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High-performance affinity chromatography (HPAC) is a type of liquid chromatography 

in which solutes are separated based on their binding to a stationary phase that is a 

biologically-related agent.  Because of the strong and selective nature of many biological 

interactions, this method has already become a powerful technique for the purification 

and analysis of solutes that are complementary to the immobilized binding agent.  Human 

serum albumin (HSA), the most abundant protein in the blood with concentrations of 35-

50 mg/mL in serum, has interactions with many drugs, which can affect the absorption, 

distribution, metabolism and excretion of such agents.   

The overall goal of this thesis is to examine the use of on-column entrapment methods 

based on hydrazide-activated silica and oxidized glycogen as a capping agent for the 

immobilization of proteins as affinity ligands in HPAC.  Although this general type of 

entrapment method has been previously examined reported by our group, this method 

still needs further optimization for its use in an on-column format and in new applications 

based on HPAC.  For example, it is necessary to conduct studies to further increase the 

amount of the entrapped affinity ligand that can be obtained by using alternative types of 

supports.  
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1. High-performance Affinity chromatography  

Affinity chromatography is a liquid chromatographic technique that utilizes biologically-

related interactions [1].  This method uses the selective, reversible interactions that are 

characteristic of most biological systems as shown in Fig. 1.1.  These biological interactions are 

used in affinity chromatography  to separate or analyze  different sample components [1,2].  The 

stationary phase in this method is a biological agent, or “affinity ligand”, that can placed within a 

support by methods such as covalent coupling, entrapping, or absorbing this agent within or on 

the support [1,2].  The solid support and stationary phase are then packed  within a column 

which can be used for the separation or analysis of target molecules that can bind to the affinity 

ligand [3-5]. 

           The retention and separation of the sample components in affinity chromatography is 

based on the specific and reversible interactions that are characteristic of many biological 

interactions [1].  Some typical examples of these interactions include  the binding of an antibody 

with an antigen, an enzyme’s binding with a substrate or inhibitor,  the binding of a hormone 

with a receptor, or the binding of lectin with a polysaccharide [1,8].  The ineractions that occur 

between the affinity ligand and target molecules can be due to electrostatic interactions, van der 

Waals’ forces, dipole-dipole interactions, or hydrogen bonding, among others, and may also 

involve steric effects [8]. Traditional affinity chromatography uses inexpensive supports with 

low-to-moderate efficiencies, like agarose gels or  carbohydrate-based substances [3,5].  To have   

http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0015
http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0335
http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0005
http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0005
http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0015
http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0015
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Figure 1.1.  A typical system utilized in affinity chromatography or high-performance affinity 

chromatography.  In this approach an analyte is applied to the affinity column in 

an appropriate application buffer.  Molecules that are complementary to the 

immobilized affinity ligand are allowed to bind to the column, and the non-

retained sample components are eluted from the column.  Next, an elution buffer 

is applied that will elute the bound target for collection, measurement or 

characterization.  The application buffer is then re-applied to regenerate the 

column.  
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sufficient mechanical stability and efficiency that is needed for use in the high pressure  in 

HPLC, the support must be selected and optimized acordingly [3,5].  The use of an HPLC- type 

of support, results in a method known as high-performance affinity chromatography (HPAC), 

which has better precision and a much faster speed than are usually present in traditional affinity 

chromatography [3,5].  Automation with the use of HPLC systems also is relatively easy to 

accomplish in HPAC [1,4,5].  

Modified silica or glass and hydroxylated polystyrene media are some of the materials 

used as a supports for HPAC [1].  Several types of monolithic supports have also been used for 

use in HPAC, such as those based on organic polymers, silica monoliths, cryogels and modified 

forms of agarose [6,7].  Some of the useful features of these supports include their rapid mass 

transfer, low back pressures, and ability  to be made in many shapes and sizes for use in  affinity-

based separations [8].  

 

1.2. QUANTITATIVE AFFINITY CHROMATOGRAPHY 

  In addition to the use of  affinity chromatography and HPAC for the isolation of 

substances or their analysis, these methods can also be used to study the interactions between a 

ligand and chemicals [9,10].  The use of HPAC or affinity chromatography for this purpose is 

referred to as analytical affinity chromatography, quantitative affinity chromatography, or 

biointeraction chromatography  [1-3].  By collecting data on  the retention time or retention 

volume of an applied solute,  it is possible to the determine  such factors as the equilibrium 

constants and binding capacity for an analyte with an immobilied ligand.  Using additional 

solutes in the mobile phase as competetive binding agents can also provide information on how 

http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0015
http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0015
http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0015
http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0005
http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0005
http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0005
http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0020
http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0365
http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0010
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the inject and applied solutes may compete for the affinity ligand as they both undergo solute-

ligand interactions [1-3,9,10].  

            The main convenience  of using HPAC for the analysis of solute-ligand binding  is the 

ability to  reuse a single affinity column for multiple experiments.  This  reduces the  amount of  

affinity ligand that is needed and minimizes the cost required per analysis.  Using the same 

affinity ligand preparation for many experiments also improves the reproducibility and precision 

by decreasing batch-to-batch and run-to-run variations [11]. 

            One experimental technique that is commonly used in HPAC for studying biological 

interactions is zonal elution.  This method involves making small injections of an analyte into an 

affinity column that contains an immobilized  ligand.  The outcome of this experiment is a peak 

for the injected compound that can be monitored by on-line detection.  The most common 

parameter that is obtained from this experiment and chromatogram is the retention time of the 

injected analyte, which is then used to help determine the strength of this binding or the identify 

the type of binding that is occuring for this analyte to the  affinity ligand [1,2]. 

 

1.3.    IMMOBILIZATION TECHNIQUES 

            Immobilization refers to the means by which an affinity ligand is attached to the 

chromatographic support.  This is another important factor to consider in HPAC.  The ideal 

immobilization method should not alter or denature the binding agent and should not adversely 

affect this agent’s activity [6].  Examples of some undesirable effects that can occur are improper 

orientation or multisite attachment of the binding agent and steric hindrance for the target as it 

attempts to interact with this immobilized affinity ligand (see Figure 1.2) [14].  There are various 

http://www.sciencedirect.com/science/article/pii/S1570023214000385#bib0010
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approaches that can be used for the immobilization of binding agents in affinity chromatography.  

These include covalent immobilization, biospecific adsorption, and entrapment [6].    
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Figure 1.2. Non-ideal effects that can occur during ligand immobilization.  Covalent 

immobilization techniques can result (a) multisite attachment, where the ligand is 

immobilized through multiple sites; (b) improper orientation, where binding sites 

may be obstructed and not available for binding; or (c) steric hindrance, where 

active sites on the affinity ligand are blocked by the support or by neighboring 

ligands. 
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The support that holds the ligand within the column must be in a form that can be easily 

modified for ligand attachment and should have minimal nonspecific binding.  The amount of 

ligand that can be immobilized will determine binding capacity and degree of analyte retention 

by the support material, and the type of both the support and ligand will determine the mobile 

phase conditions that can be used with the column.  The pore size is also important to consider.  

As the pore size increases, the surface area of the support material will decrease and this will a 

give smaller surface area for the ligand to be attached to the surface of the support.  However, a 

pore size that is too small may also be inaccessible to the affinity ligand for immobilization [1]. 

1.4.  ENTRAPMENT 

            Entrapment refers to the physical containment or encapsulation of an affinity ligand in a 

support that contains small pores or a highly cross-linked polymer network [5].  This 

immobilization method overcomes such effects as steric hindrance and improper orientation that 

can occur during covalent immobilization techniques and can give high activities for 

immobilized proteins [15-17]. 

1.4.1.  Hydrazide silica as a support   

            Recent work has been conducted in using entrapment with HPLC-grade silica and has 

been tested by using human serum albumin (HSA) as a model affinity ligand [18].  This method 

has been employed for examining the interactions of HSA with sulfonylurea drugs by HPAC 

[19].  One entrapment procedure that was used in these studies involved circulating solutions 
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containing HSA and mildly-oxidized glycogen into a packed column that contained hydrazide-

activated porous silica.  The glycogen had been previously oxidized by treatment with periodic 

acid to form aldehyde groups within its structure.  The aldehyde groups on the glycogen were 

able to react with the hydrazide groups on the silica 
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Figure 1.3.  General scheme for entrapment of a protein using by a glycogen-capped and 

hydrazide-activated support. 
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to form stable covalent bonds, while the HSA remained free solution as it was trapped within the 

pores or on the surface of the support [19].  

As is illustrated in Figure 1.3, a protein such as HSA gets entrapped during this process in 

a soluble form because glycogen is a large molecule that blocks the protein from leaving the 

support.  However, the entrapped protein can still be reached by small molecules that can pass 

into and out of the pores of the support or reach its surface [15, 19]. This method has been shown 

to provide good activity for entrapped proteins and avoids many of the undesirable effects of 

covalent immobilization [15]. 

Prior methods using entrapment have often done this by incorporating the binding agent 

during the formation of the support.  This has most often been done by using sol-gels based on 

silica [20].  This method has been used for various biological agents but care must be used in 

selecting the proper reagents and conditions for support formation to allow entrapment to occur 

without significant denaturation of the entrapped agent [21-23].  

 

1.4.2.  Monolith as a support  

            A monolith is a single piece of polymer that is prepared within a column.  Monolithic 

supports have a higher external porosity than particle-based supports, which can also give 

monoliths higher permeability, better efficiency, and lower back pressure than particle-based 

supports [24-26].  These features are useful with affinity-based separations in allowing work at 

high flow rates and in providing high efficiencies for applications such as high-throughput drug 

screening and rapid antibody-based assays [27, 28].  The combination of monoliths with affinity 

ligands is known as affinity monolith chromatography (AMC) [28].  
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             Monoliths generally have two types of pores: “flow-through pores”, or macropores, and 

smaller “diffusion pores”, or mesopores [28].  In a chromatographic system flow occurs mostly 

through the large macropores, while most of the solute interactions with the stationary phase 

occur at or near the surfaces of the macropores.  In affinity-based separations these structures are 

important in permitting high flow rates and in giving high efficiencies for applications such as 

chiral separations, antibody-based assays, and high-throughput screening [29-31]. 

            Several types of monoliths can be used in affinity columns.  These supports have been 

based on agarose, organic polymers, cryogels, and silica [30-36].  Organic polymer-based 

monoliths and inorganic-based silica monoliths are the two most common types of monoliths 

that have been used in affinity monolith chromatography.  The organic polymer-based monoliths 

were first developed in the 1980s, while silica monoliths appeared in the 1990s [37-39]. 

 

1.5.  Overall Goal and Summary of  Work 

 

            The overall goal of this thesis is to examine the use of on-column entrapment methods 

based on hydrazide-activated silica and oxidized glycogen as a capping agent for the 

immobilization of proteins as affinity ligands in HPAC.  Although this general type of 

entrapment method has been previously examined reported by our group, this method still needs 

further optimization for its use in an on-column format and in new applications based on HPAC.  

For example, it is necessary to conduct studies to further increase the amount of the entrapped 

affinity ligand that can be obtained by using alternative types of supports.  

             Chapter 2 will mainly concentrate on a fast method for studying drug-protein binding 

on HPAC columns that contain entrapped proteins.  This study will examine the development 
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and application of a new and rapid approach for performing drug-protein binding studies by 

using preparations of entrapped proteins and zonal elution experiments.  Chapter 3 will focus on 

the adaptation and optimization of current methods for the entrapment of proteins on silica for 

use in the immobilization on monoliths based on co-polymers of glycidyl methacrylate (GMA) 

and ethylene dimethacrylate (EDMA).  These monoliths will be used to entrap HSA and then 

will be examined by using zonal elution analysis experiments that are conducted with probe 

compounds for the major binding sites on HSA.  Chapter 4 will present an overview of this 

work and discuss future projects that might be done with entrapment method on both 

dihydrazide-activated silica and monolith supports.  For example, this future work could include 

automation of the on-column entrapment method and the application of this approach to a wider 

variety of biomolecules, such as alpha1-acid glycoprotein (AGP) and lectins. 
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CHAPTER 2: 

RAPID ANALYSIS OF DRUG PROTEIN BINDING BASED ON COLUMNS 

PREPARED BY ENTRAPMENT 

2.1.  Introduction 

It is important to know the activity and fate of pharmaceutical agents in the body.  

When a drug enters the circulatory system, it may undergo interactions with proteins 

found in blood, such as human serum albumin (HSA), α1-acid glycoprotein (AGP) and 

lipoproteins.  These interactions can be described by using a parameter such as the 

association equilibrium constant (Ka) for the drug-protein complex.  These drug-protein 

interactions are often strong and significant, with approximately 43% of the 1500 most 

common drugs having at least 90% binding to serum proteins.  As a result, these 

interactions can have a large impact on the absorption, distribution, metabolism and 

excretion (ADME) of a drug in the human body [1]. 

Because of the potential impact of these interactions, it is important to conduct 

drug-protein binding studies on pharmaceutical agents to help determine their dosages 

and the frequency at which the drugs should be taken [2].  Binding studies that are 

conducted in vitro may give general information for a particular drug and its interactions, 

while in vivo studies can potentially provide specific information that is more tailored to 

an individual patient’s needs for use in personalized medicine [3]. 

Human serum albumin (HSA) is a transport protein in the circulatory system that 

can bind to many endogenous and exogenous compounds.  HSA is the most abundant 
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protein in human plasma, where it is found at concentrations ranging from 30–50 g/L 

(0.53–0.75 mM).  The high concentration of HSA accounts for approximately 60% of the 

total protein content in serum and gives this protein the ability to greatly influence the 

pharmacokinetics and activity of many common drugs [4-6].  HSA plays a key role in the 

reversible binding and transport of drugs, metabolites, and various endogenous ligands, 

such as fatty acids.  In addition, HSA can increase the solubility of lipophilic drugs, 

sequester toxins, and act as an important antioxidant in plasma [7,8].  

There are two major binding sites for drugs on HSA, which are located in 

subdomains IIA and IIIA of this protein.  These sites are often referred to as Sudlow sites 

I and II after Gillian Sudlow, who proposed their existence in 1975 [9,10].  Sudlow site I, 

which is also known as the warfarin-azapropazone site, binds to bulky heterocyclic 

anions such as warfarin and salicylate.  Sudlow site II, or the indole-benzodiazepine site, 

binds primarily to aromatic carboxylic acids like ibuprofen and L-tryptophan.  At least 

two minor binding sites for drugs on HSA have also been proposed for compounds such 

as digitoxin and tamoxifen (i.e., the digitoxin site and tamoxifen site) [11,12]. 

In recent years, it has been found that the glycation of HSA may affect its binding 

to solutes such as many drugs.  Sulfonylureas, which are often used to treat type 2 

diabetes, are one group of drugs that have been found to be affected by this glycation 

process.  These drugs are highly bound to serum proteins, and especially to HSA [14,19-

24].  Binding studies based on high-performance affinity chromatography (HPAC) have 

found that glycation can affect the equilibrium constants of sulfonylurea drugs with HSA 
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and that the extent of this change is affected by both the degree of protein glycation and 

the specific drug that is being examined [3,14,19-23,25]. 

2.2.  Experimental section 

 2.2.1.  Materials 

The HSA (essentially fatty acid free, purity ≥ 96%), glycogen (bovine liver, type 

IX; total glucose ≥ 85%, dry basis), racemic warfarin (purity ≥ 98%), R-warfarin (purity 

≥ 97%), L-tryptophan (purity ≥ 98%) and periodic acid reagent (H5IO6, purity 99%) were 

purchased from Sigma-Aldrich (St. Louis, MO, USA).  Nucleosil Si-300 silica (7 m 

particle diameter, 300 Å pore size, 100 m2/g surface area) was obtained from Macherey-

Nagel (Düren, Germany).  The in vitro samples of glycated HSA were purified through 

the use of Econo-Pac 10DG desalting columns from Bio-Rad Laboratories (Hercules, 

CA, USA) and Slide-A-Lyzer digest 7K dialysis cassettes (7 kDa MW cutoff; 0.5-3, 3-12 

or 12-30 mL sample volumes) from ThermoScientific (Rockford, IL, USA).  All other 

chemicals were of the purest grades available.   

 2.2.2.  Apparatus 

The chromatographic system that was used in the zonal elution studies consisted 

of a DG-2080 degasser, two PU-2080 pumps, an AS-2057 autosampler, a CO-2060 

column oven, and a UV-2075 absorbance detector from Jasco (Tokyo, Japan), plus a 

Rheodyne LabPro six-port valve (Cotati, CA, USA).  LC Net and ChromNav from Jasco 

(Tokyo, Japan) were used to control the chromatographic system and to collect the data. 
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For the frontal analysis studies, two 1200 isocratic pumps and a 1200 autosampler 

from Agilent (Santa Clara, CA, USA) were used, along with a Series 200 UV-Vis 

detector and a vacuum degasser from Perkin Elmer (Waltham, MA, USA).  A Rheodyne 

LabPro valve and an Isotemp 9100 circulating water bath (Fisher Scientific, Pittsburgh, 

PA, USA) with 0.067 M potassium phosphate buffer as the packing solution.  The 

columns that were packed with the hydrazide-activated silica were used for the on-

column entrapment of normal HSA or HSA with various levels of glycation. 

  In the entrapment process, a solution containing 50 mg/mL of the normal HSA or 

glycated HSA in pH 5.0, 0.10 M potassium phosphate buffer was first circulated through 

the column at 20 µL/min for 4 h.  This was followed by the application of a solution over 

16 h that contained a mixture of the normal HSA or glycated HSA at 50 mg/mL and 

oxidized glycogen at 4.2 mg/mL in the same phosphate buffer.  Finally, 200 µL of 1 

mg/mL of oxalic dihydrazide in the same buffer was added to the reaction mixture, and 

the circulation of this solution through the column was continued for two more hours.  A 

control column was made under the same conditions but with the solutions of HSA being 

replaced with an equal volume of pH 5.0, 0.10 M potassium phosphate buffer.  All of the 

columns were washed by flowing pH 7.4, 0.067 M potassium phosphate buffer through 

them at 0.5 mL/min for 1 h or until a stable baseline response was reached for these 

columns. 
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2.2.3.  Chromatographic studies 

Stock solutions of the sulfonylurea drugs (i.e., acetohexamide, tolbutamide and 

gliclazide) were prepared in pH 7.4, 0.067 M potassium phosphate buffer at a typical 

concentration of 100 µM.  The stock solutions of the site-specific probes were also 

prepared in this buffer and had typical concentrations of 100 µM for warfarin and 1.3 

mM for L-tryptophan.  The acetohexamide, tolbutamide and gliclazide solutions were 

used within one week of preparation.  The warfarin solutions were used within one week, 

and L-tryptophan solutions were used within two days of preparation.  It has been 

demonstrated in previous studies that similar solutions of these drugs and solutes are 

stable over for these given periods of time [24].  

The mobile phases that were used in the competition studies with the site-specific 

probes were prepared at concentrations that were typically 1 mM for L-tryptophan and 40 

µM for warfarin, as made by diluting the stock solutions for these probes with pH 7.4, 

0.067 M potassium phosphate buffer.  The injected samples for these experiments were 

prepared by using the stock solutions for the sulfonylurea drugs, warfarin or L-tryptophan 

and the pH 7.4, 0.067 M potassium phosphate buffer.  The concentrations of the 

sulfonylurea drugs ranged from 20 µM to 40 µM.  Additional experiments were 

performed by using 10 µM L-tryptophan or 20 µM warfarin in the same pH 7.4 buffer, as 

used for determining the retention factors and protein content of the normal HSA and 

glycated HSA columns.  It has been shown in previous work that the sample 

concentrations that were used in this study provide linear elution conditions for the given 

drugs on HSA columns [23-24].  The chromatographic experiments were carried out at a 
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typical flow rate of 0.50 mL/min and at a temperature of 37 °C.  All of the injected 

solutions and mobile phases that were used in the experiments were passed through 0.2 

μm filters and degassed for 10-15 min prior to use.    

2.3.      Results and Discussion  

2.3.1.  Zonal elution studies 

The global affinity of a target compound for a binding agent with several 

independent sites (e.g., as often occurs for the binding of drugs with HSA) can be 

described as the addition of the affinities for all the sites on the binding agent.  For a 

column that is made by entrapment, essentially all the binding agent will be active and 

the overall retention factor (k) of a drug or solute due to binding at these sites can be 

described by the relationship in Equation 2.1 [19], 

                  𝑘 = (𝑛1𝐾𝑎1 + 𝑛2𝐾𝑎2 + ⋯ 𝑛𝑛𝐾𝑎𝑛)𝑚𝐿𝑡𝑜𝑡/𝑉𝑚                              (2.1) 

where ni is the relative moles of binding site i for a given drug or solute per mole of 

protein, Kai is the association equilibrium constant for the same site and drug/solute, mLtot 

is the total moles of all binding sites for the solute in the column, and Vm is the column 

void volume.  The global affinity in this equation is the term in parentheses and can also 

be represented by the sum of these terms, nKa’.  This is a number-weighted sum of the 

equilibrium constants for all the binding sites for the drug or solute on the immobilized 

binding agent [19]. 

When a probe interacts with a single type of site on an entrapped binding agent, 

Equation 2.1 can be reduced to the following expression,   
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                                             𝑘 = 𝐾𝑎
𝑚𝐿𝑡𝑜𝑡

𝑉𝑚
                                          (2.2) 

where Ka is the association equilibrium constant for the probe with the specific binding 

site [19].  

Equations 2.1 and 2.2 indicate that the measured retention factor for a solute on a 

column that contains an entrapped binding agent can allow a direct determination of the 

global binding constant or site-specific binding constant for this solute.  This can be 

accomplished by using experiments like those shown in Figure 2.1.  First, an injection of 

a drug or solute that is dissolved in the buffer alone can be made onto a column 

containing the entrapped binding agent, making it possible to determine the total 

retention factor, ktot.  This parameter, along with a previous measurement of the column 

void volume and mLtot, makes it possible to obtain the global affinity, as is shown in the 

following reduced form of Equation 1.1 [19], 
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Figure 2.1.   Use of zonal elution experiments for estimating the global affinity (nKa’) or 

site-selective affinity (Ka1) for a solute on a column that contains an 

entrapped protein or binding agent.  Other terms in this figure are described 

in the text. 
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                                             𝑘𝑡𝑜𝑡 =
𝑛𝐾𝑎

′ 𝑚𝐿𝑡𝑜𝑡

𝑉𝑚
                                                     (1.3) 

where 𝑛𝐾𝑎
′ = ∑(𝑛𝑖𝐾𝑎𝑖). 

The same drug or solute can then be injected in the presence of a mobile phase 

that contains a site-selective probe (e.g., warfarin for Sudlow site I or L-tryptophan for 

Sudlow site II of HSA). This agent added to the mobile phase is present at a level that 

saturates a known fraction of the given site in the column.  During this second injection, 

the retention for the solute will be lower because the probe in the mobile phase is binding 

to one of the sites on the entrapped agent.  The shift in retention can make it possible to 

find the association equilibrium constant for this specific binding site (Ka1), as is 

indicated in Equation 2.4. 

                     𝑘 =
(𝑛𝐾𝑎

′ −𝐾𝑎1)𝑚𝐿𝑡𝑜𝑡

𝑉𝑚
                                                         (2.4) 

The value of mLtot in Equations 2.3 and 2.4 can be obtained through independent frontal 

analysis measurements or by making a retention factor measurement with a probe that 

has a known value for its association equilibrium constant with the same binding agent.  

Repeating the experiment in Figure 2.1 with probes for other binding sites should make it 

possible to also find the solute’s affinity for each of the other binding regions [19].  

   The concentration of a site-specific probe (e.g., warfarin and L-tryptophan for 

HSA) that is needed in the mobile phase to obtain a given level of saturation for the 

entrapped binding agent can be found by using the following relationship,   

                                       
𝑘−𝑘𝑚𝑖𝑛

𝑘𝑚𝑎𝑥−𝑘𝑚𝑖𝑛
=

1

1+𝐾𝐼 [𝐼]
                                                  (2.5) 
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where I represents the probe, KI is the association equilibrium constant for this probe at 

its binding site, and [I] is the concentration of the probe in the mobile phase [33].  The 

terms k, kmin and kmax are the retention factor that should result for the injected solute at a 

given concentration of the probe, the minimum possible retention factor for this solute 

(i.e., when all the given binding sites are saturated), and the maximum possible retention 

factor for the solute (i.e., when all these sites are available for binding).  

2.3.2.  Estimation of the amount of an entrapped protein in a column 

The amount of HSA that was entrapped in a given column was determined by 

using both frontal analysis and zonal elution experiments with warfarin and L-tryptophan. 

The zonal elution experiments that were carried out with the same column and using the 

same analyte or probes as were used in the frontal analysis experiments.  The values for 

the moles of entrapped protein that were obtained by both of these methods are provided 

in Table 2.1. There was good agreement between the two methods, with no significant 

difference being present at the 95% confidence level.  This indicated that it was possible 

to measure the total moles of binding sites and protein by either method, with the zonal 

elution technique being preferred in later studies because it required much less time and 

reagents than the frontal analysis experiments. 

The value of Ka that was obtained from the double-reciprocal plot for warfarin in 

the frontal analysis studies was 2.6 (± 0.3) × 105 M-1, which was in good agreement with 

an average value of 2.4 (± 0.4) × 105 M-1 that has been previously determined for the R- 
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and S-enantiomers of warfarin with HSA.  The value of Ka that was obtained from the 

double-reciprocal plot for L-tryptophan was 0.93 (± 0.23) × 104 M-1, which was also in  
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Table 2.1.  Estimates of the amount of entrapped normal HSA, as determined by 

zonal elution and frontal analysis.1  These values were measured at 37 °C 

in pH 7.4, 0.067 M phosphate buffer.  The values in parentheses represent 

a range of ± 1 S.D. 
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Probe or 

analyte 

Column void 

volume, Vm (L × 

10-5) 

Moles of entrapped 

protein1 

(mol × 10-8) 

Zonal 

elution 

Frontal 

analysis 

Warfarin 
3.35 

( ± 0.07) 

1.83 (± 0.31) 1.46 (± 0.17) 

L-

Tryptophan 
1.26 (± 0.35) 1.09 (± 0.27) 
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Good agreement with a value of 1.1 (± 0.3) × 104 M-1 that has been reported in previous 

studies with HSA (26,33).  

2.3.3.  Estimating the global affinity constant and site-specific binding constants for 

acetohexamide with entrapped normal HSA  

Once the total moles of entrapped normal HSA had been determined, the global 

affinity constant for acetohexamide with the entrapped HSA was determined by making 

injections of acetohexamide on both the entrapped HSA column and a control column.  A 

second set of injections were then made for acetohexamide in the presence of a site-

selective probe for HSA (e.g., warfarin for Sudlow site I or L-tryptophan for Sudlow site 

II) to determine the binding constants of acetohexamide at specific sites on HSA. 

Equation 2.5 was used to determine the concentrations of the site-specific probes 

that were needed in these experiments to achieve near complete saturation of the binding 

sites.  This was done by setting the left side of Equation 2.9 equal to a relative retention 

of 0.05 (representing 95% site saturation) for calculating the concentration that would 

produce a 95% shift in retention from its maximum possible value.  The known 

association equilibrium constants for HSA with warfarin and L-tryptophan (i.e., the 

probes that were used as site-selective additives in this work) were also used in these 

calculations.  The conditions needed for 95% site saturation were estimated to occur 

when the mobile phase contained 79 µM warfarin or 1.7 mM L-tryptophan.  Experiments 

that were also done at 90% site saturation, which corresponded to the use of 40 µM 

warfarin or 850 µM L-tryptophan in the mobile phase. 
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Table 2.2 shows the association equilibrium constants that were measured by 

zonal elution for acetohexamide in the presence of various amounts of the mobile phase 

additives.   
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Table 2.2.  Site-specific association equilibrium constants measured for 

acetohexamiden zonal elution experiments and using various 

concentrations of site-selective probes in the mobile phase. 
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Probe1 

Mobile phase 

concentration 

Site-specific association equilibrium 

constant, Ka (M-1 × 104)2 

 Sudlow site I Sudlow site II 

Warfarin/L-tryptophan 101.6 µM/1.7 mM 10.9 (± 1.9) 6.9 (± 2.0) 

Warfarin/L-tryptophan 40 µM/850 µM 9.9 (± 0.18) 6.8 (± 2.0) 

Warfarin (racemate) 40 µM 8.3 (± 1.4)  N.A. 

R-Warfarin 40 µM 8.9 (± 0.9) N.A. 
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Warfarin was used as a probe for measuring the binding constant for Sudlow site I and L-

tryptophan was used for Sudlow site II.  These probes were used in separate sample 

solutions for each experiment.  Physiological conditions were also used in these 

measurements (i.e., pH 7.4, 0.067 M potassium phosphate buffer and a column 

temperature of 37 °C). 2The values in parentheses represent a range of ± 1 S.D. 

One observation made was that there was no significant difference at the 95% 

confidence level in the association equilibrium constants that were obtained when using 

mobile phase additives that corresponded to 95% or 90% site saturation.  Given the fact 

that lower concentrations of these additives also resulted in a decrease in reagent costs 

and a lower background signal for the detector, mobile phase concentrations of 40 µM 

warfarin or 1000 µM L-tryptophan were selected for use in all subsequent zonal elution 

studies.  The global affinity constant that was obtained in these experiments and from the 

retention factor for acetohexamide was 22.8 (± 2.0) × 104 M-1, which was is in good 
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agreement with values of 1.2-2.0 × 105 M-1 that have been previously obtained for this 

drug with HSA [19-21].   

The impact of using racemic warfarin versus a single warfarin enantiomer as a 

mobile phase additive for probing Sudlow site I was also considered in this study. The 

association equilibrium constants that were obtained for acetohexamide at Sudlow site I 

when using either type of probe were statistically equivalent at the 95% confidence level.  

From this result, it was decided that racemic warfarin would be used as the probe for 

Sudlow site I in all later experiments with other sulfonylurea drugs. Examples of some 

chromatograms that were obtained in these experiments are shown in Figure 2.2 and the 

results are included in Table 2.2. 
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Figure 2.2.  Chromatograms obtained for the injection of acetohexamide onto a column 

containing entrapped HSA and in the absence or presence of R-warfarin or 

racemic warfarin in the mobile phase. 
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2.3.4.  Estimation of global affinity constants and site-specific binding constants for 

sulfonylurea drugs with entrapped samples of normal or glycated HSA 

The use of on-column entrapment and zonal elution was next used to examine the 

global affinities and site-specific binding constants for various sulfonylurea drugs with 

either normal HSA or glycated HSA.  As was demonstrated previously, the total moles of 

HSA in such a column could be obtained from retention measurements that were made 

using a well-characterized probe for such a protein.  For these experiments, warfarin was 

selected as the probe for measuring mLtot because this solute has been shown in previous 

studies to have no significant change in its affinity in the presence of low-to-moderate 

levels of glycation for HSA [19,26]. 

In this section, injections of racemic warfarin were first made onto columns 

containing entrapped samples of normal HSA or glycated HSA, and onto a control 

column, to provide an estimate of the total protein content of each column.  The same 

columns were then used for the injection of samples that contained the sulfonylurea drugs 

acetohexamide, tolbutamide or gliclazide.  These injections were initially made in the 

presence of only buffer to obtain the global affinity constants for each drug with normal 

HSA or the samples of glycated HSA.  The same drugs were then injected in the presence 

of a mobile phase that contained a site-selective probe for HSA.  To examine the binding 

of these drugs at Sudlow site I, 40 µM warfarin was added to the mobile phase.  To 

examine the binding of these drugs at Sudlow site II, 1000 µM L-tryptophan was added.  

The differences in the retention times that were seen for each drug in the presence of only 

buffer or in the presence of a known concentration of a site-specific probe were then used 
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to calculate the site-specific association equilibrium constants for each drug at Sudlow 

sites I and II.  The global affinity constants and site-specific association equilibrium 

constants that were measured for these drugs at Sudlow sites I and II are summarized in 

Tables 2.3 through 2.5. 

Table 2.3 shows the global affinity constants that were measured for the 

sulfonylurea drugs with normal HSA or HSA with three levels of glycation: gHSA1, 

which had a modification level that was typical of that seen in prediabetes; gHSA2, 

which had a modification level corresponding to controlled diabetes; and gHSA3, which 

corresponded to advanced/uncontrolled diabetes.  For all sulfonylurea drugs, there was an 

increase in the global affinity constant when going from normal HSA to gHSA1 and a 

further increase when going to gHSA2.  However, the global affinity constant decreased 

when going to gHSA3.  The highest increase that was observed was 1.3-fold, as noted for 

acetohexamide and gliclazide with the gHSA2 sample.  However, none of these apparent 

differences were statistically significant when the standard deviations (in parentheses) 

were considered.  The global affinity constants for these drugs with normal HSA were in 

good agreement with those reported in previous studies:  22.8 (± 2.0) × 104 M-1 for 

acetohexamide, 12.6 (± 1.1) × 104 M-1 for tolbutamide, and 6.17 (± 0.53) × 104 M-1 for 

gliclazide [14,19,22,24].   
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Table 2.3.  Global affinity constants obtained for various sulfonylurea drugs with 

columns containing entrapped samples of normal HSA or HSA with 

variouslevels of glycation.  1These values were measured at 37 °C in pH 

7.4, 0.067 M phosphate buffer.  The values in parentheses represent a 

range of ± 1 S.D. 
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Drug 

Global affinity constant (M-1 × 104)  and type of HSA1 

Normal has gHSA1 gHSA2 gHSA3 

Acetohexamide 
17.0 (± 1.9) 17.6 (± 1.9)  24.0 (± 3.1) 21.2 (± 2.6) 

Tolbutamide 
10.2 (± 1.1) 10.7 (± 1.2) 12.8(± 1.6) 12.2(± 1.5) 

Gliclazide 
4.9 (± 0.5) 5.4(± 0.6) 5.8(± 0.7) 5.6(± 0.6) 
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Table 2.4.  Association equilibrium affinity constants obtained at Sudlow site I for 

various sulfonylurea drugs with columns containing entrapped samples of 

normal HSA or HSA with various levels of glycation. 1These values were 

corrected for the fact that only 90% site saturation was used.  These results 

were measured at 37 °C in pH 7.4, 0.067 M potassium phosphate buffer.  

The values in parentheses represent a range of ± 1 S.D. 

 

 

 

 

 



49 
 

 

 

 

 

 

 

 

 

 

 

 

Drug 

Association equilibrium constant (M-1 × 104) and type of HSA1 

Normal HSA gHSA1 gHSA2 gHSA3 

Acetohexamide 
7.7 (± 1.4 ) 8.7 (± 0.9) 10.6 (± 1.4) 8.8 (± 1.1) 

Tolbutamide 
4.9 (± 0.9) 5.8 (± 0.6) 6.2 (± 0.8) 5.5 (± 0.6) 

Gliclazide 
2.2(± 0.4) 2.7(± 0.3) 3.5(± 0.4) 3.4(± 0.3) 
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Table 2.5.  Association equilibrium affinity constants obtained at Sudlow site II for 

various sulfonylurea drugs with columns containing entrapped samples of 

normal HSA or HSA with various levels of glycation. 1These values were 

corrected for the fact that only 90% site saturation was used.  These results 

were measured at 37 °C in pH 7.4, 0.067 M potassium phosphate buffer.  

The values in parentheses represent a range of ± 1 S.D. 
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Drug 

Association equilibrium constant (M-1 × 104)  and type of HSA1 

Normal HSA gHSA1 gHSA2 gHSA3 

Acetohexamide 
4.9 (± 0.9) 5.3 (± 0.6) 7.8(± 1.1) 6.2 (± 0.7) 

Tolbutamide 
2.4 (± 0.4) 2.6 (± 0.3) 3.5(± 0.4) 3.9(± 0.4) 

Gliclazide 
1.6 (± 0.3) 1.7(± 0.2) 2.7(± 0.3) 2.3(± 0.2) 
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Tables 2.4 and 2.5 compare the sulfonylurea drugs in terms of their association 

equilibrium constants for the two main drug binding sites on HSA: Sudlow sites I and II.  

In general, an increase in these site-specific binding site constants was observed for the 

three drugs when going from normal HSA to gHSA2.  The affinity then tended to 

decrease with further glycation, as was typical of uncontrolled diabetes (gHSA3).  The 

binding constant for Sudlow site I increased by 1.4-fold for acetohexamide, 1.3-fold for 

tolbutamide and 1.6-fold for gliclazide for gHSA2 relative to normal HSA.  The binding 

constant for Sudlow site II increased by 1.6-fold for acetohexamide, 1.5-fold for 

tolbutamide and 1.7-fold for gliclazide for gHSA2 relative to normal HSA.   

The association equilibrium constants at Sudlow site I and II were also compared 

between the various drugs.  For instance, the binding constant at Sudlow site I was higher 

than the value at Sudlow site II for acetohexamide in normal HSA as well as in all of the 

samples of glycated HSA.  The same trend was true for tolbutamide.  For gliclazide, there 

was no statistically significant difference between the values that were measured at 

Sudlow sites I and II. 
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2.4.  CONCLUSIONS 

In this study, a novel approach was developed and tested for measuring global 

affinity constants and site-specific binding constants for drug-protein interactions.  This 

method made use of columns containing entrapped proteins.  With these columns, it was 

possible to estimate drug-protein binding constants by using relatively simple retention 

measurements for a drug in the presence of only a buffer or in the presence of a probe for 

each specific binding site that was to be studied.   

The system was applied to the sulfonylurea drugs acetohexamide, tolbutamide 

and gliclazide, which are known to bind tightly to HSA and to have interactions at both 

Sudlow sites I and II of this protein [14,19-24].  A sample of normal HSA and three 

samples of HSA with various levels of glycation were immobilized by on-column 

entrapment using the conditions that were optimized previously. 

In order to calculate the binding constants for these drugs with normal HSA or 

glycated HSA, it was necessary to also have an estimate of the total moles of active 

protein that were in each column.  This estimate was made by using both zonal elution 

and frontal analysis experiments with a probe compound (i.e., warfarin) that had known 

interactions with these proteins.  It was found that the values that were obtained by zonal 

elution were statistically equivalent to these obtained with the more time-consuming 

method of frontal analysis.  Racemic warfarin was used for this type of measurement in 

the later work with the normal HSA and glycated HSA, because it has been shown in 

previous studies that the affinity of this drug for HSA is not affected significantly by the 

glycation of HSA at the modification levels that are normally seen in diabetes [19,26]. 



54 
 

 

The global affinity constants for several sulfonylurea drugs were measured by this 

new approach.  Good agreement was seen between these values that those that have been 

previously estimated for these drugs with HSA.  It was also shown how site-specific 

association equilibrium constants for these drugs could be measured with either normal 

HSA or glycated HSA.  Good agreement was seen between the global affinity constants 

that were found in this study and values that have been calculated previously for the same 

drugs with HSA.  

The rapid approach addressed in this chapter for studying protein-drug 

interactions by using entrapped proteins in HPAC columns can be applied for screening 

the binding of drugs with proteins isolated from serum of patients with some pathological 

condition in order to tailor the treatment to each individual. 
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CHAPTER THREE: MONOLITH AS A SUPPORT FOR THE ENTRAPMENT 

OF HSA 

3.1.    INTRODUCTION 

Monolithic columns have been of great recent interest for use in high performance 

affinity chromatography (HPAC) because of their low back pressures, ease of preparation 

and good mass transfer properties [1-4].  Monoliths generally contain two types of pores.    

Macropores are the flow-through pores which allow movement of the mobile phase 

through the column and are usually in the size range of micrometers for typical 

chromatographic applications.  Mesopores are smaller in size and are also known as 

diffusion pores, since analytes enter these pores primarily by means of diffusion [3].  

The combination of affinity ligands with monolith columns is known as affinity 

monolith chromatography (AMC) [1,5-10].  Various types of monoliths have been used 

in AMC, with many such reports using co-polymers of glycidyl methacrylate (GMA) and 

ethylene glycol dimethacrylate (EDMA) [1-4].  The co-solvents utilized to prepare these 

monoliths are usually cyclohexanol and 1-dodecanol.  These “porogens” are used to 

generate the pores within the monolith column.  These monolith columns are typically 

prepared through the use of an initiator and heat [3-4].  GMA/EDMA monoliths are 

advantageous because they have been shown to be effective in immobilizing proteins 

such as human serum albumin (HSA), antibodies such as IgG, and other binding agents 

of importance (e.g., protein A) [4].    

HPAC is an effective tool for the separation and analysis of many compounds that 

can bind to various biologically-related ligands [3-5, 8, 12, 13].  HPAC is a type of high 

performance liquid chromatography in which a biological binding agent (i.e., the affinity 
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ligand) is immobilized within a column and used as the stationary phase.  This binding 

agent usually has the ability to bind with moderate-to-strong affinity and with good 

specificity to the analyte of interest, such as occurs between the drug warfarin and the 

protein HSA [14, 15].  HPAC can be useful for studying biological interactions, for 

protein purification, and for chiral separations [1].  This method also has many 

advantages, such as its ease of automation, high specificity, speed, and good 

reproducibility [1].  In many of the applications of HPAC (e.g., binding studies) the total 

amount of ligand that is immobilized in the column is vital to the success of this method 

by providing good retention and high resolution between retained and non-retained 

sample components[1].    

The work in this chapter will focus on primarily optimizing and determining the 

total amount of protein that can be entrapped in monolithic supports based on co-

polymers of GMA/EDMA.  The optimization of protein content in monolithic columns 

for use with HPAC has been shown to be important in allowing for these columns to be 

used for studying drug interactions involving proteins such as HSA [4].  In this chapter, 

the amount of monomers GMA and EDMA will be held constant and the polymerization 

temperature will be kept at 80º C.  The relative amounts of cyclohexanol to 1-dodecanol 

will be varied to generate a library of monoliths.  The hydrazide activation technique will 

be utilized for the entrapment of HSA and to study the relative change in the total protein 

content of the different monoliths under the various porogenic ratios.  HPLC will be used 

to study the binding and elution of model analytes to the entrapped HSA within each 

monolith.  The results should make it possible to determine the optimum ratio of 1-

dodecanol to cyclohexanol for monolith synthesis and the optimum conditions for 
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monolith preparation with respect to achieving the highest total amount of entrapped 

protein.  These results, in turn, should make it possible to generate more effective 

monolithic columns for use in future HPAC experiments that involve HSA or similar 

proteins. 

 

3.2.  EXPERIMENTAL SECTION 

3.2.1. Reagents 

The GMA (97% pure), EDMA (98%), cyclohexanol (> 99%), 1-dodecanol (98%), 

2,2’-azobisisobutryonitrile (AIBN, 98% pure),  HSA (essentially fatty acid free, >96%), 

sodium borohydride (98%, a strong reducing agent), periodic acid (> 99%, an oxidizing 

agent), racemic warfarin (purity ≥ 98%), and L-tryptophan (purity ≥ 98%)  were 

purchased from Sigma-Aldrich (St. Louis, MO, USA).  Reagents for the bicinchoninic 

acid (BCA) protein assay were from Pierce (Rockford, IL, USA).  All aqueous reagents, 

solutions and buffers were prepared using water from a Nanopure system (Barnstead, 

Dubuque, IA, USA) and were filtered using 0.2 µm GNWP nylon filters from Millipore 

(Billerica, MA, USA).    

 

3.2.2.  Apparatus 

The monoliths were prepared in 4.6 mm i.d. × 0.5 cm columns with PEEK inner 

liners from Alltech (Deerfield, IL, USA).  These columns included a special frit that 

could be used to compress the monoliths and to avoid the formation of gaps within the 

columns during and after their preparation.  The monoliths were placed into 4.6 mm i.d. × 

0.5 mm PEEK disks.  The chromatographic system that was used in the zonal elution 



64 
 

 

studies consisted of a DG-2080 degasser, two PU-2080 pumps, an AS-2057 autosampler, 

a CO-2060 column oven, and a UV-2075 absorbance detector from Jasco (Tokyo, Japan), 

plus a Rheodyne LabPro six-port valve (Cotati, CA, USA).  LCNet and ChromNav from 

Jasco (Tokyo, Japan) were used to control the chromatographic system and to collect the 

data.    

The results of the zonal elution experiments were analyzed by using PeakFit 4.12 

(Systat Software, San Jose, CA, USA).  Calculation of the retention factors and binding 

constants was performed by using Excel 2013 (Microsoft, Redmond, WA, USA).  Two 

PHD Ultra syringe pumps (Harvard Apparatus, Holliston, MA, USA) were used for the 

on-column entrapment method.  A Jasco V-630 UV/VIS spectrophotometer (Jasco, 

Kyoto, Japan) equipped with temperature control was used for the protein assay.    

 

3.2.3.  Preparation of Monolithic Columns 

Figure 3-1 shows the general procedure that was used for the preparation of the 

monolith columns and for the immobilization of HSA in these columns[16].  This 

procedure began with mixing of the monomers, cross-linkers and initiator, followed by 

polymerization.  After the completion of monolith formation, this support was washed for 

1.5 h at 0.5 mL/min with 50 mL of water using an HPLC pump.   Activation of this 

support was accomplished by first converting the monolith into a diol form through 

treatment with 0.5 M sulfuric acid.  An HPLC pump was used to pass, without recycling, 

5 mL of a 0.5 M solution of sulfuric acid in water through the monolithic column at 0.5 

mL/min and room temperature for 10 min.   The two ends of the monolithic column were 

then sealed using plugs and placed into a water bath set at 60 oC for 4 h.   The monolithic 
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column was removed from the water bath and was washed with 100 mL of water at 0.5 

mL/min using an HPLC pump at room temperature for 3 h.   Next, 40 mL of a solution 

containing 2 g periodic acid in a 90:10(v/v) mixture of acetic acid and water was 

prepared.   This solution was cycled through the column at room temperature and 0.5 

mL/min for 4hours.   During this procedure, the container holding the periodic acid 

solution was wrapped in aluminum foil to protect it from light.  The monolithic column 

was then washed with 100 mL of water that was applied without recycling at 0.5 mL/min 

using an HPLC pump at room temperature for 3 h.   This resulted in an aldehyde-

activated monolith. 
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Figure 3.1.    General scheme for the preparation of a GMA/ EDMA monolith [16].    
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The aldehyde-activated support was next reacted with 30 mL of 0.5 M oxalic 

dihydrazide in pH 5.0, 0.10 M phosphate buffer by passing this solution through the 

column at 0.5 mL/min for 1 h at room temperature and  PU-2080 Jasco pump was used.  

Another 20 mL of the same solution was circulated through the column for another 2 h at 

0.5 mL/min and room temperature.   Unreacted aldehyde groups on the monolith were 

reduced to alcohols by using 2.5 mg/mL sodium borohydride in pH 8. 0, 0.1 M potassium 

phosphate buffer.  A 20 mL portion of this solution was applied to the monolith at 0.5 
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mL/min for 4 h at room temperature and PU-2080 Jasco pump was used.   Finally, the 

column was washed by using an HPLC pump and by passing 120 mL of pH 7.4, 0.067 M 

potassium phosphate buffer for 4 h at 0.5 mL/min at room temperature  It was used 

immediately and if it is going to be stored for the next day it was stored in the fridge at 4 

°C.      

HSA was entrapped by the reaction of mildly-oxidized glycogen with hydrazide-

activated silica, as described in Chapter 2.  For this entrapment process, a solution 

containing 100 mg/mL of normal HSA in pH 5.0, 0.10 M potassium phosphate buffer 

was circulated through the hydrazide-activated column at 20 µL/min for 4 h, at room 

temperature and two PHD Ultra syringe pumps (Harvard Apparatus, Holliston, MA, 

USA) were used for pumping the solution.  This was followed by the application of a 

solution over 16 h at room temperature,  that contained a mixture of 100 mg/mL normal 

HSA and 4.2 mg/mL oxidized glycogen in the same phosphate buffer.  Finally, 200 µL of 

1 mg/mL of oxalic dihydrazide in the same buffer was added to the reaction mixture, and 

circulation of this solution through the column was carried out for two more hours [5] at 

room temperature.  A control column was made under the same conditions but with the 

solutions of HSA being replaced with an equal volume of pH 5.0, 0.10 M potassium 

phosphate buffer.  All of the columns were washed by flowing pH 7.4, 0.067 M 

potassium phosphate buffer through them at 0.5 mL/min for 1 h, at room temperature or 

until a stable baseline response was reached for these columns. 

The relative ratio of dodecanol to cyclohexanol was varied during the preparation 

of the GMA/EDMA supports to create a library of monoliths at a polymerization 

temperature of 80ºC.   The total amount of entrapped protein was determined for each 
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monolith by using a BCA assay [16].   For this assay, each monolith was prepared in 

triplicate during the optimization studies and washed with 100 mL of water at 0.5 

mL/min for 3 h at room temperature to remove any non-entrapped components.    

 

3.2.4.   Chromatographic Studies 

The chromatographic studies were performed at room temperature using pH 7.4, 

0.067 M potassium phosphate buffer as the mobile phase. The mobile phase buffer was 

degassed and sonicated for approximately 30 min prior to use. A sample containing a 20 

 
μM solution of racemic warfarin was prepared in pH 7.4, 0.067 M potassium phosphate 

buffer. A 20 µM solution of L-tryptophan was also prepared in pH 7.4, 0.067 M 

potassium phosphate buffer. All samples were used within one day of preparation, and a 

20 μL injection of each analyte or a void marker (i.e., sodium nitrate) was made in 

triplicate at flow rate of 0.5 mL/min. The elution of  warfarin was monitored at 308 nm. 

The  L-tryptophan were monitored at 280 nm. A 20 μL injection of 0.2 mM sodium 

nitrate was monitored at 205 nm. The extra-column void time was determined by 

injecting sodium nitrate onto a zero dead volume connector and monitoring the elution at 

205 nm. 

 

3.3  RESULTS AND DISCUSSION  

The general procedure for the polymerization of monoliths was similar to a 

previously reported method [16], and the entrapment step was also similar to the 

entrapment method done on hydrazide-activated silica that was optimized in the lab [17]. 

In these studies several parameters were held constant while the relative amounts of the 

porogenic solvents were varied.   
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The polymerization conditions that were optimized were the volume ratios of the 

1-dedecanol and cyclohexane in the porogen solvent mixture.  HSA was used as a model 

protein to compare the amount of entrapped protein that could be placed within such 

supports.  

As shown in Table 3.1, the retention factor obtained for the injection of warfarin 

and L-tryptophan were used to determine the retention factor of these analytes on the 

column.  Figure 3.1 also shows the overall trends noted in the retention factors that were 

obtained for warfarin and L-tryptophan on these monoliths.  As was found that a 20:40 

porogenic ratio gave a monolith column that had a retention factor of 17.4 (± 0.1) for 

warfarin and 0.5 (± 0.1) for L-tryptophan.  This was the highest set of retention factors 

that were seen and thus represented the highest protein content.   A 10:50 porogenic ratio 

gave a monolith column with a retention factor of 13.8 (± 0.1) for warfarin and 3.2 (± 0.1) 

for L-tryptophan, which was the second highest set of retention factors. The precisions of 

the retention factors measured for each of the probes warfarin and L-Tryptophan ranged 

from ± 0.1 to ± 0.4 % and ± 0.1 to ± 0.5% respectively. As it can be seen in the table 

there was proportional variation in the retention factor of the probe drugs used warfarin 

and L-tryptophan, which have different binding sites.  
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Table 3.1. Retention factors measured for various monoliths containing entrapped ha

 aThe numbers in parentheses represent a range of ± 1 S.D.   
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Porogen content Retention factor (k) measured for probes for Sudlow sites I 

(warfarin) and II (L-tryptophan) 

1-Dodecanol% (v/v) Cyclohexanol% 

(v/v) 

   Warfarin   L-Tryptophan 

55  5   2.0 (± 0.4) 0.5 (± 0.1) 

50 10   0.1 (± 0.2) 0.1 (± 0.5) 

45 15   0.5 (± 0.4) 0.1 (± 0.5) 

40 20 (± 0.1) 0.5 (± 0.1) 

30 30  0.0(± 0.2) 0.0 (± 0.1) 

25 35   2.8 (± 0.1) 0.1 (± 0.5) 

20 40 17.4 (± 0.1) 0.5 (± 0.1) 

15 45   8.4 (± 0.1) 0.5 (± 0.1) 

10 50 13.8 (± 0.1) 3.2 (± 0.1) 
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As can be seen in the Figures 3.2 the overall trends noted in the total amount of protein 

that could be immobilized as the amount of 1-dodecanol to cyclohexanol was varied in 

the monoliths. It was found that lower levels of 1-dodecanol compared to cyclohexanol 

for the GMA/EDMA monolith gave a slightly higher total protein content. This higher 

value at the lower 1-dodecanol amount is similar to the trend observed on monolith 

column made by epoxy method and Schiff base method for immobilization [16]. 
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Figure 3.2. Comparison of the retention factors for warfarin and L-tryptophan on 

GMA/EDMA monoliths containing entrapped HSA as the ratio of the 

porogenic solvents was varied. 
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Some typical chromatograms obtained in these studies are shown in Fig. 3.3. As noted 

earlier with warfarin and L-tryptophan, each of the drugs exhibited a large difference in 

retention between the entrapped-protein columns and the control column. Warfarin, 

which has an association equilibrium constant of roughly 2 × 105–3 × 105 M−1 for normal 

HSA [18], was eluted within 3.5–4.5min at 0.5 mL/min. L-Tryptophan, which has a 

tenfold lower association equilibrium constant of approximately 1 × 104–2 × 104 M−1 for 

normal HSA [19], was eluted in 2–3 min at 0.5 mL/min from the entrapped-protein 

columns 0.5mL/min. As it can be seen in fig. 3.3 the chromatograms were symmetrical 

without not much tailing.  The chromatographic studies were performed at room 

temperature using pH 7.4, 0.067 M potassium phosphate buffer as the mobile phase. The 

mobile phase buffer was degassed and sonicated for approximately 30 min prior to use. A 

sample containing a 20μM solution of warfarin was prepared in pH 7.4, 0.067 M 

potassium phosphate buffer. Sodium nitrate was used as a void marker as it doesn’t have 

any affinity to the protein HSA. The elution of warfarin was monitored at 308 nm. The L-

tryptophan were monitored at 280 nm. A 20 μL injection of 0.2 mM sodium nitrate was 

monitored at 205 nm. The extra-column void time was determined by injecting sodium 

nitrate onto a zero dead volume connector and monitoring the elution at 205 nm. 
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Figure 3.3.  Examples of chromatograms obtained for the injection of sodium nitrate, 

warfarin, and L-tryptophan on monoliths containing entrapped HSA.  
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3.4.  Assessment of Monoliths 

The total amount of protein was determined for each monolith via a BCA assay 

[16]. For this assay, each monolith was prepared in triplicate during the optimization 

studies and washed with 100 mL of water at 0.5 mL/min for 3 h at room temperature. The 

monolith column was then removed from the housing and ground to a fine powder 

through the use of a mortar and pestle. The powder was placed on a watch glass and dried 

in a vacuum oven overnight at room temperature. This same procedure was repeated for a 

control monolith that did not contain any immobilized protein. All samples were 

analyzed and prepared in triplicate, with HSA being utilized as the standard in the BCA 

assay. 

Figure 3.4 shows the overall trend in the total amount of protein that could be 

entrapped in µg of HSA/g of monolith as the amount of 1-dodecanol to cyclohexanol was 

varied in the monolith. It was found that higher levels of protein content was found 

between 30-40% 1-dodecanol. This result of amount of protein corresponds with 

previously made columns by epoxy method and Schiff base method of immobilization 

[16].  
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Figure 3.4.  Effects of varying the porogen composition on the amount of HSA that 

could be entrapped to GMA/EDMA monoliths prepared at 80ºC. 
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3.5  Conclusion   

In this study the goal was to optimize polymerization ratio of 1-dodecanol to 

cyclohexanol and maximize the entrapment of HSA protein on methacrylate based 

monoliths. Two columns, one entrapment and one control column were made and 

evaluated using retention factor value and BCA assay for their total protein content.  

The retention factor measurement showed that the 10-20% 1- dodecanol ratio 

gave the highest entrapped protein content. The BCA assay method showed that the 

highest protein content was between 30-40 % 1-dodecanol.  Although the two methods 

for estimating the protein content didn’t point to the same porogonic ratio colulmns, they 

gave a good estimation on which porogenic ratio is a potential for further research and 

optimization. The direct measurement of the retention factor method to estimate the 

protein content seems more plausible method, since the BCA method gave high response 

to the control column and the HSA support. It can be said that the presence of the 

hydrazide groups on the support could reduce the Cu2+ to Cu1+ in the BCA. This large 

response for the control support creates small difference in the final absorbance that was 

measured. This will produce high variability in the final result of protein content which 

can lead to an inconsistency. 

This chapter has considered and studied the method of entrapment on monolith 

supports, which was previously developed in the lab on hydrazide-activated supports was 

considered on monolith supports. It has showed a promising results which opens a novel 

way and experiments to examine the activities for many of these entrapped agents. These 

features should make this approach valuable for the entrapment of other proteins and 

biomacromolecules for HPLC and affinity separation methods.  
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CHAPTER FOUR:  SUMMARY AND FUTURE WORK 
 
 
 
 

4.1.  SUMMARY OF WORK 
 

This thesis has been mainly on the study of on-column method of entrapment on 

hydrazide-activated silica or monolith supports using oxidized glycogen as a capping 

agent. This method of entrapment can make supports that can withstand the high 

pressures and flow rates in HPAC. The entrapment method is based on the physical 

containment of a ligand in a polysaccharide-capped dihydrazide support or monolith. 

Careful attention needs to be given to the nature in which the affinity ligand is 

incorporated into the stationary phase, since it is for the study of biologically-related 

molecules.  Ideally, the behavior of the immobilized ligand in the use of high 

performance affinity chromatography (HPAC) should mimic the behavior of the ligand in 

its natural environment. One effective way to maintain the activity of the ligand is to 

maintain the soluble form of the ligand by avoiding covalent immobilization. 

 

Chapter 1 presented a general introduction to HPAC, the different 

immobilization methods that are available, the use of monoliths as supports, and 

quantitative techniques of affinity chromatography. Background information on the 

entrapment method was also provided. The potential advantages of the entrapment 

method was also discussed. 

Chapter 2 mainly concerned a method for measuring the global affinity constants 

and site specific binding constants for drug-protein interactions. Samples of normal HSA and 

HSA with different glycation levels characteristic of patients with pre-diabetes, controlled 

diabetes or advanced diabetes were placed into supports made by entrapment and the on-
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column method. The high protein contents that were achieved by the on-column method, and 

the fact that the activity of this protein was maintained in these supports, allowed the use of 

this method in a simplified approach for measuring drug-protein interactions at specific sites 

on normal HSA or glycated HSA. Using these columns it was possible to estimate binding 

constants by using simple retention measurements for a drug in the presence of only a 

buffer or a probe for each specific binding site that was to be studied. 

In Chapter 3 the work focused primarily on surveying the total amount of protein 

that can be entrapped in monolithic supports based on co-polymers of GMA/EDMA. This 

was done by preparing monolith HPAC columns that contained an entrapped HSA 

support. Zonal elution analysis experiments were then conducted with probe compounds 

for the major binding sites on HSA. This makes the immobilization technique a novel 

method from the traditional covalent monolith immobilization methods. 

A variety of experiments were then conducted to optimize the protein content of 

these supports. These experiments were accomplished by varying the pore size of the 

support, by changing relative amounts of cyclohexanol to 1-dodecanol ratios. A library of 

monolith columns with different porogen ratios was made. The resulting protein content 

was estimated for each study, and optimum conditions were selected. It was also 

determined that high capacity supports could be produced. 

 

4.2.  FUTURE WORK 

 

The optimization of the entrapment method has created many options for further 

implementation of this method. The work in this thesis involved the development of high 

capacity supports from hydrazide-activated silica and monolith columns containing entrapped 
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proteins for use in HPAC. For example, this approach may allow the possibility to study 

analytes with low affinities by using columns with high protein coverage.  

The entrapment of wide range of ligands with various molecular weights is also 

another potential area of study. The ability to entrap a large variety of ligands will allow 

the production of new affinity supports. One example is the entrapment of streptavidin. 

To obtain binding information specific to each variant of the serum proteins, the different 

genetic variants of AGP could also be entrapped. Lectins are also another possibility 

(e.g., jacalin or Sambucus nigra agglutinin). These lectin columns could be used in 

studies for glycoproteomics, in which the binding of the entrapped lectins might be used 

for the isolation of glycopeptides or glycans prior to the analysis of these analytes by 

methods such as mass spectrometry. 

Automation of the on-column entrapment method should be possible due to the intact 

nature of the entrapped protein. This could be done by using a system of pumps for applying 

the reagents through a hydrazide-activated silica column, and a system of valves that can 

switch between the various reagent solutions. One further step in automation would be to 

make a complete on-line entrapment system where the protein that is to be entrapped (e.g., 

HSA) could also be isolated from a biological sample (e.g., human serum) by using an 

antibody column for the protein, followed by elution of the captured protein directly into the 

hydrazide-activated silica support, where entrapment is then performed. Such a system would 

minimize loss of the protein during sample handling steps and would provide a convenient 

way of entrapping proteins or other biologically-related agents that are obtained from in vivo 

samples. 
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The protein remains fully active when it is immobilized by entrapment therefore this 

should make it possible the method to create fast screening methods that can be used to 

obtain the binding affinities for solutes with the entrapped proteins. As shown in Chapter 2, 

this can be accomplished by simply measuring retention time shifts when this solute is 

injected in the presence or absence of the entrapped protein.  
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