene metal oxide composites an 

advantageous material for energy storage devices40-42.  

          High conductivity, specific surface area, thermal stability and mechanical stability 

have shown that graphene could be the best material for energy storage devices43. 

Graphene has been used in lithium-ion batteries44-45, catalytic material in fuel cells46 and 

as a material in supercapacitors devices47,48,49,50-51. The mechanical exfoliation synthetic 

method of pristine graphene has been questionable since 2004 for large scale 

production. Different novel methods to synthesize graphene have been discovered and 

implemented. There are three main synthetic methods of graphene fabrication but with 

low efficiency and productivity. Single to few layers of graphene are synthesized via 

chemical vapor deposition or mechanical exfoliation of graphene4-52 and bulk graphene 

can be synthesize via chemical exfoliation of graphite50,53,54,55-56. Chemical exfoliation of 

graphite yields three dimensional (bulk) graphene oxide material with low conductivity, 
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low specific surface area, high reactivity, and low thermal stability49,54,56. Theoreticians 

predicted that three dimensional highly connected pristine graphene will generate high 

efficient energy storage devices16. Here, we present a technological pathway to 

synthesize bulk, high quality three dimensional pristine graphene for energy storage 

devices and sensors. 

 

1. 1. 4 Graphene for biomedical devices  

          High mechanical, inert and conducting graphene composite materials have 

demonstrated that graphene improved biomedical devices57-58. Tissue engineering, drug 

delivery, polymer chain reaction, bio-imaging and sensor devices are all sectors in 

biomedicine that requires high quality graphene to improve their efficiency23. Doped or 

functionalized graphene oxides have changed both physical and chemical properties of 

graphene creating both positive and negative effects on its applications58,59-60. Our well 

coin synthetic method of 3D graphene will be of paramount importance to vast 

applications including bioengineer materials. 

1. 1. 5 Graphene for light processing devices 

          Single, bilayer and few layers of graphene exhibit different transparencies and 

absorbed visible light over wide spectrum61-62. Graphene doped with metal oxides have 

shown to open a band gab making the material a semiconductor suitable for photodiode 

and transistors applications63-64. Doping graphene has also been demonstrated with 

metal oxides graphene composites material for batteries. Single layer graphene exhibit 

poor absorption spectrum of visible light applicable for photodetectors. Graphene hybrid 
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materials have been synthesized (doping) as the composite material to absorbed light 

over specific wavelengths65-66.  

1. 2. 0 Synthesis of Graphene 

          Graphene was first synthesized via mechanical exfoliation of graphite using scotch 

tape4(scotch tape graphene). The urges to utilize graphene for the different applications 

drove the need for cheaper, easier and faster techniques to synthesize graphene in bulk. 

Chemical exfoliation of graphite and chemical vapor deposition (CVD) in addition to 

mechanical exfoliation are the main routes use to synthesize graphene. Chemical 

exfoliation is cheap, time efficient and high yield (bulk) graphene56 compared with CVD 

technique that is low yield but high quality graphene55. Our work utilized chemically 

exfoliated graphene and CVD of graphene technologies to coin new materials.    

1.2.1   Chemical exfoliation of graphene oxide. 

          Pristine graphene was first synthesized  via mechanical exfoliation4. This 

technique can produce single, bilayer, three layers, and few layers of graphene. 

Analyses of the synthesized graphene single to few layers graphene depend mostly on 

chance. The size and shape of graphene flakes synthesized via scotch tape technique 

cannot be controlled. Mechanical exfoliation of graphene demands intensive labor to 

identify the exfoliated graphene flakes on transfer silicon dioxide wafer using optical 

microscopes. The contrast between single, bilayer and few layers of graphene on silicon 

dioxide wafer are visible under optical microscope67. The exfoliated flakes are confirmed 

using Raman spectroscopy analyses. The schematic below demonstrates the necessary 

steps taken during mechanical exfoliation of graphene from graphite. Bulk graphene 

cannot be synthesized via mechanical exfoliation creating the need for new, robust and 
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versatile technologies to synthesize high quality pristine graphene suitable for field effect 

transistors and related applications. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Schematic diagram illustrating the mechanical exfoliation of single layer to 

few layers graphene using scotch tape68. 

          Low yield of graphene using scotch tape technique has led to chemical exfoliation 

of graphene and chemical vapor deposition of graphene as the dominant methods used 

to synthesize graphene. 



8 
 
1. 2. 2 Chemical vapor deposition of graphene 

          The origin of chemical vapor deposition technique has not been well defined. 

According to Powell, Oxley and Blocher in their book, Michael Faraday used chemical 

vapor deposition (CVD) technology in 1838 to synthesized a thin-film coating69. The 

quality of any material synthesize via CVD is determined by the pressure of the reactor,  

rate of mass flows of the precursors (gas controller), thermodynamic or the kinetics of 

the precursors and the reaction rate (temperature controllers)70. We used low pressure 

chemical vapor deposition (LPCVD or CVD) system in our research. LPCVD prevents 

unwanted gas-phase reactions from occurring and improve film uniformity via suitable 

mass flow conditions. The diagram 1.1 below depict the CVD system used in this 

research 

 

Diagram 1.1. Schematic representation of low pressure chemical vapor deposition  

          Acetylene (chapter 2, 3 & 6) and methane (chapter 5) were the main carbon 

precursors used for our graphene syntheses with hydrogen as the etching reagent and 

argon used as carrier gas and annealing condition. Methane requires higher temperature 

because of its low reactivity compare to acetylene that reacts at lower temperatures. The 

reactor is set-up as shown in diagram 1 above with the substrate inserted inside the 
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quartz via one of the open ends. The system was connected to a particular carbon 

source determine by the substrate. Both copper and nickel substrates were used to 

synthesize graphene. Single or bilayer layers graphene were grown on copper50,71 and 

few layers graphene were grown on nickel foil substrate50. 

1. 2. 3 Chemical exfoliation of graphite 

          Functionalized graphene oxide was first synthesized by Brodie in 1859 by 

repeatedly treating graphite in strong oxidizing agent and fuming nitric acid. In 1957, 

Hummer and Offeman modified the synthetic method using potassium permanganate in 

sulfuric acid and phosphoric acid now known as the Hummer’s method53. The acid 

intercalates between the graphitic sheets expanding graphite and accessible to oxidation 

by the oxidizing agent (potassium permanganate). Phosphoric acid is believed to reduce 

the degree of oxidation but not much has been done to support or dispute this claim. 

Figure 1.2 below illustrates the steps taken in the functionalization of graphite to 

graphene oxide. 30mg of graphene was poured into a solution of pure sulfuric acid and 

phosphoric acid (100mL) and stirred for 5 minutes at room temperature. The beaker and 

content immersed into an ice bath and 50mg of potassium permanganate added 

gradually keeping the temperature below 70°C. After 2 hours of stirring, the mixture turn 

light purple and 30mL of 1M hydrogen peroxide added drop wise to terminate oxidation. 

The product filtered, washed with deionized water and dispersed in water or acetone as 

brown solution. 
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Figure 1.2. Schematic diagram for the oxidation of graphite using modified Hummer’s 

method72. 

          Instead of using the modified Hummer’s method, we re-modified the mothed to 

synthesize graphene oxide by eliminating phosphoric acid. In chapter 6, we present the 

cheaper way to synthesize graphene oxide nanosheets from graphite and potassium 

permanganate in pure sulfuric acid.  
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Chapter 2     

Three dimensional microporous architecture of highly connected graphene 

inverse opal scaffolds 

2. 1. 0 Introduction 

          Two-dimensional graphene materials have shown high prospects for 

semiconductor industries73. Mechanical exfoliation is the best technique to synthesize 

high quality pristine graphene from graphite22. CVD and chemical exfoliation have been 

well studied as the alternate methods but yield poor quality graphene with low charge 

mobility. The quest for pristine graphene to substitute silicon in chips has gained steam 

with researchers shaping graphene into nanoribbons with expanded band gap for 

integrated transistors16,74-75. Though progress is being made every day to improve the 

quality of single layer graphene for transistors, not much has been done to develop 

direct, easy and cheap technology to synthesize three dimensional (3D) and well 

connected graphene materials with improve properties for vast applications including 

transistors, energy storage and sensor devices. Here, we present an easy, direct, cheap, 

safe, scalable and reproducible technology to synthesize high quality 3D graphene 

scaffolds. The synthesized 3D graphene scaffolds known as graphene inverse opals 

have applications ranging from energy storage devices to sensor devices76.  

          CVD of graphene on catalytic metal substrates such as copper, nickel, Indium, 

platinum, rhodium, silicon and titanium77-78 has been well documented and growth of 

graphene shown to mimic the architecture of the substrate79. Our synthetic method 

required a pre-synthesized 3D metal architectural scaffold of nickel15,50,76. 

2. 2. 0   Experimental 
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           Reagents: Nickel (II) chloride, nickel sulfate, ethanol, styrene, acetylene, 

hydrogen gas, argon, dry ice, boric acid, styrene, potassium persulfate, acetone, 

toluene, sodium hydroxide, highly oriented pyrolytic graphite, nickel foil and copper foil. 

All reagents were purchased from sigma Aldrich. 

          Instrumentals: Two electrode power source, 3cm in diameter cylindrical container, 

CVD system, Raman spectroscopy, hot plate, electron microscopy, X-Ray diffraction 

spectroscopy and energy dispersion spectroscopy.          

          The mechanism of graphene growth on transition metals is influenced by the 

metal substrate. Catalysis and solubility of carbon at the metal surface and in the 

transition metals respectively  determine the quality of graphene synthesize. Single layer 

graphene grown on copper requires a catalytic surface of copper80 while graphene 

grown on nickel depends on solubility of carbon into the nickel substrate55. 

2. 2. 1 Synthesis of polystyrene spheres (PSS) 

           Polystyrene spheres were synthesized using the well-studied dispersion 

polymerization of styrene technology81.  1.0 M solution of sodium hydroxide (NaOH) was 

used to clean 50 mL of styrene. NaOH removed the inhibitor (dinitrophenyl (DNOC, 

DNBP, DNOP and DNP)) that prevents styrene from polymerizing under room 

temperature conditions82-83.  The clean styrene was rinsed with 100 mL of deionize water 

three times. 300 mL of deionize water was heated at 70 °C in Erlenmeyer flask and 25 

mL of potassium persulfate (PKS (0.2 moles)) was added under constant rotation of 300 

rpm. The temperature stabilized after 1 minute of stirring at constant stirring rate. The stir 

plate was set at 300 rpm for the entire experiment. 20 mL of the clean styrene was 

added to the hot PKS solution at 70°C. The experiment ran for 2 hours at constant 
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temperature and stirring rate. Different PSS sizes were synthesized by changing the 

synthesized sets of parameters namely, the amount of clean styrene, temperature (60°C 

to 70°C)82-84, stirring rate and the amount of concentration of PKS initiator. Different sizes 

of PSS (180 up to 500 nm) were synthesized. The optimized process resulted into the 

best procedure to synthesize desired quality of PSS. We synthesized different sizes of 

PSS from 180 nm to 600nm in diameter by changing the concentration of PKS with 

respect to clean styrene.  

Table 2.0 Different sizes of synthesized PSS under different conditions 

Size of 
PSS (nm) 

Stirring rate 
(rpm) 

Temperature 
(C) 

Concentration of 
PKS (25 mL moles) 

Concentratio
n (volume 
mL) 

180 300 60 0.05 10 

200 300 65 0.2 15 

300 300 70 0.2 22 

500 300 70 0.2 30 

 

2. 2. 2 Electrochemical depositions of nickel inverse opals 

          The well-developed self-assembly technique of PSS was employed to synthesize 

3D PSS template85. 3 g/mL of the synthesized PSS solution were prepared by dispersing 

PSS in 50 mL deionize water at room temperature. Strips of copper foils that were 

cleaned in acetone, then in acetone/ethanol solution and ethanol were vertically aligned 

in a 100 mL beaker. The PSS solution was poured gently into the 100 mL beaker 

containing copper foil strips and stored in the oven at 50°C overnight81. The copper 
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strips were obtained with self-assembled PSS on them for electrochemical deposition of 

nickel.  

          A solution of nickel (II) nitrate (3g/mL), nickel (II) chloride (2g/mL) and boric acid 

(0.2moles) was prepared in a 10:1ratio solvent (deionized water and ethanol) 

respectively. A voltage source (two electrode system) was used to electrochemically 

grow nickel within the interstitial spaces of the self-assembled PSS scaffold on copper 

foil strips.  0.5volts were used to deposit (by infiltration) nickel on the copper substrate 

containing self-assembled PSS. Copper foil was mounted at the cathode and highly 

oriented pyrolytic graphite (HOPG) was mounted at the anode86. The nickel solution was 

gently transferred into the 100 mL PET cylinder set-up with HOPG vertically inserted and 

the cathode strips as the based. The experiment ran for 30 minutes under constant 

voltage. The experiment was repeated several times to generate continuous usable 

nickel inverse opal substrates. The set up was unassembled and the infiltrated PSS with 

nickel substrate obtained and dried in the oven at 50°C for 30 minutes. The infiltrated 

electrodeposited nickel substrates were inserted into toluene to leach out PSS for 10 

minutes. The nickel inverse opal substrates obtained served as the sacrificial metal 

architectural templates for the fabrication of graphene inverse opals.  

2. 2. 3   Syntheses of graphene inverse opals 

          The synthesized nickel inverse opals were dried for 30 minutes in the oven at 

50°C. The nickel inverse opals were inserted into a CVD reactor chamber at room 

temperature and vacuum pump to 10mtorr. The temperature gradient of the CVD system 

was programmed to increase at 10°C per second up to 500°C.Temperature gradient, 

annealing temperature, growth temperature, precursor sources, and flow rate of the gas 
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precursors were all studied to determine the best condition for the growth of graphene-

nickel inverse opal scaffolds. The synthesized nickel inverse opals coated with graphene 

was at 500°C for 30minutes under 0.5sccm of C2H2 and 3sccm H2 gas after annealing 

for 15 minutes in 2sccm of H2 gas as the etching gas. Reduction of nickel oxide to nickel 

was done at 500°C for 30 minutes under hydrogen gas. The CVD system was slowly 

cooled down to room temperature by turning the furnace off. The cooling down process 

allowed the dissolved carbon into nickel to precipitate out of the nickel coating the entire 

nickel scaffold with graphene. The nickel inverse opal graphene were spin coated with 

polymethylmethacrylate (PMMA) and cured at 180°C on hot plate for 90 seconds. The 

copper strips with nickel inverse opals coated with graphene were transferred onto acidic 

iron (III) chloride solution. The copper nickel architecture frame works were etched away 

leaving graphene inverse opal coated with PMMA suspended on the acidic iron (III) 

chloride solution. The synthesized graphene inverse opals were fished out using cleaned 

silicon dioxide glass substrate onto deionize water. The process was repeated three 

times changing used the deionize water each time to ensure complete removal of 

residual metal ions such as iron, nickel or copper28,77. The cleaned graphene inverse 

opals were transferred onto 1.0 M hydrochloric acid solution for 20 minutes to completely 

dissolve unwanted metal oxides on the graphene film.  The samples were then fished 

out with silicon dioxide wafer dried at 30°C for 5 minutes. The SiO2 wafer with graphene 

inverse opal was inserted in acetone solvent to dissolve the PMMA. Free standing 3D 

highly connected graphene inverse opals on SiO2 wafers were dried at room 

temperature for few minutes before analysis and characterization.  

2. 3. 0 Analysis of the synthesized graphene inverse opals 
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          Field emission scanning electron microscopy (Hitachi S4700 Field-Emission 

SEM), X-Ray diffraction spectroscopy (Rigaku Multiflex Diffractometer, Cu Kalpha 

wavelength), Energy dispersive X-ray spectroscopy (Nova NanoSEM/FEI) and Raman 

spectroscopy was used in the analyses process. 

2. 3. 1 Analysis of the synthesized polystyrene spheres 

          The synthesized PSS (white solution) were dropped casted on silicon dioxide 

wafer dried in the oven at 50°C for 30 minutes followed by field emission scanning 

electron microscopy (FESCM or SEM) analyses. The SEM micrographs were used to 

determine the size, uniformity and quality of the synthesized PSS. The uniformity of the 

self-assembled PSS (cracks free) was influenced by the thickness (concentration of 

PSS), rate of evaporation of the solvent and the surface tensional forces between the 

solvent and the substrate (stress). The process was optimized by changing the 

concentration of PSS and rate of evaporation of the solvent. Large areas of thin film of 

PSS (cracks free)  has been self-assembled on centimeters scale on glass substrate81,87. 

Figure 2.1 below depict the thickness and cracks caused by stress of the self-assembled 

PSS on copper substrate. 

 

 

http://unlcms.unl.edu/biotech/node/391
http://unlcms.unl.edu/biotech/node/391


17 
 

 

Figure 2.1. Field emission scanning electron micrographs of the self-assembled 

synthesized polystyrene spheres on copper strips. Images (a, c & d) are the top view of 

PSS at different magnifications and (b) depict the thickness of the self-assembled PSS 

on the substrate.  
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Figure 2. 2. Scanning electron micrographs depict the different sizes of PSS synthesized 

under different conditions. (a) SEM image of PSS synthesized at altered stirring rate, (b) 

SEM image of PSS synthesized at optimized synthetic conditions, (c) SEM image of 

PSS at both stirring and initiator altered conditions and (d) SEM image of PSS at altered 

temperature and stirring rate conditions. 

2. 3. 2   Analysis of electrodeposited Nickel inverse opals 

          The synthesized nickel inverse opals were analyzed with both Field emission 

electron microscopy (SEM) and X-Ray diffraction (XRD) technologies. The SEM images 

in figure 2.3 below support the successful fabrication of nickel inverse opal scaffolds. 

XRD spectrum in figure 2.6 also confirmed that the synthesized Nickel inverse opals 

frame works were nickel metal. The qualities and quantities of the synthesized graphene 

inverse opals were all reflections on the quality as well as quantity of the pre-synthesized 
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nickel inverse opals scaffolds (domain sizes). Figure 2.3 below illustrate the effect of low 

quality nickel inverse opals influenced by the poor quality of self-assembly of PSS. 

Figure 2.4 depict the large area nickel inverse opals obtained from the optimized self-

assembled PSS template.  

 

Figure 2.3. Field emission scanning electron microscopy micrographs above illustrates 

poor quality nickel inverse opals (Ni IOs) synthesized from poor self-assembled PSS. 

The scale bar for all the micrographs is 2µm. (a) SEM micrograph of Ni IOs  top-view at 

low magnification, (d) SEM micrographs of Ni IOs side-view and (b & c) SEM 

micrographs of top-view at high magnification. 
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Figure 2.4. SEM micrographs of high quality nickel inverse opals synthesized from good 

self-assembled PSS. The scale bar of nickel inverse opals is 2 µm. (a) SEM images of 

Ni IOs top-view at low magnification and (b,c, & d) SEM micrographs for Ni IOs top-view 

obtained at different magnifications. 

The large scale synthesized nickel inverse opals were obtained from the optimized self-

assembly technique of uniform large area (cracks free) PSS on copper foil. 

2. 3. 3 Analyses of the synthesized graphene inverse opals scaffolds 

          The synthesized graphene inverse opals (GIOs) were etched and transferred onto 

silicon dioxide wafer for SEM analysis. Figure 2.5 below are the SEM micrographs of 

GIOs synthesized from poor quality Ni IOs (figure 2.3 above) because of low quality self-

assembled PSS template on copper strips. The domain sizes of GIOs determined by the 

sizes of PSS domains on copper as shown in figure 2.1 are clear indication of the finger 
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print left of metal substrate on CVD graphene.  Research have shown that cracks 

occurred during self-assembly because of stress, temperature gradient, surface tension, 

adhesive forces and thickness of PSS on the (copper) substrate88. Figure 2.5 on the 

other hand depicted that large area GIOs can be synthesized from large area uniform 

cracks free self-assembled PSS on coper strips by controlling the above factors.           

 

Figure 2.5. Field emission scanning electron micrographs of free standing graphene 

inverse opals displayed the different domains and thicknesses of GIOs. (a) SEM image 

of top-view GIOs on silicon wafer at low magnification (inserted micrograph at high 

magnification) and (b, c & d) SEM micrographs of top-view, side-view and top-view of 

GIOs respectively at different magnifications. 
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Figure 2.6a. Field emission scanning electron micrographs of large area three 

dimensional, free standing and cracks free pristine graphene inverse opal scaffolds. The 

quality of graphene inverse opal is uniform over 3cm in diameters. (a-d) SEM 

micrographs show top-view GIOs at low magnifications. 
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Figure 2.6b. Field emission electron micrographs of free standing graphene inverse 

opals (GIOs) synthesized from nickel inverse opals. Micrographs are top-view of GIOs 

obtained at high magnification compared to those in figure 2.6a (scale bar is 1µm).  

          Field emission scanning electron micrographs shown above established that free 

standing 3D porous GIOs thin films can be transfer from one substrate to the next 

without damaging the physical structures. This is very important because its show the 

mechanical stability of the material and robustness of the material for different 

applications. 

2. 3. 4 Raman spectroscopy studies of graphene inverse opals 

          Raman spectroscopy is the most efficient technology used in the characterization 

of graphene and graphene like materials. The spectrum of graphene (Graphite) has 
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characteristic two distinct peaks that occur at 1580 cm-1 (G-band) and 2650cm-1(2D-

band) and small intense peak at 1350cm-1(D-band). The intensity ratio of 2D-band that 

occurs around 2650 cm-1 and the G-band that occurs around 1580 cm-1 is the 

characteristic testimony of the number of graphene layers present89. The G-band is 

cause by the in-plane vibrations of sp2 hybridized carbon within graphene sheet90. 

Increased in the number of graphene sheets lead to increase in the number of sp2 

hybridized carbon as a result increases the intensity of the G-peak as shown. The 2D-

band is the vibration signal of the out of plane vibration between the ¶ and ¶* orbitals. As 

the number of graphene layers increases the interaction between the ¶ and ¶* orbitals of 

one layer overlaps with that of the next layer. This overlaps interaction leads to decrease 

in the intensity with respect to the 2D-peak intensity of single layer graphene. The 

disorder or defect band (D-band) observes around 1350 cm-1 is the third most intense 

peak use to determine the quality of graphene. The peak is cause by the second order of 

zone boundary phonons which do not satisfy the Raman selection rule (breading mode 

of sp2 carbon rings)90-89. The Raman analyses as shown in figure 2.7 below compares 

peak intensities of single layer graphene to our synthesized graphene inverse opal 

scaffolds. This result predicts that our synthesized graphene inverse opals scaffolds are 

made up of multilayer graphene.  
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Figure 2.7. The Raman spectrum of CVD multilayer graphene inverse opals (black) and 

CVD single layer graphene grown on copper (red) 

2. 3. 5    X-Ray diffraction analyses of graphene inverse opals 

           Graphite has been studied with XRD and exhibit a characteristic reflection peak at 

25 degrees as a result of the (002) reflection plane. The synthesized graphene inverse 

opals were transferred onto a silicon dioxide wafer for XRD analysis. The XRD spectrum 

shown in figure 2.8 below with one broad single peak at 25 degrees confirmed that the 

synthesized material were graphene like material. The graphitic peak at 25 degrees has 

been attributed to ¶-¶ interaction91 between and within graphene sheets. 
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Figure 2.8.  X-Ray diffraction spectrogram of graphene inverse opals indicates a strong 

graphitic peak at 25 degrees. 

2. 3. 6 Energy dispersion x-ray spectroscopy analyses of graphene inverse opals 

Energy dispersive X-Ray spectroscopy (EDX) is an elemental analysis technique. 

Shown in figure 2.9 below demonstrates the presence of trace amount of nickel within 

graphene inverse opals scaffold. The atomic percentages as well as the molecular 

weight percentages shown that the nickel present exists in graphene inverse opals 

scaffolds as nickel oxide. Based on the oxygen weight and atomic percentages of 
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oxygen to that of silicon and nickel, we have metallic nickel presence in the GIOs. 

 

Figure 2.9. Energy dispersive x-ray spectroscopy of graphene inverse opals indicates 

the presence of trace amount of nickel oxide still present in the synthesized free 

standing pristine graphene inverse opals. 

2. 4. 0   Discursion and conclusion 

          The high quality of the Raman spectrum of our synthesized GIOs compared to any 

3D graphene material synthesized depicted that GIOs is the best 3D graphene material 

ever synthesized. The Raman spectrum of the synthesized GIOs shown a high intensity 

D-band compared to scotched tape multilayer graphene. This high defects intensity peak 

was expected because the edges of the etched graphene and the void caused by the 

dissolved PSS and nickel. In addition to these defects, are the grain boundaries defects 
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sources which can increase the defect concentration of the synthesized GIOs. The 

synthesized graphene inverse opals shown in figure 2.4 and 2.6 are mechanically stable 

and robust as shown by the constant transferred from one substrate to the next. This is 

very important because the objective will be to use these GIOs material for different 

applications.  We used origin software to determine the average diameter of nickel 

inverse opal compared with the average diameter of graphene inverse opals (figure 

2.10). Our calculations determine 4.6% shrinkage in the diameter of graphene inverse 

opal compare to nickel inverse opal. The shrinkage in size was attributed to the void 

created by the etched nickel resulting into surface stress on the free standing graphene 

inverse opals. 

 

Figure 2.10. Graphs and table established the relationship between the size of nickel 

inverse opals (void)  compared to that of graphene inverse apals.Graphs are the plot of 

illustrate the shrinkage percentage in GIOs as a function of quality. 
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          Any three dimensional graphene nano-architecture materials could be synthesized 

using this method. To synthesize any three dimensional graphene scaffolds of interest, a 

metal flame work of the desire frame work must be first synthesized. The metal frame 

works save as sacrificial template for the graphene nano-architectural materials. Nickel 

has been shown to exhibit highest degree of carbon solubility28,50 resulting into 

multilayers graphene with high tensile strength to support 3D graphene scaffolds. Similar 

experiment was attempted on copper but with no observable findings because of the 

single layer graphene grown on copper. 

2. 5. 0 Conclusions 

          We have shown in this project that highly porous free standing graphene inverse 

opal nanostructures can be synthesize by first designing a sacrificial metal template. The 

template must exhibit ability to facilitate the conversion of carbon into graphene. The 

SEM micrographs and Raman spectroscopic analyses confirmed that the synthesized 

GIOs nanostructures are free standing and mechanically stable architectures. With these 

findings, new opportunities to design highly porous graphene scaffolds using 

nanostructure architectural design can be foster. These will expand the applications of 

2D graphene materials into 3D graphene materials as hypothesized75,92,93-94 

2. 6. 0 Future works 

          While we abled to scale the project to centimeter scales, we have not increase the 

thickness of the graphene scaffold. It will be beneficiary if we could develop a method 

that could improve the thickness to centimeters scale for the large areas synthesized 

graphene inverse opals. This improve material will be used for gas sensors15,95. An 

increase in high specific surface area will make the material a formidable material for 
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sensors and energy storage devices better than 2D graphene. A Graphene inverse opal 

seems to exhibit high electrical conductivity as well as thermal stability compared with all 

the synthesized bulk graphene. Further studies will include measuring the conductivity of 

the material using four probe electrodes. The materials have been used as energy 

storage materials in supercapacitor and gas sensor devices making GIOs better 

candidate for these applications. 
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Chapter 3 

Three-dimensional microspores architecture of carbon nanotube inverse opals 

scaffold 

3. 0. 0 Introductions 

         Carbon nanotubes (CNTs) are cylindrical one dimensional material that exhibit 

high specific surface area, mechanical stability, charge mobility, conductivity and poor 

activity. These properties make CNTs the suitable material for electronics (acceptable 

electronic band gap), optical, energy storages, sensors and biomedical applications20, 

58,96,97- 98.The 1D CNTs are synthesized predominantly in 2D format with the direction of 

growth limited by the substrate as Nano-forest and Nano-carpet. Syntheses of 3D 

nanostructures require the catalyst to facilitate growth in 3D confirmation. 3D CNTs has 

been grown from 2D CNTs materials. Among the technologies used are: self-assembly 

of nanomaterials aided by lithographic patterning99-100 , surface enhanced Raman 

scattering (SERS) 26,101- 102 and  printing103 as well as micro-contact printing103 aided by 

self-assembly and lithography. 3D CNTs scaffolds have been hypothesized as one of 

the best material to enhance the performance and applications of 2D and 1D carbon 

nanotubes devices104. In addition, 3D nanostructures have been used to significantly 

increase the dosage of active materials in photocatalysis105, electronics106, chemical 

sensors and optoelectronics107. Over the last decades, progressed has been made to 

engineer 3D CNTs materials using lithographic technology20,108-109. These techniques 

incurred high cost, labor intensive and low productivity. Here, we present a novel 

bottom-up technology to synthesize 3D CNTs scaffolds. Our techniques utilized iron (II) 
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nitrate as catalytic source and polystyrene spheres templates as the pre-synthesized 

sacrificial template. We further present easy way to coin Iron (II) nitrate into 2D CNTs 

forest. This technology is fast, cheap, safe and economical. Field emission scanning 

electron microscopy, X-Ray diffraction, energy dispersive X-ay spectroscopy and Raman 

spectroscopy were used to study and characterize the synthesized 3D CNTs scaffolds. 

3. 1. 0 Experimental 

3. 1. 1 Reagent  

          Iron (II) nitrate, styrene, potassium per sulfate, ethanol, nickel foil, copper foil, 

acetylene, Argon, hydrogen, polydimethylsiloxane (PDMS), toluene, Iron (III) chloride, 

hydrochloric acids, polymethylmethacrylate(PMMA) and silicon dioxide wafer. All 

materials were purchased from Alfa Aesar and Sigma Aldrich and were used without any 

further purification.              

          The synthesized carbon nanotubes inverse opals (CNTs-IO) were performed in 

three steps. First, we synthesized polystyrene spheres (PSS) template as discussed in 

chapter 2. The synthesized PSS were then self-assembled on nickel and copper strips 

as discussed in chapter 2. Secondly, the self-assembled PSS substrates were infiltrated 

with solution of iron (II) nitrate. The iron (II) nitrate solution was prepared by dissolving 

3g of iron (II) nitrate in 10mL solution (1:1 volume ratio of deionize water and 200 proof 

ethanol)110.The copper and nickel strips with self-assembled PSS were aligned vertically 

in an empty 100 mL beaker. The iron (II) nitrate solution was gently poured into the 100 

mL beaker with about 1/5 inch of the nickel and copper substrates stripes soaked in iron 

(II) nitrate solution. The beaker with vertically aligned stripes and iron (II) nitrate solution 

was stored at room temperature for one hour. The infiltrated PSS templates were 
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removed from the beaker and dried in the oven for 30 minutes at 50°C111-112. The dried 

infiltrated PSS templates with iron (II) nitrate were oxidized on hot plot at 500°C in air. 

This process enable decomposition of PSS at the same time iron (II) nitrate oxidized into 

iron oxide (FexOy IO) inverse opals on copper and nickel strips. Chemical vapor 

deposition (CVD) system was used to synthesize iron inverse opals from iron oxide 

inverse opals113. This was achieved by reducing  FexOy-IOs into Fe-IOs at 500°C under 

hydrogen gas (3sccm, 60mtorr) The iron inverse opals nanostructures were used as 

catalytic templates to synthesize three dimensional carbon nanotubes inverse opals 

(CNTs-IO). The advantage of this technique is the ability of the catalyst to facilitate 

grown of CNTs in all direction and not restricted by the substrate. Lastly the Iron catalytic 

templates were etched out together with the metal strips in concentrated hydrochloric 

acids for 30 minutes.  

 

3. 1. 2   Synthesis of three dimensional carbon nanotubes inverse opals  

          An easy, cheap and fast method to synthesize 3D CNTs-IO scaffolds using FexOy-

IO engineer from iron (II) nitrate. Iron oxide was obtained from the infiltrated iron (II) 

nitrate PSS templates. PSS were synthesized and self-assembled at room temperature76 

on copper and nickel foil as mention in chapter 2. The Iron oxides inverse opal (FexOy 

IOs) samples were then transferred into the CVD reactor for the synthesis of Iron inverse 

opal.  Carbon nanotubes were grown on the pre-synthesized iron inverse opal at 500°C 

using acetylene as the carbon precursor and hydrogen as the carrier gas and etching 

agent as shown in figure 3.1b below. 
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Figure 3.1. Schematic diagram and micrographs of carbon nanotubes synthesis from 

iron (II) nitrate. Field emission scanning electron micrographs of CNTs (a) Schematic 

diagram for the synthesis, (b) SEM micrographs for the self-assembled polystyrene 

spheres templates, (c) SEM micrographs for the oxidized Iron oxide inverse opals and 

(d) SEM micrographs for the synthesized carbon nanotubes inverse opals. 

          The synthesized FexOy IOs on the hot plates were removed and allowed to cool at 

room temperature. The samples were transferred into the CVD system and annealed 

under hydrogen (3sccm) up to 500°C for 30minutes and hold at 500°C for another 30 

minutes. Acetylene (carbon source) 0.5sccm was supplied into the system for different 

time 1, 2, 4, 6, 10, and 20 minutes. The effect of acetylene concentration on the growth 

of CNTs-IOs length was also studied by using different concentrations of acetylene (0.5, 

1.0, 2.0 and 5.0sccm).  The gravity of temperature was studied as well as different 

carbon precursor sources (methane and acetylene). The synthesized CNTs IOs 

scaffolds were cooled to room temperature. The samples were spin coated with PMMA 

to etch the copper substrate away and catalyst iron. The free standing CNTs IOs were 
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fished out with silicon dioxide wafer and the coated PMMA dissolved in acetone and the 

samples rinse in fresh acetone solution and were dried in the oven for 20 minutes before 

analyses. 

3. 1. 3 Micro-contact printing of two dimensional iron oxide template 

          Lithography a printing technology was invented in 1796 by Aloise Senefelder a 

German actor. Soft lithography was used to synthesize a mesh with 

polymethylmethacrylate (PMMA) on silicon dioxide wafer. Polydimethylsiloxane stamps 

were fabricated using the PMMA mesh as the template. The PMMA mesh on silicon 

wafer was printed onto different PDMS solid transparent materials that serve as stamp. 

The silicon wafer was caged with copper and filled PDMS sol gel solution. The gel-like 

PDMS solution was cured at 50°C for one hour on hot plate. The PDMS stamp was then 

pill off from the PMMA mesh on silicon wafer. The PDMS stamps were used to transfer 

iron (II) nitrate jelly like solid-solution onto copper and nickel foil separately. The 

schematic shown below in figure 3.2 depicted how Iron oxide patches were fabricated by 

thermally oxidizing the stamped Iron (II) nitrate solid in air at 500°C on hot plate. The iron 

oxide patches were inserted into the CVD reactor for the growth of carbon nanotubes 

forest as shown below in figure 3.2 and figure 3.3b. The CVD precursor used was 

acetylene (2sccm), hydrogen gas (2sccm) etching agent. Iron oxide inverse opals were 

reduced into iron inverse opal   at 500°C for 30minutes under hydrogen (3sccm) for 30 

minutes. 
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Figure 3.2. Schematic diagram for the synthesis of two dimensional carbon nanotube 

forest and three dimensional carbon nanotubes inverse opals using iron as the catalyst 

material. (A) synthetic pathw way for 2D CNTs forest and (B) synthetic path way for 3D 

CNTs-IO 

3. 2. 0 Chemical vapor deposition of carbon nanotubes inverse opals 
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          The synthesized carbon nanotubes inverse opals were controled by annealing 

temperature, rate of annealing, concentration of carbon and the type of carbon source114-

115. Temperature for the growth of CNTs-IOs were optimised. The substrate were also 

optimised. We observed that at elevated temperatures of 900°C, CNTs were grown on 

both the copper and nickel substrate containing iron FeIOs. When the temperature was 

increseased to 1000C, only cluster of CNTs were synthesized on the nickel foil and 

almost nothing on the copper. Since nickel is used as the catalyst for CNTS synthesis, 

we rolled out nickel as the substrate and used only copper for the rest of the 

experiemnts56,116. We studied the effect of rapid temperature increased on the synthesis 

of iron inverse opals. We observed that at high temperatures and higher temperate 

increase rates, sintering of iron ocured hindering the synthesis of carbon nanotubes but 

favoring the growth of carbon nanofibers as shown in figure 3.3 below. At higher 

temperature the iron nanopartcles nucleate together forming larger clusters of iron which 

catalyst the growth of carbon nanofibes as shown in figure 3.4 below. We used 

acetylene  over methane because methane requires higher temperatures of 1000°C for 

activation over lower temperatures of activated acetylene117-118. The lowest activated 

temperature observed for acetylene was to 500°C. At 500°C no sintering  of iron 

nanoparticles were observed during the growth of CNTs-IOs  on iron inverse opals 

catalyst.Different flow rate of acetylene (0.5, 1, 2, 3, and 5) sccm were studied at 

constant time of 2 minutes at 500°C.  Another experiment to study the effect of time and 

carbon precursor on the length of the synthesized acrbon nanotubes inverse opals 

scaffolds.  The CVD system was held at 1, 2, 4, 5, 10, 15, and 20 minutes at constant  

acetylene concentration (2 sccm) and temperature (500°C). We observed that at high 

flow rate (concentration of acetylene), the synthesized CNTs-IOs changes from mixed 

carbon nanotubes to carbon nanofibers (figure 3.4). The length of the synthesized 
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CNTs-IOs were inconclusive because we have not identified the based method to 

separate and analysist them. 

 

Figure 3.3. The field emission scanning electron (SEM) micrographs depicting the 

synthesized carbon nanotubes inverse opals at different temperatures and carbon 

source. (a & c) 600°C and 900°C with acetylene as the precursor and methane 

respectively and (b & d) 900°C and 700°C under acetylene and methane respectively. 
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Figure 3.4. FE-SEM micrographs of carbon nanotubes forest synthesized from stamped 

iron (II) nitrate onto copper substrate. (a-c) SEM micrographs showing top view on the 

synthesized CNTs forest on copper foil before etching and (d) CNTs forest after the 

etched copper substrate at low magnification. The scale for the micrographs is I µm 

          The synthesized CNTs-IOs were spin coated with PMMA solution for 30 seconds, 

cured on the hot plot at 180°C for 90 seconds50. The cured CNTs-IOs were transferred 

onto the concentrated hydrochloric acid to etch the copper substrates and iron catalyst. 

The suspended films of CNTs-IOs were fished out with glass substrates, rinsed with 

deionize water and the PMMA dissolved in acetone. 
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Figure 3.5. Field emission scanning electron (SEM) micrographs of the synthesized 

carbon nanotubes inverse opals as function of acetylene concentration. (a & b) 

acetylene (2sccm at 500°C) and (d & c) the flow rate of 4 and 5 while 10sccm has no 

changed from 5sccm.  

           Carbon nanotubes inverse opals were synthesized at 500°C (10°C per minutes) 

for 2 minutes with the flow rate of 0.5sccm acetylene under slow cooling rate. Research 

has shown that the growth of CNTs depends on the exposure of the catalyst to carbon 

precursor. In our work, we hypothesized that the synthesized CNTs-IOs stop growing as 

they reached their maximum length which is the radius of the iron inverse opals. At this 

stage, we believe that CNTS overwarm the catalyst such that no catalytic surface was 

exposed for CNTs growth118,119-120. 

3. 3. 0 Analysis and Results of carbon nanotubes inverse opals 
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          Optical microscopy, Field emission scanning electron microscopy (figure 3.5 

below), Raman spectroscopy, X-Ray crystallography and energy dispersive x-ray 

spectroscopy technologies were used to analyze and characterize the synthesized 

CNTs-IOs scaffolds and CNTs forest. 

          The synthesized CNTs-IOs were etched away in concentrated hydrochloric acid, 

fished out with silicon wafer and rinsed with deionize water three times. The clean CNTs-

IOs were dried and inserted into acetone solution to remove the PMMA77. The free 

standing CNTs-IOs were fished out on glass substrate dried in the oven for 10 munities 

at 50°C before analyses.  

3.3. 1 Optical analysis of iron oxide template  

          Optical microscope was used to determine the micro-architecture of the pattern 

iron (II) nitrates template fabricated into iron oxide meshes.  Figure 3.1 above 4.5(a &b) 

below depicted the fabricated iron oxide mesh templates. The brown color of the 

templates is dominantly due to the interference of copper substrate.  The irregularities on 

the synthesized templates are from human errors. The optical and SEM micrographs 

shown below confirmed that the iron oxide mesh templates for CNTs forest were 

effectively synthesized. 
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Figure 3.5. Field emission scanning electron and optical micrographs of iron oxide 

inverse opals scaffold. (a) Optical image of the stamped iron (II) nitrate on copper foil, (d) 

SEM micrograph of the stamped iron oxide and (b & c) SEM micrographs of top-view 

iron oxide inverse opals 

3. 3. 2 Field emission scanning electron microscopy of carbon nanotubes inverse opals 

          The synthesized Carbon nanotubes were spin coated with 

polymethylmethacrylate. The samples were suspended on a solution of concentrated 

hydrochloric acid. The iron nanoparticles were etched out leaving the free standing 

carbon nanotubes inverse opal suspended on the hydrochloric acid solution. The thin 

scaffold film was fished out with silicon wafer and rinse several times with deionized 

water, dried at 50°C for hour before microscopic analysis. Figure 3.5 below shows the 

highly connected porous carbon nanotubes inverse opals architecture.  
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Figure 3. 6. SEM micrographs of carbon nanotubes inverse opals at different 

magnifications 

3. 3. 4 Raman, XRD and EDX analysis of materials   

The clean synthesized carbon nanotubes scaffolds were transferred onto a clean silicon 

dioxide wafer for Raman, XRD and EDX analyses. The Raman analysis confirmed that 

the synthesized materials are carbon nanotubes109.  The high intensity D-band (breading 

mode for sp2 hybridized carbon ring) merge with the dominant G-band peak (in-plane 

vibrations) and low intensity 2D-band (¶-¶* vibrations) all indicates CNTs. Below are the 

XRD spectra obtained for both iron oxide scaffolds, carbon nanotubes-iron inverse opals 

scaffolds and carbon nanotubes inverse opals scaffolds. XRD result supports that iron 

inverse opals were etched out giving free standing CNTs-IOs scaffolds. Figure 3.7 below 

includes EDX the elemental analysis of the cleaned CNTs-IOs scaffolds. The trace 
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amount of iron present in the synthesized clean CNTs-IOs scaffolds are attributed to the 

poor rinsing methods. 

 

Figure 3.7. Raman, XRD, EDX and UV’s Spectra analysis of carbon nanotubes inverse 

opals scaffolds. (a) Raman analysis of carbon nanotubes inverse opals scaffolds, (b) 

XRD spectrum of  iron oxide inverse opals (black), carbon nanotubes-iron inverse opals 

(red) carbon nanotubes inverse opal (blue), (c) EDX spectrum show trace amount of 

iron, chlorine and nickel present in the clean dried carbon nanotubes inverse opals and 

(d)absorption spectrum of carbon nanotubes. 
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Figure 3.8. SEM micrographs of mechanically stable carbon nanotubes inverse opal 

scaffold after an hour of sonication. The synthesized 3D CNTs scaffolds exhibit high 

level of mechanical stability as well as connectivity compared with existing 

3. 4. 0 Discursions 

The synthesized 3D CNTs exhibit similar growth pattern as observed with 2D 

CNTs forest grown using cobalt121-122 or iron123 nanoparticles as catalyst. This technology 

need to be scale up and optimizing the condition for the scaling up will be the next focus 

for this project. Complete removal of the trace amount of iron and nickel in the clean 

CNTs-IOs are paramount for the applications of CNTs-IOs in sensor devices. Large 

scale synthesis cracks free CNTs-IOs scaffold need attention for direct application of the 

product in energy storage devices like supercapacitors.  This technology opens new 

avenues for the synthesis of 3D CNTs structures and other 3D nanostructures from ionic 

solutions. The SEM micrographs in figure 3.8 above are chunks of CNTs-IOs obtained 

after sonicating the metal free CNTs-IOs for over a day. The ability of these synthesized 

CNTs-IOs to remain as chunks attest to their mechanical stability and robustness. The 

synthesized 2D CNTs exhibit similar growth as 2D CNTs forest grown using cobalt121-122 

or iron123 nanoparticles as catalyst. This work established plausible avenues where 3D 
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CNTs-IOs including new architectures can be fabricated. Low cost, fast, easy and 

robustness make this technology more appealing and applicable for diverse materials. 

3. 5. 0 Conclusions 

 We have demonstrated that 3D complex nanostructures of CNTs can be grown 

easily using metal salts frame work as the basic source of catalyst. We have established 

synthetic pathways that utilize metal salts as catalytic frame work to engineer 3D 

complex structures. The fact that the engineered scaffolds remained stacked together 

after an hour of sonication also attests to the high mechanical stability of these CNTs-

IOs scaffolds. Research have shown that highly connected, porous materials with high 

specific surface area have increased the charging and discharging rate within bulk 

material in batteries58,108. We believe that CNTs-IOs scaffolds may be a suitable material 

for supercapacitors and batteries. This project exposes new methods to fabricate 

complex 3D CNTs nanostructures. 

3. 6. 0 Future works 

         The synthesized carbon nanotubes inverse opals and carbon nanotube forest 

(figure 3.5 and 3.6) will be used to fabricate gas sensor devices and energy storage 

devices such as supercapacitor and batteries. Improving this technology to obtain large 

scale synthesis will make these material applications achievable and applicable in a vast 

field such as biomaterial engineering. 
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Chapter 4   

The-dimensional manganese (IV) oxide inverse opals architecture for oxygen 

reduction reaction (ORR) 

4. 1. 0 Introductions 

          Manganese oxide (MnOX) have been used for a number of different applications 

including electrocatalyst of oxygen reduction reaction (ORR) and often in metal-air 

batteries124,125,126-127, an electrocatalyst for the detection of hydrogen peroxide, ascorbic 

acid, uric acid and others128. Metal oxides such as MnOx have been used as the cathode 

in MnO2-based dry cell batteries129 and an active material for 

capacitors/pseudocapacitors130,131-132.  Manganese oxides are attractive materials for 

these applications because manganese is cheap, abundant, and environmentally 

friendly132,133-134,  when compared with other electrocatalystic materials like platinum.  

These applications requires material that exhibit high specific surface area (SSA) 

material and active.  In order to increase the SSA of these materials, researchers have 

turned to nanoparticles133,135, nanorods133, nanotubes133, nanosheets133,136, nanowires137, 

three-dimensionally ordered microporous (3DOM) structures110,138-139  and other 

structures with high SAA.  

          Manganese oxide materials can be synthesized through a variety of techniques, 

including hydrothermal131,132,133, thermal decomposition of manganese salts124,140,141-142, 

and electrodeposition138. Designing different methods to synthesize metal oxides with 

high SAA and catalytic properties will be of great interest in regard to these applications. 

Here, we present a new unique, cheap and easy two-step technology to produce 3D 

MnO2-IO nanosheets material that exhibits high SAA and electrocatalytic activity for 
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ORR in alkaline environment. The two steps synthetic method involved thermal oxidation 

of aqueous manganese (II) nitrate to produce manganese oxide inverse opals scaffolds 

(Mn2O3-IOs)40. The second step was electrochemical oxidation of the synthesized 

Mn2O3-IOs framework transforming the material into manganese dioxide nanosheets 

inverse opals scaffolds (MnO2-IOs) figure 4.1143-144. Brunauer–Emmett–Teller (BET) 

analysis as well as field emission scanning electron microscopy (FE-SEM) micrographs 

indicated that MnO2-IOs nanosheets material exhibit high porosity as well as an 

increased specific surface area (SSA). This increase in SSA is attributed to the 

transformed Mn2O3-IO nanoparticles into MnO2-IO nanosheet scaffolds as well as the 

PSS suspenders as shown in figure 4.1 below145. 

 

Figure 4.1. Schematic illustration of the two-steps synthetic pathway of MnO2-IO 

nanosheets scaffold: (a) schematic of the reaction steps: self-assembled PSS on nickel 

substrate (1), infiltration of PSS with 4.1M Mn (NO3)2(aq) (2), thermal oxidation (3) and 

electrochemical oxidation/transformation (4). (b) FE-SEM images of the material: self-

assembled PSS, (c) Mn2O3-IO scaffold and (d) MnO2-IO nanosheets structure 
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4. 2. 0     Experimental  

          Reagents; Sodium sulfate (≥99.0%), potassium hydroxide (99.99%) and sulfuric 

acid (99.999%), potassium persulfate, styrene, ethanol, acetone and (30 wt. %) 

hydrogen peroxide were purchased from Sigma-Aldrich. Manganese (II) nitrate was 

purchased from Alfa Aesar. Toluene and ethanol (200 proof) were purchased from 

Decan Labs Inc, Nickel foil (0.010 inch thick) was purchased from McMaster Carr, and 

hydrogen gas was purchased from Linweld. All materials were used without further 

purification. 

4. 2. 1     Synthesis of Manganese oxide (MnOx) inverse opals 

          The synthesized PSS (300 nm) were dispersed in deionize water as explained inn 

chapter 2 and 3 to obtain 3mg/mL solution. Stripes of nickel were aligned in a cleaned 

beaker held in placed by scotch tape.  3mg/mL of the PSS was poured into the beaker 

with aligned nickel stripes. The beaker and its content was stored in the oven at 50°C 

overnight146. The self-assembled PSS on nickel were transferred into a clean beaker. 

The tips of the nickel substrate with PSS were immersed in 4.1M manganese (II) nitrate 

solution. Manganese (II) nitrate solution was prepared in equivalent solution of 1:1 

volume of ethanol and water. The PSS on nickel were infiltrated with manganese (II) 

nitrate solution over 1 hour at room temperature.  

4.2.2 Thermal oxidation of MnOX in air 

          The infiltrated PSS substrate was dried at 50°C for 30 minutes and were annealed 

at 500°C in CVD reactor141,146. The CVD system was programed by setting the ramp rate 

of 10°C/minute up to 500°C. The CVD system was held for 30 minutes at 500°C to 
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ensure complete decomposition of PSS. We used thermogravimetric analysis (TGA) to 

determine the decomposition temperature of PSS. Thermal oxidation of manganese 

oxide was performed both in air and hydrogen environments. Hydrogen was the 

reducing agent while argon was the carrier gas. Air and hydrogen conditions were used 

to optimize complete oxidation of manages (III) oxide. Thermal oxidation under hydrogen 

was performed by decomposing PSS under hydrogen flow rate of 5.0 sccm at the 

pressure of 132 mtorr147. 

The reaction mechanism schemes of the manganese (III) oxide synthesis in air and in 

hydrogen condition are shown below. 

 

            The synthesized Mn2O3-IO nanosheet scaffolds were characterized with Raman 

spectroscopy, Field emission scanning electron microscopy (SEM). Figure 4.2 below are 

the SEM images of the synthesized MnOX. The effects of PSS on MnOx exfoliation were 

performed on bulk non-porous MnOX samples. 4.1 M solution of manganese (II) nitrate 

were prepared in solvent (1:1 volume ratio of deionize water and ethanol). The solution 

was dropped casted on different nickel stripes and allowed to dry in the oven at 50°C for 

30 minutes. The dried material was first annealed on the hot plate at 500°C for thermal 

oxidation. The samples were removed from the hot plate allowed to cool and were 

inserted in the CVD reactor. The samples were further oxidized in the reactor under 

hydrogen flow (3sccm) at 500°C for 30 minutes the same as the MnOX scaffolds. The 
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samples were further oxidized in 1M sodium sulfate solution as the previous samples 

(figure 4.4).    

 

Figure 4.2. Field emission scanning electron micrographs depicting the synthesized 

MnOX inverse opal on nickel stripes. (a & c) SEM micrographs top view of the MnOx 

inverse opals and cracks domains (scale bar 20µm & 5µm) and (b & d) SEM images 

showing the thickness, domains and inserted image at high magnification (scale bar 5µm 

& 1µm). 

 

4. 2. 2  Electrochemical oxidation of manganese (IV) oxide nanosheets 

            Electrochemical oxidation was performed on a CH Instruments model 1140B or 

660C Potentiostat/Galvanostat in a three electrode cell configuration with a Pt basket 

counter electrode and Ag/AgCl (1 M KCl) reference electrode. All the potentials reported 

were compared to normal hydrogen electron (NHE)124.  1M sodium sulfate electrolyte 
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was in the synthesis of Manganese dioxide inverse opals nanosheets. Thermal oxidized 

Mn2O3-IO materials were treated using electrochemical technology. The nickel substrate 

that functions as the current collector was subjected to cyclic voltammetry (CV) at 0.253 

and 1.253 V vs. NHE at 5mV.S-1 or at constant potential between 0.353 and 1.253 V vs. 

normal hydrogen electrode (NHE) in a 3 electrode system for 1,000 to 10,000 seconds. 

The exfoliated MnO2 inverse opal nanosheets were studied using Raman spectroscopy 

and field emission scanning electron microscopy. 

 

Figure 4.3. FE-SEM images depicting time-dependence study of electrochemical 

transformation of Mn2O3-IO particles into MnO2-IO nanosheets scaffolds at constant 

potential (1.253 V vs. NHE). The scale-bars of the SEM images are 1µm for (a-c and a’-

b’) and 200 nm for (c’-d’). (a & a’) SEM images of Mn2O3-IO scaffold before 

electrochemical oxidation, (b, b’, C1’ & d’) SEM images studied of Mn2O3-IO after 20,000 

second of electrochemical oxidation and © SEM studied of Mn2O3-IO after 50,000 

second of electrochemical oxidation.  

          We studied the effect of time and the changed in potential on the pre-synthesized 

Mn2O3-IO for at times and at different potentials.  The obtained results provided clues 
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that adhesion of the Mn2O3-IO to the nickel substrate is very imperative for 

electrochemical oxidation and transformation of Mn2O3-IOs. After short time of 

electrochemical treatments of Mn2O3-IOs, some sections of Mn2O3-IO as shown in figure 

4.3 above exhibited complete exfoliation while some took longer time and others did not 

oxidized after extended time treatments.  Different set of samples were studied by 

repeatedly applying a constant potential over and over and the progress of 

electrochemical oxidation studied with SEM as shown in figure 4.3 above. 

4. 2. 3 The role of PSS in oxidation of MnO2-IO inverse opals nanosheets 

          We designed an experiment to study the effect(s) of PSS on the electrochemical 

oxidation of Mn2O3-IO nanoparticles into MnO2-IO nanosheets. Separate fresh bulk 

samples were prepared on nickel substrate PSS as explained above. The resulted bulk 

Mn2O3 substrates were electrochemically treated with the three electrode system as 

shown above. The results shown in figure 4.4 below indicated that bulk Mn2O3 

nanoparticles can be directly oxidized into MnO2 nanosheets by treating the samples 

electrochemically.   
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Figure 4.4. Scanning electron micrographs of bulk manganese dioxide nanosheets 

synthesized from bulk manganese (II) nitrate after thermal oxidation followed by 

electrochemical oxidation. 

          Based on our findings, PSS do not play any catalytic influence over the 

transformation of Mn2O3-IO nanoparticles to MnO2-IO nanosheets but provide easy 

access for the sodium sulfate electrolyte. The adhesion of Mn2O3-IO particle to the 

substrate and interaction with the electrolyte are the main factors that drive the 

transformation of nanosheets.  

4. 2. 5 Manganese dioxide nanosheets catalyzed ORR  

          The electrolyte used for oxygen reduction reaction studies was the air-saturated or 

nitrogen-degassed 0.1M potassium hydroxide solution. The ORR studies were 

performed on the synthesized MnO2-IO nanosheets structures after thermal and 

electrochemical oxidation of Mn2O3-IO with the three electrode system128. 
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4. 3. 0   Analysis of manganese dioxide inverse opals nanosheets 

           The synthesized MnO2-IO nanosheets scaffolds were studied using FE-SEM as 

shown in figure 4.3 above. The SEM findings were further confirmed with Raman 

spectroscopy and X-ray diffraction analyses. Flame atomic absorption spectroscopy was 

used to study the oxidation of the Mn2O3-IO after thermal oxidation under hydrogen 

conditions. The findings agree with the SEM, AAS and XRD findings. We confirmed the 

complete oxidation of Mn2O3-IO to MnO2-IO nanosheets using X-ray photoelectron 

spectroscopy as shown below. 

4. 3. 1 Flame atomic absorption spectroscopy (FAAS) 

           Perkin-Elmer Model 3100 AAS was used for the AAS to study the stoichiometry of 

the thermal oxidized manganese (III) oxide. The samples were massed and introduced 

to hot concentrated sulfuric acid solution.  After cooling, hydrogen peroxide (30 wt. % in 

H2O) was added until all MnOx had visibly dissolved.  The solutions were quantitatively 

transferred to volumetric flasks and diluted to appropriate concentrations for FAAS. 

Mass percent of the individual atoms present were calculated.  

Sample Amount of Electrochemical Oxidation 
(s) 

O:Mn* 

1 0 1.22 to 1.1 (Mn3O4) 
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Table 4.1. Atomic ratio of the atoms present in the manganese oxide  

 

 

 

 

Our result indicated that oxidized bulk manganese oxide in hydrogen condition (limited 

oxygen) were complete oxidized to manganese dioxide. 

          We employed X-ray photoelectron spectroscopy (XPS) PHI Versa Probe II 

instrument equipped with monochromatic Al K(alpha) anode source an X-ray source (hν 

= 1486.6 eV), and hemispherical analyzer to study oxidation state and composition of 

the synthesized MnOx. The X-ray source power was 65 W at 15 kV, 260 micron beam 

and take off angles of 45 degrees. The ultimate Versa Probe II instrumental resolution 

was determined to be 0.35 eV using the Fermi edge of the valence band for metallic 

silver. The resolution with charge compensation system was 0.68 eV FWHM on PET. 

The instrument work function was calibrated (BE) of 84.0 eV for Au 4f7/2 line on metallic 

gold and the spectrometer dispersion was adjusted to give a BE’s of 284.8 eV, 932.7 eV 

and 368.3 eV for the C 1s line of adventitious (aliphatic) carbon from the non-sputtered 

samples. The PHI double charge compensation system was used on all samples, to 

remove any photovoltaic charging effects from the data. The spectra were additionally 

2 10,000 2.1 to 1.67 (MnO2 + 
Mn) 

3 20,000 2.2 to 2.08 (MnO2) 

4 50,000 2.5 to 2.29 (MnO2) 

5 100,000 1.99 to 1.82 (MnO2) 
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checked for charging and other artifacts by measuring the Fermi level with temperature, 

and using that as a second reference standard and provide a more accurate assessment 

of binding energies for our nonconductive molecular materials.  The instrument base 

pressure was ca. 8 x 10-10torr. All XPS spectra were recorded using PHI software 

SmartSoft –XPS v2.0 and processed using PHI MultiPack v9.0 and/or CasaXPS 

v.2.3.14. Signal above background measurement and Shirley background subtraction 

was made using CASA XPS software. Peaks were fitted using GL line shapes, an 

accepted combination of Gaussian and Lorentzian. Up to 50 scans were accumulated. A 

given sample was examined at 5-6 different spots on the mounted specimen to assure 

that consistent, reproducible results were obtained.  XPS has been used to analyze 

MnO2 nanostructures132,148,149-150 and in this case was used to gain information about the 

surface oxidation state of the manganese oxide inverse opal scaffold.  XPS was run on a 

set of samples that ranged from as-synthesized Mn2O3-IO with no electrochemical 

treatment to a sample with 100,000 seconds of constant potential electrochemical 

oxidation.  The X-ray photoemission spectra for these samples are shown in the 

supplementary information and the O:Mn ratio that has been calculated from those data 

is shown in Table 1.  The data indicates that the surface of the manganese oxide 

scaffold is converted primarily to Mn4+ within 20,000 seconds of constant potential 

electrochemical oxidation.  This was interesting as FE-SEM images didn’t show much 

change until 50,000 seconds or more of electrochemical oxidation. This was attributed   

to samples to samples preparation variation.  The quality of contact between the 

manganese (II) oxide scaffolds and the nickel substrate has been shown to of great 

importance in the electrochemical oxidation of manganese oxides. 
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Figure 4.5. XPS analyses of the step synthesis of MnO2-IO nanosheets using thermal 

and electrochemical oxidation. (a) As synthesized Mn2O3-IO using thermal oxidation, (b) 

electrochemical oxidation of (a) after 20,000 seconds and (c) Electrochemical treatment 

of (a) after 50,000 seconds 

          The XPS analysis of the synthesized Mn2O3-IO nanosheets confirmed that the 

materials were electrochemically oxidized and transformed into MnO2-IO nanosheets 

scaffolds. XPS analysis performed on the thermally oxidized Mn2O3-IO in air (figure 

4.5a), XPS analysis on the electrochemical oxidized MnO2-IO nanosheets for 20,000 

seconds (figure4.5b) and XPS analysis on the electrochemical oxidized MnO2-IO 

nanosheets 50,000 seconds (figure 4.5c). XPS results confirmed that manganese (II) 

nitrate can be thermally and electrochemically transformed into MnO2 nanosheets.  

           Field emission scanning electron microscopy (Hitachi S4700 FE-SEM) was used 

to analyze the morphology of the material as synthesized on nickel substrate. The 

synthesized materials were analyzed before electrochemical treatment and after 

electrochemical treatment. Figure 4.6 below are micrographs of the manganese (III) 

oxide inverse opal and manganese dioxide inverse opal nanosheets. 
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Figure 4.6. Scanning electron micrographs depicting the complete transformed MnO2-IO 

nanosheets scaffolds. (a)SEM image of top-view of MnO2-IO nanosheets scaffold, (b) 

SEM cross section image showing the in-depth synthesis of MnO2-IO nanosheets 

structure, (c) SEM magnified cross section image of MnO2-IO nanosheets and (d) SEM 

high magnification image top view MnO2-IO nanosheets on the top surface      

 

       Electrochemical oxidation of Mn2O3-IO was study using SEM figure 4.3 & 4.6 above. 

The samples were imaged before and after the electrochemical oxidation for 20,000 

seconds figure 3(b and b’), after 50, 000 seconds figure 3c and figure 3 (a and a’) before 
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electrochemical oxidation. Different samples of Mn2O3-IO that were treated for shorted 

time shown proportional degree of exfoliation as we extended the time of treatment.  

          X-ray Diffraction (PANalytical-Empyrean diffractometer was used to analyzed the 

MnO2-IO nanosheet scaffolds , X-ray diffraction (XRD) at power (40Kv/44mA), Recslit 

0.3 mm, step 0.04 and scan rate of 1.5 degree/minute was used to analyze the crystal 

structure of the synthesized manganese dioxide inverse opal nanosheets40. The 

absorption spectroscopy (Jasco V-670 spectrometer) was used to determine the 

absorption wavelength of the synthesized manganese dioxide inverse opal nanosheets. 

Raman spectroscopy (DXR microscope 532 nm filter was used to analyze the 

synthesized manganese dioxide nanosheets.  The materials were analyzed with Raman 

spectroscopy while there were still on the nickel substrate. Raman spectra (figure 4.5a) 

were measured before electrochemical treatment of Mn2O3-IO material and after 

electrochemical treatments. Raman analyses were performed on different set of material 

after 20,000 seconds and after 50,000 seconds of electrochemical oxidation at constant 

potential. Figure 4.3 depicts the exfoliation progress of manganese (III) oxide to 

manganese dioxide nanosheets as a function of time studied with FE-SEM. Raman 

spectroscopy analysis illustrates the transformation progress of Mn2O3-IOs material into 

MnO2 inverse opal nanosheets.  This were evidenced by the peaks at 492.5 nm and 

575.4 nm in plane bond vibrations of Mn4+-O bonds in MnO2 nanosheets as well as 

Mn2O3-IO inverse opal material. The peak at 640.9nm are caused by the Mn3+-O bond 

vibration124,141,151. The shift in peak positions towards the larger wave number for the 

20,000 seconds and 50,000 seconds Mn2O3-IO treatment when compared to the Mn2O3-

IO Raman analysis are attributed to the changed in particle size. Nanosheets have large 

surface area compared to nanoparticles creating the shift in peak position figure 4.3. 

XRD analysis indicated the presence of MnO2-IO nanosheets as well as Mn2O3-IO 
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particles as shown in Figure 4.3b.  The XRD peaks labelled in black are attributed to 

MnO2 while the peaks in green are attributed to Mn2O3. The nickel peaks observed, 

shown in red, are contributions from the nickel substrate124, 141-142.  Energy dispersive 

spectroscopy (EDS) analysis of the material (supplementary information) also detected 

nickel from the substrate and additionally detected some carbon trace impurities, likely 

from PSS.  Given that peaks attributable to Mn2O3 were present in addition to peaks 

attributable to MnO2 indicates that the material had not been fully converted into MnO2. 

The XRD peaks analysis agrees with literature studies. FE-SEM images above depict 

the thickness of the MnO2-IO nanosheets scaffold. This means that large thick MnO2-IO 

nanosheets scaffold can be synthesized using this two-step technique. Degree of MnO2-

IO nanosheets transformation is also attributed to the contact between nickel substrate 

and the material (fig. 2.4 SI).  

           After Raman, XRD, UV-Vis and XPS analysis of the Mn2O3-IO and MnO2-IO 

nanosheets, it was hypothesized that perhaps a more complete or more substantial 

formation of nanosheets could be achieved if the manganese oxide inverse opal material 

was in a lower oxidation state prior to electrochemical transformation.  Given that the 

nanosheets formation were clearly caused by the constant potential electrochemical 

oxidation, it would be a reasonable expectation that if the MnOx-IO was synthesized in 

such a way that it would be all Mn(III) or a mixture of Mn(III) and Mn(II), it might yield a 

more abundant amount of nanosheets 
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Figure 4.3. Raman, XRD and UV-Vis analysis of MnO2-IO nanosheets material indicates 

complete transformation of the material. (a) Raman spectra of MnO2-IO nanosheets 

transformation as a function of time (black thermally oxidized Mn2O3-IO, blue after 

20,000 seconds electrochemical treatment and red after 50,000 seconds 

electrochemical treatment. (b) XRD of MnO2 nanosheets (black), Mn2O3 (green) and 

nickel substrate (red) and (c) UV-Vis spectrum indicates MnO2-IO nanosheets material 

with a shift in wavelength due to mix trace of Mn2O3-IO material. 

 

 

          Following the optimization procedure of MnO2-IO nanosheet, the potential 

applications for this highly porous (figure 4.4) electrocatalystic material was explored.  It 

was observed that after 100,000 seconds at constant potential of electrochemical 

oxidation, the material was not fully oxidized to manganese (IV) oxide with the air 

oxidized samples, as evidenced by SEM study with some sections of the sample with no 

nanosheets (supplementary information). Due to this partial oxidation, electrocatalyzed 

oxidations were not feasible since there was a large oxidation current background 

attributable to the manganese (III) oxide scaffold undergoing electrochemical oxidation. 

Electrocatalyzed reductions were then explored; one of the most common of which for 
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MnO2 is the electrocatalytic oxygen reduction reaction.  ORR was investigated using CV 

in 0.1 M KOH that was air or nitrogen saturated and these scans are shown below. 

 

4. 4. 0 Oxygen sensors         

          For the air annealed sample with 50,000 seconds of electrochemical nanosheet 

formation, there is an irreversible reduction wave starting around ~0 V that can be 

attributable to ORR as it is no longer present when the solution has been degassed with 

nitrogen.  For the hydrogen annealed sample, more scans were performed, including 

before nanosheet formation. Prior to MnO2-IO nanosheet formation (red and blue lines), 

a redox couple appears to be centered about 80 mV.  It is likely that this redox couple is 

Mn3+/Mn2+.  In air saturated 0.1 M KOH, a peak is beginning to form at ~-0.6 V, which is 

likely attributable to ORR.  When nitrogen degassed, this peak is no longer present.  

After nanosheets formation, 50,000 seconds of constant potential application (green and 

purple lines), a very different cyclic voltammogram was recorded.  In an air saturated 

solution, an irreversible reduction wave is observed, starting around -0.1 V.  When 

degassed with nitrogen, there is still a peak in the same position, but with significantly 

decreased in magnitude indicating that the peak was due to oxygen reduction.  A control 

experiment with only a nickel current collector was performed to ensure that the nickel 

was not contributing to the ORR. 

          While the CV scans shown here are primarily qualitative in nature since probing 

the electrocatalyst’s performance via rotating disk electrode is not feasible, there can still 

be conclusions drawn from these data.  The air annealed sample has its ORR peak 

approximately 100 mV more positive than that of the hydrogen annealed sample.  This is 
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possibly due to contact resistance issues and electrode to electrode variability, as 

described previously.  The hydrogen reduced sample appears to have much less 

capacitance after nanosheet formation, while the air annealed sample has a fairly 

significant amount of capacitance that the ORR peak is superimposed upon.  This 

suggests that the hydrogen annealed sample undergoes a more complete 

transformation to MnO2, as other MnOx species do not contribute to the electrocatalytic 

ORR and it is known that the air annealed samples do not undergo a complete 

transformation to MnO2. 

4. 5. 0 Discussions  

          UV-Vis spectrum shown above in figure 3C with absorption at 223.3 nm and 270.3 

nm which aggress with prior research also supports that this material is MnO2-IO 

nanosheets1,140,142. This analysis was performed by sonicating the samples in deionized 

water for 30 minutes. The nickel substrate was then fished out using spatula. The UV-

Vis matches with literature review but with the shift of the peak position up higher wave 

length. This shift is attributed to the size of the as synthesized MnO2-IO nanosheets. 

Following the optimization procedure of MnO2-IO nanosheet, the potential applications 

for this highly porous (figure 4) electrocatalystic material was explored.  It was observed 

that after 100,000 seconds at constant potential of electrochemical oxidation, the 

material was not fully oxidized to manganese (IV) oxide with the air oxidized samples, as 

evidenced by SEM study with some sections of the sample with no nanosheets 

(supplementary information). Due to this partial oxidation, electrocatalyzed oxidations 

were not feasible since there was a large oxidation current background attributable to 

the manganese (III) oxide scaffold undergoing electrochemical oxidation. 

Electrocatalyzed reductions were then explored; one of the most common of which for 
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MnO2 is the electrocatalytic oxygen reduction reaction.  ORR was investigated using CV 

in 0.1 M KOH that was air or nitrogen saturated and these scans are shown below. 

4. 6. 0 Conclusions 

          MnO2-IO nanosheet structures were synthesized using a unique two steps 

technique of thermal oxidation followed by electrochemical oxidation. X-ray 

spectroscopy, Raman spectroscopy, Absorption spectroscopy, and others were used to 

characterize and analyze the formation of MnO2-IO nanosheet scaffolds. It was found 

that optimization of the nanosheet formation could be achieved by reducing the 

manganese oxide scaffold during the thermal step of the synthesis. This method has 

shown great potential for large scale synthesis of three dimensional MnO2-IO 

nanosheets. The MnO2-IO nanosheets showed activity for ORR, and due to the high 

porosity and surface area of the scaffold-based material, it may be applicable to gas 

diffusion type electrodes used in metal-air batteries128. Experimental results indicated 

that the oxidation of Mn (II) nitrate into Mn2O3 is more effective under hydrogen 

condition. This is true because hydrogen is used to partially reduce MnO2 to Mn2O3. 

Hydrogen function as a reducing agent to prohibit the synthesis of MnO2-IO material also 

pumping the chamber down reduces the oxygen concentration which favor the synthesis 

of Mn2O3 over MnO2. SEM images indicated that the degree of synthesis of MnO2-IO 

nanosheets was greatest with Mn2O3 synthesized under hydrogen over those in air and 

vacuum and ORR response was well differentiated with samples synthesized in 

hydrogen environment. 

4. 7. 0 Future works 
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          The synthesized MnO2-IO scaffolds need synthetic design for large scale 

production. This will enable the application of this material in supercapacitors152, 

batteries148 and sensors153. Some metal oxides like vanadium pentoxide need evaluation 

using this technology.  
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Chapter 5  

Flexible transparent electrochromic device of electrochemical deposited tungsten 

(VI) Oxide on bilayer graphene electrodes 

5. 1. 0 Introductions 

            Electrochromism is the phenomenon where some materials reversibly change 

their color as a result of redox reaction of the material. Electrochromism is dated back to 

1704 when Diesbach discovered that Prussian blue changed from colorless to blue in 

the presence of iron oxidation154-155. This phenomenon is use to fabricated devices that 

changes color as a function of potential changes in screens and windows. Tungsten 

trioxide among other transition metal oxide like titanium dioxide and nickel oxide has 

been well studied as electrochromic (EC) materials. Tungsten trioxide (WO3)  was 

discovered in 1930 by Kobosew and Nekrassow as an electrochromic material and was 

later explained the changes in oxidation state of Tungsten oxide in 1953 by Kraus156-157. 

Tungsten trioxide is one of the transition metal oxides that has been extensively studied 

as the best electrochromic material for smart windows, solar cells and windows158. 

Integration of electrochromic materials on flexible-transparent plastic have led to high 

level of anti-counterfeit development159.  Flexible electrochromic devices (ECD) are 

those that can easily exhibit electromism when a spurt of charge is applied160. This 

technology to control the amount and frequency of charges supply to the device has led 

to high efficient ECD and more applications for electromism.  Optical properties of ECD 

(transmission, absorption, reflectance, and emittance) are control by an uninterrupted 

charges supply or interrupted charges supply.  Manipulating the frequency and efficiency 
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of electrochromism by playing with the potential source has led vast applications of ECD 

in mirrors, smart-windows, and EC display like computer screens and television screens.  

          The core of ECD is their flexibility, transparency and their applications on plastic 

substrate. High Conducting-transparent electrodes are paramount to the fabrication of 

good-efficient and applicable ECDs. Graphene substrate has been used as the 

conducting electrode for WO3 ECDs. The graphene sheet for electrode was transferred 

onto glass substrate after chemical vapor deposition of graphene for ECD61,161.The 

fabricated ECD was not robust and flexible because of the poor flexibility of glass 

substrate. The active material tungsten trioxide was chemically deposited on the 

transferred graphene on glass substrate. The oxidation state of tungsten oxide changes 

between 6 and 4 providing resistance in the efficiency in the rate of color changes162. 

Here, we present easy, fast, new and efficient technology to design ECDs with graphene 

and WO3 on flexible plastic substrate. The fabricated ECDs will be synthesized via 

electrochemical deposition of WO3 from tungsten resulting into a single state tungsten 

material (W+6) with low resistance to electrochromism.  

5. 1. 0 Experimental 

          Transparent thin film of WO3 for electrochromic devices are synthesized either via 

thermal deposition163,164-165 or electrochemical deposition166,167,168,169. Tungsten is a high 

thermal stable material with melting point of 3,422°C but the metal oxide exhibit low 

temperature decomposition at 550-85°C170. WO3 synthesized via thermal deposition 

technology have shown to have high level of oxygen vacancies and mixed oxidation 

states167. Here, thermally deposited WO3 films were grown from powder hydrotungstite 

(H2WO3) under vacuum condition (10mtorr) in the chemical vapor deposition system. 
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Requirements: Hydrogen gas, Argon, methane, chemical vapor deposition system, three 

electrodes system,  tungsten, hydrotungstite powder, copper foil, silicon wafer, 

polyethylene terephthalate (PET), lithium perchlorate, ethylene carbonate, Indium tin 

oxide on glass substrate and polymethylmethacryate (PMMA) 

5. 3. 0 Tungsten (VI) oxides  

          Tungsten trioxide a yellow powder with the monoclinic crystal structure (mP32, 

space group p1/2/c1 have tungsten cation (WVI+) at octahedral position and oxygen 

anion (O2-) at trigonal planar position). Tungsten trioxide is the ore for tungsten 

synthesis. Tungsten triode occurs naturally as hydrates (tungstite (WO3.H2O), 

meymacite (WO3.2H2O) or hydrotungstite (H2WO4) nature as  

5. 4. 0 Thermal deposition of tungsten trioxide 

          Ceramic bolt with 30mg of tungsten (VI) oxide was inserted into the furnace and 

copper foil substrates were inserted at both ends of the quartz as shown in diagram 1 

below. The furnace was set at 10°C per minutes up to 900°C and the pressure was 

10mtorr.  CVD system was held at 900°C for 10 minutes and the furnace was turn off 

under vacuum to cool down to room temperature. The Copper substrate with the 

deposited WOx was removed and the copper etched away before analyses of free 

suspended WOx thin film. 
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Diagram 5.1. Chemical vapor deposition of tungsten oxide from tungsten trioxide powder 

          The WOx-copper foil was coated with PMMA and etched away in iron (III) chloride 

solution. The suspended thin film of WOx was fished out using silicon dioxide wafer. The 

synthesized WOX was oxidized further in air at 500°C for 15 minutes to synthesize WO3 

thin film. 

5. 4. 1 Field emission scanning electron microscopy of WO3 nanorods film 

          The synthesized WOx film was purple in color an indication of W (V) or mixed state 

of tungsten. XRD analyses indicated that the thin film contain both W (V) and W (VI) 

oxidation state. The etched WOx thin film was blue in color an indication that the 

transferred material is WO3.XH2O (silicon dioxide wafer). Attempt to reduce (bleach) the 

colored WO3 in the process of etching failed. The thickness and mixed oxidation states 

of the material were the suspectations attributed to the failure in bleaching and coloring 

of the material. So to solve the problem of mix oxidation states, the material was 

annealed in air at 500°C which turn from blue to white WO3 thin film. Fabricated ECD 

with the further annealed WO3 thin film yield no coloring and bleaching results.The ECD 



71 
 
device was performed using the thermal deposited WO3 nanorods film in lithium 

perchlorate as the electrolytes and sulfuric acid electrolytes solution. 

 

Figure 5.0. Field emission scanning electron micrographs of WO3 thermally deposited 

WO3 before etching (a), after etching (b) and after annealing in air (c & d).  

          The synthesized WO3 on copper substrate, etched and annealed in air was 

transferred onto graphene conductive transparent electrode and attempted bleaching in 

lithium perchlorate solution did not occurred. The thickness of the thermally deposited 

WOX, the etched WO3.XH2O and the annealed WO3 thin film for bleaching and coloring 

could be the possible reason for the device failure in addition to vacancies. Several 

attempts such as the time of deposition and the temperature were made to control the 

thickness but were unable. It was resolved that electrochemical deposition of WO3 thin 
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film on the graphene conductive-transparent electrode will be the best option to 

engineered thin transparent WO3 film for ECD. 

5. 4. 2. Synthesis of bilayer graphene. 

          CVD of single layer graphene on different transition metals has been well studied. 

Graphene has been synthesized from different carbon sources such as gases, liquid or 

solid carbon precursors. Bilayer graphene on the other hand has not been well explored 

but has been demonstrated to grow on copper and nickel foil using acetylene and 

methane. Bilayer graphene has been grown from acetylene on nickel and methane on 

copper. In this study, extensive study on the growth of bilayer graphene on copper using 

methane precursor and acetylene were performed. CVD of graphene on copper is a 

catalytic process that is inhibited by the first graphene layer. Bilayer graphene growth on 

copper occurs at high pressure (1torr). It’s been shown that the second layer of 

graphene infiltrate between the catalytic copper substrate and the first layer of graphene. 

                   Stripes of copper foil were clean for 1 minute in acetone, 10 minutes in 

acetic acids, rinsed in deionize water and then ethanol. The clean copper substrates 

were inserted in the CVD reactor. The CVD system was set to 10°C per minute increase 

up to 1000°C. Copper foil was annealed in hydrogen (3sccm) for 30 minutes at 1000°C 

with pressure 54mtorr. The growth conditions were adjusted such that the flow rate of 

hydrogen 9sccm and methane 9sccm (1.10tor) for 60 minutes at constant temperature 

and the reactor was rapidly cold down to room temperature80-171. The synthesized bilayer 

graphene was transferred onto polyethylene terephthalate (PET) via spin coating with 

PMMA. The copper coated with graphene was spin coated with PMMA and cured on the 

hot plate at 180°C for 90 seconds. The coated copper graphene substrate was then 
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suspended on the surface of acidified iron (III) chloride solution for 30 minutes. The 

etched graphene in iron (III) chloride was fished out using glass slide onto deionize 

water for cleaning. This step was repeated three times before fishing out the bilayer 

graphene with PET substrate. The PET with graphene PMMA on it was inserted into a 

beaker with acetone to dissolve the spin coated PMMA76,172-173. The bilayer graphene 

spin coated with PMMA was transferred into 1M hydrochloric acid solution for 30 

minutes to dissolve any iron oxide and un-etched metal. After immersing the substrate in 

acetone, the sample was rinsed in deionize water, dried in the oven at 50°C for 10 

minutes and inserted into 1 M ammonium hydroxide solution to oxidize any amorphous 

carbon on the graphene. Final rising was done in clean deionize water three times to 

remove all the ions and anions that could function as doper on the graphene.  

5. 4. 3. Electrochemical deposition of WO3 on graphene 

          The bilayer graphene on PET substrate was connected into a three electrode cell 

system. The anodic electrode was graphene for electrochemical deposition of WO3 and 

the cathodic electrode was tungsten (source of the tungsten) and reference electrode 

was platinum. 1M lithium perchlorate solution dissolved in purged propylene carbonate 

(PC) (source of protons as well as electrolytes). The potential used in this deposition 

was 0.5volt. The average experimented deposition time was 10 minutes. The same 

potentiostat used in chapter 2 and 4 was used for experimenting. The absolute time for 

effective deposited WO3 thickness obtained by analysis of WO3 deposited on indium-tin 

oxide (ITO) PET conducting substrate. The rate of WO3 deposited were experimented 

both ITO and graphene substrate. ITO is efficiently more conductive on PET than single 

layer graphene as a result of substrate acting as a doping material which was prove by 

stacking more than single layer with conductivity increasing with the number of graphene 
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on PET. It was shown that the conductivity of graphene on PET is inversely proportional 

to conductivity as well as rate of electrodeposition of WO3. This work will place bilayer 

graphene electrode in a competitive region with the well-studied ITO electrode for 

transparent electrode and sensor devices. The deposited WO3 thin films were 

characterized and used to fabricate ECD for smart windows, flexible televisions screens 

and computers, phones, iPod screens. 

5. 3. 4   Characterization of electrodeposited WO3 on bilayer graphene 

          The synthesized WO3 thin films on graphene substrates were analyzed using FE-

SEM. The micrographs shown in figure 5.5 below as well as WO3 thin film grown on ITO 

substrates were obtained using SEM. Analyses show that the thicknesses of WO3 thin 

films grown on ITO substrate were directly proportional to the amount of time exposed 

for electrochemical deposition. This effect was not directly observed for all the graphene 

substrates. This may be attributed to the irregularities involve each transferred bilayer 

graphene. In some cases, the thicknesses of the electrochemical deposited WO3 were 

proposition with time (4 layers graphene) some substrates did not have a direct 

relationship (2layers, 5 layers and 6 layers). We used multi-meter to estimate the 

electrical conductivity of the graphene by measuring the resistance of the materials. Our 

results show that conductivity increases with increased in the number of graphene 

layers. This was obvious given that the first layer graphene is highly doped by the 

substrate (PET) subsequent layers do not have the same doping effect from the PET 

substrate. 
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Figure 5.1. Field emission electron micrographs show the thicknesses and resistance of 

the electrodeposited tungsten trioxide thin film. The thickness of tungsten trioxide 

depends on the length of deposition and conductivity of the electrode increases with 

number of graphene layers up to 4 layers of graphene. (a-d) depicts micrographs of WO3 

deposited on three layer graphene for 10 minutes and table included in the figure are 

how time and conductivity affects the thickness of WO3 grown. 

          Base on the analyses, 10 minutes of deposition of WO3 on graphene as well as 

ITO yield the thickness of 300nm. All WO3 growth for ECD was performed for 10 minutes 

allowing graphene and ITO electrode results comparable. This conclusion is based on 

figure one above results.  

5. 5. 0 Analysis of WO3 thin films 
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          PANalytical-Empyrean diffractometer (40Kv/44mA), Raman spectroscopy (DXR 

microscope 532 nm filter), Field emission scanning electron microscopy (Hitachi S4700 

FE-SEM) and 660C Potentiostat/Galvanostat (CH Instruments) technologies were 

employed in the analyses and in the syntheses of WO3 thin film. Field emission scanning 

electron microscopy was used to study the morphology of the thermal deposited WOX 

and the electrochemical WO3. 

5. 4. 1 Scanning electron microscopy study of the synthesized WO3 thin film 

          X-Ray diffraction and Raman spectroscopy have been used to confirm the 

synthesis of WO3. Raman analyses shown in figure 5.3 below gave the finger print 

Raman peaks for WO3 materials. Commercially available WO3 powder analyses also 

confirmed our Raman analyses of WO3 thin film. The XRD result also support that the 

synthesized material is WO3. Figure 5.2 are FE-SEM micrographs of electrochemical 

deposited WO3 on graphene and indium-tin oxide. The topography and crystallinity of the 

electrochemical deposited WO3 on graphene and ITO depict no difference but the same 

quality. These findings make the comparison of WO3 grown on ITO and WO3 grown on 

graphene meaningful for the ECD. 
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Figure 5.2. Field emission scanning electron micrographs of tungsten trioxide 

electrochemically deposited on graphene and ITO are the same. 

5. 5. 2 X-Ray diffraction study of the synthesized WO3 thin film 

          The cracks observed on both graphene and ITO substrates are the result of stress 

generated during the evaporation of the solvent and the difference in the surface energy 

of graphene or ITO with the electrodeposited WO3 on the substrate174. 
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Figure 5.3. X-Ray diffraction of electrochemical deposited tungsten trioxide on graphene 

commercially available tungsten trioxide powder. The XRD spectrogram above is those 

of commercial WO3 powder (black) and XRD of the electrochemical deposited WO3 on 

graphene (red). 

           Commercial WO3 was poured onto the glass substrate for the XRD analysis while 

the synthesized WO3 on graphene and ITO was measured directly on the graphene or 

ITO substrate174-175. This finding matches our SEM analyses in figure 5.2 above.  

5. 5. 3 Raman spectroscopy analysis of WO3 thin film 
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           Analyses of WO3 with Raman spectroscopy was performed on the WO3 material 

as synthesized. Figure 5.4 below depicted Raman analyses of WO3 on graphene the 

same as on ITO176. Raman analysis of WO3 has been well studied with same result 

showing the in plane and out of plane vibration of the W-O bonds168,176. 

 

Figure 5.4. Raman studied of tungsten trioxide thin film electrodeposited on graphene 

substrate. 

5. 5. 4 Raman spectroscopy analysis of bilayer graphene 

          The synthesized WO3 thin film on graphene was dried in the oven at 50°C for 20 

minutes. The Raman spectrum above confirmed that the synthesized material was WO3 

because of the O-W-O bending mode vibration (186cm-1, 268cm-1 and 325cm-1) and 



80 
 
stretching mode of the O-W bonds observed (711cm-1 and 803 cm-1)174,158. The chemical 

vapor deposited bilayer graphene grown on copper foil was analyzed with Raman 

spectroscopy as shown in figure 5.5 below. Bilayer graphene has been studied for 

transistors sensors but has not been used as an electrode in electrochemical 

deposition24,171. 

 

Figure 5.5. Raman spectrum of bilayer graphene grown on copper and transferred onto 

silicon dioxide wafer 

          Characteristic of bilayer graphene is that the ratio between the G-band and the 

2D-band is always one76,171. The calculated ratio the intensity of the G-band and 2D- 
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band of the synthesized graphene was 1 confirming that we synthesized and utilized 

bilayer graphene in this project. 

5. 6. 0 Electrochromic analyses 

          WO3 has been electrochemically deposited and used in electrochromic devices177. 

Liquid electrolytes (sulfuric acids) have been used as the electrolytes and intercalating 

agent. Sulfuric acid is a strong acid as such not a good electrolyte for smart windows. 

Lithium perchlorate has been well studied and used as the electrolytes both in liquid and 

in solid ECDs. As solid gel, lithium perchlorate is mixed in propylene carbonate as 

solvent with polymethylmethacryate (PMMA) as the solidify reagent160,177-178. 

           Lithium perchlorate gel electrolyte is robust for this work because it enables 

bending of the device flexible to suit its application as computer screens. 1 M solution of 

lithium perchlorate was prepared in 10:1 %weight propylene carbonate and PMMA 

respectively. The solution was poured between two electrodes one of which is the 

graphene WO3 electrode and the graphene electrode with no WO3 grown on it as shown 

in diagram 5.2 below. The device was then cured on hot plot at 50°C for 10 minutes. 

Polymerization of PMMA and PC encapsulate the lithium perchlorate conducting 

electrolytes with the gel. The gel also functions as the separator keeping the two 

electrodes apart. Diagram 5.2 below depicts the system in place for the fabrication of the 

ECD with graphene WO3 electrodes.  
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Diagram 5.2. Schematic of the fabricated electrochromic device using graphene-PET 

substrate with electrodeposited WO3 the active electrochromic material. 

          Observed results demonstrated that the application of electrodeposited WO3 on 

graphene on PET can be the formidable material in EC industries. While we are in the 

process of finalizing our findings, figure 5.6 below represent the competitive nature of 

graphene with ITO in the feature of ECDs electrodes and in electronics and sensors 

devices. 
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Figure 5.6. Electrochromism of the fabricated device is shown by the coloring and 

bleaching of WO3 using lithium perchlorate gel. (a) WO3 on graphene depicted above the 

bleaching transmittance around 20% and coloring transmittance around 80% of light 

over full spectrum and (b) WO3 on ITO depicted above the bleaching around 40% 

transmittance and coloring transmittance around 80% of light over full spectrum. 

          Figure 5.6 above shows that WO3 bleaching and coloring on graphene is more 

effective because the % transmittance of the ECD remain almost constant as the 

graphene device was recycled but a change with ITO device was recycled. These are 

preliminary results that are not necessary the true representation of the functionality of 

WO3 graphene device compared with existing WO3 ITO device. 

5. 7. 0 Conclusions and future work 

          Flexible ECD of WO3 graphene have shown progress in applications which can 

only be confirmed to a limited degree until subsequent work is completed. Different set 

of devices are in progress that will enable the analysis to determine the flexibility of the 

fabricated ECD with graphene on PET.  
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Chapter 6  

New three dimensional graphene and graphene like materials with high specific 

surface area for energy storage 

6. 0. 0   Reduced graphene oxide composites for energy storage 

          Graphene oxide initially known as graphite oxide (GO) was first synthesized in 

1859 by Benjamin C. Brodie using potassium chlorate in fuming nitric acid179. The 

chemical exfoliation technique of graphene oxide from graphite was modified in 1957 by 

Hummer. He used graphite in hot potassium permanganate, sulfuric acid and sodium 

nitrate now known as the Hummers ’method53. The beauty of chemical exfoliation of GO 

is the ability to scale up reaction and the properties of GO. GO can be reassemble into a 

high stable, high tensile strength, conductive and transparent thin film suitable for 

sensors and energy related devices103,180-181. Why GO brought glimpse of hope to 

researchers of graphene, it has its limitations such as poor electrical conductivity 

attributed to the high oxygen doped graphene. Secondly, its ability to restack itself due to 

pi-pi interaction between the graphene sheets reducing specific surface area of the 

material. To solve these problems, different reduction methods (reducing agents) have 

been used to reduce the concentration of oxygen on GO resulting into a new material 

known as reduced graphene oxide (rGO). Among the numerous methods of graphene 

oxide reduction are, thermal reduction182-183 and hydrazine184-185 but hydrazine reduction 

has been the most efficient methods. This method has failed to address the issue of 

restacking of the graphene sheets. Improving the electrical conductivity of the chemical 

exfoliated graphene oxide, we propose a method that will prevent restacking of the 
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graphene nanosheets and reduced oxygen doping there by increasing specific surface 

area and electrical conductivity16.  

           To Increase the specific surface area for rGO, the use of the already synthesized 

PSS (chapter 1) as suspenders to prevent restacking of rGO sheets during hydrazine 

reduction of GO184 equation1. To remove the PSS from rGO, the composite material was 

immersed into toluene for 30 minutes to leach out the PSS. The composite was 

analyzed using optical microscopy for PSS (SEM images (Figure 1)). The wrapped GO 

prevent the penetration of toluene from dissolving PSS59. The result indicated that not all 

the PSS dissolved in toluene because toluene does not penetrate graphene. To solve 

this problem, the composite material was annealed at 500°C to decompose PSS 

resulting into porous reduced graphene oxide (prGO) instead of immersing the 

composite in toluene. PSS was removed using thermal treatment of the GO-PS 

composite at 500°C in vacuum for 30minutes equation 2. Figure 2 depict the thermally 

reduced porous graphene oxide (prGO) scaffold synthesized by using PSS as 

suspenders to prevent restacking of rGO. This will increase the porosity of the prGO 

material scaffold consequently increases the specific surface area of this prGO and 

channel for flow of electrolytes. After analyzing the material at 500°C, the specific 

surface area was determined using BET technique for both rGO and prGO. Specific 

surface area results indicated that the prevented rGO from restacking  using PSS 

(prGO) exhibit low SSA compared with the solution hydrazine reduction method. This 

conclusion was solely based on our BET results (Table 1 below). This method could be 

improved by increasing the concentration ratio of PSS over GO and secondly by 

optimizing the method of leaching PSS out of the GO scaffold through temperature 

gradient and the conditions of leaching in hydrogen to facilitated thermal reduction of 
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GO. The use of small size PSS in diameter as suspenders (5-10nm) compared to the 

used 180nm PSS will allow the PSS to infiltrate much better between GO nanosheets 

preventing restacking better than larger PSS. This will enable perfect uniform composite 

PSS-GO material that will eventually yield high microporous prGO material scaffold after 

the removal of PSS. The prGO material will yield high specific surface area scaffold with 

high conductivity which can be attributed to the degree of GO reduction. 

  1     2 

6. 1. 0   Results and Analyses  

          The two forms of reducing graphene oxide obtained rGO and prGO exhibit high 

specific surface area. The analyses were done separately using BET, SEM, Raman and 

XRD technology. The BET analysis was performed by degasing the material at 80°C for 

1 hour and run at 250°C  for 12 hours which is the suitable temperature to purge out all 

the unwanted residual contaminants like water41,186. Table 1 below shows the difference 

in SSA of the rGO synthesized using the two different methods outline above rGO and 

prGO. 

Table 6.0. The specific surface area of different types of reduced graphene oxide.  

specific surface area of rGO synthesized under different conditions m2/g 

rGO (Hydrazine reduction) prGO  (Thermal reduction) rGO (Thermal reduction) 

642.69 485.6 154.7 

687.61 457.7 321.4 
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Figure 6.1.  Scanning electron micrographs of reduction graphene oxide in hydrazine (a) 

powder reduced graphene oxide, (b) micrograph of the zoom in powder rGO, (c) side 

view micrograph showing restacked rGO nanosheets and (b) zoom-in micrograph of few 

layers of stacked rGO nanosheets. 

          The hydrazine reduced graphene oxide was washed with water several times and 

filter using 40nm pore size filter paper and dried over night at 50°C in the oven. The 

sample was then disperses in deionized water and drop cast on silicon wafer for 

analyses as shown in figure 1 above. The results illustrated that the decrease in SSA of 

the rGO is caused predominantly by the restacking due to the pi-pi-bond interaction 

between the reduced graphene oxide nanosheets figure 1C& 1D and poor reduction of 

GO into prGO. 



88 
 

 

Figure 6.2. Scanning electron micrographs of porous reduced graphene oxide. (A,B & C) 

depict side view, top view and zoom out on microstructures of prGO and (d) shows prGO 

mixed with 6%wt of polytetrafluoroethylene (PTFE) for capacitance analyses. 

          The micrographs in figure 2 above clearly illustrate the pores created by PSS that 

have been removed via thermal decomposition at 500°C. The prGO scaffolds was then 

mechanically mixed with PTFE to obtain a semi-uniformed composited (figure 2C) 

material that was then used to fabricate thin film material that serves as capacitive plates 

for charge storage. 

6. 1. 1    Discursion on reduced graphene oxide 

           The designed rGO thin films made from mixing 6%wt PTFE with rGO and prGO 

separately were assembled for capacitance measurement in 1.M sodium sulfate solution 
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(electrolytes) using two cell electrode system. The electrochemical impedance spectra 

Figure 3D below indicates that the material had good surface contact with the 

electrodes56,187 indicated by the semi-cycle around 10 ohms.  Cyclic voltammetry (CV) 

shown in figure 3a below indicated that the fabricated material exhibit a low charging to 

discharging frequency ratio. This phenomenon has been observed and predicted to be 

as a result of poor free channel for charges mobility within the solution and the 

electrodes. Chrono-potentiometric measurements (figure 6.3c) shown below support the 

concept that low rate of charging and discharging exist within the fabricated device 

which is affected by high scanning rate. Fast scanning rate yield high cyclic time an 

indication of slow charging and discharging device. The analyzed capacitance as shown 

in figure 6.3d is low compared to publish rGO fabricated devices67. Our result does not 

reflect the high SSA shown in table 1 above. This could be caused by our poor method 

of fabricating the device which we intern to improve by improving the quality of the 

synthesized graphene oxide and the way the device is fabricated. To solve this problem, 

rGO should be well reduced to improve conductivity, design experimental methods that 

will lead to higher surface area for the accessibility of the electrolytes.   
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          Figure 6.3. Depict the behavior of the fabricated rGO thin films as electrodes for 

supercapacitive charge storage device. (A) Cyclic voltammogram of the rGO thin film 

material, b) show the rate of charging and discharging measured using 

chronopotentiometry method, c) illustrate the adhesion or contact between the thin film 

material to the electrodes determine based on the electrochemical impedance of the 

device. prGO material was analyzed using the same methods (6%wt PTFE) as the rGO 

with the expectation to have low result because prGO exhibit low SSA over rGO but 

instead the capacitance was 46F/g compared to 33F/g  at low scan rate and 5 mA for 

rGO and prGO. 

          While new experimental methods to improve the conductivity of the reduced 

graphene oxide and the porosity of the scaffold need to be design, moving forward, a 

two-step synthetic method that utilizes nickel sol gel (small particle size) as the 

suspenders between graphene oxide nanosheets. What makes this proposal so unique, 
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attractive and promising is the ability of nickel sol gel to uniformly disperse and stacks 

between GO nanosheets and function as the activating agent creating microspores for 

higher SSA. The size of the nickel hydroxide (25 nm) will have an extra advantage over 

PSS in infiltrating the graphene oxide solution188. The objective is to improve the SSA of 

rGO as well as increased the level of connectivity between reduced graphene oxide 

nanosheets during thermal reduction under hydrogen environment.  

6. 2. 0 Nickel sol gel as suspenders for reduced graphene oxide 

6. 2. 1 Introduction and experimentation 

          Modification of the chemical exfoliation of graphene oxide known as the modified 

hummer’s method was used in the synthesis of graphene oxide with no phosphoric acids 

as mention in chapter 1. We observed that the role of phosphoric acid in preventing over 

oxidation of graphene nanosheets has been over started53,72. In a separated set-up 

experiment, nickel sol gel was synthesized as mention above from nickel nitrate, nickel 

chloride in diluted ethanol and sodium hydroxide solution. The washed graphene oxide 

with excessive deionized water was dispersed in (1:1 volume ratio) ethanol-water 

solution. The salt solution (sodium chloride) was removed from the nickel sol gel using 

water-ethanol solution (3:1 volume ratio) mixture several times. Homogenous composite 

mixture of GO and nickel sol gel was prepared by mixing different portions of GO and 

nickel hydroxide. The composite mixture was stirred for three hour at 300 rpm on the hot 

plate at room temperature. The composite mixture was filtered using filter paper set- up 

attached to the water ventilation system. The obtained brownish solid composite material 

was dried in the oven overnight. The composite turns into a dirty-black composite 
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material as a result of thermal reduction of nickel hydroxide into nickel oxide and partial 

reduction of oxidized graphene oxide as shown in the schematic below. 

 

          The obtained composite material was treated with hydrogen (3sccm) at 500°C for 

one hour. At elevated temperature and hydrogen, nickel oxide was completely reduced 

to metallic nickel and the represent of carbon source (reduced graphene oxide), carbon 

atoms pitched off from the parent rGO into the metallic nickel. The metallic nickel 

prevent restacking of the thermally rGO and solubility of carbon into nickel create 

microspores within the rGO nanosheets resulting into the highly porous reduced 

graphene oxide (HprGO). The obtained powder composite material was immersed into 

concentrated hydrochloride acid solution over night to etch the metallic nickel or un-

reduced nickel oxide. The resulted HprGO was washed several times with deionized 

water and dry overnight in the oven at 100°C 

6. 2. 2     Analysis of highly porous graphene oxide 

          The obtained powder (high porous reduced graphene oxide) was ready for 

analysis and device fabrications. Small portion of the material was mounted on carbon 

tape for scanning electron microscopy. The micrographs shown below figure 4 depict the 

physical appearance of HprGO nanosheets. The SEM images show graphene oxide 

nanosheets grumble together but with low resolution SEM images cannot depict the 

microspores. Figure 3D also include Raman analyzed spectra that complete support that 

the material is graphene oxide with an intense D-band. The G-band intensity over the 2D 

band is an indication of multilayer graphitic material. 
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Figure 6.4. Scanning electron micrographs and Raman spectra support that the material 

is reduced graphene oxide. (a, b, & c) illustrated the microstructure of the highly porous 

reduced graphene oxide with zoom in images showing high degree of porosity and (d) 

Raman spectra of the synthesized material. 

          X-ray diffraction and energy dispersive X-ray analysis were performed to 

determine the present or absent of nickel/nickel precursor within the powder50. Based on 

our results shown in figure 5 below, the nickel was not completely etched out of the 

reduced graphene oxide and was also supported by XRD analysis. This means that after 

etching and washing the product with deionized water, not all the nickel was completely 

etched away. The EDX also confirmed that not all the nickel was completely removed. 

The trace amount of nickel shown by EDX and XRD can be attributed to short time of 

etching and poor washing/rinsing method or it could be attributed to the trap nickel/nickel 

oxide within the GO nanosheets.  
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Figure 6.5. Energy dispersive X-ray spectroscopy and X-ray diffraction analysis of the 

highly porous reduced graphene oxide (a) EDX show small amount of nickel present and 

(b) XRD show not nickel present.  

          These results are very important for this project because it established the 

concept that no nickel could be trapped by graphene oxide hindering etching by 

hydrochloride acid. Given that nickel has been and is used as metal hydride in energy 

storage devices, nickel is expensive, heavy and poor charge storage compared to 

graphene giving the reason for us to completely removed the nickel from the material to 

qualitatively and quantitatively determine the actual SSA as well as the actual specific 

capacitance of the new material. 



95 
 
6. 1. 3 Results of highly porous reduced graphene oxide  

          Brunauer-Emmett-Teller (BET) analysis was performed on the HprGO powder and 

Raman analysis. The determined SSA did not meet the expectations but point to a very 

promising direction. While this material gives a low SAA compared with previous 

material (324.6m2/g), HprGO has shown the best result in terms of capacitance analysis 

for all materials analyzed. The thin film of the highly porous rGO was prepared using the 

same methods as mention above (powder porous rGO mixed with 6%wt PTFE189 mixed 

using mortar and pestle for uniformity and was then fabricated into a supercapacitive 

device for analysis. The supercapacitance device was then inserted into sodium sulfate 

electrolytes solution with two electrodes cell set up. 

 

Figure 6.6. Electrochemical analyses of highly porous reduced graphene oxide using two 

electrodes cell. Figure 6(a, b c & d) provide good understanding and capacitance of the 

fabricated device. (a & b) provide a faster charging and discharging rate compared with 
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prGO and rGO, (d) illustrated a better adhesion/ contact between the electrodes and the 

fabricated thin film as above. 

          The result confirmed that using nanoparticles such as nickel hydroxide will be the 

best way to turn graphene oxide into a better material for energy storage devices. To 

obtain this goal, we will improve the quality of the HprGO material by increasing the 

concentration of nickel hydroxide, playing with the concentration of hydrogen gas and 

the reduction temperature to ensure high microspores concentration, macrospores 

density and good conductivity of the synthesized material. Knowing that the process of 

transforming graphite into graphene oxide is fast but irreversible, it will be effective to 

synthesis pristine graphene powder that can be used directly without any reduction steps 

or doping procedure. 

6. 3. 0    Powder Graphene sol gel 

          Graphene which was first synthesized via mechanical exfoliation using scotch 

tape cannot be synthase in bulk at this moment. Since graphene oxide end up producing 

heavily doped graphene nanosheets with oxygen, avoiding the doping effect means 

synthesizing pristine graphene powder.  Here we hypothesize how to synthesize pristine 

graphene powder using nanoparticles. Nickel is the only transition metal that has high 

carbon solubility and catalyzes the synthesis of few to multilayers graphene. Atomic 

layer thick nanosheets exhibit high surface energy as a result cannot maintain their 

structural confirmation except when supported by flat surface. It is not possible to 

synthesis single layer of few layers of free standing graphene (two dimensional 

materials) powder that will overcome the high surface energy that causes it to grumble. 
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          In this project we prescribe a synthetic route that will enable the achievement of 

pristine graphene powder from any doping agent. The synthesized nickel sol gel will be 

reduced into nickel oxide nanoparticles which will be further reduced into nickel 

nanoparticles under hydrogen conditions. The nickel nanoparticles will be utilized to 

synthesize what we call graphene sol gel. 

6. 3. 1 Experimental 

          Nickel sol gel was synthesized as mention above using nickel nitrate, nickel 

chloride and sodium hydroxide in diluted ethanol. The obtain nickel sol gel was washed 

several times with deionized water to remove sodium salts by product.  After drying the 

product overnight in the oven at 50°C, nickel oxide nanoparticles were obtain as shown 

in figure 7 below. Nickel oxide was then place into a ceramic boat and inserted into the 

chemical vapor deposition system. The powder was annealed at 290°C for 30 minutes to 

complete reduced all the nickel hydroxide into nickel oxide. The temperature was ramp 

to 500°C under hydrogen condition (3sccm). The system was health steady at 500°C for 

30 minutes and was then exposed to acetylene (3sccm) for another 30 minutes. The 

system was then turn off to cold slowly to room temperature. The nickel nanoparticles 

coated with graphene was then poured into highly concentrated hydrochloric acid 

solution and was allowed to seat for 5 hours. The material was filtered, washed with 

deionized water and dry at 100°C in the oven overnight. The obtained powder was then 

analyzed and will be use as energy storage and gas sensors devices. 

6. 3. 2 Analysis of powder pristine graphene sol gel 

           Scanning electron microscopy (SEM) was used to analysis the synthesized 

powder graphene sol gel. Fig. 7 below show the structures of nickel hydroxide, nickel 
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oxide, nickel coated with graphene and powder graphene sol gel. SEM images indicated 

that the nickel coated graphene particles was leach out using hydrochloric acid. The 

hypothesis is that with defect side on the particles and grain boundaries, it was 

successful to etch the nickel out of the coated graphene. 

 

Figure 6.7. Field emission scanning electron micrographs of the synthesized pristine 

graphene powder. (a) Nickel hydroxide, (b) Nickel coated with graphene and (c & d) 

graphene sol gel with zoom in image (7d) to illustrate the microstructure of the material. 

In addition to SEM, the graphene powder was further analyzed with EDX and Raman 

spectroscopy figure 8 below. The Raman analysis show highly quality graphene evident 

by the G-band and 2D-band. The present of D-band around 1100 wave numbers 
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demonstrate the high degree of defects present which was expected due to rough 

disrupted edges after acidic etching of nickel. 

 

Figure 6.8. Energy dispersive X-ray spectroscopy and Raman analysis of the powder 

graphene sol gel. (A & C) Raman and EDX spectra of nickel coated with graphene and 

(B & E) Raman and EDX spectra of etched graphene sol gel powder and (D) EDX 

elemental composition.  

            The Raman spectra confirmed that nickel nanoparticles can be used as sacrificial 

template for pristine graphene powder. EDX elemental analysis support the hypothesis 

that nickel nanoparticles coated with graphene can be completely etched out using 

concentrated hydrochloric acid solution generating pure clean graphene powder as 
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product sensors, energy and biological applications. These findings were further 

supported by XRD analytical result shown in figure 6.9 below. 

 

Figure 6.9. X-ray crystallography spectrum of graphene sol gel powder (blue) only nickel 

oxide at 209C, (red) nickel coated with multilayers of graphene and (black) only etched 

graphene sol gel powder.  

          The spectra indicated that nickel is still present in the graphene sol gel after 

etching. This could be attributed to poor washing conditions, incomplete etching of nickel 

or nickel that has been completely coated with graphene. All the possible reasons can 

be resolved to a lowest degree to give high pure pristine and highly conductive graphene 

powder than any existing carbon source in the market. The next objective will be to 

rewashed the material and assemble a device for energy storage and another devices 

for gas sensors. 

6. 4. 0 Multilayered porous graphene films for gas sensors 
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          Single layer and few layers graphene have been synthesized via chemical vapor 

deposition and mechanical exfoliation of graphite for gas sensors applications190,191-34. 

Chemical vapor deposition technologies have also enabled the fabrications of porous 

single layer graphene material known as nanomesh for sensors applications74. 

Graphene nanomeshes have only been synthesized using lithographic technologies. 

This method is not only time consuming, the technique is also very expensive, require 

high labor and material wastage. Some modifications of the technique rearrangement of 

the CVD synthesis graphene on wafer using different geometry to obtain different 

nanomeshes192. One of the challenges involved in this technology is the need for a flat 

substrate to support the graphene nanomesh. With high surface energy and the 

interaction between the substrate and graphene nanomesh, the substrate act as a doper 

reducing the conductivity and sensitivity of the graphene nanomesh.  To integrate this 

technology we hypothesize the used of nickel nanoparticles to synthesize a free 

standing thin film of graphene that can used for different applications such as sensors 

and transistors. 

6. 4. 1 Experimental 

           Nickel sol gel was synthesized as described above using nickel nitrate, nickel 

chloride and sodium hydroxide in a 1:1 volume ratio of deionized water and ethanol. A 

ceramic bolt was filled with nickel hydroxide nanoparticles and inserted into the CVD 

chamber and the pressure was set to 10mtorr. The CVD was run at 290°C for 30 

minutes for complete reduction of nickel hydroxide to nickel oxide. The temperature was 

increased to 500°C for 30 minutes under hydrogen gas (3sccm) and acetylene 

(0.5sccm) the pressure increased up to 500mtors. The CVD was turned off and wait for 

its return to room temperature. A silvering graphene nickel thin film was form about the 
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ceramic bolt on the quartz wall. The thin flexible film can be pill off and shape into 

different geometries that suits its applications.  

 

Diagram 6.1. Schematic set up of the chemical vapor deposition for the growth of silvery 

grey graphene-nickel thin film 

6. 4. 2   Analysis of the graphene thin film (mesh) 

          The synthesized graphene mesh was analyzed using scanning electron 

microscopy, Raman spectroscopy, X-ray diffraction spectroscopy and energy dispersive 

X-rap spectroscopy. Mechanical analysis shows that the graphene-nickel thin film is very 

conductive and flexible. The graphene-nickel film was suspended onto iron III chloride 

solution over 30 minutes followed by rigorous cleaning with deionized water. The 

material was fished out with silicon oxide wafer for SEM analysis as shown in figure 10 

below. 
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Figure 6.10. Scanning electron micrographs of graphene-nickel thin film and graphene thin layer 

mesh. (a & d) SEM images of graphene-nickel thin film and (b & c) SEM images of graphene thin 

film mesh after etching the nickel with iron III chloride solution. 

         The energy dispersive X-ray sepctrograph shown in figure 11 below indicates complete 

etching of the nickel. The  Raman analysis also included in figure 11 shows that the film is of high 

graphetic quality as the D-band is less intense compared to that from the graphene sol gel 

powder. 



104 
 

 

Figure 6.11. Energy dispersive X-ray spectrograph, Raman spectrum and X-ray 

diffractogram of the graphene mesh. (a & b) EDX image and spectra of the graphene 

mesh, (C) Raman spectrum of the graphene mesh and (d) XRD spectrum of the 

graphene mesh on silicon wafer.  
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Figure.12. XRD spectra of nickel oxide (blue), graphene-coated nickel (red) and 

graphene powder.  

          Comparing XRD in figure 11 and that in figure12, it is easier to etch nickel from the 

thin film than from the sol gel. The reason could be concentration of nickel in the thin film 

is not much compered to graphene-nickel sol gel and/or that the time of exposure is 

enough to etch the nickel out of the thin film. The ability to transfer the graphene thin film 

onto any substrate is an advantage over the existing graphene nanomesh. The 

synthesized graphene mesh will be applicable in the fabrication of gas sensor devices.   

6. 5. 0 Conclusions 

          We have created and proven that three dimensional nanostructure of graphene 

can be synthesized via Nano architecture frame works design. While these are new 

technologies, optimizing them still require a lot of work and analyses. Work has to done 

to enable scaling up productivity to insure high quality material as well as devices. These 

new materials will be implemented in energy storage, electronics and sensors devices 
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Appendix 

1.  Field emission scanning electron microscopy (FE-SEM or SEM)…….Hitachi S47OO 

2.  X-Ray diffraction spectroscopy (XRD)………...Rigaku Multiflex Diffractometer CuKα 

3.  Energy dispersion X-Ray spectroscopy (EDX)…………….FEI-Nova NanoSEM 450 

4.  X-Ray photoelectron spectroscopy (XPS)……….PHI versa probe II instrument Alkα 

5.  Chemical vapor deposition (CVD)…….USF 

6.  Flame atomic absorption spectroscopy (FAAS or AAS)…...Perkin-Elmer model 3100 

7.  Raman spectroscopy………………………..…DXR Raman microscopy 532 nm laser 

8.  Voltage source………Agilent 
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9.  Ultraviolet-visible spectroscopy (UV/Vis)…….UV-670 with 1200 grooves/mm 

10.  Potentiostat/Gavanostat……………………………….….CH instruments model 1140B 
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