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Short-time existence of the a-Dirac-harmonic map flow
and applications

J€urgen Jost and Jingyong Zhu

Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

ABSTRACT
In this paper, we discuss the general existence theory of Dirac-har-
monic maps from closed surfaces via the heat flow for a-Dirac-har-
monic maps and blow-up analysis. More precisely, given any initial
map along which the Dirac operator has nontrivial minimal kernel,
we first prove the short time existence of the heat flow for a-Dirac-
harmonic maps. The obstacle to the global existence is the singular
time when the kernel of the Dirac operator no longer stays minimal
along the flow. In this case, the kernel may not be continuous even
if the map is smooth with respect to time. To overcome this issue,
we use the analyticity of the target manifold to obtain the density of
the maps along which the Dirac operator has minimal kernel in the
homotopy class of the given initial map. Then, when we arrive at
the singular time, this density allows us to pick another map which
has lower energy to restart the flow. Thus, we get a flow which may
not be continuous at a set of isolated points. Furthermore, with the
help of small energy regularity and blow-up analysis, we finally get
the existence of nontrivial a-Dirac-harmonic maps (a � 1) from
closed surfaces. Moreover, if the target manifold does not admit any
nontrivial harmonic sphere, then the map part stays in the same
homotopy class as the given initial map.
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1. Introduction

Motivated by the supersymmetric nonlinear sigma model from quantum field theory,
see [1], Dirac-harmonic maps from spin Riemann surfaces into Riemannian manifolds
were introduced in [2]. They are generalizations of the classical harmonic maps and
harmonic spinors. From the variational point of view, they are critical points of a con-
formal invariant action functional whose Euler-Lagrange equations are a coupled elliptic
system consisting of a second order equation and a Dirac equation.
It turns out that the existence of Dirac-harmonic maps from closed surfaces is a very

difficult problem. Different from the Dirichlet problem, even if there is no bubble, the
nontriviality of the limit is also an issue. Here, a solution is considered trivial if the spi-
nor part w vanishes identically. So far, there are only a few results about Dirac-
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harmonic maps from closed surfaces, see [3–5] for uncoupled Dirac-harmonic maps
(here uncoupled means that the map part is harmonic; by an observation of Bernd
Ammann and Johannes Wittmann, this is the typical case) based on index theory and
the Riemann-Roch theorem, respectively. In an important contribution [6], Wittmann
investigated the heat flow introduced in [7] and showed the short-time existence of this
flow; for reasons that will become apparent below this is not as easy as for other para-
bolic systems. The problem has also been approached by linking and Morse-Floer the-
ory. See [8, 9] for one dimension and [10] for the two dimensional case.
In critical point theory, the Palais-Smale condition is a very strong and useful tool. It

fails, however, for many of the basic problems in geometric analysis, and in particular for
the energy functional of harmonic maps from spheres [11]. Therefore, it is not expected to
be true for Dirac-harmonic maps. To overcome this problem for harmonic maps, Sacks-
Uhlenbeck [12] introduced the notion of a-harmonic maps where the integrand in the
energy functional is raised to a power a > 1: These a-harmonic maps then satisfy the
Palais-Smale condition. However, when we analogously introduce a-Dirac-harmonic
maps, the Palais-Smale condition fails due to the following existence result for uncoupled
a-Dirac-harmonic maps, which directly follows from the proof of Theorem 4.1.

Theorem 1.1. For a closed spin surface M and a closed manifold N, consider a homotopy
class ½/� of maps / : Mm ! Nn for which ½dimHðker =D/Þ�Z2

is non-trivial. Assume that
/0 2 ½/� is an a-harmonic map. Then there is a real vector space V of real dimension 4
such that all ð/0,wÞ,w 2 V, are a-Dirac-harmonic maps.
To overcome this issue, in [8, 9], the authors add an extra nonlinear term to the action

functional of Dirac-geodesics. As for the two dimensional case [10], we even cannot dir-
ectly prove the Palais-Smale condition for the action functional of perturbed Dirac-har-
monic maps into non-flat target manifolds. Instead, we are only able to prove it for
perturbed a-Dirac-harmonic maps, and then approximate the a-Dirac-harmonic map by a
sequence of perturbed a-Dirac-harmonic maps. However, in this approach, it is not easy
to control the energies of the perturbed a-Dirac-harmonic maps, which are constructed by
a Min-Max method over increasingly large domains in the configuration space.
Due to these two problems, in this paper, we would like to use the heat flow method

to get the existence of Dirac-harmonic maps from closed surfaces to general manifolds
where the harmonic map type equation is parabolized and the first order Dirac equation
is carried along as an elliptic side constraint [7]. As already mentioned, the short-time
existence of the heat flow for Dirac-harmonic map was proved by Wittmann [6]. He
constructed the solution to the constraint Dirac equation by the projector of the Dirac
operator along maps. By assuming that the Dirac operator along the initial map has
nontrivial minimal kernel, he showed that the kernel would stay minimal for small time
in the homotopy class of the initial map. This minimality implies a uniform bound for
the resolvents and the Lipschitz continuity of the normalized Dirac kernel along the
flow. This Lipschitz continuity makes the Banach fixed point theorem available. If one
follows this approach, the first issue is how to deal with the kernel jumping problem.
Observe that if the Dirac operators converge at the jumping time, the symmetry of the
spectrum of Dirac operator guarantees that the limiting Dirac operator has odd dimen-
sional kernel. Therefore, it is natural to try to extend Wittmann’s short time existence
to the odd dimensional case. However, the eigenvalues in this case may split at time
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t¼ 0. Then the projector may not be continuous even if the Dirac operator is smooth
with respect to time along the flow (see [13]), which means that the Lipschitz continuity
of the kernel is not available in general. To overcome this issue, we need the density
mentioned in the abstract, which gives us a piecewise smooth flow.
As for the convergence, it is sufficient to control the energy of the spinor field

because the energy of the map decreases along the flow. To do so, one can impose a
restriction on the energy of the initial map as in [14] and get the existence of Dirac-har-
monic maps when the initial map has small energy. Alternatively, we use another type
flow, that is, the heat flow for a-Dirac-harmonic maps (also called a-Dirac-harmonic
map flow in the literatures). Our motivation comes from the successful application of
this flow to the Dirichlet problem [15]. Different from there, we cannot uniquely solve
the constraint equation. Moreover, our equations of the flow are different. We never
write the constraint equation in the Euclidean space R

q: Instead, we just solve it in the
target manifold N. Last, our flow is not unique due to the absent of a boundary.
Instead, only a weak uniqueness is available. Consequently, we need prove the fact that
the flow takes value in the target manifold N in a different way. Eventually, we shall
obtain the following results on the general existence of Dirac-harmonic maps.

Theorem 1.2. Let M be a closed spin surface and (N, h) a real analytic closed manifold.
Suppose there exists a map u0 2 C2þlðM,NÞ for some l 2 ð0, 1Þ such that
dimHker =Du0 ¼ 1. Then there exists a nontrivial smooth Dirac-harmonic map ðU,WÞ sat-
isfying EðUÞ � Eðu0Þ and jjWjjL2 ¼ 1:

Furthermore, if (N, h) does not admit any nontrivial harmonic sphere, then the map
part U is in the same homotopy class as u0 and ðU,WÞ is coupled if the energy of the
map is strictly bigger than the energy minimizer in the homotopy class ½u0�:
Remark 1.3. Our result can at least keep the possibility of the existence of coupled solu-
tions while other solutions produced in the literatures are all uncoupled. The analyticity
of the target manifold is a sufficient condition which is used to get the density men-
tioned in the abstract. In fact, it is easy to see from the proof that we only need the
density of the following set

Y :¼ fe 2 ðmai
0 , þ1Þj there exists at least one map u such that

dimHker =Du ¼ 1 and EaiðuÞ ¼ eg (1.1)

at the ai-energy minimizer mai
0 in the homotopy class ½u0� for a sequence ai & 1

as i ! 1:

In [16], Wittmann discussed the density of those maps along which all the Dirac
operators have minimal kernel. In particular, we have the following corollary.

Corollary 1.4. Let M be a closed spin surface and (N, h) a real analytic closed manifold.
We also assume that

1. M is connected, oriented and of positive genus;
2. N is connected. If N is even-dimensional, then we assume that it is non-orientable.

Then there exists a nontrivial smooth Dirac-harmonic map.
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The rest of paper is organized as follows: In Section 2, we recall some definitions,
notations and lemmas about Dirac-harmonic maps and the kernel of Dirac operator. In
Section 3, under the minimality assumption on the kernel of the Dirac operator along
the initial map, we prove the short time existence, weak uniqueness and regularity of
the heat flow for a-Dirac-harmonic maps. In Section 4, we prove the existence of
a-Dirac-harmonic maps and Theorem 1.2. In the Appendix, we solve the constraint
equation and prove Lipschitz continuity of the solution with respect to the map.

2. Preliminaries

Let (M, g) be a compact surface with a fixed spin structure. On the spinor bundle RM,
we denote the Hermitian inner product by h�, �iRM: For any X 2 CðTMÞ and n 2
CðRMÞ, the Clifford multiplication satisfies the following skew-adjointness:

hX � n, giRM ¼ �hn,X � giRM: (2.1)

Let r be the Levi-Civita connection on (M, g). There is a connection (also denoted
by r) on RM compatible with h�, �iRM: Choosing a local orthonormal basis febgb¼1, 2 on
M, the usual Dirac operator is defined as =@ :¼ eb � rb, where b ¼ 1, 2: Here and in the
sequel, we use the Einstein summation convention. One can find more about spin
geometry in [17].
Let / be a smooth map from M to another compact Riemannian manifold (N, h) of
dimension n � 2: Let /�TN be the pull-back bundle of TN by / and consider the
twisted bundle RM � /�TN: On this bundle there is a metric h�, �iRM�/�TN induced
from the metric on RM and /�TN: Also, we have a connection ~r on this twisted bun-
dle naturally induced from those on RM and /�TN: In local coordinates fyigi¼1, :::, n,
the section w of RM � /�TN is written as

w ¼ wi � @yið/Þ,
where each wi is a usual spinor on M. We also have the following local expression of ~r

~rw ¼ rwi � @yið/Þ þ Ci
jkð/Þr/jwk � @yið/Þ,

where Ci
jk are the Christoffel symbols of the Levi-Civita connection of N. The Dirac

operator along the map / is defined as

=D :¼ ea � ~reaw ¼ =@ wi � @yið/Þ þ Ci
jkð/Þrea/

jðea � wkÞ � @yið/Þ, (2.2)

which is self-adjoint [11]. Sometimes, we use =D/ to distinguish the Dirac operators
defined on different maps. In [2], the authors introduced the functional

Lð/,wÞ :¼ 1
2

ð
M
ðjd/j2 þ hw, =DwiRM�/�TNÞ

¼ 1
2

ð
M
hijð/Þgab @/

i

@xa
@/j

@xb
þ hijð/Þhwi

, =DwjiRM:
(2.3)

They computed the Euler-Lagrange equations of L:

smð/Þ � 1
2
Rm
lijhwi

,r/l � wjiRM ¼ 0, (2.4)
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=Dwi ¼ =@wi þ Ci
jkð/Þrea/

jðea � wkÞ ¼ 0, (2.5)

where smð/Þ is the m-th component of the tension field [11] of the map / with respect
to the coordinates on N, r/l � wj denotes the Clifford multiplication of the vector field
r/l with the spinor wj, and Rm

lij stands for the component of the Riemann curvature
tensor of the target manifold N. Denote

Rð/,wÞ :¼ 1
2
Rm
lijhwi

,r/l � wjiRM@ym :

We can write (2.4) and (2.5) in the following global form:

sð/Þ ¼ Rð/,wÞ,
=Dw ¼ 0,

�
(2.6)

and call the solutions ð/,wÞ Dirac-harmonic maps from M to N.
With the aim to get a general existence scheme for Dirac-harmonic maps, the follow-

ing heat flow for Dirac-harmonic maps was introduced in [7]:

@tu ¼ sðuÞ � Rðu,wÞ, on ð0,TÞ 	M,
=Duw ¼ 0, on 0,T½ � 	M:

�
(2.7)

When M has boundary, the short time existence and uniqueness of (2.8)–(2.9) was also
shown in [7]. Furthermore, the existence of a global weak solution to this flow in
dimension two under some boundary-initial constraint was obtained in [14]. In [15], to
remove the restriction on the initial maps, the authors refined an estimate about the
spinor in [7] as follows:

Lemma 2.1. [15] Let M be a compact spin Riemann surface with boundary @M, N be a
compact Riemann manifold. Let u 2 W1, 2aðM,NÞ for some a > 1 and w 2
W1, pðM,RM � u�TNÞ for 1 < p < 2, then there exists a positive constant C ¼
Cðp,M,N, jjrujjL2aÞ such that

jjwjjW1, pðMÞ � Cðjj =DwjjLpðMÞ þ jjBwjjW1�1=p, pð@MÞÞ: (2.8)

Motivated by this lemma, they considered the a-Dirac-harmonic flow and got the exist-
ence of Dirac-harmonic maps. For a closed manifold M, the situation is much more
complicated because the kernel of the Dirac operator is a linear space. If the Dirac oper-
ator along the initial map has one dimensional kernel, Wittmann proved the short time
existence on M whose dimension is m 
 0, 1, 2, 4ðmod 8Þ:
By [18], we can isometrically embed N into R

q: Then (2.6)–(2.7) is equivalent to fol-
lowing system:

Dgu ¼ IIðdu, duÞ þ ReðPðSðduðebÞ, eb � wÞ;wÞÞ,
=@w ¼ SðduðebÞ, eb � wÞ,

�
(2.9)

where II is the second fundamental form of N in R
q, and

SðduðebÞ, eb � wÞ :¼ ðruA � wBÞ � IIð@zA , @zBÞ, (2.10)

ReðPðSðduðebÞ, eb � wÞ;wÞÞ :¼ PðSð@zC , @zBÞ; @zAÞReðhwA, duC � wBiÞ: (2.11)
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Here Pðn; �Þ denotes the shape operator, defined by hPðn;XÞ,Yi ¼ hAðX,YÞ, ni for
X,Y 2 CðTNÞ and Re(z) denotes the real part of z 2 C: Together with the nearest point
projection:

p : Nd ! N, (2.12)

where Nd :¼ fz 2 R
qjdðz,NÞ � dg, we can rewrite the evolution equation (2.8) as an

equation in R
q:

Lemma 2.2. [6, 7] A tuple ðu,wÞ, where u : ½0,T� 	M ! N and w 2 CðRM � u�TNÞ, is
a solution of (2.8) if and only if

@tu
A � DuA ¼ �pABCðuÞhruB,ruCi � pABðuÞpCBDðuÞpCEFðwD,ruE � wFÞ (2.13)

on ð0,TÞ 	M, for A ¼ 1, :::, q: Here we denote the A-th component function of u :
½0,T� 	M ! N � R

q by uA : M ! R, write pABðzÞ for the B-th partial derivative of the
A-th component function of p : Rq ! R

q and the global sections wA 2 CðRMÞ are
defined by w ¼ wA � ð@A � uÞ, where ð@AÞA¼1, :::, q is the standard basis of TRq:

Moreover, r and h�, �i denote the gradient and the Riemannian metric on M,
respectively.
For future reference, we define

FA1 ðuÞ :¼ �pABCðuÞhruB,ruCi, (2.14)

FA2 ðu,wÞ :¼ �pABðuÞpCBDðuÞpCEFðwD,ruE � wFÞ: (2.15)

Note that for u 2 C1ðM,NÞ and w 2 CðRM � u�TNÞ we have

IIðdupðeaÞ, dupðeaÞÞÞ ¼ �FA1 ðuÞjp@AjuðpÞ, (2.16)

Rð/,wÞjp ¼ �FA2 ðu,wÞjp@AjuðpÞ (2.17)

for all p 2 M, where feag is an orthonormal basis of TpM.
Next, for every T> 0, we denote by XT the Banach space of bounded maps:

XT :¼ Bð 0,T½ �;C1ðM,RqÞÞ, (2.18)

jjujjXT
:¼ max

A¼1, :::, q
sup

t2 0,T½ �
ðjjuAðt, �ÞjjC0ðMÞ þ jjruAðt, �ÞjjC0ðMÞÞ: (2.19)

For any map v 2 XT , the closed ball with center v and radius R in XT is defined by

BT
RðvÞ :¼ fu 2 XT jjju� vjj � Rg: (2.20)

We denote by Put , vs ¼ Put , vsðxÞ the parallel transport of N along the unique shortest geo-
desic from pðuðx, tÞÞ to pðvðx, sÞÞ: We also denote by Put , vs the inducing mappings

ðp � utÞ�TN ! ðp � vsÞ�TN, (2.21)

RM � ðp � utÞ�TN ! RM � ðp � vsÞ�TN (2.22)

and

CC1ðRM � ðp � utÞ�TNÞ ! CC1ðRM � ðp � vsÞ�TNÞ: (2.23)

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 447



Now, let us define

KðutÞ ¼ supf~Kjspecð =Dp�utÞ n f0g � R n ð�~KðutÞ, ~KðutÞÞg (2.24)

and ctðxÞ : ½0, 2p� ! C as

ctðxÞ :¼
KðutÞ
2

eix: (2.25)

In general, we also denote by c the curve cðxÞ : ½0, 2p� ! C as

cðxÞ :¼ K
2
eix (2.26)

for some constant K to be determined. Then the orthogonal projection onto
kerð =Dp�utÞ, which is the mapping

CL2ðRM � ðp � utÞ�TNÞ ! CL2ðRM � ðp � utÞ�TNÞ, (2.27)

can be written by the resolvent by

s 7! � 1
2pi

ð
ct

Rðk, =Dp�utÞsdk, (2.28)

where Rðk, =Dp�utÞ : CL2 ! CL2 is the resolvent of =Dp�ut : CW1, 2 ! CL2 :

Finally, the following density lemma is very useful for us to extend the flow beyond
the singular time.

Lemma 2.3. [16] Let M be a closed spin surface and (N, h) a real analytic closed mani-
fold. Suppose there exists a map u0 2 C2þlðM,NÞ for some l 2 ð0, 1Þ such that
dimHker =Du0 ¼ 1. Then the kernel of =Du is minimal for generic u 2 ½u0�, i.e., for a
C1-dense and C1-open subset of ½u0�:

3. The heat flow for a-Dirac-harmonic maps

In this section, we will prove the short-time existence of the heat flow for a-Dirac-har-
monic maps. Since we are working on a closed surface M, we cannot uniquely solve the
Dirac equation in the following system:

@tu ¼ 1

ð1þ jruj2Þa�1 ðsaðuÞ �
1
a
Rðu,wÞÞ,

=Duw ¼ 0:

8<
: (3.1)

The short time existence and its extension are the obstacles. This system (if it con-
verges) leads to a a-Dirac-harmonic map which is a solution of the system

saðuÞ :¼ sðð1þ jduj2ÞaÞ ¼ 1
a
Rðu,wÞ

=Duw ¼ 0:
(3.2)

and equivalently a critical point of functional

Laðu,wÞ ¼ 1
2

ð
M
ð1þ jduj2Þa þ 1

2

ð
M
hw, =DuwiRM�/�TN , (3.3)

where s is the tension field.
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3.1. Short time existence

As in Section 2, we now embed N into R
q: Let u : M ! N with u ¼ ðuAÞ and denote

the spinor along the map u by w ¼ wA � ð@A � uÞ, where wA are spinors over M. For
any smooth map g 2 C1

0 ðM,RqÞ and any smooth spinor field n 2 C1
0 ðRM � R

qÞ, we
consider the variation

ut ¼ pðuþ tgÞ,wA
t ¼ pABðutÞðwB þ tnBÞ, (3.4)

where p is the nearest point projection as in Section 2. Then we have

Lemma 3.1. The Euler-Lagrange equations for La are

DuA ¼ �2ða� 1Þr
2
bcu

BrbuBrcuA

1þ jruj2 þ pABCðuÞhruB,ruCi

þ pABðuÞpCBDðuÞpCEFðuÞhwD,ruE � wFi
að1þ jruj2Þa�1

(3.5)

and

=@wA ¼ pABCðuÞruB � wC: (3.6)

Proof. Suppose ðu,wÞ is a critical point of La, then for the variation (3.5) we have

dLaðut,wtÞ
dt

����
t¼0

¼ a
Ð
Mð1þ jruj2Þa�1hruA, pABrgB þ pABCruCgBi

þ Ð
Mh =@wA, pABn

B þ pABCp
C
Dw

BgDi,
¼: I þ II:

(3.7)

Then the lemma directly follows from the following computations.

I ¼ a
ð
M
ð1þ jruj2Þa�1hruA,rgAi þ a

ð
M
ð1þ jruj2Þa�1pABChruB,ruCigA

¼ �a
ð
M
ð1þ jruj2Þa�1DuAgA � aða� 1Þ

ð
M
ð1þ jruj2Þa�2hrjruj2,ruAigA

¼ �a
ð
M
ð1þ jruj2Þa�1ðDuA þ 2ða� 1Þr

2
bcu

BrbuBrcuA

1þ jruj2 � pABCðuÞhruB,ruCiÞgA:

II ¼
ð
M
h =@wA � pABCruB � wC, nAi þ

ð
M
pABp

C
BDhwD, =@wCigA

¼
ð
M
h =@wA � pABCruB � wC, nAi þ

ð
M
pABp

C
BDhwD, =@wC � pCEFruE � wFigA

þ
ð
M
pABp

C
BDhwD, pCEFruE � wFigA:

w

Lemma 3.1 implies that (3.1)–(3.2) is equivalent to

@tuA ¼ DuA þ 2ða� 1Þr
2
bcu

BrbuBrcuA

1þ jruj2 � pABCðuÞhruB,ruCi

� pABðuÞpCBDðuÞpCEFðuÞhwD,ruE � wFi
að1þ jruj2Þa�1

=Dp�uw ¼ 0,

8>>>>>><
>>>>>>:

(3.8)

Now, let us state the main result of this subsection.
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Theorem 3.2. Let M be a closed surface, and N a closed n-dimensional Riemannian
manifold. Let u0 2 C2þlðM,NÞ for some 0 < l < 1 with dimHkerð =Du0Þ ¼ 1 and w0 2
kerð =Du0Þ with jjw0jjL2 ¼ 1. Then there exists �1 ¼ �1ðM,NÞ > 0 such that, for any
a 2 ð1, 1þ �1Þ, the problem (3.1)–(3.2) has a solution ðu,wÞ with

jjwtjjL2 ¼ 1, 8t 2 0,T½ �,
ujt¼0 ¼ u0,wjt¼0 ¼ w0:

�
(3.9)

satisfying

u 2 C2þl, 1þl=2ðM 	 0,T½ �,NÞ (3.10)

and

w 2 Cl,l=2ðM 	 0,T½ �,RM � u�TNÞ \ L1ð 0,T½ �;C1þlðMÞÞ: (3.11)

for some T> 0.

Proof.
Step 1: Solving (3.9)–(3.10) in R

q:

In this step, we want to find a solution u : M 	 ½0,T� ! R
q and wt : M ! RM �

ðp � utÞ�TN of (3.9)–(3.10) with the initial values (3.11). We first give a solution to
(3.10) in a neighborhood of u0. For any T> 0, we can choose �, d and R as in the
Appendix such that

uðx, tÞ 2 Nd (3.12)

and

dNððp � uÞðx, tÞ, ðp � vÞðx, sÞÞ < � <
1
2
injðNÞ (3.13)

for all u, v 2 BT
R :¼ BT

Rð�u0Þ ¼ fu 2 XT jjju� �u0jjXT
� Rg \ fujt¼0 ¼ u0g, x 2 M and t, s 2

½0,T�, where �u0ðx, tÞ ¼ u0ðxÞ for any t 2 ½0,T�: If R is small enough, then by Lemma
5.5, we have

dimKkerð =Dp�utÞ ¼ 1 (3.14)

and there exists K ¼ 1
2Kðu0Þ such that

fspecð =Dp�utÞ \ �K,K½ �g ¼ 1 (3.15)

for any u 2 BT
R and t 2 ½0,T�, where Kðu0Þ is a constant such that specð =Du0Þ n f0g �

R n ½�Kðu0Þ,Kðu0Þ�: Furthermore, for w0 2 kerð =Du0Þ with jjw0jjL2 ¼ 1, Lemma 5.7
implies that ffiffiffi

3
4

r
� jj~wut

1 jjL2 � 1 (3.16)

for any u 2 BT
R1

and t 2 ½0,T�, where ~w
ut ¼ Pu0, utw ¼ ~w

ut
1 þ ~w

ut
2 with respect to the

decomposition CL2 ¼ kerð =Dp�utÞ�ðkerð =Dp�utÞÞ? and R1 ¼ R1ðR, �, u0Þ > 0:
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Now, for any T> 0 and j > 0, we define

VT
j :¼ fv 2 C1þl, 1þl

2 ðM 	 0,T½ �Þjjjvjj
C1þl, 1þl

2
� j, vjM	f0g ¼ 0g:

Then, there exists jR1 :¼ jðR1Þ > 0 such that

u0 þ v 2 BT
R1
, 8v 2 VT

j , 8j � jR1 : (3.17)

Now, we denote j0 :¼ jR1 and VT :¼ VT
j0 :

For every v 2 VT , u0 þ v 2 BT
R1
, Lemma 5.8 gives us a solution wðvþ u0Þ to the constraint

equation. Since vþ u0 2 C1þlðMÞ, by Lp regularity [6] and Schauder estimate [7], we have

jjwðvþ u0ÞjjC1þlðMÞ � Cðl,M,N, j0, jju0jjC1þlðMÞÞ: (3.18)

For any 0 < t, s < T, we also have

=@ðwðvþ u0ÞðtÞ � wðvþ u0ÞðsÞÞ
¼ �Cðp � ðvþ u0ÞðtÞÞrðp � ðvþ u0ÞðtÞÞwðvþ u0ÞðtÞ

þ Cðp � ðvþ u0ÞðsÞÞrðp � ðvþ u0ÞðsÞÞwðvþ u0ÞðsÞ
¼ �Cðp � ðvþ u0ÞðtÞÞrðp � ðvþ u0ÞðtÞÞðwvðtÞ � wðvþ u0ÞðsÞÞ

� Cðp � ðvþ u0ÞðtÞÞðrðp � ðvþ u0ÞðtÞÞ � rðp � ðvþ u0ÞðsÞÞÞwðvþ u0ÞðtÞ
� ðCðp � ðvþ u0ÞðtÞÞ � Cðp � ðvþ u0ÞðsÞÞÞrðp � ðvþ u0ÞðsÞÞwðvþ u0ÞðsÞ,

that is,

=Dp�vðtÞðwðvþ u0ÞðtÞ � wðvþ u0ÞðsÞÞ
¼ �Cðp � ðvþ u0ÞðtÞÞðrðp � ðvþ u0ÞðtÞÞ � rðp � ðvþ u0ÞðsÞÞÞwðvþ u0ÞðtÞ

� ðCðp � ðvþ u0ÞðtÞÞ � Cðp � ðvþ u0ÞðsÞÞÞrðp � ðvþ u0ÞðsÞÞwðvþ u0ÞðsÞ,
where denotes a multi-linear map with smooth coefficients. For any k 2 ð0, 1Þ, by the
Sobolev embedding, Lp-regularity in [6] and Lemma 5.8, we have

jjwðvþ u0ÞðtÞ � wðvþ u0ÞðsÞjjCkðMÞ
� Cðk,M,N, j0, jju0jjC1ðMÞÞðjjvðtÞ � vðsÞjjL1ðMÞ þ jjdvðtÞ � dvðsjjL1ÞÞ
� Cðk,M,N, j0, jju0jjC1ðMÞÞjt � sjl=2:

(3.19)

Therefore,

jjwðvþ u0ÞjjCl, l=2ðMÞ � Cðl,M,N, j0, jju0jjC1ðMÞÞ: (3.20)

Now, when a� 1 is sufficiently small, for the ðvþ u0,wðvþ u0ÞÞ above, the standard
theory of linear parabolic systems (see [19]) implies that there exists a unique solution
v1 2 C2þl, 1þl=2ðM 	 ½0,T�,RqÞ to the following Dirichlet problem:

@twA ¼ DgwA þ 2ða� 1Þr
2
bcw

Brbðvþ u0ÞBrcðvþ u0ÞA
1þ jrðvþ u0Þj2

þ pABCðvþ u0Þhrðvþ u0ÞB,rðvþ u0ÞCi
þ ðpABpCBDpCEFÞðvþ u0ÞhwDðvþ u0Þ,rðvþ u0ÞE � wFðvþ u0Þi

að1þ jrðvþ u0Þj2Þa�1 ,

þ DguA0 þ 2ða� 1Þr
2
bcu

B
0rbðvþ u0ÞBrcðvþ u0ÞA
1þ jrðvþ u0Þj2

,

wð�, 0Þ ¼ 0:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(3.21)
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satisfying

jjv1jjC2þl, 1þl=2ðM	 0,T½ �Þ � Cðl,M,NÞðjjv1jjC0ðM	 0,T½ �Þ þ jju0jjC2þ�ðMÞ þ j0Þ: (3.22)

Since v1ð�, 0Þ ¼ 0, we have

jjv1jjC0ðM	 0,T½ �Þ � Cðl,M,NÞTðjjv1jjC0ðM	 0,T½ �Þ þ jju0jjC2þ�ðMÞ þ j0Þ: (3.23)

By taking T> 0 small enough, we get

jjv1jjC0ðM	 0,T½ �Þ � Cðl,M,NÞTðjju0jjC2þ�ðMÞ þ j0Þ: (3.24)

Then the interpolation inequality in [20] implies that v1 2 VT for T> 0 sufficiently
small. For such v1, we have wðv1 þ u0Þ satisfying (3.20) and (3.22). Replacing ðv,wðvþ
u0ÞÞ in (3.23)–(3.24) by ðv1,wðv1 þ u0ÞÞ, then we get v2 2 VT : Iterating this procedure,
we get a solution vkþ1 of (3.23)–(3.24) with ðv,wðvþ u0ÞÞ replacing by ðvk,wðvk þ u0ÞÞ,
which satisfies

jjwðvkþ1 þ u0ÞjjCl, l=2ðMÞ � Cðl,M,N, j0, jju0jjC1ðMÞÞ: (3.25)

and

jjvkþ1jjC2þl, 1þl=2ðM	 0,T½ �Þ � Cðl,M,NÞðjju0jjC2þ�ðMÞ þ j0Þ: (3.26)

By passing to a subsequence, we know that vk converges to some u in C2, 1ðM 	 ½0,T�Þ
and wvkþu0 converges to some w in C0ðM 	 ½0,T�Þ: Then it is easy to see that ðu,wÞ is a
solution of (3.9)–(3.10) with uð�, 0Þ ¼ u0 and wð�, 0Þ ¼ w0:

Step 2: u(x, t) takes value in N for any ðx, tÞ 2 M 	 ½0,T�:

Suppose u 2 C2, 1ðM 	 ½0,T�,RqÞ and w 2 Cl,l=2ðM 	 ½0,T�,RM � ðp � uÞ�TNÞ \
L1ð½0,T�;C1þlðMÞÞ satisfy (3.9)–(3.10). In the following, we write jj � jj and h�, �i for the
Euclidean norm and scalar product, respectively. Similarly, we write jj � jjg and h�, �ig for
the norm and inner product of (M, g), respectively. We define

q : Rq ! R
q (3.27)

by qðzÞ ¼ z � pðzÞ and
u : M 	 0,T½ � ! R (3.28)

by uðx, tÞ ¼ jjqðuðx, tÞÞjj2 ¼ Pq
A¼1 jqAðuðx, tÞÞj2: A direct computation yields

@

@t
� D

� �
uðx, tÞ ¼ �2

Xq
A¼1

jjrðqA � uÞðx, tÞjj2g
þ 2hq � u, � pABðuÞFB

1 ðuÞi
þ 2

að1þ jruj2Þa�1 hq � u, qABðuÞFB
2 ðu,wÞi

þ 4ða� 1Þ
1þ jruj2 hq � u,r2

bcu
Crbu

Crcu
BqABðuÞi,

(3.29)

where FA
1 and FA

2 are defined in (2.17) and (2.18), respectively.
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Since q � u 2 T?
p�uN and ðdpÞu : Rq ! Tp�uN, we have

hq � u, � pABðuÞFB
1 i ¼ hq � u, qABðuÞFB2 i ¼ 0: (3.30)

Together with

4ða� 1Þ
1þ jruj2 hq � u,r2

bcu
Crbu

Crcu
BqABðuÞi

� 4ða� 1ÞjjujjC2ðMÞjjq � ujjjjrðq � uÞjj
� 2ða� 1Þðjjujj2C2ðMÞuþ jjrðq � uÞjj2Þ,

(3.31)

we get @
@t � D

� �
uðx, tÞ � Cu, where C ¼ CðjjujjC2, 1ðM	½0,T�ÞÞ: Since uðx, tÞ � 0 and

uðx, 0Þ ¼ 0 for any ðx, tÞ 2 M 	 ½0,T�, we conclude u ¼ 0 on M 	 ½0,T�: We have
shown that uðx, tÞ 2 N for all ðx, tÞ 2 M 	 ½0,T�:
Finally, by using the �-regularity (see Lemma 3.7 below), we conclude that

u 2 C2þl, 1þl=2ðM 	 0,T½ �,NÞ (3.32)

and

w 2 Cl,l=2ðM 	 0,T½ �,RM � ðp � uÞ�TNÞ \ L1ð 0,T½ �;C1þlðMÞÞ: (3.33)

w

Since the equations for a-Dirac-harmonic maps are invariant under multiplying the spi-
nor by elements of H with unit norm, by uniqueness we always mean uniqueness up to
multiplication of the spinor by such elements. This kind of uniqueness for the Dirac-
harmonic map flow was proved by the Banach fixed point theorem in [6]. However, we
cannot apply the fixed point theorem to the a-Dirac-harmonic map flow. Therefore, it
is interesting to consider the uniqueness of the a-Dirac-harmonic map flow from closed
surfaces. By considering the evolution inequality of jju1 � u2jjC0ðMÞ, we can prove the
following uniqueness which is weaker than that in [6] because when the quaternions ha
are different, we can no longer bound the C0-norm of the difference of the maps.

Theorem 3.3. For any given T> 0, let ðu1,w1Þ and ðu2,w2Þ be two solutions to (3.1)-
with the constraint (3.11) and u1, u2 2 C2þl, 1þl=2ðM 	 ½0,T�,NÞ. Then there exists a time
T1 > 0, which depends on R and the C1þl, 1þl

2 norms of u1 and u2, such that u1, u2 2
BT1
R and

w1ðx, tÞ ¼ h1ðtÞwðuaðx, tÞÞ,w2ðx, tÞ ¼ h2ðtÞwðuaðx, tÞÞ (3.34)

for some h1ðtÞ, h1ðtÞ 2 H with unit length, where wðuðx, tÞÞ is defined by (5.36).
Furthermore, if h1ðtÞ ¼ h2ðtÞ on ½0,T2� for some T2 � T1, then ðu1,w1Þ 
 ðu2,w2Þ
on M 	 ½0,T2�:
Proof. By the assumptions, we have

jjuað�, tÞ � u0jjC0ðMÞ ! 0, jjruað�, tÞ � ru0jjC0ðMÞ ! 0 (3.35)

for a¼ 1, 2. Therefore, for small enough T1, u1, u2 2 BT2
R ð�u0Þ: Since dimHð =DuaÞ ¼ 1 for

a¼ 1, 2, there exist haðtÞ 2 H such that

waðx, tÞ ¼ wðuaðx, tÞÞhaðtÞ (3.36)
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for all t 2 ½0, ~T �, where wðuðx, tÞÞ is defined by (5.36). Moreover, haðtÞ is of unit length
since jjwajjL2ðMÞ ¼ jjwðuaÞjjL2 ¼ 1:
Now, let us consider the uniqueness of the flow. First, by subtracting the equations of

u1 and u2 and multiplying by u1 � u2, we have

1
2
@tju1 � u2j2 � 1

2
Dju1 � u2j2 þ jrðu1 � u2Þj2

¼ 2ða� 1Þ
	r2

bcu
i
1rbui1rcu1

1þ jru1j2
�r2

bcu
j
2rbu

j
2rcu2

1þ jru2j2
, u1 � u2




� hIIðru1,ru1Þ � IIðru2,ru2Þ, u1 � u2i
� hRðw1,ru1 � w1Þ � Rðw2,ru2 � w2Þ, u1 � u2i:

(3.37)

In the sequel, we will estimate the terms on the right-hand side of the inequality
(3.40).

2ða� 1Þ
	r2

bcu
i
1rbui1rcu1

1þ jru1j2
�r2

bcu
j
2rbu

j
2rcu2

1þ jru2j2
, u1 � u2




¼ 2ða� 1Þ
	r2

bcðui1 � ui2Þrbui1rcu1

1þ jru1j2
, u1 � u2




þ 2ða� 1Þ
	
r2

bcu
i
2rbui1rcu1

1

1þ jru1j2
� 1

1þ jru2j2
� �

, u1 � u2




þ 2ða� 1Þ
	r2

bcu
i
2rcu1

1þ jru2j2
ðrbu

i
1 �rbu

i
2Þ, u1 � u2




þ 2ða� 1Þ
	r2

bcu
i
2rbui2

1þ jru2j2
ðrcu1 �rcu2Þ, u1 � u2




� 2ða� 1Þ
	r2

bcðui1 � ui2Þrbui1rcu1

1þ jru1j2
, u1 � u2




þ Cða� 1Þjrðu1 � u2Þjju1 � u2j,

(3.38)

where we used u1, u2 2 C2þl, 1þl=2ðM 	 ½0,T�,NÞ: Similar, by the triangle inequality, we
get

jhIIðru1,ru1Þ � IIðru2,ru2Þ, u1 � u2ij
� Cju1 � u2j2 þ Cjrðu1 � u2Þjju1 � u2j (3.39)

and

jhRðw1,ru1 � w1Þ � Rðw2,ru2 � w2Þ, u1 � u2ij
� Cju1 � u2j2 þ Cjrðu1 � u2Þjju1 � u2j þ Cjw1 � w2jju1 � u2j: (3.40)

Based on these estimates, (3.40) becomes

1
2
@tju1 � u2j2 � 1

2
Dju1 � u2j2

� 2ða� 1Þ
	r2

bcðui1 � ui2Þrbui1rcu1

1þ jru1j2
, u1 � u2



� jrðu1 � u2Þj2

þ Cju1 � u2j2 þ Cjrðu1 � u2Þjju1 � u2j þ Cjw1 � w2jju1 � u2j:

(3.41)

Next, we want to bound those terms in the right-hand side of (3.44) by ju1 � u2j2
and jru1 �ru2j2: Since u1, u2 2 BT2

R ð�u0Þ, there is a unique geodesic between u1ðx, tÞ
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and u2ðx, tÞ for any ðx, tÞ 2 M 	 ½0,T2�: Now, for any ðx, tÞ 2 P :¼ fx 2 M 	
½0,T2�ju1ðx, tÞ 6¼ u2ðx, tÞg, we define

usðx, tÞ :¼ exp u1ðx, tÞðsvðx, tÞÞ ¼ exp u1ðxÞðsVðx, tÞ=jVðx, tÞjÞ (3.42)

where s 2 ½0, jVðx, tÞj�,Vðx, tÞ :¼ exp �1
u1ðx, tÞu2ðx, tÞ and jVðx, tÞj denotes the norm of

V(x, t) in the tangent space Tu1ðx, tÞN: Then we can estimate r2ðu1 � u2Þ as follows:
r2

bcðu2 � u1Þðx, tÞ ¼ r2
bcujVðx, tÞjðx, tÞ � r2

bcu0ðx, tÞ
¼

ðjVðx, tÞj
0

d
ds

r2
bcusðx, tÞ

� sup
0, jVðx, tÞj½ �	P

���� ddsr2us

����dNðu1ðx, tÞ, u2ðx, tÞÞ
� Cju1ðx, tÞ � u2ðx, tÞj,

(3.43)

where we used the Lemma 5.1 in the Appendix. Hence, we can rewrite (3.44) as

1
2
@tju1 � u2j2 � 1

2
Dju1 � u2j2

� 2ða� 1Þ
	r2

bcðui1 � ui2Þrbui1rcu1

1þ jru1j2
, u1 � u2



� jrðu1 � u2Þj2

þ Cju1 � u2j2 þ Cjrðu1 � u2Þjju1 � u2j þ Cjw1 � w2jju1 � u2j
� Cju1 � u2j2 þ Cjw1 � w2jju1 � u2j,

(3.44)

where we used Young’s inequality. It remains to bound jw1 � w2j by ju1 � u2j: To that
end, we use the Lemma 5.8 and (3.39) as follows:

jw1 � w2j ¼ jh1wðu1Þ � h2w2ðu2Þj
¼ jwðu1Þ � wðu2Þj
� jju1 � u2jjC0ðMÞ,

(3.45)

where we used h1 ¼ h2 in the second equality.
Last, it is easy to see ðu1w1Þ 
 ðu2,w2Þ by considering the following evolution

inequality

@tjju1 � u2jj2C0ðMÞ � Cjju1 � u2jj2C0ðMÞ (3.46)

with u1ð�, 0Þ ¼ u2ð�, 0Þ: w

3.2. Regularity of the flow

In this subsection, we will give some estimates on the regularity of the flow. Let us start
with the following estimate of the energy of the map part.

Lemma 3.4. Suppose ðu,wÞ is a solution of (3.1)–(3.2) with the initial values (3.11). Then
there holds

EaðuðtÞÞ þ 2a
ðt
0

ð
M
ð1þ jruj2Þa�1j@tuj2 ¼ Eaðu0Þ, (3.47)

where EaðuÞ :¼ 1
2

Ð
Mð1þ jruj2Þa. Moreover, EaðuðtÞÞ is absolutely continuous on ½0,T�

and non-increasing.
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Proof. N ote that (3.1) can be written as:

ð1þ jruj2Þa�1@tu ¼ divðð1þ jruj2Þa�1ruÞ � ð1þ jrguj2Þa�1Aðdu, duÞ
� 1
a
ReðPðAðduðebÞ, eb � wÞ;wÞÞ:

(3.48)

Multiplying the inequality above by @tu and using

0 ¼
ðt
0

ð
M

	
w,

d
dt

=Dw




¼
ðt
0

ð
M
hw, =Dð@twÞ þ ec � wi � Rm

ijk@tu
jdukðecÞÞ@ymi

¼
ðt
0

ð
M
Rmijkhwm,ruk � wii@tuj

¼
ðt
0

ð
M

hSð@ym , @yjÞ, Sð@yi , @ykÞiRq � hSð@ym , @ykÞ, Sð@yi , @yjÞiRq

� �
hwm,ruk � wii@tuj

¼ 2
ðt
0

ð
M
hSð@ym , @yjÞ, Sð@yi , @ykÞiRqReðhwm,ruk � wiiÞ@tuj

¼ 2
ðt
0

ð
M
hReðPðAðduðebÞ, eb � wÞ;wÞÞ, @tuji,

(3.49)

we get ðt
0

ð
M
ð1þ jruj2Þa�1j@tuj2 ¼

ðt
0

ð
M
hdivðð1þ jruj2Þa�1ruÞ, @tui

¼ �
ðt
0

ð
M
hð1þ jrguj2Þa�1ru, @trui

¼ � 1
2a

ðt
0

d
dt

ð
M
ð1þ jruj2Þa,

(3.50)

which directly gives us the lemma. w

Consequently, we can also control the spinor part along the heat flow of the a-Dirac-
harmonic map.

Lemma 3.5. Suppose ðu,wÞ is a solution of (3.1)–(3.2) with the initial values (3.11). Then
for any p 2 ð1, 2Þ, there holds

jjwð�, tÞjjW1, pðMÞ � C, 8t 2 0,T½ �, (3.51)

where C ¼ Cðp,M,N,Eaðu0ÞÞ:

Proof. The lemma directly follows from Lemma 3.4 and the following lemma:

Lemma 3.6. Let M be a closed spin Riemann surface, N be a compact Riemann manifold.
Let u 2 W1, 2aðM,NÞ for some a > 1 and w 2 W1, pðM,RM � u�TNÞ for 1 < p < 2, then
there exists a positive constant C ¼ Cðp,M,N, jjrujjL2aÞ such that

jjwjjW1, pðMÞ � Cðjj =DwjjLpðMÞ þ jjwjjLpðMÞÞ: (3.52)
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This lemma follows from applying Lemma 2.1 to gw, where g is a cutoff function. w

To get the convergence of the flow, we also need the following �-regularity.

Lemma 3.7. Suppose ðu,wÞ is a solution of (3.1)–(3.2) with the initial values (3.11).
Given x0 ¼ ðx0, t0Þ 2 M 	 ð0,T�, denote

PRðx0Þ :¼ BRðx0Þ 	 t0 � R2, t0
� �

: (3.53)

Then there exist three constants �2 ¼ �2ðM,NÞ > 0, �3 ¼ �3ðM,N, u0Þ > 0 and C ¼
Cðl,R,M,N,Eaðu0ÞÞ > 0 such that if

1 < a < 1þ �2, and sup
t0�4R2, t0½ �

EðuðtÞ;B2Rðx0ÞÞ � �3, (3.54)

then ffiffiffi
R

p
jjwjjL1ðPRðx0ÞÞ þ RjjrujjL1ðPRðx0ÞÞ � C (3.55)

and for any 0 < b < 1,

sup
t0�R2

4 , t0½ �
jjwðtÞjjC1þlðBR=2ðx0ÞÞ þ jjrujjCb, b=2ðPR=2ðx0ÞÞ � CðbÞ: (3.56)

Moreover, if

sup
M

sup
t0�4R2, t0½ �

EðuðtÞ;B2Rðx0ÞÞ � �3, (3.57)

then

jjujjC2þl, 1þl=2 M	 t0�R2
8 , t0½ �ð Þ þ jjwjjCl, l=2 M	 t0�R2

8 , t0½ �ð Þ þ sup
t0�R2

8 , t0½ �
jjwðtÞjjC1þlðMÞ � C: (3.58)

Since M is closed, x0 has to be an interior point of M. Therefore, our Lemma is just a
special case of the Lemma 3.4 in [15]. So we omit the proof here.

4. Existence of a-Dirac-harmonic maps

In this section, we will prove Theorem 1.2 by the following theorem on the existence of
a-Dirac-harmonic maps for a > 1:

Theorem 4.1. Let M be a closed spin surface and (N, h) a real analytic closed manifold.
Suppose there exists a map u0 2 C2þlðM,NÞ for some l 2 ð0, 1Þ such that
dimHker =Du0 ¼ 1. Then for any a 2 ð1, 1þ �1Þ, there exists a nontrivial smooth a-Dirac-
harmonic map ðua,waÞ such that the map part ua stays in the same homotopy class as u0
and jjwajjL2 ¼ 1:

Proof of Theorem 4.1. By Theorem 2.3 in [21], all the following a-Dirac-harmonic maps
are smooth. Let us denote the energy minimizer by

ma
0 :¼ inffEaðuÞju 2 W1, 2aðM,NÞ \ u0½ �g, (4.1)

where ½u0� denotes the homotopy class of u0. If u0 is a minimizing a-harmonic map, it
follows from Lemma 3.4 that ðu0,w0Þ is an a-Dirac-harmonic map for any w0 2
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ker =Du0 : If Eaðu0Þ > ma
0, then Theorem 3.2 gives us a solution

u 2 C2þl, 1þl=2ðM 	 0,TÞ,NÞ½ (4.2)

and

w 2 Cl,l=2ðM 	 0,TÞ,RM � u�TNÞ \ \0<s<TL
1ð 0, s½ �;C1þlðMÞÞ:

�
(4.3)

to the problem (3.1)–(3.2) with the initial values (3.11).
By Lemma 3.4, we know ð

M
ð1þ jruj2Þa � Eaðu0Þ: (4.4)

Then it is easy to see that, for any 0 < � < �3, there exists a positive constant r0 ¼
r0ð�, a,Eaðu0ÞÞ such that for all ðx, tÞ 2 M 	 ½0,TÞ, there holdsð

Br0 ðxÞ
jruj2 � CEaðu0Þ1=ar1�

1
a

0 � �: (4.5)

Therefore, by Theorem 3.2 and Lemma 3.7, we know that the singular time can be char-
acterized as

Z ¼ fT 2 Rj lim
ti%T

dimHker =Duti > 1g (4.6)

and there exists a sequence ftig % T such that

ðuð�, tiÞ,wð�, tiÞÞ ! ðuð�,TÞ,wð�,TÞÞ in C2þlðMÞ 	 C1þl=2ðMÞ (4.7)

and

jjwð�,TÞjjL2 ¼ 1: (4.8)

If Z ¼ ;, then, by Theorem 3.2, we can extend the solution ðu,wÞ beyond the time T
by using ðuð�,TÞ,wð�,TÞÞ as new initial values. Thus, we have the global existence of the
flow. For the limit behavior as t ! 1, Lemma 3.4 implies that there exists a sequence
ftig ! 1 such that ð

M
j@tuj2ð�, tiÞ ! 0: (4.9)

Together with Lemma 3.7, there is a subsequence, still denoted by ftig, and an a-Dirac-
harmonic map ðua,waÞ such that ðuð�, tiÞ,wð�, tiÞÞ converges to ðua,waÞ in C2ðMÞ 	
C1ðMÞ and jjwajjL2 ¼ 1:
If Z 6¼ ; and T 2 Z, let us assume that Eaðuð�,TÞÞ > ma

0 and ðuð�,TÞ,wð�,TÞÞ is not
already an a-Dirac-harmonic map. We extend the flow as follows: By Lemma 2.3, there
is a map u1 2 C2þlðM,NÞ such that

ma
0 < Eaðu1Þ < Eaðuð�,TÞÞ (4.10)

and

dimHker =Du1 ¼ 1: (4.11)

Thus, picking any w1 2 ker =Du1 with jjw1jjL2 ¼ 1, we can restart the flow from the new
initial values ðu1,w1Þ: If there is no singular time along the flow started from ðu1,w1Þ,
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then we get an a-Dirac-harmonic map as in the case of Z ¼ ;: Otherwise, we use again
the procedure above to choose ðu2,w2Þ as initial values and restart the flow. This pro-
cedure will stop in finitely or infinitely many steps.
If infinitely many steps are required, then there exist infinitely many flow pieces

fuiðx, tÞgi¼1, :::,1 and fTigi¼1, :::,1 such that

EaðuiðtÞÞ þ 2a
ðt
0

ð
M
ð1þ jruj2Þa�1j@tuj2 ¼ EaðuiÞ, 8t 2 ð0,TiÞ, (4.12)

where uið�, 0Þ ¼ ui 2 C2þlðM,NÞ: If the Ti are bounded away from zero, then there is
ftig such that (4.9) hold for ti 2 ð0,TiÞ: Therefore, we have an a-Dirac-harmonic map
as before. If Ti ! 0, then we look at the limit of EaðuiÞ: If the limit is strictly bigger
than ma

0, we again choose another map satisfying (4.10) and (4.11) as a new starting
point. If the limit is exactly ma

0, then we choose ftig such that ti 2 ð0,TiÞ for each i.
By Lemma 3.7, uiðtiÞ converges in C2ðMÞ 	 C1ðMÞ to a minimizing a-harmonic map
ua: If =Dua has minimal kernel, then for any w 2 ker =Dua , ðua,wÞ is an a-Dirac-har-
monic map as we showed in the beginning of the proof. If =Dua has non-minimal ker-
nel, we use the decomposition of the twisted spinor bundle through the Z2-grading
G� id (see [3]). More precisely, for any smooth variation ðusÞs2ð��, �Þ of u0, we split
the bundle RM � u�s TN into RM � u�s TN ¼ RþM � u�s TN�R�M � u�s TN, which is
orthogonal in the complex sense and parallel. Consequently, for any w0 2 ker =Du0 , we
have

ð =Du0wþ
0 ,wþ

0 ÞL2 ¼ ð =Du0w�
0 ,w�

0 ÞL2 ¼ 0 (4.13)

for w0 ¼ wþ
0 þ w�

0 , where w6
0 ¼ w6 � u�0TN and w6 2 R6: Therefore, w6

s :¼
w6 � u�s TN are smooth variations of w6

0 , respectively, such that

d
dt

����
t¼0

ð =Dusw6
s ,w6

s ÞL2 ¼ 0: (4.14)

By taking u0 ¼ ua and w0 ¼ wa 2 ker =Dua , the first variation formula of La implies that
ðua,w6

a Þ are a-Dirac-harmonic maps (see Corollary 5.2 in [3]). In particular, we can
choose wa such that jjwþ

a jjL2 ¼ 1 or jjw�
a jj ¼ 1:

If it stops in finitely many steps, there exists a sequence ftig and some 0 < Tk � þ1
such that

lim
ti%T

ðuð�, tiÞ,wð�, tiÞÞ ! ðua,waÞ in C2ðMÞ 	 C1ðMÞ, (4.15)

where ðua,waÞ either is an a-Dirac-harmonic map or satisfies EaðuaÞ ¼ ma
0: And in the

latter case, ua is a minimizing a-harmonic map. Then we can again get a nontrivial
a-Dirac-harmonic map as above. w

By Theorem 4.1, for any a > 1 sufficiently close to 1, there exists an a-Dirac-har-
monic map ðua,waÞ with the properties

EaðuaÞ � Eaðu0Þ, jjwajjL2 ¼ 1 (4.16)

and

jjwajjW1, pðMÞ � Cðp,M,N,Eaðu0ÞÞ (4.17)
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for any 1 < p < 2: Then it is natural to consider the limit behavior when a decreases to
1. Since the blow-up analysis was already well studied in [15], we can directly prove
Theorem 1.2.

Proof of Theorem 1.2. By Theorem 4.1, we have a sequence of smooth a-Dirac-har-
monic maps ðuak ,wakÞ with (4.16) and (4.17), where ak & 1 as k ! 1: Then, by
Theorem 2.1 in [15], there is a constant �0 > 0 and a Dirac-harmonic map

ðU,WÞ 2 C1ðM,NÞ 	 C1ðM,RM � U�TNÞ
such that

ðuak ,wakÞ ! ðU,WÞ in C2
locðM n SÞ 	 C1

locðM n SÞ, (4.18)

where

S :¼
n
x 2 Mj liminf

ak!1
Eðuak ;BrðxÞÞ � �0

2
, 8r > 0

o
(4.19)

is a finite set.
Now, taking x0 2 S, there exists a sequence xak ! x0, kak ! 0 and a nontrivial Dirac-

harmonic map ð/, nÞ : R2 ! N such that

ðuakðxak þ kakxÞ, kak�1
ak

ffiffiffiffiffiffi
kak

p
wakðxak þ kakxÞÞ ! ð/, nÞ in C2

locðR2Þ, (4.20)

as a ! 1: Choose any p� > 4, by taking p ¼ 2p�
2þp� in (4.17), we get

jjwak jjLp� ðMÞ � Cðp�,M,N,Eakðu0ÞÞ (4.21)

and

jjnjjL4ðDRð0ÞÞ ¼ lim
ak!1

kak�1
ak

jjwak jjL4ðDkak R
ðxak ÞÞ � lim

ak!1
Cjjwak jjLp� ðMÞðkakRÞ2

1
4� 1

p�ð Þ ¼ 0: (4.22)

Thus, n¼ 0 and / can be extended to a nontrivial smooth harmonic sphere. Since
jjwajjL2 ¼ 1, the Sobolev embedding implies that jjWjjL2ðMÞ ¼ limak!1 jjwajjL2ðMÞ ¼ 1:
Therefore, ðU,WÞ is nontrivial. Furthermore, if (N, h) does not admit any nontrivial
harmonic sphere, then

ðuak ,wakÞ ! ðU,WÞ in C2ðMÞ 	 C1ðMÞ: (4.23)

Therefore, U is in the same homotopy class as u0. w

5. Appendix

In Section 3, we used some convenient properties of the elements in BT
Rð�u0Þ: Those

properties were already discussed in [6]. However, the function space used there is
BT
Rðv0Þ, where v0ðx, tÞ ¼

Ð
Mpðx, y, tÞu0ðyÞdVðyÞ, because the solution there is the unique

fixed point of the following integral representation over BT
Rðv0Þ

Luðx, tÞ :¼ v0ðx, tÞ þ
ðt
0

ð
M
pðx, y, t � sÞðF1ðusÞ þ F2ðus,wðusÞÞÞdVðyÞds (5.1)

where p is the heat kernel of M, F1 and F2 are defined as in (2.17) and (2.18), respect-
ively. Our proof for the short-time existence is different from there, and the space
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BT
Rð�u0Þ is more natural and convenient in our situation. Therefore, we cannot directly

use the statement in [6]. Although the space is changed, the proofs of those nice prop-
erties are parallel. In fact, one can see from the following that to make the elements in
BT
Rð�u0Þ satisfy nice properties (5.11) and (5.12), it is sufficient to choose R small,

namely, T is independent of R. This is the biggest advantage. In the following, we will
give the precise statement of the properties we need in Section 3 and proofs for the
most important lemmas.
For every T> 0, we consider the space BT

Rð�u0Þ :¼ fu 2 XT jjju� �u0jjXT
� Rg \

fujt¼0 ¼ u0g where �u0ðx, tÞ ¼ u0ðxÞ for any t 2 ½0,T�: To get the necessary estimate for
the solution of the constraint equation, we will use the parallel transport along the
unique shortest geodesic between u0ðxÞ and p � utðxÞ in N. To do this, we need the fol-
lowing lemma which tells us that the distances in N can be locally controlled by the dis-
tances in R

q:

Lemma 5.1. [6] Let N � R
q be a closed embedded submanifold of Rq with the induced

Riemannian metric. Denote by A its Weingarten map. Choose C> 0 such that
jjAjj � C, where

jjAjj :¼ supfjjAvXjjjv 2 T?
p N,X 2 TpN, jjvjj ¼ 1, jjXjj ¼ 1, p 2 Ng: (5.2)

Then there exists 0 < d0 < 1
C such that for all 0 < d � d0 and for all p, q 2 N with

jjp� qjj2 < d, it holds that

dNðp, qÞ � 1
1� dC

jjp� qjj2, (5.3)

where we denote the Euclidean norm by jj � jj2 in this section.
In the following, we will choose d and R to ensure the existence of the unique short-

est geodesics between the projections of any two elements in BT
Rð�u0Þ: By the definition

of BT
Rð�u0Þ, we have

jjuðx, tÞ � �u0ðx, tÞjj2 ¼ jjuðx, tÞ � u0ðxÞjj2 � R (5.4)

for all ðx, tÞ 2 M 	 ½0,T�: Then taking any R � d, we get

dðuðx, tÞ,NÞ � jjuðx, tÞ � u0ðxÞjj2 � d (5.5)

for all ðx, tÞ 2 M 	 ½0,T�: Therefore, uðx, tÞ 2 Nd: In particular, p � u is N-valued, and

jjðp � uÞðx, tÞ � u0ðxÞjj2 � jjðp � uÞðx, tÞ � uðx, tÞjj2 þ jjuðx, tÞ � u0ðxÞjj2 � 2d: (5.6)

Now, we choose � > 0 with 2� < injðNÞ and d such that

d < min

�
1
4
d0,

1
4
�ð1� d0CÞ



(5.7)

where d0,C > 0 are as in Lemma 5.1. From (5.6), we know that for all u, v 2 BT
Rð�u0Þ, it

holds that

jjðp � uÞðx, tÞ � ðp � vÞðx, sÞjj2 � 4d < d0: (5.8)
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Then Lemma 5.1 and (5.7) imply that

dNððp � uÞðx, tÞ, ðp � vÞðx, sÞÞ � 1
1� d0C

jjðp � uÞðx, tÞ � ðp � vÞðx, sÞjj2
� 1

1� d0C
4d < � <

1
2
injðNÞ:

(5.9)

To summarize, under the choice of constants as follows:

� > 0, s:t: 2� < injðNÞ,
d > 0, s:t: d < min

n 1
4
d0,

1
4
�ð1� d0CÞ

o
,

R � d,

8>><
>>:

(5.10)

we have shown that

uðx, tÞ 2 Nd (5.11)

and

dNððp � uÞðx, tÞ, ðp � vÞðx, sÞÞ < � <
1
2
injðNÞ (5.12)

for all u, v 2 BT
Rð�u0Þ, x 2 M and t, s 2 ½0,T�:

Using the properties (5.11) and (5.12), we can parallelly prove two important esti-
mates as in [6]. One is for the Dirac operators along maps.

Lemma 5.2. Choose �, d and R as in (5.10). If � > 0 is small enough, then there exists
C ¼ CðRÞ > 0 such that

jjððPvs, utÞ�1 =Dp�utPvs, ut � =Dp�vsÞwðxÞjj � Cjjut � vsjjC0ðM,RqÞjjwðxÞjj (5.13)

for any u, v 2 BT
Rð�u0Þ,w 2 CC1ðRM � ðp � vsÞ�TNÞ, x 2 M and t, s 2 ½0,T�:

Proof. We write f0 :¼ p � vs, f1 :¼ p � ut and define the C1 map F : M 	 ½0, 1� ! N by

Fðx, tÞ :¼ exp f0ðxÞðt exp �1
f0ðxÞf1ðxÞÞ (5.14)

where exp denotes the exponential map of the Riemannian manifold N. Note that
Fð�, 0Þ ¼ f0, Fð�, 1Þ ¼ f1 and t 7! Fðx, tÞ is the unique shortest geodesic from f0ðxÞ to
f1ðxÞ: We denote by

Pt1, t2 ¼ Pt1, t2ðxÞ : TFðx, t1ÞN ! TFðx, t2ÞN (5.15)

the parallel transport in F�TN with respect to rF�TN (pullback of the Levi-Civita con-
nection on N) along the curve cxðtÞ :¼ ðx, tÞ from cxðt1Þ to cxðt2Þ, x 2 M, t1, t2 2 ½0, 1�:
In particular, P0, 1 ¼ Pvs, ut : Let w 2 CC1ðRM � ðf0Þ�TNÞ: We have

ððP0, 1Þ�1 =Df1P0, 1 � =Df0Þw
¼ ðea � wiÞ � ðððP0, 1Þ�1rf �1 TN

ea P0, 1 �rf �0 TN
ea Þðbi � f0ÞÞ

(5.16)

where w ¼ wi � ðbi � f0Þ, fbig is an orthonormal frame of TN, wi are local C1 sections
of RM, and feag is an orthonormal frame of TM.
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We define local C1 sections Hi of F�TN by

Hiðx, tÞ :¼ P0, tðxÞðbi � f0ÞðxÞ: (5.17)

For each t 2 ½0, 1� we define the functions Tijð�, tÞ :¼ Ta
ijð�, tÞ by

ðP0, tÞ�1ððrF�TN
ea HiÞðx, tÞÞ ¼

X
j

Ta
ijðx, tÞðbj � f0ÞðxÞ: (5.18)

So far, we only know that the Tij are continuous. In the following, we will perform
some formal calculations and justify them afterwards. By a straightforward computation,
we have

jjððP0, 1Þ�1rf �1 TN
ea P0, 1 �rf �0 TN

ea Þðbi � f0ÞðxÞjj2h
¼ jjðP0, 1Þ�1ððrF�TN

ea HiÞðx, 1ÞÞ � ðP0, 0Þ�1ððrF�TN
ea HiÞðx, 0ÞÞjj2h

¼ jjPj Tijðx, 1Þðbj � f0ÞðxÞ �
P

j Tijðx, 0Þðbj � f0ÞðxÞjj2h
¼ P

jðTijðx, 1Þ � Tijðx, 0ÞÞ2

¼ P
j

Ð 1
0

d
dt jt¼rTijðx, tÞdr

� �2
:

(5.19)

Therefore we want to control the first time-derivative of the Tij. Equation (5.18) implies
that these time-derivatives are related to the curvature of F�TN: More precisely, for all
X 2 CðTMÞ we have

d
dt

����
t¼r

ðP0, tÞ�1 ðrF�TN
X HiÞðx, tÞ

� �� �

¼ d
dt

����
t¼0

ðP0, tþrÞ�1 ðrF�TN
X HiÞðx, t þ rÞ

� �� �

¼ d
dt

����
t¼0

ðP0, rÞ�1ðPr, rþtÞ�1 ðrF�TN
X HiÞðx, t þ rÞ

� �� �

¼ ðP0, rÞ�1 d
dt

����
t¼0

ðPr, rþtÞ�1 ðrF�TN
X HiÞðx, t þ rÞ

� �� �

¼ ðP0, rÞ�1 rF�TN
@
@t

rF�TN
X Hi

� �
ðx, rÞ

� �
:

(5.20)

Now, let us justify the formal calculations (5.19) and (5.20). Combining the definition
of Hi as parallel transport and a careful examination of the regularity of F we deduce

that rF�TN
@
@t

rF�TN
X Hi

� �
ðx, rÞ exists. Then (5.20) holds. Together with (5.18), we know

that the Tij are differentiable in t. Therefore (5.19) also holds. We further get

rF�TN
@
@t

rF�TN
X Hi ¼ RF�TN @

@t
,X

� �
Hi þrF�TN

X rF�TN
@
@t

Hi �rF�TN
@
@t,X½ �Hi

¼ RF�TN @

@t
,X

� �
Hi ¼ RTN

�
dF

@

@t

� �
, dFðXÞ

�
Hi,

(5.21)

since rF�TN
@
@t

Hi ¼ 0 by the definition of Hi and ½ @@t ,X� ¼ 0:
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This implies

P
j ð ddt jt¼rTijðx, tÞÞ2 ¼

����
���� ddt

����
t¼r

ððP0, tÞ�1ððrF�TN
ea HiÞðx, tÞÞÞ

����
����
2

h

¼ jj
�
rF�TN

@
@t

rF�TN
ea Hi

�
ðx, rÞjj2h

¼ jjRTNðdFðx, rÞ
�

@

@t

�
, dFðx, rÞðeaÞÞHiðx, rÞjj2h

� C1jjdFðx, rÞð@tÞjj2hjjdFðx, rÞðeaÞÞjj2h,

(5.22)

where C1 only depends on N.
In the following we estimate jjdFðx, rÞð@tÞjjh and jjdFðx, rÞðeaÞÞjjh: We have

dFðx, rÞð@tjðx, rÞÞ ¼
@

@t
jt¼rð exp f0ðxÞðt exp �1

f0ðxÞf1ðxÞÞÞ ¼ c0ðrÞ, (5.23)

where cðtÞ :¼ exp f0ðxÞðt exp �1
f0ðxÞf1ðxÞÞ is a geodesic in N. In particular, c0 is parallel along

c and thus jjc0ðrÞjjh ¼ jjc0ð0Þjjh ¼ jj exp �1
f0ðxÞf1ðxÞjjh: Therefore, we get

jjdFðx, rÞð@tÞjjh ¼ jj exp �1
f0ðxÞf1ðxÞjjh � dNðf0ðxÞ, f1ðxÞÞ � C2jjut � vsjjC0ðM,RqÞ, (5.24)

where we have used Lemma 5.1 and the Lipschitz continuity of p. Moreover, there
exists C3ðRÞ > 0 such that jjdFðx, rÞðeaÞÞjjh � C3ðRÞ for all ðx, rÞ 2 M 	 ½0, 1�:
We have shown

X
j

d
dt

jt¼rTijðx, tÞ
� �2

� C1C
2
2C3ðRÞ2jjut � vsjj2C0ðM,RqÞ (5.25)

for all (x, t). Combining this with (5.16) and (5.19), we complete the proof. w

The other one is for the parallel transport.

Lemma 5.3. Choose �, d and R as in (5.10). If � > 0 is small enough, then there exists
C ¼ Cð�Þ > 0 such that

jjPvs, u0Put , vsPu0, utZ � Zjj � Cjjut � vsjjC0ðM,RqÞjjZjj (5.26)

for all Z 2 Tu0ðxÞN, u, v 2 BT
Rð�u0Þ, x 2 M and t, s 2 ½0,T�:

Consequently, we also have

Lemma 5.4. Choose �, d and R as in (5.10). For u, v 2 BT
Rð�u0Þ, s, t 2 ½0,T�, the operator

norm of the isomorphism of Banach spaces

Pvs, ut : CW1, pðRM � ðp � vsÞ�TNÞ ! CW1, pðRM � ðp � utÞ�TNÞ (5.27)

is uniformly bounded, i.e. there exists C ¼ CðR, pÞ such that

jjPvs, ut jjLðW1, p ,W1, pÞ � C (5.28)

for all u, v 2 BT
Rð�u0Þ, x 2 M and t, s 2 ½0,T�:

The proofs of these two lemmas only depend on the existence of the unique shortest
geodesic between any two maps in BT

Rð�u0Þ, which was already shown in (5.12).
Therefore, we omit the detailed proof here. Besides, by Lemma 5.2, one can immediately
prove the following Lemma by the Min-Max principle as in [6].
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Lemma 5.5. Assume that dimKkerð=Du0Þ ¼ 2l � 1, where l 2 N and

K ¼ C, ifm ¼ 0, 1ðmod 8Þ,
H, ifm ¼ 2, 4ðmod 8Þ:

�
(5.29)

Choose �, d and R as in Lemma 5.2. If R is small enough, then

dimKkerð =Dp�utÞ ¼ 1 (5.30)

and there exists K ¼ 1
2Kðu0Þ such that

fspecð =Dp�utÞ \ �K,K½ �g ¼ 1 (5.31)

for any u 2 BT
Rð�u0Þ and t 2 ½0,T�, where Kðu0Þ is a constant such

that specð=Du0Þ n f0g � R n ð�Kðu0Þ,Kðu0ÞÞ:
Once we have the minimality of the kernel in Lemma 5.5, we can prove the following

uniform bounds for the resolvents, which are important for the Lipschitz continuity of
the solution to the Dirac equation.

Lemma 5.6. Assume we are in the situation of Lemma 5.5. We consider the resolvent
Rðk, =Dp�utÞ : CL2 ! CL2 of =Dp�ut : CW1, 2 ! CL2 . By the Lp estimate (see Lemma 2.1 in
[6]), we know the restriction

Rðk, =Dp�utÞ : CLp ! CW1, p (5.32)

is well-defined and bounded for any 2 � p < 1. If R> 0 is small enough, then there
exists C ¼ Cðp,RÞ > 0 such that

sup
jkj¼K

2

jjRðk,@@Dp�utÞjjLðLp,W1, pÞ < C (5.33)

for any u 2 BT
Rð�u0Þ, t 2 ½0,T�:

Now, by the projector of the Dirac operator, we can construct a solution to the con-
straint equation whose nontrivialness follows from the following lemma.

Lemma 5.7. In the situation of Lemma 5.5, for any fixed u 2 BT
Rð�u0Þ and any w 2

kerð=Du0Þ with jjwjjL2 ¼ 1, we have ffiffiffi
1
2

r
� jj~wut

1 jjL2 � 1, (5.34)

where ~w
ut ¼ Pu0, utw ¼ ~w

ut
1 þ ~w

ut
2 with respect to the decompos-

ition CL2 ¼ kerð=Dp�utÞ�ðkerð=Dp�utÞÞ?
In Section 3, to show the short-time existence of the heat for a-Dirac-harmonic

maps, we need the following Lipschitz estimate.

Lemma 5.8. Choose d as in (5.10), � as in Lemmas 5.2 and 5.3, R as in Lemmas 5.5 and
5.6. For any harmonic spinor w 2 kerð=Du0Þ, we define

�wðutÞ :¼ ~w
ut
1 ¼ � 1

2pi

ð
c
Rðk, =Dp�utÞrðutÞdk (5.35)

for any u 2 BT
Rð�u0Þ, where c is defined in the Section 2 with K ¼ 1

2Kðu0Þ. In particular,
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�wðutÞ 2 kerð =Dp�utÞ � CC0ðRM � ðp � utÞ�TNÞ. We write

wðutÞ :¼ wðuð�, tÞÞ ¼
�wðutÞ

jj�wðutÞjjL2
: (5.36)

Let wAðutÞ be the sections of RM such that

wðutÞ ¼ wAðutÞ � ð@A � p � utÞ (5.37)

for A ¼ 1, :::, q: Then there exists C ¼ CðR, �,w0Þ > 0 such that

jjPut , vs �wðutÞðxÞ � �wðutÞðxÞjj � Cjjut � vsjjC0ðM,RqÞ (5.38)

and

jjwAðutÞðxÞ � wAðvsÞðxÞjj � Cjjut � vsjjC0ðM,RqÞ (5.39)

for all u, v 2 BT
Rð�u0Þ,A ¼ 1, :::, q, x 2 M and s, t 2 ½0,T�:

Proof. Using the following resolvent identity for two operators D1, D2

Rðk,D1Þ � Rðk,D2Þ ¼ Rðk,D1Þ � ðD1 � D2Þ � Rðk,D2Þ, (5.40)

we have

Put , vs �wðutÞ � �wðutÞ
¼ � 1

2pi

�ð
c
Rðk,Put , vs =Dp�utðPut , vsÞ�1

�
Put , vsPu0, utw0

�
ð
c
Rðk, =Dp�vsÞPu0, vsw0Þ

¼ � 1
2pi

ð
c
Rðk,Put , vs =Dp�utðPut , vsÞ�1ÞðPut , vsPu0, utw0 � Pu0, vsw0Þ

� 1
2pi

ð
c
ðRðk,Put , vs =Dp�utðPut , vsÞ�1Þ � Rðk, =Dp�vsÞÞPu0, vsw0

¼ � 1
2pi

ð
c
Rðk,Put , vs =Dp�utðPut , vsÞ�1ÞðPut , vsPu0, utw0 � Pu0, vsw0Þ

� 1
2pi

ð
c
ðRðk,Put , vs =Dp�utðPut , vsÞ�1Þ � Put , vs =Dp�utðPut , vsÞ�1 � =Dp�vs� �

�
Rðk, =Dp�vsÞÞPu0, vsw0,

(5.41)

where c is defined in (2.29) with K ¼ 1
2Kðu0Þ: Therefore, for p large enough, we get

jjPut , vs �wðutÞðxÞ � �wðutÞðxÞjj � C1jjPut , vs �w
ut � �w

vs jjW1, pðMÞ

� C2jj
ð
c
Rðk,Put , vs =Dp�utðPut , vsÞ�1ÞðPut , vsPu0, utw0 � Pu0, vsw0ÞjjW1, pðMÞ

þC2k
ð
c
ðRðk, Put , vs =Dp�utðPut , vsÞ�1Þ � ðPut , vs =Dp�utðPut , vsÞ�1 � =Dp�vsÞ�

Rðk, =Dp�vsÞÞPu0, vsw0kW1, pðMÞ

� C2

ð
c
jjRðk,Put , vs =Dp�utðPut , vsÞ�1ÞðPut , vsPu0, utw0 � Pu0, vsw0ÞjjW1, pðMÞ

þC2

ð
c
jjðRðk,Put , vsDp�utðPut , vsÞ�1Þ � ðPut , vs =Dp�utðPut , vsÞ�1 � =Dp�vsÞ�

Rðk,Dp�vsÞÞPu0, vsw0jjW1, pðMÞ
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� C3 sup
ImðcÞ

jjRðk,Put , vs =Dp�utðPut , vsÞ�1ÞjjLðLp ,W1, pÞjjPut , vsPu0, utw0 � Pu0, vsw0jjLp
þ C3 sup

ImðcÞ
jjRðk,Put , vs =Dp�utðPut , vsÞ�1ÞjjLðLp ,W1, pÞ sup

ImðcÞ
jjRðk, =Dp�vsÞjjLðLp,W1, pÞ

jjPut , vs =Dp�utðPut , vsÞ�1 � =Dp�vs jjLðW1, p , LpÞjjPu0, vsw0jjLp :

(5.42)

Now, we estimate all the terms in the right-hand side of the inequality above. First, by
Lemmas 5.6 and 5.4, we know that all the resolvents above are uniformly bounded.
Next, by Lemma 5.2, we have

jjPut , vs =Dp�utðPut , vsÞ�1 � =Dp�vs jjLðW1, p , LpÞ � CðRÞjjut � vsjjC0ðM,RqÞ: (5.43)

Finally, by Lemma 5.3, we obtain

jjPut , vsPu0, utw0 � Pu0, vsw0jjLp � Cð�,w0Þjjut � vsjjC0ðM,RqÞ: (5.44)

Putting these together, we get (5.38).
Next, we want to show the following estimate which is very close to (5.39).

jj�wAðutÞðxÞ � �w
AðvsÞðxÞjj � CðR, �,w0Þjjut � vsjjC0ðM,RqÞ: (5.45)

In fact, we have

jj�wAðutÞðxÞ � �w
AðvsÞðxÞjj

� jj�wðutÞðxÞ � �wðvsÞðxÞjjRxM�R
q

� jjPut , vs �wðutÞðxÞ � �wðvsÞðxÞjjRxM�R
q þ jjPut , vs �wðutÞðxÞ � �wðutÞðxÞjjRxM�R

q

¼ jjPut , vs �wðutÞðxÞ � �wðvsÞðxÞjjRxM�Tðp�vsðxÞÞN
þ jjPut , vs �wðutÞðxÞ � �wðutÞðxÞjjRxM�R

q

� CðR, �,w0Þjjut � vsjjC0ðM,RqÞ þ jjPut , vs �wðutÞðxÞ � �wðutÞðxÞjjRxM�R
q :

It remains to estimate the last term in the inequality above. To that end, let cðrÞ :¼
exp ðp�utÞðxÞðr exp �1

ðp�utÞðxÞðp � utðxÞÞÞ, r 2 ½0, 1�, be the unique shortest geodesic of N
from ðp � utÞðxÞ to ðp � vsÞðxÞ: Let X 2 Tcð0ÞN be given and denote by X(r) the unique
parallel vector field along c with Xð0Þ ¼ X: Then we have

Put , vsX � X ¼ Xð1Þ � Xð0Þ ¼
ð1
0

dX
dr

����
r¼n

dn ¼
ð1
0
IIðc0ðrÞ,XðrÞÞdr: (5.46)

Therefore,

jjPut , vsX � Xjj
R

q � C1 sup
r2 0, 1½ �

jjc0ðrÞjjN sup
r2 0, 1½ �

jjXðrÞjjN ¼ C1jjc0ð0ÞjjN jjXjjN (5.47)

where II is the second fundamental form of N in R
q and C1 only depends on N. Using

(5.9) and the Lipschitz continuity of p we get

jjc0ð0ÞjjN � dNððp � utÞðxÞ, ðp � vsÞðxÞÞ � C2jjutðxÞ � vsðxÞjjjRq (5.48)

and

jjPut , vsX � Xjj
R

q � C3jjutðxÞ � vsðxÞjjjRq jjXjjN : (5.49)
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This implies

jjPut , vs �wðutÞðxÞ � �wðutÞðxÞjjRxM�R
q � CðR, �,w0ÞjjutðxÞ � vsðxÞjjjRq : (5.50)

Hence, (5.45) holds.
Now, using (5.38) and (5.45), we get

jjwAðutÞðxÞ � wAðvsÞðxÞjj ¼ jj
�w
AðutÞðxÞ

jj�wðutÞjjL2
�

�w
AðutÞðxÞ

jj�wðvsÞjjL2
þ

�w
AðutÞðxÞ

jj�wðvsÞjjL2
�

�w
AðvsÞðxÞ

jj�wðvsÞjjL2
jj

�
�w
AðutÞðxÞ

jj�wðutÞjjL2 jj�wðvsÞjjL2
jjj�wðvsÞjjL2 � jj�wðutÞjjL2 j þ

1

jj�wðvsÞjjL2
jj�wAðutÞðxÞ � �w

AðvsÞðxÞjj

¼
�w
AðutÞðxÞ

jj�wðutÞjjL2 jj�wðvsÞjjL2
jjj�wðvsÞjjL2 � jjPut , vs �wðutÞjjL2 j

þ 1

jj�wðvsÞjjL2
jj�wAðutÞðxÞ � �w

AðvsÞðxÞjj

�
�w
AðutÞðxÞ

jj�wðutÞjjL2 jj�wðvsÞjjL2
jjPut , vs �wðutÞ � �wðvsÞjjL2 þ

1

jj�wðvsÞjjL2
jj�wAðutÞðxÞ � �w

AðvsÞðxÞjj

�
� �w

AðutÞðxÞ
jj�wðutÞjjL2 jj�wðvsÞjjL2

þ 1

jj�wðvsÞjjL2

�
CðR, �,w0Þjjut � vsjjC0ðM,RqÞ:

Then the inequality (5.39) follows from Lemma 5.7 and (5.45). This completes the
proof. w
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