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ABSTRACT ARTICLE HISTORY
In this paper, we discuss the general existence theory of Dirac-har- Received 23 December 2019
monic maps from closed surfaces via the heat flow for «-Dirac-har- Accepted 19 October 2020

monic maps and blow-up analysis. More precisely, given any initial
map along which the Dirac operator has nontrivial minimal kernel,
we first prove the short time existence of the heat flow for a-Dirac- 2-Dirac-harmonic map:
harmonic maps. The obstacle to the global existence is the singular s-Dirac-harmonic map’flow;
time when the kernel of the Dirac operator no longer stays minimal existence; minimal kernel
along the flow. In this case, the kernel may not be continuous even

if the map is smooth with respect to time. To overcome this issue, 2010 MATHEMATICS

we use the analyticity of the target manifold to obtain the density of =~ SUBJECT

the maps along which the Dirac operator has minimal kernel in the = CLASSIFICATION
homotopy class of the given initial map. Then, when we arrive at 53C43; 58£20

the singular time, this density allows us to pick another map which

has lower energy to restart the flow. Thus, we get a flow which may

not be continuous at a set of isolated points. Furthermore, with the

help of small energy regularity and blow-up analysis, we finally get

the existence of nontrivial o-Dirac-harmonic maps (o > 1) from

closed surfaces. Moreover, if the target manifold does not admit any

nontrivial harmonic sphere, then the map part stays in the same

homotopy class as the given initial map.

KEYWORDS
Dirac-harmonic map;

1. Introduction

Motivated by the supersymmetric nonlinear sigma model from quantum field theory,
see [1], Dirac-harmonic maps from spin Riemann surfaces into Riemannian manifolds
were introduced in [2]. They are generalizations of the classical harmonic maps and
harmonic spinors. From the variational point of view, they are critical points of a con-
formal invariant action functional whose Euler-Lagrange equations are a coupled elliptic
system consisting of a second order equation and a Dirac equation.

It turns out that the existence of Dirac-harmonic maps from closed surfaces is a very
difficult problem. Different from the Dirichlet problem, even if there is no bubble, the
nontriviality of the limit is also an issue. Here, a solution is considered trivial if the spi-
nor part \ vanishes identically. So far, there are only a few results about Dirac-
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harmonic maps from closed surfaces, see [3-5] for uncoupled Dirac-harmonic maps
(here uncoupled means that the map part is harmonic; by an observation of Bernd
Ammann and Johannes Wittmann, this is the typical case) based on index theory and
the Riemann-Roch theorem, respectively. In an important contribution [6], Wittmann
investigated the heat flow introduced in [7] and showed the short-time existence of this
flow; for reasons that will become apparent below this is not as easy as for other para-
bolic systems. The problem has also been approached by linking and Morse-Floer the-
ory. See [8, 9] for one dimension and [10] for the two dimensional case.

In critical point theory, the Palais-Smale condition is a very strong and useful tool. It
fails, however, for many of the basic problems in geometric analysis, and in particular for
the energy functional of harmonic maps from spheres [11]. Therefore, it is not expected to
be true for Dirac-harmonic maps. To overcome this problem for harmonic maps, Sacks-
Uhlenbeck [12] introduced the notion of a-harmonic maps where the integrand in the
energy functional is raised to a power a > 1. These a-harmonic maps then satisfy the
Palais-Smale condition. However, when we analogously introduce «-Dirac-harmonic
maps, the Palais-Smale condition fails due to the following existence result for uncoupled
o-Dirac-harmonic maps, which directly follows from the proof of Theorem 4.1.

Theorem 1.1. For a closed spin surface M and a closed manifold N, consider a homotopy
class [¢] of maps ¢ : M™ — N" for which [dimg(ker Dy)|, is non-trivial. Assume that
¢o € [¢] is an a-harmonic map. Then there is a real vector space V of real dimension 4
such that all (o, ), ¥ € V, are a-Dirac-harmonic maps.

To overcome this issue, in [8, 9], the authors add an extra nonlinear term to the action
functional of Dirac-geodesics. As for the two dimensional case [10], we even cannot dir-
ectly prove the Palais-Smale condition for the action functional of perturbed Dirac-har-
monic maps into non-flat target manifolds. Instead, we are only able to prove it for
perturbed a-Dirac-harmonic maps, and then approximate the o-Dirac-harmonic map by a
sequence of perturbed o-Dirac-harmonic maps. However, in this approach, it is not easy
to control the energies of the perturbed a-Dirac-harmonic maps, which are constructed by
a Min-Max method over increasingly large domains in the configuration space.

Due to these two problems, in this paper, we would like to use the heat flow method
to get the existence of Dirac-harmonic maps from closed surfaces to general manifolds
where the harmonic map type equation is parabolized and the first order Dirac equation
is carried along as an elliptic side constraint [7]. As already mentioned, the short-time
existence of the heat flow for Dirac-harmonic map was proved by Wittmann [6]. He
constructed the solution to the constraint Dirac equation by the projector of the Dirac
operator along maps. By assuming that the Dirac operator along the initial map has
nontrivial minimal kernel, he showed that the kernel would stay minimal for small time
in the homotopy class of the initial map. This minimality implies a uniform bound for
the resolvents and the Lipschitz continuity of the normalized Dirac kernel along the
flow. This Lipschitz continuity makes the Banach fixed point theorem available. If one
follows this approach, the first issue is how to deal with the kernel jumping problem.
Observe that if the Dirac operators converge at the jumping time, the symmetry of the
spectrum of Dirac operator guarantees that the limiting Dirac operator has odd dimen-
sional kernel. Therefore, it is natural to try to extend Wittmann’s short time existence
to the odd dimensional case. However, the eigenvalues in this case may split at time
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t=0. Then the projector may not be continuous even if the Dirac operator is smooth
with respect to time along the flow (see [13]), which means that the Lipschitz continuity
of the kernel is not available in general. To overcome this issue, we need the density
mentioned in the abstract, which gives us a piecewise smooth flow.

As for the convergence, it is sufficient to control the energy of the spinor field
because the energy of the map decreases along the flow. To do so, one can impose a
restriction on the energy of the initial map as in [14] and get the existence of Dirac-har-
monic maps when the initial map has small energy. Alternatively, we use another type
flow, that is, the heat flow for o-Dirac-harmonic maps (also called o-Dirac-harmonic
map flow in the literatures). Our motivation comes from the successful application of
this flow to the Dirichlet problem [15]. Different from there, we cannot uniquely solve
the constraint equation. Moreover, our equations of the flow are different. We never
write the constraint equation in the Euclidean space R?. Instead, we just solve it in the
target manifold N. Last, our flow is not unique due to the absent of a boundary.
Instead, only a weak uniqueness is available. Consequently, we need prove the fact that
the flow takes value in the target manifold N in a different way. Eventually, we shall
obtain the following results on the general existence of Dirac-harmonic maps.

Theorem 1.2. Let M be a closed spin surface and (N, h) a real analytic closed manifold.
Suppose there exists a map ug € C*"*(M,N) for some p€ (0,1) such that
dimgker % = 1. Then there exists a nontrivial smooth Dirac-harmonic map (®,¥) sat-
isfying E(®) < E(up) and ||¥|[;. = L.

Furthermore, if (N, h) does not admit any nontrivial harmonic sphere, then the map
part @ is in the same homotopy class as uy and (®,¥) is coupled if the energy of the
map is strictly bigger than the energy minimizer in the homotopy class [uy)].

Remark 1.3. Our result can at least keep the possibility of the existence of coupled solu-
tions while other solutions produced in the literatures are all uncoupled. The analyticity
of the target manifold is a sufficient condition which is used to get the density men-
tioned in the abstract. In fact, it is easy to see from the proof that we only need the
density of the following set

Y :={e € (my, + o0)| there exists at least one map u such that (L.1)
dimgker P* =1 and E*(u) = e} ’

at the o;-energy minimizer my in the homotopy class [uy] for a sequence o; \, 1
as i — oo.

In [16], Wittmann discussed the density of those maps along which all the Dirac
operators have minimal kernel. In particular, we have the following corollary.

Corollary 1.4. Let M be a closed spin surface and (N, h) a real analytic closed manifold.
We also assume that

1. M is connected, oriented and of positive genus;
2. N is connected. If N is even-dimensional, then we assume that it is non-orientable.

Then there exists a nontrivial smooth Dirac-harmonic map.
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The rest of paper is organized as follows: In Section 2, we recall some definitions,
notations and lemmas about Dirac-harmonic maps and the kernel of Dirac operator. In
Section 3, under the minimality assumption on the kernel of the Dirac operator along
the initial map, we prove the short time existence, weak uniqueness and regularity of
the heat flow for a-Dirac-harmonic maps. In Section 4, we prove the existence of
o-Dirac-harmonic maps and Theorem 1.2. In the Appendix, we solve the constraint
equation and prove Lipschitz continuity of the solution with respect to the map.

2. Preliminaries

Let (M, g) be a compact surface with a fixed spin structure. On the spinor bundle XM,
we denote the Hermitian inner product by (-, -)y,. For any X € I'(TM) and ¢ €
I'(ZM), the Clifford multiplication satisfies the following skew-adjointness:

(X-&msy = —(EX Mxy (2.1)

Let V be the Levi-Civita connection on (M, g). There is a connection (also denoted

by V) on £M compatible with (-, -)s,,. Choosing a local orthonormal basis {es};_, , on
M, the usual Dirac operator is defined as @ := eg - Vg, where = 1,2. Here and in the
sequel, we use the Einstein summation convention. One can find more about spin
geometry in [17].
Let ¢ be a smooth map from M to another compact Riemannian manifold (N, h) of
dimension n > 2. Let ¢"TN be the pull-back bundle of TN by ¢ and consider the
twisted bundle M ® ¢*TN. On this bundle there is a metric (-, -)gyq4 vy induced
from the metric on XM and ¢*TN. Also, we have a connection V on this twisted bun-
dle naturally induced from those on XM and ¢*TN. In local coordinates {y'},_;
the section y of ZM ® ¢*TN is written as

‘// = ‘pi ® ay‘(¢)’
where each /' is a usual spinor on M. We also have the following local expression of v
VY = V' @ 8,(9) + Ti(9) V" @ 0,(9),

where F]’:k are the Christoffel symbols of the Levi-Civita connection of N. The Dirac
operator along the map ¢ is defined as

D =€y v~exlp = @lpl ® ay’(¢) + F;k((i))vexqu(eﬁ : lpk) ® ay"((b)’ (2.2)

which is self-adjoint [11]. Sometimes, we use Iy to distinguish the Dirac operators
defined on different maps. In [2], the authors introduced the functional

L) =3 | (40P + (s D))

09’ 0¢/ L py
- ;JMhij(qﬁ)g“j afm aT(Z: +hi (@)W P s

LN

(2.3)

They computed the Euler-Lagrange equations of L:

()~ S REW. VY W)y =0, (.4
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DY = PP+ T @) Ve, (e, ¥F) =0, (2.5)

where 1" (¢) is the m-th component of the tension field [11] of the map ¢ with respect
to the coordinates on N, V@' -/ denotes the Clifford multiplication of the vector field
V¢' with the spinor ¥/, and Rj; stands for the component of the Riemann curvature
tensor of the target manifold N. Denote

R($0) = 5 REW. oY) Oy

We can write (2.4) and (2.5) in the following global form:

{ Téﬁ)::g’z((p’ lp)’ (2.6)

and call the solutions (¢, ) Dirac-harmonic maps from M to N.
With the aim to get a general existence scheme for Dirac-harmonic maps, the follow-
ing heat flow for Dirac-harmonic maps was introduced in [7]:

{ O =1(u) — R(u,y), on (0,T) x M,

DYy =0, on [0, T] x M. 2.7)

When M has boundary, the short time existence and uniqueness of (2.8)-(2.9) was also
shown in [7]. Furthermore, the existence of a global weak solution to this flow in
dimension two under some boundary-initial constraint was obtained in [14]. In [15], to
remove the restriction on the initial maps, the authors refined an estimate about the
spinor in [7] as follows:

Lemma 2.1. [15] Let M be a compact spin Riemann surface with boundary OM, N be a
compact Riemann manifold. Let u€ W“?*(M,N) for some a>1 and Y€
WUP(M,EM @ u*TN) for 1<p <2, then there exists a positive constant C =
C(p, M,N, ||Vul|;2) such that

Wl wirany < CULPY o) + [1BY [ wi-vpam))- (2.8)

Motivated by this lemma, they considered the a-Dirac-harmonic flow and got the exist-
ence of Dirac-harmonic maps. For a closed manifold M, the situation is much more
complicated because the kernel of the Dirac operator is a linear space. If the Dirac oper-
ator along the initial map has one dimensional kernel, Wittmann proved the short time
existence on M whose dimension is m = 0, 1,2,4(mod 8).

By [18], we can isometrically embed N into R?. Then (2.6)-(2.7) is equivalent to fol-
lowing system:

{ Aqu = II(du, du) + Re(P(S(du(eg), ep - ¥); ¥)),
P = S(dulep), ep - ),

where II is the second fundamental form of N in R, and
S(du(ep),ep - ) := (Vu - ) @ (9,0, 08), (2.10)
Re(P(S(du(ep), ep - ); ) := P(S(Ozc, Opp); Opr )Re((t, du’ - ). (2.11)

(2.9)
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Here P(&;-) denotes the shape operator, defined by (P(£;X),Y)=(A(X,Y),¢) for
X,Y € I'(TN) and Re(z) denotes the real part of z € C. Together with the nearest point
projection:

n:Ns — N, (2.12)

where N5 := {z € R?|d(z,N) < 6}, we can rewrite the evolution equation (2.8) as an
equation in R?.

Lemma 2.2. [6, 7] A tuple (u,\), where u: [0,T] Xx M — N and y € I'(EM ® u*TN), is
a solution of (2.8) if and only if

Ot — Aut = —1h () (VuP, Vu©) — 5 (u) Sy () S (WP, VuE - yF) (2.13)

on (0,T) x M, for A=1,...,q. Here we denote the A-th component function of u :
[0,T] x M — N C R? by u* : M — R, write njj(z) for the B-th partial derivative of the
A-th component function of 7:R?— R? and the global sections y* € I'(ZM) are

defined by ¢ =y ® (0a0u), where (Oa)azy,.,q is the standard basis of TRY.

Moreover, V and (-,-) denote the gradient and the Riemannian metric on M,
respectively.
For future reference, we define

Fu) == —mpo(u)(VuP, Vi), (2.14)
F?(”’ ) = _@(”)RED(”)”IEF(‘//RVUE : ‘//F)- (2.15)

Note that for u € C'(M,N) and € I'(EM ® u*TN) we have
(duge), dup(€:))) =~} (1) 04, (.16)
R(ds )|, = —F5 (4, 9)],0a ) (2.17)

for all p € M, where {e,} is an orthonormal basis of Tp.
Next, for every T >0, we denote by X the Banach space of bounded maps:

Xy := B([0, T]; C' (M, R?)), (2.18)

|lully, == max sup (||uA(t,-)||co(M) + ||VMA(t,')||C°(M))' &)
A=L 54 4¢0, T)

For any map v € Xy, the closed ball with center v and radius R in X7 is defined by
BL(v) :={u € Xr|||u — v|]| < R}. (2.20)

We denote by P“ " = P“"s(x) the parallel transport of N along the unique shortest geo-
desic from w(u(x,t)) to n(v(x,s)). We also denote by P* " the inducing mappings

(mou)*TN — (mowvs)"TN, (2.21)
EM® (mou)" TN — EM ® (mov,) TN (2.22)
and

o (EM® (mou) TN) — Tt (EM ® (o v)"TN). (2.23)
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Now, let us define

A(ur) = sup{Alspec( ™)\ {0} C R\ (=A(u), A(u))} (2.24)
and y,(x) : [0,27] — C as

Aw)
Pe(x) == <2 2 e”. (2.25)
In general, we also denote by y the curve y(x) : [0,27] — C as
A
P(x) == Ee”‘ (2.26)

for some constant A to be determined. Then the orthogonal projection onto
ker( [p™*), which is the mapping

I'2(EM @ (mou) TN) — I'2(EM @ (mo uy)"TN), (2.27)
can be written by the resolvent by
1
—— | R(4, D™")sd2, 2.28
T sz (% P)s (2.28)

where R(A, p™") : 'z — I is the resolvent of D™ : I'yn. — T'pe.
Finally, the following density lemma is very useful for us to extend the flow beyond
the singular time.

Lemma 2.3. [16] Let M be a closed spin surface and (N, h) a real analytic closed mani-
fold. Suppose there exists a map uy € C*"*(M,N) for some ue€ (0,1) such that
dimgker P* = 1. Then the kernel of IP* is minimal for generic u € [up), ie., for a
C>®-dense and C'-open subset of [ug).

3. The heat flow for z-Dirac-harmonic maps

In this section, we will prove the short-time existence of the heat flow for a-Dirac-har-
monic maps. Since we are working on a closed surface M, we cannot uniquely solve the
Dirac equation in the following system:

1 1
@u:—ZH fol/l ——R u, 5
0T vaP) (e(u) =~ R(w.¥))

Py =0
The short time existence and its extension are the obstacles. This system (if it con-
verges) leads to a o-Dirac-harmonic map which is a solution of the system

(3.1)

) = ol(1+ ) = R ()

(3.2)
Py =o.
and equivalently a critical point of functional
1 s 1 .
) =3 [ @+l 5 [ 0 Py 63)
M M

where 1 is the tension field.
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3.1. Short time existence

As in Section 2, we now embed N into RY. Let u: M — N with u = (4*) and denote
the spinor along the map u by ¥ = y* ® (9,4 o u), where y* are spinors over M. For
any smooth map n € C;°(M,R7) and any smooth spinor field ¢ € Ci°(ZM ® R?), we
consider the variation

u = (w4 tn), it = i (u) (WP + tEP), (3.4)
where 7 is the nearest point projection as in Section 2. Then we have

Lemma 3.1. The Euler-Lagrange equations for L* are

V5 uPV guP NV ut

AUA = —2(0—1 i 7 + TEA u qu’qu
0= Vul* sc(#)f ) .
| By () ()0, V- )
a1+ [Vu|?)* !
and
P = e (u) Vil - y©. (3.6)
Proof. Suppose (u, ) is a critical point of L*, then for the variation (3.5) we have
dL*(uy, 17
% - ofu (1 + [Vul*)* " (Vul, iy VP 4+ 7 VuCnP) (3.7)
) 3.7
+ Juf W, et + ngcngannD>,
=1+1I

Then the lemma directly follows from the following computations.
I aJ (1 + [Vl )~ (v, V) + ocJ (1 + [VuP)* 7 (Vb iy
M M

—ocj (14 |Vu|2)“71AuAr/A — oo — I)J (14 \Vu|2)“72<V|Vu\2,VuA)nA
M M
V3, uPV PV, it

— 7 (u) (Vi Vu) )t
1+|Vu|2 BC( I I

_ _“J (1+ [Vul)* " (A + 2(e— 1)
M
I =j (W — TV wc,éA>+jManBD<¢ P
jw T Vi wc,éA>+jManBD<¢ PUE — nG T Py

+J ngngDQpD, ”}SFVME : ‘//F>’7A'
M

O
Lemma 3.1 implies that (3.1)-(3.2) is equivalent to
Vz, LlBV/ngBV1 u
Ot = Aut 4+ 2(q — 1) T r Vi, vut
t e e T
”B(”)”}%(”)%F( )W Vu* lﬁ ) (3.8)
o1+ [Vul*)*™!
Py =0,

Now, let us state the main result of this subsection.
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Theorem 3.2. Let M be a closed surface, and N a closed n-dimensional Riemannian
manifold. Let uy € C*"*(M,N) for some 0 < u < 1 with dimgker( P*) =1 and , €
ker( ™) with ||Wll;» = 1. Then there exists ¢ = e (M,N) >0 such that, for any
o € (1,1 + €), the problem (3.1)-(3.2) has a solution (u, ) with

Lty T @)
satisfying
u e CEHIH2(M % [0, T],N) (3.10)
and
Y e CHMA(M x [0, T], M @ u*TN) N L¥([0, T]; C*H#(M)). (3.11)

for some T > 0.

Proof.

Step 1: Solving (3.9)-(3.10) in RZ.

In this step, we want to find a solution u: M x [0,T] - R? and , : M —- EM ®
(mou)"TN of (3.9)-(3.10) with the initial values (3.11). We first give a solution to
(3.10) in a neighborhood of u,. For any T >0, we can choose ¢, J and R as in the
Appendix such that

u(x, t) € N (3.12)

and
d((r 0 1)(x, 1), (10 v)(x,5)) < € < %inj(N) (3.13)

for all u,v € BY := B} (ito) = {u € Xr||u — ito||y, <R} N{ul,_g = uo},x € M and t,s €
[0, T], where ug(x,t) = ug(x) for any t € [0, T]. If R is small enough, then by Lemma
5.5, we have

dimgker( p™") =1 (3.14)
and there exists A =1 A(up) such that
{spec( D™") N [-A,A]} =1 (3.15)

for any u € B} and t € [0, T], where A(uo) is a constant such that spec( p*) \ {0} C
R\ [=A(up), A(uo)]. Furthermore, for , € ker( Pp*) with ||y||. =1, Lemma 5.7
implies that

3 7 Ut
\/; < Wyl <1 (3.16)

for any u € By and t € [0, T], where Y = Py =+, with respect to the
decomposition I';» = ker( ™)@ (ker( ™))" and R, = Ry (R, €, 1) > 0.
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Now, for any T>0 and x > 0, we define

V= {v e CH M < [0, TDIIVI] e < 6 Varego = O}

l+[l -5 —
Then, there exists kg, := x(R;) > 0 such that
uo—I—VGBgl,VVEV,Z,VKSKRl. (3.17)

Now, we denote x := kg, and VI := VEO.
Foreveryv € VI, uy+v € Bgl, Lemma 5.8 gives us a solution (v + 1) to the constraint
equation. Since v + uy € C'*#(M), by L” regularity [6] and Schauder estimate [7], we have

W+ o) lerewqany < €Ot Mo N, ko, [l i) (3.18)

For any 0 < t,s < T, we also have

P (v + uo)(t) = Y(v+ uo)(s))

=—T(mo(v+up)(t)V(mo (v+ue)(t))y(v+ up)(t)
+ (o (v+u)(s))V(mo (v + o) (s)) (v + uo)(s)
=—T(mo(v+up)(t)V(mo (v+uo)(t) (W' (t) — (v +uo)(s))
—T(mo(v+u)®)(V(mo(v+ uO)(? = V(mo (v+up)(s))(v + uo)(t)

)
— (T(mo (v+uo)(t)) — (o (v+uo)(s)))V(mo (v+uo) ()W (v + uo) (s),

that is,
DO (v + uo) (8) — Y(v + uo)(s))
=—T(mo (v+up)(t)(V(mo (v+uo)(t) — V(mo (v+uo)(s))¥(v+uo)(t)
—(T(mo (v+uo)(t)) —T(mo (v+uo)(s)) V(o (v+ uo)(s))Y(v + uo)(s),

where denotes a multi-linear map with smooth coefficients. For any 4 € (0,1), by the
Sobolev embedding, L?-regularity in [6] and Lemma 5.8, we have

W (v =+ uo) (£) = Y (v + 1) ($)] | o2 an)
< C(4 M, N, w0, | |o |1 ar) ) (1V(E) = ()] (ap) + [ldv(E) — dv(s]] ) (3.19)
S C(/’L)M)Na Ko> ||u0||C1(M))|t - S|’u/2.

Therefore,
||lp(V + uO)”CM‘/Z(M) S C(,LL, M, N, KO, ||u0| |C1 (M)) (320)

Now, when o — 1 is sufficiently small, for the (v + up, (v + uy)) above, the standard
theory of linear parabolic systems (see [19]) implies that there exists a unique solution
v, € CPHIHI2(M x [0, T],RY) to the following Dirichlet problem:

Vi WPV (v + uo) PV, (v + up)*
1+ V(v + u)|?

+ 1B (v+ uo) (V(v + o)’ V(v + 1))

(mamgpnEe) (v + o) (WP (v + 10), V(v + o) - " (v + up)) (3.21)

(14 V(v + up) )" ’

Vi, ue V(v + uo) PV, (v + up)*
1+ V(v + u)|?

oWt =Agwt +2(0—1)

_|_

>

+ Aguy +2(0 — 1)
w(-,0) = 0.
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satisfying
||V1||C2+“’1+l‘/2(M><[0, 7)) < C(uw M, N)(HVIHCO(MX[O, 1) T ||“0||c2+V(M) + ko). (3.22)
Since v;(-,0) = 0, we have
Vil coario, 77y < Clts M N)T(| il coarpo, 77y + 4ol czevary + Ko)- (3.23)
By taking T'> 0 small enough, we get

Vil oo, 77y < €t My N)T([[uto]| cavw ar) + Ko)- (3.24)

Then the interpolation inequality in [20] implies that v; € VT for T>0 sufficiently
small. For such v;, we have y/(v; + uy) satisfying (3.20) and (3.22). Replacing (v, (v +
up)) in (3.23)-(3.24) by (vi,¥(v; + ug)), then we get v, € VT Iterating this procedure,
we get a solution v, of (3.23)-(3.24) with (v, /(v + ug)) replacing by (vk, ¥(vk + 1)),
which satisfies

[ (Vi1 + uO)ch/Z(M) < C(, M, N, 0, | ”0||c1(M))- (3.25)

and
Wil ronsonsannio, < Ot My N) (sl oovgup + o). (3:26)

By passing to a subsequence, we know that v, converges to some u in C>1(M x [0, T])
and /"™ converges to some ¥ in C°(M x [0, T]). Then it is easy to see that (u,}/) is a
solution of (3.9)-(3.10) with u(-,0) = ug and (-, 0) = .

Step 2: u(x, t) takes value in N for any (x,t) € M x [0, T].

Suppose u € C>'(M x [0, T],R?) and € C***(M x [0, T|,EM ® (mou)"TN) N
L>([0, T]; C**#(M)) satisfy (3.9)-(3.10). In the following, we write || - || and (-, ) for the

Euclidean norm and scalar product, respectively. Similarly, we write || - ||, and (.,-), for
the norm and inner product of (M, g), respectively. We define
p:RT—RE (3.27)

by p(z) =z — n(z) and
@:Mx[0,T] >R (3.28)

by o(x.t) = [|p(u(x, £)||* = 324, |04 (u(x, 1))[*. A direct computation yields

0 1 2
<8t_A> p(xt) = —ZZHV(PA o u)(x, t)|[;
+2(pou, —ny(u)F}(u))

(p o P (W)} () (3.29)

_|_—
a(l + |[Vul)*

4(a—1)
W {pou, Vﬁyucvﬁucvyu]gpg(u)),

where Ff and Fg‘ are defined in (2.17) and (2.18), respectively.
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Since pou € T N and (dn), : R? — Ty, N, we have

Tou

(pou, —ma(u)FP) = (poupy(u)F) =0. (3.30)
Together with
! :_ v |) (po u,V CVﬁuCVyqug(u»
< 4(o— mw@|mmwwmow| (3.31)
< 20— 1)([lul ey @ + [V (0 0 )] ),

we get (E A)(p(x, t) < Co, where C= C(|[ul|c1(arxpo, 7)) Since @(x, ) >0 and
¢@(x,0) =0 for any (x,t) € M x [0,T], we conclude ¢ =0 on M x [0,T]. We have
shown that u(x,t) € N for all (x,t) € M x [0, T}

Finally, by using the e-regularity (see Lemma 3.7 below), we conclude that

u € CH 2 (M % [0, T],N) (3.32)
and

Y€ CPFR(M x [0, T, ZM @ (m o u)"TN) N L ([0, T]; C*(M)). (3.33)

O

Since the equations for a-Dirac-harmonic maps are invariant under multiplying the spi-
nor by elements of H with unit norm, by uniqueness we always mean uniqueness up to
multiplication of the spinor by such elements. This kind of uniqueness for the Dirac-
harmonic map flow was proved by the Banach fixed point theorem in [6]. However, we
cannot apply the fixed point theorem to the a-Dirac-harmonic map flow. Therefore, it
is interesting to consider the uniqueness of the o-Dirac-harmonic map flow from closed
surfaces. By considering the evolution inequality of [[u1 — u2[copr)> We can prove the
following uniqueness which is weaker than that in [6] because when the quaternions A,
are different, we can no longer bound the C’-norm of the difference of the maps.

Theorem 3.3. For any given T >0, let (uy,Y,) and (uz,\,) be two solutions to (3.1)-
with the constraint (3.11) and u,, u, € CZ“"H“/Z(M x [0, T],N). Then there exists a time
T, > 0, which depends on R and the CHE S norms of u; and uy, such that uy,u, €
By and

Ui (1) = (O (a5, ) (1) = () (s (x, 1)) (3.34)

for some hy(t),h(t) € H with unit length, where (u(x,t)) is defined by (5.36).
Furthermore, if hi(t) = hy(t) on [0,Ty] for some T, < T, then (uy, V)= (u2,¥,)
on M x [0, T].

Proof. By the assumptions, we have

|[ta(, 1) — ”OHCO(M) —0 (1) — VUOHCO(M) —0 (3.35)

for a=1, 2. Therefore, for small enough T\, u;,u, € B (iiy). Since dimg( ") =1 for
a=1, 2, there exist h,(t) € H such that

Ya(xt) = Y(ua(x, 1)) ha(t) (3.36)
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for all t € [0, T], where y(u(x,t)) is defined by (5.36). Moreover, h,(t) is of unit length

since [[Yall2m) = [ (ua)l] = 1.
Now, let us consider the uniqueness of the flow. First, by subtracting the equations of

u; and u, and multiplying by u; — u,, we have
1 1
58t|u1 i 5A|u1 — ] + | V(g — )|

AL RVAVPVAVRTR Ve RVA VT vt
—2(oc—1)< prt1Y B 2, L Y2 VE™ 2/ 2) 1—u2>
1+ |Vu| 1+ |Vu,|
— (II(Vuy, Vuy) — H(Vuy, Vuy), up — uy)
= (R, Vur - Y1) = R(Yr Viia - 5), ur — ua).
In the sequel, we will estimate the terms on the right-hand side of the inequality
(3.40).

(3.37)

V2V Vo Vi ubVpuhVu
2(a—1)< gyt Y B* 2/ VY2 VE™ 2/ z,ul—u2>
1+ |Vu| 1+ |Vu,|
V2 (uh — ub) Ve V,u
:2(a—1)< ﬁv(1 2) ﬁzl v l,ul—u2>
1+|VH1|
. . 1 1
+2(o — 1)<v§7,,u’2vﬁugvﬂ,,,ul< >,u1 - u2>

A L+ VP 1+ Vi
o — ————— (Vgu; — Vu3), u; — u,
14 (VP R

—|— o —_— Cnu — Cu S, Uy — u
|V |2 y¥1 yH2 1 2

V2 ( —ul)) Vi Vu
§2(oc—l)< »,( 1 2) /J’21 y l,ul—u2>
14+ |Vu1|

+ C(OC — 1)|V(M1 — u2)||u1 — U2|,

where we used uy, u, € C***1H1/2(M x [0, T], N). Similar, by the triangle inequality, we
get

(3.38)

|<II(VU1, Vul) — II(VUz, Vuz), uy — u2)|

3.39
< Clur — to? + C|V (g — un)| 1 — 11| (3:39)
and
|<R(W1»V“1 'zlpl) - R(’/’z’V“Z ! lpZ)’ Uy — U2>| (340)
< Cluy — wo|” + CIV(uy — up) [ty — ta] + ClYyy — 5[t — wa.
Based on these estimates, (3.40) becomes
1 1
E(’Mul — M2|2 — —A|u1 — u2|2
V2 (U — ub) Vi Vou
py\¥1 2) vV pi Vol 2 (3.41)
<2(o—1 ,ur — Uy ) — |V(ug —u
<2 I ) - (- )

+ Clu, — u2|2 + CIV(uy — wp)||uy — ua| + ClYyr; — Yy ||y — uz).

Next, we want to bound those terms in the right-hand side of (3.44) by |u; — u,|*
and |Vu, — Vu,|*. Since u;,u, € Bi*(#o), there is a unique geodesic between u(x,t)



COMMUNICATIONS N PARTIAL DIFFERENTIAL EQUATIONS (&) 455

and uy(x,t) for any (x,t) € M x[0,T,]. Now, for any (xt)€P:={x€M X
[0, T5]|uy (x,t) # up(x,t)}, we define

Us(X, 1) := exXPy, (1) (SV(X, 1)) = exP () (SV (%, 1) /| V (2, 8)]) (3.42)

where s € [0,|V(x,t)]], V(x,t) := exp ;l(x t)uz(x, t) and |V(x,t)| denotes the norm of

V(x, t) in the tangent space T, (,)N. Then we can estimate V?(u; — ;) as follows:
Vi (=) (x,t) = Vi Uy (xt) — Vi uo(xt)

Vol g 5
— JO Evﬁyus(x, t)

d (3.43)
<  sup —V2ug|d™ (u1(x, t), uz(x, t))
0, [V <P | 45
< Cluy(x, 1) — up(x, t)],
where we used the Lemma 5.1 in the Appendix. Hence, we can rewrite (3.44) as
1 1
E(‘Mul —w|* - EA|u1 — |
V2 (v — ub)Vpui Vou
py\*1 2) VU VUl > 2
<2(a—1 sup —up ) — |V(ug —u 3.44
(1 ) BRI )~ ¥ ) G4

+ Cluy — g‘z|2 + CIV(uy — )|y — 2| + Cly — 5[t — s
< Cluy — ws|” + Clypy — ¥, [|uy — ua,

where we used Young’s inequality. It remains to bound [}, — ,| by |u; — u|. To that
end, we use the Lemma 5.8 and (3.39) as follows:

Wy = sl = [ () — b, (ua)]
(1) — W (ua)] (3.45)

< ur — 2|l oy

where we used h; = h, in the second equality.
Last, it is easy to see (u1Y;) = (u,¥,) by considering the following evolution
inequality

Bl [ur — wal|Goan) < Cllr — 2 [Goagy (3.46)

with u;(-,0) = uy (-, 0). O

3.2. Regularity of the flow

In this subsection, we will give some estimates on the regularity of the flow. Let us start
with the following estimate of the energy of the map part.

Lemma 3.4. Suppose (u,V) is a solution of (3.1)-(3.2) with the initial values (3.11). Then
there holds

t
E*(u(t)) + 201 JO JM(I + V)l = E*(up), (3.47)

where E*(u) :=1 [, (1+ |Vul*)*. Moreover, E*(u(t)) is absolutely continuous on [0, T]
and non-increasing.
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Proof. N ote that (3.1) can be written as:
L+ |Vul) Mo =div((1+ V)" 'Vu) — (1 + [Veul*)* ' A(du, du)

- éRe(P(A(du(eﬁ), ep - Y)iv))- (3.48)

Multiplying the inequality above by 0;u and using

o= [ [ (wior)

— M<1p, P(OY) + e, - ¥ @ REddul(e,))Dym)

~-~o

= MRm,jkW, Vit ol

3.49
= [(S(Dyn, 0y). S(Dys, D)) s — (S(Oym, Dop), S(Dys, D)) s (3.49)
uk -y o

" v
=2 [ (5(00m 0, (03 0 e Re(", Vit - )0
= ZJ J (Re(P(A(du(ep), ep - ); ), s,

we get
t

t
” (4 [VaPy owf = | [ (v + [vuP)y ' vu), o)
0JM

—
E

0

J (1 + |Veu)* 'V, 0,Vu) (3.50)

yd
[4] ety

which directly gives us the lemma. O

¥l-—

Consequently, we can also control the spinor part along the heat flow of the «-Dirac-
harmonic map.

Lemma 3.5. Suppose (u,V) is a solution of (3.1)-(3.2) with the initial values (3.11). Then
for any p € (1,2), there holds

||¢(', t)||Wl,p(M) S C,Vt 6 [0, T], (3.51)
where C = C(p, M, N, E*(uy)).

Proof. The lemma directly follows from Lemma 3.4 and the following lemma:

Lemma 3.6. Let M be a closed spin Riemann surface, N be a compact Riemann manifold.
Let u € WH2*(M, N) for some o > 1 and y € WHP(M,EM ® u*TN) for 1 < p < 2, then
there exists a positive constant C = C(p, M, N, ||Vul|2.) such that

W Tweany < CULPY Lo aay + WL ar))- (3.52)
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This lemma follows from applying Lemma 2.1 to ny, where 7 is a cutoff function. [
To get the convergence of the flow, we also need the following e-regularity.

Lemma 3.7. Suppose (u,\) is a solution of (3.1)-(3.2) with the initial values (3.11).
Given wy = (xo,ty) € M x (0, T], denote

PR<(1)0) = BR(XO) X [to — R2, to} . (353)

Then there exist three constants €, = e;(M,N) > 0,e3 = e3(M,N,ug) >0 and C=
C(u, R, M,N,E*(ug)) > 0 such that if

l1<o<1l+e,and sup E(u(t);Br(mo)) < e, (3.54)
[to—4R2, to]
then
\/I_{”'ID”LDC‘(PR(LUU)) + RVl | (b)) < C (3.55)
and for any 0 < f < 1,
[ sup | W oy o)) + VUl cm by (@0)) < CUB)- (3.56)
to—%) )
Moreover, if
sup sup E(u(t); Bar(wo)) < €3, (3.57)
M- [t—4R?, to]

then

||u||C2+“>1+”/2(M><[l‘()f%,to]) + ||lp‘ CIA,N/z(MX [ﬁ)*%ﬁo]) + Sup ||lﬁ( >||C1+“ S C (358)

[0~ 1]

Since M is closed, x, has to be an interior point of M. Therefore, our Lemma is just a
special case of the Lemma 3.4 in [15]. So we omit the proof here.

4, Existence of o-Dirac-harmonic maps

In this section, we will prove Theorem 1.2 by the following theorem on the existence of
o-Dirac-harmonic maps for o > 1.

Theorem 4.1. Let M be a closed spin surface and (N, h) a real analytic closed manifold.
Suppose there exists a map ug € C*"*(M,N) for some p€ (0,1) such that
dimgker Pp* = 1. Then for any o. € (1,1 + €,), there exists a nontrivial smooth a-Dirac-
harmonic map (uy, ) such that the map part u, stays in the same homotopy class as u,

and ||,[];> = 1.

Proof of Theorem 4.1. By Theorem 2.3 in [21], all the following «-Dirac-harmonic maps
are smooth. Let us denote the energy minimizer by

m{ = inf {E*(u)|u € W"**(M,N) N [uo]}, (4.1)
where [u,] denotes the homotopy class of ug. If 1y is a minimizing «-harmonic map, it
follows from Lemma 3.4 that (ug,V,) is an a-Dirac-harmonic map for any y, €
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ker p*. If E*(up) > m§, then Theorem 3.2 gives us a solution
u e CEHIFH2(M % [0, T),N) (4.2)
and
Y€ CM2(M x [0, T), M & u* TN) N No<serL®([0, s]; CHH(M)). (4.3)

to the problem (3.1)-(3.2) with the initial values (3.11).
By Lemma 3.4, we know

J (1 + | Vul)* < E*(uy). (4.4)
M

Then it is easy to see that, for any 0 < € < €3, there exists a positive constant ry =
ro(€, o, E*(up)) such that for all (x,t) € M x [0, T), there holds

J ( )|Vu|2 < CE(up)*ra " < e. (4.5)
B,U X

Therefore, by Theorem 3.2 and Lemma 3.7, we know that the singular time can be char-
acterized as

Z={T eR| li/n} dimgker P* > 1} (4.6)
L
and there exists a sequence {t;} /' T such that
(i)W 1) — (u(, 1) ( T)) in CTH(M) x CHH2(M) (4.7)
and
G Dl = 1. (4.8)

If Z=10, then, by Theorem 3.2, we can extend the solution (u,1) beyond the time T
by using (u(-, T), (-, T)) as new initial values. Thus, we have the global existence of the
flow. For the limit behavior as t — oo, Lemma 3.4 implies that there exists a sequence
{t;} — oo such that

J |Oul* (-, t;) — 0. (4.9)
M

Together with Lemma 3.7, there is a subsequence, still denoted by {¢;}, and an o-Dirac-
harmonic map (uy, ,) such that (u(-,#;),¥(.,t;)) converges to (u,,) in C*(M) X
C!(M) and ||y, ],: = 1.

If Z#( and T € Z, let us assume that E*(u(-, T)) > m§ and (u(-, T),y(-, T)) is not
already an a-Dirac-harmonic map. We extend the flow as follows: By Lemma 2.3, there
is a map u; € C*"#(M,N) such that

mg < E*(uy) < E*(u(-,T)) (4.10)
and
dimgker P* = 1. (4.11)

Thus, picking any i, € ker P with ||i,|[;» = 1, we can restart the flow from the new
initial values (uy,1,). If there is no singular time along the flow started from (uy,,),
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then we get an o-Dirac-harmonic map as in the case of Z = (). Otherwise, we use again
the procedure above to choose (uy,1/,) as initial values and restart the flow. This pro-
cedure will stop in finitely or infinitely many steps.

If infinitely many steps are required, then there exist infinitely many flow pieces

........

t
B (1 (t)) +20¢J J (1 + [Vl Ol = E*(w), ¥t € (0, T, (4.12)

0Jum
where u;(+,0) = u; € C*™(M, N). If the T; are bounded away from zero, then there is
{t;} such that (4.9) hold for t; € (0, T;). Therefore, we have an o-Dirac-harmonic map
as before. If T; — 0, then we look at the limit of E*(u;). If the limit is strictly bigger
than mJ, we again choose another map satisfying (4.10) and (4.11) as a new starting
point. If the limit is exactly mJ, then we choose {t;} such that #; € (0, T;) for each i.
By Lemma 3.7, u;(t;) converges in C*(M) x C'(M) to a minimizing o-harmonic map
uy. If " has minimal kernel, then for any ¥ € ker ", (u,, ) is an «-Dirac-har-
monic map as we showed in the beginning of the proof. If )"+ has non-minimal ker-
nel, we use the decomposition of the twisted spinor bundle through the Z,-grading
G ®id (see [3]). More precisely, for any smooth variation (us)se(fﬂf) of uy, we split
the bundle M ® u!TN into EM @ u!TN = "M ® uTNOZ"M @ uTN, which is
orthogonal in the complex sense and parallel. Consequently, for any y, € ker P*, we
have

(PYg g ) = (D™Yg g ) =0 (4.13)

for Yo =y¢ +y,, where Yy =y, @uiTN and . € T*. Therefore, V, :=
Y+ ® u: TN are smooth variations of i, respectively, such that

4 (DY 7). =0. (4.14)

dt|,_,
By taking uy = u, and y, =y, € ker %, the first variation formula of L* implies that
(uy, ;) are a-Dirac-harmonic maps (see Corollary 5.2 in [3]). In particular, we can
choose V), such that ||/ ||,. =1 or ||y, || = 1.
If it stops in finitely many steps, there exists a sequence {t;} and some 0 < Ty < 400
such that
lim (-, ), () — (1) in C2(M) x €' (M), (4.15)
ti
where (uy,Y,) either is an o-Dirac-harmonic map or satisfies E*(u,) = mj. And in the
latter case, u, is a minimizing «-harmonic map. Then we can again get a nontrivial
o-Dirac-harmonic map as above. O
By Theorem 4.1, for any o > 1 sufficiently close to 1, there exists an o-Dirac-har-
monic map (uy, ) with the properties

E*(uy) < E*(uo), [l = 1 (4.16)
and

[1Wallwirony) < Clp, M, N, E*(uo)) (4.17)



460 J. JOST AND J. ZHU

for any 1 < p < 2. Then it is natural to consider the limit behavior when o decreases to
1. Since the blow-up analysis was already well studied in [15], we can directly prove
Theorem 1.2.

Proof of Theorem 1.2. By Theorem 4.1, we have a sequence of smooth o-Dirac-har-
monic maps (uy,, ¥, ) with (4.16) and (4.17), where oz \, 1 as k — oc. Then, by
Theorem 2.1 in [15], there is a constant ¢y > 0 and a Dirac-harmonic map

(@, ) € C(M,N) x C*(M,=M © ®"TN)

such that

(s Y1) — (@,F) in CL (M S) X Cpp, (M\ S), (4.18)
where

S = {x € M| limin E(u, ;B (x)) > 9 vr> o} (4.19)

is a finite set.
Now, taking xy € S, there exists a sequence x,, — X, Ay, — 0 and a nontrivial Dirac-
harmonic map (¢, ¢) : R* — N such that

(U (% + 2y %) “k 1\/7klrbtxk (x5 + l“k x)) = (¢,¢) in CZOC(RZ)’ (4.20)

as o — 1. Choose any p* > 4, by taking p = 5 in (4.17), we get

2+
Ok Lr (M) S C(p ’MaN)E“k(uO)) (421)
and
||£||L4(DR = llm }L“k 1||¢7k||L4 (xxk» < o}kigll C||¢ﬁk 1y (M)()LakR)z(Zip_*) = 0. (422)

Thus, £=0 and ¢ can be extended to a nontrivial smooth harmonic sphere. Since
[¥,|l» = 1, the Sobolev embedding implies that |[\V[|. = limy 1 [[W, ]2 = 1.
Therefore, (®,¥) is nontrivial. Furthermore, if (N, h) does not admit any nontrivial
harmonic sphere, then

(Uzo ¥1,,) — (@, ) in C*(M) x C'(M). (4.23)

Therefore, ® is in the same homotopy class as u,. O

5. Appendix

In Section 3, we used some convenient properties of the elements in B} (iiy). Those
properties were already discussed in [6]. However, the function space used there is
B}(vo), where vo(x,t) = [,,p(x, 9, t)uo(y)dV (y), because the solution there is the unique
fixed point of the following integral representation over B ()

Lu(x,£) = vo(x, £) + Jt J Dot — 1) (Fo(e) + Bl p(u))dV()dr  (5.1)

0JM

where p is the heat kernel of M, F; and F, are defined as in (2.17) and (2.18), respect-
ively. Our proof for the short-time existence is different from there, and the space
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B](1y) is more natural and convenient in our situation. Therefore, we cannot directly
use the statement in [6]. Although the space is changed, the proofs of those nice prop-
erties are parallel. In fact, one can see from the following that to make the elements in
Bg(ﬁo) satisfy nice properties (5.11) and (5.12), it is sufficient to choose R small,
namely, T is independent of R. This is the biggest advantage. In the following, we will
give the precise statement of the properties we need in Section 3 and proofs for the
most important lemmas.

For every T>0, we consider the space Bj(io) := {u € Xr|||u — o[, <R} N
{u|,_y = uo} where iig(x,t) = up(x) for any ¢ € [0, T]. To get the necessary estimate for
the solution of the constraint equation, we will use the parallel transport along the
unique shortest geodesic between uy(x) and 7 o u,(x) in N. To do this, we need the fol-
lowing lemma which tells us that the distances in N can be locally controlled by the dis-
tances in RY.

Lemma 5.1. [6] Let N C R? be a closed embedded submanifold of R with the induced
Riemannian metric. Denote by A its Weingarten map. Choose C>0 such that
[|A|| < C, where

1A]| := sup{||4,X|[|v € TSN, X € T,N,|]vl| = L ||X|| = Lp € N}. (5.2)

Then there exists 0 < 0o < & such that for all 0 <06 <, and for all p,q € N with
|lp — qll, < 9, it holds that

1
P (p.a) < —llp 53

where we denote the Euclidean norm by || - ||, in this section.

In the following, we will choose 6 and R to ensure the existence of the unique short-
est geodesics between the projections of any two elements in BX(u). By the definition
of BL(i1p), we have

[l t) = wo(x )], = ||u(xt) —uo(x)[[, < R (5.4)
for all (x,t) € M x [0, T]. Then taking any R < §, we get

d(u(x, 1), N) < [|u(x,t) — up(x)||, <o (5.5)

for all (x,t) € M x [0, T]. Therefore, u(x,t) € Ny. In particular, 7 o u is N-valued, and
(o u)(x,8) —uo(x)l, < [[(mou)(x,t) —ulx, t)]l; + [[ulx.t) —uo(x)[[, <26.  (5.6)

Now, we choose € > 0 with 2¢ < inj(N) and 0 such that
1 1

where g, C > 0 are as in Lemma 5.1. From (5.6), we know that for all u,v € Bg(ﬁo), it
holds that

[|[(mou)(x,t) — (mov)(xs)||, <4 < . (5.8)
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Then Lemma 5.1 and (5.7) imply that

dN((mou)(x,t),(mov)(x,s)) < (o u)(x,t) — (mov)(x5),
< 4 —inj .
ST o:C 5<6<21nJ(N)
To summarize, under the choice of constants as follows:
€>0, st 2e<inj(N),
0>0, sto< min{léo, l6(1 — 50C)}, (5.10)
4 4
R <9,
we have shown that
u(x,t) € Ns (5.11)
and
1
d"((mou)(x,t), (mov)(xs)) < e <§inj(N) (5.12)

for all u,v € BX(ug),x € M and t,s € [0, T].
Using the properties (5.11) and (5.12), we can parallelly prove two important esti-
mates as in [6]. One is for the Dirac operators along maps.

Lemma 5.2. Choose €, 6 and R as in (5.10). If € > 0 is small enough, then there exists
C = C(R) > 0 such that

[[((Pret) ™ preseprets — P ) (x)|| < Cllur = vsllcoag W (%) (5.13)
for any u,v € B (iiy),y € Tt (EM ® (movs)"TN),x € M and t,s € [0, T].

Proof. We write fy := mo v, f; := 1o u, and define the C' map F: M x [0,1] — N by
F(x,t) := exp fv(texp o )fl (5.14)

where exp denotes the exponential map of the Riemannian manifold N. Note that
F(-,0) =fo,F(-,1) = f; and t+ F(x,t) is the unique shortest geodesic from fy(x) to
fi(x). We denote by

Pty = P, (x) TF (x, tl)N - TF(x tz) (5.15)

the parallel transport in F*TN with respect to VF'™ (pullback of the Levi-Civita con-
nection on N) along the curve y,(t) := (x,t) from y,(t;) to y.(t2),x € M, t,t, € [0,1].
In particular, Py ; = P*%. Let y € T'ci(EM @ (fy)"TN). We have

(Por)” WP(”_W”? P (5.16)
= (ex ¥) @ (Po.1) "V P — V&™) (bi 0 fy))

where = /' ® (b; o fy), {b;} is an orthonormal frame of TN, ' are local C' sections
of XM, and {e,} is an orthonormal frame of TM.
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We define local C' sections ®; of F*TN by

Oi(x,t) := Po¢(x)(bi o fo)(x). (5.17)
For each t € [0, 1] we define the functions T,-j(-, t) == T;(-1t) by
(Po.e) M ((VE™0)( ZTV x,1)(bj 0 fo) (x). (5.18)

So far, we only know that the Tj; are continuous. In the following, we will perform
some formal calculations and justify them afterwards. By a straightforward computation,
we have

[1((Po) ™ VA ™ Po,y — V8 ™) (bi o fo) ()
= [|(Po,1)”' (VE™0,)(x, 1)) = (Poo) " (VE™0,)(x,0))][;
= || X T 1) (by 0. o) (x) — 55, Ty(x,0) (b 0 o) ()| (5.19)
= 5(Ty(x.1) = Ty(x,0))’

2
=5 (I 1 Tatw vydr)
Therefore we want to control the first time-derivative of the Tj. Equation (5.18) implies

that these time-derivatives are related to the curvature of F*TN. More precisely, for all
X € I'(TM) we have

d
dat|,

((7»0 ) (VE™0) (1))

( (o) (V™0 (x,t +1)))

(POr Prre) (V™0 (1 4 7)) ) (5.20)
~ (P O((P,,m)*(<v§;TN®,-><x,t+r>))
= (Po.y)” ((v{ v TN®,~) (x, r)) .

Now, let us justify the formal calculations (5.19) and (5.20). Combining the definition
of ©®; as parallel transport and a careful examination of the regularity of F we deduce

that (VF INgE TNG))( ,r) exists. Then (5.20) holds. Together with (5.18), we know
that the Tj; are differentiable in . Therefore (5.19) also holds. We further get

vI_;*TNvf{*TN@i — RF TN(a >®1 + vf{*TNvI;*TN@i _ vF;TN ®i
o o’ o (5]

= RPN <§t X) @, = R™ <dF <§> dF (X )) 0,

since VF ™@; = 0 by the definition of ©; and [Z,X] = 0.

(5.21)
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This implies

5 (6 Ty 1) H (Por) (V™) (x,1)))

h
= (V5 VE™0 ) () (5.22)
~ R gt),da (el
< CulldF (s, ) ()3 11dF s,y (e)) I
where C; only depends on N.
In the following we estimate ||dFy ()|, and ||dF(  (e,))||,- We have
ey Ol ) = o imo P g (texp i () = €0) (5.23

where ¢(t) := exp fo(x)(texpf’1 J/1(x)) is a geodesic in N. In particular, ¢’ is parallel along
¢ and thus ||c'(r)][, = [|c'(0)]], = |[exp ¢ >f1 )||j,- Therefore, we get
1dE (@)l = llexp (i)l < @ (o), /1 (%)) < Callte = vill ooy (5:29)

where we have used Lemma 5.1 and the Lipschitz continuity of m. Moreover, there
exists C3(R) > 0 such that [|dF, ,(e,))||, < C3(R) for all (x,7) € M x [0, 1].
We have shown

d 2
5 (G110 < QORI g 529
j

for all (x, t). Combining this with (5.16) and (5.19), we complete the proof. O
The other one is for the parallel transport.

Lemma 5.3. Choose €, 6 and R as in (5.10). If € > 0 is small enough, then there exists
C = C(€) > 0 such that

||PV5,u0Put,VsPu0)utZ _ Z|| < C||ut _ VSHCO(M,R’?)HZ” (5.26)

for all Z € T,,)N, u,v € Bi(uig),x € M and t,s € [0, T].
Consequently, we also have

Lemma 5.4. Choose €, § and R as in (5.10). For u,v € BL(ii),s,t € [0, T), the operator
norm of the isomorphism of Banach spaces

P Ty (EM @ (10 v)"TN) — Tyip (EM @ (1o u;)"TN) (5.27)
is uniformly bounded, i.e. there exists C = C(R, p) such that
P ||y (wrr, wrory < C (5.28)

for all u,v € B (uo),x € M and t,s € [0, T).

The proofs of these two lemmas only depend on the existence of the unique shortest
geodesic between any two maps in BX(uy), which was already shown in (5.12).
Therefore, we omit the detailed proof here. Besides, by Lemma 5.2, one can immediately
prove the following Lemma by the Min-Max principle as in [6].
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Lemma 5.5. Assume that dimgker(p*) = 21 — 1, where | € N and

K =15 itm_a(med 8 529
Choose €, 6 and R as in Lemma 5.2. If R is small enough, then
dimgker( p™") =1 (5.30)
and there exists A = § A(uo) such that
{spec( P™*)N[-AA]} =1 (5.31)

for any u€Bk(uyg) and t€0,T], where A(ug) is a constant such
that spec(]p™) \ {0} C R\ (—A(uo), A(uo)).

Once we have the minimality of the kernel in Lemma 5.5, we can prove the following
uniform bounds for the resolvents, which are important for the Lipschitz continuity of
the solution to the Dirac equation.

Lemma 5.6. Assume we are in the situation of Lemma 5.5. We consider the resolvent
R(Z, ™) : T2 — T2 of P™% : T'yio — 2. By the LP estimate (see Lemma 2.1 in
[6]), we know the restriction

R(4, ™) : Ty — Dy (5.32)

is well-defined and bounded for any 2 < p < oo. If R>0 is small enough, then there
exists C = C(p,R) > 0 such that

sup [[R(4, Q@D™*)|[} 1 yrp) < C (5.33)

=

for any u € Bl (i), t € [0, T].
Now, by the projector of the Dirac operator, we can construct a solution to the con-
straint equation whose nontrivialness follows from the following lemma.

Lemma 5.7. In the situation of Lemma 5.5, for any fixed u € Bk(uo) and any €

ker(p*) with |[y|[. = 1, we have
1 ~u
\/5 <IWillp <1 (5.34)

where IV' = Photnf = ILT + IL;[ with respect to the decompos-
ition T2 = ker(I™" )@ (ker (™))"

In Section 3, to show the short-time existence of the heat for o«-Dirac-harmonic
maps, we need the following Lipschitz estimate.

Lemma 5.8. Choose 6 as in (5.10), € as in Lemmas 5.2 and 5.3, R as in Lemmas 5.5 and
5.6. For any harmonic spinor y € ker(Ip™), we define

Ylu) =y, =— zim JMR(;L, D)o (uy)dA (5.35)

for any u € By (i), where y is defined in the Section 2 with A =1A(u,). In particular,
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¥ (u;) € ker( ™) C To(EM & (m o u;)*TN). We write
¥ ()
W(u) o= (1) = o
[ ()] 2
Let *(u,) be the sections of M such that
W(u) = Y () @ (a0 mo uy)
for A =1,...,q. Then there exists C = C(R, ¢, ,) > 0 such that
[P th (ue) (x) — W (ue) ()| < Cllue = villoo g,
and
17 (1) () = 9 (ve) ()] < Cllae = vl o, )

for all u,v € Bk (u9),A=1,..,9,x € M and s,t € [0, T].

Proof. Using the following resolvent identity for two operators D;, D,
R(}v, Dl) - R(;b Dz) == R(/L, Dl) e} (Dl - Dz) o R(;u, Dz),
we have

PUeri(uy) — ()
— fi <J R(i, Pl Vs pnouz (P“t:vs)_1>Put»V:‘PMO)utlpO

2mi

- [, gy

/

l (o] —
e _2_7Tl R(i; Put,Vs DTC Uy (Put,vs) 1)(P“:»V5P140,Mtw0 _ Puo,vslp())
1 ) i o
_ %J(R(/L pHnvs lD“ U (Put,vs) 1) . R(/L, Dn VS))PuU)VslpO
l
1 o —
= —EU”R(/L J e lD’T uy (Put)Vs) 1)(Put,vspuo,utlpo _ Puo,vsw())

1
2mi

R(2, Prev)) Py,

J (R(i, Plovs lpnout(Pu,,vs)—l) ° (Pu[,vs anou[(Pu[,vs)—l o pnovs)o

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

where 7 is defined in (2.29) with A =1 A(u). Therefore, for p large enough, we get

[P (1) (x) — P () ()] < Cal [P ™ =" |y an

S CZHJ R(;L, pue Vs E)nouf(Put,vs)—l)(Put,vsPug,utlpO _ Puo’vs'vbo)HWl:P(M)

/

+C2||J (R(ﬂ, Put,vs pnou[(Put,vs)—l) ° (Put,vs lbmuf(Pu"Vs)_l _ E)novs)o

R4, D™"))P* Y| wopany

S CZJ ||R(;L, Pu,,vs Dnou,(Put,vs)fl)(Pu,,vspug,utlljo _ PMO’VSWO)le,p(M)
7

+C2J ||(R(/L Pu,,vsDnout(Pu,,‘g)fl) ° (pu,,vS Dﬂout(put,"s)*l _ Dmvs)o
Y

R(4, D™ )) P Yo ||y, an)
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< Cy sup [[R(2, P PP (P ™) ™) |15, i [P P g — Pt |,
Im(y)

+ G5 su(p) ||R(2, P> et (Puz,vs)fl)HL(Lp) Whe) su(p) [[R(4, P™")
Im(y Im(y

[P press ()™ — |y [P g

Now, we estimate all the terms in the right-hand side of the inequality above. First, by
Lemmas 5.6 and 5.4, we know that all the resolvents above are uniformly bounded.
Next, by Lemma 5.2, we have

Hpu,,vs lz)nout (Put,vs)fl _ DrcovS
Finally, by Lemma 5.3, we obtain
[P P e iy — P o |, < Cl& o) e — Vsl coag, ey - (5.44)

Putting these together, we get (5.38).
Next, we want to show the following estimate which is very close to (5.39).

(19 () () = 0 () (] < CR e o)l = Vil cnag, - (5.45)

In fact, we have

19 ) () = 9 () )

< () (%) — o (v) (x )5, momrs

<[Py (uae) () = P (ve) () s, e + [1P*"0 () (%) = ¥ () (30) 5, o

= (1Pt () () = ¥ (v) ()| ppom, v + 1P (100) () = () () 5, pges

< C(R, &) [ = sl [ coqag,may + [P (1) (x) — o (140) ()| £ s
It remains to estimate the last term in the inequality above. To that end, let y(r) :=
€XP (rou,)(x) (T €XP nou)(x)(nout(x))),re [0,1], be the unique shortest geodesic of N

from (7o u;)(x) to (mov)(x). Let X € T,)N be given and denote by X(r) the unique
parallel vector field along y with X(0) = X. Then we have

L(Lp, Wl,p) (542)

L(whe,1p) < C(R)ur — VSHO](M,W)' (5.43)

1 1
P - x=x()-X0) = | T de= [ n60x0)ar (5.46)
0 r=¢ 0
Therefore,
1P X = Xllge < Ci sup [l (lly sup X)Ly = G OlIXIly  (5.47)

ref0, 1] r€f0, 1]

where II is the second fundamental form of N in R? and C,; only depends on N. Using
(5.9) and the Lipschitz continuity of ©= we get

17/ (0)lly < d¥((m 0 ue)(x), (m 0 ) (x)) < Calfue(x) = vs(x)] [ (5.48)

and

1P "X — Xl|gs < Calfur(x) = vs(0)][[pal [X]] - (5.49)
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This implies

1P () () = W (1) () 5 gz < COR € r0) () = v5() - (5:50)

Hence, (5.45) holds.
Now, using (5.38) and (5.45), we get

1 (1) (x) = 9 (ve) ()] = ||

<

- ||nz< M0l

< =
I () [ (v 2

V) () 0 )() 0 ) ) () ()
W@l W@l Wl 9@l

I
v () (x)

% (t)||Lz||lﬂ( Ol[I%

|||¢(VS)HL2_||¢(ut)||L2|+||lp( )||L2W () (x) =¥ (vs) ()

W) 1 1 )

||¢< >\|L2”"“ u)(x) =" () ()|

TA

‘// (ut)(x> ||Pubv$lp(u[)— 7(Vs)||L2 ||¢ ( )( ) lp (vs)(x)||

19 o)ll, )HLz

A
< <||lp( W (Mt)_(x> I 1 )C(Raﬂ‘po)””t_V5||C°(M,Rq)~

u) [ o)l 1Y (v)lle

Then the inequality (5.39) follows from Lemma 5.7 and (5.45). This completes the
proof. O
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