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Abstract

Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-
located with the hardboard facility for the production of fuel grade ethanol. A thorough
characterization was conducted on the wastewater and the composition changes of which
during the process in the bio refinery were tracked. It was determined that the wastewater
had a low solid content (1.4%), and hemicellulose was the main component in the solid,
accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the
hemicellulose as well as oligomers, and over 50% of the monomer sugars generated was
xylose. The percentage of lignin remained in the liquid increased after acid pretreatment.
The characterization results showed that hardboard processing wastewater is a feasible
feedstock for the production of ethanol. The optimum conditions to hydrolyze
hemicellulose into fermentable sugars were evaluated with a two-stage experiment,
which includes acid pretreatment and enzymatic hydrolysis. The experimental data were
fitted into second order regression models and Response Surface Methodology (RSM)
was employed. The results of the experiment showed that for this type of feedstock
enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total
sugar concentration (over 45g/1) and low furfural concentration (less than 0.5g/1), the
optimum conditions were reached when acid concentration was between 1.41 to 1.81%,
and reaction time was 48 to 76 minutes. The two products produced from the bio refinery
was compared with traditional products, petroleum gasoline and traditional potassium
acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an

indicator. Three allocation methods, system expansion, mass allocation and market value

xXXxiii



allocation methods were employed in this assessment. It was determined that the life
cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO, eq/MJ, respectively, in
the three allocation methods, whereas that of petroleum gasoline is 90 g CO; eq/MJ. The
life cycle GHG emissions of potassium acetate in mass allocation and market value
allocation method were 555.7 and 716.0 g CO, eq/kg, whereas that of traditional

potassium acetate is 1020 g CO,/kg.
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Introduction and Research Objectives
1. Introduction

The development of renewable energy is driven by the potential that fossil energy has on
climate change, the probable future shortages of non-renewable energy resources, as well
as the high reliance on imported energy and the resulting trade deficit in certain
countries.' Biofuels have been considered promising sources of renewable liquid
transportation fuels since major kinds of biofuels like bioethanol and biodiesel can be
directly applied to substitute for fossil gasoline and diesel, respectively, as alternative
vehicle transportation fuels. Federal policy has been a support to the development of
biofuels, for example, Renewable Fuel Standard (RFS) mandated a minimum volume of
biofuels to be consumed annually.” According to the Energy Policy Act (EPA) and
Energy Independence and Security Act (EISA), the annual targets of production for
biofuels are shown in Figure I.1. EISA specifically pointed out that by 2022, the
production of cellulosic ethanol should meet 16 billion gallons out of the 36 billion gallon

target for biofuels.”

Due to the limited amount of resources for the production of biofuels, many kinds of
waste resources were taken into consideration. One type of forest industry product is
hardboard, which utilizes large quantities of water to process the chipped wood. Cellulose
and lignin are two ingredients that finally formed into the hardboard, thus leaving
hemicellulose in the processing water. The processing water is considered a wastewater
stream and is sent to a wastewater treatment facility before discharged to the environment.

The idea of co-locating a biorefinery plant in a hardboard facility is first implemented in
1



a hardboard facility in lower Michigan in order to utilize the hemicellulose in the

wastewater for bioethanol production as well as to reduce wastewater treatment inputs.
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Figure I.1 Mandates set by Energy Policy Act of 2005 and Energy Independence and
security Act of 2007

The wastewater stream studied for its feasibility to be used as a feedstock for the
commercial production of bioethanol contains a low level of dissolved and suspended
solids. In Chapter 2 a description of the bioethanol conversion process to utilize this
novel biofuel feedstock is presented. Three parts of research are included in this
dissertation, a) a thorough characterization of the wastewater, acid hydrolysate and
neutralized hydrolysate (Chapter 2), b) acid pretreatment and enzymatic hydrolysis
results analysis as well as optimum condition analysis by analysis of variance (ANOVA)
and response surface methodology (RSM) (Chapter 3), and c) environmental life cycle
assessment (carbon footprint) of the process that utilizes hardboard wastewater stream as

a feedstock for bioethanol and potassium acetate production (Chapter 4). In addition,



chapter 1 is a literature review, which provides background knowledge for chapter 2, 3

and 4, and chapter 5 is the conclusion.

This research involves the use of many analytical methods and techniques.

Concentrations of five monomer sugars, cellobiose, as well as hydroxymethyl furfural
(HMF) and furfural were determined by high performance liquid chromatography (HPLC)
in all liquid samples (Chapters 2 and 3). Lignin content in samples were measured using
an ultraviolet-visible spectrophotometer and gravimetrically. The molecular structure
change of solid material and functional group changes were observed by scanning
electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR).
Elemental composition of solids pre and post acid pretreatment were compared by
inductively coupled plasma (ICP) spectroscopy. A complete mass balance analysis was

conducted to verify the accuracy of the characterization results.

A two-step hydrolysis strategy, using dilute acid followed by enzymatic hydrolysis, was
employed on the hardboard wastewater stream (Chapter 3). The sugar and inhibitor
concentrations and yields were analyzed after dilute acid pretreatment and after the two-
step hydrolysis. Quadratic regression models were set up to evaluate the relation of yields
and ratios of yields to the reaction variables (acid concentration and reaction time).
Optimum conditions of acid pretreatment were determined for the highest sugar yield and
with inhibitor concentrations lower than the toxic threshold level. Design Expert 8.0 was
employed in the RSM and numerical method for the determination of optimum
conditions. Enzymatic hydrolysis, including its effectiveness, was also evaluated in this

analysis.



A life cycle analysis (carbon footprint) was conducted and presented in Chapter 4 to
compare the environmental impact of two products from the biorefinery, ethanol and
potassium acetate, with petroleum gasoline and conventional potassium acetate. Three
allocation methods, including displacement (system expansion), mass allocation and
market value allocation, were employed. In addition, six scenarios were implemented to

test the carbon footprint model with respect to important model assumptions.

2. Dissertation objectives

The objective of this research is to conduct multiple evaluations on a novel biorefinery
process utilizing a forest product wastewater stream containing a low level of dissolved
and suspended biomass solid (<2%). The research involves characterizing the novel
liquid feedstock, studying effects of reaction conditions, and assessing life cycle

environmental impacts. Three objectives are included in this research, as described below.

Objective 1: Characterize the key components of the feedstock, and understand features
of this feedstock in terms of surface structure, functional groups and elemental

compositions.

Objective 2: Determine the optimum acid pretreatment and enzymatic hydrolysis

conditions for generation of fermentable sugars with low inhibitor concentrations;

Objective 3: Implement a life cycle assessment (LCA) of the co-located biorefinery

process and compare different LCA assumption and allocation methods.
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Chapter 1 Literature Review for the Research Conducted in Chapter 2, 3 and 4
1. Introduction to feedstock types for biofuels

In the 20 century, crude oil and the oil industry have brought dramatic changes to
quality of life for human populations by providing heat and power, liquid fuels, as well as
valuable chemicals. However, the likelihood of future limitation of oil reserves and
environmental consequences from fossil fuel burning have provided motivation to seek
alternative energy resources as substitutes for fossil fuels. Biomass, as the only renewable
resource that can be applied to produce liquid fuels for the transportation sector, is one of
the most promising options for this shift. ' Biodiesel, ethanol and biogas are typical first
generation biofuels that are commercially used. ' The production of first generation
biofuels reduces somewhat environmental burdens as well as contributing to domestic
energy security. However, first generation biofuels are mainly produced from sugar or
starch rich crops and oil rich plants, and thus the food vs. fuel issue has become one of
the most obvious disadvantages of first generation biofuels. "** In order to avoid the
conversion from food into biofuel, non-food biomass is considered to be a more suitable
feedstock for second generation biofuels. Non-food biomass refers mostly to
lignoncellulosic materials, which have been utilized by humans to burn for many

centuries.

The lignoncellulosic materials that are envisioned to supply a future biofuels sector are
comprised of forestland residues and resources as well as agriculture residues and
resources, and energy crops. > In this update to the “billion ton vision” study, researchers

found that there is a wide diversity of feedstock types available at under $60 per dry ton
7



from forests, agricultural lands, and from urban areas as municipal solid waste,
demolition wastes, and other wood wastes. For example, assuming a modest rate of
increase in energy crop yields of 2%/yr, total biomass availability is predicted to be 1,046
million metric tons/yr (MMTY) by 2030. This total is comprised of 102 MMTY from
forest biomass and waste resource potential, 404 MMTY from agricultural biomass and
waste resource potential, and 540 MMTY from energy crops (switchgrass, hybrid willow

and poplar, etc.).

As the amount of forestland resources and agriculture resources are restricted by the
productivity of land, chances of extending the biomass potential lies in better recovery
and reuse of secondary residue and wastes resources. Mill residues are not the only waste
produced in the forest product industry, for example insulating board and hardboard
industries utilize a large quantity of water, which is then turned to wastewater containing
fibers. It is estimated that around 45 million gallons of ethanol can be produced from
these two fields (more details on ethanol estimates can be found in the LCA chapter
Appendix, chapter 4 appendix). The amount of wastewater to be treated can be reduced

and therefore the size of those wastewater treatment plants can be reduced as well.

In general, three major polymer components, lignin, cellulose and hemicelluloses are
found in woody biomass. Lignin is the most recalcitrant component in biomass materials
and exists in primary cell wall, functioning as structural support and a protective layer, *
but it also impedes enzymatic hydrolysis. > However, lignin may be recovered from
hydrolysis and fermentation of lignocellulose sugars to provide a renewable energy

source for biofuel production.® Cellulose is a linear crystalline polymer consisting of



glucose linked to each other by B-1,4 glucosidic bonds between adjacent glucose units,
with cellobiose as the repeating unit. Cellulose is generally hydrolyzed to produce
glucose after pretreatment using specific enzymes; cellulases.® Hemicelluloses have a
random, amorphous and branched structure, which is less resistant to hydrolysis, unlike
cellulose. Hemicellulose can be hydrolyzed enzymatically or with chemical catalysts
such as dilute acid to produce hexose sugars, including glucose, galactose and mannose,
as well as pentose sugars, including xylose and arabinose, and inorganic acids are also an
important hydrolysis byproduct. The dominant sugar in softwood hemicelluloses is
mannose while for hardwood and agriculture residue hemicellulose the major sugar is
xylose. > 7* Cellulose and hemicellulose are the constitutes actually used to produce
second generation bioethanol, and they together account for approximately two thirds of
lignocellulosic materials, ° depending on plant type. Hemicellulose is the second most
common constitute in plant biomass, as it alone comprises 20-35% of total biomass dry
weight. '’ The existence of hemicellulose increases not only the heterogeneity of the

monomer sugars in hydrolysate, but also the difficulty to maximize the conversion yield.

9,10

2. Biomass material characterization

The physical and chemical properties of biomass are key characteristics that influence the
yield of ethanol and other biofuels. For example, the composition of wood’s three main
components, cellulose, hemicellulose, and lignin is playing a dominant role on the
available sugar yield, and therefore affects ethanol yield. The amount of hemicellulose

and lignin as well as their structure also has influences on possible level of inhibitors like

9



organic acids, furfural, or hydroxymethylfurfural (HMF). Laboratory analytical
procedures (LAPs) to determine critical physical and chemical components of biomass
feedstock and pretreated slurries have been developed by the National Renewable Energy
Laboratory (NREL) ."""'? These procedures include the determination of total solid, ash,

carbohydrates and lignin, among other properties.

Apart from that the NREL LAPs, other technologies like Scanning electron microscopy
(SEM), Fourier transform infrared spectroscopy (FTIR), Nuclear Magnetic Resonance
(NMR) spectroscopy, Inductively Coupled Plasma - Optical Emission Spectrometry
(ICP-OES) etc. have been used to investigate surface structure, functional groups, and
elemental compositions of biomass feedstocks (More details about these methods are

discussed in Chapter 2).
3. Lignocellulosic biomass conversion processes

Processes technologies which are becoming widely applied in research and demonstration
projects for the conversion of lignocellulosic biomass into biofuels and bioproducts are

broadly categorized as thermochemical and biochemical conversion.
Thermochemical conversion

Thermochemical conversion to biofuels involves the processing of woody biomass or
plant oil feedstock at elevated temperatures and pressure and is often facilitated by
catalysts. Processing conditions also often include low oxygen or absence of oxygen and
may involve a reactive gas such as hydrogen in order to deoxygenate the intermediate

feedstock. "> Main thermochemical conversion methods include combustion, torrefaction,

10



pyrolysis, gasification, and hydrotreatment in the presence of hydrogen and catalyst.
Biomass directly cofired for heat or power is normally limited to a low percentage (5-
10%) in the composition of the entire feedstock, such as with coal, due to the low
efficiency. '* Torrefaction is the least severe thermochemical process, usually
implemented under low temperature (200-300°C), near atmospheric pressure, and in an
inert gas environment. During torrefaction, hemicellulose is broken down into a mixture
of gases, liquid, solid (containing the cellulose and lignin fractions), and a “char” product.
Torrefied biomass exhibits a lower oxygen content and higher lower heating value (LHV)
compared to the original biomass. Pyrolysis is another typical thermochemical process
carried out under moderate temperature (450-700°C) and inert atmosphere. "> Products
of pyrolysis are char, biooil (the major product) and/or gas, and the relative proportion of
these three will depend on the processing condition. "> When pyrolysis takes place very
quickly, within about 2 seconds, then the major product is biooil, but as temperatures
increase the gas products begin to dominate the product mix. The biooil can also be
further converted to hydrdocarbon liquid fuels as transportation fuels by hydrotreatment
and catalytic cracking. Gasification of biomass is another possible thermochemical
process, which occurs at higher temperature than pyrolysis (= 600 °C) with some oxygen
co-fed to form a synthesis gas containing mainly CO, H,, CO, and H,O. The synthesis

gas can further be converted to methanol or dimethyl ether. *°
Biochemical conversion

Biochemical conversion processing occurs under comparatively gentle temperature. This

process can be summarized as four steps in the biochemical conversion processing to

11



convert lignocelluloses to ethanol; 1) pretreatment, ii) enzymatic hydrolysis, iii)

fermentation and iv) distillation. >° The routes of three main components are shown in

Figure 1.1. An effective hydrolysis is required in the first two steps to release fermentable

sugars. The barriers to cellulose hydrolysis include the interference of hemicellulose and

lignin, crystallinity of cellulose, and low porosity of the biomass materials. > Thus,

pretreatment is a step prior to the enzymatic hydrolysis in order to remove hemicellulose,

to break in lignin, to reduce cellulose crystallinity and to increase material porosity.

Enzymes such as cellulases and hemicellulases are employed in hydrolysis under mild

conditions, for instance at 50°C and pH=5. >° In the fermentation stage, the sugar

mixture can be converted to biofuels like ethanol by microoganisms. ® Unlike the first

generation biofuels, lignocellulosic materials are broken down to a mixture of hexose and

pentose, which brings the process more challenges for a single organism, and controlling

the inhibitors from the previous steps is another topic of interest.
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Figure 1.1 Biochemical conversion processing
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Pretreatment processes

The goal of pretreatment is to break down hemicellulose to their corresponding
monomers, which are fermentable by microorganisms to biofuels like ethanol. An
effective pretreatment is functioning not only to break down hemicellulose but also to
make cellulose more accessible to enzymes by modifying the structure of lignin. There
are three key aspects to evaluate one pretreatment method, 1) the ability to release
monomer sugars from hydrolysis, ii) the feasibility to avoid the formation of degradation

and fermentation inhibitor, iii) the cost.

Different ways of pretreatment have been studied and summarized in order to obtain the
highest yield as well as the lowest cost. > Pretreatment methods are categorized by the

catalysts and other conditions used in the process.

Acid pretreatment: Acid pretreatment is one of the oldest and most widely used

pretreatment options. > " '®'7 Acid works as a catalyst to break down hemicellulose to
oligomers and ultimately to monomer sugars, but some of the monomers may be then
dehydrated to fufural and HMF and other degradation products, which may be inhibitors
in the subsequential fermentation step. " '® Concentrated acid will place more
requirements on process equipment, for example more expensive alloy or nonmetallic
linings are needed, and it also costs a lot to recycle the acid, and to neutralize the
hydrolysate. Although under these severe conditions the process can be carried out at a
lower temperature with possibly higher sugar yield, longer time is required. '® ' Thus,
dilute acid with the acid concentration below 4% (wt.) has been applied more widely,

although the process requires higher temperature (130-200°C) to break down
13



hemicellulose into monomers, less corrosion and less production of degradation products
occurs. " Acid hydrolysis has been employed on a variety of feedstocks, including
hardwood, softwood and agriculture residues due to its good performance. H,SO4, HCI,
HNO; and H3PO4 and CO, have been used in the process as catalysts, among which,

H,S0, 1s the most frequently studied.

Hydrothermal pretreatment: Hydrothermal pretreatment refers to the processes using

just water or steam under high temperature. Two typical processes are steam explosion
pretreatment and hot water (autohydrolysis) pretreatment. 19 Under high temperatures,
the release of acetic and other acids improves the hydrolysis of hemicellulose, and these
water processes show similar results as dilute acid under high temperature, which can
also work as a catalyst in the process. 7, 19 Hydrothermal pretreatment reduces the cost
and operation of neutralization as no acid is added to the feedstock. However, the

hydrolysis of hemicellulose is not as complete as other methods. 6

Steam explosion was applied on biomass pretreatment since 1925. It is a process of
heating up biomass rapidly by use of high pressure steam (20-50 bar, 210-290 °C), and
the sudden reduction of pressure at the end of the pretreatment results in the breakage of
inner- and intra-molecular linkage. ' Hemicellulose removal during the process increases

the accessibility of enzyme to the cellulose. ’

Autohydrolysis process uses hot liquid water instead of steam to hydrolyze hemicellulose.
Water is kept in liquid state by high pressure, and the temperature is normally controlled

at around 200 °C. " Hemicellulose is mainly hydrolyzed to the form of oligomers, so

14



autohydrolysis alone is not enough, ' and follow up hydrolysis could be completed using

enzymes or acid catalyst.

Alkaline pretreatments: Bases used in biomass pretreatment are sodium, potassium or

calcium hydroxide and ammonia. '* Alkaline pretreatment requires lower temperature
(<150 °C) and pressure (could be as low as atmospheric pressure) than other pretreatment
technologies, but may involve longer experiment times (from hours to days). > "

Sodium hydroxide is the most studied base, while calcium pretreatment is also attractive

as it is the most inexpensive base to use.

Ammonia fiber explosion (AFEX) is a pretreatment technology combining steam
explosion and alkaline pretreatment. Biomass materials undergo a similar process as
steam explosion, with steam replaced by anhydrous ammonia. The process mechanism
results in both chemical and physical changes in the lignocellulosic material structure.
Another process using ammonia is the ammonia recycle percolation (ARP) method,
which utilizes aqueous ammonia instead of anhydrous ammonia to pass through
lignocellulosic materials at a temperature between 150 °C to 170 °C. > ® Both methods

remove lignin and hemicellulose, as well as reduce the crystallinity of cellulose.

Other pretreatment methods: Oxidative Delignification is a pretreatment technology

using peroxidase enzymes together with H,O, to remove lignin. Other pretreatment
technologies like the Organosolv Process and the ionic liquids method are employed to
isolate certain components of the biomass feedstocks. > © Pretreatment technology is
chosen basically by the characteristic of the feedstock and the requirement of the

hydrolysis.
15



4. Introduction to fermentation inhibitors

Generation of fermentation inhibitors during acid pretreatment has been studied in order

20-22 .
Toxic

to reduce concentrations and to reach a better fermentation performance.
compounds are divided into four groups depending on the object they degraded from,
their own characters and their inhibitory effects. Fermentation inhibition is due to their

. 18,22
combined effects. ™

Furfural and HMF

Furfural and hydroxymethylfurfural (HMF) are two typical sugar degradation products
formed significantly during acid hydrolysis. Furfural is a dehydration product from
xylose and other pentose sugars, while HMF is decomposed from hexose sugars. The
decomposition rate of five kinds of monomer sugars follows the order below under

180°C, 0.8% sulfuric acid. **
Xylose> Arabinose> Mannose> Galactose> Glucose

The lower decomposition rate of hexose during acid hydrolysis, together with high
reactivity of HMF and less amount of hexose in hemicellulose, explains why a smaller

amount of HMF is produced compared to furfural in hydrolysate. **

Furfural has been found to have a negative effect on specific cell growth, cell-mass yield
per ATP, and ethanol productivities. *° This impact is highly related to concentration of
furfural. Previous studies on the ethanol production by Scheffersomyces stipites, formally

Pichia stipitis, are cited by Mussatto & Roberto (2004). Roberto et al. (1991) showed that

16



furfural concentrations over 2 g/l reduced the cell growth almost completely. Delgenes et
al. (1996) found that when the concentration of furfural is as low as 0.5 g/l,
Scheffersomyces stipitis growth was reduced by 25%. When furfural concentrations are
1.0 and 2.0 g/1, Scheffersomyces stipitis growth was reduced by 47% and 99%
respectively. Nigam (2001) showed 1.5 g/l furfural is high enough to interfere the
respiration and growth almost completely. On the other hand, Roberto et al. (1991) also
observed that the furfural concentration lower than 0.5 g/l resulted in a positive effect on
cell growth. Nigam (2001) found when furfural concentration is below 0.25 g/1, the
inhibition is not strong enough to be observed. ** Delgenes et al. (1996) showed that 0.5,
0.75, 1.5 g/l HMF reduced 43%, 70% and 100% of Scheffersomyces stipitis growth
respectively. According to Vogel-Lowmeier et al. (1998), furfural, HMF and acetate have
effect on both Pachysolen tannophilus and Scheffersomyces stipitis, while
Scheffersomyces stipites was influenced more. ** Mechanisms of inhibition by HMF are
similar to those of furfural, but less toxic in comparison with furfural due to a

: . L 18,20, 22
comparatively lower formation rate and lower concentration in hydrolysate. ™

Phenolic compounds

As degradation products, phenolic compounds have been studied for their inhibitory
effect on fermentation, and it has been found that those with lower molecular weight are

more toxic. %22

Major phenolic compounds produced during pretreatment include 4-
Hydroxybenzoic acid, hydroxymethoxybenzaldehydes, vanillin, syringaldehyde and

catechol etc. '™ ** 4-Hydroxybenzoic acid has been used as a model compound to analyze
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phenolic compounds due to its abundance in hardwood hydrolysates. >’ Vanillin also

accounts for a large fraction of phenolic compounds in the hydrolysate of hardwood.

It was observed by Villa et al. (1998) that phenolic compounds at concentrations higher
than 0.1g/1 are severely inhibitory to microbial utilization of xylose, cell growth and
xylitol production. ** Phenolic compounds can destroy the integrity of biological

membranes to which the enzymes are bound, thus changing the activity of enzymes. ** 2

The inhibitory effect is highly depended upon the concentrations, and thus inhibition is

affected by their solubility in water. *°
Weak acids

During dilute acid hydrolysis, a group of weak acids may be generated from the
lignocellulosic structure, and typical compounds frequently include acetic acid, formic
acid and levulinic acid. '"®?° Acetic acid is derived from acetyl groups of hemicellulose,

and thus the yield of acetic acid could be as high as 10g/1. '®

It is believed that the undissociated form of weak acids has the more inhibitory effect,
leading to diffusion of undissociated weak acid into the cytosol, and consequently it

inhibits cell growth by decreasing the cytosolic pH. '

Therefore, the inhibitory effect
of weak acid is highly depended upon pH. It has been reported that low concentrations

(<100mmol/1) of acetic, formic and levulinic acid improve the yield of ethanol in some

extent, while high acid concentrations over 200mmol/l decrease ethanol yield. *°
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5. Life cycle assessment

Life cycle assessment (LCA) is a widely utilized method to evaluate new technologies,
approaches, and biofuels. 2426 Greenhouse gas (GHG) emissions (CO, , CH4 and N,0)
and energy demand are two primary indicators normally chosen for biofuel LCA because
of the required GHG reduction targets for biofuels under different national renewable fuel
standards and directives. The functional units for these analyses were variously defined

as the amount of feedstock treated per year, >’ or distance of travel using the biofuel, ** or
per unit of energy in biofuels. ** When more than one product is produced in the biofuel
pathway, allocation rules are applied to distribute the environmental burdens from the
consumption of materials and energy, discharges of waste and emission from the pathway.
Most common methods to allocate burdens and credits are based on mass, volume,

energy content, number of moles, system expansion, and market values.
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Abstract

The efficient utilization of a biomass feedstock is highly relevant to its physical
properties and chemical constituents. A forest hardboard wastewater stream containing a
low level of solid was characterized for its feasibility as a sustainable biofuels feedstock
in terms of sugar level, lignin content, surface structure of solids, functional group, and
elemental compositions. Concentrations of five monomer sugars, cellobiose, and
fermentation inhibitors (furfural and hydroxymethyl furfural) were determined by high
performance liquid chromatography (HPLC). Total sugar levels were increased from 5g/l
to 45g/1 during dilute acid pretreatment. Lignin content in the recovered solid increased
from 17.5% to 72.5% for wastewater and dilute acid hydrolysate, respectively during this
process, and the increase in lignin was visually verified by surface structure from
Scanning Electron Microscopy (SEM). Fourier Transform Infrared Spectroscopy (FTIR)
was employed to determine functional group changes of the sample solid during dilute
acid pretreatment. It was shown that the functional groups belonging to cellulose and
hemicellulose decreased after dilute acid hydrolysis, while the lignin functional groups
tended to be more pronounced. Elemental composition of solids obtained before and after
dilute acid hydrolysis were measured using inductively coupled plasma (ICP)
spectroscopy. Ca, Na, K, Mg are main inorganic elements in the solid part of wastewater
stream, and the dilute acid hydrolysis made Ca the only dominating inorganic element.
The characterization results show that the forest hardboard wastewater stream might be a
suitable biorefinery feedstock for biofuel production and to reduce wastewater treatment

burden.
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1. Introduction
1.1. Introduction to biomass feedstocks, conversion, and characterization

With concerns over energy security and climate change, research into alternative energy
to reduce dependence on imported petroleum has become a national challenge. The
availability of biomass feedstock is of great importance to the development of a growing
biofuel and bioenergy industry. For example in the United States it is estimated that a
sustainable supply of biomass totals one billion dry metric tons/year." Biomass resources
were categorized into three groups: 1. primary agriculture resources, 2. primary
forestland resources, and 3. secondary residues & waste resources. The vast majority of
this billion ton annual supply is in the form of solid lignocellulosic (or woody) biomass.
Beyond biomass feedstocks, process technologies for converting lignocellulosic biomass
into liquid transportation biofuels are a subject of intense research and commercialization

activity.

Processing routes for converting lignocellulosic biomass into liquid transportation fuels
has been summarized into two main types; biochemical and thermochemical.”
Biochemical conversions utilize biological catalysts (enzymes) under mild conditions of
temperature, pressure, and pH to produce sugars from solid woody biomass and involve
fermenting microorganisms for biofuel production. Through genetic and metabolic
engineering, improved microorganisms have been created to utilize the mixture of 5- and
6-carbon sugars obtained from woody biomass and to produce either oxygenated or
hydrocarbon biofuels. Thermochemical conversions utilize high temperature and

pressure as well as chemical catalysts to convert woody biomass into oxygenated organic
26



intermediates and, ultimately, into hydrocarbon biofuels. In general, rates of reaction are
much higher in thermochemical reactions, but higher selectivity can be achieved using

biochemical conversions.

Discussion in this introduction has focused on solid woody biomass feedstocks. However,
there currently exists in the forest products industry many other types of feedstocks for
biofuel production including the hemicellulose fraction from pulp and paper feedstocks,
residue streams such as black liquor from pulp manufacturing, and also carbohydrate-
containing wastewater from hardboard manufacturing. Value prior to pulping (VPP) is a
concept for extracting fermentable sugars from wood prior to pulp manufacturing. VPP
uses a pretreatment process integrated prior to pulp and paper manufacture that can
extract the hemicellulose for biofuel production, leaving the cellulose and lignin for fiber
production.’ The potential of ethanol and acetic acid production from the hemicellulose
of the U.S. pulp and paper industry only is 1.6-2.4 billion gallons and 260-400 million
gallons. respectively.” Ekbom et al. (2005) described processes for converting black
liquor into transportation biofuels such as methanol, dimethyl-ether, and synthesis diesel

in a co-located forest products biorefinery.’

Insulating board and hardboard are two kinds of fiberboard products that are usually
produced at the same manufacturing plants. Insulating board as defined in ASTM D1554
is also called cellulosic fiber insulating board in ASTM C208, which is a fiberboard not
compressed, with a density in the range from 0.16 to 0.50 g/cm3. Hardboard is a form of
fiberboard compressed under heat and pressure to a density from 0.50 g/cm’ to 1.0

g/em’.%? Tt has been estimated that over 16 plants in the United States can produce over
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4.3 million m’ of insulating board per year,® and assuming the density to be 0.33 g/cm’,
the annual capacity of insulating board can be estimated as 1.4 million tons. This capacity
is almost the same as annual hardboard production, which is 1.5 million tons.® Insulating
board and hardboard manufacture need to break down wood into fibers and then
rearrange them to form the final products. In the wet process of the production of
insulating board and hardboard, large quantities of fresh water are needed to carry a
slurry of wood fibers. Therefore, this wastewater contains some wood fibers, soluble
oligomer and monomer sugars and extractives. The water consumption in insulating
board and hardboard production was estimated in 2004 to be 8.3 L/kg and 18.3 L/kg (12
L/kg for smooth-one-side hardboard and 24.6 L/kg for smooth two-side-hardboard),
respectively, more details of the estimate can be found in the dissertation (section 1.1 of
SI).%'° Currently, the contaminated water is treated in a co-located wastewater treatment

plant before it is discharged to the environment.

Previous studies to characterize forest product wastewater streams were focused on the

1,12

. . 1 . .
wastewater treatment process to meet discharge requirement, or recycling as a soil

13,14
compost. ™

No prior studies were found that characterized forest products wastewater
streams for biofuel production. In this research, we measure physical and chemical

characteristics of a hardboard manufacturing wastewater stream for its suitability to

produce fermentable sugars for biofuel and bioproducts production.
1.2. Introduction to biomass characterization

Each kind of biomass feedstock has its own physical (moisture content, density, etc.) and

chemical (wood composition, ash content, etc.) properties. Thus, biomass
28



characterization is necessary for the design of biorefinery processes for each type of
biomass feedstock. Most analyses of biomass materials can follow Laboratory analytical
procedures (LAPs) developed by National Renewable Energy Laboratory (NREL),"> '
which include determination of total solid, ash, carbohydrates and lignin. Cellulose and
hemicellulose are wood components that can be broken down into fermentable monomer
sugars by hydrolysis.'” Dilute acid pretreatment can break down the bonds linking the
polymers in hemicellulose. Therefore, during dilute acid pretreatment the major change
occurs to hemicellulose, which is converted to monomer sugars or oligomers, as well as
some fermentation inhibitors such as furfural, hydroxymethylfurfural and acetic acid etc.
Lignin is the most recalcitrant component in primary cell wall, functioning as structural
support and a protective layer.'® It also impedes enzymatic hydrolysis by interfering with
adsorption of cellulases and in limiting access to cellulose.'” Sulfuric acid was first used
to isolate lignin from wood by Klason in 1906, and since then a two stage sulfuric acid
hydrolysis was widely used in lignin content determination. Carbohydrates and a small
portion of lignin can be hydrolyzed into their corresponding soluble phase monomer
sugars and small molecule lignin, while the solid residue remaining is lignin-rich. Acid
soluble lignin in softwood (lignin molecules dissolved from the solid phase into the liquid
phase) is about 0.2% - 0.5%, on the basis of dry weight. For hardwood feedstock, this
number is about 3% - 5%.'" As a standard method developed by NREL, high
performance liquid chromatography (HPLC) is often used in the determination of

monomer sugars and degradation products in liquid process samples.** '

Scanning electron microscopy (SEM) is widely used for observing the surface

morphology of biomass and the changes due to conversion. Biomass feedstocks have
29



been characterized using SEM to view changes in cell wall shape and structure before
and after processing to understand the reaction environment for enzymes and other
reactants. Images with magnification ranging from 10x to 10,000x can be observed from
a sample.” In previous biomass conversion research, spherical objects were observed in
biomass residues having undergone pretreatment processes, which are known as “lignin
droplets”. ****® Donohoe et al. (2008) verified that the droplets contain lignin by FTIR
spectroscopy, NMR analysis, antibody labeling, and cytochemical staining, and the
extracted lignin as a reference formed droplets under dilute acid pretreatment conditions.

The droplet density and size were found to be related to dilute acid pretreatment

2
severity. !

Fourier transform infrared spectroscopy (FTIR) has been used to detect the presence of
the three key woody biomass components (hemicellulose, cellulose, and lignin) in terms
of their individual functional group characteristics, both qualitatively and qu:»,lntitatively.28
Normally, little preparation is required on both solid and liquid samples for FTIR. It can
also avoid separation of a complex mixture, and has been applied to study the chemical

structure and spatial distribution of the biomass.

Nuclear Magnetic Resonance (NMR) spectroscopy was used to investigate chemical
functional groups of lignin-carbohydrate complexes at the molecular level.**! Three
kinds of spectroscopies are normally performed for biomass materials, 1H NMR, 13C
NMR and 31P NMR, among which 1H NMR is used the most due to its ease of
application and interpreting. Solvents like dimethyl sulfoxide-d6 (DMSO-d6), CDCI3

30,31

and D,0 were frequently used for lignin-carbohydrate complexes. The important
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functional groups of lignin units include carbonyls, phenol hydroxyls, aromatic rings and
methoxyls. NMR signal intensities are proportional to the number of nuclei, thus it can
not only qualitatively identify the functional group but also provide quantitative

information.

Apart from the organic portion, mineral fraction of woody feedstock is also of interest.
The use for combustion of wood or lignin may be limited by inorganic components.** **
The inorganic ions could be inhibitors during fermentation as well.** Inductively Coupled
Plasma - Optical Emission Spectrometry (ICP-OES) has been used in plant or biomass

materials.>> 3¢

ICP is able to detect more than various elements including P, K, Cu, Mg,
Na, Fe, Zn, Ca, Mn etc.’”*® The elements are required to be dissolved into liquid phase,
thus acid digestion is employed prior to, for which nitric acid digestion is the most widely
used.’”*® Agblevor and Besler claimed that the portion of ash in biomass may account
for 1% to 15% according to different kinds of biomass.” Ash content for willow and
hybrid poplar clones are proved to be 1.3%-2.7%.*° Potassium, calcium, sodium, silicon,

phosphorus, and chlorine are the main elements detected in biomass from a previous

study.”
1.3. Research objectives

The main objective of this research is to characterize a novel feedstock for biofuel
production; an aqueous effluent stream from a hardboard manufacturing facility. The
characterization will focus on physical, chemical, morphological, and functional group
properties of the feedstock as well as the intermediate compounds generated during

conversion to biofuel. The characterization research involves a component mass closure
31



based on dry weight, surface structure analysis by SEM, functional group change analysis
by FTIR, and elemental analysis by ICP-AES. The suitability of this feedstock as raw

material for biofuels and bioproducts production is also discussed.

2. Feedstock and process description

This characterization research was in support of a demonstration biorefinery facility co-
located with a hardboard production facility in Alpena, MI. A simple biorefinery process
flow diagram is shown in Figure 2.1 for the key steps in the conversion of hardboard
wastewater, from collection of the effluent from the hardboard manufacturing facility to
fermentation and separation of ethanol and acetate products. In this research, feedstock
and intermediates were sampled from the proposed process at the locations indicated in

Figure 2.1.

In wet process hardboard manufacturing, wood is thermomechanically fiberized in
process water before it is formed into products. The resulting wastewater, with some
suspended biomass materials in it, is currently sent to a wastewater treatment unit, but in
this study it is a feedstock for ethanol and acetate production. As shown in Figure 2.1, the
effluent at point O of the process contains low level of solid (1.4% solids (wt.)). After
being concentrated by an evaporator a solid percentage of 7.5% (wt.) is achieved at point
(2) of the process. Point ®represents a hydrolysate after acid pretreatment (with 1% acid
concentration for 60 minutes at 121°C), and the neutralized sample (pH 7) is then

produced at point @). The acetic acid was neutralized with potassium hydroxide to form
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50% potassium acetate. Liquid and solid mixture was filtered to separate fermentable

sugars and gypsum, which was formed from the sulfuric acid and lime.

3. Research methods

3.1. Sample preparation for drying, imaging, and filtration

Samples taken at one point in time from locations (D — @ from Figure 2.1 were prepared

for characterization using different procedures. This section discusses these preparation
methods. Table 2.1 contains a list of different sample preparation methods and the
various characterization methods in this study. One preparation method listed as “Drying”
in Table 2.1, exposes the samples to 105 °C in an oven for a minimum of 24 hours or
until weight change is negligible between neighboring 2 hour time points. Another
method listed as “Filtration” in Table 2.1 is employed to separate the liquor from solid by
filtration through 0.2-pum pore sized thin film membranes. The last protocol is basically
used for imaging, termed “Imaging”. A 1ml well-mixed sample was placed in an
eppendorf vial, and centrifuged (VWR Galaxy 16) for 5 minutes at 8000rpm. After
pouring off the supernatant, deionized (DI) water was used to resuspend the solids and
the washed sample was centrifuged again at the same settings. This procedure was
repeated for another two times. The remaining solid was collected in a watch glass by
scraping out the settled solids from the bottom of the vial, followed by vacuum drying
over night at room temperature (25°C). The definitions of samples are listed in Table 2.1

as “phase + process location number + preparation method”. For example, the solid
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sample taken from point (@ for imaging is called “Solid @), Imaging”. Details of the

characterization methods are presented in 3.2-3.5.
3.2. Determination of total solid, ash, lignin and carbohydrates.

Total Solids and Ash: Determination of total solids was accomplished by measuring the
weight of an effluent sample both before and after using a convection oven (Precision),
setting at 105°C for 24h, according to NREL Laboratory analytical procedure LAP 001.*'
Ash content was based on total solid weight, determined by weighing the solid before and
after it is taken into a muffle furnace (Fisher Scientific-Thermolyne), setting at 575°C,

according to the NREL laboratory analytical procedure LAP 005.*

Carbohydrate Analysis: Analyses of 0.2 um filtered liquid fraction of the waste stream
and dilute sulfuric acid hydrolysate were performed by high-performance liquid
chromatography (HPLC) according to NREL laboratory analytical procedure LAP 013
except that an total oligomer analysis was also performed together with a sugar
calibration verification standard whose concentration is known under 121°C, 4% of acid
for 60 minutes.” The level of total sugar, including glucose, xylose, galactose, arabinose
and mannose as well as the content of furfural and hydroxymethylfurfural (HMF) were
determined on an Agilent 1200 HPLC using an Aminex HPX -87P column (Bio-Rad) at
80 °C and refractive index (RI) as well as diode array detection (DAD), **** and the
concentration of acetic acid was analyzed by using a Phenomenex Rezex RHM column at

60 °C and using a refractive index (RI) detector.*®
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Lignin Analysis: The determination of lignin content was accomplished according to the
procedure provided by NREL.*’ This analysis includes two parts, a) Testing of the acid
soluble lignin, the portion of the lignin that can be solubilized during acid hydrolysis
procedure, and b) Analysis of the solid residue remaining after extensive acid hydrolysis,

which is referred to as acid-insoluble lignin.

Acid soluble lignin analysis of the solid samples prepared by directly drying involved
hydrolysis of the solid in a condition of 72% H,SO4 at 30°C for 2 hours, and then the
solution was diluted with distilled water to 4% H,SO4 by weight, and autoclaved for 1
hour at 120°C. After cooling and filtration (0.2 pum membrane filter), the absorbance of
this filtrate sample was measured by a Hach DR 5000 UV-Vis Spectrophotometer at 205
nm using a 1 cm light path cuvette. When the reading is between 0.2 to 0.7, acid soluble
lignin concentration ASL (g/L) is proportional to the reading of absorbance A in equation
(1), where b represents cell path length (1cm), a is the absorptivity( 110 L/ (g-cm)), and

df is the dilution factor of the sample.*®
_
ASL (g/L) = s X A (1)

The solid residues were collected and dried for a base of acid-insoluble materials, and the
flammable fraction is the percentage of acid insoluble lignin, which is tested by a muftle

furnace (Fisher Scientific-Thermolyne) at 575°C.
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3.3. Surface structure study using SEM

29 <¢

Three solid samples “Solid @, Imaging”, “Solid ®, Imaging”, and “Solid @, Imaging”

were taken at the point @, ®, @, prepared following the preparation protocol described

in section 3.1 for SEM imaging, then coated with a thin layer of pd/pt. A series of images
with magnifications from 30x to 15,000x were taken using a field-emission scanning

electron microscope (Hitachi S-4700 FE-SEM).

3.4. Functional group changes with conversion

The purpose of these experiments was to probe the chemical make-up of the solids
remaining in the samples after the various treatment steps shown in Figure 2.1. FTIR

studies were conducted using a Perkin-Elmer spectrophotometer with a universal ATR

(Attenuated Total Reflection) accessory on two solid samples “Solid @, Drying” and

“Solid ®, Imaging” (see Section 3.1). These samples represent the solid fraction pre and

post acid pretreatment. One solid cellulose standard (Sigma-Aldrich #435244) and a solid
lignin standard (Sigma-Aldrich #370959) were analyzed as well; both serving are used to
help interpret FTIR spectra. The chemical structures of these compounds are shown in
Figure 2.2 and 2.3. The structure xylan hemicellulose was shown in Figure 2.4 as a
typical piece of hemicellulose. Functional groups identified in related studies from the

literature are summarized in Table 2.2 with their corresponding wave numbers.
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3.5. Elemental analysis

2% ¢¢

Three samples “Solid @, Drying”, “Solid ®, Imaging” and “Solid @, Imaging” were

prepared following the methods discussed in section 3.1. Solid samples (1g) were then
digested by S5Sml 1+1 HNO; made from 69% HNOj at 90-95 °C for two hours in a test
tube, with the testing tube in a water bath, until there are 3ml left. The mixtures were
diluted to 10ml using distilled water for the elemental analysis, * and all these procedures
were completed in a fume hood. The diluted liquid was then tested by an inductively
coupled plasma-optical emission spectrometer (ICP-OES) with a PerkinElmer Optima

7000DV instrument.
4. Results and discussion
4.1. Total solid, ash, lignin and carbohydrates

Total solid and ash content for samples taken at locations @, @), and @ are shown in
Table 2.3. The increase in total solids between points (D and ) is due to evaporation of

the effluent, however the drop in ash content is unexpected. The drop in total solids

between points (D) and @ is the net result of loss from hydrolysis and gain from

neutralization, and where ash content is increased due to formation of gypsum (CaSQOy).

Lignin analysis results are shown in Table 2.4, in which the changes in lignin content for
the various samples are shown. Solid samples exhibit an increase in insoluble lignin

percentage from locations ) to (3 due to the loss of carbohydrate from acid hydrolysis,

but a decrease is observed from locations @) to @ due to the additional mass of gypsum
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from the neutralization step. The high lignin content in the solids remaining after dilute
acid hydrolysis (®) suggests that separation and combustion for energy recovery could

be an option or the solids could be used as a soil amendment to sequester carbon and

50, 51

enrich carbon-poor soils with lignin and ash components. The use of the solids after

neutralization (@) would not be suitable for combustion and energy recovery anymore

due to the relatively low lignin content compared to gypsum and difficulty in separation.
The concentration of soluble lignin in the liquid phase changes in the process and
phenolic compounds, especially low molecular compounds may be generated from the
lignin, which is of concern for subsequent fermentation of hydrolysate if their

concentrations are too high.

The concentration of monomer sugars, cellobiose, other oligomer carbohydrates, and

some hydrolysis degradation products of two liquid samples “Liquor @, Filtration” and

“Liquor @, Filtration” are listed in Table 2.5. The two columns represent the

composition of the liquor prior and post dilute acid pretreatment, respectively. There are
five monomer sugars analyzed by HPLC, including glucose, xylose, galactose, arabinose
and mannose, mostly originating from hemicellulose. Two degradation products, furfural
and hydroxymethylfurfural (HMF) were measured as well. Due to acid pretreatment, total
sugar concentration increased from around 5g/L to 40g/L, each of the compounds
increased in concentration during oligomer hydrolysis. In order to recover more monomer
sugars from oligomers (8.6 g/L) and cellobiose (2.3 g/L more), addition of xylanase and

B-glucosidase enzymes would be required, perhaps prior to or during the fermentation
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step. Additional amounts of HMF, furfural and acetic acid were generated, all of which
are inhibitors of fermentation by inhibiting cell growth of yeasts like Pachysolen

tannophilus and Scheffersomyces stipitis if concentrations are high enough.

HMEF is degraded from hexose sugars, which is proved to be an inhibitor in the
subsequential fermentation when the level is above 1g/1,** but it is normally less toxic to
the yeast than furfural as less HMF is formed during acid pretreatment due to lower
content of hexose and also because of its high reactivity. Furfural, an inhibitor degraded
from pentose sugars was found to be toxic in even trace amount (0.5 g/I) by some
researchers, >> however another study shows that furfural may have a positive effect on
fermentation when its concentration is lower than 0.5g/1.>® In this research, HMF level is
also lower than that of furfural, and both HMF and furfural are below inhibitory levels to
the yeast in fermentation.”® However, considerable acetic acid is released from acid
pretreatment, and according to Felipe et al, acetic acid causes inhibition when the level is
higher than 3g/1; > thus removal of acetic acid prior to fermentation is necessary in this

process.
4.2. Summative mass closure

A digestion with 4% sulfuric acid at 121 °C for 60 min was accomplished following the
dilute acid pretreatment process to break down any remaining oligomers into monomer
sugars. This step added to the monomer sugar concentrations listed in Table 2.5 as shown
as “Other Oligomers”. Monomer sugar standards with known concentrations were treated
under the same concentration to estimate sugar recovery factors, so the degradation

during oligomer hydrolysis was adjusted. The additional monomer sugars measured in
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this oligomer analysis were added to the monomers in Table 2.5 and result in the values
in Table 2.6 (in column “Post Oligomer Hydrolysis Concentration”). The water of

reaction was subtracted from these hydrolysate monomer sugars to determine the mass of

these sugars in non-monomer form. The effluent sampled at point @ was the basis for

total mass determination, where the solid percentage of 7.52% (Table 2.3), and density of

1024 g/l were used to calculate total mass.

The mass of total solids in 1 liter of effluent is

1024 * 7.52% = 77.03g

The percentage of total solid of each component is displayed in the last column, and they
sum up to be 98.04%. Thus, in this feedstock, there is 23.5% lignin and 5.78% of ash,

and the rest of the mass are hemicellulose sugars based on the components measured.

4.3. Scanning electron microscopy (SEM)

The SEM images of the pre-acid hydrolysis solid “Solid @, Imaging” at increasing

magnification are shown in Figure 2.5a-g, starting at a magnification of 30x and
progressing up to a maximum of 15,000x magnification. The material appears as small
plates at low magnification whose surface morphology appears to be fairly uniform with

small “bumps” at high magnification. In Figure 2.5h-n, the SEM images of the post acid

hydrolysis solid “Solid ®, Imaging” appear at low magnification to be less plate-like and

more granular, but when magnification increases, the unmistakable shape of lignin
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droplets appears on the surfaces. The lignin droplets formed in the post acid hydrolysis
samples range from 2pm-10pum in size. The change of surface structure during acid
hydrolysis indicate that the dried solid matrix (assumed to be carbohydrate based on

HPLC analysis-which has already been reported on) was consumed or solubilized,

leaving mostly lignin and ash as residues. The image of solid sample “Solid @, Imaging”

with the same magnifications are shown in Figure 2.50-u. In those images we can see that

lignin droplets re-deposited on gypsum background, comparing with “Solid ®, Imaging”

of the same magnification, the droplets are almost in the same size; the only difference is
the appearance of gypsum as thin platelettes. According to Donohoe et al. (2008), when
the condition of dilute acid pretreatment exceeds the melting temperature of lignin, it
becomes mobile in the aqueous environment.”” Once the hydrophobic lignin moves to a
larger void, it forms spherical droplets to minimize its surface area contact with water.
The re-localization of lignin open up the structure of cell wall matrix, and this mechanism
explains that the cellulose microfibril from the pretreated biomass is more accessible to

enzyme.
4.4. Fourier transform infrared spectroscopy (FTIR)

Important functional groups found in biomass materials are listed in Table 2.6. A wide
band between 3600 -3000 cm™ is due to hydroxyl groups.”®>’ The absorbance at 2960 and
2890 cm™ is C-H stretching vibrations in methyl and methylene groups.”®® Lignin,
cellulose and hemicelluloses show no absorption bands in 2800-1800 cm™. Sarkanen and

Ludwig (1971) claimed that the stretching frequency of the carbonyl group in acetate
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derivatives of phenols is at 1750 to 1745 cm™ when the hydroxyl group is adjacent to it.
A group of complex bands ranging from 1600-850 cm™ were only obtained in the
spectrum of lignin, which were related to aromatic ring stretching, C-O-C (1270 cm™),
C=C (1580 cm™") and aromatic skeletal vibrations (1596-1605 cm™). C=0 was reported to

appear at 1730, which is more likely to be in hemicellulose. *’
4.5. Elemental analysis of solids

Overall, these ICP ion analyses summed up to less than the ash values in Table 2.3,
however they do agree with the trends in the ash data. 10 elements, Al, Ca, Fe, K, Mg,

Mn, Na, P, Si and Zn of three solid samples were tested by ICP, and the results are
present in Table 2.7. In the “Solid @, Drying” sample, Ca, K, Mg, and Na, and K are the
top inorganic elements. The 10 elements detected were found to be 2.27% of the total
solids, which is about half of the inorganic portion (5.8% of total solids, Table 2.3).

Sample “Solid ®, Imaging” is the hydrolyzed solid, with solids washed by distilled water,

and the 10 elements make up only 0.2% of total solid mass, and compared to “Solid @,

Drying” sample, the portion of "most elements especially K, Na, and Ca dropped

significantly, indicating that the inorganic mass exists mainly as water soluble ions and

were dissolved during dilute acid hydrolysis. “Solid @, Imaging” is the neutralized

sample, so the majority of inorganic element is calcium from gypsum formed in this unit
process, which was verified by result from Table 2.7, however the percentage of calcium
in this solid sample is far less from verifying the ash content (Table 2.3). As the amount
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of Calcium (3,849 ppm) in the digested sample is a lot less than the solubility of CaSO,,
which is 17,971 ppm,”® and the low level of calcium in the test solution may due to
reasons other than solubility like the limit of digestion capacity for the gypsum in the
condition applied, which is not that harsh compared to some other nitric acid digestion

. 35,59
studies.”

These results identify the key elements which would be found in the process
streams, including the fermentation solution, as both dissolved and solid forms. The

presence of these elements may help to satisfy the fermentation media requirements or

may help determine the fate of the inorganic solids after fermentation.
S. Conclusion

This characterization study shows that the wastewater stream from a hardboard facility
contains mostly hemicellulose or oligomers (up to 70% based on dry mass), and the
concentration of main fermentation inhibitors such as furfural and HMF can be kept
below toxic level under controlled dilute acid hydrolysis conditions. Most of the mass of
solids is dissolved during acid hydrolysis, and more than 50% of the monomer sugars
produced is xylose, with lignin leaving in a structure of droplet. As CaO is used to
neutralize the acetic hydrolysate, large amount of gypsum is formed. This results from
this characterization study show that the concentrated hardboard facility effluent may be
a feasible and promising feedstock for production of 5- and 6-carbon sugars for
bioethanol and acetate production with relatively low concentrations of fermentation
inhibitors. Further study should be undertaken to determine economic feasibility of

separating high lignin solids from the dilute acid hydrolysate as an energy source or
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carbon sequestration material. If such lignin separation could be accomplished, any

remaining solid waste discharged to the environment would be in much reduced amounts.
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Table 2.2. Main functional groups for FTIR

Wave number (cm'l)

Functional groups

Citation

56

3600 -3000 cm’™' hydroxyl groups

3600-3000 cm’™ OH stretching >
3417 cm’ O-H stretching vibration 8
2970-2860 cm’™ C-Hn stretching >
2890 and 2960 cm™ | C-H stretching vibrations in —CH2 and -CH3 | *°
2920 cm’’ OH — stretch in methyl and methylene group 20

1765-1715 cm™

C=0

57

1750 to 1745 cm™

C=0 stretching in acetate derivatives of
phenols when hydroxyl group is adjacent to it;
C=0 in xylan acetates (hemicelluloses)

26

1735 cm’ Carboxyl groups >
1732 cm’™’ Carbonyl C=0 ester >
Carbonyl stretching — unconjugated ketone and
1715 cm’™ carboxyl groups %
1613 cm’™ Aromatic skeletal mode >
1605 cm’™’ Aromatic skeletal vibrations Y
1605 cm’™’ Aromatic skeletal vibrations %0
1600 cm™ Aromatic skeletal vibrations plus CO stretch ol
1595 cm’™’ Aromatic skeletal vibration !

1595, 1510 cm’™

Aromatic ring stretch

57

1515-1510 cm

Aromatic skeletal vibrations

56

semi-circle stretch of para-substitute benzene

1514 cm™ rings 63
Aromatic C=C stretching from aromatic ring of
1514 cm™ lignin 17
1513 cm’ aromatic C=C stretch 62
1510 cm’™ aromatic skeletal vibrations ol
Aromatic skeletal vibrations combined with
1425 cm’! CH deformation o1
1370 cm’™ C-H deformation (symmetric) %6
1322 cm’ syringyl ring breathing with C-O stretching o
1250 cm’ Acetylated Hemicellulose %0
1250 cm’™ acetylated hemicelluloses o
Syringyl ring breathing and C-O stretching out
1239 cm 1 of lignin and xylan 2:
1051 cm’ -C-O- ’
1035 cm’’ Aromatic C-H in — plane deformation %0
1035 cm™ C-O stretching vibration >
C-O-C vibration at B-glycosidic linkagage in
897 cm™ hemicelluloses and cellulose 26
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Table 2.3. Total Solid and Ash Results

Solid samples Total solids” (% of Liquid) | Ash content” (% of solid)
Solid @, Drying 1.4+0.0 10.2+0.1

Solid @, Drying 7.5+0.0 5.8+0.0

Solid @, Imaging 5.4+0.2 66.9+0.3

“Mean (n=3) + 2Standard Deviations
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Table 2.4. Lignin analysis results

Acid soluble lignin® (% of | Acid insoluble lignin"
Solid samples Solid) (% of solid)
Solid @, Drying 6.0 £0.3 17.5+0.2
Solid ®, Imaging 2.3+0.2 72.5+0.6
Solid ®, Imaging 1.2 +0.1 20.4 +0.0
Liquid samples Acid soluble lignin® (g/) Insoluble lignin
Liquor @, Filtration 2.3+0.3 N/A
Liquor @, Filtration 11.9+0.2 N/A
Liquor ®, Filtration 5.6+£0.3 N/A

®Mean (n=2) + 2 Standard Deviations
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Table 2.5. Concentration of important components in pre and post dilute acid

pretreatment liquid samples

Post hydrolysis
Pre hydrolysis (liquor @, (liquor @, filtration)

Component filtration) concentration® (g/L) | concentration® (g/L)
Cellobiose 1.53+0.10 2.28+0.95
Other Oligomers - 8.60+2.94
Glucose 0.00 £ 0.00 5.34+0.45
Xylose 1.42 +0.37 23.04+1.31
Galactose 0.76 +0.12 3.30+0.16
Arabinose + Mannose 2.41 £0.22 7.33+0.14
HMF 0.00 + 0.00 0.06+0.01
Furfural 0.00 £ 0.00 0.28+0.08
Acetic Acid 0.63 +£0.15 8.56+0.11
Total Monomer Sugar
= Glucose + Xylose +
Galactose +
Arabinose + Mannose 4.95+ 0.49 39.00+£2.06

‘Mean (n=3) + 2 Standard Deviations

Mean (n=2) £+ 2 Standard Deviations
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Table 2.6. Mass balance calculation

Post Water Mass in
oligomer added non-
hydrolysis during monomer | Molecular
concentrati | reaction form weight
Components -on (g/L) (g/L) (g/L) (g/mol) %
Acid Soluble
Lignin - - - - 6.00
Acid Insoluble
Lignin - - - - 17.49
Ash - - - - 5.78
Cellobiose 0.61 0.03 0.58 342 0.75
Glucose 7.61 0.76 6.85 180 8.90
Xylose 30.39 3.65 26.75 150 34.73
Galactose 4.73 0.47 426 180 5.53
Arabinose +
Mannose 8.96 0.98 7.98 165 10.36
Acetic Acid 8.56 2.57 5.99 60 7.78
HMF 0.22 -0.06 0.29 126 0.37
Furfural 1.60 -0.60 2.20 96 2.86
Total monomer
Sugars =
Glucose +
Xylose +
Galactose +
Arabinose +
Mannose 51.70 7.79 4391 - 57.00
Total Mass
Balance - 98.04

Note: Total mass balance is sum of all from the % column except for rows of individual
sugars, “glucose, xylose, galactose and arabinose and mannose”. Percentages in the right
column are expressed as the concentrations of components divided by the concentration

of total solids, in another word, the % column is (The fourth column/77g/1)
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Figure 2.1 Process flow diagram for conversion of forest product industry wastewater
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effluent into biofuel and an acetate-based road de-icer compound.
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Figure 2.2 Cellulose structure (Sigma-Aldrich
(http://www.sigmaaldrich.com/catalog/product/aldrich/435244?]ang=en&region=US))

See Appendix A for documentation showing that it is fair use.
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Figure 2.3 Lignin structure (Sigma-Aldrich

(http://www.sigmaaldrich.com/catalog/product/aldrich/370959?lang=en&region=UY))

See Appendix A for documentation showing that it is fair use.
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Figure 2.4 Polymer of B-(1-4)-D-xylopyranosyl units (Sigma-Aldrich
(http://www.sigmaaldrich.com/life-science/metabolomics/enzyme-explorer/learning-
center/carbohydrate-analysis/carbohydrate-analysis-ii.html))

See Appendix A for documentation showing that it is fair use.
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Figure 2.5 Surface structure of three samples with increasing magnification; Solid @),
Imaging from Table 2.1 is (a-g), Solid ®), Imaging from Table 2.1 is (h-n), Solid @),
Imaging from Table 2.1 is (o-u) taken at point @), 3), and @ respectively are shown by
SEM in magnifications of 30x (a, h, 0), to 50x (b,i, p), 100x (c, j, q), 300x (d, k, r), 700x
(e, 1, s), SK (f, m, t), and15Kx (g, n, u).
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Abstract

A two-step hydrolysis process was employed on a hardboard wastewater stream for
determining the viability for production of mixed sugars. Five- and six- carbon sugar and
inhibitor concentrations were analyzed after dilute acid hydrolysis with different acid
concentrations and times of hydrolysis at 121°C. Quadratic regression models and
Response Surface Method (RSM) were employed to identify optimum reaction
conditions to give high sugar yields and acceptably low inhibitors levels which would not
negatively influence subsequent fermentation. The optimum conditions for dilute acid
pretreatment were determined to be in the range of acid concentration of 1.41 -1.81%,
and reaction time of 48 - 76 minutes. It was also discovered that enzyme hydrolysis after
optimum pretreatment did not produce significant amounts of sugars, thus acid
pretreatment alone is sufficient. This study concludes that a hardboard wastewater stream
is a promising feedstock for production of mixed sugars which may be fermented to high

value products.

Highlights

*Hardboard wastewater stream is proved a promising feedstock for production of mixed

sugars.

*The optimum condition of acid pretreatment was determined numerically by RSM for
the highest sugar yield as acid concentration in the range of 1.41 -1.81% and reaction

time of 48 - 76 minutes.
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= Enzymatic hydrolysis (EH) is not necessary for this wastewater stream after optimum

dilute acid pretreatment, yet EH is not sufficient without dilute acid pretreatment.

Keywords

Hardboard wastewater; dilute acid pretreatment; enzymatic hydrolysis; regression models;

response surface methodology

1. Introduction

Biomass resources as feedstock for the production of bioenergy have been widely
accepted as a solution to fill in the gap between the growing energy requirement and
reducing fossil fuel resources (Naik et al., 2010; Perlack & Stokes, 2011; Sims et al.,
2010). Lignocellulosic biomass feedstock is considered a promising alternative resource
to produce fuels and chemicals as it avoids competition with food (Naik et al., 2010;
Sims et al., 2010). Apart from energy crops such as switchgrass and hybrid poplar,
agriculture and forest biomass and industry waste resources are also of high potential
(Perlack & Stokes, 2011). Novel feedstocks unused previously like forest hardboard
processing wastewater is included in this scope to make full use of available biomass

resources.

Three main wood components; cellulose, hemicellulose and lignin, have been studied for
their potential to be converted to biofuels and bioenergy. Lignin is a phenolic biopolymer
that impedes enzymatic hydrolysis of cellulose and hemicellulose-degrading enzymes
(Kumar et al., 2009). Cellulose and hemicellulose are polysaccharides hydrolysable by

both chemical and biochemical approaches. Cellulose is a crystalline polymer consisting
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of only glucoses while hemicellulose is a branched polymer consisting of various
monosaccharide units such as glucose, xylose, galactose, arabinose and mannose. In
addition, hemicellulose is more accessible to hydrolysis compared to cellulose due to its

amorphous structure (Chandra et al., 2007; Kumar et al., 2009; Mosier et al., 2005).

Thermochemical conversion and biochemical conversion are technologies applied in the
biofuel production. Thermochemical conversion is usually conducted under high
temperature (450-700°C), for example pyrolysis and gasification are thermochemical
processes widely studied for biomass conversion (Lange, 2007; Shonnard et al., 2012).
Biochemical conversion technology employs much more gentle conditions compared to
thermochemical conversion. Pretreatment and enzymatic hydrolysis are included in
biochemical conversions to break down the structure of cellulose and hemicellulose into
fermentable sugars (Shonnard et al., 2012). Effective pretreatments should not only
solubilize or partially solubilize the structure of hemicellulose chains but also reduce the
crystallinity of cellulose and make cellulose and hemicellulose more accessible to
enzymes. Among the pretreatment methods studied most include dilute acid pretreatment,
hydrothermal pretreatment, alkaline pretreatment, ammonia fiber expansion, and ionic
fluids (Carvalheiro et al., 2008; Kumar et al., 2009; Mosier et al., 2005; Pienkos & Zhang,
2009; Shonnard et al., 2012). Dilute acid pretreatment is one of the most widely used
pretreatment approaches (Kumar et al., 2009). However, during the process of acid
pretreatment, some compounds inhibitory to fermentation of sugars are generated,
including dehydration products from sugars, (furfural and hydroxymethylfurfural (HMF)),
phenolic compounds and organic acids. These compounds may have inhibitory effects on

fermentation depending on the concentration (Palmqvist & Hahn-Hégerdal, 2000;
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Taherzadeh & Karimi, 2007). Therefore, the optimum acid pretreatment condition for a
certain feedstock is one that maximizes the yield of fermentable sugars, as well as

minimizes the level of potential inhibitors.

Regression methods and response surface methodology (RSM) have been applied in
analyzing data from various kinds of experiments (Montgomery, 2009), and the acid
pretreatment process has been modeled to determine the optimum parameters conditions
for best sugar yield and minimum inhibitors (Jeong et al., 2010; Jeya et al., 2009;
Sasikumar & Viruthagiri, 2008; Rodrigues, 2012; Kim et al, 2011). Acid pretreatment is
applied to increase the accessibility of cellulose to enzyme, and a subsequent enzymatic
hydrolysis is usually used to further break down the structure of cellulose in the biomass
materials. Therefore, the concentration of sugars after enzymatic hydrolysis account for

the results of both acid pretreatment and enzymatic hydrolysis.

One objective of this research was to evaluate the process of dilute acid pretreatment of a
novel biofuel feedstock, a hardboard process wastewater stream, and determine the
effects of acid concentration and reaction time on the yield of sugar as well as inhibitors
produced. Another objective of the research was to evaluate the hydrolysis results after
both acid pretreatment and enzymatic hydrolysis and to compare the results with acid
pretreatment results alone, in order to understand the effect of enzyme as well as its

loading (concentration).
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2. Materials and method

2.1. Composition of the effluent waste materials

The biofuel feedstock for this research is a wastewater stream from a wood panel
manufacturing facility with 7.5% of dry solids, as determined following National
Renewable Energy Laboratory (NREL)’s Laboratory Analytical Procedure (LAP):
“Determination of structural carbohydrates and lignin in biomass.” (Sluiter et al., 2008a).
Most of the cellulose in the chipped hardwood was retained in the extraction process, and
thus hemicellulose was hypothesized to be the main component in the wastewater to
produce fermentable sugars. As determined in a prior study (see Chapter 2 for detail), the
composition of the effluent solid material on a dry basis is 5% of ash, 23.5% lignin, 8.9%
glucans, 34.7% xylans, 5.5% galactans, and 10.4% arabinans and mannans as determined
based on NREL’s Laboratory Analytical Procedure: “Determination of structural

carbohydrates and lignin in biomass” (Sluiter et al., 2008b).

2.2. Acid pretreatment and enzymatic hydrolysis condition

Acid pretreatment was performed in a sealed 500ml VWR glass bottle in an autoclave at
121°C. Reaction time with six time levels (1, 30, 45, 60, 75 and 90 min) and H,SOy4
concentration with three levels (0%, 1%, and 2%) are two parameters considered in acid
pretreatment. The 18 conditions were all carried out in duplicate starting by adding 85ml
of feedstock with corresponding amount of 96% H,SO4 to reach the required acid

concentration.
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Out of all the samples, only 30, 60, and 90 minute trials were chosen for the
subsequential enzymatic hydrolysis as shown in Table 3.1. It began by collecting 50 mL
of the acid hydrolysate from each pretreated sample. This 50 mL was then divided into
two 25 mL samples in separate Erlenmeyer flasks (50ml). Each 25 mL sample was then
neutralized to a pH of 4.6-5, which is the pH required by the enzymes. Then 1.25 mL of a
IM sodium citrate buffer (pH 4.5), was added to each sample to help maintain a pH in the
sample of ~4.8. Once the buffer was added, 75uL cycloheximide (10mg/ml solution) and
100 pL tetracycline (10mg/ml solution) were also added to prevent microbial
consumption of sugars (Selig et al.,2008). The flasks were then placed into an orbital
shaker (Lab-Line Orbit Environ-Shaker, Lab Line Instruments Inc., IL) at 50 °C for one
hour to ensure the temperature of each sample had reached 50 °C. After this one hour
equilibrium period, the samples were ready for the addition of enzyme. The enzymes
used were, Accellerase 1500 (DuPont Industrial Biosciences), and Accellerase XY
(DuPont Industrial Biosciences). Accellerase 1500 contains exoglucanase, endoglucanase,
hemi-cellulase, betaglucosidase and others, which are effective for cellulose,

hemicellulose and B -glucans. Accellerase XY contains xylanse, and usually is used to

supplement cellulase. Two dosage levels, low and high were chosen as shown in Table

3.2

Once the enzymes were added, the samples were placed back in the orbital shaker for 72
hours at 50°C. 1-mL samples were collected at 24, 48, and 72 hours and filtered through a
0.2 um filter before analyzed for the concentrations of monomer sugars and degradation

products.
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2.3. Concentration analysis

Acid pretreatment results and enzymatic hydrolysis results were analyzed by high
performance liquid chromatography (Agilent 1200 Series HPLC) with a Bio-Rad Aminex
HPX-87P column. Monomer sugars (glucose, xylose, galactose, arabinose and mannose)
released from the two processes were detected by a refractive index detector, whereas the
inhibitors generated (furfural and (HMF)) were analyzed by a diode-array detector

(DAD)(see section 3.2 of Chapter 2 for details)

2.4. Statistical analysis

RSM were performed by the software Design-Expert 8.0 (Stat Ease, Inc., Minneapolis,
USA) to evaluate the combined effect of parameters on the responses and to estimate the

optimum condition for acid pretreatment and enzymatic hydrolysis.

A quadratic model was expressed in equation (1) to predict the relation between
responses (dependent variables) (y, monomer sugar yields (Y monomer sugars), total sugar
yield (Y total sugar), inhibitor yields (Y innibitors), @and the variables (reaction time and acid

concentration)),

¥ = Bo + B1x1 + BaXa 4 B11Xi + Baax3 4 BroXiXpte (1)

where y refers to the response variables, x; and x, represent reaction time and acid
concentration, respectively, B; are the coefficients to be determined, and € are random

errors. The yields of sugars or inhibitors are expressed as Y sugars O Y innibitors and defined
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as the concentration of sugars or of inhibitors divided by the concentration of total solid
in the feedstock (77.03g/1 as shown in Chapter 2).

Hydrolysis results post enzymatic hydrolysis were modeled as equation (2), where y
represents sugar yield (monomer sugars and total sugar yield) after enzymatic hydrolysis.
X3 is the enzyme loading of Accellerase 1500.

Y = Bo + BiX1 + BaXy + BsXg + B1aXT + Boox + Bazx3 + BraXiXp + BiaXiXz +
BasXoX3te (2)
The significance of each quadratic term (any term involving x; multiplied by x;) was
evaluated. Quadratic terms with P-values over 0.05 were considered insignificant and
removed from the model. The relations between the response variable y and the variables
of both equations (1) and (2) were then tested through P-value, which is “the probability
that statistic will take on a value that is at least as extreme as the observed value of the
statistic when the null hypothesis Hj is true” (Montgomery, 2009), as well as R?, which is
defined as the sum of squares corresponding to the model divided by the total sum of
squares. The “adjusted R*” is more useful in complex experiments with several factors as
it reflects the numbers of factors in the model; thus it is also referred to in the research.
The models were also compared to the experimental data when one factor is fixed. The
variable values leading to the optimum responses were determined by numerical analysis

with “Design-Expert 8.0”.
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3. Results and discussion

3.1. Sugar and inhibitory compounds generated during acid pretreatment

The key result from this hydrolysis study is that total monomer sugar concentrations
increase with increasing acid concentration for any fixed reaction time and also increase
with increasing reaction time for any fixed acid concentration, as shown in Figure 3.1.
The exceptions to this trend are when the autoclave time reaches 90 minutes, the
monomer sugar concentrations begin to decrease for acid levels of 1% and 2% due to
conversion of monomer sugars to dehydration products. This suggests that the optimum
condition of acid pretreatment is within the range of our matrix. The baseline shows total
monomer sugar concentration before acid pretreatment. More results of monomer and

total sugars are shown in section 1.1 of Appendix B.

Hydroxymethyl furfural and furfural concentrations of samples undergoing different
experiment conditions are displayed in Figure 3.2. As discussed in Chapter 1, most of the
previous studies show that when the concentration of furfural is below 0.5 g/l, the
inhibition is not strong enough to be observed on Scheffersomyces stipitis (Mussatto &
Roberto, 2004). HMF is expected to exhibit a less toxic effect due to lower formation rate

and lower concentration than furfural.

Results presented here indicate that the higher the acid concentration and the longer the
experiment time, the more HMF and furfural were generated. That means that when more
monomer sugars are generated at high acid concentration and long time, more HMF and

furfural are produced. Thus, the object was to reach a balance. More HMF and furfural
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results can be found in section 1.2 of Appendix B. HMF and Furfural results compared

with concentrations of monomer sugars are displayed in section 1.3 of Appendix B.
3.2. Sugar yield after enzymatic hydrolysis

Total monomer sugar yield after 72 hours of enzymatic hydrolysis are compared with
acid pretreatment only (AP) results in Figure 3.3. These data generally show that the
higher loading of enzyme results in more monomer sugar production. This trend is
especially true for 0% and 1% dilute acid pretreatment. However, for the samples that
already exceeded 30 g/L produced after dilute acid hydrolysis, few additional monomer
sugars were released during subsequent enzymatic hydrolysis, and less difference due to

the enzyme loading was observed compared to dilute acid hydrolysis only.
3.3. Statistical Analysis

The experimental data from 18 trials used to build up the regression models are displayed
in Table 3.3a and Table 3.3b, including seven response variables as well as two variables
reaction. From the seven responses modeled to understand the effect of acid pretreatment,
monomer sugars (glucose, xylose, galactose, arabinose and mannose) yields and total
sugars yield were fitted in quadratic regression models as shown in equation (3)-(7) with
two variables reaction time (x;) and acid concentrations (x,). These five models are all
significant with the P-values less than 0.0001, and R? over 0.90, explaining more than

90% of the variability in responses. The adjusted R? are in reasonable agreement with R

Ygiucose = —0.0149 + 4.1860 x 107* x; + 0.7431x, — 0.0166 x3 (3)
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Yxylose = —0.0345 + 1.0138 X 1073 x; + 0.3211 x, — 0.0822 x3 (4)

Yoatactose = 4.8141 X 1073 + 1.7245 x 10~* x, + 0.0356 X x, — 8.3194 x 1073 x4(5)

YarabinosesMannose = 0.0395 + 1.1045 x 10~#x, + 0.0910x, — 1.9473 x 10™*x,x, —

0.0225 x2 (6)

Yrotal sugar = 6.1483 x 1073 + 1.4905 x 1073x; + 0.5131 x, — 0.1305 x3 ©)

Response surfaces were generated using the equation for total monomer sugar (egn. 7)
and are shown in Figure 3.4. Table 3.4 is a summary of the results of all responses in
their highest values together with the correspongding values of the variables as well as R?,
adj R?, and P-value. The optimum total sugar yield was found 0.6447 when autoclave
time is 90 minutes and acid concentration is 1.97%. Similarly, the maximum yield of
glucose, xylose and galactose are all found in autoclave time range (86.70-90.00), and
acid concentration (1.73%-2.00%). The maximum yield of arabinose and mannose, on
the other hand, were found when autoclave time is 1 minute, indicating that arabinose and
mannose require much shorter time to be released, and the reaction is more sensitive to
acid concentration than autoclave time. However, arabinose and mannose make up only a
small portion of total sugars, so this result does not have significant influence on total
sugar production. Response surface of monomer sugars glucose, xylose, galactose,

arabinose and monnose are displayed in Figure B.29-B.32 in section 3.1 of Appendix B.

In order to understand the regression model better, predicted total sugar yields in certain
circumstances (constant reaction times or acid concentrations) are compared with the

actual total sugar yields in Figure 3.5. The regression model shown in Figure 3.5a shows
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that for a given acid concentrations, total sugar yields increase linearly with the reaction
time. The regression model correctly shows higher yields with higher acid concentration.
However, the data show a more complicated trend with increasing reaction time. The
data exhibits a delayed then increasing yield trend at early times, a more linear increase at
intermediate times, and then a slight decrease at long times, for the 1 and 2% acid
concentration data. The regression model realistically predicts yield increase with
reaction time and acid concentration, but is not able to account for the non-linear
behavior in the data. In Figure 3.5b, total sugar yield is plotted versus increasing acid
concentration for each reaction time. The regression model exhibits a non-linear concave
downward trend with increasing acid concentration with a maxium near 2% acid. But
some of the data in Figure 3.5b show a different response. For 90 minutes reaction time,
yield declines between 1 — 2% acid concentration due to dehydration reactions of
monomer sugars to produce furfural and HMF. HMF and furfural were modeled in
equation (8) and (9). In these two models, only the x;x, term in equation (9) is
significant out of all quadratic terms. The range of these responses are shown in Table 3.4.
As shown in Figure 3.6 and 3.7, yield of furfural is approximately less than 0.01 and for
HMF yield it is less than 0.001 for all reaction conditions, indicating that the
concentrations of furfural and HMF are less than 0.78 g/l and 0.11g/1, respectively, in the
range of experimental conditions. Figure 3.6a shows a linear increase in predicted HMF
yield with increasing reaction time for all acid levels, and the model fit is most favorable
for the 1% acid data. In Figure 3.6b, the data shows an increase in HMF yield with
increasing acid% with the exception for the 75 minute data, consistent with the model

predictions. The regression model for furfural is compared to data in Figures 3.7a and b,
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with good fit between data and the model. The data and model exhibits increasing yield
of furfural with increasing time for constant acid level and with increasing acid level for
constant time. The linear trends in furfural yield predicted by the model are in contrast
with the total monomer sugar and HMF model predictions in that the slopes of the model
lines for furfural increase with increase in acid level and reaction time for Figures 3.7a

and b, respectively.

The maximum concentration of furfural is 0.78g/1 while that of HMF 1is 0.11g/l. HMF
and furfural in these concentrations may have some inhibitory effect on the subsequent
fermentation step using S. stipitis CBS 6054 (Groves et al., 2013). According to previous
studies on inhibitory effect of HMF and furfural, the optimum conditions of acid
pretreatment should be determined while the concentration of furfural is less than 0.5 g/l
to avoid the inhibition (Mussatto & Roberto, 2004). Therefore, the optimum conditions of
acid pretreatment should exclude those resulting in furfural concentrations more than 0.5
g/1. The yellow line in Figure 3.8 represents 0.5 g/l of furfural concentration (see Figure

B 34 in Appendix B for detail). This yellow line and the contour representing 0.58 of
total sugar yield together form a green area, which is the optimum conditions resulting in

total sugar concentrations over 44.8 g/l and furfural concentrations less than 0.5 g/1.

Yimp = 1.9648 x 107% + 4.1311 X 106 x, + 4.0877 X 10™* x, (8)

Yeurfural = —3.7354 X 107% + 1.2334 x 1075 x, + 1.8872 X 1073x, + 3.1266 X

1075%,X, 9)
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In enzymatic hydrolysis experiments conducted after neutralizing dilute acid hydrolysate,
inhibitor levels remained the same, but additional amount of sugar was released.
Therefore, the effect of three variables (acid pretreatment time, acid concentration, and
enzyme loading) in the two stages (dilute acid hydrolysis followed by enzymatic
hydrolysis) were evaluated together. All dependent variables and variables in various
hydrolysis conditions are shown in Table 3.5. The yield of total sugar as well as glucose,
xylose, galactose, and arabinose and mannose were fit to regression models with the three
variables in equation (10)-(14). All model fits are significant (P<0.0001), and the
significance of the models were also verified by the coefficients of determination as
shown in Table 3.6 (R*>0.9000). Table 3.6 also displayes the maximum value of each
response calculated from the models as well as the reaction condition for this maximum.
It can be summerized that the highest yield of glucose and galactose does not require
much enzyme, which might be because the glucans and galactans are mostly hydrolyzed
into glucoses and glactoses during acid pretreatment. The highest yield of arabinose and
mannose show up in short autoclave times, meaning arabinose and mannose could be
released into the liquid shortly after acid pretreatment starts. Xylose, on the other hand,
requires much longer reaction time and more enzyme loading. As the amount of xylose is
the most among the five monomor sugars, the optimum condition for total sugars is most

influenced by the optimum condition for xylose.

A three dimentional cubic model showing total sugar yield after the two stage hydrolysis
is displayed in Figure 3.9, each direction representing one variable, thus each point in the
cubic model locks a certain hydrolysis condition. Through numerical calculation from the

model, the maximum total sugar yield of 0.5926 was shown in the figure as the optimum
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solution out of all points representing all solutions distributed in the cube with various
reaction conditions. It can be observed from Figure 3.9 that when acid concentration is
high enough, enzyme loading and autoclave time both have limited influence to the total
sugar yield. Similar results can be observed from cubic models of individual monomer

sugars shown as Figure B.37-B.40 in section 3.3 of Appendix B.

As discussed in section 2.2, experimental data of three acid pretreatment time, two acid
concentration and two enzyme loading levels resulted in a list of numerical solutions for
the two stage hydrolysis as shown in Table 3.7 . The total sugar yields in the first ten
solutions (the fourth column) have little differences, unlike reaction time (the first
column), which are all in the range of 85 ~ 90 minutes; or acid concentration (the second
column), which are all in the range of 1.2~2.0 %, enzyme loading varies from 0.05 to
0.25. This proves that multiple combinations of the three varibles could result in very
similar results, the loss of total sugar yield from the decrease of one variable can be made
up by increasing another one. The optimun total sugar yields require acid concentration
and reaction time in a certain range, but the effect of enzyme loading on total sugar yields

is very little.

Taken together, results from this study show that in the hydrolysis of hardboard
wastewater stream, enzyme is not necessary as it does not contribute significant amount

of additional sugars after an efficient acid pretreatment.

Velucose = 0.0529 + 1.0813 x 10™*x, + 0.0284x, + 0.0576x5 — 0.0322 X,X5 —

5.9881 x 10~3x2 (10)
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Yxylose = 01022 + 1.5151 x 10~*x; + 0.2185x, + 0.5808x; — 0.3219x,x5 —

0.0516x2 (11)

Yealactose = 0.0370 — 5.0982 x 10™*x, + 0.0221x, + 0.0355x5 + 1.2430 X

10™*x,x, — 0.0166X,X3 + 3.9866x2 — 7.0387 X 10~3x2 (12)

Y Arabinose+Mannose = 0.2900 — 0.0103x, + 0.0653x, + 0.0287x5 + 8.4362 X

_Xl_ . X
1075x2 — 0.0236x3 13

YTotal sugar = 0.2184 + 1.9107 x 10™*x; + 0.3580x; + 0.6950x; — 0.3817x,%; —

0.0902x2 (14)

Several studies have attempted to find the optimum conditions of acid pretreatment using
the RSM for various feedstocks such as barley straw and rapeseed straw (Kim et al., 2011;
Jeong et al., 2010). Typical conditions analyzed with RSM in these studies include
reaction time, temperature, and acid concentration. However, in these studies optimum
conditions identified by RMS method did not consider inhibitory effects from the
byproducts generated from acid pretreatment, as my study did. In addition, previous
studies determined the optimum conditions of enzymatic hydrolysis for various
feedstocks such as maize starch, sapodilla juice and wheat straw with RSM (Kunamneni
and Singh, 2005; Sin et al., 2005; Q1, 2009). Enzyme dose, incubation time and pH are
typical factors studied, and the optimum conditions determined vary depending on the
feedstocks and the pretreatment methods. The RMS has been employed often in the

literature to aid in identification of optimum conversion conditions, however it is difficult
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to make direct comparisons between the various studies due to differences in feedstocks

and pretreatment processes.

The models set up in this statistical analysis, however, have some limitations in precisely
describing the trend of the experimental data. First of all, there are only 18 runs analyzed
in the regression surface methodology, therefore more experimental data and more
repeated runs would help improve model fit to the data and reduce uncertainties.
Furthermore, usually low order models (first or second order) are applied (Montgomery,
2009), however, second order models may not be accurate to describe the kinetic relation
between dependent variables and the variables, and higher order models may be needed
to describe the trend of the experimental data better. Apart from that, the optimum
conditions chosen by this method include multiply combinations of reaction time and
acid concentration. In order to apply the results in this study to commercial production of
ethanol, a thorough economic analysis would be necessary to understand the effects of

reaction conditions on process economics.

4. Conclusion

Hardboard wastewater is a potential feedstock for the production of ethanol as a xylans-
rich biomass material. Monomer sugars generated during dilute acid pretreatment alone is
a good start for generating mixed sugars for possible high-value product formation
through fermentation with inhibitor concentrations below threshold values. The optimum
conditions for dilute acid pretreatment were determined to be in the range of acid
concentration (1.41 -1.81%), and reaction time (48 - 76 minutes) by RSM, however

further study refinements require an economic analysis. We also conclude that enzyme is
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not necessary for the high sugar yield with this type of material as hardboard processing

wastewater.
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Figure 3.1 Comparison of the total monomer sugar concentrations after each acid
pretreatment trial (The results are average of two replicates and the error bar is +/- one
standard deviation).
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Figure 3.2 HMF and furfural concentrations after different acid pretreatment trials (The
results are average of two replicates and the error bar is +/- one standard deviation).

98



70 0% Acid High
60 =0% AP

% 50 T ® 1% Acid High
=1 ® 1% AP

2 40 2% Acid High
g 30 - ®2% AP

§ (0% Acid Low
g20 0% AP

> 10 - ® 1% Acid Low
® 1% AP

o 30 0 % % Acid Low
Autoclave Time (min) ®2% AP

Figure 3.3 Comparison of the total monomer sugar concentrations after 72 hr of
enzymatic hydrolysis (The results are average of two replicates and the error bar is +/-
one standard deviation, the crossed bars in the same color represent the total monomer

sugars before enzymatic hydrolysis starts under certain acid pretreatment condition. One
color represents one acid pretreatment condition, “high” and “low” are loading of
enzyme). AP is acid pretreatment only; with no enzymes added after AP.

99



=

Total Sugar
g

2.00
4.
45.50
27. %)6- . .
B: Acid Concentration (%) 1884 Autoclave Time (min)

200

150 —

1.00

Acid Concentration (%) o

050

B

0.00

100 990 1880 2770 3660 4550 5440 6330 7220 8110 90.00
A: Autoclave Time (min)

Figure 3.4 Effect of A:autoclave time (min) and B: acid concentration (%) on total sugar
yield (total sugar yield plotted in 3D surface (a) and contour (b) plots)
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Figure 3.5 Comparison of predicted total sugar yields from the regression models with
experimental data at fixed reaction time or acid concentration. (a) Predicted total sugar
yields (lines) compared with experimental data (points) at fixed acid concentrations (The

results are average of two replicates and the error bar is +/- standard deviation). (b)

Predicted total sugar yields (lines) compared with experimental data (points) at fixed acid

concentrations.
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Figure 3.6 Comparison of predicted HMF yields from the regression models with

experimental data at fixed reaction time or acid concentration. (a) Predicted HMF yields

(lines) compared with experimental data (points) at fixed acid concentrations. (The

results are average of two replicates and the error bar is +/- one standard deviation.) (b)

Predicted HMF yields (lines) compared with experimental data (points) at fixed acid

concentrations.
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Figure 3.7 Comparison of predicted furfural yields from the regression models with
experimental data at fixed reaction time or acid concentration. (a) Predicted furfural

yields (lines) compared with experimental data (points) at fixed acid concentrations. (The
results are average of two replicates and the error bar is +/- one standard deviation.) (b)
Predicted furfural yields (lines) compared with experimental data (points) at fixed acid

concentrations.
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Figure 3.8 Optimum conditions (A: autoclave time (min) and B: acid concentration (%))
for acid pretreatment highlighted in contour plot of total sugar yield. Reaction conditions
of time and acid concentration to the right and above should be avoided in order to
control furfural and HMF inhibitor levels.
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Figure 3.9 Effect of A: autoclave time (min), B: acid concentration (%) and C: enzyme
loading (ml/gram of dry biomass) on total sugar yield
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Appendix B

1. Acid Pretreatment (AP) Results

1.1. Monomer and Total Sugar

Figures B.1-B.6 show the individual monomer sugar, total monomer sugar, and
cellobiose present after different AP trials. These figures include a line at the total

monomer sugar concentration prior to any treatment of the API effluent.

60
m Total Sugar B Glucose

50 - = Xylose = Galactose
-~ B Arabinose and Mannose H Cellobiose
S
an 40
N’
=
3=
= 30
=
g
3 20
=
&)
© 10

Total sugar level
before acid
0 - pretreatment
0 1 2
Acid Percentage

Figure B.1 Total and individual monomer sugar concentrations after 1min AP (The
results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.2 Total and individual monomer sugar concentrations after 30min AP (The
results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.3 Total and individual monomer sugar concentrations after 45min AP (The
results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.4 Total and individual monomer sugar concentrations after 60min AP (The

results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.5 Total and individual monomer sugar concentrations after 75min AP (The
results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.6 Total and individual monomer sugar concentrations after 90min AP (The
results are average of two replicates and the error bar is +/- one standard deviation.)

Figures B.7-B.12 display the individual monomer sugars present after AP stacked upon
each other. This shows each monomers’ individual contribution to the total sugar
concentration. This representation makes it very easy to see the individual contributions
toward total monomer sugar concentration, but difficult to compare the trends between

the individual monomer sugars.
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Figure B.7 Total and individual monomer sugar concentrations stacked after 1 min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.8 Total and individual monomer sugar concentrations stacked after 30 min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.9 Total and individual monomer sugar concentrations stacked after 45 min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.10 Total and individual monomer sugar concentrations stacked after 60 min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.11 Total and individual monomer sugar concentrations stacked after 75 min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.12 Total and individual monomer sugar concentrations stacked after 90 min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)

1.2.Hydroxymthyl furfural (HMF) and furfural

1.2.1. Hydroxymethyl Furfural and Furfural Analysis after Acid Pretreatment

Hydroxymethyl furfural and furfural concentrations of samples undergone different
experiment conditions are displayed in Figure B.13, the higher the acid concentration, the
longer the experiment time, the more HMF and furfural were generated. That means,

when more monomer sugars were generated, more HMF and Furfural were collected too.
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Figure B.13 HMF and furfural concentrations after different AP trials. (The results are
average of two replicates and the error bar is +/- one standard deviation.)

Figures B.14-B.19 show the Furfural and HMF concentrations after each AP trial.
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Figure B.14 Furfural and HMF concentrations after 1 min (The results are average of
two replicates and the error bar is +/- one standard deviation.)
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Figure B.15 Furfural and HMF concentrations after 30 min AP (The results are average
of two replicates and the error bar is +/- one standard deviation.)
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Figure B.16 Furfural and HMF concentrations after 45 min AP (The results are average
of two replicates and the error bar is +/- one standard deviation.)
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Figure B.17 Furfural and HMF concentrations after 60 min AP (The results are average
of two replicates and the error bar is +/- one standard deviation.)

0.60

0.50
m HMF

e

N

(e}
!

® Furfural

<
0
(e}

0.20

Concentration (g/L)

0 1 2
Acid Percentage

Figure B.18 Furfural and HMF concentrations after 75 min AP
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Figure B.19 Furfural and HMF concentrations after 90 min AP (The results are average
of two replicates and the error bar is +/- one standard deviation.)

Figures B.20-B.25 show the monomer sugars present after each AP trial along with HMF
and furfural (the fermentation inhibitors). These graphs help show the relationship
between monomer sugar generation and fermentation inhibitor generation during the AP

trials.
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Figure B.20 Monomer sugar, HMF, and Furfural concentrations following a 1 min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.21 Monomer sugar, HMF, and Furfural concentrations following a 30 min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.22 Monomer sugar, HMF, and Furfural concentrations following a 45 min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.23 Monomer sugar, HMF, and Furfural concentrations following a 60 min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.24 Monomer sugar, HMF, and Furfural concentrations following a 75 min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.25 Monomer sugar, HMF, and Furfural concentrations following a 90min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)

2. Enzymatic Hydrolysis (EH) Results

Figures B.26-B28 show the contribution of the enzyme toward total sugar concentrations
throughout the EH trials. The enzymes used were, Accellerase 1500 (Genencor) and
Accellerase XY (Genencor) with two dosage level, low and high. The amounts used for

the high and low loadings are given in Table 4.2.
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Figure B.26 Total monomer sugar concentrations throughout the EH after 30 min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.27 Total monomer sugar concentrations throughout the EH after 60 min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)
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Figure B.28 Total monomer sugar concentrations throughout the EH after 90 min AP
(The results are average of two replicates and the error bar is +/- one standard deviation.)

3. Statistical Analysis Results

3.1. Optimum Conditions of Each Individual Sugar

Figures B.29-B.32 show the response surface results of each monomer sugars (arabinose
and mannose were analyzed together). The predicted optimum value was shown in the

flags.
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Figure B.29 Effect of A: autoclave time and B: acid concentration on glucose yield (3D
surface (a) and contour (b))
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Figure B.30 Effect of A: autoclave time and B: acid concentration on xylose yield (3D
surface (a) and contour (b))
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Figure B.31 Effect of A: autoclave time and B: acid concentration on Galactose yield
(3D surface (a) and contour (b))
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Figure B.32 A: Effect of A: autoclave time and B: acid concentration on the summery of
arabinose and mannose yield (3D surface (a) and contour (b))
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3.2. Optimum Condition Analysis of Inhibitors

Figure B.33-B.36 show the response surface results of HMF and furfural.
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Figure B.33 Effect of A: autoclave time and B: acid concentration on HMF (3D surface
(a) and contour (b))
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Figure B.34 Effect of A: autoclave time and B: acid concentration on Furfural (3D
surface (a) and contour (b))

3.3. Optimum Condition Analysis of Monomer Sugars

Figure B.35-B.38 show cubic model of each individual sugar after two stage hydrolysis

(arabinose and mannose cannot be separate, so they were analyzed together).
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Figure B.35 Effect of A: autoclave time, B: acid concentration and C: enzyme loading on
total sugar yield (cube and contour)
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Figure B.36 Effect of A:autoclave time, B: acid concentration and C: enzyme loading on
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Figure B.37 Effect of A: autoclave time, B: acid concentration and C: enzyme loading on

total sugar yield (cube and contour)
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Abstract

Integrated production systems are designed on the concept of “minimum waste” to fully
utilize natural resources by building industries next to each other when the waste of one
is able to be the feedstock of another. A forest hardboard product wastewater stream
contains wood extractives suspended in it which meet the input requirement of a
cellulosic ethanol biorefinery facility. In addition, the biorefinery process partially
substitutes for conventional waste water treatment (WWT). A life cycle carbon footprint
of fuel ethanol produced from a co-located biorefinery facility has been evaluated with a
focus on greenhouse gas (GHG) emissions, and compared with petroleum gasoline. The
methodology takes into account changes to the original hardboard facility due to the
presence of the integrated biorefinery. Three allocation methods; system expansion, mass
allocation, and market value allocation, are applied in this study. Six scenarios are
analyzed to evaluate the significance of several key variables. The basecase life cycle
carbon footprint results show that ethanol produced from this biorefinery emits -27, 21,
or 16 g CO; eq. /MJ using system expansion, mass or market value allocation,
respectively. The sources of energy employed have significant influence on the life cycle

GHG emissions for ethanol and potassium acetate.

Keywords

Life cycle carbon footprint, bioethanol, integrated biorefinery, energy sharing, GHG

emissions, potassium acetate
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Introduction

The search for renewable liquid transportation fuels is motivated by concerns over energy
security and climate change. In the U.S. transportation sector, the renewable liquid fuel
market is led by corn ethanol.' But corn is also a food source and therefore alternative

feedstocks are being considered for future biofuel production.
Potential feedstocks for biofuels.

According to a recent report, future transportation biofuels will be produced in the U.S.
mainly from forest and agricultural resources.” Forest-derived resources include woody
energy crops such as poplar or willow, forest residues and thinnings, mill residues, and
pulping liquors. Agricultural resources include energy crops such as switchgrass and
miscanthus, oil crops (for example soybeans, rapeseed, canola, camelina), as well as
agriculture residues (corn stover). In addition, woody components of municipal solid
waste (MSW) and industrial waste may be suitable biofuel feedstocks. However, limited
consideration has been given in the literature to feedstocks such as industrial and

municipal wastes compared to forest and agricultural resources.

A few studies have looked into the technical feasibility of converting waste materials to
biofuels and chemicals.”® In working with an industrial partner, we have studied the
process of converting hardboard manufacturing facility wastewater (containing
suspended woody solids) into ethanol and potassium acetate. Furthermore, we estimate
that production of ethanol from all U.S. hardboard facility wastewater may yield
approximately 31 million gallons/yr. (See section 1.1 of the Supporting Information (SI)

for calculations leading to this ethanol yield estimate).

Life cycle assessment (LCA) is an accepted method to evaluate environmental
performance of new products and processes, especially in recent years for biofuels." ™
The studied biomass raw materials include crop residues, energy crops, algae, and
others." °'° Biofuels derived from dried solid waste or grass have often exhibited lower
environmental impacts compared with traditional fossil fuels in terms of GHG emissions,
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however this outcome is dependent on the specifics of each biofuel pathway." ® More rare
are life cycle assessments conducted on the conversion of organic materials in
wastewaters to energy. One such approach is by bioelectrochemical systems (BESs),
including (i) microbial fuel cell (MFC) treatment systems, (ii) microbial electrolysis cell
(MEC) treatment systems, and (iii) microbial desalination cell (MDC) treatment

11,12

systems. However, LCAs of biorefineries processing wastewaters for production of

liquid transportation biofuels and co-products are absent in the literature.
Biorefineries co-located with industrial facilities

The issue of system boundary is central to all biofuel LCAs, which follows directly from
the goal and scope definition. In the carbon footprint analysis presented here, we deal
with a specific case of industrial ecology'> '* for production of a biofuel in which
connections between the biorefinery and original hardboard facility are considered (see
Methodology-Description of the process section). Questions such as the following are
addressed; how will changes to the original hardboard facility due to sharing of process
streams be included in the analysis?; how will reductions in wastewater treatment inputs
be assigned?; will upstream inputs for forest harvesting and hardboard processing be
included due to use of wastewater as input to the biorefinery? Questions similar to these
have been dealt with before in LCAs of biorefineries co-located with existing
manufacturing facilities. For example, in a LCA of biofuel produced from gasification
and catalytic upgrading of black liquor waste stream from pulp manufacturer', all inputs
to the biorefinery and changes to the original pulp facility were assigned to the
biorefinery products in a consequential analysis. A study of ethanol produced from a
biorefinery co-located with a pulp mill utilized a system boundary encompassing both
facilities and all products; biofuel and pulp in an attributional analysis.'® Additional
discussion of co-located biorefineries and consequential versus attributional LCA are

presented in the SI in section 1.2 and 1.3.
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Methodology
Goal, scope and functional unit definition.

The goal of this life cycle carbon footprint is to gain an understanding of how greenhouse
gas (GHG) emissions are directly affected by biorefinery inputs and also indirectly
affected by changes to inputs in the hardboard facility and wastewater treatment plant.
This study approach will identify the most important process inputs and methodology
assumptions. The system boundary will include biorefinery process units as well as
affected units in the hardboard plant and wastewater treatment facility. The study is
therefore a consequential analysis with the original hardboard facility as a baseline. As a
result, all inputs to the co-located biorefinery and changes to inputs in the original
hardboard facility and the wastewater treatment plant are assigned to the products of the
biorefinery. Using this approach, the study will accomplish the stated goal of
understanding the importance of key biorefinery inputs and will also include emissions
due to changes of inputs beyond the biorefinery boundary limits. The wastewater from
the hardboard facility is considered a “waste” with no economic value and therefore it is
not a product or co-product to which environmental burdens from the hardboard facility
are assigned. This assumption is consistent with ISO 14040 and other biofuel carbon
footprint guideline documents, though in LCA practice there continues to be a question
whether a “waste is still a waste” if it becomes used for production of biofuels or other
proeducts.'” '® Biorefinery infrastructure is not included in the scope of this analysis due
to lack of data and because infrastructure impacts were shown to be negligible for high

throughput chemicals and transportation fuels."

The carbon footprint analysis for ethanol is “cradle-to-grave”, including ethanol
combustion. However, the emissions of CO, from combustion of ethanol in engines are
not counted toward the GHG inventory because the carbon atoms are biogenic in origin
and we assume that all the carbon in the hardboard facility effluent would have been
emitted as CO; during wastewater treatment and sludge combustion anyway (therefore,

20, 21,22

no change in emissions of CO; due to this assumption). We neglect the final
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ethanol transportation step as well because it is generally considered negligible in most
biofuels LCAs, for example the GREET model shows that GHG emission for cellulosic
ethanol distribution is only 1.2 g CO, eq/MJ.> The analysis of potassium acetate is
“cradle-to-gate” in order to make comparison to convention potassium acetate more
direct. The basis for inputs into this life cycle carbon footprint analysis is one year of
biorefinery operation (345 days), but the carbon footprint results are expressed on the

basis of 1 MJ ethanol and 1 kg potassium acetate.
Description of the process

A conventional hardboard manufacturing process connected to a wastewater treatment
plant (WWTP) is shown in Figure 4.1. This process involves material inputs like wood
from forest resources, chemicals, and energy inputs such as steam and electricity. The
wastewater stream containing wood fibers extracted from the wood chips needs to be
treated in the WWTP, where more material and energy inputs are added. Figure 4.2
describes a configuration where the biorefinery process is co-located with the hardboard
facility, with the bold font representing the changes in the material and energy flows to
the original facility, inputs to the biorefinery, products, and recycled hot water. The co-
located biorefinery employs a dilute acid hydrolysis process on the wastewater stream
after increasing the total solids content of the wastewater using multiple-effect
evaporation. Monomer sugars, including both hexoses and pentoses, are generated, then
neutralized and fermented to produce ethanol. Acetic acid generated from dilute acid
hydrolysis is concentrated and collected as 50% (wt.) potassium acetate by reacting with
potassium hydroxide. Hot water, a by-product from the biorefinery, is sent to the
hardboard plant to partially substitute for energy required for steam production there.
Inputs to the remaining WWTP are reduced by 60% compared to the original plant (an
estimate provided by the industrial partner based on engineering design calculations),

however, there are inputs needed in the biorefinery process which are explained below.
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Inputs and inventory for the basecase life cycle carbon footprint

As shown in Figure 4.2 and Table 4.1, three categories of inputs to the carbon footprint
are; 1. inputs to the biorefinery, ii. energy savings to hardboard mill due to hot water
return, and iii. the original WWTP inputs. Inputs to the biorefinery are electricity, steam,
and biorefinery chemicals including potassium hydroxide, lime, sulfuric acid, fertilizer,
yeast, yeast extract and nutrients for fermentation as shown in Table 4.1. Electricity to the
biorefinery is assumed to be the Michigan grid (see Tables S1 and S2 in the SI) and

steam is generated in the biorefinery using hard coal because of its ready availability at
the MI mill. Input data in Table 4.1 were obtained from an industry partner on this project.
The inventory data for all of the inputs were obtained using ecoprofiles from the

ecoinvent™ database in SimaPro, as shown in Table S3 of the SI.

Consistent with a consequential analysis, emission credits are assigned to the biorefinery
products due to hot water (174°F) returned to the hardboard facility to reduce coal for
steam. The biorefinery design calls for a reduction in wastewater treatment inputs by 60%
compared to the original facility (from industrial partner based on engineering design
calculations). Apart from the remaining 40% inputs for the wastewater treatment, the new
inputs from the biorefinery are listed in the second column. Inputs to the original WWTP
are shown in Table 4.1 (fourth column), which are categorized as electricity, steam, and
chemical inputs. Power and steam for WWT are generated using the same energy
resources as those in the hardboard manufacturing facility. Steam is generated by hard
coal (65%), wood chips (30%) and WWTP sludge (5%). Hot water generated in the
biorefinery that is transported back to the hardboard manufacturing facility is assumed to
substitute for hard coal in this mix. The energy saving was calculated through the
temperature and the amount of the hot water as shown in Section 2 of the SI. Although
the production of ethanol from wastewater stream will decrease the portion of sludge in
the energy mix, this influence is neglected because the percentage of sludge is small.
According to the industry partner, these sources of energy, in the same ratios (65:30:5 for
coal: wood chips: sludge), also make up 40% of the electricity needed in both the
hardboard manufacturing facility and the WWTP. The remaining 60% of the power is
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provided from the Michigan grid. Main chemical inputs for the wastewater treatment
include fertilizer, polymer flocculants, aluminum sulfate and calcium nitrate as displayed
in Table 4.1. Emission of N,O and CH4 from WWT are also considered (see SI in section
3); for each m’ of wastewater treated, 2 g N,O are emitted to the air and for each ton of
solid in sludge, 200 kg CH, are emitted as per an IPCC report.** GHG emission of
process water used in the biorefinery plant and the reduction of water input in the
hardboard facility due to the hot water return are both neglected as the GHG emission of
process water is much less than other inputs. For example, the GHG emission from
process water in the biorefinery plant is less than 0.14 g CO, eq/MJ ethanol (see

calculations in Section 4 of SI)

Allocation methods

Typical allocation methods used in biofuel life cycle carbon footprints include system
expansion, or are based on mass, volume, energy content, and economic value.” Due to
the difference in function between ethanol and potassium acetate (ethanol is a fuel, while

potassium acetate is a chemical), energy allocation is not appropriate.

Apart from system expansion method, the base case approach in this analysis, two other
methods were implemented: mass allocation, and market value allocation. The system
expansion method assigns all inventory data to the primary product bioethanol, while a
credit is given for avoided emissions when the co-product potassium acetate (KAc)
displaces the conventional KAc in the market. In the mass and market value allocation
analyses, we retain the expanded system boundary and account for process changes to
hardboard facility and WWTP, but allocate those changes to inventory to both ethanol
and KAc on the basis of output mass and market value, respectively. Thus the mass and
market value allocation approaches are hybrid attributional analyses due to the expanded
system boundary. Hybrid allocation similar to this has been used before in biofuel

LCAs.?° The calculation of allocation factors are in Section 5 of the SI.

In the system expansion allocation method, credits due to energy savings from hot water
return, WWTP savings, as well as a credit from the production of potassium acetate are
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all assigned to ethanol. In mass and market value allocation methods, the emission credits

for energy savings and WWTP savings are included in the allocation to ethanol and KAc.

Impact Assessment

The carbon footprint is evaluated using the impact assessment method of IPCC 2007
GWP 100a with SimaPro 7.3.3. In this method, global warming potentials (GWPs) for
CO,, CHy4, and N,O are 1, 25, and 298, respectively, and other GWPs are included for

compounds such as solvents and refrigerants that are part of the ecoprofile inventories.

The annual yield of ethanol and 50% potassium acetate are 2.28x10° kg/yr and 3.84x10°
kg/yr respectively, as shown in Table S5 and Table S7 in the SI. The prices of ethanol
and 50% potassium acetate were found to be $2.50/gal’” and $1.50/kg™ respectively
according to current market price, thus mass allocation factor and market value allocation
factor of ethanol are 0.54 and 0.4, as shown with the calculations in Table S5 and Table
S7 in the SI.

Scenarios

Consistent with the study goal and scope, we investigated several scenarios to understand
impacts of model variables (input data, decisions, and assumptions) (see Table 4.2 and
section 1.4 of SI). Scenario 1 compares the environmental impact of design choices for
using natural gas and mixed wood chips instead of coal to generate steam in the
biorefinery. As will be shown in the results section for the basecase, savings of emissions
from avoided WWTP emissions are significant because heat and power are largely from a
mix where coal is dominant. Therefore, scenario 2 explores assumptions about WWTP
energy usage which may apply to other hardboard facilities in the U.S. (depending on
local situation), including two options: all electricity and heat are provided by a) natural
gas, and b) mixed wood chips. The ecoprofiles for the alternative sources of energy used
in scenario 1 and 2 are from the ecoinvent™ database in SimaPro, which are presented in
Table S8 of the SI. Yield of ethanol, yield of potassium acetate, percentage reduction to

the WWTP inputs, as well as price fluctuations were analyzed in scenarios 3-6. Scenario
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3 analyzes the sensitivity of GHG emissions to the yield of ethanol (+10%, which is
6.64x107 and 5.44x10" MJ for +10% and -10%) while all other inputs remain at base case
values (Table 4.1). A similar strategy was applied to other inputs. Yield of KAc was
increased or decreased by 10% in Scenario 4 (4.22x10° and 3.46x10° kg for +10% and -
10%). These variations of 10% in yield are expected to be in the range of uncertainty
expected because of the approximate nature of engineering design calculations. Savings
of WWT emissions is one of the biggest credits in the basecase life cycle carbon footprint,
as will be shown next, so the influence of saving 50% or 70% of WWTP emissions was
studied in scenario 5. Scenario 6 considers the influence of market price on market value

allocation results.
Results and Discussion
Basecase: Ethanol

Greenhouse gas (GHG) emissions for ethanol produced from the co-located biorefinery
using basecase inputs are shown in Figure 4.3 for system expansion, mass allocation, and
market value allocation. Life cycle carbon footprint results are displayed for each of the
main inputs, categories of inputs, or credits. Energy and steam to both biorefinery and the
wastewater treatment plant are the main contributors to GHG emissions, while the
savings from hot water return and avoided WWTP emissions are large credits. A key
observation from this study is that a few large emission inputs and credits dominate the
GHG emissions and that net GHG emissions (Total in Figure 4.3) are very small in
comparison. Of the three allocation methods, the system expansion method exhibits the
lowest emissions, a negative life cycle GHG emission to the environment of -27 g CO,
eq/MJ ethanol. The mass and market value allocation methods resulted in emissions of 21
g CO;, eqg/MJ and 16 g CO, eq/MIJ ethanol, respectively. These GHG emissions are much

less compared to petroleum gasoline, whose emission is 90 g CO, eq/MJ.*
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Basecase: KAc

The GHG emissions of potassium acetate produced in the biorefinery (Figure 4.4) exhibit
large emission inputs and credits, similar to ethanol in Figure 4.3. Net GHG emissions
are 556 g CO; eq/kg KAc for mass allocation and 716 CO, eq/kg KAc for market value
allocation. According to the ecoinvent™ database in Simarpo 7.3.3, conventional
potassium acetate emits 1020 g CO,/kg KAc. Based on this preliminary analysis, in both
the mass allocation and market value allocation methods, potassium acetate produced in

the biorefinery process emits less GHG than from the current product in the market.

Scenario analyses

The changes in net (total) GHG emissions for all 6 scenarios are shown in Figures 5, 6
and 7. Inputs that influence GHG emission the most are shown in these three figures as
large positive and negative changes in emissions (scenarios 1, 2, and 5). Biomass as an
alternative energy in Scenario 1 and WWT saving of 70% in Scenario 6 yield the greatest
reduction in GHG emissions. Tables S5 and S6 in the SI list ethanol GHG emissions in
the basecase as well as the six scenarios in more detail, and include the total emissions
over the life cycle. The results are given for both system expansion and market value
allocation methods. GHG emissions of co-product potassium acetate are shown in Table

S11 for the scenarios with market value allocation.

Scenarios la and 1b-Alternative energy for biorefinery

When natural gas substitutes for coal for steam production in the biorefinery, GHG
emissions are reduced by 48 g CO, eq/MIJ ethanol (see Table S9 and Figure 4.5, system
expansion). When steam is from mixed wood chips, net GHG emissions are reduced by
144 g CO; eq/MJ. For the market value allocation method, GHG emissions are reduced
by 19 and 57 g CO, eq/M], respectively as shown in Table S10 and Figure 4.6. GHG
emissions for potassium acetate were reduced by 900 and 2,707 g CO»/kg KAc (Figure

4.7), respectively. The substitution of these alternative energy sources in the biorefinery
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makes a very large change to the life cycle carbon footprint of ethanol and KAc for both

allocation methods.
Scenario 2-Alternative energy choices for WWT

The inputs for WWT have a large impact on GHG emissions for ethanol production in
the co-located biorefinery in this study, as shown in Figure 4.3. WWT GHG emissions
are dominated by sources of steam and electricity, which in the basecase are from coal,
wood chips, and sludge burning. When we modeled the WWT process alone, the GHG
emissions were 51.5 kg CO, eq/m’ of wastewater treated, which is a value that can be
compared to the literature. For example, this emission factor can be compared to other
wastewater treatment processes in the ecoinvent™ database, which range from 0.211 kg
CO, eq/m’ to 888 kg CO, eq/m’ depending on the source of wastewater. Furthermore, the
hardboard WWT process modeled here is higher relative to wastewaters from similar
forest products facilities such as fiber board waste effluent (0.329 kg CO, eq/m’ to 12.5

kg CO, eq/m’) according the ecoinvent™ database.

According to the industry partner on this project, after the biorefinery is co-located with
the hardboard facility, a WWT process is still needed, but with only 40% of the original
inputs. This reduction by 60% of the WWT process inputs are accounted for as an
emissions credit in this life cycle carbon footprint analysis. If a lower GHG emission
source of these WWT process inputs were to be used, then a smaller emission credit
would be realized. When WWT electricity and steam are generated from natural gas,
GHG emissions for ethanol increase by 130.8 and 52.5 g CO; eq/M1J ethanol in the
system expansion method and the market value allocation methods, respectively, as
shown in Figures 5 and 6. Use of biomass as an energy source in the original WWT
process increases GHG emission by 284.9 and 113.4 g CO; eq/MJ in the system
expansion method and the market value allocation method. GHG emissions of KAc show
a similar trend as ethanol, with natural gas and biomass increasing GHG emissions by

2480 and 5366 g CO, eq/kg, respectively (Figure 4.7). The results in this scenario show
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that inputs to WWT process can have an overwhelming effect on the GHG emissions

from a biorefinery co-located with a hardboard facility.

Scenario 3-Yield of EtOH

In this scenario, inputs remain at the basecase levels, but yield of ethanol increase or
decrease by 10%. These changes in ethanol yield affect not only ethanol GHG results, but
also KAc results through allocation. For system expansion and market value allocation
methods, changes in GHG emissions are relatively small compared to other scenarios, as
shown in Figures 5-7. It can be concluded that product yield does not have a large effect

on GHG results.

Scenario 4-Yield of KAc

These changes in KAc yield affect not only KAc GHG emissions, but also ethanol results
through allocation. In the system expansion method, £10% KAc yield changes GHG
emission by =7 g CO, eq/MJ ethanol, as shown in Figure 4.5. Market value allocation
results in smaller changes in this scenario; +£1 g CO, eq/MJ ethanol (Figure 4.6) and -27
and +81 g CO, eq/kg KAc (Figure 4.7).

Scenario 5-WWT savings

In the basecase analysis, we assume a reduction of WWT plant inputs to be 60% for the
co-located biorefinery. When this replacement is changed +£10%, GHG emission
differences are +50 and £20 g CO, eq/MJ ethanol in the system expansion and market
value allocation methods, respectively. The GHG emission fluctuation of KAc is around
1950 g CO; eq/kg KAc. Compared to other scenarios, uncertainty in the reduction in

WWTP inputs for the co-located biorefinery is one of the most important.

Scenario 6-Price fluctuation

The price fluctuation was assumed as 25% as discussed in Section 5.2 of the SI. When

price of ethanol increases by 25% while the price of KAc decreases by 25%, the market
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value allocation factor for ethanol increases from 0.42 to 0.52. Due to the change of the
allocation factor, GHG emission is 4 g CO; eq more per MJ of ethanol. When the price of
ethanol drops by 25% while the price of KAc is 25% more, the allocation factor drops to
0.28. This drop in the allocation factor causes GHG emission to decrease by 5 g CO,
eq/MJ ethanol. The GHG emission difference of KAc is 188 and -130 g CO, eq/MJ

respectively.

In summary, the basecase consequential analysis shows that, for both ethanol and
potassium acetate, large emissions from electricity and steam use in both the biorefinery
and WWTP are counteracted by large credits from hot water return and avoided WWTP
inputs in all three allocation methods. In the basecase consequential analysis, all emission
credits are attributed to the biorefinery products and none to the original hardboard
facility. It can be interpreted from our study that any “sharing” of these large emission
credits with the hardboard facility would greatly increase emissions for ethanol and KAc.
However, in our view it is justified to attribute all credits to biorefinery products because

no reduction in WWT would occur without the biorefinery.

Life cycle GHG emissions of ethanol in all allocation methods and with basecase inputs
are much lower than that of petroleum gasoline, and in the system expansion method
GHG emissions are negative. The net GHG emissions of potassium acetate are similar to
but slightly lower than the product existing in the market in both mass allocation and
market value allocation methods. Results of scenario analyses show that key factors
affecting the net GHG emission are the energy resources applied in both the biorefinery
and WWTP. When cleaner energy resources like natural gas or biomass are utilized in the
co-located biorefinery, the life cycle GHG impacts of both ethanol and potassium acetate
are much reduced. However, when they are applied in the WWTP, the GHG emissions
of both products greatly increase. The percentage reduction in WWTP inputs for a co-
located biorefinery is also a highly relevant parameter. The variation of other life cycle
carbon footprint assumptions like yield of ethanol or potassium acetate, and the price of
the product in the market are not likely to have much influence on the net GHG emissions,

based on our preliminary study.
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Future work

Future research will include an uncertainty analysis evaluating the effects of statistical

uncertainty for each key input in Table 4.1.

Conclusion

An original cradle-to-grave life cycle footprint was conducted on a biorefinery co-located
with a hardboard facility, with the avoided WWTP emissions and hot water return credits
all allocated to the biorefinery products; ethanol and potassium acetate. Three allocation
methods; system expansion, mass allocation and market value allocation were applied in
this study. In the basecase, ethanol produced in a biorefinery co-located with a hardboard
facility achieves more than 60% reduction of GHG emissions compared to petroleum
gasoline for all allocation methods. Potassium acetate produced in this biorefinery
reduces GHG emissions compared to conventional potassium acetate by more than 30%.
However, the GHG emissions are highly related to the GHG emission intensities of the
energy resources utilized in both the biorefinery and WWTP and the percentage of the
original WWT inputs a biorefinery is able to displace.
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Tables

Table 4.1. Inputs, Outputs, and Energy Savings (based on annual operation of a co-

located biorefinery in MI).

Savings to
Inputs to Hardboard Original
Biorefinery Mill WWTP
Inputs
Electricity
Electricity (from MI Grid) (MJ) 7.16x10’ - -
Electricity (from WWTP Mix) (MJ) - - 5.81x10’
Energy Savings from Hot H,O Return
(MJ) - -7.98x10’ -
Steam
Steam for Process Heat from Coal
(MJ) 8.63x107 - -
Steam from WWTP Mix (MJ) - - 5.07x10’
Chemical Inputs
KOH, 50% wt. (kg) 2.18x10° - -
Lime (kg) 2.07x10° - -
H,S0, (kg) 2.80x10° - -
Fertilizer 5:1 N:P ratio (kg) 2.27x10° - 9.07x10°
Yeast (kg) 2.36 x10° - -
Yeast Extract (kg) 2.31 x10° - -
Polymer Flocculants (kg) - - 2.40x10°
Al(SO,); (kg) - - 2.72x10°
Ca(NO3), (kg) - - 5.90x10"
Outputs
KAc (50% soln) (kg) 3.84x10° - -
Ethanol (MJ) 6.04x10’ - -
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Table 4.2. Scenarios for life cycle carbon footprint Model Assumption Uncertainty

Scenario

Allocation Method

System Expansion Method

Market Value Allocation

Alternative energy for

Biorefinery Alternative energy for Biorefinery
a). Natural Gas a). Natural Gas
#1 b). Biomass b). Biomass
Alternative energy for WWTP Alternative energy for WWTP
a). Natural Gas a). Natural Gas
#2 b). Biomass b). Biomass
+10% change in the yield of +10% change in the yield of
ethanol (6.64x10” MJ, 5.44x10" | ethanol (6.64x10" MJ, 5.44x10’
#3 MJ) MJ)
+10% change in the yield of KAc | £10% change in the yield of KAc
#4 (4.22x10° kg, 3.46x10° kg) (4.22x10° kg, 3.46x10° kg)
Saving to WWTP: Basis of 60% | Saving to WWTP: Basis of 60%
#5 to 50%-70% to 50%-70%
Price Fluctuation
a). 25% increase to Ethanol, 25%
decrease to potassium acetate
b). 25% decrease to Ethanol, 25%
#6 N/A increase to potassium acetate
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Figure 4.5 Scenario analyses of change in life cycle GHG emissions from ethanol
produced in the co-located biorefinery using system expansion
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Figure 4.6 Scenario analysis of change in life cycle GHG emissions from ethanol
produced in the co-located biorefinery using market value allocation
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Figure 4.7 Scenario analyses of change in life cycle GHG emissions from KAc produced
in the co-located biorefinery using market value allocation
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Synopsis

A life cycle carbon footprint was conducted on the products of a biorefinery co-located
with an existing hardboard facility. This study demonstrates Principles of Green
Chemistry and Engineering through utilization of renewable resources, beneficial uses of

waste streams, industrial ecology, and systems analysis for sustainability
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1. Introduction

1.1 Ethanol potential from hardboard wastewater as feedstock

In the process of hardboard production, a large quantity of water is utilized to pre-treat
the wood chips. The effluent water from the pre-treatment step, containing wood fibers,
soluble sugar and extractives, is treated in wastewater treatment plants (WWTPs) in the
U.S. It has been estimated recently that the annual capacity of U.S. hardboard production
is 1.5 million tons in the 16 plants all over the country.' The amount of water needed for
hardboard production is 18.3 L/kg hardboard (12 L/kg for smooth-one-side hardboard
and 24.6 L/kg for smooth two-side-hardboard)." According to the characterization results
of a hardboard wastewater,” the solid percentage is 1.42%, and 60% of the solid can be
converted to sugar, and with 40% of sugar fermented to ethanol. Annual ethanol
production from wastewater in U.S. hardboard facilities are calculated in equation (1)

below.

Annual ethanol production from wastewater in hardboard facilities
= 1.5 million tons x 18.3 L/kg (million m3/million tons)
x 1 million ton/million m3 X 1.42% X 60% X 40%

= 0.09 million tons

= 0.09 million tons x 1000 (kg/ton) /0.789 (kg/1) /3.785 (1/gallon) =
31 million gallons (1)

1.2 Biorefineries and biorefineries co-located with industrial facilities

Biorefineries are designed to produce biomass-derived products to replace petroleum-
refinery energy products as well as other chemical by-products.® Previously, most
biorefineries were designed as stand-alone facilities. However, integrating a co-located
biorefinery into an existing manufacturing facility has been more and more discussed.®’
In some cases, co-located biorefinery can not only minimize the waste materials
discharged to the environment, but could also support the original facility with its by-

products (steam, electricity etc.) to make all of the processes more efficient. Some
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candidate facilities with this potential include sawmill facilities, pulp and paper facilities,
wood panel facilities, biochemical facilities, energy facilities and pellet facilities.® This
paper focuses on biofuels production facility co-located with an existing forest products
manufacturing site, and sharing material and energy flows with that facility. Beyond the
normal allocation issues of biorefinery co-products, the sharing of material and energy

flows with the existing manufacturing facility must also be considered.
1.3 Attributional versus Consequential approaches

Attributional and consequential approaches are two main frameworks to perform LCA.*
Attributional LCA (ALCA) is used to estimate the life cycle impact of a product
including the processes and materials used to produce the product, whereas consequential
LCA (CLCA) is used to perform the consequence of changes brought by a potential
decision, including not only the changes in the processes and materials used to produce
the product, but also the changes outside of the life cycle of the product .*° Another
obvious difference exists in the allocation methods, ALCA allocates the emissions based
on the mass, energy content or market value of different products, whereas CLCA uses
only system expansion (also known as displacement method or substitution method).
Both approaches have advantages and disadvantages, however the uncertainty of CLCA
is much higher compared to ALCA because of the need to model external technical and
ecosystem processes. Regulatory development of biofuel has employed both approaches,
for example, the GREET (Greenhouse gases, Regulated Emissions and Energy use in
Transportation) model is an ALCA (except for land use changes caused by the production
of biofuels which is included as a consequence of biofuels production), while the U.S.
renewable fuel standards under the 2007 U.S. Energy Independence and Security Act
(RFS2) by EPA is consistent with a CLCA methodology.'* , however GHG emissions
credits and debits are allocated to RINs-generating products using energy allocation. The
EU’s Renewable Energy Directive (RED) employes energy allocation in general, but
system expansion for excess electricity from co-generation.” Therefore, both the RFS2
and RED has the option to employ “hybrid” allocation which includes both ALCA and
CLCA elements.
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1.4 Scenario analysis, sensitivity analysis and uncertainty analysis

In LCA, the goals of scenario analysis, sensitivity analysis and uncertainty analysis are
similar, and this section will focus on the differences among them. Simulations and
models have been applied in many fields of sciences, engineering and in policy studies.
In a simulation which is related to future picturing and decision making, many
uncertainties need to be taken into account. ' '* Scenario analysis is a method picturing
several alternative outcomes instead of offering one exact prediction. The purpose of a
scenario analysis is to understand the effect and interactions between variables on the
results of a model, where the variables include not only model inputs but also any
assumptions. * A standard scenario analysis should include the assumptions with least

certainty, and there are usually an optimistic, a pessimistic and a most likely scenario. '*
14

A sensitivity analysis is a study evaluating how sensitive is the result of a model to the
uncertainty of one variable. In another words, the purpose of a sensitivity analysis is to
show how wide or narrow the range that one variable can be without significant change
to the result of the model.'? Uncertainty analysis studies the uncertainty of model
conclusion quantitatively. '* Uncertainty analysis requires that the inputs to the model
(variables) be known with regard to their statistical uncertainty characteristics (average,
variance, etc.). Therefore, sensitivity analysis and uncertainty analysis are usually
conducted together; that is to identify the variables in the model to which the results are
most sensitive to using sensitivity analysis, and to quantitatively evaluate the uncertainty

by uncertainty analysis.

In a preliminary carbon footprint analysis such as the one conducted in this study,

uncertainty characteristics for all important variables have not yet been established. In
addition, key model assumptions and variables have not yet been identified. Therefore,
our study uses scenario analysis as the initial approach to understand model uncertainty

and effects of model assumptions. Future studies may investigate carbon footprint
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uncertainty after statistical properties of key inputs are established through research on

the biofuel conversion processes.
2. Energy saving from hot water return

From our industrial partner, we know that the flow rate of the hot water returned from the
biorefinery to the hardboard facility is 92455 Ib/hr, and the temperature of hot water
drops from 174 °F to 95 °F when used in the hardboard facility. The heat efficiency of 0.8
was applied in the assumption to estimate the energy and GHG savings. Therefore, the
energy saving is

day

924552 x (174 °F — 95 °F) x 245 x 345% % 1btu = 0.8 = 7.56 x 1010 BTU =
hr day yr

7.98 x 107 M]/yr (2)

The hot water return can reduce 7.98 X 107 M]/yr energy generated from coal in the

hardboard facility.

3. WWT burden
3.1.N,O
In general wastewater treatment processes, emissions of N,O are between 0.96 gto 3.2 g
per m’. Therefore, the emission factor of N,O in hardboard facilities is assumed to be 2
g N,O/m’, around the middle of the general range.

4. Emissions = Annual volume of wastewater treated X N,O emitted per m3 =

3228 5 60 ™M 5 24 M 3459 ¢ 3785 L 5 200IM° o 5 o N20 _ g 5q o
min hr day yr ' gal 1 8 m3 '
106 gN,0/yr 3)

4.1.CH,4
The annual methane emission is assumed following equation (4), 1°

Annual methane emissions = Annual sludge production (tons per year)

X methane potential (g CH, per ton) X emission factor 4)
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The flow rate of wood solids in the wastewater stream is 3000 Ib/hr, and around 10% of
the solid forms sludge. Thus,
Annual production of sludge = 3000 Ilb/hr + 2.2051b/kg X 24 hr/day X

345 day/yr x 10% = 1.13 x 10° kg/yr Q)
The methane potential is assumed to be 200 kg CH, per ton solids,” that is

200kg CH,/ton = 200 kg CH, /1000 kg = 0.2 kg CH,/(kg sludge) (6)
Emission factor is 0.18, therefore,

Annual methane emissions = 1.13 x 10° kg/yr x 0.2kg CH,/(kg sludge) X 0.18 =
4.07 x 10° kg CH,/yr (7)

4.2.CO,

Another emission that needs to be considered due to the WWT is the carbon dioxide from
the utilization of fertilizer (from fossil C in urea fertilizer). The input of fertilizer is
9.07x10° kg/yr, with the ratio of nitrogen to phosphorus containing fertilizers as 5:1 (5/6
kg N / kg fertilizer). Urea ammonium nitrate is used to provide the nitrogen, which has an
N-content of 32%.
Thus,

The amount of N in the fertilizer
= 9.07 X 105 kg/yr X = x 32% = 2.42 X 10°kg N/yr (8)
The ratio of CO; released during WWT to nitrogen in urea is 0.786, therefore,

The emission of CO, = 2.42 x 10°kg N/yr x 0.786 = 1.90 x 10° kg CO,/yr (9)

4. GHG emission from processing water

In order to assess the GHG emission from industrial water, an evaluation was conducted
on the industrial water used in the biorefinery plant. “Water, completely softened, at
plant/RER S” and “Water, decarbonised, at plant/RER S” from ecoprofile were selected
to simulate industrial water used in the biorefinery plant as shown in Table S4. The
burden of these two items were expressed as “kg CO, eq/ kg water” in the second row of
Table S4. Take “Water, completely softened, at plant/RER S” for example, with

the .annual input of water in the biorefinery plant (3.5x10%kg), and annual ethanol
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production in the form of energy (6.04x10” MJ), the burden of industrial water per MJ

ethanol were calculated as

2.43 X 107° kg CO, eq/kg water X 3.5 x 108 kg water + 6.04 x 107 MJ X
0 g CO,eq/kg water

100 = 0.14 g CO, eq/kg ethanol (10)

kg CO,eq/kg water
With the same method, “Water, decarbonised, at plant/RER S” from the ecoprofile
simulates the burden of industrial water as 0.05 g CO, eq/kg ethanol. Therefore, we can

conclude that the GHG impact from industrial water is little compared to other inputs.

5. Allocation factor calculation

5.1 Mass allocation

As shown in Table S5, the annual production of 50% solution of potassium acetate is

3.84x10° kg, and that of ethanol is 2.28x10° kg.

Thus,

2.28x10°

Mass allocation factor of ethanol = - = 0.54 (11)
3.84x100x50%+2.28x10°

5.2 Market value allocation

The price of potassium acetate used in this analysis was obtained from alibaba website. '°
The price range offered by five sellers were listed in Table S6, the average price was
calculated as 1.35 $/kg, with the standard deviation 23%. The price of ethanol ranges
from 1.94$/gal to 2.72$/gal during 2011-2013,"7 and the average price was calculated as
2.33$%/gal, with the standard deviation 24%. Therefore, it is reasonable to assume the
wholesale price of potassium acetate as 1.58/kg, that of ethanol is 2.5%/gal, and the price

fluctuation of the two products are £25%.

As shown in Table S7, the wholesale price of potassium acetate is assumed to be 1.5$/kg,

and that of ethanol is assumed to be 2.5 $/gal.'”"®
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The annual value of potassium acetate produced in integrated biorefinery =

1.5$/kg x 1.92 x 10° kg/yr = 2.88 x 10° $/yr (12)
1 1
The annual value of ethanol produced = 2.5 $/gal X o 7aokg/] X 37851/gal X 2.28 X
10°kg/yr = 1.91 x 10° $/yr (13)
Consequently,
Market value allocation factor of ethanol = L91x10° = 0.4 (14)

2.88x10°+ 1.91x10°

5.3 Scenario 5-Yield of KAC

In scenario 5, the environmental impacts of the two products were evaluated when the
yield of potassium acetate had 10 % fluctuation. As allocation factor is related to the
yield of both ethanol and potassium acetate, the calculation procedure of both situations

are shown in equations (15) to (18).
When yield of potassium acetate is 10% more, 2.11x10° kg/yr,

The annual value of potassium acetate produced in integrated biorefinery =

1.5$/kg x 2.11 x 10%kg/yr = 3.17 x 10° §/yr (15)
Thus,
Market value allocation factor of ethanol = L91x10° = 0.38 (16)

1.91x106+ 3.17 x10°

While when the yield of potassium acetate is 10% less, 1.73 x10° kg/yr,

The annual value of potassium acetate in the integrated biorefinery = 1.5 $/kg X

1.73 x 10%kg/yr = 2.60 x 10° $/yr (17)

Thus,
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6
The Market Value Allocation Factor of Ethanol = 1'21X10 == 0.42 (18)
1.91x106+ 2.60 X10

5.4 Scenario 7-Price fluctuation

The price of the two products has an influence on the analysis by effecting the allocation
factor, when market value allocation method is applied. 25% price fluctuation was
evaluated to get the range of market value allocation factors of ethanol, that is, a 25%
increase in price for ethanol plus a 25% decrease in price for potassium acetate and vice

versa.

When the decreased price of ethanol and increased price of potassium acetate are applied,

1.91X100x(1—-25%)
2.88x100X(1+25%)+ 1.91x106X(1—-25%)

Market value factor of ethanol = = 0.28 (19)

When the increased price of ethanol and decreased price of potassium acetate are applied,

1.91x10% X(1+25%)
2.88X106 X(1—-25%)+ 1.91X100X(1+25%)

Market value factor of ethanol = = 0.52 (20)

6. Scenario analyses: Results and discussion

Table S9, S10 and S11, the direct effect on net GHG emission due to a change of one

parameter is shown.

In scenario 1, the energy resource alteration in the biorefinery process reduces GHG
emission resulting from the energy used to produce steam. For ethanol, the utilization of
natural gas and biomass reduces the GHG emission in this sector from 150 g CO, eq/MJ
to 102 and 6.5 g CO, eq/MJ, respectively, in the system expansion method. In the market
value allocation method, GHG emission from the same input is reduced from 60 g CO,
eq/MJ to 41 and 2.6 g CO, eq/MJ respectively. For potassium acetate, net GHG emission
is also reduced with the savings of energy for steam in the biorefinery process, in the
market value allocation method, natural gas and biomass avoid GHG emission of 900 and

2707 g CO, eq/kg, respectively. As the use of natural gas and biomass could save around
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one third and more than 95% GHG emission from the energy for steam respectively,

these changes can result in considerable life cycle GHG emissions.

In scenario 2, the net GHG emissions show leading negative impact to the environment.
Compared to the basecase, both situations considered in WWTP cause more net GHG
emissions due to a combined effect of lower credits from WWT savings and lower
burden in the remaining WWTP. As the input in WWT savings is 100% of the original
WWT plant, and the remaining input in biorefinery WWTP is only 40% of that, the
WWT savings is the dominant factor. When the biorefinery plant is integrated in a forest
product facility, whose power and steam in WWTP is generated by more sustainable
energy, such as natural gas in scenario 2a, and biomass in scenario 2b, the life cycle GHG
emission of the biorefinery products are considerably increased compared to those using
hard coal. In system expansion method, 356 and 249 g CO, eq/ MJ of GHG emission was
saved from the replacement of WWTP when natural gas and biomass are applied, instead
of 500 g CO, eq/M1J. Thus the life cycle GHG emission are also brought from -27.2 g
CO; eq/ MJ to 102.8 and 258.1 g CO, eq/ MJ. In market value allocation method,
similarly, net GHG emission are three and seven times more than that in basecase for
ethanol; one and four times more for potassium acetate when the biorefinery plant

partially replaces a natural gas or biomass driven WWTP that a hard coal fired one.

In scenario 3, the GHG emissions from each individual input is effected in ratio when
there’s a change in the yield of ethanol or potassium acetate. In scenarios 4 and 6, the
fluctuation in the yield of KAc and price cause changes in allocation factors as calculated
in section 1, thus the GHG emission from each individual input is allocated with the new
allocation factors. In scenario 5, net GHG emissions are changed only due to the

differences from the remaining biorefinery WWT plant.
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Table S3. Inputs and Outputs: Inventory Data with Sources

Input and Output Category

\ Inventory Data Sources (ecoinvent)

Inputs
Electricity
Electricity (from MI Grid)
(MJ) The distribution is shown in Tables S1 and S2
Electricity (from WWTP
Mix) (MJ) Electricity in DPI
Hard coal, burned in industrial furnace 1-
Energy Savings (MJ) 10MW/RER S
Steam
Steam for Process Heat from Hard coal, burned in industrial furnace 1-
Coal (MJ) 10MW/RER S
Electricity, Michigan Grid Mix (See Tables S1
Steam from WWTP Mix (MJ) and A2 for detail)

Chemical Inputs

KOH, 50% wt. (kg)

Potassium hydroxide, at regional storage/RER S

Lime (kg)

Lime, hydrated, packed, at plant/CH S

H,S0; (kg)

Sulphuric acid, liquid, at plant/RER S

Urea ammonium nitrate, as N, at regional

Fertilizer 5:1 N:P ratio (kg) as N storechouse/RER S
Thomas meal, as P20S5, at regional
Fertilizer 5:1 N:P ratio (kg) as P storehouse/RER S

Yeast (kg)

Yeast paste, from whey, at fermentation/CH S

Yeast Extract (kg)

Yeast paste, from whey, at fermentation/CH S

Polymer Flocculants (kg)

Acrylonitrile-butadiene-styrene copolymer,
ABS, at plant/RER S

Al (SO4); (kg) Aluminium sulphate, powder, at plant/RER S
Calcium nitrate, as N, at regional
Ca(NOs), (kg) storehouse/RER S
QOutputs
Potassium hydroxide, at regional storage/RER S;
KAc (50% soln) Acetic acid, 98% in H20, at plant/RER S
Ethanol -
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Chapter 5 Limitations and Future Work

Based on the results of the research, it is important to note that there is some
methodology limitations involved in this dissertation. One of the most important one is in
the design of acid pretreatment experiments in Chapter 3. First of all, acetic acid was not
analyzed as an inhibitor to the subsequential enzymatic hydrolysis and fermentation.
However, the inhibitory effect of inorganic acids can be significant when their
concentrations are high (see section 4 of Chapter 1 for detail), and the characterization
results from Chapter 2 showed that the concentration of acetic acid was as high as 8.56g/1
after a digestion with 4% sulfuric acid at 121 °C for 60 min (see Table 2.5 for detail).
Secondly, the design of the experiment did not include the effect of temperature, the only
temperature studied was 121 °C. Finally, if the kinetic models of acid pretreatment and
enzymatic hydrolysis fitting the experiment data were determined and compared with the
models determined statistically in Chapter 3, the results of the research can be better

understood and explained.

Another important limitation is the life cycle carbon footprint analysis conducted in
Chapter 4. This research focused on the greenhouse gas (GHG) emission, however, GHG
emission is not the only indicator to determine whether a product or a process should be
set up, not even in the perspective of sustainability. Apart from the environmental

concern, it also should be determined according to an economic analysis.

Therefore, a list of future work should be considered.
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Acetic acid should be considered as a degradation product after acid pretreatment,
and analyzed together with furfural and HMF to determine the optimum conditions

of acid pretreatment.

In future, three factors, reaction time, acid concentration and reaction temperature

should be included in the acid pretreatment.

Kinetic models of acid pretreatment and enzymatic hydrolysis should be determined
by fitting the experimental data into them, then models determined in Chapter 3
should be compared with the kinetic models to get the theoretical basis of the statistic

models

Apart from GHG emission, other indicators such as cumulative energy demand
(CED), human toxicity, ecotoxicity etc. should be included in the life cycle

assessment (LCA).

One complete economic analysis should be conducted to help decide whether co-
located biorefinery should be set up. Besides environmental advantage, economic

benefit is another important reason to consider.

There is a byproduct gypsum formed due to the neutralization of sulfuric acid and
lime. In order to minimize the production of waste, the application of gypsum needs

to be considered.
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Chapter 6 Conclusions

Hardboard processing wastewater is one typical kind of industrial waste, and a potential
feedstock for bioethanol production. This enlarges the scope of feedstock to meet the
increasing demand of renewable energy, and avoids the potential competition with food if
compared to energy corps such as corn, sugarcane and soy bean. Hardboard wastewater
alone can increase the production of ethanol in the U.S. by around 0.09 million tons (31
million gallons) (See section 1.1 of the SI in chapter 4 for calculations leading to this
ethanol yield estimate) annually if applied as a feedstock. Other industrial wastewater
streams containing sugar, starch or fibers with similar characteristics also have the
potential for the production of renewable biofuels. However, as a feedstock, industrial

waste has barely been considered as a biofuel feedstock.

As shown in Figure 5.1, the hardboard processing wastewater stream from a Michigan
hardboard facility, which otherwise goes to a wastewater treatment plant and when
applied as a feedstock for the production of liquid biofuel and renewable chemicals, may
lower the input of chemicals and energy resources to wastewater treatment by a

significant amount, for example 60% in our study.

Figure 5.2 (also Figure 5.1 of Chapter 5.2) shows the process steps in the integrated
biorefinery plant in which the effluent with low solid content (1.4%) was concentrated to
7.5%, then dilute acid hydrolized, and neutralized. In further processing steps, 50%
potassium hydroxide was added to the acetic acid to generate a 50% potassium acetate
solution as one product, and the hydrolysate, containing sugars, was fermented to

generate ethanol.
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hardboard facility, which partially replaces the wastewater treatment plant, as well as

produces value added products

Integra

ted Wi gier
Biorefinery Plant Treatmen

Figure 5.1 Diagram showing the changes when a biorefinery plant is integrated into a

50% Potassium
Acetate
Water‘ Acetate € Evaporator
Evaporation
(—
50% KOH
® C}F @@ !
Effluent . . ' . .
Low Solids > Hydrolysis High Solids
Evaporator Reactor Evaporator
Water
Sulfuric Acid Lime Evaporation
Water \
Condensate
h (e & & 3
Distiller € Fermenter |€ Filter —>
Ethanol Gypsum

Figure 5.2 Process flow diagram for conversion of forest product industry wastewater

effluent into biofuel and an acetate-based road de-icer compound.

This dissertation presents a series of studies on the utilization of the wastewater stream, 1)

to characterize and understand the feasibility of industrial waste as a biorefinery

feedstock, ii) to determine the optimum conditions to convert the wastewater stream to
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fermentable sugars; iii) to evaluate if the products generated from the integrated
biorefinery are sustainable using environmental life cycle assessment. These studies
include a thorough characterization of the waste stream as well as the acid pretreated
hydrolysate, a research on the optimum condition for hydrolysis, and a life cycle carbon
footprint assessment evaluating the environmental influences of the products from

biorefinery plant.

Samples were taken from four spots in the process, effluent with low solid content in spot
(D, concentrated effluent in spot @), post hydrolysis samples from 3 and @ as pre and

post neutralization samples.

Hardboard wastewater is liquid biomass energy resource with 1.4% solid. A thorough
characterization shows that hemicellulose or oligomers of hemicellulose account for up to
70% of the dry solid biomass. The studies conducted in this research found that an
efficient acid pretreatment could convert the majority of the hemicellulose and oligomers
into monomer sugars, and more than 50% of which is xylose. These sugar results show
some similarity to hydrolysates from many other typical energy crops (woody crops such
as poplar, willow, switchgrass, etc.) and also proved the feasibility of hardboard
wastewater stream as a feedstock for biofuel production. Ash in the dry solid biomass and
the inhibitors (HMF and Furfural) generated from this process are also accounted in the
mass balance analysis. Lignin is left in a structure of droplet after acid pretreatment as
observed by SEM. The mass balance analysis explains up to 98.04% of the dry solid
biomass, therefore the majority of the components in the wastewater effluent was

successfully identified. Large quantities of gypsum are formed due to the usage of
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calcium oxide in neutralization step. Due to the potential value of lignin for combustion,
it should be removed before neutralization to avoid being mixed with gypsum. Overall,
the hardboard wastewater stream is available as a feedstock for the process to produce
bioethanol and 50% potassium acetate. Due to the high content of hemicellulose, the
hydrolysis products would be mixture of five sugars. Thus, compared to cellulose intense
feedstocks, hardboard wastewater requires the yeast capable of fermenting pentose as
well as hyxose. Another shortcoming for this feedstock is the large quantity of water it
contains that consumes much heat to maintain the reaction of hydrolysis, this problem
could be solved by making the hot water a heat media to support other parts of the plant.
Therefore, wastewater stream may not be suitable as a feedstock in a stand-alone

biorefinery.

The biorefinery process was evaluated by a two-stage hydrolysis experiment. The
experiment results including two stages if hydrolysis shows that enzymatic hydrolysis is
not necessary for higher yield of total sugars, but dilute acid alone. The optimum
conditions of acid pretreatment are defined as those resulting in high total sugar yields
(above 0.58 as a fraction of input feedstock biomass) and low furfural concentrations
(less than 0.5g/1), which can be reached when acid concentration is between 1.41 to
1.81%, and reaction time is 48 to 76 minutes as shown in Figure 3.8 by a regression
analysis and Response Surface Methodology (RSM). Yet, further determination of
optimum reaction conditions relies on an economic analysis. This method is a pure
statistic method in which all trends and analyses are based on the actual data obtained
from the experiment. Unlike kinetic models, statistical models put more emphasis on

optimum condition than trends. However, the accuracy of the statistical method is highly
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dependent on the design of the experiment (selection of the matrix, the number of the

experiments, etc.)

The availability to use hardboard wastewater as an energy resource for the commercial
production of fuel grade ethanol in terms of GHG impact has been evaluated by a life
cycle carbon footprint assessment. When the credit from emission saving and hot water
return are allocated to the biorefinery, the life cycle GHG emissions of ethanol are lower
than petroleum gasoline in all three methods, displacement, mass allocation and market
value allocation method, which are -27.1, 20.8 and 16 g CO, eq/MJ, compared to 90 g
CO; eq/MI of petroleum gasoline. The life cycle GHG emissions of potassium acetate
analyzed in mass allocation and market value allocation method are 555.7 and 716.0 g
CO; eq/kg, while that of potassium acetate in the market is 1020 g CO,/kg. The
sustainability of the application of the wastewater stream as a feedstock for biorefinery is
highly determined by the energy resources used in both the facility generated the
wastewater and the facility using the wastewater as feedstock, the percentage of
wastewater treatment burden avoided influence the degree of sustainability as well.
However, all the life cycle carbon footprint conclusions are based on the assumption that
the credits are allocated to the biorefinery, if a Cap and Trade regulation is come into
effect, then the credits may have to be shared. The life cycle carbon footprint analysis
shows that both bioethanol and potassium acetate produced from a co-located biorefinery
facility is sustainable in the perspective of greenhouse gas emissions compared to
petroleum gasoline and traditional potassium acetate. Therefore, it is possible that

choosing to build a co-located biorefinery plant can be a sustainable option for hardboard
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facility and other facilities producing large quantities of wastewater stream containing

sugar, starch or fiber.

In conclusion, hardboard wastewater stream is feasible to be taken as a feedstock for the
commercial production of ethanol. The ideal of utilizing industrial wastewater for the
production of bioenergy can be applied to other wastewater with high sugar, starch or

fiber content.
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