Taylor & Francis
Taylor &Francis Group

COMMUNICATIONS

IN
PARTIAL
DIFFERENTIAL
EQUATIONS

Communications in Partial Differential Equations

ISSN: 0360-5302 (Print) 1532-4133 (Online) Journal homepage: https://www.tandfonline.com/loi/lpde20

Some quantitative homogenization results in a
simple case of interface

Marc Josien

To cite this article: Marc Josien (2019) Some quantitative homogenization results in a simple
case of interface, Communications in Partial Differential Equations, 44:10, 907-939, DOI:
10.1080/03605302.2019.1610892

To link to this article: https://doi.org/10.1080/03605302.2019.1610892

© 2019 The Author(s). Published by Taylor &
Francis Group, LLC

@ Published online: 22 May 2019.

N
G/ Submit your article to this journal &

||I| Article views: 575

A
& View related articles &'

@ View Crossmark data (&'

CrossMark

@ Citing articles: 1 View citing articles (&

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=lpde20


https://www.tandfonline.com/action/journalInformation?journalCode=lpde20
https://www.tandfonline.com/loi/lpde20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03605302.2019.1610892
https://doi.org/10.1080/03605302.2019.1610892
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lpde20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2019.1610892
https://www.tandfonline.com/doi/mlt/10.1080/03605302.2019.1610892
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2019.1610892&domain=pdf&date_stamp=2019-05-22
http://crossmark.crossref.org/dialog/?doi=10.1080/03605302.2019.1610892&domain=pdf&date_stamp=2019-05-22
https://www.tandfonline.com/doi/citedby/10.1080/03605302.2019.1610892#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/03605302.2019.1610892#tabModule

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS Tavlor & F .
2019, VOL. 44, NO. 10, 907-939 e aylor rancis

https://doi.org/10.1080/03605302.2019.1610892 Taylor & Francis Group

a OPEN ACCESS ‘ W) Check for updates

Some quantitative homogenization results in a simple case
of interface

Marc Josien

Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

ABSTRACT ARTICLE HISTORY
Following a framework initiated by Blanc, Le Bris and Lions, this art- Received 5 December 2018
icle aims at obtaining quantitative homogenization results in a sim- Accepted 19 April 2019

ple case of interface between two periodic media. By using
Avellaneda and Lin’s techniques, we provide pointwise estimates for
the gradient of the solution to the multiscale problem and for the
associated Green function. Also we generalize the classical two-scale
expansion in order to build a pointwise approximation of the gradi-
ent of the solution to the multiscale problem (up to the interface),
and, adapting Kenig, Lin and Shen’s approach, we obtain conver-
gence rates.
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1. Introduction

In this article, we are concerned with the quantitative homogenization of the following
elliptic equations in divergence form:

—div(A (’é) -Vuﬁ(x)> = f(x). (1)

in a simple case of interface between two periodic media.

Equation (1) is a prototypical equation for various physical phenomena (like electro-
statics or when generalized to systems, elastostatics) set on a material with a microstruc-
ture of characteristic scale ¢ < 1. Homogenization of (1), which aims at studying the
behavior of the solution u° when ¢ — 0, has attracted much attention for half a century.
Two particular structures are especially studied: the periodic structure and the stationary
ergodic structure (see, e.g, the reference books [1, Chap. 1] for the periodic case, and [2,
Chap. 7] for a the stationary stochastic case). Both of these frameworks can be used for
actual numerical computations: the homogenization theory is an efficient tool for
approximating numerically the solution #° of (1) and its gradient, for a fixed ¢ > 0.

Recently, Blanc, Le Bris and Lions proposed in [3] two other cases that can be amen-
able to numerical computations (see [4]). In the first case, the matrix A is periodic but
perturbed by a defect at the microscopic scale (see also [5] for an extension to the
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advection-diffusion case, and [6] for quantitative homogenization results). In the second
case, which might be a fair model for bicrystals, the matrix A is obtained by gluing two
periodic structures with Holder continuous coefficients along a planar interface. This par-
ticular framework has the specificity that the associated homogenized equation involves a
matrix A* that is piecewise constant with a discontinuity across the interface (in the gen-
eric case). From this perspective, this second case is very different from the aforemen-
tioned settings, where the homogenized matrix is constant. The authors of [3] proposed a
definition of the correctors and showed that they exist and enjoy some desirable properties
of regularity and boundedness. This is a first step in order to obtain quantitative homogen-
ization results. The present article is an attempt to go further, by taking advantage of the
literature in periodic homogenization (in particular, the celebrated work of Avellaneda and
Lin [7] and the recent article of Kenig, Lin and Shen [8]).

The type of results we show here are familiar to the experts of periodic or stochastic
homogenization. But the main idea of this article is the following: in a simple case of
bicrystals, the generalized two-scale expansion yields an approximation that possesses
the same qualitative and quantitative properties as the two-scale expansion in the peri-
odic setting when considering the gradient of the multiscale solution. From a theoretical
point of view, this might be useful for understanding the homogenization of elliptic
equations in the case where the homogenized matrix is discontinuous. We also hope
this may be of interest for the numerical practitioner.

Our aim is twofold: estimate and approximate the gradient Vu® in L* norm up to
the interface. Obviously, far from the interface, the classical theory of periodic hom-
ogenization provides a way to fulfill these goals, first by Avellaneda and Lin’s results
[7], and then by using the two-scale expansion. Hence, the very difficulty of our study
is located close to the interface. This is the reason why we strive for pointwise estimates
and approximations (for u® but also on the level of the multiscale Green function).

Our first purpose is to obtain pointwise estimates on the gradient Vu?® of the multi-
scale problem (1). In the periodic setting, such results are provided by Avellaneda and
Lin’s theory [7]. But, as shown in [9] (see also [6, 10]), the periodicity assumption is
not necessary to these local estimates: they can be obtained in various frameworks, as
long as the correctors and the potential (defined by (14) and (22)) associated with the
matrix A are strictly sublinear and as long as the homogenized matrix is constant.

The fact that the homogenized matrix is constant is a useful but mere contingent
assumption due to the framework used by the authors (the matrix A is supposed to be
periodic, possibly perturbed by a defect, or stationary ergodic). Actually, the crucial
ingredient is that the multiscale problem inherits regularity properties from the homo-
genized problem, which are very favorable when the homogenized matrix is constant.
But the solution of an elliptic equation the coefficient of which is piecewise Holder con-
tinuous with discontinuities only on smooth interfaces also enjoys some regularity prop-
erties (see e.g. [11]), which are sufficient for Avellaneda and Lin’s approach. Yet, there
is another impediment: in the case of a discontinuous homogenized coefficient A*, the
A*-harmonic functions (i.e. satisfying —div(A* - Vu*) = 0) might have a discontinuous
gradient (as a consequence, its second gradient may involve a singular measure sup-
ported on the interface). As discussed below, this fact prevents the classical two-scale
expansion to work properly. This motivates us to introduce a generalized two-scale
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expansion. Equipped with this expansion and with the regularity result of [11], we can
proceed with Avellaneda and Lin’s proof.

Our second purpose is to show to what extent the generalized two-scale expansion
yields an accurate pointwise approximation of the gradient Vu®, as does the classical
two-scale expansion in the periodic setting, where the convergence rate can be quanti-
fied in ¢ (see e.g. [8, Lem. 3.5]). We aim at deriving the same type of convergence rate
in the case of bicrystals, up to the interface.

This article is organized as follows. In Section 2, we describe precisely our mathematical set-
ting. Then, in Section 3, we introduce and motivate the generalized two-scale expansion. It is
formulated by appealing to the A-harmonic functions (which involve the so-called correctors)
and to the A*-harmonic functions (which are piecewise linear). This expansion is meant to
approximate the solution u* of (2) by means of the solution #* of the homogenized problem.
As in the classical cases, the residuum solves an elliptic equation with a RH.S. in divergence
form. We state our main results in Section 4. They concern first pointwise estimates on u*
and on Vu® and then pointwise approximations of these quantities by the generalized two-
scale expansion. These results are also interpreted on the level of the Green functions. We
conclude this section by discussing some aspects, limitations and possible extensions of those
results. The following sections are devoted to the proofs. More precisely, we collect some
elementary results in Section 5 concerning the correctors and the H-convergence of the matrix
A(-/e), and concerning the regularity properties of the solutions of elliptic equations involving
discontinuous coefficients. Then, in Section 6, we use Avellaneda and Lin’s techniques to
prove pointwise estimates on u® and Vu®. Finally, in Section 7, we follow Kenig, Lin and
Shen’s approach [8] to estimate the residuum between u° and the generalized two-scale expan-
sion. There, the Green function plays a central role.

2. Mathematical setting

From now on, R? is endowed with a canonical basis (ej, ..., e4). Since we want to focus
on the interface and avoid the problem of boundaries, we set following the equation on
the whole ambient space RY, with d > 3:

—div(A(x/e) - Vui(x)) = f(x) in RY 2)

Vut € 12(R%, RY),
(the more difficult case d=2 will be mentioned in some results). In the above expres-
sion, f € C°(RY) is a smooth function with compact support, 0<e< 1, and A is an
elliptic and bounded matrix modeling an interface between two infinite crystals that
share a common periodic cell on the interface Z := {0} x RY"!. As is also classical in
Avellaneda and Lin’s theory, we assume that the matrix A is Holder continuous on the
left and on the right of the interface. These assumptions, formalized below, correspond
to the simplest case of interface in [3, Sec. 5]:

Assumption 1 (ellipticity and boundedness). There exists a constant x>0 such that, for
all x, & € Rd, the matrix A(x) is invertible and

EAR)-EZ e and & ATNx)- &2 ple
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Assumption 2 (periodicity with commensurable periods). The matrix A(x) satisfies

_ JAL(x) if x-e>0,
A(x){A+(x) if x-e1<0, 3)

where A+ is [0, T;] x - - x [0, T ]-periodic with T;"/T; € Q,Vi € [2,d].
Assumption 3 (regularity). For a fixed a>0, there holds

A_ e C**(RYR™) and A, e C**(R? RY).

Remark 1. The above regularity assumption can be weakened as in [11, Th. 1.9]: A_
and A, can be assumed to be uniformly «-Holder continuous everywhere but on the
(regular) boundaries of disjoint inclusions.

By using the Lax-Milgram theorem, it can be shown that there exists a solution u® €
H; .(RY) to (2) such that Vu® € L2(R?,RY). This solution is unique up to the addition
of a constant that we set by imposing that the mean of u* on R vanishes.

Under Assumptions 1 and 2, the homogenized problem associated with (2) when
¢ — 0 is the following:

~div(A*(x) - Vu*(x)) =f(x) in R% (4)
Vur € L2(RY, RY),

where the homogenized matrix A* is defined by

A* if x-e>0
* _ + )
AT (x) = {A* if x-e <0, )

and A% are the homogenized matrices associated with the periodic matrices A+. In gen-
eral, the matrix A* is discontinuous across the interface.

By standard arguments, it can be shown (see Lemma 5.6) that the gradient Vu®
weakly converges to Vu* in L>(R?,R?). In the periodic case (namely if A, = A ),
obtaining strong convergence is more difficult and requires the so-called two-scale
expansion:

W (x) = ut (%) + w; (’;) By (x), (6)

where here, and in the sequel, the Einstein summation convention is used. The func-
tions w; are the so-called correctors, which are the strictly sublinear solutions (unique
up to the addition of a constant) to the following equation:

—div(A - (e;+Vw,;)) =0 in R? (7)

We explain in the next section how to generalize the definition of correctors and the
two-scale expansion.
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3. Definition of the correctors and the two-scale expansion

A fundamental ingredient of Avellaneda and Lin’s proof is that the so-called correctors
“correct” sublinear A*-harmonic functions to A-harmonic sublinear functions. Hence,
the first step is to build the sublinear A*-harmonic functions, i.e. the functions P; satis-

fying:
—div(A*(x) - VPj(x)) =0 in R (8)

They induce a natural definition of correctors, which slightly differs from [3].
Unfortunately, with these correctors, the classical formula (6) for the two-scale expan-
sion is algebraically inadequate. As a consequence, we propose a generalization of this
formula which takes into account the fact that the homogenized matrix is not constant

el _ ¢

and that allows for a divergence-form representation of the residuum u®'—u.

3.1 A*-harmonic functions

When A* is constant, the sublinear A*-harmonic functions are the affine functions. (We
say that a function f is sublinear if lim sup;, . x| '|f(x)| = I < + oo and strictly sub-
linear if I=0 in the previous limit.) In our case, the space of sublinear A*-harmonic
functions is spanned by the constant functions and the following piecewise linear func-
tions:

() = Plx) e = d X6 if x-e <0,
P](x)—P(x) e]'_{x.ej+éjx~el if x-e >0, )

for j € [[1,d]], where a is related to the transmission matrix through the interface 7
and reads:
. (At)lj_(A:)U
(A%)1

If @ = 0 (which strictly encompasses the case where A* is constant), the functions P;
are linear.

It is straightforward that the functions P; are solution to (8). Indeed, by definition,
the functions P; are continuous and their gradients read

e if x-e <0,
VP](X) o {ej + izjel if x- €1>0. (11)

Hence, the functions P; are A*-harmonic in R* x R and in Ri X Rdﬁl, and they
satisfy the transmission conditions across the interface:

hliﬁrgl+ [(A*-VP))(x + hey)]| -e; = hliHnOa [(A* - VP})(x — hey)] - ey, (12)
hlim OkPj(x + hey) = hlirn OkP;(x—hey), (13)
—0" —0t

for all x € 7 and k € [[2,d]].
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3.2. Definition of the correctors

Since the correctors are meant to turn the A*-harmonic functions P; into A-harmonic
sublinear functions, they should solve the following equation:

—div(A(x) - V(Pj(x) + w;(x))) =0 in R (14)
Using the techniques of [3], we show in Section 5.3 the following proposition:

Proposition 3.1. Suppose that the matrix A satisfies Assumptions 1-3. Then, there exists
a solution w; € HL (R?) to (14), which satisfies the following estimates:

||W]‘||Loc(Rd) < + 00, (15)
and vaj”cﬁ;ﬁf(Rd\I) < + 0, (16)
for any 0 < f <min(a,1/4).

If a = 0, definition (14) coincides with the classical one (7) and with [3, (48)], that
we recall here:

—div(A(x) - (Vwj(x) +¢))) = —div(A*(x) - ¢). (17)

However, in the case where a # 0, these three definitions lead to different objects.

We motivate our choice in the next section.

3.3. A possible generalization of the two-scale expansion

Now, we introduce a generalization of the two-scale expansion. From above, it appears
clearly that the corrected version of the sublinear A*-harmonic functions u*(x) =
aiP;(x) (for (a;) € RY) is the following

aj (P;(x) + wi(x)) = u"(x) + wj(x) (VP(x)) ) Ohur* (),

where we use the convention (VP)ij := O0;P;. This suggests to set, for the solution u* to
(4), the following generalized two-scale expansion

u“(x) = u"(x) + ew; <§> ((VP(X))_I)jkak”*(x)' (18)

In (18), the quantity
U*(x) := (VP(x))"" - Vu*(x), (19)
is actually a gradient in harmonic coordinates. Indeed, if we set
i(z) == v (P'(2)), (20)

then, it obviously holds that 0, it(z) = U (P~!(z)). Moreover, by the transmission con-
ditions through the interface (see (12) and (13)), the function Uj* is continuous across
the interface 7 (for f sufficiently regular).

Notice that we recover the classical two-scale expansion when a = 0.

The classical argument for assessing the quality of the two-scale expansion is that it
allows for a divergence-form representation of the residuum u®'—u® (see e.g. [2, pp.
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26-27]). We justify that this algebraical structure is preserved by the generalized expan-
sion (18), with a right-hand term involving the gradient VU™.

In this perspective, it shall be underlined that the formal computation of [2] with the
classical two-scale expansion (6) and with definition (17) of [3] involves the quantity
V2u* (which, in our case, might involve a singular measure supported on the interface
7) multiplied by quantities that might be discontinuous across the interface Z. As a
consequence, the mathematical significance of this formal computation is not clear for
bicrystals, even when resorting to the theory of distributions.

We now proceed with the computation of —div(A(%) - V(u*!(x) — u*(x))). For simpli-
city, we set ¢ = 1 and drop the argument x of the functions below. By (2) and (4), we have

—div(A - V(u*! — ) = —div(4 - Vi) + div(4* - Vu).
We now use definitions (19) and (18) to expand the above right-hand term:
—div(A - V(! — u?)) = —9; <A,-j (Ou* + OwiUy) — A;@ju*)
—0, (A V).

Next, using once more (19), we obtain:

—0, (A,,-(aju* + OwUp) — Ai*j@ju*)

) ( [Aij(ajpk + 9w) — A;jajpk} U,j).

Yet, by definition of P; and wj, there holds

o, (A,-]-(ajpk + 9wy) — A,.*jajpk) —0. 1)

Hence, as will be justified by Proposition 5.5, there exists a tensor Bjj that is antisym-
metric in its first two indices and that satisfies

8,-Bijk = Aj*lalpk—Aﬂ(alPk + Owy). (22)
Therefore, using the antisymmetry of B, one can express:
) ( [A,,-(a,-Pk + Owe) — A;ajpk} U,:) = OB Up = 0,(Bd,Up).
As a conclusion, while restoring the scale ¢, we obtain:
—div(A(-/e) - V(' — ) = edi((Byjw — Aywi) (-/£)0;U5). (23)

In the above expression, it can be seen that every term is well-defined in the weak
sense. Moreover, the right-hand term is multiplied by ¢ so that, formally, one can expect
that the error |Vu®! — Vu?| scales like ¢ in various I” norms. This justifies the intro-
duction of the generalized two-scale expansion (18).

4. Main results

We are now in a position to state our main results. The first ones concern Lipschitz
estimates. They can be used in a second step to quantify the error residuum between
the generalized two-scale expansion and the actual solution of the multiscale problem.
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4.1. Estimation
Our first result is a generalization of the local Lipschitz estimates [7, Lem. 16]:

Theorem 4.1. Suppose that d > 2 and that the matrix A satisfies Assumptions 1, 2 and
3. Let £>0,x0 € R? and R> 0. Assume that the function u® € H'(B(xo,2)) is a solution
to

—div(A(x/e) - Vu'(x)) =0 in B(xo,2R). (24)

Then, there exists a constant C that only depends on A and d such that

1/2
C .
su Vit (x)| < —— J ué? ) (25)
P IVE() Rd+1<B<xO,ZR>' |>

x€B(xo,R)\T

If the ball B(xg,R) does not intersect the interface Z, the above result concerns noth-
ing but the classical periodic setting. But, in Theorem 4.1 the ball B(xy, R) may intersect
the interface Z, where the gradient Vu‘(x) might be discontinuous: in this case, a
Lipschitz estimate holds up to the interface. On the first hand, this result might seem
surprising: one could have expected that the discontinuity of A through the interface
would interact with the oscillations of the small scale so that Vu® would not remain
bounded when ¢ goes to 0. But, on the other hand, in the periodic setting, it is known
that some Lipschitz estimates can also be obtained up to the boundary of a smooth
domain (see e.g. [7, Th. 2]), which, from a geometric point of view, might be seen as a
kind of interface. Moreover, the way of building the correctors themselves (see [3, Th.
5.1] and Section 5.3) is reminiscent of boundary layers. However, we have not been
able to take this apparent similarity further.

Remark 2. Since the function u* is continuous in B(xp, R), Theorem 4.1 actually indu-
ces a local L™ estimate in the following sense:

- < < J || 1/2 (26)
L (B(xo,R)) = Rd+1 2B(x0,R) .

Similarly, Corollary 4.2 and Theorem 4.5 can be understood in a local L™ sense.
We prove Theorem 4.1 by using the compactness method of [7]. Two scales should
be separated:

e the small scales, where R/e < 1, where the Schauder estimates provided by [11]
comes into play,

e the large scales, for R/e>>1, where we use the compactness method of
Avellaneda and Lin.

The large-scale control on Vu® is due to a structural property of the matrix A, which
uniformly H-converges to its associated homogenized matrix A* (this statement is made
precise in Lemma 5.6). The idea of the proof is to compare u® to a locally A*-harmonic
function u* (since A* is piecewise constant, this function enjoys sufficient regularity
properties for our purpose). By the uniform H-convergence, u° can be made sufficiently
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close to u*, and thus inherit a medium-scale regularity estimate from it. Then, by
“linearizing” u® in the spirit of the two-scale expansion (18) (here we need the correc-
tors w; to be strictly sublinear), one can iterate the medium-scale regularity estimate on
balls of exponentially increasing radii to obtain a large-scale regularity estimate. There,
it is of the uttermost importance to use a A(:/¢)-harmonic approximation of u* in order
to iterate the reasoning (this is another motivation for using the correctors defined by
(14)). Finally, a blow-up argument turns the large-scale regularity estimate into an esti-
mate on the gradient Vu® by resorting to the Schauder estimates of [11].

As is well-known in the periodic setting (see e.g. [8]), pointwise estimates on the
Green function can be derived from the Lipschitz estimates. The Green function G(x, )
(also called fundamental solution) associated with the operator —div(A - V) is a solution
of the following equation weak formulation (see [12] for a precise definition):

—div(A(x) - ViG(x,y)) = 6y(x).

If d > 3, since A is uniformly bounded and coercive, by [12, Th. 1], there exists a
Green function which is unique. Moreover, it satisfies the following estimate:

1G(x, )| < Clx—y| 2, (27)

Remark that the Green function x—G(x,y) is locally A-harmonic for x # y.
Therefore, by applying Theorem 4.1, we deduce the following estimates on the gradient
and the mixed gradient of the Green function:

Corollary 4.2. Let d > 3. Suppose that the matrix A satisfies Assumptions 1, 2 and 3. Let
G be the Green function of the operator —div(A - V) on R?. Then, there exists a constant
C> 0 depending only on d and A such that, for any x # y € RI\Z, there holds

IVG(x, )|+ [V,G(x, )] < C|x—y|_d+17 (28)

V2V, G(x. )| < Cle—y ™ (29)

It should be noted that, by a dilatation argument, the Green function G° of the oper-
ator —div(A(-/¢) - V) can be written as

G (x,y) = &G (x/e,y/¢).

Whence the Green function G° also satisfies (27), (28), and (29), with a constant C
that does not depend on .

Remark 3. Remark 3 (Case d=2). The conclusions of Corollary 4.2 also hold in the
case d=2. It can be retrieved from the case d=3 by expressing the two-dimensional
Green function by means of a 3-dimensional Green function with well-chosen coeffi-
cients. This is not shown here but can be found in [7, Th. 13] (see also [12, Prop. 5]).

The proofs of the Theorem 4.1 and Corollary 4.2 are respectively postponed until
Sections 6.1, and 6.2.
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4.2. Approximation

We now estimate the residuum u*'—u® (or equivalently u®—u*) in the L™ norm by
combining the algebraical expression (23) and the estimates on the Green function pro-
vided by Corollary 4.2:

Proposition 4.3. Let d > 3,x € R? and ¢>0. Suppose that the matrix A satisfies
Assumptions 1, 2 and 3. Let f € LP(RY) with support inside B(xy,1), for p>d. Assume
that the functions u® and u* are respectively the zero-mean solutions to (2) and (4). Then,
there exists a constant C that only depends on A, d and p such that

||l/t'E — M*HLoc(Rd) < CSHf”LP(Rd)' (30)

By a duality argument (see [8, Th. 1.1]), this provides a pointwise error estimate on
the level of the Green function:

Proposition 4.4. Let d > 3. Suppose that the matrix A satisfies Assumptions 1, 2 and 3.
Let G, respectively G*, be the Green function of the operator —div(A - V), respectively
—div(A* - V), on R Then, there exists a constant C> 0 depending only on d and A
such that, for any x # y € R?, there holds:

1G(x,y) = G"(x,)| < Clx—y| """ (31)

For the sake of concise notations, we define the matrices W(x) and W'(x) by
Wij(x) := 65 + 8iwk(x)(VP(x)),:jl, (32)
-1
Wi(x) = 8+ 0w (x) (VP (x)) (33)

where ;; stands for the Kronecker symbol, and the functions P" and w' are the analo-
gous of P and w, but with respect to the transposed matrix A”. Then, the gradient
Vu*! can be expressed by means of W and U* respectively defined by (32) and (19) as

Vutl(x) = W(x/e) - Vu*(x) + ew;j(x/e) VU] (x).

Since the last right-hand term of the above identity scales like ¢, we expect Vu®(x) to
be well approximated by W(x/¢) - Vu*(x).

We justify it first on the level of the Green function, in the same vein as the recent
results of [8] (see also [13] in the stationary ergodic case). Indeed, as a consequence of
Theorem 4.1 and of Proposition 4.4:

Theorem 4.5. Under the assumptions of Proposition 4.4, there exists a constant C>0
depending only on d and A such that, for all x # y € RI\Z, there holds:

1 —
VG(x.7) = W) Vi (x07)]| < CW =
ViV V.V In (2 _
| * yg(x7y) B W<x) T Vx }’g*(xay) ' (WT()/)>T| < Cn(ﬂTd-ﬁ-lyl) (35)

lx—y

Going backwards to the solutions »* and u°, this implies an L™ estimate on the gra-
dient of the residuum:
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Corollary 4.6. Let d>3,x0 € R? and e>0. Suppose that the matrix A satisfies
Assumptions 1, 2 and 3. Let f € L°(R?) with support inside B(xo,1). Assume that the
function u® is the zero-mean solution to (2) and that u* is the zero-mean solution to (4).
Then, there exists a constant C that only depends on A and d such that

IW(-/&) - Vu* — Vit o) < Ce|In (2 4 &™) |If]] o g - (36)

The proofs of Propositions 4.3 and 4.4, respectively Theorem 4.5 and Corollary 4.6
are postponed until Sections 7.1, respectively 7.2.

4.3. Remarks and possible extensions

We conclude this Section by discussing some aspects of this study.

First, we shall underline that the above results concern the problem on RY, so that
there is no boundary. In this regard, if we denote the cell Q :=[—1/2,1/2] x [0, T3] X
-++ % [0, T4] and set ¢ := 1/n for n € N, then the above results can be generalized to the
problem (2) set on Q with periodic boundary conditions (see [14] for a related work in
the case of a periodic coefficient). But it seems more difficult to treat the case where (2)
is set on a regular bounded domain Q along with Dirichlet boundary conditions.
Indeed, in this case, we need to show boundary estimates, which might not be true in
the neighborhood of the intersection point between the boundary 0Q and the interface
Z. At the moment, it is not clear for the author which results may still hold in
this case.

Second, in all the results above, the constant C of the estimates is said to “depend on
A”. This rather vague dependence is a consequence of the fact that the compactness
method of Avellaneda and Lin relies on a proof by contradiction. However, one can
likely be more precise by proceeding with the proof on the class E(u,a,7,(T;")) of
matrices A € L™(R? R?™%) satisfying Assumptions 1, 2 and 3 with [Ax || cosrey < T
(rather than by working on a fixed matrix). Thus, the dependence on A would be
replaced by a dependence on (u, o, 7, (T;")). Such assumptions have been developed in
[8], for example.

Once these limitations are left aside, we remark that, as in [6, 9], the main ingre-
dients used here are the long-range behavior of the correctors and the regularity of the
homogenized problem. Actually, our proofs only require the fact that A is uniformly
elliptic and bounded and uniformly Holder continuous up to the interface 7
(Assumption 1, 3) and that there exist correctors w; and a potential B that are bounded.
Therefore, the structural Assumption 2 can certainly be weakened. In particular (see [3,
Th. 5.7]), one can reasonably think that assuming that the ratios T;" /T, are not
Liouville-Roth numbers would be sufficient to build bounded correctors w; and a
bounded potential B.

The regularity of the matrix A is a key ingredient in the proof of Avellaneda and Lin
to show Lipschitz estimates, which encompass the small scales and the large scales.
However, as shown in [9], no regularity assumption is necessary to obtain large-scale
regularity down to the scale ¢. Therefore, this assumption could be removed to obtain a
weaker version of the above results. In this regard, the approach of [9] could be adapted
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to obtain regularity estimates (instead of Avellaneda and Lin’s approach). One can opti-
mistically think that this would pave the way to quantitative homogenization results in
the case of “stochastic” bicrystals.

Finally, one could also think of systems of elliptic equations in divergence form, for
which Avellaneda and Lin’s approach as well as the regularity results of [11] are
adapted. One can extend Theorem 4.1 to the case of systems by a slight adaptation
—namely, by showing that the result of C** regularity [7, Th. 1] still holds in our case
and then by invoking this regularity estimate instead of the De Giorgi-Nash Moser the-
orem in the proofs below. Generalizing the other above results would require first to
generalize the W2? estimates for piecewise constant coefficients in [15, 16] (see Lemma
5.2) to the case of systems. To the best of our knowledge, this has not been done yet.

5. Preliminary considerations

In this section, we collect some results that will be used throughout this article. First,
we introduce a few notations. Then, we state some regularity results concerning elliptic
equation with piecewise regular (or constant) coefficients. In particular, we show some
estimates on U* defined by (19) and we build a procedure for “linearizing” locally
A*-harmonic functions by appealing to the A*-harmonic sublinear functions P;. Next,
we build the correctors defined by (14) and a solution B to (22) (that we call the poten-
tial) and we show that they enjoy some regularity properties. Finally, we justify that the
matrices A(-/¢) uniformly H-converge to A* when ¢ — 0.

5.1. Notations

We introduce here some useful notations for building the correctors and the potential.
From now on, the matrix A satisfies Assumptions 1, 2 and 3.

For i € [[2,d]], we denote by T; the least common multiple of T;” and T;". We define
the domains

D:=Rx[0,Tp] x---x[0,Tg], and Dz :=R+ x[0,T5] x---x [0, T4].
We say that u is D-periodic if u is T;-periodic in x;, for i > 2.
We denote wji, respectively B*, the correctors, respectively the potential associated

with the periodic matrices A*. By definition, B;k is a tensor antisymmetric in its first
two indices that solves

—&ng = <Ai)jl(5lk + alwf)—(A*i)jk in R%

We recall that both the correctors w and the potential B™ are
[0, T"] X - -+ x [0, T;]-periodic and of regularity C"*.

Last, if Q is a bounded domain, we define the rescaled integral — [, u = Q! fu,
where |Q| is the Lebesgue measure of Q.

5.2. Regularity results

We borrow a regularity result from [11] (see also [17]):
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Theorem 5.1 (Local version of Theorem 1.1 of [11]). Let A € Lw(Rd,RdXd) be a matrix
defined by (3), where the matrices A+ satisfy Assumption 3 (but are not necessarily peri-
odic), and that satisfies Assumption 1. Let 0< f <min(a,1/4). Suppose that f €
L>(B(x,2)), and that g € C*#(B(x,2)\T). If u solves

—div(A - Vu) = f +div(g) in B(x,2),
then there exists a constant C only depending on d,a, B, i and ||Al|cos(p ) such that
||”||c1~/f(3<x,z)\z) = C(H“”LZ(B(X,z)) + ”f”LOC(B(x,Z)) + ||g||c0~/f(B(x,z)\I))~

Then, we provide some W'? estimates on the quantity U* defined by (19):

Lemma 5.2. Let d > 3,x € RY p € (d,4+00), and A* be a matrix defined by (5) and
satisfying Assumption 1. Suppose that f € LP(R?) is supported into B(xo,1). Let u* €
Hlloc(Rd) be the zero-mean solution to (4) and define U* by (19). Then there exists a con-
stant C> 0 depending only on d and A%, such that

10 lwroey < Cllf [l (ge)- (37)
Moreover, there holds
HVU*HLZ(R‘I) < CH_f”LP(Rd). (38)

The proof (37) rests on a regularity result [16] on non-divergence elliptic equations
with coefficients that are constant on the half-spaces R_ x R and R, x RY"!. One
turns (4) into such an equation by means of the A*-harmonic coordinates P;. We need
to treat separately Estimation (38) since, if d=3 or d=4, it is not guaranteed that u*
defined above lies in L>(RY).

Proof of Lemma 5.2. We first show an L? estimate on u*. By definition, there holds:
u'(x) = J G (x,nf(v)dy- (39)
B(xo,1)

Since the Green function G* associated with the operator —div(A* - V) is such that
1G*(x,)| < Clx—y| "2, and since the function f is in L1(R?) for all g € [1,p] (by the
Holder inequality, recalling that the support of f is inside B(xo, 1)), the Young inequality
yields

41y < Cllfllp(ra)- (40)
Next, we define the function % by (20). It satisfies the following elliptic equation:
~div()1(2)| "A(2) - Vi) = (@) F (P (=), (41)

where A(z) is defined by
A2) = (VR(P'(2)"A(P(2) - VP(P(2)),

and J(z) is the Jacobian of P evaluated on P~'(z). By construction, A(z) is elliptic and
constant on the half-spaces R’ x R?"! and the product |J(z)| 'A(z) is divergence-free
in RY. Whence, (41) can be rewritten as
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Aj(2)050(z) = f(P(2)). (42)

As a consequence, we can apply [16, Th.] (see also [15, Lem. 2.4]): there exists a con-
stant C so that

ol wermty < Clfllp ey + Clltllpp(ge)-
Thus, by (40), we deduce
o]l ey < Cllf llppge)-

A simple change of variable yields the desired estimate (37).

We now show (38). Since f is compactly supported in B(xy, 1), then & is A-harmonic
on RY\B(z, p), where p := ||(VP)_1||LOC<Rd) and zy := P~'(x). Therefore, for z € R?
such that |zp—z;|>2p, one can apply [11, Prop. 1.7] on B(zy, |29 — z1|/2) so that

1/2
IVl B2y a1 2) < Cl20—21] 72 f | (43)
B(z1,]z0—21//2)

Now, recalling that u* satisfies (40), then, by using (27) and the Cauchy-Schwarz
inequality, we obtain that, if |x—xo|>2, there holds

™ (x)| < Clx—xO‘7d+2“f||Ll(B(xo,l))‘
Transposing it on the level of & yields that, for any z € B(z;, |20—z1//2), we have
i(2)] < Clz—zo] 2.
Therefore, we deduce from (43) that
IVl (a(e, ag-matya) < Clao—2] ™. (44)

As a consequence, since we already know that V2 € L#(RY) for p>2, we finally
obtain that V21 € L*(R?). This proves (38). 0

We now explain how locally A*-harmonic functions can be “linearized” by using the
sublinear A*-harmonic functions P;.

Lemma 5.3. Let A* be a matrix defined by (5) and satisfying Assumption 1. Let xo € R?,
and assume that the function u* € H'(B(xy, 1)) satisfies

—div(A*(x) - Vu*(x)) =0 (45)

in B(xo,1). Then, there exists a constant C depending only on d and p such that, for all
0 € (0,1/2), there holds

sup [u(a) = () = (P = Px)) - [ (9P) 7w

x€B(x0,0) B(x0,0)

1/2 (46)
< C? (J |u*|2> .
B(xo,1)

We underline that the above formula (46) gives a first-order approximation of u*
that is also A*-harmonic. In this regard, it is a generalization of [7, (3.5)]. This estimates
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will play a central role in the proof of Theorem 4.1 by encapsulating some regularity
properties of the homogeneous problem (4).

The (simple) proof below interprets the A*-harmonic functions P; as new coordinates,
in which (46) appears as a first-order Taylor expansion.

Proof of Lemma 5.3. The key ingredient of the proof is that the function # defined by
(20) satisfies

IVl o1 ot j2)) < ClE* By (47)

Indeed, by the same argument as for establishing (41) above, we obtain that & satis-
fies

~div()J(2)| "A(2) - Vii(2)) =0 in P (B(xp. 1), (48)

with J and A defined as in the proof of Lemma 5.2. Since the matrix |J| 'A is piecewise
constant, as a consequence of [11, Prop. 1.7], there holds

sup [V2i(2)] < C||l~4||L2(p—1(B(x0,1)))~ (49)
2€P-1(B(x0,1/2)\T)

Moreover, since the matrix |[J| 'A is divergence-free, the gradient Vi is continuous
across the interface (inside B(xg, 1/2)). Hence, (49) can be improved as (47).
Therefore, a first-order Taylor expansion on # yields

u(P(x)) — (P(x0)) — (P(x) — P(x0)) - J Vii(P(z))dz

B(x0,0)
< CO|| V0| (b1 (Bag 1 12)))
< COZHU*HLZ(B(MJ))'
Finally, since Vii(P(x)) = (VP(x)) " - Vu*(x), we obtain (46). O

5.3. Correctors and potential

Proposition 3.1 is shown by appealing to Theorem 5.1 and to the following result,
which is inspired by [3, Th. 5.1]:

Proposition 5.4 (adaptation of Th. 5.1 of [3]). Suppose that the matrix A satisfies
Assumptions 1, 2 and 3. Then:

i. There exists a solution w; to Eq. (14). This solution satisfies
Vi(w—w) € L*(D.),
v<wj —w - aijf) e12(D,), (50)
w; is D-periodic.

The function w; satisfying both (14) and (50) is unique up to the addition of
a constant.
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ii. There exist constants C > 0 and k>0 such that
|Vw;j(x) — Vw;(x)| < Cexp(—klx-e|)if x-e,<—1, (51)
[Vwj(x) — wa(x) — a;Vw; (x)| < Cexp (—k|x-el|) if x-e>1. (52)

We now build a potential B:

Proposition 5.5. Suppose that the matrix A satisfies Assumptions 1, 2 and 3. Then, there
exists a D-periodic potential B € L™ (Rd,]Rdz) associated with A. Namely, By is antisym-
metric in its first two indices and satisfies (22). Moreover, it lies in C%f(Rd,]Rd3) for
any € (0,1).

Since the proofs of Propositions 5.4 and 5.4 closely follow the proof of [3, Th. 5.1],
we postpone them until Appendix.

5.4. Uniform H-convergence

Equipped with the correctors, we are in a position to state a first qualitative homogen-
ization result:

Lemma 5.6. Suppose that the matrix A satisfies Assumptions 1, 2 and 3. Let sequences
x, €ERY and ¢, € RY satisfy x,-e; — 1€ R and ¢, — 0. Then, the sequence A, :=
A((- = x,) /&) H-converges to A*(-—le,) on every regular bounded domain of R?.

The proof is classical and relies on the div-curl lemma [18, Lem. 1.1 p. 4]. Therefore,
we only emphasize on its main ingredient: the matrix A admits correctors w; such that

Vw; € L2 (R%, RY), (53)

unif

and that satisfy the following weak convergences in L*(Q, RY):

ij((. _ x,,)/gn) njooo, (54)
(A (VP + VW) ((- — Xn) /&) — (A" - VF}) (-—2xn) L0 (55)

for any bounded domain Q, for any j € [[1,d]] and for all sequences x, € R? and &, —
0. The above facts (53), (54), and (55) are consequences of Proposition 5.4, using the
properties of the periodic correctors th_

6. Estimation

This section is devoted to proving the Lipschitz estimates of Theorem 4.1, from which
we derive the estimates on the multiscale Green function of Corollary 4.2.

6.1. Lipschitz estimates

Our proof of Lipschitz estimates closely follows the proof of Avellaneda and Lin [7]. It
is based on the method of compactness and it is done in the following three steps:
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1. The initialization step (see Section 6.1.1), in which we take advantage of the uni-
form H-convergence (Lemma 5.6) of the multiscale problem to the homogeneous
problem (4). Thus, the multiscale solution u® inherits the medium-scale regular-
ity property of the solution u* of (4) encapsulated in (46). This property is rein-
terpreted in terms of a “linearization” of u® by A(-/¢)-harmonic functions (here,
it is crucial that the correctors w; are strictly sublinear).

2. The iteration step (see Section 6.1.2), in which the previous estimates are iterated
to obtain Lipschitz regularity of u* down to scale & (this is also called “excess
decay” in [9, Lem. 2]). In this step, it is crucial to resort to an A(-/¢)-harmonic
approximation of u® (otherwise, we could not iterate).

3. A blow-up step (see Section 6.1.3), in which we use the regularity result
Theorem 5.1 to obtain Lipschitz regularity on scales smaller than e.

6.1.1. Initialization: “linearization” of locally A(-/¢)-harmonic functions
For the sake of conciseness, we define the A-harmonic coordinates y by

7j(%) = Pj(x) + wj(x).

We prove first that the multiscale problem inherits regularity from the homogen-
ized problem:

Lemma 6.1 (see Lemma 14 in [7]). Suppose that the matrix A satisfies Assumptions 1, 2
and 3. Let y € (0,1) and xo € R?. Then, there exists 0 € (0,1/4), which only depends on
A% and vy, and &, which only depends on A, d, y and 0, such that, if u* € H'(B(xo, 1))
satisfies

—div(A(x/e) - Vu'(x)) =0, (56)

in B(xy, 1) for ¢ < &, then
x X _
ut(x) — u'(x0) — 8(){(;) - X(f)) . L( 0)(VP) A v
1/2
<o ] )
B(x0,1)

Proof of Lemma 6.1. By Theorem 3.1, the correctors w; are bounded. Moreover, by the
Cauchy-Schwartz inequality and the Cacciopoli estimate, there holds
) 1/2

1/2
<C J |V |? <C J |u?|?
B(x0,0) B(x.1)

Therefore, proving (57) amounts to establishing a similar estimate, in which y; is
replaced by P; (up to taking a smaller &).

By Lemma 5.3, we set 0 € (0,1/4) sufficiently small so that, for any x,, € RY, if u*
satisfies (45) in B(xy,1/2), then

sup
x€B(x0,0)

J (vp) ' v
B(X(),H)
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sup
x€B(x0,0)

” 1/2
_ 91+/ (J |u*|2>
—3.24 '
B(o0,1/2)

Now, by absurd, we assume that there exist &, — 0,x, € R? and u* satisfying (56) in
B(x,,1) and such that, for any n € N,

U (x) — ' (x0) — (P(x) = P(¥0)) - J (VP)~

B(xx,0)

(58)

sup
x€B(x,0)

14y 1/2
> (] wer)
2 B(x,,1)

(We recall that eP(%) = P(x) for all x € RY and £>0.) We renormalize u* b
e y

1/2
(J | (x)zdx> =1. (60)
B(x4,1)

Up to a subsequence, there holds x, -e; — [ € R. Since the cases [ = *oo are the
classical periodic cases, we assume that I € R. We denote x, := le;.

The sequence u® (- + x,) is bounded in the space L?(B(0,1)) and, by the Cacciopoli
estimate, in the space H!(B(0,1/2)). Therefore, up to a subsequence (that we do not
relabel), it weakly converges to u*(- + x,) € H'(B(0,1/2)) and in L*(B(0,1)).

On the one hand, by the De Giorgi-Nash Moser theorem [19, Th. 8.24 p. 202], there
exists € (0,1) such that the sequence u®(- 4 x,) is bounded in C*(B(0,1/4)). By

weak convergence, we also have
1/2 1/2
2 2 J |u*|2 )
B(Xo0,1)

e
B(x,,1)

Moreover, the quantity P(x, + z)—P(x,) only depends on z and x,-e; and VP(z)
only depends on sign(z-e;). As a consequence, one can take the limit n — 400 in
(59). This yields

u™ (x) — ™ (%) — (P(x) = P(xn)) - J (VP) ™" Vu

B(xn.0)

(59)

1

sup Vu*

X€B(xx,0)

91+“,' 1/2
>— (J |u*|2> .
B(%o0,1)

On the other hand, by Lemma 5.6, u* satisfies (45) in B(x.o, 1/2). Therefore, it also
satisfies (58). This is in contradiction with (61) (since u* cannot be uniformly equal to
0 on B(xw, 1/2) by (59) and (60)). As a consequence, our supposition (59) was absurd.
This establishes the existence of & such that (46) is valid for any ¢ <& and xy € RY. O

) ) — (P —Ple)) | (9P

(61)
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6.1.2. Iteration
We iterate Lemma 6.1 to obtain the following:

Lemma 6.2 (see Lemma 15 in [7]). Suppose that the matrix A satisfies Assumptions 1, 2
and 3. Let y € (0,1). Let 0 and ¢y as in Lemma 6.1. Assume that u® satisfies (56) in
B(xo, 1), for xo € RY and ¢ < 0"¢y. Then, there exist a constant C that only depends on
d, 0 and u, and a sequence x(n) € RY such that

sup

e =) (7))

< 0(1+n)(1+‘/)||u8||Loc(B(xo.,1

(62)

)
lic(n)] < C(Z ejy) 6|1 (B g, 1)) - (63)
j=0
A central argument of the proof is that the functions y; are A-harmonic, so that

Lemma 6.1 can be iterated.

Proof. We proceed by induction.
If n=0, we set

1

k(0) = L( 0>(VP)7 - V.

By Lemma 6.1, (62) is satistied. Moreover, since VP only takes two values, we have:

_ 1
(VP) ' Vi =—— | VP(—e) - J Vu
L(xo,()) B(x0, 0)| (=e) B(xp,0)n(R_xR4)
+VP(er) - J Vul|.
B(x0,0)N (R, xR41)

and, by the Stokes’ theorem

& _

u®(x)dS (x).

JB(xo,())ﬂ(]Rx]Rd‘) J(?(B(xo,O)ﬂ]Rx]Rd‘)

A similar formula is obtained for the other part of the ball B(xo, 0) N (R, x R*1).
As a consequence, (63) is satisfied for n=0.

We assume now that Lemma 6.2 is true for n > 0. Let 0<e < g and u® €
H| . (B(xo, 1)) satisfying (56) in B(xo, 1). Applying Lemma 6.2, there exists x;(n) associ-
ated to u¢ such that (62) and (63) are satisfied. We set & := e0 "' < gy, % := 0" 'x

and
w@r—wwﬁ%%ﬂ%myﬁw%<xg>—X<%>>.M@. (64)

Since the functions y; are A-harmonic and by (56), we deduce that the function v is
A(-/¢)-harmonic in B(%o, 1). Hence, thanks to Lemma 6.1,

6n+1
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sup |v(z) — v(xg) — & (X <§> - X<@>> . J (VP) . vy
z€B(x0,0) € & B(%0.0) (65)
< 91+}'||V||LM(B(5¢0,1))-
Yet, by the induction hypothesis (62) and by definition (64),
Ve < 90*”)(1”)||u£||Lo@(B(x0,1)>' (66)
We set
k(n41):=x(n) + 0" J (VP)™" - U, (67)

B(%g.0)

so that inserting (64) and (67) in (65) and using (66) yields (62) for the n+ 1-th step.
Moreover, thanks to Stokes’ theorem (see above) and to (66),

[i5(n + 1)] < [15(m)] 4+ CO" 2 V]| 1oz,
< Jis(m)] + COM || 0,1

where the constant C only depends on d and 0 (but not on #). This proves (63) for the
n+ 1-th step and concludes the proof of Lemma 6.2. O

6.1.3. Blow-up
We proceed with the last part of the proof of Theorem 4.1.

Proof of Theorem 4.1. The proof is done by a blow-up argument, in two steps: the first
aims at controlling the oscillation of 4* down to the scale &. It relies on Lemma 6.2 and
on the fact that the correctors are strictly sublinear; the second step uses the first step
along with the regularity of the operator —div(A(-/¢)- V) at a scale finer than ¢ -the
latter being provided by Theorem 5.1.
Without loss of generality, we assume that R=4 and that ¢ < &.

Step 1: We set y = 1/2, and obtain & and 0 from Lemma 6.1. Let x; € B(x,2)\Z. We
first show that, if 1 > r > ¢/¢, there holds

sup [u"(x) — u(x1)| < Crllu]| e a1 (68)

X€B(x1,7)

We set n € N such that "' < r < 0", and x € B(x;,7). Thanks to Lemma 6.2, we

obtain
. . X X1 .
uf(x) — u®(x §C|e<x<—>—x<—>>||u”|x “
[ (%) — u'()| - g B 1L LR [SSTNY) (69)

N 6(1+n)(1+"V)||us||Loc(B(x171))'

By Proposition 3.1, the correctors w; are bounded. Therefore, we deduce from the
above estimate (69) that
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| (x) — ' (x1)] < C(]x — x1| + &+ r1+7)||u8||L°C(B(x1,l))7

which yields (68).
Step 2: Let v(z) = u®(ez/eo)—u’(x1). By definition, the function v satisfies

—div(A(z/&) - Vv(z)) =0 in  B(gxi /e, 1).
By Theorem 5.1, there exists a constant C > 0 independent of ¢ such that
[Vv(eox1/€)] < ClvIii=(s(apr, je1)-
Rescaling the above estimates yields

Vil (x| < C87180”u£”L”(B(

x1,6/€0))"

Appealing to (68) applied with r := ¢/¢ and to the De Giorgi-Nash Moser theorem
[19, Th. 8.24 p. 202], we deduce that

[V (x1)| < Clle[l e a1y < ClU (2 2))-

By a covering argument, this implies

sup  [Vu'(x)] < Cllu[] 2y, 4
x€B(x0,2)\T

and establishes Theorem 4.1. 0

6.2. Estimates on the Green function
We prove Corollary 4.2 by appealing to the Lipschitz estimate of Theorem 4.1.

Proof of Corollary 4.2. Let x # y € R/\Z. By [20, Th. 1.3] we have G(x,y) = G'(y,x),
where G is the Green function associated with the transposed operator —div(AT - V).
Therefore, without loss of generality, it is sufficient to estimate V,G(x,y) in order to
establish (28). By definition, G(-, y) is A-harmonic in B(x, |x—y|/2):

—div(A-V.G(-,y)) =0 in B(x,|x—y|/2). (70)

Hence, applying Theorem 4.1 and using (27) yields (28) as follows:

V<G (x,y)| < Clx—y| ™ (J

1/2
G(¥,y)dx' | < Clx—y[.
B(x,\x7y|/2)

Finally, differentiating (70) with respect to y implies that V,G(-, y) is also A-harmonic
in B(x, |x—y|/2). Therefore, as a consequence of Theorem 4.1, we obtain

|vayg(xvy>| < C|x_)’|_l (J

B(x,\x7y|/2)

1/2
IV,G(x,y) IZdX’> :

which implies (29), by resorting to (28). O
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7. Approximation

In this section, we prove Proposition 4.3, Proposition 4.4, Theorem 4.5 and Corollary
4.6. The proofs of this section follow the strategy of [8]. For simplicity, we denote
henceforth the residuum:

Ré(x) == u®! (x)—u’(x) = u*(x) + w;(x/e) Ou* (x)—’ (x). (71)

7.1. Pointwise approximation

This section is concerned with the proof of the pointwise approximation of the function
u® and of the Green function G (i.e. Propositions 4.3 and 4.4). The first step is to show
a global pointwise estimate on |u°(x) — u*(x)|, namely (30). It relies on the identity (23)
combined with the estimates on the multiscale Green function and its derivatives pro-
vided by Corollary 4.2. Then, by a duality argument (and by rescaling), the first step
yields an estimate on ||G(x,-) — G*(x,-)||» for p’ <d/(d—1). By establishing a local
counterpart of Proposition 4.3, one finally obtains a pointwise estimate
on |G(x,y) = G"(x,y)l-
We proceed with the:

Proof of Proposition 4.3. By (23), there holds
Ri(x) = —SJRdﬁyigs(x, ¥) <(B,~]-k — Ajwi) (y/s)@-U,j(y))dy, (72)

where U* is defined by (45). By Propositions 3.1 and 5.5, the quantity Bjjx—A;wy is uni-
formly bounded on RY. Hence, applying the Holder inequality on (72) for a suitable
decomposition of R? and invoking (28) yields

=1
]

. P
|R8(x)|SC8<J |2Wg (x’y)lf”dy> IV Ul ety
y—x <
+CSJ VG (x,3)2dy | IV U 2
ly—x|>2

p—1
_ld-Vp r
g@l[ "z | VU e
|z] <2

1

+ Ce (J |z|_2(d_1)dz> ||VU*||L2(Rd).
|z|>2

Since (d—1)p/(p—1)<d and 2(d—1)>d, then the above integrals converge.
Moreover, by Lemma 5.2, and since f is supported in B(xp, 1) there holds

U lwirwe) < Cllfllpey  and  [[VU|| 2gay < ClIf [l (ga)-
Therefore, (73) yields

(73)

0 = ey < Coll g 7
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Furthermore, by a Sobolev injection (recall that p > d), we estimate
IV (| gy < CIU | (gey < CHU lwtoge) < Cllflpp(a)- (75)
As a consequence of (74) and (75), and since the correctors w; are bounded, defin-
ition (18) of u*! implies that
1 = 0| ey < Cell Vit [y + 1™ = 08|y < Cellf [l (ge)-

U
We now show a localized version of (30), which is a key step to prove pointwise
error estimate on the Green function (27):

Lemma 7.1 (adaptation of Lemma 4.2 of [8]). Assume that A satisfies Assumptions 1, 2
and 3. Let £>0,x) € R?,q € (1,00). Suppose that u’,u* € H'(B(xo, 1)) satisfies

—div(A*(x) - Vu*(x)) = —div(A(x/e) - Vi'(x)) (76)
in B(xg, 1). Then, there exists a constant C independent of ¢ so that
IR (Bxy1/2)) < CUIRNwa(pag1)) + CElVU | (gxy.1)) (77)
for R® and U™ respectively defined by (71) and by (19).
Proof. We decompose R := R + R} where R is the zero-mean solution on R? to the
following equation:
—div(A(x/e) - VR:(x)) = ediv(H*(x)) and VR € L*(RY,RY), (78)
and where the vector-valued function H* is defined by
H{(x) := &)p(x,.1) (%) (Biik — Aywi) (x/€) O Ug (x). (79)
By definition
R)==| @@y Hod | GEne) o)
B(xo,1) B(x0,1)

As a consequence of (27) and (28), and since the quantity Bjz—A;wy is bounded,
there holds

IR ) < CIH i oy < ColTU ey (50)

x0,1
We now estimate the function R;. By (23) and (78), it satisfies
—div(A(x/e) - VR(x)) =0 in B(xp,1). (81)
Hence, by [19, Th. 8.25 p. 202], R} can be estimated as follows
IR Bxo,1/2)) < CIRS llagsag,))- (82)
Therefore, by applying the triangular inequality and then (80) and (82), we get

IRl xg1/2)) < IR i (8xo,1/2)) IR By 1/2))

. . (83)
< Cel[ VU |1 8x,1)) + CIIRS Lo xo.1))-
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The triangular inequality and then (80) yield

IR a1y < NRG a1y + IR a1

. (84)
< Cel[ VUi x,1)) T IR a8 s,

As a consequence, we obtain (77) by combining (83) and (84). O

Proposition 4.4 is then obtained by a duality argument involving Proposition 4.3
coupled with the local L* estimate of Lemma 7.1:

Proof of Proposition 4.4. If |x—y| < 1, then the result is deduced by a triangular inequal-
ity and by (27). Hence, we restrict to the case |[x—y|>1.

On the one hand, by Proposition 4.3 (used with a scaling argument), for all f €
L*(R?), for p > d, with support inside B(y, |x—y|/2), there holds

lu(x) — u*(x)| = (G(x,2) — G*(x,2))f(2)dz
o2
_d
< Cla=y" # Il pes
where u and u* are respectively the zero-mean solutions to (2) (with ¢ =1) and (4).

Hence, by duality,

-t
p

(J G(x,2) — G"(x, Z)Iﬂ%dZ) < Clx—y| ™, (85)
s()

which scales like (31), but involves a weaker norm.
On the other hand, by [20, Th. 1.3] the functions G(x,-) and G*(x, -) are respectively
A"-harmonic and (A*)"-harmonic. Therefore, by Lemma 7.1 and by (85), there holds

1G(%,7) = G (x,2)] < Chemy| ™ 4 Clay P VU" | (5, 1)) (86)
for U* defined by

Uy) = (VPT()/))i1 -V, G (%, ).

By applying [11, Prop. 1.7] in a ball B(y, |x—y|/2), in which G*(x,-) is (A*)"-har-
monic, there holds

VU e (5 2 < C|x—y|’2||Q’*||LOC(B(%3‘X,”)) < Clx—y| ™.

4

Injecting the above inequality in (86) yields (31). O

7.2. Pointwise approximation of the gradient

In this Section, we approximate the gradients V,G and V,V,G of the multiscale Green
function by means of the two-scale expansion applied on G* (i.e. Theorem 4.5). It relies
on Lemma 7.2, which estimates the gradient of the residuum associated with locally
A(-/¢)-harmonic functions. Applying it on the Green function and invoking Proposition
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4.4 vyields (34). Iterating once more the same reasoning, we obtain (35). Finally,

Corollary 4.6 is a consequence of (34) and of the Holder inequality (with a small tech-

nical argument required by the non-integrability in x =y of the R.H.S. of (34)).
Theorem 4.5 relies on the following:

Lemma 7.2. Letd > 3,x € R\Z and £>0. Suppose that the matrix A satisfies Assumptions
1, 2, and 3. Suppose that u® and u* are respectively A(-/¢)-harmonic and A*-harmonic in
B(xo,2). Then, there exists a constant C > 0 depending only on A and d such that

V' = W(/e) - V|| (piag12)) < ClI" = 87l p(,.2))

(87)
+Celn (2 + 371)||”*||L°°(B(x0,2))7

where W is defined by (32).

The proof is divided in four steps.

The first step concerns the case where x € B(xp,1/2) is far from the interface: we
suppose dist(x,Z) > 0 (where 6 € (0,¢/2) will be fixed at the end of the proof). We
define R by (71). In this case, thanks to the estimates on the Green function provided
by Corollary 4.2 combined with the identity (23), we show that

[VR*(x)] < ClIR [ (pxy.1) + CelIn (O)[[VU*[| 0 1))

88
+ CgéHVZU*”L“(B(x,é)). (88)
This step closely follows the proof of [8, Lem. 3.5]. However, two points should be
underlined: First, the function V2U* might involve a singular measure supported on Z, so
that it is necessary to assume that dist(x,Z) > J. Second, we shall play with the extra par-
ameter 0 (not present in [8, Lem. 3.5]) to get sufficiently close to the interface 7 (the salient
point is that the R.H.S. of (88) blows up very slowly when 6 — 0). The second step is con-
cerned with x € B(xp, 1/2) close to the interface (i.e. at a distance smaller than 6). Then we
use a regularity result at the scale ¢ (namely Theorem 5.1) to compare VR?(x) with
VRé(x'), for x’ farther from the interface. Appealing to the previous step for x” and using a
triangular inequality provides the desired bound. In the third step, we estimate the deriva-
tives of U* in (88) by invoking the regularity results of [11]. Finally, in the fourth step, we
choose an optimal parameter ¢ and establish (87) by means of the two previous steps.

Proof. Without loss of generality, we assume that ¢<1/8. Let x € B(xp,1/2)\Z. The
parameter 0 € (0,&/2) will be set in Step 4.

Step 1: Estimates far from the interface

In this step, we assume that the distance dist(x,Z) between x and the interface Z, is
larger than 6 and we show (88). As in the proof of Lemma 7.1, we decompose R’ :=
R + RS where R: is the solution on R to (78) and R} solves (81).

On the one hand, by Theorem 4.1, there holds

VRt 81 /2)) < CIRS Ni2(8(xp,1/2))-
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Whence, by triangular inequality, and by appealing to (80),

IVR 1 Bxo1/4)) < CUR e (3x0,1/2)) T CURT 1 B g.1/2))

’ . (89)
< ClR | By, 1)) + CEllVU |0 3x,1) -
On the other hand, by (78), there holds
VR‘S’I(x) = J ngs(x,y) (H‘g(y) — Hg(x)) . dg(y)
Q(B(x(),l)) (90)

_JB( l)vxv)/gﬁ(x,y) . (H?(y) _ Hp(x))dy7

where the vector-valued function H® is defined by (79). The first integral of (90) is eas-
ily bounded thanks to (28):

VG (x.7) (H'(7) = H'(x)) - dS(9)| < ClIH Yl o)

J O(B(xo,1))

By resorting to (29), we estimate the second integral in (90).

Lu _UV"Vyg”(xvy) - (H'(y) — H'(x))dy

<

Jy e o)

We cut the ball B(xy, 1) = B(x, ) U (B(xo,1)\B(x,d)). On the small ball, we use the
Holder regularity of H®, and on the remaining part, we use the L*° norm of H*

JB(x I)vaygs(x’y) (H' () — H”'(x))dy

up |H*(y) — H*(x)|

<C o
y€B(x,0) |y - x|

o —d
j =yl =y
B(x,0)

+C IH [ (8xo.1))

J y — x| dy
B(x0,1)\B(x,9)

[H*(y) — H' ()]

< Co* sup 3 + Clln (5)|||H6||L°°(B(xo,1))'

y€B(x,0) |

Now, by Propositions 3.1 and 5.5, there holds
[H [ 5xg,1)) < CEllVU e xg.1)) (91)
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and (recall that 6 < ¢):
|H*(y) — H*(x)|

i
< Cgl_aé%HVU*HL“(B(xo,l)) + Ces” sup |VU*(,V)_— VaU*(x)| (92)
yEB(x,0) y — x|
< Cel|[ VU || (B(xe.1)) + CEN VAU [l (8x.5))-
As a consequence,
VR (x)] < CelIn (O)|[ VU || 3, 17) + CeSI VAU [l 3 93)

and, by a triangular inequality involving (89) and (93), we show (88).

Step 2: Estimates close to the interface
Assume that dist(x,Z) < 6. We set f <min(x,1/4)/2. Without loss of generality, we
assume that x - e; <0 and denote by 7,(x) the orthogonal projection of x on —re; +Z.
By a rescaling argument, one can apply Theorem 5.1 for R® on B(m,(x),2¢). Thus,
there exists a constant C independent of ¢ such that for all y # z € B(m,(x), 2¢)\Z such
that y - ¢; and z - ¢; have the same sign:

|VR(x) — VR*(ms(x)
|/J’

|H(z) — H*(y)]
z -yl

)| —1-B| pe
< Ce PR i (1 20+ C
|x _ 71:5()6) || HL (B(m,(x),2¢))

+ C87ﬂ||H8||L°°(B(n‘;(x),28))'

By a reasoning similar to the one producing (92) (with J := ¢), we deduce that
Hé¢(z) — H®
L |H(2) : 53]
lz =y

< CellVU im0 +CE sup [VU* ()],
y€eB(m(x),26)\T

IH || L (8, (x).20))

(where we underline that y - ; and z - ¢; have the same sign). Therefore,

[VR(x) — VR (m5(x))| < Céﬁg_l_ﬁHRgHL“‘(B(xO.,l))
+ Cé/j’gl_ﬁHVU*||L°C(B(ng(x),28)) (94)

+Cof P sup | V2 U (y)l-
yeB(m(x),26)\Z

Hence, invoking (88) for ms5(x), by a triangular inequality, we get

IVRY(x)| < (1 + 5/”8_1_/5)||R8||L°°<B<x0v1>>
+Ce(6%e 7" + [ In (D) IVU* |l a1 35)

+c(14 %) sup VAU ().
yEB(x0,1)\T
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Step 3: Estimates on U*
We collect two useful estimates concerning VU* and V2U*. By [11, Prop. 1.7], we
have

sup [V (6)| + [V ()] < Cllw gy (56)
x€B(x0,1)\Z

By definition (19), U* is continuous through the interface Z and there holds

IVU i 8xo.1)) < Cllw 1B xp,2)) o7

sup [[V2U* ()| < Cllu* [l p ey 29)- (98)
x€B(x0,1)\Z

Step 4: Conclusion
From Steps 1 and 2, we know that Estimate (95) is satisfied for any x € B(xo,1/2)\Z.
Invoking (97) and (98), it implies that, for any x € B(xo,1/2)\Z, there holds

VR (x)| < C(1+ 0% )[R )

(99)
+Ce(6"e " + | In (5)|)||u*||L°“(B(x072))'

Recall that & € (0, ¢) is still a free parameter. Now, we set § := ¢'//*1. Therefore, (99)
yields

[VR(x)| < ClIR(| 0 g xy.1)) + ClIn (&) 17| By 2 - (100)
By Proposition 3.1, and then by (97),
[R* = (" — ) |13y, 1) < EIVU i) < €Nt i Bag.2))s (101)
so that R® can be replaced by u*—u* in the R.H.S. of Estimate (100). Since
VR = [W(-/e) - Vu* — VU] + ew;(-[e) VU],
by Proposition 3.1 and by (98), the quantity VR’ in (100) can be replaced by W(-/¢) -
Vu*—Vu® so that we get (87). O
We are now in a position to proceed with the:

Proof of Theorem 4.5. Let x # y € R)\Z. Recall that X' —G(x’,y) and x'—G*(x',y) are
respectively A-harmonic and A*-harmonic on B(x,|x—y|/2). As a consequence of
Lemma 7.2, (87) properly rescaled yields

||ng(,y) - W- vxg*('vy)||L%(B(x.|x7y|/4))
< Cley | 1G(29) = G ()l ((xixr112))
+ C|x—y|72 In (2 + |x —y|) ||g*(',)’)||L0°(B(x,\x—y|/2))'

Since G*(x, y) < Clx—y| ™", we obtain (34) by invoking (31).

The function y'—V,G(x,y') (and similarly y'—W(x) - V,G*(x,y')) is A"-harmonic
(respectively (A*)"-harmonic on B(y, |x—y|/2)). Hence, as a consequence of Lemma 7.2,
(87) properly rescaled yields
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T
ViV, G(x,y) — W(x) - ViV, G5 (x,y) - (w') 631
< Cla—y| M IViG(x, ) — W(x) - ViG*(x, W (B (e fepi/2)
+ Clx—y| 2 In (2 + [x — y|) | W(x) - V<G (x, -)||LM(B(X7‘HV2)).
By appealing to (34) and then by using a Lipschitz estimate on G*(x,-), we finally
obtain (35). O
Corollary 4.6 is a consequence of Theorem 4.5 and of the Holder inequality.
Proof of Corollary 4.6. By definition, and since f is supported inside B(xo,1), there
holds:
W(x/e) - Vu*(x)—Vu’(x)

. (102)

- L< (W) Vi (v7) = VG (x2))f ).
We separate B(xo, 1) = B(x,&) U (B(xo,1)\B(x,¢)). On B(xo,1)\B(x,¢), the integrand
of (102) is estimated thanks to (34) (rescaled by ¢). On B(x,¢), the integrand of (102) is
dealt with by appealing to (28) and is counterpart for the homogeneous problem. Thus,

L< ) (W(x/e) - ViG* (x,9) = ViG' (x,9))f () dy

IN

eln (24 ¢ 'x —y| -
c J ( ; 4y +J ly= " dy | 1l e
B(x0,1)\B(x,6) |x =yl Bo)
< elIn 2+ & )P If o rey-

This establishes (36). O

Acknowledgements

The author gratefully thanks Xavier Le Blanc and Claude Le Bris for fruitful discussions. He is
particularly indebted to Xavier Blanc who brought his attention to the article [17] and who com-
mented an early version of the proofs of Section 6. The main ideas of Sections 6 and 7.1 were
found when the author was a PhD student at the Ecole Nationale des Ponts ParisTech.

ORCID
Marc Josien () http://orcid.org/0000-0003-4093-7976

References

[1]  Allaire, G. (2002). Shape Optimization by the Homogenization Method, Volume 146 of
Applied Mathematical Sciences. New York: Springer-Verlag.

[2] Jikov, V., Kozlov, S., Oleinik, O. (1994). Homogenization of Differential Operators and
Integral Functionals. Berlin: Springer-Verlag.



936 M. JOSIEN

(3]

(4]

(5]

(10]

(11]

(12]

(13]

(14]

(15]
(16]

(17]

(18]
(19]

(20]

Blanc, X., Le Bris, C., Lions, P.-L. (2015). Local profiles for elliptic problems at different
scales: defects in, and interfaces between periodic structures. Commun. Partial Differen.
Eq. 40(12):2173-2236. DOI: 10.1080/03605302.2015.1043464.

Blanc, X., Le Bris, C., Lions, P.-L. (2012). A possible homogenization approach for the
numerical simulation of periodic microstructures with defects. Milan ]. Math. 80(2):
351-367. DOI: 10.1007/s00032-012-0186-7.

Blanc, X., Le Bris, C., Lions, P.-L. (2018). On correctors for linear elliptic homogenization
in the presence of local defects: the case of advection-diffusion. J. Math. Pures Appl. 124:
106-122.

Blanc, X., Josien, M., Le Bris, C. Precised approximations in elliptic homogenization
beyond the periodic setting. Preprint hal-01958207.

Avellaneda, M., Lin, F.-H. (1987). Compactness methods in the theory of homogenization.
Comm. Pure Appl. Math. 40(6):803-847. DOI: 10.1002/cpa.3160400607.

Kenig, C., Lin, F.-H., Shen, Z. (2014). Periodic homogenization of Green and Neumann
functions. Commun. Pur. Appl. Math. 67(8):1219-1262. DOI: 10.1002/cpa.21482.

Gloria, A., Neukamm, S., Otto, F. (2014). A regularity theory for random elliptic opera-
tors. ArXiv e-print arXiv:1409.2678.

Blanc, X., Josien, M., Le Bris, C. (2019). Approximation locale précisée dans des
problemes multi-échelles avec défauts localisés. Comp. Rendus Math. L’Académie Des. Sci.
357(2):167-174. DOLI: 10.1016/j.crma.2018.12.005.

Li, Y. Y., Nirenberg, L. (2003). Estimates for elliptic systems from composite material.
Commun. Pure Appl. Math. 56(7):892-925. DOI: 10.1002/cpa.10079.

Blanc, X, Legoll, F., Anantharaman, A. (2013). Asymptotic behavior of Green functions of
divergence form operators with periodic coefficients. Appl. Math. Res. Express. AMRX 2013(1):
79-101.

Bella, P., Giunti, A., Otto, F. (2017). Quantitative stochastic homogenization: local control
of homogenization error through corrector. In Mathematics and Materials, Volume 23 of
IAS/Park City Math. Ser. Providence, RI: American Mathematical Society, pp. 301-327.
Josien, M. (2019). Decomposition and pointwise estimates of periodic Green functions of
some elliptic equations with periodic oscillatory coefficients. Asy. Anal. 112(3-4):227-246.
DOI: 10.3233/ASY-181504.

Kim, D. (2007). Second order elliptic equations in R with piecewise continuous coeffi-
cients. Potential Anal. 26(2):189-212.

Lorenzi, A. (1972). On elliptic equations with piecewise constant coefficients. II. Ann.
Scuola Norm. Sup. Pisa. 26(3):839-870.

Li, Y. Y., Vogelius, M. (2000). Gradient estimates for solutions to divergence form elliptic
equations with discontinuous coefficients. Arch. Ration. Mech. Anal. 153(2):91-151. DOI:
10.1007/5002050000082.

Tartar, L. (2009). The General Theory of Homogenization, Volume 7 of Lecture Notes of the
Unione Matematica Italiana. Berlin; UMI, Bologna: Springer-Verlag.

Gilbarg, D., Trudinger, N. (2001). Elliptic Partial Differential Equations of Second Order.
Classics in Mathematics. Berlin: Springer-Verlag.

Griiter, M., Widman, K.-O. (1982). The Green function for uniformly elliptic equations.
Manuscripta Math. 37(3):303-342. DOI: 10.1007/BF01166225.

Appendix

Proof of Proposition 5.4

For the sake of clarity, we prove successively and separately points (i), and (ii) of Proposition 5.4.
The proof closely follows the proof of [3, Th. 5.1] (with a simpler argument replacing [3, Lem.
5.2 and Lem. 5.3]):
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Proof of proposition 5.4 (i). The proof consists in two steps. First, we build a function v that
reflects the difference w;(x)—w; (x) for x-e; <0 and wj(x)—w; (x)—a;w/ (x) for x-e;>0 by
means of a suitable cutoff function. This function v satisfies an eﬁiptic equation, from which we
deduce that w; exists and is unique.

Step 1: Existence
We set a smooth cutoff function ¢ j(x) only depending on x - e; that vanishes on R_ x R*"!
and that is equal to 1 on [1,+00) x R“"!, and we define ¢_(x) = ¢, (—x). Next, we define

V() = w50 () (] () + i (x) ) —b(x)w; (). (103)
Therefore, by (14),
—~div(A- YY) = div(A- VP) +div(A-V{, (w] +am) + ¢ w; })
= div(f) + div(g),

(104)

where by adding the constant term A*(x) - VPj(x) = A* - ¢; = A% - (¢; + ajer1),
fi=(1—¢.— ¢ )(A—A*)-VP +A- V¢+<wj+ + ajwj) AV w,
and using (11),
g:=0. (A (VB +Vw +aVw/) - A1 VP)
o (A (VP + VW) — A" vpj)
=&+t g

Before going to next step, we need to rewrite div(g) in a more suitable form. For the sake of
simplicity, we only perform the computations on g; (the computations concerning g_ can
be obtained by replacing the index + by —). Recall that there exist
[0, T77] % [0, T5] x -+ x [0, Ta]-periodic potentials (Bx);;, associated with A-. These potentials
are antisymmetric in 7 and j, and they satisfy

0i(Bs) i = (AL) = (A=) (O + Owc).
Therefore, div(g,) reads:
9i(g+); = O (du <Aik (Ou + w") — (Ai)il) 31Pj>
= <06 0u(BL),OP),
Recall that VP; is constant everywhere but on the interface. Thus, by using the antisymmetry
of B, and the Schwarz theorem, we rewrite the above divergence term as:
div(g+) = =0, Ok(B+) 1 OiPi— ¢ 00k (Bt ) 1y OrP;
= —0k(0ip 4 (B ) OiP)) + 0k0ip.. (B )y OuP;
= —0k (8i¢+ (B+)kilalpj)'

As a consequence, going back to div(g), there holds:
div(g) = div(g)

for
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8k = 01 (B4)OiPj + Bicp_(B-) 1 O1P.
Since A, A*, V¢.,w™ and B are uniformly bounded there holds:
WVl ey + 181l ey < C-

Moreover, the support of the D-periodic functions f and g is inside [—1,1] x R*"!, whence
f,g € 12(D,RY). Therefore, by the Lax-Milgram theorem, there exists a D-periodic solution v to
(103) such that Vv € L2(D,RY).

Step 2: Uniqueness
Proving uniqueness amounts to showing that if the function v is D-periodic and satisfies
—div(A-Vv) =0 in R? and Vvel? (D,Rd),

then v is a constant function. This fact is a straightforward corollary of the proof of uniqueness
in [3, Th. 5.1] (which is similar to the proof of Proposition 5.4 (ii)). O

The proof of Proposition 5.4(ii) is a simple adaptation of [3, Th. 5.1].

Proof of Proposition 5.4 (ii). We only prove (52), since the proof also applies for (51).
Let v be defined by (103). Whence,

—div(A-Vv) =0 if |x-e|>0. (105)

Therefore, testing Eq. (105) against v yields, for 1 <R< R/,

J A(x) - Vv(x) - Vv(x)dx

[R,R']%[0,T5] x-+-x[0,T4]

= J v(x)A(x) - Vv(x) - erdx (106)
{R'}x[0,T]x---x[0,T,4]

—J v(x)A(x) - Vv(x) - e;dx.
{R}x[0,T]x - x[0,T4]

Remark that, by the divergence theorem, the quantity

J er - A(x) - Vy(x)dx

{x1}x[0,T2] x--x[0,T4]

does not depend upon x;. Therefore, it shall vanish, since Vv € L*(D,R?). Hence, we deduce
from (106) that, for any constants C;, C, € R, there holds

J A(x) - Vv(x) - Vv(x)dx
[R.R]x[0,T5]x++x[0,T4]

J (v(x)—C1)A(x) - Vv(x) - eydx
{R'}x[0,T5] %+ x[0,T4]

—, (v(x)—Co)A(x) - Vv(x) - erdx.
J{R} x[0,T5] x - x[0,T,)
By the Cauchy-Schwarz and the Poincaré inequalities, and using ellipticity and boundedness
of A, we obtain
Vv Px < cJ Vv(x)Pdx

J[R,R’] x[0,T5] %+ x[0,Ty) {R'} x[0,T5]x -+ x[0,Ty]

+ CJ |Vv(x) | dx.
{R}x[0,T5]x--x[0,T4]
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Now, since Vv € L2(D, RY), letting R’ — 400 in the above expression yields

Vy(x)Pdx < C j V() Pelx.

J[R,Jroo[x [0,T5]x-+x[0,T,] {R} x[0,T]x--x[0,T4]

By the Gronwall lemma, this implies that there exists constants C, x>0 such that
J |Vv(x)|*dx < Cexp (—KR).
[R,A+00[x[0,T5] %+ x[0,T4]
Then, by Schauder regularity [19, Cor. 8.36 p. 212], we finally obtain (52). m|
We finally proceed with the

Proof of Proposition 5.5 Recall that, in the periodic case, the potentials B+ read
(Bt)ijk = ai(Ni)jk_aj(Ni)ik7
where N= are [0, T}"] X [0, T3] X - - - x [0, T4]-periodic solutions to
A(N=)y = (A%), — (A=) (8k + Owg) in R (107)
Note that, by Schauder regularity, the functions N- belong to C2% (RY R¥*4).
Similarly, if we build a D-periodic function N satisfying
ANy = Aj01Pr— A (9P + 0wy, (108)
and set BZ = a,-Ni—a,-N;, then B satisfies (22) (recall that the R.H.S. of (108) is divergence-free,
in the sense of (21)). Building such a function N is the goal of what follows.

We proceed in the same manner as in the proof of Proposition 5.4 by using techniques of [3].
We decompose

N=¢,N, -VP+¢_N_-VP+N. (109)

Recall that VP is piecewise constant and possibly discontinuous only across the interface,
where ¢ vanishes. Hence, by definition,

AN = AN—¢ AN, - VP—¢_AN_ - VP
—2(Vé¢, VN, -VP+Veé_-VN_-VP) (110)
—~A$,N, - VP—A¢p_N_ - VP.
Using (107) yields
AN;j—¢ A((N4 )y ) kPi—p_A((N-)y) kP
= (1=, — ¢ ) (AP — A (OkP; + Oiw;))
+ ¢+Aik (8kw,+81P]- — aij) + ¢_Aik (8kwf8,Pj — aij).

As a consequence, the right-hand term of (110) is D-periodic and bounded. Moreover, it is in
L'(D). Indeed, the functions (1—¢,—¢_) and V. are supported in [~1,1] x R*! and, by
Proposition 5.4, the quantities (Jxw; 9,P; — Oxw;) decrease exponentially when x - e; — *oo (we
recall the formula (11) for the gradient VP). Hence the RH.S. of (110) is bounded in all I? for
p € [1,4+00]. Therefore, by the Lax-Milgram theorem, there exists a D-periodic solution N to

(110) so that VN € LZ(Q, RdXdXd). Moreover, by elliptic regularity (see [19, Th. 8.32]), for any
B € (0,1), there holds VN e C*/ (R? R?).

unif
As a conclusion, we have built a D-periodic potential B that is f-Holder continuous, for any

pe(0,1). O
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