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A B S T R A C T

Incoherent orthogonal polarized Hermite-Gaussian (HG) beam pairs are investigated in nonlocal planar waveguide. Using the variational approach, we discuss the
existence and dynamics of Vector HG solitons analytically and confirm it by split-step Fourier method. The results show that a series of vector solitons, which were
consisted of different-order HG beam pairs, can form when the total initial power is equal to the critical power. Whereas the beam widths will vibrate periodically
during propagation.

Introduction

In recent years, many scholars have paid attention to spatial optical
solitons in nonlocal nonlinear media and obtained a series of novel
results. For example, Z.J. Yang investigated the interaction between the
anomalous vortex beams [1], and the motion of interactional solitons in
nonlocal media [2]. T.P. Horikisi found that the ring dark and antidark
solitons can exist in a weak or strong nonlocality regime [3]. B.K. Es-
bensen exploited the formal analogy between nonlocal and quadratic
solitons [4]. Q. Wang obtained the bistable elliptic optical soliton in
anisotropic nonlocal competing nonlinear media [5].

The high-order optical beam, which features two or more peaks of
optical intensity, has attracted much interest recently. For instance,
Husebaut et al. experimentally discovered the stationary high-order
soliton in nematic liquid crystal [6]. L.H. Zhong obtained the exact
solution of HG solitons in nonlinear nonlocal media with exponential
response function [7], Q. Wang got the Spiraling elliptic Laguerre–-
Gaussian soliton in isotropic nonlocal nonlinear media [8]. Future in-
vestigations include vector-necklace-ring soliton cluster [9], elegant
Ince–Gaussian beam [10,11], Bessel–Gaussian beam [12], HG soliton
[13], variable sinh-Gaussian soliton [14], coupled super-Gaussian beam
pairs, etc, in strong nonlocal media [15]. This paper studies the pro-
pagation of HG beam pairs in strongly planar waveguide with varia-
tional method, and obtains some valuable results.

Theoretical model and variational approximation

The propagation of incoherent orthogonal polarized beam pairs in
nonlocal planar waveguide, can be modeled by the coupled normalized
nonlocal nonlinear Schrodinger equation [14–16]:
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where ψj (j=1, 2) are the two paraxial optical beams. x and z are the
transverse and longitudinal coordinates, respectively. R(x) represents
the nonlocal response function.

The Lagrange density equation of Eq. (1) can be given as follow
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Assuming that the trial beam shaped is HG function
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where Aj(z) (j=1, 2), θj(z), aj(z), cj(z) represent the amplitude, phase,
width, coefficient of wavefront curvature of the two beams, respec-
tively.

The response function can be expanded as follow [3–5] under the
strong nonlocal case
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where R0= R(0), γ=−R(2)(0).
Substituting Eqs. (3) and (4) into Eq. (2), and integrating it over x,

yields
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The evolution equations of parameters for optical beams can be
obtained by variational method
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where Pj0 (j=1, 2) represent the initial powers, aj0 and Aj0 denote the
initial fundamental mode beam widths and amplitudes, respectively.
Combining Eqs. (6b) and (6c), the evolution rules of beam widths can
be obtained
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where P0= P10+ P20 is the total incident power. Therefore the evo-
lutions of two HG beams only depend on the total initial power. By
setting d2a1/dz12|z=0=0, which means that ψ1 can keep its initial
beam width unchanged during propagation, then we can get the critical
power as follow
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Similarly, by setting d2a2/dz22|z=0=0, the critical power of ψ2 can
be obtained
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When the total initial power is equal to the two critical powers, i.e.,
P0= Pc1= Pc2, the HG beam pairs will both keep their widths un-
changed, which means that a stationary Vector HG soliton is form.

The evolution equations of beam widths can be obtained by solving
Eq. (7)
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where β0= (γP0)1/2= [γ(P10+ P20)]1/2 is the propagation constant.

Numerical results

The split-step Fourier transform method is often used to simulate
the propagation of optical beam in nonlinear media [17,18]. In this
section, we also adopt this numerical method for confirming the ana-
lytically results. The step size in the propagation direction and the

Fig. 1. Propagation of Vector HG breathers in strong nonlocal planar waveguide. The parameters are chosen as n1= 1, n2=2. (a) P0 > Pc and (b) P0 < Pc.

Fig. 2. Comparison of analytical solution (solid lines) with numerical solution
(dashed lines). The blue and red lines represents the evolution trajectory of
beam widths for ψ1 and ψ2. The parameters are chosen the same as in Fig. 1.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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number of point in x-direction are 0.01 and 2048, respectively. The
nonlocal response function is assumed as Gaussian-shaped. For con-
venience, we let a10= a20= 1 in our simulations, thus Pc1= Pc2= Pc.

The Vector HG breathers

Fig. 1. (a) and (b) display the propagation of the Vector HG

breathers in strong nonlocal planar waveguide. Fig. 2 depicts the evo-
lution trajectories of the beam widths. From Fig. 2(a), we can find that,
when the total initial power is larger than the critical power, i.e.
P0 > Pc, the nonlinear effect overcomes the diffraction effect and the
beam width begins to decrease. When P0 < Pc as seen in Fig. 2(b), the
beam width begins to increase because that the diffraction effect is
stronger than nonlinear effect. According to the definition of second-
order moment theorem, the initial HG beam widths are aj0(2nj+1)1/2.

The Vector HG solitons

From Fig. 3, we can conclude that the stable Vector HG soliton can
form in strong nonlocal planar waveguide when the total initial power
is equal to the critical power. Fig. 4 displays that, the two beams both
keep their widths unchanged during propagation. Obviously, the var-
iational approximate solutions agree well with the numerical results.

By comparing Fig. 3(a) and (b), one can find that the Vector HG
soliton can form in strong nonlocal planar waveguide with arbitrary P1/
P2, such as P1= 1/2P2 in Fig. 3(a) and P1= 2P2 in Fig. 3(b).

Fig. 5 shows that the intensity profiles of input beams coincide with
that of the output beams very well. In addition, we can found that the
intensity profiles of ψ1+ ψ2 in (a) and (b) are different. However, the
induced nonlinear refractive indexes are identical as seen from Fig. 6.
This is because that, for strong nonlocality, the nonlinear refractive

Fig. 3. Propagation of Vector HG soliton in strong nonlocal planar waveguide. The parameters are chosen as n1= 1, n2=2, P0= Pc. (a) P1= 1/2P2 and (b)
P1= 2P2.

Fig. 4. Comparison of analytical solution (solid lines) with numerical solution
(dashed lines). The blue and red lines represent the evolution trajectories of
beam widths for ψ1 and ψ2. The parameters are chosen the same as in Fig. 3.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. The red, blue and green lines represent the intensity profiles of ψ1, ψ2,
and ψ1+ ψ2, respectively. Solid and dashed lines are the input and output beam
profiles, respectively. The parameters are the same as in Fig. 3. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 6. Red and blue lines represent the induced nonlinear refractive indexes
which are induced by the soliton in Fig. 3 (a) and (b), respectively. (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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index is only depended on the total initially power.

A series of Vector HG solitons which are consisted of different-order HG
beam pairs

The numerical results in Fig. 7(a) (b) and (c) show that, as long as
P0= Pc, the diffraction effect is exactly balanced by nonlinear effect
and the different-order HG beam pairs can keep their initial widths.
From Fig. 8(a) (b) and (c), we also find that the intensity profiles of
input beams coincide well with that of the output beams.

Summary

We study analytically the self-trapping of incoherent orthogonally
polarized HG beam pairs in (1+ 1)-dimensional strong nonlocal media
and obtain the existence condition of Vector HG soliton. The evolution
of the Vector HG solitons is also investigated numerically based on the
split step beam propagation method. We find that, when P0= Pc, the

Vector HG soliton can form in strong nonlocal planar waveguide with
arbitrary P1/P2. However, when P0≠ Pc, the beam widths will vibrate
during propagation. At last, we demonstrate the stable propagation of a
series of vector solitons, which are consisted of different-order HG beam
pairs, in strong nonlocal planar waveguide.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.rinp.2018.06.014.

Fig. 7. Propagation of Vector HG soliton in strong nonlocal planar waveguide. The parameters are chosen as P0= Pc. (a) n=0, n2= 1, (b) n1= 2, n2= 0, and (c)
n1= 2, n2= 3.

Fig. 8. The red, blue and green lines are the
intensity profile of ψ1, ψ2 andψ1+ ψ2, re-
spectively. Solid and dashed lines are the
input and output beam profiles, respec-
tively. The parameters are chosen the same
as in Fig. 7. (For interpretation of the re-
ferences to colour in this figure legend, the
reader is referred to the web version of this
article.)
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