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1. Introduction

The aim of this article and its companion [1] has been to prove perturbation estimates
of quantities of the form

D

—~ 2 )

where D and D are self-adjoint elliptic first-order partial differential operators, acting
on sections of a vector bundle V over a smooth manifold M. The symbol f({) =
{1+ CZ)_% is a motivating example, yielding continuity results in the Riesz sense, but
our methods apply equally well to more general holomorphic symbols around R, which
may be discontinuous at co. In [1], together with Alan McIntosh, we obtained results
on complete manifolds (M, g) without boundary. In that case, the main example of
operators D and D was the Atiyah-Singer Dirac operators on M with respect to two
different metrics g and g. The bound obtained was
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D D
Vi+D? VI+D?

where the implicit constant depends on certain geometric quantities. Note that the two
Dirac operators themselves depend also on the first derivatives of the metrics.

In the present paper, we consider the corresponding perturbation estimate on a mani-
fold M (possibly noncompact) with smooth, compact boundary ¥ = M. Our motivat-
ing example in this case is when both D and D are the Atiyah-Singer Dirac operator,
but with two different local boundary conditions, defined through two different subbun-
dles £ and £ of V5. For each boundary condition we assume self-adjointness and ellip-
ticity so that the domains of D and D are closed subspaces of H'(V). The bound we
obtain is

= ||g—8ll (729 10
LA (M,V)—L2(M,)V)

D D
Vi+D? VI+D?

<116 (Exs (x5 (1.1)
L2(M,V)—L2(M,V)

where 6(&,, Ey) = |me(x)—mx(x)| and me and 75 respectively are the orthogonal projec-
tors from V|y to £ and £. Again the implicit constant in the estimate depends on a
number of geometric quantities which we list completely.

As described in the introduction of [1], an important application of these perturb-
ation estimates is the study of spectral flow for unbounded self-adjoint operators. The
study of the spectral flow was initiated by Atiyah and Singer in [2] and has important
connections to particle physics. An analytic formulation of the spectral flow was given
by Phillips in [3] and typically, the gap metric
i+D i+D

i-D i-D

L2 (M:V)—L2(M;))

is used to understand the spectral flow for unbounded operators. The Riesz topology is
a preferred alternative since the spectral flow in this topology better connects to topo-
logical and K-theoretic aspects of the spectral flow, which were observed in [2] for the
case of bounded self-adjoint Fredholm operators. The main disadvantage is that it is
typically harder to establish continuity in the Riesz topology. In particular we refer to
the open problem pointed out by Lesch in the introduction of [4], namely whether a
Dirac operator on a compact manifold with boundary depends Riesz continuously on
pseudo-differential boundary conditions imposed on the operator.

The present article answers these questions to the positive, in the special case of local
boundary conditions. Self-adjoint local boundary conditions are typically physical and a
very large subclass of the so-called Chiral conditions are listed in [5] by Hijazi, Montiel
and Roldan as being self-adjoint boundary conditions. In particular, these exist in even
dimensions or when the manifold is a space-like hypersurface in spacetime. The case of
non-local boundary conditions defined by pseudo-differential projections appear to be
beyond the scope of the methods used in the present paper but we anticipate they will
be the object of further investigations in the future. The local nature of the boundary
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conditions enter the proof in a number of instances, but the most serious occurrence
concern the so-called exponential off-diagonal estimates, which relies on the domains of
the operators being preserved under multiplication by smooth, bounded functions. It is
important to note that the right hand sides in the perturbation estimates that we obtain,
namely ||g—g||;~ (70, and HS(S,C,S,C)HL&(Z), are supremum norms, which are smaller
than estimates that can be obtained from operator theoretic arguments alone.

Like in [1], we use methods from operator theory and real harmonic analysis to
obtain (1.1). For a self-adjoint operator, say D, the quadratic estimate

o0 dt
| Q% =1l (1.2
0

is immediate from the spectral theorem coupled with Fubini’s theorem. Here Q;, =
tD(1+ *D?)"" is a holomorphic approximation, adapted to the operator D, of the pro-
jection onto frequencies in a dyadic band around 1/t. For the harmonic analyst, the
estimate (1.2) yields continuity of a wavelet transform, adapted to D, and plays the
same role in wavelet theory as Plancherel’s theorem does in Fourier theory. We refer to
[6] by Daubechies in the case Q; is the projection onto scale t in the multiscale reso-
lution. These ideas are also central in Littlewood-Paley theory.

Quadratic estimates like (1.2) are a flexible tool. They can be adapted to handle non-
self-adjoint operators as well as non-commuting operators. Relevant to this article is the
latter extension, where we want to estimate f(D)—f(D) as in (1.1). By expressing these
operators in terms of resolvents of D and D respectively via the Dunford functional cal-
culus, such perturbation estimates can be obtained from quadratic estimates of the form

A 2 dt 2
|, 1A S = (13)
Here Q, is like Q, above but for the operator D, A typically is a bounded multi-
plication operator, and P, = (I +t2D?)”" should be thought of as a holomorphic
approximation, adapted to the operator D, to the projections onto frequencies smaller
than 1/¢.

Just like in the non-self-adjoint case in (1.2), the estimates (1.3) are non-trivial and
use the specific structure of the operators D and D. When these are differential opera-
tors, allowing non-smooth coefficients, we can use methods from harmonic analysis to
handle (1.3) essentially as a Carleson embedding theorem. For operators with simpler
structure than our Dirac operators, it is also possible to obtain higher order perturb-
ation estimates. In this case the relevant quadratic estimates look like (1.6). For our
Dirac operators, (1.3) more precisely amounts to the two estimates

LI , _ dt
J [|Q,A,V(il + D) 1P,L:||2?S||A1||io||u||2 and (1.4)
0

1
~ dt
J ||tPtd1vA2Ptu||27 =< ||A2|)% |l (1.5)
0
which need to be established for u € L?(V), where A, and A, are L multipliers.
Through a similarity transformation 2of D, we can also assume that D(D) ZN%)(D).
Here P, = (I+£D?) ', P, = (I+ D), Q =tD(I+£D*) ', Q,=tDI+ D) "
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At a first glance, trying to adapt the proofs in [1] for (1.4) and (1.5) to the case of
manifolds with boundary seems to be a straightforward exercise. However, closer
inspection reveals an interesting dichotomy. In [1], the estimate (1.5) was standard and
well known to be equivalent to a certain measure being a Carleson measure, and the
main new work was in establishing (1.4). Here the operator A;V/(il + D)~ which is
sandwiched between Q, and Py, is not a multiplier but also incorporates a singular inte-
gral operator V(il + D) ™', To estimate, a Weitzenbdck-type inequality for D is needed.
Turning to a manifold with boundary, one sees that (1.4) follows as in [1], mutatis
mutandis. Instead, the presence of boundary forces (1.5) to be a non-standard estimate,
since new boundary terms appear in the absence of boundary conditions for the multi-
plier A,. Indeed, in order for our estimates to be useful, we need to be able to allow for
general A,. More precisely, by Stokes’ theorem

J g(ﬁttdivu, v)d,u = J g(tﬁ - U, ﬁtv)da—J (u, tVﬁ,v)d,u.
M z M

The second term on the right hand side is bounded by ||u||;z||v||;> by the ellipticity
and self-adjointness of D, but clearly the first term has no such bound. This means that
in (1.5), the operators P,tdiv are not even bounded, and standard estimates
break down.

An important contribution of this paper lies in the new ideas needed to establish
(1.5). Here, we observe that even though ﬁttdiv is unbounded, the operator ﬁttdiVAzpt
as a whole is bounded by ||A;||;~ (which is seen from Stokes’ theorem and the ellipti-
city of D). Building on this observation, we prove (1.5) in Section 4.3 by adapting, in a
non-trivial way, the standard harmonic analysis proof, usually referred to as a local T(1)
argument. The inspiration for this analysis comes from [7] by Auscher, Axelsson,
Hofmann and [8] by Axelsson, Keith, McIntosh. To be more precise, this allows us to
reduce (1.5) for an arbitrary L? sections instead for certain test sections which vanish
near the boundary X. For this special class of test sections, we are able to adapt the
boundaryless estimates and (1.5) becomes standard.

The remainder of this article is organised as follows. In Section 2 we state in detail
our main perturbation estimate in its general form, and show in Section 3 how it is
applied to yield the motivating estimate for the Atiyah-Singer Dirac operator under
perturbation of local boundary conditions. Then, Section 4 contains the proof of
Theorem 2.1, as outlined above.

As aforementioned, this article is a sequel to the authors’ joint paper [1] with Alan
McIntosh. During our work on this project, McIntosh untimely passed away, leaving us
in great sorrow. McIntosh’s great heritage to mathematics include his widely celebrated
unique blend of operator theory and harmonic analysis which has lead to breakthroughs
like the proof of the Calderén conjecture on the L?* boundedness of the Cauchy singular
integral operator on Lipschitz curves, jointly with Coifman and Meyer in [9], and the
proof of the Kato square root conjecture on the domain of the square root of elliptic
second-order divergence form operators, jointly with Auscher, Hofmann, Lacey and
Tchamitchian in [10].

The estimates in this article go back to the multilinear estimates pioneered by
Mclntosh in connection with [9]. There, expressions of the form
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> , dt
||QA P AL PASP; - - - APl r (1.6)
0

were bounded by ||u||;.. Formally, the idea is to pass a derivative from Q,, through the
general L maps A;, to the rightmost P;, which becomes Q; = tDP,, and conclude the
desired estimate by (1.2). Concretely, this is achieved by harmonic analysis methods
and Carleson measures. The power of this analysis is well known in real-variable har-
monic analysis and, in fact, the necessary and much needed algebra of P; and Q, opera-
tors are in some circles of mathematicians referred to as McIntoshery (or in French
Mclntosherie).

In this article, we only employ the linear case k=1 of these multilinear estimates of
McIntosh, leading to first-order perturbation estimates. Even though our work is yet another
successful example of McIntoshery, we have nevertheless chosen to not add his name as an
author. Both authors are former students of McIntosh, and we know he had as a firm prin-
ciple for omitting his name from publications unless he clearly felt that he had contributed
to the novelties of the article in a substantial way. Unfortunately, he could not join us
this time.

2, Setup and statement of main theorem
2.1. Manifolds, bundles, and function spaces

Let M be a smooth manifold (possibly noncompact) with smooth boundary ¥ = oM.
Throughout, we fix a smooth, Riemannian metric g on M and let V denote the associated
Levi-Civita connection, We assume that g is complete, by which we mean (M, g) is complete
as a metric space. By M we denote the interior M \ M. The induced volume measure is
denoted by dy on M and do on X. Let 1i be the unit outward normal vectorfield on X.

The tangent, cotangent bundles are denoted by TM and T*M respectively, and the
rank (p, g)-tensor bundle by 7®9 M.

For a smooth complex Riemannian bundle (V,h) on M, let I'()V) denote the set of
measurable sections and C**()) be the set of continuously k-differentiable sections with
the k-th derivative being o-Holder continuous up to the boundary. Note that when we
write C**, we do not assume C** with global control of the norm but rather, only Ct*
regularity locally We write Ck = C*0 and C*(V) = N2, CK(V). Moreover, define

ck(V) = {u e C**(V) : spt u € M compact} and
C (V) = {u € CE*(V) s spt u C M compact}.

Since Lipschitz maps will have special significance, we write Lip(V) to denote sections
Y € CH (V) with [[Vif| ) < oo

For 1 < p <oo, denote the set of p-integrable measurable sections with respect to h
and u by I/(V) with norm |[¢[[,. The space L*(V) consist of ¢ € I'(V) such that
|€| < C for some C >0 almost-everywhere on M. The norm ||£|| is then the infimum
over C >0 such that this relation holds. The spaces I”()) are Banach spaces and L*())
is a Hilbert space with inner product (-,-). The latter space is what we shall be con-
cerned with most in this paper and for simplicity of notation, we denote the norm
[| - I, by || - ||- The restricted bundle W = V|5 is a smooth, complex Riemannian bundle
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with metric h|y and L?()V) spaces are defined similarly on X with respect to the meas-
ure do.

Let V be a connection on V that is compatible with h. Then, V is a closeable oper-
ator in L?(V) and we define the Sobolev spaces H¥(V) as the domain of the closure of
the operator

(V,V2,..,V5) : 12 nC=(V) — 12N COC(@LIT“O)M ® v)

in L2. Similarly, we obtain boundary Sobolev spaces H*(V|y) from V|s. By compatibility,
we have that

(Vu,v) = (u, —trVv)

for ue L>’NC*(V),v e > NC®(T*M ®V) and with either spt u C M compact or
spt v C M compact. Thus, we obtain the divergence operator, defined as div= -V *

as a densely-defined and closed operator with domain D(div) from the oper-
ator V. : CX (V) —» CX(T"M @ V).

2.2. Main theorem

In order to phrase the main theorem as in [1], we require some assumptions on the
manifold. We say that (M, g, u) has exponential volume growth if there exists cg >
1,%,¢> 0 such that

0 < pu(B(x, tr)) < ct*e™ u(B(x, 1)) < o0, (Eloc)

for every t > 1 and g-balls B(x, r) of radius r> 0 at every x € M. The manifold (M, g)
satisfies a local Poincaré inequality if there exists cp > 1 such that for all f € H' (M),

|f —fsl |25y < cprad(B)][f] | () (Pioc)

for all balls B in M such that the radius rad(B) < 1.

We say that (V,h) satisfies generalised bounded geometry, or GBG for short, if there
exist p >0 and C > 1 such that, for each x € M, there exists a continuous local trivial-
isation ¥, : B(x, p) x CN — 73, (B(x, p)) satisfying

CH yuls < by < ClL () ulss

for all y € B(x,p), where § denotes the usual inner product in CV and ¥, '(y)u =
. ' (y,u) is the pullback of the vector u € V, to C via the local trivialisation i, at y €
B(x, p). We call p the GBG radius. In typical application, the local trivialisations will be
C%! or smooth.

Letting D and D be first-order differential operators acting on a bundle V over M
and % : H' (V) — H:(Vs) the boundary trace map, we state the following assumptions
adapted to our setting from [1]:

(Al) M and V are finite dimensional, quantified by dim M < oo and dimV < o0,
(A2) (M, g) has exponential volume growth quantified by ¢ < 0o, cg < 0o and k < 00 in (Ej,.),

(A3) alocal Poincaré inequality (P),.) holds on M quantified by ¢p < o0,
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(A4) T*M has C®' GBG frames v; quantified by pp >0 and Crpy <oo, with
|VV]| < CG,T*M with CG,T*M < 00,

(A5) V has C"' GBG frames ¢; quantified by p, >0 and Cy<oo, with |Vej|<Cgy
with C(;y < o0,

(A6) D satisfies |Dej| < Cpy with Cpy <oco almost-everywhere inside each GBG
frame {¢;},

(A7) We have nD(D) C D(D) for every bounded n € C*(M) with ||[Vn||, <oo, and
[D,n] and [D,n] are pointwise multiplication operators on almost-every fibre V, with
a constant ¢ ~>0 such that

|[Ds nu(x)] < ¢y 5IVn(x)||u(x)] (2.1)

for almost-every x € M and the same estimate with D interchanged with D,

(A8) D and D are self-adjoint operators which are essentially self-adjoint on their
restriction to

Cx(V;B) = {u €CX(V): Ru e B},

where B = H:(£) with £ C V|5 a smooth subbundle of V|5, and both operators
have domain D(D) = D(D) € H'(V) and with C > 1 the smallest constant sat-

isfying
CHlullp < Mlulle < Cllully and  C7Hlullg < [lullyp < Cllully  (22)

for all u € D(D) = D(D) and where || - |, = ||D - || + || - ||, the operator norm, and

(A9) D satisfies the Riesz-Weitzenbock condition: D(D?) C H*(V) with
IV2ul] < cw (/[D?ul| + [|ull) (2.3)

for all u € D(D?) with ¢y < co.
The implicit constants in our perturbation estimates will be allowed to depend on

C(M, V, D, 6) = max{dim M, dim V, C¢,Cg, K, Cp, pT*M, CT*/\/b CG.,T*Mv

(2.4)
Py, CVa CG,Va (D, CD,V, C) CW} < 00.

Our main theorem is the following.

Theorem 2.1. Let M be a smooth manifold with smooth compact boundary X = OM
and let g be a smooth metric on M such that (M, g) is complete as a metric space. Let
(V,h, V) be a smooth vector bundle over M with smooth metric h and connection V
that are compatible.

Let D,D be two first-order differential and assume the hypotheses (A1)-(A9) on
M, V,D and D and that

Dy = Dy + A,V + div Asyy + Az, (2.5)
holds in a distributional sense for y € D(D) = D(D), where
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A e LX(L(T"M @V, V),
A, e LN Lip(LWV, T"M @V)), (2.6)
Az € L7(L(V)),

and let ||Al] . = [|A1]|o + [|Az2]] +[|43]|-

Then, for each » € (0,7/2) and o € (0,00, whenever f € Hol™(S;, ;), we have the per-
turbation estimate

||f<15)_f(D)||L2(V)—>L2(V) = WHL%(SW) AHoo?

where the implicit constant depends on C(M, V), D, 15)

Here S°  :={x+iy:y* < tan’wx* + ¢*}, and we say that f € Hol™(S? ) if it is

w,0 w,0

holomorphic on $°  and there exists C>0 such that |[f({)| < C. For a definition of

functional calculi f(D) and f(D) with symbols f bounded and holomorphic, see Section
2.3 in [1].

Remark 2.2. Self-adjointness of D and D in Theorem 2.1 (A8) can be relaxed. Indeed,
we only use self-adjointness to obtain the estimates (4.1) and (4.2). In the more general
situation, that is, when the operator D or D is only similar to a self-adjoint operator
with similarity transform U, the constant 1||U||*||U!||* appears in place of { in (4.1)
and (4.2), and also enters in C(M,V,D, D).

We prove this theorem using real-variable harmonic analysis methods through the
holomorphic bounded functional calculus in Section 4.

3. Application to the Atiyah-Singer Dirac operator

Throughout this section, in addition to assuming that (M, g) is a smooth and complete
Riemannian manifold with compact boundary X = O0M, we assume that M is a
Spin manifold.

Recall that the exterior algebra QM = @;ZOQP M is a graded algebra, and it is vec-
tor-space isomorphic to the Clifford algebra which we denote by AM. Fix a spin struc-
ture Pgpin (M) and let the associated Spin bundle be denoted by A M = Py, <, AR"
corresponding to the standard complex representation #n:AR” — L(AR"). Let
-: T(AM) — End(AM) denote Clifford multiplication on spinors.

Let I denote the Atiyah-Singer Dirac operator associated to AM, given locally in an
orthonormal frame {e;} by the expression Py = e* - V, i, where V is the Spin connec-
tion. Denoting {¢,} to be an induced local orthonormal spin frame from {e;}, the Spin
connection takes the local expression V¢, = oF - ¢, where o} =3, _ 0] Qe - e, is
the lifting of the Levi-Civita connection 2-form to AM and j is the connection 1-
form in E = (ei, ..., e4). The symbol of this operator is symy,({)y = & - if. We refer the
reader to Lawson and Michelsohn [11] and Ginoux [12] for a more detailed exposition
on spin structures, bundles and their associated operators.

To define D as a self-adjoint elliptic operator on L?*(AM) by imposing boundary con-
ditions on D(IP) we will follow the framework developed by Bér and Ballmann [13] and
specialised to Dirac-type operators in [14]. In particular, by a local boundary condition
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for ) we mean a space
B=Hi(E) with &CAS=AM]|s,

where £ is a smooth subbundle. The operator I with boundary condition B, denoted
D, is the operator I) with domain

DM@5) = {@ € L*(AM) : Do € L*(AM) and Z¢ € B},
where # denotes the trace map. In particular, the choice £€=0 yield Dmin
and ]Z)max - DH%L)& £

Two conditions we require of the local boundary condition B are as follows:

(i)  Self-adjointness, which by Section 3.5 in [14] occurs if and only if symm(ﬁ'b)
maps the L? closure of B onto its orthogonal complement.

(i) D-ellipticity, which is defined in terms of a self-adjoint boundary operator ¢
adapted to ) with principal symbol sym,(&) = symm(ﬁ")f1 o symy(&), and
for which the operator

TE—Yjoo) (@) : L(AZ) — L*(AZ)

is a Fredholm operator. Here, n5 : L*(AX) — B is projection induced from the
fibrewise orthogonal projection 7g : AX — &, and yj (@) is the projection
onto the positive spectrum of the operator ¢ (see Theorem 3.15 in [14]). This
condition yields regularity up to the boundary, in the sense that Pu €
HX _(AM) if and only if u € HE ' (AM) whenever u € D(Dp). For a compact

loc

set K C M, the constant Cx such that
Ml < Nl < Cclully

we call the D-ellipticity constant of order k in K. Here, ||u||2TK = ||y Tul||* +
|lzcul]*. See Section 7.3-7.4 in [13] as well as Section 3.5 in [14].

We now state our perturbation result for the Atiyah-Singer Dirac operator D5 with a local
boundary condition B. For two local boundary conditions 5 and B, following Section 2 in
Chapter IV in [15], we define the L*°-gap between the subspaces 3 and B as
0oc (B,B) = 16 (€3, €l (z) = sup |me(v) =z ()]
xe
where mg and 7y are the orthogonal projections from AX to £ and £ respectively. We
let |[B]|y;, = sup,es [Vrp(x)|, and similarly for B. For a set Z C M and r >0, we write

Z,={x € M:pg(x,Z) < r}, and Z, UZ, to be the double of a neighbourhood X by
pasting along X.

Theorem 3.1. Let (M,g) be a smooth, Spin manifold with smooth, compact boundary
X = OM that is complete as a metric space and suppose that there exists:

(i) aprecompact open neighbourhood Z of T and i > 0 such that inj(M \ Z,g) > k,
(ii) Cgr < oo such that |Ricy| < Cg and |VRicg| < Cr on M\ Z, and
(iii) a smooth metric g, on the double Z, 1 Z, obtained by pasting along X and
Cz <00 and Kz >0 with |Ricg | < Cz and inj(Z, U Z,,8,) > Kz.
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Fixing Cp<oo, let B and B be two local self-adjoint D-elliptic boundary
which satisfies:

. ||Bllp + [1Bllup < Ca, and
v. -ellipticity constants of orders 1 and 2 in a given compact neighbourhood K of
the boundary.

Then, for o € (0,7/2) and ¢ >0, whenever we have f € Hol™(S;, ), we have the per-
turbation estimate

If@s)~f P5) 22 = IIfl|c (B, B),
where the implicit constant depends on dim M and the constants appearing in (i)-(v).

Remark 3.2. The double of a smooth manifold with boundary by pasting along that
boundary is again smooth (in terms of the differentiable structure). However, the
canonical reflection of the metric may fail to be smooth across the boundary. The exist-
ence of a metric g, satisfying the assumed curvature bounds on Z, LI Z, is always guar-
anteed, but we have included this in order to quantify the dependence of the constants
in the perturbation estimate. See Section 3.1 for more details.

Example 3.3 (Boundary conditions in even dimensions). For M even dimensional, the
Spin bundle splits AM =A*M @A M (where A" M are the eigenspaces of

u—n - u) and
p=(p %)

where D* : A~ M — AT M. Again by even dimensionality, il : A% — A7 .
Let B € End(A"X) smooth and invertible, and define

AB,xZ = {(waﬁ : B'ﬁ) : lﬁ S A:Z} and ABZ = I—leMABJZa

which is a smooth sub-bundle of AX. The boundary condition as considered by
Gorokhovsky and Lesch in [16] is then given by By = H1 (AX).

When the boundary condition defining endomorphism B further satisfies B(x)* =
B(x), then the boundary condition By is P-elliptic and D5 on C°(AM; Bg) is essentially
self-adjoint. These facts are a consequence of Corollary 3.18 in [14], which guarantees
D-ellipticity of the boundary condition Bg since sym,(¢) interchanges ApX and AFZ for
0 # ¢ € T;X. The essential self-adjointness follows from invoking Theorem 3.11 in [14],
since symy,(ni) interchanges Bp with its L2-orthogonal complement By = {(Bfi - v,v) :
ve H} (A X)} in HI(AZ).

Example 3.4. As noted in [5], Chiral conditions arise from an associated Chirality oper-
ator G € C™(L(AM)) satisfying: for all X € C*(TM) and ¥, p € C*(AM),
G* =1, (Go,G¥) = (p,¥), Vx(G)) = GVXY, X-Gop=—GX - ¢,

and the boundary condition is defined via the projector mgu =1(I-ii- G). This is a
self-adjoint local elliptic boundary condition which exists in any dimension (given the
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map G), and has been used in the study of asymptotically flat manifolds including black
holes. See Section 5.2 in [5] for more details.

Proof of Theorem 3.1. Without loss of generality, we can assume that d3oe(B,B) < 1/2,
as the estimate is trivially true from the spectral theorem for do0(B,B) >1/2. Note that
since the projectors mg and mz on AX to £ and & respectively are orthogonal,
||2ng—I||, = 1 and so we obtain:

M ezl < s and

(i) [|Vrell + Vgl < Cp

We claim that there exists a U € Lip(L(AM)) with [[U-I|[ < 500(8,[3) <1 and
|[VU|| = Cp such that UB = B. To see this, set Uy = (I + (2mg—I)(2mz—1I)) and it is
easy to see that mg = U;'nzU,. Fix €>0 such that [0,€) x X 22 N, where N* = {x €
M :p(x,X) < €} and note that U, extends to a projection U'(x) = Uy(x') for x =
(t,x') € [0,€) x Z. Then U is given by:

I x &N,
Ut = (1 = 7"(’:2)>U’(x) +—p(’:2)1 x € N-.

We verify the hypotheses (A1)-(A9) and invoke Theorem 2.1 with V =AM, ,D =Dp
and D = U™! ;U to obtain the estimate

1/ @5)—f (U™ D5U) [|2—r2 = 1=l || [f]] -

The passage from this to the required estimate follows from the fact that we
have ||I-U||,<1/2 by noting that f(U'DzU)=U"'f(Hz)U and that
@) ~f (U DUl gz = 1=Vl ]|

The first hypothesis (A1) is immediate and (A2) and (A3) are a consequence of the
fact that the curvature assumptions imply that Ric, > —Cg (c.f. Theorem 5.6.4 and 5.6.5
in [17]).

The existence of GBG frames satisfying the required bounds in (A4), (A5), and (A6)
follow from Proposition 3.6, which only depend on Cg, k, Cz and k. See Section 3.1.

Since we assume that B is a local boundary condition, we have that for every n €
L> N Lip(M), the domain inclusion D(P) C D(IPp) holds. The commutator estimates
follow from the fact that

D, nu=dyp-u and [UT'DU,nju=U""dy- U

This shows (A7).

The hypothesis (A8) is a consequence of Proposition 3.8 and 3.9 since we assume
that B and B are P-elliptic boundary conditions. Note that the constant arising from
these propositions include the constant Cgy ¢ in the ellipticity estimate

CJII,KH”HDB,K < H”HHI,K < Cell,K”””DB,K
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whenever u € D(Pg). The corresponding constant in the region M \ K depends on the
geometric bounds (i)-(iii). In addition to these constants for I, the corresponding esti-
mate for the operator Dy includes the constant Cp. See Section 3.2 for details.

The remaining hypothesis is the Riesz-Weitzenbock hypothesis (A9). This is proved
similar to Proposition 3.8, using the compact set K and Ki near the boundary, along
with the smooth cut-off f as they appear in the proof of this proposition. The estimate
|[V2(fu)|| < |[P%ul| + ||u|| is obtained by arguing as in Proposition 3.18 in [1] via the
cover provided by Lemma 3.7, and the remaining estimate ||[V*((1—f)u)|| <
(~]eu,K(||1D%u|| + ||u||]) is due to the boundary regularity result, Theorem 7.17 in [13].
Here, ellipticity constant Eeu,K is the constant

~—1 ~
c , ”||]p’é,1< < ||”||Hk,1< < CellK”“”];)’g,K

whenever u € D(%) for k=1, 2. The constant for the estimate in the region M \ K
depend on the constants in (i)-(iii).

Lastly, the decomposition of the operator Pz— Pp = AV + divA; + A; distribution-
ally proved in Proposition 3.12. See Section 3.3 for details. O

Throughout the remainder of this section, we assume the hypothesis of Theorem 3.1.

3.1. Geometric bounds in the presence of boundary

The way in which we prove Theorem 3.1 is via Theorem 2.1, which requires us to prove
that under the geometric assumptions we make, the bundle AM satisfies generalised
bounded geometry and the first and second metric derivatives in each trivialisation
are bounded. .

We do this by considering the double of the manifold M = M UM, which is
obtained by taking two copies of M and pasting along the boundary X to obtain a
manifold without boundary. Since the boundary is smooth, this manifold is again
smooth (in a differential topology sense, see Theorem 9.29 in [18]). By reflection, we
obtain an extension g of the metric g to the whole of M. This metric is guaranteed
to be continuous everywhere and smooth on M \ Z, but in general, without imposing
additional restrictions on the boundary, it will not be smooth. However, as we illustrate
in the following lemma, we are able to construct a smooth metric sufficiently close to
8., that suffices to obtain the bounds we desire for (M, g).

Lemma 3.5. There exists a smooth complete metric g on M with G > 1 dependent on g,
and g satisfying

G fulg < lulg,, < Glulg

and for which there exists:
(i) & >0 such that inj(M,g) > K,
(i) Cr<oo such that Ricg| < Cg and |VRicg| < Cr,
(iii) a compact set P with 73 # @ and X C P such that g, = g on M \P.

The constants &, Cg and depend on the original geometric bounds , Cg, kz Cj.
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Proof. Take Z from the hypothesis of Theorem 3.1 and let P = Z U Z. By hypothesis,
since Z is precompact, we get that P is compact. As a consequence, if {x,} is a Cauchy
sequence in P, then it converges to some point and if {x,} is Cauchy in M \ P, then
it converges to some point in M \ P by the metric completeness of g. This establishes
that g, is metric complete. I .

Next, let y € C*(M) be such that y=1 on M\ P and y=0 on P;={xe M:
pg, (%, P) < 2}. Since P, is compact by construction, by the smoothness of the differen-
tiable structure of M, there exists G > 1 such that g, and g, are G-close on P,.
Define g =Yg, + (1—)g, and since g, = g away from P, this shows that the quasi-
isometry with constant G between g and g and also establishes (iii).

Since g, satisfies a lower bound on injectivity radius on Z, LI Z, as well as a Ricci curva-
ture bound on this set, and since g satisfies similar bounds on Z, by construction of the
metric g, we obtain (i) and (ii) with the dependency as stated in the conclusion. O

Now, using this we can prove the main proposition that we require to prove the geo-
metric bounds needed to prove Theorem 3.1.

Proposition 3.6. There exist ry >0 and a constant 1 < C < oo depending on k, Cg, Kz
and Cz such that at each x € M, : B(x,ry) — R" corresponds to a coordinate system
and inside that coordinate system with coordinate basis {0;} satisfying:

CHu < Cluly:sy,  l0g;(») < C, and |Gdig;(y)| < C,

WmSMm

for all y € B(x,ry) and where ¢ is the Euclidean metric.

Proof. Utilising the metric g given by Lemma 3.5, we apply Theorem 1.2 in [19] to
obtain C**-harmonic coordinates for the manifold (M, g) with radius ;. We obtain
the same conclusions for (M,g]|,,) as it is obtained via the subspace topology on M.
The balls By and B; are contained within the factor G given in the lemma, and away
from the compact region P defined in the lemma, we have that By = B;. So, it suffices
to set ry = 717 /G. On the region M \ P, we have C*” control of the metric g and outside
of this region, by compactness, we obtain control of as many derivatives of the metric as we
like. By taking maximums of the constants appearing in the regions M \ P and P, we
obtain the constant C in the conclusion of this proposition. O

3.2. The domains of the operators

To invoke Theorem 2.1, we need to establish H' regularity for the operators s and
;. To this end, we begin with the following covering lemma.

Lemma 3.7. There exists Cyy < 00, M >0 and a sequence of points x; and a smooth parti-
tion of unity {n;} for M that is uniformly locally finite and subordinate to

{B(x;, i)} satisfying:

@ > |Vin,| < Cy for j=0,...,3, and
(i) 1<M3n

The ry >0 here is the harmonic radius guaranteed in Proposition 3.6.
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Proof. Take the double of the manifold and the smooth metric given by Lemma 3.5.
Then, by Lemma 1.1 in [19], on fixing p >0 we find a sequence of points x; € M such
that (i) {B(x;,r)} is a uniformly locally finite cover of M for all r> p and (ii)
B(x;, p/2) N B(xj, p/2) = O for all i # j. This relies purely on a measure counting argu-
ment since g induces a measure satisfying exponential volume growth (E,,.) by the
Ricci curvature lower bounds. Since g is G-close to g, the same is true for the metric
8ext» Which is the metric guaranteed to be continuous obtained by reflection of g on M
across X to the double M. Thus, a cover satisfying (i) and (ii) exists on M replacing g
balls B with g, balls B

Now, let ry denote the radius obtained from Proposition 3.6, and set p = ry/16. Let
{xM} C M such that p,(xM,Z)>ry/16. Then {x} C M\ Z', where Z' = {x € M :
pg(x,Z) < rH /16}. Since X is compact so is Z' and hence, there exists a finite number of
pomts {x] }J , such that Z' C UK_1 (xZ r/16). Then, the collection of points {x;} =
{ ,x7} satisfies: M = U;B(x;, r/16) w1th {B(x;, r11/16) } uniformly locally finite.

In51de each B(x;,ry/16) we have C** control of the metric, and therefore, the parti-
tion of unity {#;} with the gradient bound in the conclusion is obtained by proceeding
as in the proof of Proposition 3.2 in [19]. O

With this lemma, we prove the following.

Proposition 3.8. The embedding D(Dg) — H'(V) holds along with the ellipticity estimate
|ullp, = [|ullyp for all u € D[Pg).

Proof. Let K be a compact neighbourhood of ¥ assumed in (v) of Theorem 3.1 and let
f: M —[0,1] be smooth with f=1 on M \K and f=0 on an open subset K C K
with £ C K. Let u € DPg) and we show that ||V (fu)|| + ||[V((1—f)u)|| = |Psul| +
[lu||. Using the cover guaranteed by Lemma 3.7, we obtain that

VGl = [Ps(fu)l| + [[full = [Psull +[[u]l,
where the first inequality is from running the exact same argument as Proposition 3.6
in [1] and the second inequality is from the fact that spt Vf C K and hence bounded.

For the remaining inequality, we note that since the boundary condition B is P-elliptic,
Theorem 7.17 in [13] gives us that u € HX' (AM) <= Dpu € HE _(AM) whenever u €

loc

D(Dp). Choosing k=0, and the fact that spt (1—f)u C K, we get that
IV((1=Aw)ll < Cax (IPs((A=f)w)l| + [[(1=f)ull) < [Dgul| + ||ull-

where Cg x < 00 is a constant that depends on K.
The estimate |[u||, = |[|u|liy:(y) for u € D(Pg) follows from the pointwise estimate
Du| < |Vu| (c.f. Proposition 3.6 in [1]). O

Using this proposition, we prove the following.
Proposition 3.9. The equality D(Dp) = D(DzU) holds.

Proof. On fixing ¢ € C°(AM), we compute at a point x € M with a frame satisfying
Veei(x) =0:
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D(Ug) = ¢ Ve (¢"Ut) = (ei9”)e' - U ¢, + ¢ (0% 4.

from which it follows directly that [P(Ug)|* < [Uf|Ve|* + |VU[*|¢[*. Now, for s
D(Pj), we have from Theorem 3.10 in [14] that there is a sequence ¢, € C*(AM; B)
such that ¢, — ¢ in the graph norm of 5. Moreover, Ugp, € CV'(AM, B) C D(5)
and by Proposition 3.8, ||V (¢,—®)|| — 0. Hence, combining this with our pointwise
estimate and integrating, we obtain that

(U@, —U0,)l| = [[UlllIV(@n=@m)ll + VUl ]l@p=@nll — 0

as m, n — 0o. By the closedness of P, we have that U¢ € D(D). The reverse containment
is obtained similarly. O

3.3. Decomposition of the difference of operators

A crucial assumption in Theorem 2.1 is to be able to write the difference of our opera-
tors P and U'P;U as

Ps—U"'PzU = A,V + divA; + A,

with ||A;]|,, controlled by ||[U—I|| ..

Our computations here are similar to those in Section 3 of [1], with the key observa-
tion being that the last term in Lemma 3.10 cannot be used as As, since it would yield
only a bound ||4;]|,, =1 and not ||As]|,, = ||[U-I||,.. Instead, we proceed via an appli-
cation of the product rule for derivatives as in Lemma 3.11. .

Throughout this subsection, unless otherwise stated, we fix an open set Q C M and
let {e;} and {¢,} be orthonormal frames for TM and AM respectively inside Q.

Lemma 3.10. For ¢ € C*(AM) we have the following pointwise equality almost-every-
where inside Q:

B-U"' PU)g = XV + 2% + ¢* (Vo UL U ' - ¢

with X : T(T*M @ AM) — T(AM) and Z9 : T(AQ) — T'(AQ) with almost-everywhere
pointwise estimates

X|=[[1-Ully, and |Z%|=|1-Ul|,
where the implicit constants depends on the constants in Theorem 3.1.

Proof. A direction calculation yields that
D(Ug) = (Veo™)e - U+ 9% (Ve UL )&l + 97Ul - Vo,

Since the term V., ¢s = w}(ej) - ¢g, multiplying this expression by U™ on the left,
and then subtracting it from the expression for D¢, we obtain that

P-U"DPU)p = Ve (¢ - ¢,—U'e - Ugy)
+ (¢ w}()=U"e - wi(e)U) - o+ ¢’ (Voul)ute - .
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To obtain a bound on the first expression to the right of this, we note that
é-¢,—Ue - Uf, =¢ - (1-U)¢, + (1-U1)e - U4,
and we can write
Vejq)“ef : (I—U)¢a = X\Vo—¢*d - (1-U) wp(¢) - s,

where X, (Yjek @ ¢,) = yiek - (1-U)¢,. Now, similarly, writing X,(yje* ®@¢,) =
Yr(I-UY)e - Ug,, we obtaln that

Voo (1-U")e - Uy = X,Vo— " (1I-U")e - U wj(e)) - ¢
Letting X = X; + X,, we obtain that
Voo (e - ¢,—U'e - Ug,) = XV
—é - (1-U) wj(e) - 9—(1-U)e - U wp(e) - ¢.
Now, note that
e w%(ej)—U_lef . w%(ej)U =é- wé(ej)(I—U) +(-u)é w,z;(ej)U,
and on setting
7° =& - wi(e)(1-U) + (1-U")é - wj(e))U
—e - (1-U) wp(e)—(1-U)e - U wi(e),
we obtain the conclusion. 0

This lemma illustrates that the main term to analyse is the last term
@*(V UE)U'e - ¢s. This is the content of the following lemma.

Lemma 3.11. For ¢ € C*(AM), we have the following decomposition pointwise almost-
everywhere inside €:

" (vejugf) Ule - ¢y = L% + div M2 + N%.
The coefficients satisfy the estimates
11201 + [1M%]]c + [IN®|lo = 1=Vl and |[VM®]|, =

where the implicit constants depend on the constants listed in Theorem 3.1.
Proof First note that on letting &f =3/—Uf, we have ¢*(V,UL)UTl ¢ =

@*(Veeh) Ul - dg. Let M? : T(AQ) — I'(T*Q ® AQ) written inside Q as

MO = "M} @ Utk - ¢y
with the coefficients to be determined later. Note that:
V(M%) = k(Ve}q) )e’®e @ Utk ¢
+ 9"V, (ML )e @ U o+ "Ml @ V(@ U ).
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On taking the trace, and rearranging the equation,
0"V, (M5,) U - ¢y = gV (M%)

_(Vej(pa)MgJUflef . ¢0—<P1Mf,ktr(ej ® V., (@ Utek- ¢0))_

So set M{) = €l, which gives us an expression for ¢*(V,ef)U™'e - ¢5.
It remains to show that the remaining terms in this expression can be decomposed to
LoV + No. Let L% ® ¢,) = U~'¢ - M) ¢y, then we have that

trg ((p“Vej (Mg’k)ej @ U, ¢9> =[®Vp-Uld -Mgwé(ej) C Q.

Absorbing the error term in this computation along with the remaining term from
the former expression, we can set

NQ(/) _ —(p“EZtr(d ® Vej (ek ® U-Lle - %))_Uflej . Mﬂwé(ej) - Q.

The estimates in the conclusion for L%, M? N© and VM follows from the defini-
tions of these maps. O

Using these two lemmata, arguing in a similar way to Proposition 3.16 in [1], we
obtain the following decomposition globally on M.

Proposition 3.12. We have that:
Bs—U"DzU) o = AV + divA0 + Ase

distributionally for all ¢ € D(IDg) where the coefficients A; satisfy:

A, € L(L(T* M @ AM)),

Ay € L NLip(LAM, T*M @ AM)),

Az € LX(L(AM)),
with ||A1]| + ||Azl| + 1|43l = |1-U||.. The implicit constants depend on the con-
stants listed in Theorem 3.1.

Proof. Following the proof of Proposition 3.16 in [1], it suffices to show that there exists
a cover {B;} of balls with a fixed radius r>0 with orthonormal frames {e;;} inside B;,
and a Lipschitz partition of unity {r;} subordinate to {B;} satisfying: |Ve;;| < C, and
|Vi;| < C,, where C, and C, are finite constants independent of j and L The covering
with the gradient bound on the partition of unity is given in Lemma 3.7 and the uni-
form control of |Ve;x| < C, is a consequence of the fact that each B; corresponds to a
ball in which we have C** uniform control of the metric. Then, as in Proposition 3.16
in [1], using Lemma 3.10 and Lemma 3.11, we set
Alp=Xo+) L
j

Arp = M
j

Asp =Y (N¥ +ZP)ni0= (Vi © 0).
j j

It is readily verified that this yields the desired decomposition. O
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4. Operator theory and harmonic analysis

Throughout this section, we assume the hypothesis of Theorem 2.1. Moreover, we
assume that the reader is familiar with the holomorphic functional calculus via the
Riesz-Dunford integral and how to estimate functional calculus of non-smooth opera-
tors with harmonic analysis. A brief description of this framework is included in
Section 2.1 in [1], but [20] is a more detailed reference.

For t > 0, define the operators

1 ~ 1
Ri=—7—, Ry = =~
I +itD I+itD
1 ~ 1
Pt: e

——, Pi=—F%,
1+2D*" ' 1 pp’
Qt tDPt, and Qt tDPt

Due to self-adjointness, we have the bounds

| 1wl < and | QP <5l (1)
and
sup [Ry[l, sup IRi[l, sup|[P:ll, sup [[Pe]l, sup||Qul, supIQl < % (4.2)
Each of these operators are also self-adjoint.
We note the identities
R, =P,—iQ, and R,=P,—iQ,, (4.3)
as well as
R,—R, =R/it(D-D)IR, and Q,—Q, = —P,[t(D-D)IP,—Q,tl(D-D)IQ,.  (4.4)
Using the hypothesis that D—D = A,V + div A, + A3,
1(Qi—Q)fll
< [[Pr(tA V)| + [[Pe(t div A2)Pif|| + [P (tAs)Pif]| (4.5)

+1Q(tAIV)QS]| + [|Qi(t div A)Qf|| + [1Qu(t435)Q ).

4.1. Reduction to quadratic estimates

The goal of this subsection is to prove the following reduction of the main estimate in
Theorem 2.1 to the two quadratic estimates appearing the hypothesis of the following
proposition. It is these two quadratic estimates that allow us to access real-variable har-
monic analysis methods. The proofs of these estimates are given in Sections 4.2 and 4.3
respectively.
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Proposition 4.1. Suppose that

1
. ) dt
L QA V(il + D) 1thllzy < Ci[|A|[%[|l[*and

1
- dt
|, 1B, div aspal 5 < CallAIE ul?

for all u € L*(V). Then, for € (0,7/2) and o € (0,00), whenever f € Hol™(Sy, ,), we
obtain that
1FD) D) = |IfllolIAll

where the implicit constant depends on Cy,C; and C(M,V,D, 15)
First, we show that f(D)~f(D) can be reduced to a quadratic estimate involving

the difference of Q; and Q,. This is done via (4.5) and we estimate each of these
terms using Proposition 4.5 and Proposition 4.7 in [1]. Unlike in the situation of
[1] where the boundary was empty, we use the following trace lemma to control the
estimate on the boundary. In what is to follow, % : H'(V) — H:(W) is the boundary
trace map.

Proposition 4.2. Let I~Jt be one of ﬁt, ﬁt or (~)t and U, be one of Ry, Py, Q;. Then,
sup [|tU; divA,Uy|| < |A2]| -
£>0

Proof. Fix u,v € C(V; B) and note that
h(div Ayu, v) = h(Ayu, Vv) 4+ divW (u, v),

where W(u,v) = (Az)]ljku"éﬂvldxk inside an orthonormal frame, readily checked to be a
well-defined covectorfield. By Stokes’ theorem,

(divAyu, v)—(Asu, Vv) = Lg(W(u, v)|s, )da.

By Cauchy-Schwartz, compactness of X and smoothness of i, we obtain that

| e (W)l ) = 1aslc 12l 2.

Next, note that whenever ¢ € D(D) we have that ¢ € D(divA;,) and there exists a
sequence ¢, € C°(V;B) such that ¢, — ¢ in D(D) by the essential self-adjointness
of D. We prove that ¢, — ¢ in D(divA,). To prove this, note that A, : C*(V) —
C*Y(T*M @ M) and fix a point x € M, choose an orthonormal frame {e;} for } and
{dxi} for T* M with Ve; = Vdxi = 0 at x. For y € C°(V), Ay = (A, yldnt @ ej, and

div Ay = —trv((Az)f,i"lp"dxk ® ej) => (ak(Az){ﬁk) U (A0 e
k k

Thus, |divAyp|* < [|VA |2 [W* + [|A] 2| VY[*. Now, writing ¢ =¢,—¢,, we
obtain that



1272 L. BANDARA AND A. ROSEN

1div 4> (@, =@u)|I* = (VA 2| @0l I” + |42V (9= 00) I

Since ¢, € D(D), we have that [[V(¢,—¢,)[|=[D(¢,—@,)l + ||¢,—¢ul. Thus,
we have that ¢, — ¢ and divA,¢, — v and since divA,; is closed as A, is bounded, we
obtain ¢ € D(divA,) and v = divA,¢.

Now, let u,v € L*(V). Since we assume that D is essentially self-adjoint on C°(V; B),
there exist sequences u,, v, € C°(V; B) such that u, — Uu and v,, — 6tv, with con-
vergence in D(D), D(V) and D(divA,) by what we have already established. Thus,

[(tU; div AU, v)| = |mlnillloo<t div Ayuy, V)|
< lim_((tAsu, o)+ lim Aol |,
< tim Aol 11D, + vl )
+ (142|120 ]| 20 |
= [l Azl (Ilul| + v2l| 20 u]]) || ],

where the last inequality follows from the standard boundary trace inequality. on
\/f~||9?U,v|| and from the uniform bounds on |[[tVU||=<||[tDUv| + |[tUv|| and
t||Uv||. We obtain the conclusion by estimating ||%2U,u|| similarly. O

As a consequence of this proposition and (4.5), we obtain

sup |[U;—Uy|| = ||A]]-
€(0,1]

t

Using this, arguing exactly as in Section 4.2 in [1], we can reduce the required esti-
mate in the conclusion of Proposition 4.1 to proving a quadratic estimate:

b L dt 2 2
. 1(Qi—Qu)u| = |JA[|5 [ul]

for all u € L*(V). From (4.5), we obtain that

b~ dt%
(J ||(Qt—Qt)u||27>
0
L. , dt : L. , dt :
0 0

! dt :
+ J||PttA3Pt”|27> (4.6)
0

. ar\’ ("~ dt
| ||QttA1votu||2t> + (j IItadivAthu||2t>

0

1
2

- dr\*
+ ||QttA3Qtu||27> :
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Estimating as in Proposition 4.7 in [1], we bound the first, third and sixth term by
||A||Z|If|*. The second and forth terms are controlled by the hypothesis of Proposition 4.1.
The only term that remains to be bounded is the penultimate term in this expression for
which the estimate in Proposition 4.7 in [1] does not work. The way in which we estimate
this term requires a slight excursion into interpolation theory.

Let H' (V) denote the first-order Sobolev space on V' and define

H(V) = [L2(V),H' V)] .,

for s € [0, 1] where [-, ], represents complex interpolation. Also, let
DC—HHHS _ *
H) = Ce ) H W) = YV, and H,() = [1OV), HXV)]

In order to gain an explicit expression for the norms in these interpolation scales, we
connect these spaces to domains of operators. Let Vy = V, and Vp = V,, where V, :
C*NL*(V) > C*NLHT"M®V) and V,: CX(V) — CX(T*M ® V). The subscripts
“N” and “D” are chosen for Neumann and Dirichlet respectively since H'(V) =
D(Vy) =D(VAy) and H} = D(Vp) = D(v/Ap), where Ay =Vy*Vy and Ap=

Vp*Vp. Moreover, || - ||y > [[(I+ VAy) - [| and || - || > [[(T+ V/Ap) - ||.
Consequently, by Theorem 6.6.9 in [21], we have that:

H(V) = [W).H W), = D[+ VAy)).
Hy, (V) = [0, HY V)], = D((1+ VAD)),

and in particular for s € [0, 1],

ol = (14 VAY) 11 and - = N1 (14+ VAY) -1
Since the identity map embeds Hj,(V) < H'(V) and HJ (V) — H°(V), we have by
interpolation that

D<(1+ AD>S>:H;O(V)<—>HS(V):D<(I+ AN>S>

for s € (0,1). Similarly, since D(D) = D(|D|), where |D| = v'D? and [|(I+ |D|)u|| ~
[lu|| + ||Du]|, by the same Theorem 6.6.9 in [21],

[L2(v),D(D)],_, = D(IDf) = D((1+ |D|)).

The following key result is well known in the case of functions on the upper half
space and smooth Euclidean domains by the work of Bergh and Lofstrom in [22] or
Triebel in [23]. The following is a vector bundle version which, to our knowledge, does
not seem to have been treated previously in the literature.

Lemma 4.3. The equality H*(V) = Hy(V) = H}, (V) holds whenever 0 < s <1/2.

Proof. Now let Uy = M \ Z, where Z is a smooth precompact open neighbourhood of
L =0M and (¢;,y;,U)) trivialisations y; inside charts ¢;: Uy — R, for j=1,...M,
so that M = UjA’:IOUj. Let {1;} be a smooth partition of unity subordinate to {U;}. We
can choose #; such that |Vi;| < C for some C> 0.
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Define:
By =L1*(V), Ay= LZ(V)EBL2<R1,(CN>M
B=HI(V), A =H(V)@H (RCY)
B =H(V), A =nWen(r.c)".
Now, define S : By — Ag by
Su= (Mo Ya(mu) © @7 thas(aat)) © Vil )

with j-th coordinate map extended to 0 outside of the support of #;, and note S is an
injection. Moreover, it is also a map B; — A; and B} +— AY. Also, define R : Ag — B, by

R(ug, ty, ooy tipg) = tho + My (1 © @1) + oo+ My (1 © i)

It is also easy to see that this is a map A; — B; and A} +— BY.

Now, note that RS =1 on L(B;, B;) for j=0, 1 and £(B},B}). That is, R is a retrac-
tion and S is a coretraction associated to R. By Theorem (*) in Section 1.2.4 of [23] we
get that S is an isomorphic mapping from H*(V) = W for s € (0,1) where W is a
closed subspace of Hj,(V) @ H*(R",CY)™. Similarly, we have that H,(V) = W, with
W, is a closed subspace of Hj,(V) @ Hj, (R, CY )™. The subspace W is the range of SR
restricted to H,(V) @ HY(R", CY Y™ and similarly W, is the range of SR restricted to
HS, (V) DHS,(R",CY)M. But by Theorems 11.1 and 11.2 in [22], we obtain
H(S)(R'jr,(CN) =H,(R",CY) = HS(Ri,CN) for 0 <s<1/2, and therefore, Wy = W for

+
0 < s<1/2. This shows that H*(V) = H},(V) for 0 <s<1/2.

To finish off the proof, note that |[(I+ v/Ay)ul|=<||(I+ +/Ap)u|| so through inter-
polation we get [|(I+ /Ay)'u|| =< ||(I + v/Ap)‘u||. Since C°(V) is dense in Hj, (V) =
D((I+ +/Ap)*), we have that H,(V) — H5(V). But we have H())) — H*()) and since
we have already proved H*(V) = H}, (V) for 0 < s<1/2, we obtain the conclusion. [

With the aid of this lemma, we obtain the following.

Proposition 4.4. The quadratic estimate

P L dt 2
| 1@t avaaiP =<1

holds for f € L*(V).
Proof. Fix u € L*(V) and estimate
<6tt diVAthf, 1/[> = _<A2Qtf> tVétu> + t<A2:@QJ‘, %étu>L2(W)'
It is easy to see that

(A2Quf, 1V Quu)| = | Azl | QF I,

so it remains to consider the boundary term. Note that
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|H{ALRQf, AQut) 25| = 1Az | ]| 2Qf 1200 [|2Qutl 12

By the standard boundary trace inequality, we obtain that Vi ||thU||L2 = ||ul|.
To bound Qf, let N be an extension of the normal vectorfield A 0n a compact
neighbourhood around X. Then,

Q| ) = tjMdiv<|QJ|2N>du

< tj Re g(V5Qff, Qf )du + t||Q I
M

= (V5 Qdf, Q)| + t| Q]I
On fixing 0 < s < 1/2, we note that
(Vi QS QN =IVx e (4.7)
Now, note that Vg : H'(V) — L*(V) and on defining (V5u)(v) = —(u, Vgv) for v €
C(V), we obtain that Vg : L*(V) — Hj(V)" = H'(V) boundedly. By interpolation,

we obtain that Vg : [H'(V),L*(V)],_, — [L*(V),H ' (V)],_, boundedly. Note, however,
that

[H'(V),L*(V)],, = [L20V), H V)], = H(V),

and that
L), W), = ([PO)HO),L) = Ha0) = H(0) = H=(V),

where we have used that L?*()) is reflexive and Corollary 4.5.2 in [22] in the first equal-
ity and that s<1/2 and Lemma 4.3 in the penultimate equality. On combining these
facts, we obtain that

IV QS = [|Quf [l

Moreover, since D(|D|) < H'(V) and D(|D|’) = L3(V) — H°(V) = L*(V), we have
D(|D|?) — H4(V) for q € [0, 1] by interpolation and hence,

t911Quf ||gga = [1£7(1+ [DI") Quf | < (14 (D)FI| + [ QfIl,
where ,({) = {[{|7(1 + )", Thus,
t(Vy Q' Q)|
= (t"1Qef ) (£11QS]
and therefore,
H12Quf 11200 = (W1 (DIFIP + ([, (DI + (1 + )| QS|
Noting that

i) = Wi (D)f| + [ (D)fIP + 1QifII,

|| IwteopP < < P

for g € [0,1) completes the proof. O



1276 L. BANDARA AND A. ROSEN

Remark 4.5. The equation (4.7) demonstrates the necessity of the interpolation methods
since we can only conclude the desired quadratic estimates provided a derivative of
order strictly less than 1 is applied to Q,f.

4.2. Harmonic analysis |

In this subsection, on drawing from the estimates in Section 5 in [1], we demonstrate
how to handle the first quadratic estimate term

1 o~
L 1QA G+ D) Ry S = [lalR 1P

appearing in the hypothesis of Proposition 4.1. In order to avoid repetition, we encour-
age the reader to keep a copy of [1] handy to navigate through the remainder of
this article.

The following is an itemisation of the notation that we will require from Section 5

of [1]:

e Dyadic cubes {QX C M : « € I,k € N}, with centres z¢ € Q, where UyQ cover
M almost everywhere, and when > o, Qk N Qﬁ @ or Qk - Ql The cubes are
of a fixed “length” § € (0,1), and a & cube contains an agd’ ball and has diam-
eter at most C,&. The length of a cube Q is denoted £(Q). The constant 1 >0 is
an exponent that measures smallness of the volume toward the edge of a cube
with constant C, > 0. See Theorem 5.1 in [1].

e The scale is defined as ts = & where C;&' < p/5, with p = max{ps- s, py}, the
maximum of the GBG radii of T*M and V.

The collection of dyadic cubes 2,2 =U;2, and 2, for t < ts.

The unique ancestor Q € 2/ for a dyadic cube 2, the set of GBG coordinates %,
which for a cube Q € 2 is the GBG trivialisation pertaining to the unique GBG
ball containing the cube in 2/ containing Q, and dyadic GBG coordinates %
which is the restriction of this GBG ball to the cube which contains it.

o The cube integral B(xq, p) x 23 (x,Q) — (J,)(x) defined on LL (V) by

(J)eo - (L“Wuo))exx)

where ¢; is the GBG coordinates of Q, and cube average ug = fqu inside the
GBG coordinate ball of Q and 0 outside it.

e For t>0, the dyadic averaging operator E, : L], (V) — L}, (V) given by E(x) =
(fou)(x) where x> Q.

e Foraw= we(C € CN, the locally constant extension inside the GBG coordi-
nates of Q are given by o°(x) = w'e;(x) and zero outside of this coordinate ball.

e Given a t-uniformly bounded family of operators Q,, define the principal part

Y(x) : C¥ =V, — V, of Q, by by y(x)w = (Q,0°)(x).
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The following is a key lemma that is necessary in order to adapt the arguments of
Section 5 of [1] to our manifold with boundary. It allows us to ensure that we can use
a cut-off that restricts the estimates away from the boundary.

Lemma 4.6. There exist constants ky, 1], 63 >0 such that for all cubes Q € 2% with k> ko
and QNX # ), we have

i{x € Q: p(x,%) < s(Q)} < CssTp(Q).
In particular, for every Q € 2% with k> ky,
u{x € Q: p(x, M\ (Q\ Z)) < s(Q)} < CasTu(Q).
The constants i and 63 depends on n,ay and C; from Theorem 5.1 in [1].

Proof. Let Z = {x € M : p(x,X) < ¢} with <1 chosen sufficiently small so that Z is a
smooth compact submanifold of M with smooth boundary X. Let Z be the smooth
compact manifold without boundary obtained by taking two copies of Z and identifying
the boundaries, and extending the metric appropriately. This metric is C° and there
exists a smooth C* metric G-close to g for some G > 1. Consequently, without loss of
generality, we assume that the metric extension is smooth. Let kx = inj(Z) > 0.

By the compactness of VA , we use Theorem 1.2 in [19] to obtain Cy > 1 such that for each
xeZ, (, B(3ks,x)) is a coordinate chart with

C£1|u|n//;5(y) < |u|g<y) < CE|”|¢;5()/))

for each y € B(3ks, x), and where 0 is the Euclidean metric in that chart. In particular,
since Z C Z and the topology of Z is the subspace topology inherited from Z, we get
that this holds for balls B(x, r) in Z as well. From this, inside (,B(3kz,x)), on letting

p*(x,y) = (%)=, (y)| and " =y .7,
Cy! P (x%,y) < p(x,y) < Cs p*(x,y) and ngdﬁf* <du< ngdﬁf*. (4.8)

Now, fix ko >0 such that so that C15k°< %kz. Then, for all k>ky, whenever
Q € 2%, we have that Q C B(xq,1ks), which corresponds to a coordinate system with
control on the metric and measure as we have describe before.

Fix such a cube Q € 2% and define Qs = {x € Q: p(x,X) < s/(Q)} and note that
on using (4.8),

Vo(Qss) C Brs = {x € Yo(Q) : pro (xR N(Q) < Crsdt}.

Similarly, we have that ,(B(xq,C: &) € Bpr(Xq, CsC10%) C Boxgr (X, CsC10)
where xq = 4(xq) and Boxg+(x,[) is a Euclidean box centred at x of length L Then,

P(Esy) < 21 (R” N Boxg: (xQ, C2C15k)) % Cgs
< (CsC10")" " x Cysdt = crer sk,
Similarly, we have that (B (xQ, aoék)) D Bgr <5€Q, Cs 1a05k>, and
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#Qss) o Q) CiZ(Esy)
Q) p(B(xq,a0d*) ~ Cs’ % (Brr(Xq, Cs'agd"))
cicplots o

w,,(Cglaoék) WnLag

n
—= ¥z

)

where the first estimate follows from Theorem 5.1 (v) in [1], the second estimate from
our previous calculation combined with (4.8), and where w,, is the volume of the ball of
unit radius in R". I

Set 7 = max{1,#} and C; = max{C3,w—Cao} and noting

{xeQ: px, M\ (Q\X)) <sl(Q} ={xeQ: plx, M\ Q) <s((Q)} UQs,

completes the proof. O
Proposition 4.7. The quadratic estimate
bx : -1 2 dt 2 2
1QAIV (L + D) " Puul” = = [|A[ls |lu
0
holds for all u € L2(V), with the implicit constant depending on C(M,V, D, D).

Proof. We split the estimate as follows:

! =~ . . —1 zdt
JHQ&VM+D)PMI—<JH@%ﬁt) V(i + D) P2
0

dt
+Jﬁmmmvm+n><lpww
0

! . _1pdt
+ [ a0y g
0

Now, we note that the off-diagonal decay given in Lemma 5.9 in [1] is valid for our
operator étAl due to the local boundary conditions encoded in assumption (A7). Thus,
we can apply Propositions 5.4, Lemma 5.8 and Proposition 5.12 in [1] to estimate the
terms appearing in this decomposition. We give a brief description of how this is done.

The first term is estimated by using an argument similar to the proof of Proposition
5.4 and Theorem 2.4 in [1], with W = T*M ® V. It suffices to note that since ||u||, =~
[lu||q for u € D(D), this argument can be run in verbatim. It simply remains to prove
||VSu|| < ||u||p for §=V(l+D)™'. This argument is included in the proof of
Theorem 2.4 in [1] on noting that the argument runs in verbatim due to assumption (A9).

For the middle term in the estimate, we use the argument in proving Proposition
5.10 in [1]. This argument is straightforward from establishing the cancellation lemma,
Lemma 5.8 in [1]. To prove this leomma, we note that for each dyadic cube Q, and for
each u € D(D) with spt u C QN .M, we have that

UJM@45M@%M|mm Hgmm4smaﬁwm

where the implicit constants depends on C(M,V,D,D). On coupling these estimates
with Lemma 4.6, we obtain the statement of Lemma 5.8 in [1] in our present context.
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The last term is obtained by a straightforward application of Proposition 5.12 in [1]. O

4.3. Harmonic analysis Il

In this subsection, we prove the remaining estimate

Ls 2 dt 2 2
| epivaspa 5 = AIE
for all u € L*(V). It is in the proof of this estimate where the main novelty of the har-
monic analysis in this article can be found. A key difficulty here is that the off-diagonal
decay - and even L?-boundedness - of tP,divA,, which holds when M has no bound-
ary, is not valid due to the fact that A, does not preserve boundary conditions. Despite
this obstacle, on considering the operator tﬁtdivAzP, instead as a whole, we are able to
prove the required quadratic estimate. Our approach here is motivated by a similar
argument in [7] by Auscher, Axelsson (Rosén) and Hofmann.
For the remainder of this subsection, let

®t = tﬁtdiVAzpt

and let 7, denote the principal part of ®,; we recall is y© (x)w = (©,°)(x), where ¢ is
the constant section related to w € V, == CY.

Lemma 4.8. The operators ©, are uniformly bounded in t >0 and have the off-diagonal
decay estimate: there exists Cg >0 such that, for each M >0, there exists a constant
CA,M >0 with

p(E,F)\ ™™ p(E,F
1780l < Canlallo("EE) " exp (~co B0 vl

for every Borel set E,F C M,u € L*(V), and where (a) = max{1,a}.

Proof. Uniform bounds for ®, were proved in Proposition 4.2. Building on this, we
prove the off-diagonal estimates in the conclusion by reduction to corresponding such
estimates for the resolvents R, and R,, which are immediate by replicating the argument
of Lemma 5.3 in [9] in light of (A7).

Given E,F C M Borel with p(E, F) >0, pick n € C*(M) such that 5(x) =1 when
p(x,E)<1/3 p(E,F) and 1n(x)=0 when p(x,F)<1/3 p(E,F) so that
|Vl =1/p(E,F). It suffices to prove the required estimates for R,tdivA,R, since by
replacing t by - f in the estimates below and noting P; = (R; +R;)/2 and similarly

P, = (R, +R_,)/2 yields the bound for ®, Now, note that
||XE§ttdiVA2Rt(XF“)|| = |[xe [W»ﬁttdiVAth] xrul|
and
[, R,tdivA,R,|
= —R, [11, itﬁ] R,tdivA,R, + ﬁ,[n, tdiv]A,R,— (f{ttdiVAzR,) [1, itD]IN{t.

Since [n, D], [1,div], [, D] are multiplication operators whose L™ norm is bounded by
[|Vnl|,, and supported on
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G= {x e M: p(x,E) >~ p(E,F) and p(x,F) 2% p(E,F)},

W |~

we obtain the conclusion from off-diagonal estimates for R, : L*(G; V) — L*(E;V) and
R, : L*(F;V) — L*(G;V), and from uniform bounds on R tdivA,R, from
Proposition 4.2. O

Next, we split the required estimate in the following way:
dat (! a (' dt
[ 1ol < [ ioya—poul 2+ [ 11@,-3,m Pl &
0

1 (4.9)

,dt

[ I p0ulP 2+ [l
0

zdt

The first three terms to the right of this expression can be handled relatively easily as the
following lemma demonstrates.

Lemma 4.9. We have that:

! (! at (! dt
|| Neut1=poutP S+ [ l@=s BR[| BP0l = ANl

Proof. For the first term, we estimate by noting that
0,(I-P;) = O,tDQ, = (¢P,divA,Q,)Q,,

we obtain the required quadratic estimate using Proposition 4.2 to assert uniform
bounds for tﬁtdivAzQ, and by noting that Q, satisfies quadratic estimates (4.1). The
two remaining estimates are handled via Propositions 5.4 and Proposition 5.10 in [1]
with § = 1. The versions of these propositions in our current context can be obtained
exactly the way described in the proof of Proposition 4.7. O

Thus, we have left with the last term in this expression, which we reduce to a
Carleson measure estimate. That is, by Carleson’s Theorem, the estimate of this term is
obtained by proving that

, du(x)dt
t

dv(x,t) = [7,(%)]

is a Carleson measure. This is obtained if we prove for each cube Q € 2, and for
Carleson regions Ro = Q x (0,4(Q)),

dp(x)dt

2

] pP 0% < . (4.10)
Ro

The estimate we perform here is more intricate and involved than the Carleson meas-

ure estimate in Proposition 5.12 in [1], and we provide full details. First, observe the
following important reduction.
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Lemma 4.10. Suppose that for every cube Q € 2 with £(Q) < p(Q,X) the Carleson esti-
mate (4.10) holds. Then, (4.10) holds for every cube Q € 2.

Proof. Fix Q € 2, with j = max{ko,J} (with k, coming from Lemma 4.6), and define
the two sets

A={Q€2:Q cQand p(Q,2) > UQ)},
B={Q€2:Q cQand p(Q,= <£Q’}
Now, consider the dyadic Whitney region # ¢ = Q' x (64(Q'),£(Q)) so that

R - UW' UW/
@ (o) o o)

Note that Q" C Q" and Q' € A implies that Q" € A. Setting Apay to be the maximal
cubes in A, we obtain that

U W y = U Rg.
QIeA Q/EAmaX

On using the hypothesis, we obtain that
dudt
S ] PR =R > w@)=alku@)
QEAma ” "R Q A

by the disjointedness of the cubes in Ax.
Next, note that from the off-diagonal decay of ®,, we obtain that @, : L*(V) — Li _(V),
and reasoning as in Section 5.2 in [1], which comes from Corollary 5.3 in [8], we have that

J|mwusma>
.

and therefore,

Now, fix k>j and note that & < £(Q) and for every cube Q € By = BN 2*, we
have that @ C {x € Q: p(x,Z) < (C, +1)6*}. On invoking Lemma 4.6 with s =
ok, + I)E(Q)_l, we obtain that

wQ)=p{xeQ: p(x,X) < }< ,~,u = uQ),

where the second inequality follows from &* < E(Q). Note now that if Q' € B and
Q"¢ Q then ¢(Q") < 04(Q) and therefore,

Wo=Q x (80Q),6Q)) NQ" x (56(Q),4Q")) =W =0,

and therefore

S| prtE= S S ] 1w <uo.

QeB k>jQeB’ MMy
which completes the proof. O

We finally prove (4.10) for the remaining cubes Q bounded away from .
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Proposition 4.11. Suppose that p(Q,Z) > ¢(Q). Then, the Carleson measure estimate
(4.10) holds.

Proof. Fix w € CV, let fo : M — [0, 1] with spt f, compact, and fo = 1 on Q and 0 out-
side B(xq,26(Q)) with |Vfy| =£(Q)™". Define wq(x) = fo(x)w'(x) = fo(x)w'e;(x) inside
B(xy,p), the GBG trivialisation of Q. Note that, for x € Q and t <ts5,E:wq(x) = w'.
Since the metric h is uniformly comparable to the trivial metric inside this trivialisation,
and using the facts we have just mentioned,

dudt dudt
” % < sup ” B () L
Rq

Iwl,=1 t

We split

dudt
I
Rq

< j LQ (7, Ei—@®))wo(x)* @ + J JRQ|®tWQ(x)

On following the exact same argument as in Proposition 5.11 in [1], noting that this
proof only requires that ®, satisfies the off-diagonal estimates, we obtain that

| j (7E— O wo(x)P Y <) 412 u(@).

5 dudt
-

For the remaining part, let
®tWQ = tﬁtdiVAz (Pt—I)WQ + tﬁ,diVAsz.

We first obtain the required estimate on the second term. For that, observe wq = 0 near X
and hence, Aywq € D(divy,). Using the identity tPdivy, = (Q; + itPt)(V(iI—D)_l)*,
we estimate

Qo ) dt R I 2 2
J 1P+ div Azwol|” — = [|(V(il-D) )" Azwol|” = [|Al[ #(Q).
0

To estimate the remaining term, we note that tﬁtdiVAz(Pt—I)wQ =
—1tP, div A,Q;(tDwq) and so by Proposition 4.2

~ ~ 1
||, div A, (P, —~T) wq||” = £2[|A| 1% |IDwo| > = £[JA| % || Vwql|” < £2]|Al1% “Qy wQ).
Therefore,
dudt  [1Q dt
” 1P, divA, (B,—1) wo 22 “ J 1P divA (Pi—T)wol | =
Rq 0
| Q)
0o £(Q)?

which establishes the conclusion. O
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Proof of Theorem 2.1. On combining the estimates in Section 4.3 and Proposition 4.7,
the hypothesis of Proposition 4.1 is satisfied. This proves Theorem 2.1. O
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