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Some quantitative homogenization results in a simple case
of interface

Marc Josien

Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

ABSTRACT
Following a framework initiated by Blanc, Le Bris and Lions, this art-
icle aims at obtaining quantitative homogenization results in a sim-
ple case of interface between two periodic media. By using
Avellaneda and Lin’s techniques, we provide pointwise estimates for
the gradient of the solution to the multiscale problem and for the
associated Green function. Also we generalize the classical two-scale
expansion in order to build a pointwise approximation of the gradi-
ent of the solution to the multiscale problem (up to the interface),
and, adapting Kenig, Lin and Shen’s approach, we obtain conver-
gence rates.
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1. Introduction

In this article, we are concerned with the quantitative homogenization of the following
elliptic equations in divergence form:

�div A
x
e

� �
� rue xð Þ

� �
¼ f xð Þ; (1)

in a simple case of interface between two periodic media.
Equation (1) is a prototypical equation for various physical phenomena (like electro-

statics or when generalized to systems, elastostatics) set on a material with a microstruc-
ture of characteristic scale e � 1: Homogenization of (1), which aims at studying the
behavior of the solution ue when e ! 0; has attracted much attention for half a century.
Two particular structures are especially studied: the periodic structure and the stationary
ergodic structure (see, e.g, the reference books [1, Chap. 1] for the periodic case, and [2,
Chap. 7] for a the stationary stochastic case). Both of these frameworks can be used for
actual numerical computations: the homogenization theory is an efficient tool for
approximating numerically the solution ue of (1) and its gradient, for a fixed e > 0:
Recently, Blanc, Le Bris and Lions proposed in [3] two other cases that can be amen-

able to numerical computations (see [4]). In the first case, the matrix A is periodic but
perturbed by a defect at the microscopic scale (see also [5] for an extension to the
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advection-diffusion case, and [6] for quantitative homogenization results). In the second
case, which might be a fair model for bicrystals, the matrix A is obtained by gluing two
periodic structures with H€older continuous coefficients along a planar interface. This par-
ticular framework has the specificity that the associated homogenized equation involves a
matrix A? that is piecewise constant with a discontinuity across the interface (in the gen-
eric case). From this perspective, this second case is very different from the aforemen-
tioned settings, where the homogenized matrix is constant. The authors of [3] proposed a
definition of the correctors and showed that they exist and enjoy some desirable properties
of regularity and boundedness. This is a first step in order to obtain quantitative homogen-
ization results. The present article is an attempt to go further, by taking advantage of the
literature in periodic homogenization (in particular, the celebrated work of Avellaneda and
Lin [7] and the recent article of Kenig, Lin and Shen [8]).
The type of results we show here are familiar to the experts of periodic or stochastic

homogenization. But the main idea of this article is the following: in a simple case of
bicrystals, the generalized two-scale expansion yields an approximation that possesses
the same qualitative and quantitative properties as the two-scale expansion in the peri-
odic setting when considering the gradient of the multiscale solution. From a theoretical
point of view, this might be useful for understanding the homogenization of elliptic
equations in the case where the homogenized matrix is discontinuous. We also hope
this may be of interest for the numerical practitioner.
Our aim is twofold: estimate and approximate the gradient rue in L1 norm up to

the interface. Obviously, far from the interface, the classical theory of periodic hom-
ogenization provides a way to fulfill these goals, first by Avellaneda and Lin’s results
[7], and then by using the two-scale expansion. Hence, the very difficulty of our study
is located close to the interface. This is the reason why we strive for pointwise estimates
and approximations (for ue but also on the level of the multiscale Green function).
Our first purpose is to obtain pointwise estimates on the gradient rue of the multi-

scale problem (1). In the periodic setting, such results are provided by Avellaneda and
Lin’s theory [7]. But, as shown in [9] (see also [6, 10]), the periodicity assumption is
not necessary to these local estimates: they can be obtained in various frameworks, as
long as the correctors and the potential (defined by (14) and (22)) associated with the
matrix A are strictly sublinear and as long as the homogenized matrix is constant.
The fact that the homogenized matrix is constant is a useful but mere contingent

assumption due to the framework used by the authors (the matrix A is supposed to be
periodic, possibly perturbed by a defect, or stationary ergodic). Actually, the crucial
ingredient is that the multiscale problem inherits regularity properties from the homo-
genized problem, which are very favorable when the homogenized matrix is constant.
But the solution of an elliptic equation the coefficient of which is piecewise H€older con-
tinuous with discontinuities only on smooth interfaces also enjoys some regularity prop-
erties (see e.g. [11]), which are sufficient for Avellaneda and Lin’s approach. Yet, there
is another impediment: in the case of a discontinuous homogenized coefficient A?; the
A?-harmonic functions (i.e. satisfying �divðA? � ru?Þ ¼ 0) might have a discontinuous
gradient (as a consequence, its second gradient may involve a singular measure sup-
ported on the interface). As discussed below, this fact prevents the classical two-scale
expansion to work properly. This motivates us to introduce a generalized two-scale
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expansion. Equipped with this expansion and with the regularity result of [11], we can
proceed with Avellaneda and Lin’s proof.
Our second purpose is to show to what extent the generalized two-scale expansion

yields an accurate pointwise approximation of the gradient rue; as does the classical
two-scale expansion in the periodic setting, where the convergence rate can be quanti-
fied in e (see e.g. [8, Lem. 3.5]). We aim at deriving the same type of convergence rate
in the case of bicrystals, up to the interface.
This article is organized as follows. In Section 2, we describe precisely our mathematical set-

ting. Then, in Section 3, we introduce and motivate the generalized two-scale expansion. It is
formulated by appealing to the A-harmonic functions (which involve the so-called correctors)
and to the A?-harmonic functions (which are piecewise linear). This expansion is meant to
approximate the solution ue of (2) by means of the solution u? of the homogenized problem.
As in the classical cases, the residuum solves an elliptic equation with a R.H.S. in divergence
form. We state our main results in Section 4. They concern first pointwise estimates on ue

and on rue and then pointwise approximations of these quantities by the generalized two-
scale expansion. These results are also interpreted on the level of the Green functions. We
conclude this section by discussing some aspects, limitations and possible extensions of those
results. The following sections are devoted to the proofs. More precisely, we collect some
elementary results in Section 5 concerning the correctors and the H-convergence of the matrix
Að�=eÞ; and concerning the regularity properties of the solutions of elliptic equations involving
discontinuous coefficients. Then, in Section 6, we use Avellaneda and Lin’s techniques to
prove pointwise estimates on ue and rue: Finally, in Section 7, we follow Kenig, Lin and
Shen’s approach [8] to estimate the residuum between ue and the generalized two-scale expan-
sion. There, the Green function plays a central role.

2. Mathematical setting

From now on, Rd is endowed with a canonical basis ðe1; :::; edÞ: Since we want to focus
on the interface and avoid the problem of boundaries, we set following the equation on
the whole ambient space Rd; with d � 3:

�div A x=eð Þ � rue xð Þ� � ¼ f xð Þ in Rd;

rue 2 L2 Rd;Rd
� �

;

(
(2)

(the more difficult case d¼ 2 will be mentioned in some results). In the above expres-
sion, f 2 C1

c ðRdÞ is a smooth function with compact support, 0< e< 1; and A is an
elliptic and bounded matrix modeling an interface between two infinite crystals that
share a common periodic cell on the interface I :¼ f0g � Rd�1: As is also classical in
Avellaneda and Lin’s theory, we assume that the matrix A is H€older continuous on the
left and on the right of the interface. These assumptions, formalized below, correspond
to the simplest case of interface in [3, Sec. 5]:

Assumption 1 (ellipticity and boundedness). There exists a constant l>0 such that, for
all x; n 2 Rd; the matrix A(x) is invertible and

n � A xð Þ � n � ljnj2 and n � A�1 xð Þ � n � ljnj2:
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Assumption 2 (periodicity with commensurable periods). The matrix A(x) satisfies

A xð Þ ¼ Aþ xð Þ if x � e1>0;
A� xð Þ if x � e1 < 0;

�
(3)

where A6 is ½0;T6
1 � � � � � � ½0;T6

d �-periodic with Tþ
i =T

�
i 2 Q; 8i 2 v2; db:

Assumption 3 (regularity). For a fixed a>0; there holds

A� 2 C0;a Rd;Rd�d
� �

and Aþ 2 C0;a Rd;Rd�d
� �

:

Remark 1. The above regularity assumption can be weakened as in [11, Th. 1.9]: A�
and Aþ can be assumed to be uniformly a-H€older continuous everywhere but on the
(regular) boundaries of disjoint inclusions.

By using the Lax–Milgram theorem, it can be shown that there exists a solution ue 2
H1

locðRdÞ to (2) such that rue 2 L2ðRd;RdÞ: This solution is unique up to the addition
of a constant that we set by imposing that the mean of ue on Rd vanishes.
Under Assumptions 1 and 2, the homogenized problem associated with (2) when

e ! 0 is the following:

�div A? xð Þ � ru? xð Þð Þ ¼ f xð Þ in Rd;

ru? 2 L2 Rd;Rd
� �

;

(
(4)

where the homogenized matrix A? is defined by

A? xð Þ ¼ A?
þ if x � e1>0;

A?
� if x � e1 < 0;

�
(5)

and A?
6 are the homogenized matrices associated with the periodic matrices A6: In gen-

eral, the matrix A? is discontinuous across the interface.
By standard arguments, it can be shown (see Lemma 5.6) that the gradient rue

weakly converges to ru? in L2ðRd;RdÞ: In the periodic case (namely if Aþ ¼ A�),
obtaining strong convergence is more difficult and requires the so-called two-scale
expansion:

ue;1 xð Þ :¼ u? xð Þ þ wi
x
e

� �
@iu

? xð Þ; (6)

where here, and in the sequel, the Einstein summation convention is used. The func-
tions wi are the so-called correctors, which are the strictly sublinear solutions (unique
up to the addition of a constant) to the following equation:

�div A � ei þrwið Þð Þ ¼ 0 in Rd: (7)

We explain in the next section how to generalize the definition of correctors and the
two-scale expansion.
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3. Definition of the correctors and the two-scale expansion

A fundamental ingredient of Avellaneda and Lin’s proof is that the so-called correctors
“correct” sublinear A?-harmonic functions to A-harmonic sublinear functions. Hence,
the first step is to build the sublinear A?-harmonic functions, i.e. the functions Pj satis-
fying:

�div A? xð Þ � rPj xð Þ� � ¼ 0 in Rd: (8)

They induce a natural definition of correctors, which slightly differs from [3].
Unfortunately, with these correctors, the classical formula (6) for the two-scale expan-
sion is algebraically inadequate. As a consequence, we propose a generalization of this
formula which takes into account the fact that the homogenized matrix is not constant
and that allows for a divergence-form representation of the residuum ue;1�ue:

3.1 A?-harmonic functions

When A? is constant, the sublinear A?-harmonic functions are the affine functions. (We
say that a function f is sublinear if lim supjxj!þ1 jxj�1jf ðxÞj ¼ l< þ1 and strictly sub-
linear if l¼ 0 in the previous limit.) In our case, the space of sublinear A?-harmonic
functions is spanned by the constant functions and the following piecewise linear func-
tions:

Pj xð Þ ¼ P xð Þ � ej :¼ x � ej if x � e1 < 0;
x � ej þ �ajx � e1 if x � e1>0;

�
(9)

for j 2 ½½1; d��; where �a is related to the transmission matrix through the interface I
and reads:

�aj ¼
A?
�ð Þ1j� A?

þ
� �

1j

A?þð Þ11
: (10)

If �a ¼ 0 (which strictly encompasses the case where A? is constant), the functions Pj
are linear.
It is straightforward that the functions Pj are solution to (8). Indeed, by definition,

the functions Pj are continuous and their gradients read

rPj xð Þ ¼ ej if x � e1 < 0;
ej þ �aje1 if x � e1>0:

�
(11)

Hence, the functions Pj are A?-harmonic in R�
� � Rd�1 and in R�

þ � Rd�1; and they
satisfy the transmission conditions across the interface:

lim
h!0þ

A? � rPj
� �

xþ he1ð Þ� � � e1 ¼ lim
h!0þ

A? � rPj
� �

x � he1ð Þ� � � e1; (12)

lim
h!0þ

@kPj xþ he1ð Þ ¼ lim
h!0þ

@kPj x�he1ð Þ; (13)

for all x 2 I and k 2 ½½2; d��:
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3.2. Definition of the correctors

Since the correctors are meant to turn the A?-harmonic functions Pj into A-harmonic
sublinear functions, they should solve the following equation:

�div A xð Þ � r Pj xð Þ þ wj xð Þ� �� � ¼ 0 in Rd: (14)

Using the techniques of [3], we show in Section 5.3 the following proposition:

Proposition 3.1. Suppose that the matrix A satisfies Assumptions 1–3. Then, there exists
a solution wj 2 H1

locðRdÞ to (14), which satisfies the following estimates:

kwjkL1 Rdð Þ< þ1; (15)

and krwjkC0;b
unif RdnIð Þ< þ1; (16)

for any 0<b<minða; 1=4Þ:

If �a ¼ 0; definition (14) coincides with the classical one (7) and with [3, (48)], that
we recall here:

�div A xð Þ � rwj xð Þ þ ej
� �� � ¼ �div A? xð Þ � ej

� �
: (17)

However, in the case where �a 6¼ 0; these three definitions lead to different objects.
We motivate our choice in the next section.

3.3. A possible generalization of the two-scale expansion

Now, we introduce a generalization of the two-scale expansion. From above, it appears
clearly that the corrected version of the sublinear A?-harmonic functions u?ðxÞ ¼
ajPjðxÞ (for ðajÞ 2 Rd) is the following

aj Pj xð Þ þ wj xð Þ� � ¼ u? xð Þ þ wj xð Þ rP xð Þð Þ�1
� �

jk@ku
? xð Þ;

where we use the convention ðrPÞij :¼ @iPj: This suggests to set, for the solution u? to
(4), the following generalized two-scale expansion

ue;1 xð Þ ¼ u? xð Þ þ ewj
x
e

� �
rP xð Þð Þ�1

� �
jk@ku

? xð Þ: (18)

In (18), the quantity

U? xð Þ :¼ rP xð Þð Þ�1 � ru? xð Þ; (19)

is actually a gradient in harmonic coordinates. Indeed, if we set

~u zð Þ :¼ u? P�1 zð Þ
� �

; (20)

then, it obviously holds that @zj~uðzÞ ¼ U?
j ðP�1ðzÞÞ: Moreover, by the transmission con-

ditions through the interface (see (12) and (13)), the function U?
j is continuous across

the interface I (for f sufficiently regular).
Notice that we recover the classical two-scale expansion when �a ¼ 0:
The classical argument for assessing the quality of the two-scale expansion is that it

allows for a divergence-form representation of the residuum ue;1�ue (see e.g. [2, pp.
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26–27]). We justify that this algebraical structure is preserved by the generalized expan-
sion (18), with a right-hand term involving the gradient rU?:

In this perspective, it shall be underlined that the formal computation of [2] with the
classical two-scale expansion (6) and with definition (17) of [3] involves the quantity
r2u? (which, in our case, might involve a singular measure supported on the interface
I) multiplied by quantities that might be discontinuous across the interface I : As a
consequence, the mathematical significance of this formal computation is not clear for
bicrystals, even when resorting to the theory of distributions.
We now proceed with the computation of �divðAðxeÞ � rðue;1ðxÞ � ueðxÞÞÞ: For simpli-

city, we set e ¼ 1 and drop the argument x of the functions below. By (2) and (4), we have

�div A � r ue;1 � ueð Þð Þ ¼ �div A � rue;1ð Þ þ div A? � ru?ð Þ:
We now use definitions (19) and (18) to expand the above right-hand term:

�div A � r ue;1 � ueð Þð Þ ¼ �@i Aij @ju
? þ @jwkU

?
k

� �� A?
ij@ju

?
	 


�@i Aijwk@jU
?
k

� �
:

Next, using once more (19), we obtain:

�@i Aij @ju? þ @jwkU?
k

� �� A?
ij@ju

?
	 


¼ �@i Aij @jPk þ @jwk
� �� A?

ij@jPk
h i

U?
k

	 

:

Yet, by definition of Pj and wj; there holds

@i Aij @jPk þ @jwk
� �� A?

ij@jPk
	 


¼ 0: (21)

Hence, as will be justified by Proposition 5.5, there exists a tensor Bijk that is antisym-
metric in its first two indices and that satisfies

@iBijk ¼ A?
jl@lPk�Ajl @lPk þ @lwkð Þ: (22)

Therefore, using the antisymmetry of B, one can express:

�@i Aij @jPk þ @jwk
� �� A?

ij@jPk
h i

U?
k

	 

¼ @lBlik@iU

?
k ¼ @i Bijk@jU

?
k

� �
:

As a conclusion, while restoring the scale e, we obtain:

�div A �=eð Þ � r ue;1 � ueð Þ� �
¼ e@i Bijk � Aijwk

� � �=eð Þ@jU?
k

� �
: (23)

In the above expression, it can be seen that every term is well-defined in the weak
sense. Moreover, the right-hand term is multiplied by e so that, formally, one can expect
that the error jrue;1 �ruej scales like e in various Lp norms. This justifies the intro-
duction of the generalized two-scale expansion (18).

4. Main results

We are now in a position to state our main results. The first ones concern Lipschitz
estimates. They can be used in a second step to quantify the error residuum between
the generalized two-scale expansion and the actual solution of the multiscale problem.
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4.1. Estimation

Our first result is a generalization of the local Lipschitz estimates [7, Lem. 16]:

Theorem 4.1. Suppose that d � 2 and that the matrix A satisfies Assumptions 1, 2 and
3. Let e>0; x0 2 Rd and R> 0. Assume that the function ue 2 H1ðBðx0; 2ÞÞ is a solution
to

�div A x=eð Þ � rue xð Þ� � ¼ 0 in B x0; 2Rð Þ: (24)

Then, there exists a constant C that only depends on A and d such that

sup
x2B x0;Rð ÞnI

jrue xð Þj 	 C
Rdþ1

ð
B x0;2Rð Þ

juej2
 !1=2

: (25)

If the ball Bðx0;RÞ does not intersect the interface I ; the above result concerns noth-
ing but the classical periodic setting. But, in Theorem 4.1 the ball Bðx0;RÞ may intersect
the interface I ; where the gradient rueðxÞ might be discontinuous: in this case, a
Lipschitz estimate holds up to the interface. On the first hand, this result might seem
surprising: one could have expected that the discontinuity of A through the interface
would interact with the oscillations of the small scale so that rue would not remain
bounded when e goes to 0. But, on the other hand, in the periodic setting, it is known
that some Lipschitz estimates can also be obtained up to the boundary of a smooth
domain (see e.g. [7, Th. 2]), which, from a geometric point of view, might be seen as a
kind of interface. Moreover, the way of building the correctors themselves (see [3, Th.
5.1] and Section 5.3) is reminiscent of boundary layers. However, we have not been
able to take this apparent similarity further.

Remark 2. Since the function ue is continuous in Bðx0;RÞ; Theorem 4.1 actually indu-
ces a local L1 estimate in the following sense:

kruekL1 B x0;Rð Þð Þ 	
C

Rdþ1

ð
2B x0;Rð Þ

juej2
 !1=2

: (26)

Similarly, Corollary 4.2 and Theorem 4.5 can be understood in a local L1 sense.
We prove Theorem 4.1 by using the compactness method of [7]. Two scales should

be separated:


 the small scales, where R=e � 1; where the Schauder estimates provided by [11]
comes into play,


 the large scales, for R=e � 1; where we use the compactness method of
Avellaneda and Lin.

The large-scale control on rue is due to a structural property of the matrix A, which
uniformly H-converges to its associated homogenized matrix A? (this statement is made
precise in Lemma 5.6). The idea of the proof is to compare ue to a locally A?-harmonic
function u? (since A? is piecewise constant, this function enjoys sufficient regularity
properties for our purpose). By the uniform H-convergence, ue can be made sufficiently
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close to u?; and thus inherit a medium-scale regularity estimate from it. Then, by
“linearizing” ue in the spirit of the two-scale expansion (18) (here we need the correc-
tors wj to be strictly sublinear), one can iterate the medium-scale regularity estimate on
balls of exponentially increasing radii to obtain a large-scale regularity estimate. There,
it is of the uttermost importance to use a Að�=eÞ-harmonic approximation of ue in order
to iterate the reasoning (this is another motivation for using the correctors defined by
(14)). Finally, a blow-up argument turns the large-scale regularity estimate into an esti-
mate on the gradient rue by resorting to the Schauder estimates of [11].
As is well-known in the periodic setting (see e.g. [8]), pointwise estimates on the

Green function can be derived from the Lipschitz estimates. The Green function Gðx; yÞ
(also called fundamental solution) associated with the operator �divðA � rÞ is a solution
of the following equation weak formulation (see [12] for a precise definition):

�div A xð Þ � rxG x; yð Þ
� � ¼ dy xð Þ:

If d � 3; since A is uniformly bounded and coercive, by [12, Th. 1], there exists a
Green function which is unique. Moreover, it satisfies the following estimate:

jG x; yð Þj 	 Cjx�yj�dþ2: (27)

Remark that the Green function x 7!Gðx; yÞ is locally A-harmonic for x 6¼ y:
Therefore, by applying Theorem 4.1, we deduce the following estimates on the gradient
and the mixed gradient of the Green function:

Corollary 4.2. Let d � 3. Suppose that the matrix A satisfies Assumptions 1, 2 and 3. Let
G be the Green function of the operator �divðA � rÞ on Rd. Then, there exists a constant
C> 0 depending only on d and A such that, for any x 6¼ y 2 RdnI , there holds

jrxG x; yð Þj þ jryG x; yð Þj 	 Cjx�yj�dþ1; (28)

jrxryG x; yð Þj 	 Cjx�yj�d: (29)

It should be noted that, by a dilatation argument, the Green function Ge of the oper-
ator �divðAð�=eÞ � rÞ can be written as

Ge x; yð Þ ¼ e2�dG x=e; y=e
� �

:

Whence the Green function Ge also satisfies (27), (28), and (29), with a constant C
that does not depend on e.

Remark 3. Remark 3 (Case d¼ 2). The conclusions of Corollary 4.2 also hold in the
case d¼ 2. It can be retrieved from the case d¼ 3 by expressing the two-dimensional
Green function by means of a 3-dimensional Green function with well-chosen coeffi-
cients. This is not shown here but can be found in [7, Th. 13] (see also [12, Prop. 5]).

The proofs of the Theorem 4.1 and Corollary 4.2 are respectively postponed until
Sections 6.1, and 6.2.
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4.2. Approximation

We now estimate the residuum ue;1�ue (or equivalently ue�u?) in the L1 norm by
combining the algebraical expression (23) and the estimates on the Green function pro-
vided by Corollary 4.2:

Proposition 4.3. Let d � 3; x0 2 Rd and e>0: Suppose that the matrix A satisfies
Assumptions 1, 2 and 3. Let f 2 LpðRdÞ with support inside Bðx0; 1Þ; for p> d. Assume
that the functions ue and u? are respectively the zero-mean solutions to (2) and (4). Then,
there exists a constant C that only depends on A, d and p such that

kue � u?kL1 Rdð Þ 	 Cekf kLp Rdð Þ: (30)

By a duality argument (see [8, Th. 1.1]), this provides a pointwise error estimate on
the level of the Green function:

Proposition 4.4. Let d � 3: Suppose that the matrix A satisfies Assumptions 1, 2 and 3.
Let G; respectively G?; be the Green function of the operator �divðA � rÞ; respectively
�divðA? � rÞ; on Rd: Then, there exists a constant C> 0 depending only on d and A
such that, for any x 6¼ y 2 Rd; there holds:

jG x; yð Þ � G? x; yð Þj 	 Cjx�yj�dþ1: (31)

For the sake of concise notations, we define the matrices W(x) and W†ðxÞ by
Wij xð Þ :¼ dij þ @iwk xð Þ rP xð Þð Þ�1

kj ; (32)

W†
ij xð Þ :¼ dij þ @iw

†
k xð Þ rP† xð Þ

� ��1
kj ; (33)

where dij stands for the Kronecker symbol, and the functions P† and w† are the analo-
gous of P and w, but with respect to the transposed matrix AT. Then, the gradient
rue;1 can be expressed by means of W and U? respectively defined by (32) and (19) as

rue;1 xð Þ ¼ W x=eð Þ � ru? xð Þ þ ewj x=eð ÞrU?
j xð Þ:

Since the last right-hand term of the above identity scales like e, we expect rueðxÞ to
be well approximated by Wðx=eÞ � ru?ðxÞ:
We justify it first on the level of the Green function, in the same vein as the recent

results of [8] (see also [13] in the stationary ergodic case). Indeed, as a consequence of
Theorem 4.1 and of Proposition 4.4:

Theorem 4.5. Under the assumptions of Proposition 4.4, there exists a constant C> 0
depending only on d and A such that, for all x 6¼ y 2 RdnI ; there holds:

jrxG x; yð Þ �W xð Þ � rxG? x; yð Þj 	 C
ln 2þ jx � yj� �

jx� yjd
; (34)

jrxryG x; yð Þ �W xð Þ � rxryG? x; yð Þ � W† yð Þ
	 
T j 	 C

ln 2þ jx � yj� �
jx � yjdþ1 : (35)

Going backwards to the solutions u? and ue; this implies an L1 estimate on the gra-
dient of the residuum:
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Corollary 4.6. Let d � 3; x0 2 Rd and e>0. Suppose that the matrix A satisfies
Assumptions 1, 2 and 3. Let f 2 L1ðRdÞ with support inside Bðx0; 1Þ. Assume that the
function ue is the zero-mean solution to (2) and that u? is the zero-mean solution to (4).
Then, there exists a constant C that only depends on A and d such that

kW �=eð Þ � ru? �ruekL1 Rdð Þ 	 Cej ln 2þ e�1ð Þj2kf kL1 Rdð Þ: (36)

The proofs of Propositions 4.3 and 4.4, respectively Theorem 4.5 and Corollary 4.6
are postponed until Sections 7.1, respectively 7.2.

4.3. Remarks and possible extensions

We conclude this Section by discussing some aspects of this study.
First, we shall underline that the above results concern the problem on Rd; so that

there is no boundary. In this regard, if we denote the cell Q :¼ ½�1=2; 1=2� � ½0;T2� �
� � � � ½0;Td� and set e :¼ 1=n for n 2 N; then the above results can be generalized to the
problem (2) set on Q with periodic boundary conditions (see [14] for a related work in
the case of a periodic coefficient). But it seems more difficult to treat the case where (2)
is set on a regular bounded domain X along with Dirichlet boundary conditions.
Indeed, in this case, we need to show boundary estimates, which might not be true in
the neighborhood of the intersection point between the boundary @X and the interface
I : At the moment, it is not clear for the author which results may still hold in
this case.
Second, in all the results above, the constant C of the estimates is said to “depend on

A”. This rather vague dependence is a consequence of the fact that the compactness
method of Avellaneda and Lin relies on a proof by contradiction. However, one can
likely be more precise by proceeding with the proof on the class Eðl; a; s; ðT6

i ÞÞ of
matrices A 2 L1ðRd;Rd�dÞ satisfying Assumptions 1, 2 and 3 with kA6kC0;aðRdÞ 	 s
(rather than by working on a fixed matrix). Thus, the dependence on A would be
replaced by a dependence on ðl; a; s; ðT6

i ÞÞ: Such assumptions have been developed in
[8], for example.
Once these limitations are left aside, we remark that, as in [6, 9], the main ingre-

dients used here are the long-range behavior of the correctors and the regularity of the
homogenized problem. Actually, our proofs only require the fact that A is uniformly
elliptic and bounded and uniformly H€older continuous up to the interface I
(Assumption 1, 3) and that there exist correctors wj and a potential B that are bounded.
Therefore, the structural Assumption 2 can certainly be weakened. In particular (see [3,
Th. 5.7]), one can reasonably think that assuming that the ratios Tþ

i =T
�
i are not

Liouville–Roth numbers would be sufficient to build bounded correctors wj and a
bounded potential B.
The regularity of the matrix A is a key ingredient in the proof of Avellaneda and Lin

to show Lipschitz estimates, which encompass the small scales and the large scales.
However, as shown in [9], no regularity assumption is necessary to obtain large-scale
regularity down to the scale e. Therefore, this assumption could be removed to obtain a
weaker version of the above results. In this regard, the approach of [9] could be adapted
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to obtain regularity estimates (instead of Avellaneda and Lin’s approach). One can opti-
mistically think that this would pave the way to quantitative homogenization results in
the case of “stochastic” bicrystals.
Finally, one could also think of systems of elliptic equations in divergence form, for

which Avellaneda and Lin’s approach as well as the regularity results of [11] are
adapted. One can extend Theorem 4.1 to the case of systems by a slight adaptation
–namely, by showing that the result of C0;a regularity [7, Th. 1] still holds in our case
and then by invoking this regularity estimate instead of the De Giorgi-Nash Moser the-
orem in the proofs below. Generalizing the other above results would require first to
generalize the W2;p estimates for piecewise constant coefficients in [15, 16] (see Lemma
5.2) to the case of systems. To the best of our knowledge, this has not been done yet.

5. Preliminary considerations

In this section, we collect some results that will be used throughout this article. First,
we introduce a few notations. Then, we state some regularity results concerning elliptic
equation with piecewise regular (or constant) coefficients. In particular, we show some
estimates on U? defined by (19) and we build a procedure for “linearizing” locally
A?-harmonic functions by appealing to the A?-harmonic sublinear functions Pj: Next,
we build the correctors defined by (14) and a solution B to (22) (that we call the poten-
tial) and we show that they enjoy some regularity properties. Finally, we justify that the
matrices Að�=eÞ uniformly H-converge to A? when e ! 0:

5.1. Notations

We introduce here some useful notations for building the correctors and the potential.
From now on, the matrix A satisfies Assumptions 1, 2 and 3.
For i 2 ½½2; d��; we denote by Ti the least common multiple of T�

i and Tþ
i : We define

the domains

D :¼ R� 0;T2½ � � � � � � 0;Td½ �; and D6 :¼ R6 � 0;T2½ � � � � � � 0;Td½ �:
We say that u is D-periodic if u is Ti-periodic in xi, for i � 2:
We denote w6

j ; respectively B6; the correctors, respectively the potential associated
with the periodic matrices A6: By definition, B6

ijk is a tensor antisymmetric in its first
two indices that solves

�@iB
6
ijk ¼ A6ð Þjl dlk þ @lw

6
k

� �� A?
6

� �
jk

in Rd:

We recall that both the correctors w6
j and the potential B6 are

½0;T6
1 � � � � � � ½0;T6

d �-periodic and of regularity C1;a:

Last, if X is a bounded domain, we define the rescaled integral � ÐX u ¼ jXj�1 Ð u;
where jXj is the Lebesgue measure of X.

5.2. Regularity results

We borrow a regularity result from [11] (see also [17]):
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Theorem 5.1 (Local version of Theorem 1.1 of [11]). Let A 2 L1ðRd;Rd�dÞ be a matrix
defined by (3), where the matrices A6 satisfy Assumption 3 (but are not necessarily peri-
odic), and that satisfies Assumption 1. Let 0<b<minða; 1=4Þ: Suppose that f 2
L1ðBðx; 2ÞÞ; and that g 2 C0;bðBðx; 2ÞnIÞ: If u solves

�div A � ruð Þ ¼ f þ div gð Þ in B x; 2ð Þ;
then there exists a constant C only depending on d; a; b, l and kAkC0;aðBðx;2ÞÞ such that

kukC1;b B x;2ð ÞnIð Þ 	 C kukL2 B x;2ð Þð Þ þ kf kL1 B x;2ð Þð Þ þ kgkC0;b B x;2ð ÞnIð Þ
	 


:

Then, we provide some W1;p estimates on the quantity U? defined by (19):

Lemma 5.2. Let d � 3; x0 2 Rd; p 2 ðd;þ1Þ, and A? be a matrix defined by (5) and
satisfying Assumption 1. Suppose that f 2 LpðRdÞ is supported into Bðx0; 1Þ. Let u? 2
H1

locðRdÞ be the zero-mean solution to (4) and define U? by (19). Then there exists a con-
stant C> 0 depending only on d and A?

6 such that

kU?kW1;p Rdð Þ 	 Ckf kLp Rdð Þ: (37)

Moreover, there holds

krU?kL2 Rdð Þ 	 Ckf kLp Rdð Þ: (38)

The proof (37) rests on a regularity result [16] on non-divergence elliptic equations
with coefficients that are constant on the half-spaces R� � Rd�1 and Rþ � Rd�1: One
turns (4) into such an equation by means of the A?-harmonic coordinates Pj: We need
to treat separately Estimation (38) since, if d¼ 3 or d¼ 4, it is not guaranteed that u?

defined above lies in L2ðRdÞ:
Proof of Lemma 5.2. We first show an Lp estimate on u?: By definition, there holds:

u? xð Þ ¼
ð
B x0;1ð Þ

G? x; yð Þf yð Þdy: (39)

Since the Green function G? associated with the operator �divðA? � rÞ is such that
jG?ðx; yÞj 	 Cjx�yj�dþ2; and since the function f is in LqðRdÞ for all q 2 ½1; p� (by the
H€older inequality, recalling that the support of f is inside Bðx0; 1Þ), the Young inequality
yields

ku?kLp Rdð Þ 	 Ckf kLp Rdð Þ: (40)

Next, we define the function ~u by (20). It satisfies the following elliptic equation:

�div jJ zð Þj�1~A zð Þ � r~u zð Þ
	 


¼ jJ zð Þj�1f P�1 zð Þ
� �

; (41)

where ~AðzÞ is defined by

~A zð Þ :¼ rP P�1 zð Þ
� �� �T � A P�1 zð Þ

� � � rP P�1 zð Þ
� �

;

and J(z) is the Jacobian of P evaluated on P�1ðzÞ: By construction, ~AðzÞ is elliptic and
constant on the half-spaces R�

6 � Rd�1; and the product jJðzÞj�1~AðzÞ is divergence-free
in Rd: Whence, (41) can be rewritten as
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~Aij zð Þ@ij~u zð Þ ¼ f P�1 zð Þ
� �

: (42)

As a consequence, we can apply [16, Th.] (see also [15, Lem. 2.4]): there exists a con-
stant C so that

k~ukW2;p Rdð Þ 	 Ckf kLp Rdð Þ þ Ck~ukLp Rdð Þ:

Thus, by (40), we deduce

k~ukW2;p Rdð Þ 	 Ckf kLp Rdð Þ:

A simple change of variable yields the desired estimate (37).
We now show (38). Since f is compactly supported in Bðx0; 1Þ; then ~u is ~A-harmonic

on RdnBðz0; qÞ; where q :¼ kðrPÞ�1kL1ðRdÞ and z0 :¼ P�1ðx0Þ: Therefore, for z1 2 Rd

such that jz0�z1j>2q; one can apply [11, Prop. 1.7] on Bðz1; jz0 � z1j=2Þ so that

kr2~ukL1ðB z1;jz0�z1j=4ð Þ 	 Cjz0�z1j�2 �
ð
B z1;jz0�z1j=2ð Þ

j~uj2
 !1=2

: (43)

Now, recalling that u? satisfies (40), then, by using (27) and the Cauchy–Schwarz
inequality, we obtain that, if jx�x0j>2; there holds

ju? xð Þj 	 Cjx�x0j�dþ2kf kL1 B x0;1ð Þð Þ:

Transposing it on the level of ~u yields that, for any z 2 Bðz1; jz0�z1j=2Þ; we have

j~u zð Þj 	 Cjz�z0j�dþ2:

Therefore, we deduce from (43) that

kr2~ukL1ðB z1;jz0�z1j=4ð ÞÞ 	 Cjz0�z1j�d: (44)

As a consequence, since we already know that r2~u 2 LpðRdÞ for p> 2, we finally
obtain that r2~u 2 L2ðRdÞ: This proves (38). w

We now explain how locally A?-harmonic functions can be “linearized” by using the
sublinear A?-harmonic functions Pj:

Lemma 5.3. Let A? be a matrix defined by (5) and satisfying Assumption 1. Let x0 2 Rd;

and assume that the function u? 2 H1ðBðx0; 1ÞÞ satisfies
�div A? xð Þ � ru? xð Þ� � ¼ 0 (45)

in Bðx0; 1Þ. Then, there exists a constant C depending only on d and l such that, for all
h 2 ð0; 1=2Þ, there holds

sup
x2B x0;hð Þ

����u? xð Þ � u? x0ð Þ � P xð Þ � P x0ð Þ� � � ð�
B x0;hð Þ

rPð Þ�1 � ru?
����

	 Ch2
ð
�
B x0;1ð Þ

ju?j2
 !1=2

:

(46)

We underline that the above formula (46) gives a first-order approximation of u?

that is also A?-harmonic. In this regard, it is a generalization of [7, (3.5)]. This estimates
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will play a central role in the proof of Theorem 4.1 by encapsulating some regularity
properties of the homogeneous problem (4).
The (simple) proof below interprets the A?-harmonic functions Pj as new coordinates,

in which (46) appears as a first-order Taylor expansion.

Proof of Lemma 5.3. The key ingredient of the proof is that the function ~u defined by
(20) satisfies

kr2~ukL1 P�1 B x0;1=2ð Þð Þð Þ 	 Cku?kL2 B x0;1ð Þð Þ: (47)

Indeed, by the same argument as for establishing (41) above, we obtain that ~u satis-
fies

�div jJ zð Þj�1~A zð Þ � r~u zð Þ
	 


¼ 0 in P�1 B x0; 1ð Þð Þ; (48)

with J and ~A defined as in the proof of Lemma 5.2. Since the matrix jJj�1A is piecewise
constant, as a consequence of [11, Prop. 1.7], there holds

sup
z2P�1 B x0;1=2ð ÞnIð Þ

jr2~u zð Þj 	 Ck~ukL2 P�1 B x0;1ð Þð Þð Þ: (49)

Moreover, since the matrix jJj�1~A is divergence-free, the gradient r~u is continuous
across the interface (inside Bðx0; 1=2Þ). Hence, (49) can be improved as (47).
Therefore, a first-order Taylor expansion on ~u yields����~u P xð Þð Þ � ~u P x0ð Þ� �� P xð Þ � P x0ð Þ� � � ð�

B x0;hð Þ
r~u P zð Þð Þdz

����
	 Ch2kr2~ukL1 P�1 B x0;1=2ð Þð Þð Þ
	 Ch2ku?kL2 B x0;1ð Þð Þ:

Finally, since r~uðPðxÞÞ ¼ ðrPðxÞÞ�1 � ru?ðxÞ; we obtain (46). w

5.3. Correctors and potential

Proposition 3.1 is shown by appealing to Theorem 5.1 and to the following result,
which is inspired by [3, Th. 5.1]:

Proposition 5.4 (adaptation of Th. 5.1 of [3]). Suppose that the matrix A satisfies
Assumptions 1, 2 and 3. Then:

i. There exists a solution wj to Eq. (14). This solution satisfies

r wj � w�
j

� � 2 L2 D�ð Þ;
r wj � wþ

j � �ajrwþ
1

	 

2 L2 Dþð Þ;

wj is D-periodic:

8>><
>>: (50)

The function wj satisfying both (14) and (50) is unique up to the addition of
a constant.
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ii. There exist constants C > 0 and j>0 such that

jrwj xð Þ � rw�
j xð Þj 	 C exp �jjx � e1jð Þ if x � e1 <�1; (51)

jrwj xð Þ � rwþ
j xð Þ � �ajrwþ

1 xð Þj 	 C exp �jjx � e1jð Þ if x � e1>1: (52)

We now build a potential B:

Proposition 5.5. Suppose that the matrix A satisfies Assumptions 1, 2 and 3. Then, there
exists a D-periodic potential B 2 L1ðRd;Rd3Þ associated with A. Namely, Bijk is antisym-
metric in its first two indices and satisfies (22). Moreover, it lies in C0;b

unif ðRd;Rd3Þ for
any b 2 ð0; 1Þ:
Since the proofs of Propositions 5.4 and 5.4 closely follow the proof of [3, Th. 5.1],

we postpone them until Appendix.

5.4. Uniform H-convergence

Equipped with the correctors, we are in a position to state a first qualitative homogen-
ization result:

Lemma 5.6. Suppose that the matrix A satisfies Assumptions 1, 2 and 3. Let sequences
xn 2 Rd and en 2 R�

þ satisfy xn � e1 ! l 2 R and en ! 0. Then, the sequence An :¼
Aðð� � xnÞ=enÞ H-converges to A?ð��le1Þ on every regular bounded domain of Rd:

The proof is classical and relies on the div-curl lemma [18, Lem. 1.1 p. 4]. Therefore,
we only emphasize on its main ingredient: the matrix A admits correctors wj such that

rwj 2 L2unif Rd;Rd
� �

; (53)

and that satisfy the following weak convergences in L2ðX;RdÞ:
rwj � � xnð Þ=en

� �
*

n!þ1 0; (54)

A � rPj þrwj
� �� � � � xnð Þ=en

� �� A? � rPj
� � ��xnð Þ *

n!þ1 0; (55)

for any bounded domain X, for any j 2 ½½1; d�� and for all sequences xn 2 Rd and en !
0: The above facts (53), (54), and (55) are consequences of Proposition 5.4, using the
properties of the periodic correctors w6

j :

6. Estimation

This section is devoted to proving the Lipschitz estimates of Theorem 4.1, from which
we derive the estimates on the multiscale Green function of Corollary 4.2.

6.1. Lipschitz estimates

Our proof of Lipschitz estimates closely follows the proof of Avellaneda and Lin [7]. It
is based on the method of compactness and it is done in the following three steps:
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1. The initialization step (see Section 6.1.1), in which we take advantage of the uni-
form H-convergence (Lemma 5.6) of the multiscale problem to the homogeneous
problem (4). Thus, the multiscale solution ue inherits the medium-scale regular-
ity property of the solution u? of (4) encapsulated in (46). This property is rein-
terpreted in terms of a “linearization” of ue by Að�=eÞ-harmonic functions (here,
it is crucial that the correctors wj are strictly sublinear).

2. The iteration step (see Section 6.1.2), in which the previous estimates are iterated
to obtain Lipschitz regularity of ue down to scale e (this is also called “excess
decay” in [9, Lem. 2]). In this step, it is crucial to resort to an Að�=eÞ-harmonic
approximation of ue (otherwise, we could not iterate).

3. A blow-up step (see Section 6.1.3), in which we use the regularity result
Theorem 5.1 to obtain Lipschitz regularity on scales smaller than e.

6.1.1. Initialization: “linearization” of locally Að�=eÞ-harmonic functions
For the sake of conciseness, we define the A-harmonic coordinates v by

vj xð Þ ¼ Pj xð Þ þ wj xð Þ:
We prove first that the multiscale problem inherits regularity from the homogen-

ized problem:

Lemma 6.1 (see Lemma 14 in [7]). Suppose that the matrix A satisfies Assumptions 1, 2
and 3. Let c 2 ð0; 1Þ and x0 2 Rd. Then, there exists h 2 ð0; 1=4Þ, which only depends on
A?
6 and c, and e0, which only depends on A, d, c and h, such that, if ue 2 H1ðBðx0; 1ÞÞ

satisfies

�div A x=eð Þ � rue xð Þ� � ¼ 0; (56)

in Bðx0; 1Þ for e 	 e0; then

sup
x2B x0;hð Þ

ue xð Þ � ue x0ð Þ � e v
x
e

� �
� v

x0
e

� �� �
�
ð
�
B x0;hð Þ

rPð Þ�1 � rue
�����

�����
	 h1þc

ð
�
B x0;1ð Þ

juej2
 !1=2

:

(57)

Proof of Lemma 6.1. By Theorem 3.1, the correctors wj are bounded. Moreover, by the
Cauchy–Schwartz inequality and the Cacciopoli estimate, there holds

ð
�
B x0;hð Þ

rPð Þ�1 � rue
�����

����� 	 C
ð
�
B x0;hð Þ

jruej2
�����

�����
 !1=2

	 C
ð
�
B x0;1ð Þ

juej2
�����

�����
 !1=2

:

Therefore, proving (57) amounts to establishing a similar estimate, in which vj is
replaced by Pj (up to taking a smaller e0).
By Lemma 5.3, we set h 2 ð0; 1=4Þ sufficiently small so that, for any x1 2 Rd; if u?

satisfies (45) in Bðx1; 1=2Þ; then
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sup
x2B x1;hð Þ

u? xð Þ � u? x1ð Þ � P xð Þ � P x1ð Þ� � � ð�
B x1;hð Þ

rPð Þ�1ru?
�����

�����
	 h1þc

3 � 2d
ð
�
B x1;1=2ð Þ

ju?j2
 !1=2

:

(58)

Now, by absurd, we assume that there exist en ! 0; xn 2 Rd and uen satisfying (56) in
Bðxn; 1Þ and such that, for any n 2 N;

sup
x2B xn;hð Þ

uen xð Þ � uen xnð Þ � P xð Þ � P xnð Þ� � � ð�
B xn ;hð Þ

rPð Þ�1 � ruen

�����
�����

� h1þc

2

ð
�
B xn;1ð Þ

juen j2
 !1=2

:

(59)

(We recall that ePðxeÞ ¼ PðxÞ for all x 2 Rd and e>0:) We renormalize uen byð
�
B xn;1ð Þ

juen xð Þj2dx
 !1=2

¼ 1: (60)

Up to a subsequence, there holds xn � e1 ! l 2 �R: Since the cases l ¼ 61 are the
classical periodic cases, we assume that l 2 R: We denote x1 :¼ le1:
The sequence uenð� þ xnÞ is bounded in the space L2ðBð0; 1ÞÞ and, by the Cacciopoli

estimate, in the space H1ðBð0; 1=2ÞÞ: Therefore, up to a subsequence (that we do not
relabel), it weakly converges to u?ð� þ x1Þ 2 H1ðBð0; 1=2ÞÞ and in L2ðBð0; 1ÞÞ:
On the one hand, by the De Giorgi-Nash Moser theorem [19, Th. 8.24 p. 202], there

exists b 2 ð0; 1Þ such that the sequence uenð� þ xnÞ is bounded in C0;bðBð0; 1=4ÞÞ: By
weak convergence, we also haveð

�
B xn;1ð Þ

juen j2
 !1=2

�
ð
�
B x1;1ð Þ

ju?j2
 !1=2

:

Moreover, the quantity Pðxn þ zÞ�PðxnÞ only depends on z and xn � e1 and rPðzÞ
only depends on signðz � e1Þ: As a consequence, one can take the limit n ! þ1 in
(59). This yields

sup
x2B x1;hð Þ

u? xð Þ � u? x1ð Þ � P xð Þ � P x1ð Þ� � � ð�
B x1;hð Þ

rPð Þ�1ru?
�����

�����
� h1þc

2

ð
�
B x1;1ð Þ

ju?j2
 !1=2

:

(61)

On the other hand, by Lemma 5.6, u? satisfies (45) in Bðx1; 1=2Þ: Therefore, it also
satisfies (58). This is in contradiction with (61) (since u? cannot be uniformly equal to
0 on Bðx1; 1=2Þ by (59) and (60)). As a consequence, our supposition (59) was absurd.
This establishes the existence of e0 such that (46) is valid for any e< e0 and x0 2 Rd: w
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6.1.2. Iteration
We iterate Lemma 6.1 to obtain the following:

Lemma 6.2 (see Lemma 15 in [7]). Suppose that the matrix A satisfies Assumptions 1, 2
and 3. Let c 2 ð0; 1Þ. Let h and e0 as in Lemma 6.1. Assume that ue satisfies (56) in
Bðx0; 1Þ, for x0 2 Rd, and e 	 hne0. Then, there exist a constant C that only depends on
d, h and l, and a sequence jðnÞ 2 Rd such that

sup
x2B x0;h

nþ1ð Þ
ue xð Þ � ue x0ð Þ � e v

x
e

� �
� v

x0
e

� �� �
� j nð Þ

����
����

	 h 1þnð Þ 1þcð ÞkuekL1 B x0;1ð Þð Þ;

(62)

jj nð Þj 	 C
Xn
j¼0

hjc
 !

kuekL1 B x0;1ð Þð Þ: (63)

A central argument of the proof is that the functions vj are A-harmonic, so that
Lemma 6.1 can be iterated.

Proof. We proceed by induction.
If n¼ 0, we set

j 0ð Þ ¼
ð
�
B x0;hð Þ

rPð Þ�1 � rue:

By Lemma 6.1, (62) is satisfied. Moreover, since rP only takes two values, we have:ð
�
B x0;hð Þ

rPð Þ�1 � rue ¼ 1
jB x0; hð Þj rP �e1ð Þ �

ð
B x0;hð Þ\ R��Rd�1ð Þ

rue
"

þrP e1ð Þ �
ð
B x0;hð Þ\ Rþ�Rd�1ð Þ

rue
#
:

and, by the Stokes’ theoremð
B x0;hð Þ\ R��Rd�1ð Þ

rue ¼
ð
@ B x0;hð Þ\R��Rd�1ð Þ

ue xð Þd~S xð Þ:

A similar formula is obtained for the other part of the ball Bðx0; hÞ \ ðRþ � Rd�1Þ:
As a consequence, (63) is satisfied for n¼ 0.
We assume now that Lemma 6.2 is true for n � 0: Let 0< e 	 hnþ1e0 and ue 2

H1
locðBðx0; 1ÞÞ satisfying (56) in Bðx0; 1Þ: Applying Lemma 6.2, there exists jjðnÞ associ-

ated to ue such that (62) and (63) are satisfied. We set ~e :¼ eh�n�1 	 e0; ~x0 :¼ h�n�1x0
and

v zð Þ :¼ ue hnþ1zð Þ�ue x0ð Þ�hnþ1~e v
z
~e

� �
� v

~x0
~e

� � !
� j nð Þ: (64)

Since the functions vj are A-harmonic and by (56), we deduce that the function v is
Að�=~eÞ-harmonic in Bð~x0; 1Þ: Hence, thanks to Lemma 6.1,
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sup
z2B ~x0;hð Þ

v zð Þ � v ~x0ð Þ � ~e v
z
~e

� �
� v

~x0
~e

� � !
�
ð
�

B ~x0 ;hð Þ
rPð Þ�1 � rv

�����
�����

	 h1þckvkL1 B ~x0;1ð Þð Þ:

(65)

Yet, by the induction hypothesis (62) and by definition (64),

kvkL1 B ~x0;1ð Þð Þ 	 h 1þnð Þ 1þcð ÞkuekL1 B x0;1ð Þð Þ: (66)

We set

j nþ 1ð Þ :¼ j nð Þ þ h�n�1
ð
�

B ~x0 ;hð Þ
rPð Þ�1 � rv; (67)

so that inserting (64) and (67) in (65) and using (66) yields (62) for the nþ 1-th step.
Moreover, thanks to Stokes’ theorem (see above) and to (66),

jjj nþ 1ð Þj 	 jjj nð Þj þ Ch�n�2kvkL1 B ~x0;1ð Þð Þ

	 jjj nð Þj þ Ch 1þnð ÞckuekL1 B 0;1ð Þð Þ;

where the constant C only depends on d and h (but not on n). This proves (63) for the
nþ 1-th step and concludes the proof of Lemma 6.2. w

6.1.3. Blow-up
We proceed with the last part of the proof of Theorem 4.1.

Proof of Theorem 4.1. The proof is done by a blow-up argument, in two steps: the first
aims at controlling the oscillation of ue down to the scale e. It relies on Lemma 6.2 and
on the fact that the correctors are strictly sublinear; the second step uses the first step
along with the regularity of the operator �divðAð�=eÞ � rÞ at a scale finer than e -the
latter being provided by Theorem 5.1.
Without loss of generality, we assume that R¼ 4 and that e< e0:

Step 1: We set c ¼ 1=2; and obtain e0 and h from Lemma 6.1. Let x1 2 Bðx0; 2ÞnI : We
first show that, if 1 � r � e=e0; there holds

sup
x2B x1;rð Þ

jue xð Þ � ue x1ð Þj 	 CrkuekL1 B x1;1ð Þð Þ: (68)

We set n 2 N such that hnþ1 	 r 	 hn; and x 2 Bðx1; rÞ: Thanks to Lemma 6.2, we
obtain

jue xð Þ � ue x1ð Þj 	 Cje v
x
e

� �
� v

x1
e

� �� �
jkuekL1 B x1;1ð Þð Þ

þ h 1þnð Þ 1þcð ÞkuekL1 B x1;1ð Þð Þ:
(69)

By Proposition 3.1, the correctors wj are bounded. Therefore, we deduce from the
above estimate (69) that
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jue xð Þ � ue x1ð Þj 	 C jx� x1j þ eþ r1þc
� �

kuekL1 B x1;1ð Þð Þ;

which yields (68).
Step 2: Let vðzÞ ¼ ueðez=e0Þ�ueðx1Þ: By definition, the function v satisfies

�div A z=e0ð Þ � rv zð Þ� � ¼ 0 in B e0x1=e; 1ð Þ:

By Theorem 5.1, there exists a constant C> 0 independent of e such that

jrv e0x1=eð Þj 	 CkvkL1 B e0x1=e;1ð Þð Þ:

Rescaling the above estimates yields

jrue x1ð Þj 	 Ce�1e0kuekL1 B x1;e=e0ð Þð Þ:

Appealing to (68) applied with r :¼ e=e0 and to the De Giorgi-Nash Moser theorem
[19, Th. 8.24 p. 202], we deduce that

jrue x1ð Þj 	 CkuekL1 B x1;1ð Þð Þ 	 CkuekL2 B x1;2ð Þð Þ:

By a covering argument, this implies

sup
x2B x0;2ð ÞnI

jrue xð Þj 	 CkuekL2 B x0;4ð Þð Þ

and establishes Theorem 4.1. w

6.2. Estimates on the Green function

We prove Corollary 4.2 by appealing to the Lipschitz estimate of Theorem 4.1.

Proof of Corollary 4.2. Let x 6¼ y 2 RdnI : By [20, Th. 1.3] we have Gðx; yÞ ¼ G†ðy; xÞ;
where G† is the Green function associated with the transposed operator �divðAT � rÞ:
Therefore, without loss of generality, it is sufficient to estimate rxGðx; yÞ in order to
establish (28). By definition, Gð�; yÞ is A-harmonic in Bðx; jx�yj=2Þ:

�div A � rxG �; yð Þ� � ¼ 0 in B x; jx�yj=2� �
: (70)

Hence, applying Theorem 4.1 and using (27) yields (28) as follows:

jrxG x; yð Þj 	 Cjx�yj�1
ð
B x;jx�yj=2ð Þ

jG x0; y
� �j2dx0

 !1=2

	 Cjx�yj�dþ1:

Finally, differentiating (70) with respect to y implies that ryGð�; yÞ is also A-harmonic
in Bðx; jx�yj=2Þ: Therefore, as a consequence of Theorem 4.1, we obtain

jrxryG x; yð Þj 	 Cjx�yj�1
ð
B x;jx�yj=2ð Þ

jryG x0; y
� �j2dx0

 !1=2

;

which implies (29), by resorting to (28). w
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7. Approximation

In this section, we prove Proposition 4.3, Proposition 4.4, Theorem 4.5 and Corollary
4.6. The proofs of this section follow the strategy of [8]. For simplicity, we denote
henceforth the residuum:

Re xð Þ :¼ ue;1 xð Þ�ue xð Þ ¼ u? xð Þ þ wi x=eð Þ@iu? xð Þ�ue xð Þ: (71)

7.1. Pointwise approximation

This section is concerned with the proof of the pointwise approximation of the function
ue and of the Green function G (i.e. Propositions 4.3 and 4.4). The first step is to show
a global pointwise estimate on jueðxÞ � u?ðxÞj; namely (30). It relies on the identity (23)
combined with the estimates on the multiscale Green function and its derivatives pro-
vided by Corollary 4.2. Then, by a duality argument (and by rescaling), the first step
yields an estimate on kGðx; �Þ � G?ðx; �ÞkLp0 for p0< d=ðd�1Þ: By establishing a local
counterpart of Proposition 4.3, one finally obtains a pointwise estimate
on jGðx; yÞ � G?ðx; yÞj:
We proceed with the:

Proof of Proposition 4.3. By (23), there holds

Re xð Þ ¼ �e
ð
Rd
@yiGe x; yð Þ Bijk � Aijwk

� �
y=e
� �

@jU
?
k yð Þ

	 

dy; (72)

where U? is defined by (45). By Propositions 3.1 and 5.5, the quantity Bijk�Aijwk is uni-
formly bounded on Rd: Hence, applying the H€older inequality on (72) for a suitable
decomposition of Rd and invoking (28) yields

jRe xð Þj 	 Ce
ð
jy�xj< 2

jrGe x; yð Þj
p

p�1dy

 !p�1
p

krU?kLp Rdð Þ

þ Ce
ð
jy�xj>2

jrGe x; yð Þj2dy
 !1

2

krU?kL2 Rdð Þ

	 Ce
ð
jzj< 2

jzj� d�1ð Þp
p�1 dz

 !p�1
p

krU?kLp Rdð Þ

þ Ce
ð
jzj>2

jzj�2 d�1ð Þdz

 !1
2

krU?kL2 Rdð Þ:

(73)

Since ðd�1Þp=ðp�1Þ< d and 2ðd�1Þ>d; then the above integrals converge.
Moreover, by Lemma 5.2, and since f is supported in Bðx0; 1Þ there holds

kU?kW1;p Rdð Þ 	 Ckf kLp Rdð Þ and krU?kL2 Rdð Þ 	 Ckf kLp Rdð Þ:

Therefore, (73) yields

kue;1 � uekL1 Rdð Þ 	 Cekf kLp Rdð Þ: (74)
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Furthermore, by a Sobolev injection (recall that p> d), we estimate

kru?kL1 Rdð Þ 	 CkU?kL1 Rdð Þ 	 CkU?kW1;p Rdð Þ 	 Ckf kLp Rdð Þ: (75)

As a consequence of (74) and (75), and since the correctors wj are bounded, defin-
ition (18) of ue;1 implies that

kue � u?kL1 Rdð Þ 	 Cekru?kL1 Rdð Þ þ kue;1 � uekL1 Rdð Þ 	 Cekf kLp Rdð Þ:

w

We now show a localized version of (30), which is a key step to prove pointwise
error estimate on the Green function (27):

Lemma 7.1 (adaptation of Lemma 4.2 of [8]). Assume that A satisfies Assumptions 1, 2
and 3. Let e>0; x0 2 Rd; q 2 ð1;1Þ. Suppose that ue; u? 2 H1ðBðx0; 1ÞÞ satisfies

�div A? xð Þ � ru? xð Þ� � ¼ �div A x=eð Þ � rue xð Þ� �
(76)

in Bðx0; 1Þ: Then, there exists a constant C independent of e so that

kRekL1 B x0;1=2ð Þð Þ 	 CkRekLq B x0;1ð Þð Þ þ CekrU?kL1 B x0;1ð Þð Þ; (77)

for Re and U? respectively defined by (71) and by (19).

Proof. We decompose Re :¼ Re
1 þ Re

2 where Re
1 is the zero-mean solution on Rd to the

following equation:

�div A x=eð Þ � rRe
1 xð Þ� � ¼ ediv He xð Þ� �

and rRe 2 L2 Rd;Rd
� �

; (78)

and where the vector-valued function He is defined by

He
i xð Þ :¼ evB x0;1ð Þ xð Þ Bijk � Aijwk

� �
x=eð Þ@jU?

k xð Þ: (79)

By definition

Re
1 xð Þ ¼ �

ð
B x0;1ð Þ

ryGe x; yð Þ �He yð Þdyþ
ð
B x0;1ð Þ

Ge x; yð ÞHe yð Þ � d~S yð Þ:

As a consequence of (27) and (28), and since the quantity Bijk�Aijwk is bounded,
there holds

kRe
1kL1 Rdð Þ 	 CkHekL1 B x0;1ð Þð Þ 	 CekrU?kL1 B x0;1ð Þð Þ: (80)

We now estimate the function Re
2: By (23) and (78), it satisfies

�div A x=eð Þ � rRe
2 xð Þ� � ¼ 0 in B x0; 1ð Þ: (81)

Hence, by [19, Th. 8.25 p. 202], Re
2 can be estimated as follows

kRe
2kL1 B x0;1=2ð Þð Þ 	 CkRe

2kLq B x0;1ð Þð Þ: (82)

Therefore, by applying the triangular inequality and then (80) and (82), we get

kRekL1 B x0;1=2ð Þð Þ 	 kRe
1kL1 B x0;1=2ð Þð Þ þ kRe

2kL1 B x0;1=2ð Þð Þ
	 CekrU?kL1 B x0;1ð Þð Þ þ CkRe

2kLq B x0;1ð Þð Þ:
(83)
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The triangular inequality and then (80) yield

kRe
2kLq B x0;1ð Þð Þ 	 kRe

1kLq B x0;1ð Þð Þ þ kRekLq B x0;1ð Þð Þ
	 CekrU?kL1 B x0;1ð Þð Þ þ kRekLq B x0;1ð Þð Þ:

(84)

As a consequence, we obtain (77) by combining (83) and (84). w

Proposition 4.4 is then obtained by a duality argument involving Proposition 4.3
coupled with the local L1 estimate of Lemma 7.1:

Proof of Proposition 4.4. If jx�yj< 1; then the result is deduced by a triangular inequal-
ity and by (27). Hence, we restrict to the case jx�yj>1:
On the one hand, by Proposition 4.3 (used with a scaling argument), for all f 2

LpðRdÞ; for p> d, with support inside Bðy; jx�yj=2Þ; there holds

ju xð Þ � u? xð Þj ¼
ð
B y;

jx�yj
2ð Þ

G x; zð Þ � G? x; zð Þ
� �

f zð Þdz
������

������
	 Cjx�yj1�d

pkf kLp Rdð Þ;

where u and u? are respectively the zero-mean solutions to (2) (with e ¼ 1) and (4).
Hence, by duality,

ð
�

B y;
jx�yj
2ð Þ

jG x; zð Þ � G? x; zð Þj
p

p�1dz

0
@

1
A

p�1
p

	 Cjx�yj�dþ1; (85)

which scales like (31), but involves a weaker norm.
On the other hand, by [20, Th. 1.3] the functions Gðx; �Þ and G?ðx; �Þ are respectively

AT-harmonic and ðA?ÞT-harmonic. Therefore, by Lemma 7.1 and by (85), there holds

jG x; yð Þ � G? x; yð Þj 	 Cjx�yj�dþ1 þ Cjx�yj2krU?k
L1 B y;jx�yj

2ð Þð Þ; (86)

for U? defined by

U? yð Þ :¼ rP† yð Þ
	 
�1 � ryG? x; yð Þ:

By applying [11, Prop. 1.7] in a ball Bðy; jx�yj=2Þ; in which G?ðx; �Þ is ðA?ÞT-har-
monic, there holds

krU?k
L1 B y;jx�yj

2ð Þð Þ 	 Cjx�yj�2kG?k
L1 B y;3jx�yj

4ð Þð Þ 	 Cjx�yj�d:

Injecting the above inequality in (86) yields (31). w

7.2. Pointwise approximation of the gradient

In this Section, we approximate the gradients rxG and rxryG of the multiscale Green
function by means of the two-scale expansion applied on G? (i.e. Theorem 4.5). It relies
on Lemma 7.2, which estimates the gradient of the residuum associated with locally
Að�=eÞ-harmonic functions. Applying it on the Green function and invoking Proposition
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4.4 yields (34). Iterating once more the same reasoning, we obtain (35). Finally,
Corollary 4.6 is a consequence of (34) and of the H€older inequality (with a small tech-
nical argument required by the non-integrability in x¼ y of the R.H.S. of (34)).
Theorem 4.5 relies on the following:

Lemma 7.2. Let d � 3; x0 2 RdnI and e>0. Suppose that the matrix A satisfies Assumptions
1, 2, and 3. Suppose that ue and u? are respectively Að�=eÞ-harmonic and A?-harmonic in
Bðx0; 2Þ. Then, there exists a constant C> 0 depending only on A and d such that

krue �W �=eð Þ � ru?kL1 B x0;1=2ð Þð Þ 	 Ckue � u?kL1 B x0;2ð Þð Þ
þ Ce ln 2þ e�1ð Þku?kL1 B x0;2ð Þð Þ;

(87)

where W is defined by (32).

The proof is divided in four steps.
The first step concerns the case where x 2 Bðx0; 1=2Þ is far from the interface: we

suppose distðx; IÞ � d (where d 2 ð0; e=2Þ will be fixed at the end of the proof). We
define Re by (71). In this case, thanks to the estimates on the Green function provided
by Corollary 4.2 combined with the identity (23), we show that

jrRe xð Þj 	 CkRekL1 B x0;1ð Þð Þ þ Cej ln dð ÞjkrU?kL1 B x0;1ð Þð Þ
þ Cedkr2U?kL1 B x;dð ÞÞ:ð

(88)

This step closely follows the proof of [8, Lem. 3.5]. However, two points should be
underlined: First, the function r2U? might involve a singular measure supported on I ; so
that it is necessary to assume that distðx; IÞ � d: Second, we shall play with the extra par-
ameter d (not present in [8, Lem. 3.5]) to get sufficiently close to the interface I (the salient
point is that the R.H.S. of (88) blows up very slowly when d ! 0). The second step is con-
cerned with x 2 Bðx0; 1=2Þ close to the interface (i.e. at a distance smaller than d). Then we
use a regularity result at the scale e (namely Theorem 5.1) to compare rReðxÞ with
rReðx0Þ; for x0 farther from the interface. Appealing to the previous step for x0 and using a
triangular inequality provides the desired bound. In the third step, we estimate the deriva-
tives of U? in (88) by invoking the regularity results of [11]. Finally, in the fourth step, we
choose an optimal parameter d and establish (87) by means of the two previous steps.

Proof. Without loss of generality, we assume that e< 1=8: Let x 2 Bðx0; 1=2ÞnI : The
parameter d 2 ð0; e=2Þ will be set in Step 4.

Step 1: Estimates far from the interface
In this step, we assume that the distance distðx; IÞ between x and the interface I ; is

larger than d and we show (88). As in the proof of Lemma 7.1, we decompose Re :¼
Re
1 þ Re

2 where Re
1 is the solution on Rd to (78) and Re

2 solves (81).
On the one hand, by Theorem 4.1, there holds

krRe
2kL1 B x0;1=4ð Þð Þ 	 CkRe

2kL2 B x0;1=2ð Þð Þ:
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Whence, by triangular inequality, and by appealing to (80),

krRe
2kL1 B x0;1=4ð Þð Þ 	 CkRekL1 B x0;1=2ð Þð Þ þ CkRe

1kL1 B x0;1=2ð Þð Þ
	 CkRekL1 B x0;1ð Þð Þ þ CekrU?kL1 B x0;1ð Þð Þ:

(89)

On the other hand, by (78), there holds

rRe;1 xð Þ ¼
ð
@ B x0;1ð Þð Þ

rxGe x; yð Þ He yð Þ �He xð Þ� � � d~S yð Þ

�
ð
B x0;1ð Þ

rxryGe x; yð Þ � He yð Þ � He xð Þ� �
dy;

(90)

where the vector-valued function He is defined by (79). The first integral of (90) is eas-
ily bounded thanks to (28):ð

@ B x0;1ð Þð Þ
rxGe x; yð Þ He yð Þ � He xð Þ� � � d~S yð Þ

�����
����� 	 CkHekL1 B x0;1ð Þð Þ:

By resorting to (29), we estimate the second integral in (90).

ð
B x0;1ð Þ

rxryGe x; yð Þ � He yð Þ � He xð Þ� �
dy

�����
�����

	
ð
B x0;1ð Þ

jx� yj�d � He yð Þ � He xð Þ� �
dy

�����
�����:

We cut the ball Bðx0; 1Þ ¼ Bðx; dÞ [ ðBðx0; 1ÞnBðx; dÞÞ: On the small ball, we use the
H€older regularity of He; and on the remaining part, we use the L1 norm of He:

ð
B x0;1ð Þ

rxryGe x; yð Þ � He yð Þ � He xð Þ� �
dy

�����
�����

	 C
ð
B x;dð Þ

jx� yjajx� yj�ddy

�����
����� sup
y2B x;dð Þ

jHe yð Þ �He xð Þj
jy� xja

þ C
ð
B x0;1ð ÞnB x;dð Þ

jy� xj�ddy

�����
�����kHekL1 B x0;1ð Þð Þ

	 Cda sup
y2B x;dð Þ

jHe yð Þ �He xð Þj
jy� xja þ Cj ln dð ÞjkHekL1 B x0;1ð Þð Þ:

Now, by Propositions 3.1 and 5.5, there holds

kHekL1 B x0;1ð Þð Þ 	 CekrU?kL1 B x0;1ð Þð Þ (91)
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and (recall that d< e):

da sup
y2B x;dð Þ

jHe yð Þ �He xð Þj
jy� xja

	 Ce1�adakrU?kL1 B x0;1ð Þð Þ þ Ceda sup
y2B x;dð Þ

jrU? yð Þ � rU? xð Þj
jy � xja

	 CekrU?kL1 B x0;1ð Þð Þ þ Cedkr2U?kL1 B x;dð Þð Þ:

(92)

As a consequence,

jrRe;1 xð Þj 	 Cej ln dð ÞjkrU?kL1 B x0;1ð Þð Þ þ Cedkr2U?kL1 B x;dð Þð Þ; (93)

and, by a triangular inequality involving (89) and (93), we show (88).

Step 2: Estimates close to the interface
Assume that distðx; IÞ 	 d: We set b<minða; 1=4Þ=2: Without loss of generality, we

assume that x � e1 < 0 and denote by prðxÞ the orthogonal projection of x on �re1 þ I :
By a rescaling argument, one can apply Theorem 5.1 for Re on BðpeðxÞ; 2eÞ: Thus,

there exists a constant C independent of d such that for all y 6¼ z 2 BðpeðxÞ; 2eÞnI such
that y � e1 and z � e1 have the same sign:

jrRe xð Þ � rRe pd xð Þð Þj
jx � pd xð Þjb

	 Ce�1�bkRekL1 B pe xð Þ;2eð Þð Þ þ C
jHe zð Þ � He yð Þj

jz � yjb
þ Ce�bkHekL1 B pe xð Þ;2eð Þð Þ:

By a reasoning similar to the one producing (92) (with d :¼ e), we deduce that

kHekL1 B pe xð Þ;2eð Þð Þ þ eb
jHe zð Þ � He yð Þj

jz � yjb
	 CekrU?kL1 B pe xð Þ;2eð Þð Þ þ Ce2 sup

y2B pe xð Þ;2eð ÞnI
jr2U? yð Þj;

(where we underline that y � e1 and z � e1 have the same sign). Therefore,

jrRe xð Þ � rRe pd xð Þð Þj 	 Cdbe�1�bkRekL1 B x0;1ð Þð Þ
þ Cdbe1�bkrU?kL1 B pe xð Þ;2eð Þð Þ
þ Cdbe2�b sup

y2B pe xð Þ;2eð ÞnI
jr2U? yð Þj:

(94)

Hence, invoking (88) for pdðxÞ; by a triangular inequality, we get

jrRe xð Þj 	 C 1þ dbe�1�b
� �

kRekL1 B x0;1ð Þð Þ
þ Ce dbe�b þ j ln dð Þj

� �
krU?kL1 B x0;1ð Þð Þ

þ Ce2 1þ dbe�b
� �

sup
y2B x0;1ð ÞnI

jr2U? yð Þj:
(95)
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Step 3: Estimates on U?

We collect two useful estimates concerning rU? and r2U?: By [11, Prop. 1.7], we
have

sup
x2B x0;1ð ÞnI

jr2u? xð Þj þ jr3u? xð Þj
� � 	 Cku?kL1 B x0;2ð Þð Þ: (96)

By definition (19), U? is continuous through the interface I and there holds

krU?kL1 B x0;1ð Þð Þ 	 Cku?kL1 B x0;2ð Þð Þ; (97)

sup
x2B x0;1ð ÞnI

kr2U? xð Þk 	 Cku?kL1 B x0;2ð Þð Þ: (98)

Step 4: Conclusion
From Steps 1 and 2, we know that Estimate (95) is satisfied for any x 2 Bðx0; 1=2ÞnI :

Invoking (97) and (98), it implies that, for any x 2 Bðx0; 1=2ÞnI ; there holds

jrRe xð Þj 	 C 1þ dbe�1�b
� �

kRekL1 B x0;1ð Þð Þ
þ Ce dbe�b þ j ln dð Þj

� �
ku?kL1 B x0;2ð Þð Þ:

(99)

Recall that d 2 ð0; eÞ is still a free parameter. Now, we set d :¼ e1=bþ1: Therefore, (99)
yields

jrRe xð Þj 	 CkRekL1 B x0;1ð Þð Þ þ Cej ln eð Þjku?kL1 B x0;2ð Þð Þ: (100)

By Proposition 3.1, and then by (97),

kRe � ðu? � ueÞkL1ðBðx0;1Þ 	 ekrU?kL1ðBðx0;1ÞÞ 	 eku?kL1ðBðx0;2ÞÞ; (101)

so that Re can be replaced by ue�u? in the R.H.S. of Estimate (100). Since

rRe ¼ W �=eð Þ � ru? �rue½ � þ ewj �=eð ÞrU?
j ;

by Proposition 3.1 and by (98), the quantity rRe in (100) can be replaced by Wð�=eÞ �
ru?�rue so that we get (87). w

We are now in a position to proceed with the:

Proof of Theorem 4.5. Let x 6¼ y 2 RdnI : Recall that x0 7!Gðx0; yÞ and x0 7!G?ðx0; yÞ are
respectively A-harmonic and A?-harmonic on Bðx; jx�yj=2Þ: As a consequence of
Lemma 7.2, (87) properly rescaled yields

krxG �; yð Þ �W � rxG? �; yð ÞkL1 B x;jx�yj=4ð Þð Þ
	 Cjx�yj�1kG �; yð Þ � G? �; yð ÞkL1 B x;jx�yj=2ð Þð Þ
þ Cjx�yj�2 ln 2þ jx� yj� �kG? �; yð ÞkL1 B x;jx�yj=2ð Þð Þ:

Since G?ðx; yÞ 	 Cjx�yj�dþ2; we obtain (34) by invoking (31).
The function y0 7!rxGðx; y0Þ (and similarly y0 7!WðxÞ � rxG?ðx; y0Þ) is AT-harmonic

(respectively ðA?ÞT-harmonic on Bðy; jx�yj=2Þ). Hence, as a consequence of Lemma 7.2,
(87) properly rescaled yields
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jrxryG x; yð Þ �W xð Þ � rxryG? x; yð Þ � W†ð ÞT yð Þj
	 Cjx�yj�1krxG x; �ð Þ �W xð Þ � rxG? x; �ð ÞkL1 B x;jx�yj=2ð Þð Þ
þ Cjx�yj�2 ln 2þ jx� yj� �kW xð Þ � rxG? x; �ð ÞkL1 B x;jx�yj=2ð Þð Þ:

By appealing to (34) and then by using a Lipschitz estimate on G?ðx; �Þ; we finally
obtain (35). w

Corollary 4.6 is a consequence of Theorem 4.5 and of the H€older inequality.

Proof of Corollary 4.6. By definition, and since f is supported inside Bðx0; 1Þ; there
holds:

W x=eð Þ � ru? xð Þ�rue xð Þ
¼
ð
B x0;1ð Þ

W x=eð Þ � rxG? x; yð Þ � rxGe x; yð Þ
� �

f yð Þdy: (102)

We separate Bðx0; 1Þ ¼ Bðx; eÞ [ ðBðx0; 1ÞnBðx; eÞÞ: On Bðx0; 1ÞnBðx; eÞ; the integrand
of (102) is estimated thanks to (34) (rescaled by e). On Bðx; eÞ; the integrand of (102) is
dealt with by appealing to (28) and is counterpart for the homogeneous problem. Thus,

ð
B x0;1ð Þ

W x=eð Þ � rxG? x; yð Þ � rxGe x; yð Þ
� �

f yð Þdy
�����

�����
	 C

ð
B x0;1ð ÞnB x;eð Þ

e ln 2þ e�1jx� yj� �
jx � yjd

dyþ
ð
B x;eð Þ

jy�xj�dþ1dy

" #
kf kL1 Rdð Þ

	 ej ln 2þ e�1ð Þj2kf kL1 Rdð Þ:

This establishes (36). w
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Appendix

Proof of Proposition 5.4

For the sake of clarity, we prove successively and separately points (i), and (ii) of Proposition 5.4.
The proof closely follows the proof of [3, Th. 5.1] (with a simpler argument replacing [3, Lem.
5.2 and Lem. 5.3]):
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Proof of proposition 5.4 (i). The proof consists in two steps. First, we build a function v that
reflects the difference wjðxÞ�w�

j ðxÞ for x � e1 < 0 and wjðxÞ�wþ
j ðxÞ��ajwþ

1 ðxÞ for x � e1>0 by
means of a suitable cutoff function. This function v satisfies an elliptic equation, from which we
deduce that wj exists and is unique.

Step 1: Existence
We set a smooth cutoff function /þðxÞ only depending on x � e1 that vanishes on R� � Rd�1

and that is equal to 1 on ½1;þ1Þ � Rd�1; and we define /�ðxÞ ¼ /þð�xÞ: Next, we define

v xð Þ ¼ wj xð Þ�/þ xð Þ wþ
j xð Þ þ �ajw

þ
1 xð Þ

	 

�/� xð Þw�

j xð Þ: (103)

Therefore, by (14),

�div A � rvð Þ ¼ div A � rPj
� �þ div A � r /þ wþ

j þ �ajw
þ
1

	 

þ /�w

�
j

n o	 

¼ div fð Þ þ div gð Þ;

(104)

where by adding the constant term A?ðxÞ � rPjðxÞ ¼ A?
� � ej ¼ A?

þ � ðej þ �aje1Þ;
f :¼ 1� /þ � /�ð Þ A� A?

�
� � � rPj þ A � r/þ wþ

j þ �ajw
þ
1

	 

þ A � r/�w

�
j ;

and using (11),

g : ¼ /þ A � rPj þrwþ
j þ �ajrwþ

1

	 

� A?

þ � rPj
	 


þ /� A � rPj þrw�
j

� �� A?
� � rPj

	 

¼: gþ þ g�:

Before going to next step, we need to rewrite divðgÞ in a more suitable form. For the sake of
simplicity, we only perform the computations on gþ (the computations concerning g� can
be obtained by replacing the index þ by �). Recall that there exist
½0;T6

1 � � ½0;T2� � � � � � ½0;Td�-periodic potentials ðB6Þijk associated with A6: These potentials
are antisymmetric in i and j, and they satisfy

@i B6ð Þijk ¼ A?
6

� �
jk
� A6ð Þjl dlk þ @lw

6
k

� �
:

Therefore, divðgþÞ reads:
@i gþð Þi ¼ @i /þ Aik dkl þ @kw

þ
l

� �� A?
þ

� �
il

	 

@lPj

	 

¼ �@i /þ@k Bþð Þkil@lPj

� �
:

Recall that rPj is constant everywhere but on the interface. Thus, by using the antisymmetry
of Bþ and the Schwarz theorem, we rewrite the above divergence term as:

div gþð Þ ¼ �@i/þ@k Bþð Þkil@lPj�/þ@i@k Bþð Þkil@lPj
¼ �@k @i/þ Bþð Þkil@lPj

� �þ @k@i/þ Bþð Þkil@lPj
¼ �@k @i/þ Bþð Þkil@lPj

� �
:

As a consequence, going back to divðgÞ; there holds:

div gð Þ ¼ div ~gð Þ
for
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~gk :¼ @i/þ Bþð Þkil@lPj þ @i/� B�ð Þkil@lPj:
Since A, A?;r/6;w

6 and B are uniformly bounded there holds:

kf kL1 Rdð Þ þ k~gkL1 Rdð Þ 	 C:

Moreover, the support of the D-periodic functions f and ~g is inside ½�1; 1� � Rd�1; whence
f ; ~g 2 L2ðD;RdÞ: Therefore, by the Lax–Milgram theorem, there exists a D-periodic solution v to
(103) such that rv 2 L2ðD;RdÞ:

Step 2: Uniqueness
Proving uniqueness amounts to showing that if the function v is D-periodic and satisfies

�div A � rvð Þ ¼ 0 in Rd and rv 2 L2 D;Rd
� �

;

then v is a constant function. This fact is a straightforward corollary of the proof of uniqueness
in [3, Th. 5.1] (which is similar to the proof of Proposition 5.4 (ii)). w

The proof of Proposition 5.4(ii) is a simple adaptation of [3, Th. 5.1].

Proof of Proposition 5.4 (ii). We only prove (52), since the proof also applies for (51).
Let v be defined by (103). Whence,

�div A � rvð Þ ¼ 0 if jx � e1j>0: (105)

Therefore, testing Eq. (105) against v yields, for 1<R<R0;ð
R;R0½ �� 0;T2½ ������ 0;Td½ �

A xð Þ � rv xð Þ � rv xð Þdx

¼
ð

R0f g� 0;T2½ ������ 0;Td½ �
v xð ÞA xð Þ � rv xð Þ � e1dx

�
ð

Rf g� 0;T2½ ������ 0;Td½ �
v xð ÞA xð Þ � rv xð Þ � e1dx:

(106)

Remark that, by the divergence theorem, the quantityð
x1f g� 0;T2½ ������ 0;Td½ �

e1 � A xð Þ � rv xð Þdx

does not depend upon x1. Therefore, it shall vanish, since rv 2 L2ðD;RdÞ: Hence, we deduce
from (106) that, for any constants C1;C2 2 R; there holdsð

R;R0½ �� 0;T2½ ������ 0;Td½ �
A xð Þ � rv xð Þ � rv xð Þdx

¼
ð

R0f g� 0;T2½ ������ 0;Td½ �
v xð Þ�C1ð ÞA xð Þ � rv xð Þ � e1dx

�
ð

Rf g� 0;T2½ ������ 0;Td½ �
v xð Þ�C2ð ÞA xð Þ � rv xð Þ � e1dx:

By the Cauchy–Schwarz and the Poincar�e inequalities, and using ellipticity and boundedness
of A, we obtain ð

R;R0½ �� 0;T2½ ������ 0;Td½ �
jrv xð Þj2dx 	 C

ð
R0f g� 0;T2½ ������ 0;Td½ �

jrv xð Þj2dx

þ C
ð

Rf g� 0;T2½ ������ 0;Td½ �
jrv xð Þj2dx:
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Now, since rv 2 L2ðD;RdÞ; letting R0 ! þ1 in the above expression yieldsð
½R;þ1½�½0;T2������½0;Td�

jrvðxÞj2dx 	 C
ð
fRg�½0;T2������½0;Td�

jrvðxÞj2dx:

By the Gr€onwall lemma, this implies that there exists constants C;j>0 such thatð
½R;þ1½�½0;T2������½0;Td�

jrvðxÞj2dx 	 C exp ð�jRÞ:

Then, by Schauder regularity [19, Cor. 8.36 p. 212], we finally obtain (52). w

We finally proceed with the

Proof of Proposition 5.5 Recall that, in the periodic case, the potentials B6 read

B6ð Þijk ¼ @i N6ð Þjk�@j N6ð Þik;
where N6 are ½0;T6

1 � � ½0;T2� � � � � � ½0;Td�-periodic solutions to

D N6ð Þik ¼ A?
6

� �
ik
� A6ð Þil dlk þ @lw

6
k

� �
in Rd: (107)

Note that, by Schauder regularity, the functions N6 belong to C2;a
unif ðRd;Rd�dÞ:

Similarly, if we build a D-periodic function N satisfying

DNik ¼ A?
il@lPk�Ail @lPk þ @lwkð Þ; (108)

and set Bij
k ¼ @iN

j
k�@jNi

k; then B satisfies (22) (recall that the R.H.S. of (108) is divergence-free,
in the sense of (21)). Building such a function N is the goal of what follows.

We proceed in the same manner as in the proof of Proposition 5.4 by using techniques of [3].
We decompose

N ¼ /þNþ � rP þ /�N� � rPþ ~N : (109)

Recall that rP is piecewise constant and possibly discontinuous only across the interface,
where /6 vanishes. Hence, by definition,

D~N ¼ DN�/þDNþ � rP�/�DN� � rP

�2 r/þ � rNþ � rP þr/� � rN� � rPð Þ
�D/þNþ � rP�D/�N� � rP:

(110)

Using (107) yields

DNij�/þD Nþð Þik
� �

@kPj�/�D N�ð Þik
� �

@kPj

¼ 1� /þ � /�ð Þ A?
ik@kPj � Aik @kPj þ @kwj

� �� �
þ /þAik @kw

þ
l @lPj � @kwj

� �þ /�Aik @kw
�
l @lPj � @kwj

� �
:

As a consequence, the right-hand term of (110) is D-periodic and bounded. Moreover, it is in
L1ðDÞ: Indeed, the functions ð1�/þ�/�Þ and r/6 are supported in ½�1; 1� � Rd�1 and, by
Proposition 5.4, the quantities @kw6

l @lPj � @kwj
� �

decrease exponentially when x � e1 ! 61 (we
recall the formula (11) for the gradient rP). Hence the R.H.S. of (110) is bounded in all Lp for
p 2 ½1;þ1�: Therefore, by the Lax–Milgram theorem, there exists a D-periodic solution ~N to
(110) so that r~N 2 L2ðD;Rd�d�dÞ: Moreover, by elliptic regularity (see [19, Th. 8.32]), for any
b 2 ð0; 1Þ; there holds r~N 2 C0;b

unifðRd;Rd3Þ:
As a conclusion, we have built a D-periodic potential B that is b-H€older continuous, for any

b 2 ð0; 1Þ: w
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