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  A bioactive molecule must pass many hurdles to be designated as a “good” 

pharmaceutical lead or hit compound.  It should have a significant activity, 

selectivity, bioavailability, and metabolic half-life.  Many factors have been identified 

that influence the free drug concentration or bioavailability of orally administered 

drugs in the earliest development stages.  In vitro pre-clinical assays have been 

developed to measure these parameters.  The small molecule properties that are 

investigated here include aqueous solubility, permeability, reactivity 

(electrophilicity), small molecule-protein binding, and displacement of protein-

bound molecules (drug-drug interactions).  The development of rapid and 

miniaturized assays to quantify these factors is presented herein. 

First, a 384-well filter plate based assay was developed to determine the 

aqueous compound solubility to greatly decrease the time and amount of compound 

necessary for analysis.  Secondly, one of the most common and simple permeability 

assays (parallel artificial membrane permeability assay, PAMPA) was optimized 

using a filter membrane impregnated with a long chain alkane (hexadecane) 
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solution as an artificial membrane.  Thirdly, permeability was also determined 

rapidly with the use of Immobilized Artificial Membrane (IAM) and C18 stationary 

phases by HPLC.  The solitary and sequential usage of these columns was compared. 

Fourthly, a novel fluorescence-based high-throughput assay was developed 

to identify electrophilic molecules rapidly, in parallel, among small molecule 

libraries using only sub-milligram quantities.  Subsequently, a filtration-based assay 

to estimate compound binding with plasma protein was developed for a 384-well 

plate format.  This assay not only increases the throughput, but also addresses non-

specific compound binding to the filtration apparatus, which is problematic with 

other ultra-filtration methods.  Finally, a simple high-throughput competitive 

protein binding assay was developed based on the multiplexing of fluorescent small 

molecule probes with different spectroscopic and binding properties.  The inhibition 

of probe-protein binding has been identified as a good indicator for plasma protein 

binding. 
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CHAPTER I 

INTRODUCTION 

1. Introduction of Drug Discovery and Development 

The complete drug development process is generally thought to occur in four 

stages: target identification, drug discovery, clinical trials, and FDA approval before 

subsequent production (Figure 1).  The focus of the drug discovery phase is the 

identification of potent, selective, and bioavailable drug candidates (lead 

compounds) that have in vivo activity.  In the early stages of drug discovery, 

biochemical assays are applied to enable the screening of diverse compounds 

against the target protein (high-throughput screening, HTS).1  With the advent of 

combinatorial chemistry and parallel synthesis, these small molecule libraries can 

be produced rapidly.2  The characterization of derivatives of hit molecules is done to 

determine structure-activity relationships for each compound class and develop 

optimized drug candidates or lead compounds.  Because of the vast numbers of 

molecules that are analyzed for each potential target, high-throughput assays are 

preferred in the early drug discovery stages. 

The pharmaceutical industry and academic drug discovery laboratories 

rigorously test small molecule drug candidates to ensure that compounds with poor 

physiological properties do not advance.  Failure to do so will consume resources, 

time, and interest which could have been expended on more promising compounds 

in the later stages of drug development.  Therefore, it is crucial for pre-clinical drug 

discovery efforts to identify those drug candidates that will be readily absorbed and 
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distributed throughout the body in an early stage.  It can also be argued that it may 

be more important to identify those compounds that are not absorbed or 

distributed.  The characterization is necessary so that a sensible choice can be made 

as to whether to put forth the effort in formulation or modification of drug 

candidates.  Early in vitro pre-clinical screening has been enforced to identify 

problematic compounds within screening libraries yielding increased efficiency and 

success. 3-5  This is accomplished by the use of high-throughput (HT) assays that 

determine pre-clinical small molecule properties, in parallel, for thousands of 

compounds using low-milligram quantities.4  With the continuing development of 

HT pre-clinical assays, there has been an increasing need for improvements in 

efficiency and accuracy.  

 

 
Figure 1. Drug development pipeline with the general purpose of each stage. 

 

2. Bioavailability 

Oral bioavailability of a drug is defined as the measure of the rate and extent 

of the drug reaching the systemic circulation and its availability at the site of action.6  

Poor oral bioavailability is one of the leading causes of failure for drug candidates in 

clinical studies.  Compounds with low bioavailability exhibit a high variability in free 
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drug concentrations between individuals.7  Bioavailability is a key factor that affects 

drug efficacy and other adverse effects, which has therefore received considerable 

attention.7   

Currently, it is difficult to predict bioavailability because there are numerous 

factors that are related to the free drug concentration in vivo.  Some of these factors 

include physicochemical properties (i.e., dissolution, solubility, and absorption), 

biological factors (i.e., permeability, protein binding, metabolism, excretion), diet 

factors (i.e., food-drug interactions), and finally, co-administered drug factors (i.e., 

drug-drug interactions).  Figure 2 depicts the general pathway of an orally 

administered drug throughout the body.  Absorption, distribution, binding, 

metabolism, and excretion (ADME) of a drug is directly related to its free 

concentration available at the site of action.8   

 

 

Figure 2. The relationship of adsorption, distribution, binding, metabolism, and 
excretion of a drug on the free drug concentration available to the site of action.8 
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Because of the numerous factors that affect oral bioavailability, it cannot be 

fully quantified with the use of in vitro assays solely.  The most effective alternative 

is to measure those individual factors influencing bioavailability (solubility, 

permeability, non-specific binding, metabolism, etc.).  Continued progress to 

develop better assays for the understanding of physicochemical and biochemical 

profiling of drug or drug-like molecules is therefore needed to improve the 

characterization of drug candidates with respect to bioavailability.7 

3. High-Throughput In Vitro Pre-clinical Assays 

Understanding the interactions between drug candidates and potential 

molecular targets is essential to estimate in vivo safety and to reduce late-stage 

failures of drugs in the development process.9  The pre-clinical development process 

is a type of risk assessment that extrapolates in vitro safety and efficacy information 

to a potential in vivo result.10  In general, drug candidates are evaluated with respect 

to absorption, distribution, metabolism, excretion, and toxicity (ADMET) through a 

number of different assays, as depicted in Figure 3.  Even with the current number 

of primary and secondary screens reported, there is still insufficient in vitro 

information to estimate critical pharmacokinetic variables such as clearance and 

bioavailability.10  Therefore, additional assays to predict in vivo ADMET properties 

of drug candidates are needed.  

The cellular absorption of molecules is studied with a number of different 

assays.  One of the earliest assays performed during pre-clinical screening is the 

aqueous solubility assay.  The detailed descriptions of the solubility assays are 
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Once the molecule is solubilized, it can be more effectively absorbed by the 

body.  Absorption of molecules is studied by assessing their membrane 

permeability.  The most common permeability assays are discussed in detail in 

Chapter 3.  The “gold standard” of permeability assays uses a layer of human colon 

epithelial cancer (Caco-2) cells grown on a filter. The diffusion of molecules across 

this layer is quantified by ultraviolet (UV) absorption.12, 13  A different high-

throughput assay, called the parallel artificial membrane permeability assay 

(PAMPA), uses an artificial hydrophobic layer to mimic the cell membrane.13-15  

Recently, chromatographic methods have been investigated that use immobilized 

lipids.16  The lipophilicity of molecules correlates strongly with membrane 

permeability.  Therefore, small molecule partitioning coefficients (i.e., logPoctanol/water 

or logPliposome/water) have also been determined to estimate drug absorption.17  In 

addition, computational methods enable the calculation of hydrophobic and 

hydrophilic compound surfaces, which in turn, enables the calculation of 

partitioning coefficients.6 

Additional generalizations about molecules with drug-like properties have 

been proposed by Lipinski, called Lipinski’s Rules of Five.18  For example, molecules 

with more than five hydrogen bond donors, a molecular weight over 500,  

logPoctanol/water greater than five, or a sum of nitrogen and oxygen atoms within the 

molecule over ten indicate poor ADME properties.18, 19   

Carrier-mediated transport mechanisms of molecules have been studied as 

well.  All of the before-mentioned permeability assays (i.e., Caco-2, PAMPA, 
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Lipinski’s Rules of Five) are representative of passive diffusion of molecules. Highly 

lipophilic molecules can traverse the lipid bilayer, whereas highly hydrophobic 

molecules are absorbed by paracellular transport (i.e., between cells). There are 

numerous membrane transporter systems in the intestines that facilitate the 

absorption of essential nutrients and drugs.10  To study the active transport-

mediated efflux and absorption, Madin-Darby canine kidney epithelial (MDCK) cells 

that stably express membrane transporters have been developed.19  Everted (inside 

out) intestinal sacs have also been used, providing information that is most similar 

to in vivo human permeability.  Unfortunately, inconsistencies in the tissue as well as 

time and labor-intensive procedures makes this method difficult for routine use.19 

Understanding the stability of a potential drug is vital in the development 

process because degraded or metabolized drugs may not have the desired 

pharmaceutical effects.  The stability of the molecule can be assessed at varying 

physiological pH values, which are simply determined by incubating a molecule at 

or below its solubility value in buffers over a range of pH values.  The solution is 

then analyzed by liquid chromatography-mass spectrometry (LC-MS) to quantify the 

compound remaining, determine the stability over time, and identify the 

decomposition products.6, 20 

 After absorption into the bloodstream, drugs are distributed all over the 

body.  Drug distribution refers to the reversible relocation of the drug from blood to 

the various tissues in the body.6  There are several factors that affect the rate and 

extent of drug distribution, such as the physicochemical properties of a drug and the 
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blood flow to the tissues.  The distribution of the drug to different tissues directly 

affects the duration and magnitude of the therapeutic affect and toxicity.6  The 

binding to tissue and plasma proteins  has a large effect on the metabolism and 

distribution of drugs throughout the body.21  The plasma protein binding assays that 

are most commonly used in pre-clinical screens are described in detail in Chapter 5.  

Equilibrium dialysis is considered the “gold standard” for protein binding analysis.22  

Another common method of protein-binding analysis is ultrafiltration. This method 

is more simple and less time consuming than equilibrium dialysis.23  Other higher 

throughput methods include HPLC with immobilized proteins24 or surface plasmon 

resonance.25  However, these methods assume that immobilized proteins retain the 

same binding affinities as native proteins.26  Another method for distribution 

analysis is blood cell partitioning.  The compounds are incubated in whole blood or 

red blood cells (RBC) suspended in plasma, serum or buffer at physiological pH and 

temperature.27  The drug concentrations in both the whole blood or RBC solutions 

are determined by HPLC or LC-MS.27 

Drugs are cleared from the body by two general pathways; metabolism and 

excretion.  Many drugs primarily undergo excretion, while some drugs are first 

metabolized.  Drug metabolism is important for the elimination of highly lipophilic 

molecules because these molecules are more readily excreted after undergoing 

biotransformation toward more polar metabolites.10  Drug or drug metabolite 

toxicity and metabolizing enzyme inhibition are major causes for the termination of 

drug candidacy.28  To study this, compounds are incubated in liver microsomes, liver 

homogenate (S9 fraction), hepatocytes, or plasma over multiple time points to 



9 

 

 

 

assess the half life (t1/2) of molecules in the presence of the drug metabolizing 

cytochrome P450 enzymes (CYP).29  The drug metabolites are then characterized by 

LC-MS or LC-MS/MS. Reaction phenotyping assays can be performed to identify the 

enzymes responsible for the metabolism of the compounds.  This is done by 

incubation of the compound of interest with a single enzyme at a time.  The 

identification of enzymes responsible for metabolism (predominately CYP enzymes) 

can provide important information for potential drug-drug interactions.3  Potential 

drugs are likely to be withdrawn if they inhibit the metabolism of co-administered 

drugs.3  If a reduced amount of metabolite is quantified, by fluorescence techniques 

or LC-MS, the metabolism of that molecule has been inhibited.3, 19, 30-32 

Of all of the ADMET properties, excretion is possibly the least studied in vitro.  

Renal and fecal excretions are generally studied using animals, but there are no in 

vitro surrogates for excretion analysis.19  All drugs are eliminated, to some extent, 

via the renal route.  Large lipophilic molecules must first be converted to more 

water-soluble products before elimination.  The other major organ for drug 

elimination is the liver via its capacity for biliary excretion.6  To estimate the rate of 

excretion of drugs, the hepatocyte uptake can be analyzed.  Hepatic uptake studies 

typically measure the rate of appearance of substrate into cells after a relatively 

short incubation period, which assess the impact of hepatic uptake on unbound drug 

intrinsic clearance (CLint).29, 33 

Identification of potential toxicity at an early stage in drug discovery can save 

both time and costs, and most importantly reduce the likelihood of late-stage failure.  
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Cardiotoxicity, hepatotoxicity, and neurotoxicity continue to be the most common 

underlying issues for drug attrition at all stages of development.  The use of human 

cells with retained organ-specific properties is the most important method for early 

toxicity screening.  Some of the primary human cell cultures include hepatocytes for 

liver toxicity, renal proximal epithelial cells for nephrotoxicity, vascular endothelial 

cells for vascular toxicity, neuronal and glial cells for neuotoxicity, and 

cardiomyocytes for cardiotoxicity.19  Cytotoxicity endpoints such as membrane 

integrity34, cellular metabolite content33, mitochondrial functions35, lysosomal 

functions36, and apoptosis37 are used for the screening of organ-specific toxicity.19  

Cardiotoxicity is commonly analyzed with HEK293 or Chinese hamster ovary (CHO) 

cells transfected with the human ether-à-go-go related gene (hERG).  This gene 

encodes the inward rectifying voltage-gated potassium channel in the heart which is 

involved in cardiac repolarization.  The effect of drugs on the influx of potassium 

ions is studied with a patch clamp assay.38 

Many of these assays can be related to more than one category of ADMET; as 

with anything in the body, everything is correlated.  For example, CYP inhibition can 

be related to metabolism and toxicity as drug-drug interactions.  The lipophilicity of 

molecules can be correlated to all ADMET properties (permeability, interaction with 

proteins, metabolic pathway, etc.).  Permeability is not only directly related to 

absorption, but also affects the rate of distribution in the body.  With the 

development of new assays that study ADMET properties of new molecules in vitro, 

a greater understanding of the risk of the molecules can be reached at earlier stages. 
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4. Analytical Methods in High-Throughput Screening 

For the development of new high-throughput assays, the quality of the 

method of analysis is crucial.  The sensitivity, selectivity, and throughput of the 

analytical method has a direct impact on the validity of the pharmacological assay.39  

One of the largest challenges has been the lack of sample capacity for high-

throughput quantitative analysis.  Obtaining and processing analytical data is 

usually the rate limiting step in the development process.  The analytical methods 

should provide as much information as possible in the shortest possible time.  

Ideally, the best way to achieve this would be through the use of techniques that 

rapidly provide orthogonal information (i.e., based on independent or non-

overlapping methods).40  Spectroscopic techniques have greatly contributed to the 

knowledge of how drugs interact with biological systems.  Techniques such as 

absorption and fluorescence spectroscopy are sensitive and non-destructive.41  

Although, mass spectrometry is also sensitive and selective it is a destructive 

technique.  These techniques will be discussed in detail herein. 

4.1. Absorbance Spectroscopy 

The use of absorbance spectroscopy to measure concentrations of samples in 

pharmaceutical research is uncommon due to the inability to handle complex 

mixtures directly.  UV detection is generally much faster than other methods, as 

speed in analysis is very important for high-throughput screening.42  Many drug 

molecules have strongly ultraviolet or visible absorbing chromophores.41  Although 

this method is generally simple and rapid, the purity of the sample is important.  
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Impurities in the sample can lead to interference in the absorbance spectra and may 

necessitate purification prior to analysis. 

In absorption spectroscopy, the amount of light absorbed as a function of 

wavelength is measured, which can give qualitative and quantitative information 

about the sample.43, 44  Molecular absorption spectroscopy of dilute solutions is 

described by Beer’s Law (Equation 1), where A is the absorbance (log(I0/I) , Figure 

4), ε is the molar absorptivity (M-1cm-1), c is the concentration (M) of the solution, 

and b is the path length (cm).   

Equation 1)    � = �����; �ℎ
�
�� = �
� ��
�  

Beer’s equation is used to quantitatively describe how the amount of 

attenuation is dependent on the concentration of absorbing molecules through the 

path-length over which absorption occurs.  As the light travels through the sample 

containing the absorbing analyte, a decrease in intensity occurs as the analyte 

becomes excited, as illustrated in Figure 4.  As the path-length increases, the number 

of absorbing analytes in the path also increases thereby causing an increase in 

attenuation.44 

 
Figure 4. Incident light, I0, passing through the sample of path-length b, resulting in a 

diminished intensity of light, I, emerging from the sample. 

b 

I0 I 
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Instrumental and chemical interference can cause deviation from Beer’s Law.  

As stated above, Beer’s Law describes the absorption of dilute solutions.  At 

concentrations exceeding approximately 10 mM, the average distances between the 

analyte molecules is diminished by the effect of the charge distribution of 

neighboring molecules.  This effect can also be observed with high concentrations of 

other species in the sample solution, such as electrolytes.  There is also a 

requirement for monochromatic parallel light and the absence of stray light for 

Beer’s Law to apply.  Contaminating light causes the apparent absorbance to be 

lower than the true absorbance, which has the most significant affect at high 

absorbance values.  The effect of polychromatic or stray light, as well as geometrical 

factors, can be minimized through better quality instrument design and choice of 

components .44 

A representative schematic of a spectrophotometer used as a detector in 

HPLC is provided in Figure 5.  All absorbance spectrophotometers have the same 

essential components: a light source, monochromator and/or filters, sample cell, 

and detector.  In the example shown in Figure 5, the light sources are deuterium and 

tungsten-halogen lamps so that the spectral properties can be observed over the 

ultraviolet and visible wavelength range, respectively.  From the source, the light is 

directed through a monochromator and/or filter to select the wavelength(s) of 

interest and also to reduce any stray light.  The incident light is then passed through 

the sample in a flow cell (as in Figure 5), cuvette, or microplate with a fixed path-

length.  Longer path-lengths (typically up to 5 cm) are preferred for dilute solutions, 
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such as in HPLC.  Finally, in certain instruments, the transmitted light is directed 

through a second monochromator and/or set of filters (used to reduce any stray 

light again) and finally to the detector.  A detector, such as a photomultiplier tube or 

photodiode array (as in Figure 5) can be used, giving single wavelength or full 

spectrum absorbance data, respectively. 

 

 

Figure 5. Schematic of a UV-Vis spectrophotometer.45  

 

4.2. Fluorescence Spectroscopy 

One of the more important features of fluorescence is that it is a highly 

sensitive and rapid technique.  As stated in the previous section, the speed of 

analysis is very important for high-throughput screening.42  It is also selective, as 

sample impurities should generally not interfere with the analytical wavelength(s) 

due to the ability to select both the excitation and emission wavelengths.  Small 

fluorescent molecules are an indispensable tool for many bioanalytical methods 

because they are abundantly used for labeling, substrates, indicators, and stains.  



15 

 

 

 

The choice of an ideal fluorophore for a specific purpose can be challenging because 

of the multitude of molecules available.46 

The first well-defined small molecule fluorophore identified was quinine.  In 

1845, Herschel visually observed an emission of a vivid blue color  from an aqueous 

solution of quinine.47  Soon after this observation, Stokes was able to show, by the 

use of rudimentary filters (blue-stained glass and a goblet of yellow-colored wine), 

that this phenomenon was due to the absorbance and subsequent emission of light.  

Stokes then coined the term “fluorescence” to describe this process.48, 49 

The process of fluorescence is illustrated in the Jablonski diagram50 shown in 

Figure 6.  Fluorescence begins when a molecule in its singlet electronic ground state 

(S0) absorbs a photon (i).  If there is a suitable amount of energy associated with the 

photon, an electron is then promoted to a higher energy orbital (S1 or S2).  The 

energy difference between the S0 and S1 energy states is too large for thermal 

population of the S1 excited state.  Therefore, light is used to induce fluorescence as 

opposed to heat.49  The fluorophore is usually excited to some higher vibrational 

state within the S1 or S2 electronic states.  The S2 excited and higher vibrational 

states quickly decay (ii) to the lowest vibrational level of the first singlet excited 

state (S1) by loss of heat.  Then, the decay of the excited state can occur with the 

emission of a photon (i.e., fluorescence) (iii) or non-radiative decay (iv).  The excited 

state can also undergo intersystem crossing (v) via spin conversion to the triplet 

excited state (T1), in which the subsequent relaxation can occur with the emission of 

a photon (i.e., phosphorescence) (vi) or non-radiative decay (vii).  Phosphorescence 
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is most frequently observed for molecules with heavy atoms, such as iodine or 

bromine.46, 48, 49 

 

 
Figure 6. Jablonski diagram for fluorescence.  (i) absorption of a photon to an 

excited state, (ii) internal conversion to S1, (iii) fluorescence, (iv) non-radiative 
decay, (v) intersystem crossing to T1, (vi) phosphorescence, (vii) non-radiative 

decay. 46 
 

A generic absorption/emission spectrum is shown in Figure 7.  The λmax of 

the absorbance spectrum is as described in the previous section (4.1).  The 

wavelength of maximum emission (λem) occurs at a longer wavelength, or lower 

energy, than the λmax due to the loss of energy as vibrational energy, excited state 

reactions, solvent effects, and/or energy transfer.48, 49  Radiative energy loss 

between excitation and emission is universally observed for fluorescent molecules 

in solution.  Having first observed this phenomenon with the use of his experiment 

with simple filters48, this difference between λmax  and λem, or energy difference has 

been subsequently named the “Stokes shift”.46 
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Figure 7. Generic absorbance and fluorescent emission spectra where the Stokes 
shift is the difference between the peaks in the spectra.46 

 

 Selection of a fluorophore requires the consideration of a number of different 

properties.  Fluorophores with a very small Stokes shift are susceptible to self-

quenching (quenching is generally anything that decreases intensity of emission) 

and would therefore not be ideal for use with fluorescence detection methods.  

Fluorescence lifetime and quantum yield are very important characteristics of a 

fluorophore.49  The lifetime of the excited state is characteristically defined as the 

average time the molecule spends in the excited state before it returns to the ground 

state.  The excited state lifetime is proportional to the fluorescent quantum yield.  

The fluorescent quantum yield is fundamentally the ratio of photons emitted 

through fluorescence to those absorbed.  The quantum yield of a fluorophore is 

decreased by non-radiative processes and photochemical reactions, which have a 
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higher propensity for occurrence with longer excited state lifetimes.  Fluorescence 

intensity is proportionally related to the quantum yield.51 

 Discovery of the first fluorophore, quinine, stimulated the development of 

the first commercially available spectrofluorometer in the 1950s.  The first 

rudimentary instruments were used during World War II for the monitoring of anti-

malarial drugs.  The National Institutes of Health (NIH) subsequently developed the 

first practical spectrofluorimeter.49, 52  The success of any experiment requires 

attention to experimental conditions and understanding of the instrumentation.  

There are many instrumental factors that can affect the quality of excitation and 

emission spectra. 

 A spectrofluorometer has the following main components as shown in 

Figure 8: a light source, monochromator, filters, photomultiplier tube (PMT), and a 

computer to collect the data as well as control the instrument.  This instrument has 

a xenon lamp as the excitation source.  Lamps such as this are useful due to their 

high intensity at all wavelengths (250 nm and up).  The shutters are used to close 

the light on and off from the sample.  The instrument has monochromators at both 

the excitation and emission side of the sample which are used for the selection of 

the excitation and emission wavelengths.  The concave gratings of the 

monochromator are used to further reduce any stray light as well as select the 

wavelength of interest.49  Filters many be used to further isolate the wavelength.  

The monochromators and filters determine the resolution of the instrument.  The 

sample is located at a 90� angle to the source light so that it is not observed by the 
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detector.   After the emitted light, which occurs in all directions, passes through the 

second monochromator, the fluorescence is detected by a PMT and then quantified 

with the computer.  The results are then presented graphically and stored 

digitally.49 

 
 

 

Figure 8. Schematic representation of a conventional spectrofluorometer.49 
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Figure 9. Schematic of spectrofluorometer used to read microplates.49 

  

Along with the development of high-throughput techniques, there has 

become a growing need for high-throughput detection methods.  High-throughput 

screening methods used in drug discovery are usually performed in 96 or 384-well 

microplates.  Measurements of numerous samples can be carried out rapidly using a 

microplate reader, as was used in the methods presented herein, shown in Figure 9.  

The optical arrangement in the microplate reader is different than in a conventional 

instrument.  The plate containing the samples is taken into the instrument for 

analysis and must remain horizontal.  Therefore, it is not possible to observe at a 

right angle as conventionally used.  A xenon flash lamp is now commonly used as the 

light source negating the need for the shutters as in Figure 8.  As with a conventional 

spectrofluorometer, the monochromator is used to select the desired wavelength 
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and directed with mirrors to the sample.  Fluorescence from the sample, which 

occurs in all directions, is then directed to the emission monochromator and finally 

to the detector.  Lastly, the microplate is typically on an x-y scanning stage in which 

it will move in order to detect the samples in all of the wells.49 

4.3. High Performance Liquid Chromatography  

High performance liquid chromatography (HPLC) is frequently used in 

bioanalytical analysis for the separation and characterization of components of 

complex mixtures.  With the implementation of an autosampler capable of 

introducing samples from microplates, HPLC becomes a necessity for any high-

throughput screening lab.  Using multiple detectors, such as UV and MS, sample 

information can be obtained along with the separation.  With the increasing number 

of stationary phases being manufactured, nearly any mixture of compounds can be 

separated and/or analyzed based on varying retention mechanisms.4, 40, 53 

Chromatography was first developed by M. S. Tswett in 1906 during his 

research on plant pigments.  The basis of liquid chromatography is the use of a solid 

stationary phase and a liquid mobile phase.  In the original experiments by Tswett, 

calcium carbonate in glass tubes was employed as the stationary phase while 

ether/ethanol mixtures were used as the eluent to separate chlorophylls and other 

pigments.  Using this approach, Tswett was able to observe the separation of the 

colors on the column, which prompted the term chromatography (Greek for “color 

writing).54-56   
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Classical chromatography is most easily understood with the idea of 

theoretical plates, introduced by Martin and Synge.57  Although high flawed, this 

concept describes the chromatographic column consisting of a series of hypothetical 

layers, or theoretical plates, in the direction perpendicular to the direction of sample 

migration.  According to this theory, with every theoretical plate, equilibration of the 

solute between the stationary and mobile phase occurs.  As the analyte moves down 

the column, it represents the passage from one separation stage or equilibrated 

mobile phase to the next.  The largest shortcoming of this theory is that equilibrium 

is never reached in the system.  The thickness of each of these layers or plates is 

called the height equivalent to a theoretical plate (HETP, H).  With any given 

chromatographic column, the number of theoretical plates (N) is equivalent to the 

ratio of the column length (L) to the plate height (N = L/H).  Improving the 

separation of compounds can most easily be achieved by increasing the number of 

theoretical plates.53, 56 

Equation 2)   � = � +��ū + ���ū   

Several models have been developed to estimate the plate height, one of 

which is known as the van Deemter equation, Equation 2.58  Here, the relationship 

between the plate height and the linear flow rate, ū, are related to the eddy diffusion 

constant, A, longitudinal diffusion, B, and the mass transfer between the mobile and 

stationary phase, C.  The eddy diffusion term, A, results from non-homogeneity of 

the flow velocities and path lengths around the stationary phase particles.  Larger 

particles lead to larger void spaces between the particles and thus an increase in the 
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eddy diffusion.  Longitudinal diffusion, B, describes the diffusion of the solute away 

from the center of the sample peak, both with and against the direction of flow.  This 

term is independent of the particle size, but largely dependent upon the time that 

the sample is on the column.  As shown in the equation, it is inversely related to the 

flow rate (i.e., as flow rate increases, longitudinal diffusion decreases).  Finally mass 

transfer, C, comes from the finite rate of transfer of the analyte molecule between 

the mobile phase and stationary phase as the sample migrates through the column.  

The analyte must reach the interface between the two phases to undergo the 

transfer process.   Therefore, mass transfer is primarily dependent upon the particle 

size and flow rate.  Large particles, as with eddy diffusion, leave larger void spaces 

and therefore increased diffusion time to reach the interface.  As shown in the 

equation, it is directly proportional upon flow rate because with faster flow rates, 

less time is allowed for the transfer process to occur.56 

Attempts to increase the flow rate to improve the speed of analysis 

necessitated improvements in stationary phase materials.  Early chromatographic 

materials were not ideal because they would get crushed under the increased 

pressure.  Therefore, materials with increased mechanical strength have since been 

introduced.  Also, from the van Deemter equation (Equation 2), decreased particle 

size could also improve the separation at higher flow rates.  The combination of 

increased pressure, increased flow rate, and decreased particle size resulted in 

faster and more efficient separations.56 
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The basic components of an HPLC system, Figure 10, include a solvent 

reservoir, pump, injector, analytical column, detector, and data collection.  Other 

optional components include an inlet and in-line solvent filters, sample filter, pre-

column filter, guard column, and back-pressure regulator.59 

 

Figure 10. Basic schematic of HPLC.59 

 

An HPLC system begins with the solvent reservoir, which contains the 

solvent used to carry the sample through the system.  Many systems use up to four 

different solvents, which can be mixed in a constant ratio (isocratically) or in 

changing ratios (gradient).  All solvents are filtered with an inlet solvent filter to 

remove any particles that could potentially damage the system's sensitive 

components.  The solvents are propelled through the system by the pump.  This 

includes internal pump seals, which can slowly break down over time by chemical 

and mechanical means.  As these seals break down and release particles into the 

flow path, inline solvent filters ideally prevent any post-pump component damage.59 

The next component in the system is the sample injector.  This injection valve 

is equipped with a sample loop of the appropriate volume for the analyte.  The 
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sample loop allows for the repeatable introduction of sample into the flow path.  

Because samples often contain particulate matter, it is important to utilize either a 

sample filter or a pre-column filter to prevent valve and analytical column damage.  

Following the injector, a sacrificial guard column is often included just prior to the 

analytical column to chemically remove components of the sample that would 

otherwise foul the main column.  The analytical column allows primary sample 

separation to occur.  The separation is based on the differential attraction of the 

sample components between the solvent (i.e., the mobile phase) and the packing 

material (i.e., the stationary phase) within the column.59 

4.4. Mass Spectrometry 

Mass spectrometry (MS) is frequently used in pre-clinical screening due to its 

ability to separate, quantify, and identify molecules with high selectivity and 

sensitivity.  It is frequently used in combination with HPLC for samples that are 

highly impure or complex (e.g., biological samples). Liquid chromatography-mass 

spectrometry (LC-MS ) has been shown to be a suitable instrument for HT analysis 

due to the ease of automation and minimal sample preparation.42   Because MS is a 

destructive method, the sample cannot be recovered, however. 

A block diagram of an LC-MS is shown in Figure 11.  After the sample elutes 

from the HPLC column, it is directed to the ionization source, usually atmospheric 

pressure ionization (API).  The vacuum system then draws the vaporized ions into 

the ion optics where they are then focused and accelerated into the mass analyzer.  

A common mass analysis system is the quadrupole.  In the mass analyzer, the 
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sample ions are separated according to their mass-to-charge ratios with the use of 

applied radio frequency (RF) and direct current (DC) fields.  The mass analyzer 

ejects the ions to the ion detection system, where an ion current signal is produced 

through the detection of the sample ions.  The ion current signal that is produced is 

proportional to the number of ions in the solution.  Finally, the signal is amplified 

and sent to the data system for processing and storage.60 

 

 

Figure 11. Schematic diagram of a mass spectrometer with HPLC as the sample 
introduction system.60 

 

Among the many different ionization methods, electrospray ionization (ESI) 

and atmospheric pressure chemical ionization (APCI) are typically used because 

they are both soft ionization techniques (i.e., most likely to leave the ionized 

molecule fully intact).  ESI is most desirable for large molecules such as proteins or 

polymers, as this method can yield sample ions with multiple charges.  The APCI 

method only yields singly-charged sample ions and is therefore limited to molecules 

with masses up to about 2000 atomic mass units (amu).  In contrast to ESI, APCI 
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allows for the ionization of less polar compounds.  Although ESI is the method of 

choice for ionization of very large molecules, both methods provide sufficient 

ionization for small molecules. 

To produce gas phase ions by ESI (Figure 12), a high voltage, usually between 

3 and 5 kV, is continually applied to the ESI capillary.  The eluent is pumped through 

the heated capillary, spraying the solution into a fine mist of droplets (aerosol) that 

have a charged surface.  The charge density at the surface of the droplets increases 

as the solvent evaporates until the critical point, known as the Rayleigh stability 

limit, is reached.  At this point, the droplets divide into smaller droplets due to the 

electrostatic repulsion being greater than the surface tension.  This process 

continues until very small and highly charged droplets have formed.  The 

electrostatic repulsion from the very small, highly charged droplets ejects the 

sample ions into the gas phase.  The charged capillary repels ions of the same charge 

and attracts ions of the same charge in the gaseous phase.  Finally, the low vacuum 

produced by the forepump draws the positively charged ions and neutral molecules 

in the gas phase through the entrance cone and toward the high-vacuum of the mass 

analyzer.60 

 

Figure 12. Positive ion generation mechanism by electrospray ionization.60 
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 To produce gas phase ions by APCI (Figure 13), the APCI capillary sprays the 

eluent into a fine mist of droplets.  A high temperature tube that surrounds the 

capillary vaporizes the droplets.    Located near the exit of the heated tube, the 

corona pin with a constant current between 2 and 10 µA creates a corona discharge 

leading to the formation of ions.  The energized electrons produced by the corona 

discharge ionize the flowing nitrogen gas by primary ion formation.  The ionized 

nitrogen reacts with the solvent molecules (such as water in Figure 14), forming 

solvent ions through secondary ion formation.  The solvent ions then react via a 

proton transfer reaction with the sample molecules to form sample ions [M+H]+.  

Finally, as with the ESI method, the low vacuum produced by the forepump draws 

the positively charged ions and neutral molecules in the gas phase through the 

entrance cone and toward the mass analyzer.60 

 

 

Figure 13. Positive ion generation mechanism by atmospheric pressure chemical 
ionization.60 
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Primary Ion Formation:   e- + N2 � N2
+· + 2e- 

Secondary Ion Formation:  N2
+· + H2O � N2 + H2O+· 

    H2O+· + H2O � H3O+ + OH· 

Proton Transfer:    H3O+ + M � [M+H]+ + H2O 
 

Figure 14.  Positive ion formation by APCI. 

 

As the forepump draws the ions and neutral molecules through the entrance 

cone and toward the mass detector, the neutral molecules are separated from the 

ions.  The ions enter through a second entrance cone and pass through a RF/DC pre-

filter (a pre-filter is not necessary in all MS systems).  The pre-filter focuses the ions 

that are produced by the API source and transmits them to the mass analyzer.  The 

pre-filter in the system consists of a square array of square-shaped rods (i.e., a 

quadrupole of square-shaped rods).  During ion focusing and transmission, a 

positive offset voltage (for analysis of positive ions) is applied to the pre-filter 

quadrupole.  Increasing the offset voltage also increases the kinetic energy of the 

ions along the axis of the quadrupole. 

 
After focusing and acceleration by the pre-filter, the ions then enter the mass 

analyzer.  The quadrupole mass filter consists of a set of four stainless steel 

cylindrical rods positioned in a square array (similar to the pre-filter).  Rods 

opposite each other have either a positive or negative direct-current potential at 

which an alternating-current (AC) potential is superimposed, Figure 15.  The AC 

potential, in the RF region, successively reinforces and overwhelms the DC field.  As 

the ions are introduced into the quadrupole, they begin to oscillate in the plane 



30 

 

 

 

perpendicular to the length of the rods as they traverse the filter.  At a given instant, 

one particular set of RF and DC voltages are applied to the mass analyzer rods.   

 

 

Figure 15. Applied RF and DC voltages to the rods in the quadrupole mass analyzer.  

 

The trajectories of the ions of a particular mass to charge (m/z) ratio, 

matching a specific RF/DC voltage, are stable and are transmitted toward the 

detector.  Ions with unstable trajectories do not pass through the quadrupole 

because their oscillation becomes infinite.56  These ions strike the surface of one of 

the rods, become neutralized, and are pumped away by the vacuum.  As the mass 

analyzer scans over the designated mass range by changing the RF and DC voltage, 

the ions of different m/z ratios are transmitted to the detector.  The scanning 

mechanism of the quadrupole results in a differentiation between ions with similar 

m/z ratios without the use of filters.60 

After the ions have been separated by the mass analyzer, they are detected.  

The ion detection system in the instrumentation used in the analysis herein is an 

electron multiplier, illustrated in Figure 16.  The ions exiting the mass analyzer are 

directed to the conversion dynode.  The conversion dynode is a concave piece of 



31 

 

 

 

metal with a potential of -10 kV which is located at a 90° angle to the ion beam.  The 

off-axis orientation greatly reduces the noise by limiting the probability that a 

neutral molecule will strike the conversion dynode.  A high voltage is used to 

increase the conversion efficiency and thus increase the signal.  The conversion 

dynode shield protects the vacuum manifold from the electric field produced by the 

conversion dynode.60 

 

 

Figure 16. Ion detection system.60 

 

When an ion strikes the surface of the conversion dynode, one or more 

secondary particles are produced (negative ions or electrons from positive ions).  

The secondary particles are focused by the curved surface and accelerated by a 

voltage gradient into the electron multiplier.  The electron multiplier contains a 

cathode and an anode.  The cathode is a lead-oxide funnel-like resistor.  A potential 
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of up to -2.5 kV is applied by the high voltage ring to the entrance of the cathode, 

while the exit of the cathode is near ground potential.  The anode of the electron 

multiplier is a small cup that is located at the exit of the cathode and collects the 

electrons produced by the cathode.60 

  Secondary particles that are produced by the conversion dynode strike the 

inner walls of the electron multiplier cathode with enough energy to eject electrons.  

The ejected electrons are accelerated farther into the cathode as they are drawn by 

the increasingly positive potential gradient.  Because of the funnel shape of the 

cathode, the electrons do not travel far before they strike the surface of the cathode 

again, causing the emission of more electrons.  A cascade of electrons is created as 

this process continues, creating a measurable current collected by the anode.56, 60   
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CHAPTER II 

AQUEOUS SOLUBILITY 

1. Introduction 

In a general sense, solubility is an easy concept to understand and measure.  

It can be defined as the amount of substance that dissolves in a given volume of 

solvent at a specific temperature.  This is different than the concept of dissolution, 

which measures the time-dependent solvation of a solid.  In a more specific sense of 

the concept, solubility can be defined as un-buffered, buffered, or intrinsic solubility.  

Un-buffered solubility is normally measured in water at the final pH of the saturated 

solution.  Buffered solubility is measured at a specific pH, neglecting the influence of 

salt formation with counterions in solution.  Finally, intrinsic solubility is the 

solubility of the neutral form of an ionizable compound.11 

Solubility is an essential physiochemical property that must be evaluated 

during the drug discovery and development process.61  The oral bioavailability of 

poorly soluble drugs is highly susceptible to food affects, pH changes, 

gastrointestinal metabolism, and efflux transporters.62  Solubility-limited absorption 

can influence the effectiveness of a drug and is preferably addressed in the early 

stages of drug discovery.42  Compounds with poor solubility have a high risk of 

failure with in vitro assays due to insufficient solubility to reach effective 

concentration in solution.3, 63, 64  In vivo, poor solubility results in a limited 

absorption of orally administered drugs.65  
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Depending on the design of the solubility assay, the experiment can measure 

either the kinetic or thermodynamic solubility.  The kinetic solubility is often 

considered a misnomer because it measures the precipitation rate rather than the 

solubility.65  Kinetic solubility values are time-dependent and may be overestimated 

(with respect to the thermodynamic value) due to pH or co-solvent effects.  The 

results obtained from one particular kinetic solubility assay are not expected to be 

reproducible between different kinetic methods.  Thermodynamic solubility 

involves the saturation of the compound in solution in equilibrium with an excess of 

un-dissolved compound.  Although thermodynamic solubility is regarded as the 

‘true’ solubility, the values are not absolute.  The values depend on a number of 

different experimental factors such as compound morphology, temperature, and 

time. 

Thermodynamic equilibrium always seeks the overall lowest energy state of 

the system.  Since equilibrium must be reached, it makes the thermodynamic 

solubility assay a very time consuming assay.  Few researchers have the patience to 

stir the solution for an infinite amount of time in order to ensure equilibrium has 

been reached.  Because of this, a high purity crystalline material gives the best 

chance that equilibrium can be reached after a reasonable period of time.65  As 

parallel synthesis and combinatorial chemistry have increasingly become the most 

dominant methods of compound synthesis in the lead discovery stage, there is an 

increasing probability that the physical form of the compounds will be amorphous 

due to impurities and solvent residues.  This is important to consider when choosing 

a method of solubility determination because non-crystalline materials are almost 
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always more soluble in solvents including aqueous media.42  In early discovery 

stages, it is less practical to measure thermodynamic solubility because time, purity, 

physical form, and quantity are all important factors for accurate solubility 

determination. 

Kinetic solubility, often called “shake flask solubility”, measures the rate of 

formation of precipitate.  Typically, the compound is first dissolved in 

dimethylsulfoxide (DMSO) to make a stock solution of a known concentration.5, 42  

This stock solution is then added gradually to an aqueous solution until 

precipitation of the molecule occurs.65  In general, there are two main approaches to 

determine the kinetic solubility.  The first is done by removing the precipitate by 

filtration through a membrane by vacuum or centrifugation and determining the 

compound concentration by UV absorption or mass spectrometry.  The second 

approach detects the formation of precipitate by monitoring the scattering of light 

by the particles using UV absorbance or directly by detecting the light scattering by 

nephelometric turbidity detection.11 

In the discovery stages, a researcher deals with a large number of drug 

candidates with very small sample sizes and a need to select a limited number of 

compounds for further investigation based on activity and solubility.  In order to 

accomplish the characterization, a solubility assay must be high-throughput, have 

minimal sample use, be inexpensive, and fast.66  Therefore, a miniaturized kinetic-

based high-throughput assay for the determination of the solubility of small 

molecules has been developed. 
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2. Experimental 

 2.1. Materials and Instrumentation 

 All materials were used as they were received, with no further purification.  

Five bioactive small molecules; 4,5-diphenylimidazole (Alfa Aesar), β-estradiol (Alfa 

Aesar), diethylstilbestrol (Spectrum Chemicals), ketoconazole (CalBioChem), 3-

phenylazo-2,6-diaminopyridine (Alfa Aesar) were used as standards.  Each of the 

standards were made to a 10 mM solution in DMSO (Acros, Spectroscopic Grade 

99.9+%).  The buffer was prepared in 18 MΩ water with 90 mM ethanolamine (Alfa 

Aesar, ACS grade 99+%), 90 mM KH2PO4 (J.T. Baker), 90 mM potassium acetate 

(Fisher Biotech), and 30 mM NaCl (Fisher) and adjusted to pH 7.4 with HCl 

(Mallinckrodt).   

HPLC grade acetonitrile (Columbus Chemical Industries) was used to make a 

20% by volume solution in buffer for the preparation of the calibration plate.  The 

calibration solutions (0-300 µM, 50µL each) were read in a 384-well UV plate 

(Greiner Bio-One, 781801), which was also used for the solubility assay absorbance 

readings.  The incubation and filtration were performed in a 384-well filter plate 

(Pall, #5071), which was sealed with an aluminum cover (Corning, #6570) during 

incubation and mixing.  The filtration of the plates was performed using a Millipore 

MultiScreenHTS Vacuum Manifold (MSVMHTS00).  All of the absorbance readings 

were performed on an Infinite M1000 plate reader (Tecan). 



37 

 

 

 

2.2. Solubility Assay 

Calibration plots were generated to obtain the relationship between solute 

concentration and absorbance.  For each 384-well plate, 16 molecules were serially 

diluted in a 384-well UV plate according to Table 1, with one compound per row.  

Once the solutions were added to the wells, they were mixed thoroughly by pipette.  

The top of the plate was then covered with an aluminum plate cover.  The UV plate 

is then carefully placed in the bench-top sonicator so that it floats on top of the 

water.  It is then sonicated for 1 minute and centrifuged at 1000 rpm for 3 minutes 

to ensure that all of the solution remains in the wells.  The plate is then scanned for 

absorbance with the Tecan plate reader from 230-800 nm at 5 nm increments with 

10 flashes per well. 

 

Table 1. Preparation of calibration plate for solubility assay. 

Well Numbers 1, 2, 3, 4 5 ,6, 7, 8 
9, 10, 

11, 12 

13, 14, 

15, 16 

17, 18, 

19, 20 

21, 22, 

23, 24 

Volume Buffer 109.13 µL 16.67 µL 33.33 µL 41.67 µL 45.83 µL 47.5 µL 

Volume 10 mM 
DMSO Stock 

3.38 µL      

Volume DMSO      2.5 µL 

Volume from 
Wells 1,2,3,4 

 33.33 µL 16.67 µL 8.33 µL 4.167 µL  

Final 

Concentration 
300 µM 200 µM 100 µM 50 µM 25 µM 0 µM 

 

 
Once the calibration plates were read, a calibration plot for each compound 

of adjusted absorbance vs. solute concentration at the maximum wavelength (λmax) 
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was generated.  This was done by subtracting the average absorbance of the buffer 

(0 µM, background) from the absorbance of each of the other wells.  Each of the 

calibration plots was labeled with the compound name or code and maximum 

wavelength.  Finally, a best fit linear trend line through the origin of the plot with 

the equation and r2 value to 6 decimal places was added to the plot. 

After the calibration plots were generated at the wavelength of maximum 

absorbance for each molecule, the solubility assay was performed.  The wells in the 

384-well filter plate were pre-wetted with 20-40 µL of buffer.  The buffer was left to 

sit in the wells for about 5 minutes and subsequently removed by vacuum.  An 

aluminum plate cover was then adhered underneath the filter plate to prevent 

wicking out or evaporation of the solvents during the incubation period.  The 

solubility assay was then prepared in the filter plate according to Table 2 with four 

wells per molecule.  With an adhesive plate cover on top and underneath the filter 

plate, it was sonicated for 1 minute, and shook on a reciprocating plate shaker 

overnight. 

 

Table 2. Preparation of solution for solubility assay. 

500 µM Blank 

47.5 µL buffer 47.5 µL buffer 

2.5 µL of 10 mM stock DMSO solution 2.5 µL DMSO 

 

 



39 

 

 

 

The next morning, the solution was filtered into a collection plate (384-well 

polystyrene plate).  From the filtrate, 30 µL from each well from the collection plate 

was transferred into a 384-well UV plate using a multichannel pipette.  Next, 20 µL 

of acetonitrile was added to each well by pipette and shaken for 5 minutes on the 

plate shaker followed by centrifugation at 1000 rpm for 3 minutes.  The absorbance 

was scanned from 230-800 nm at 5 nm increments with 10 flashes per well. 

 

Equation 3)  �
�������� = ������ !���"�#$"%&'!�% �()*+
,-#.! /012 

 

 

Finally, the solubility was determined using Equation 3 with the slope from 

the calibration plot for the molecule.  At the maximum wavelength for each 

compound, the average absorbance from the blank wells (no small molecule) was 

subtracted from the absorbance of the solution after filtration (Adjusted Absorbance 

at λmax).  The average of the solubility values was calculated and the standard 

deviation was determined.  Five small molecules (4,5-diphenylimidazole, β-

estradiol, diethylstilbestrol, ketoconazole, 3-phenylazo-2,6-diaminopyridine) with 

known solubility values were analyzed as standards on each solubility assay plate. 

3. Results and Discussion 

The five standard molecules were used for comparison of the miniaturized 

assay with the standard solubility assay provided by Millipore (96-well plate 

format).  Firstly, the calibration plots exhibited an improved r2 value (i.e., closer to 

1) than those published by Millipore.67  Secondly, some solubility values were 
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similar to those published by Millipore, while others were not.  The results of the 

average solubility concentration with one standard deviation (SD) from the mean 

for the standard molecules are shown below in Table 3 (standard deviation from the 

standard method was not reported).  The relative standard deviation from the 

miniaturized solubility assay is less than or equal to 5% in all cases.  The values 

determined by the 384-well solubility assay were very similar to those from the 

standard method, except for diethylstilbestrol, which was much lower than the 

reported value.  The reported solubility for diethylstilbestrol using the shake flask 

method was 66 µM67, which is closer to the value determined by the miniaturized 

method than the standard method.  This suggests that the 384-well miniaturized 

solubility assay is more accurate that the method outlined in the Millipore 

protocol.67 

 
 

Table 3. Solubility results of the standard small molecules by the standard method 
in comparison to the miniaturized method. 

Name 
Standard Method 

Solubility (µM)67 (n=3) 

Miniaturized Method 

Solubility (µM) (n=4) 

4,5-diphenylimidazole 68  67.3 ± 3.7  

�-estradiol 34  43.0 ± 2.3  

Diethylstilbestrol 156  108.3 ± 5.4  

Ketoconazole 141  134.5 ± 2.4  

3-phenylazo-2,6-
diaminopyridine 

355  357.7 ± 7.0  
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Along with the standard molecules, solubility values were determined for an 

in-house library of small molecules containing hit molecules with varying structures 

as well as a scaffold library containing molecules with a common structural scaffold.  

The results are shown in Table 4 and 5 as well as in Appendix A.  Generally, a 

compound with a solubility of 10 µM or less can have problematic oral activity or 

bioavailability.42, 68  In Table 4, a series of 2-indolyl methanamines exhibit very good 

solubilities.  Interestingly, the position of the aromatic chloro-substituent plays an 

important role with respect to the solubility.   The ortho-chloro substituted 

compound has a solubility of 129 µM, whereas the meta-chloro substituted 

compound has a solubility of 209 µM.  In the case of the methoxy substituent, the 

position effect on solubility is negligible.  This trend is also observed with the series 

of 2-indolyl methanamines, shown in Table 5.  A chloro substituent at the R1 

position leads to a very poor solubility as compared to the non-substituted molecule 

(bolded in Table 5). 

 

Table 4. Aqueous solubility of a series of N-((2-methyl-1H-indol-3-
yl)(phenyl)methyl)pyridin-2-amine molecules. 

 
-R

1
  -R

2
  -R

3
  Solubility ± 

1 SD (µM)  

-H  -Cl  -H  209.2 ± 9.2  

-Cl  -H  -H  129.3 ± 0.8  

-H  -OCH
3
  -H  318.2 ± 21.4  

-H  -H  -OCH
3
  320.1 ± 5.5  

 

H
N

H
N

N

R2

R1

R3
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Table 5. Aqueous solubility of a series of N-((2-methyl-1H-indol-3-
yl)(phenyl)methyl)aniline molecules. 

�

-R
1
 -R

2
 -R

3
 -R

4
 

Solubility 

± 1 SD 

(µM) 

-Cl -H -OCH
3
 -H 59.8 ± 8.1 

-Cl -H -H -H 31.6 ± 5.5 

-Cl -H -H -Cl 6.8 ± 1.6 

-Cl -H -H -N(CH
3
)

2
 21.0 ± 2.7 

-Cl -H -H -CH
3
 36.0 ± 6.7 

-Cl -H -H -NO
2
 4.9 ± 1.1 

-Cl -H -H -OCH
3
 84.2 ± 2.7 

-H -H -H -H 252.9 ± 5.6 

-H -CH
3
 -H -H 175.2 ± 8.3 

-H -Cl -H -H 94.0 ± 2.6 

-H -N(CH
3
)

2
 -H -H 157.8 ± 33.7 

-H -NO
2
 -H -H 117.7 ± 1.9 

-H -O(CH
2
)

3
OH -H -H 503.5 ± 16.5 

-H -OCH
3
 -H -H 237.6 ± 4.4 

 

4. Conclusions 

For scaffold libraries, as in Tables 4 and 5, the influence of different 

substituents on the solubility of the molecules can be correlated.  This information is 

crucial for the identification of improved drug candidates and can assist in the 

design of molecules with improved properties.  The solubility information can also 

be used to determine the optimal concentration for any subsequent screening 

assays. 

A typical high-throughput solubility assay is normally carried out in a 96-well 

polycarbonate filter plate.  In the preparation of the calibration and assay plates 

H
N

H
N

R1

R4

R3

R2
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about 76 µL of each compound solution is used.  This amount allows for two 

independent measurements per concentration for the calibration and three 

independent measurements for the solubility determination.61, 67, 69  Only 8 

molecules can be analyzed at a time in one calibration plate, while 30 compounds 

can be analyzed in one assay filter plate.67  In the case that milligram quantities of 

molecules are available, this assay will use about 30% of the stock supply.  This 

leaves little room for error and insufficient material for further studies. 

For this novel 384-well filter plate assay, a total of only 23.5 µL of each 

compound solution was used.  This amount was sufficient for four independent 

measurements for each calibration concentration and four replicates for 

determination of the solubility concentration.  With the 384-well plate format, 16 

molecules can by analyzed in one calibration plate and 95 molecules can be 

analyzed in one assay filter plate.   

The small molecules could be studied further by analyzing their solubilities 

at different buffer pH values.  It is understood that the pH at which the molecule is 

most soluble determines the location where it will most likely be absorbed.  For 

example, drugs that dissolve in acidic solutions are absorbed through the lining of 

the stomach.  Molecules that dissolve readily in alkaline conditions will be absorbed 

through the walls of the small intestine and into the bloodstream.  The 

understanding of the pH influence on solubility will help to determine other factors 

influencing permeability and distribution.  
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CHAPTER III 

MEMBRANE PERMEABILITY 

PART 1:  PARALLEL ARTIFICIAL MEMBRANE PERMEABILITY ASSAY (PAMPA) 

1. Introduction 

Similar to solubility, permeability is directly related to the bioavailability of a 

drug.  Though, unlike solubility, permeability cannot be manipulated by formulation.  

Achieving desired permeability must be done through optimization of the molecule 

itself.70  Assays that predict cellular absorption of small molecules have become 

increasingly important in the drug discovery process.  It is essential to have reliable 

methods of predicting the in vivo permeability through the use of in vitro methods.6 

The oral route of the administration of drugs is the most commonly used 

method as it is the most convenient for patients.6  The absorption of an orally 

administered drug is largely determined by its ability to cross the gastrointestinal 

tract, its penetration of the blood brain barrier, and its transport across cell 

membranes.71  Several mechanisms, such as paracellular transport and active 

uptake or efflux can also influence the permeability of drugs.72  It is generally 

assumed that sufficiently lipophilic compounds are transported via passive 

diffusion, while small hydrophilic compounds (<200 Da) are believed to be 

transported through the paracellular route if not by active transport.73  Active 

transport of small molecules is difficult to replicate with in vitro assays.  For this 

reason, the assessment of passive cellular absorption is the preferred method.   
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In vitro assays that measure the passive cellular compound absorption often 

employ artificial or biological membranes such as Caco-2 cells, lipids, or long chain 

alkanes (dodecane or hexadecane).  These methods are based on the passive 

diffusion process, including paracellular and trans-cellular permeation.74  However, 

in vivo permeability cannot be measured by isolation from biological events.  All in 

vitro permeability measurements are essentially various forms of lipophilicity 

analysis.5  Although related, permeability and lipophilicity values are not 

interchangeable, but can correlate significantly.5 

Many factors based on physiochemical parameters have been recognized to 

govern the passive absorption of a drug including lipophilicity, molecular weight, 

polar surface area, ionization state, and hydrogen bonding capacity.72, 74  Drug 

lipophilicity is commonly used as a predictor for membrane permeability because 

membranes are primarily lipophilic in nature.6  Molecular size can also play a 

distinct role in the permeation process because larger molecules diffuse more 

slowly than smaller molecules.   

Lipids within a membrane that contain hydrogen-bonding acceptor groups 

can associate with the hydrogen-bonding solutes.  This hydrogen-bonding prevents 

the solutes from penetrating the membrane and slows down the diffusion process.  

Directly related to the hydrogen-bonding capacity is the polar surface area.6  Polar 

surface area is the molecular surface area associated with hydrogen bonding 

acceptor atoms (i.e., oxygen and nitrogen) plus the area of the hydrogen atoms.  

Finally, membranes are more permeable to non-ionized forms of drug than the 
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ionized species because of their greater lipid solubility and the charged nature of the 

membranes.6 

To reduce the time and cost involved with animal models for the estimation 

of permeability, artificial membranes have long been employed.  When screening for 

passive membrane permeability, artificial membrane models have the advantage of 

enabling a reproducible and high-throughput format.5  The first such artificial 

membrane permeability assessments was discovered in 1962 when an optically 

black bilayer lipid membrane was formed over a small hole in a thin sheet of 

Teflon.75  This model, however, had serious drawbacks due to the fragility of the 

membrane.  Nevertheless, membranes such as this have since been viewed as more 

useful models than the more complex “natural” membranes such as excised 

tissues.42  Since then, passive artificial membrane permeability has been extensively 

studied and compared with cell-based permeability.73, 76, 77 

The Caco-2 cell model has been long considered the “gold standard” 

technique and has been used as a standard for comparison for other absorption 

techniques.  Caco-2 cells are human colon adenocarcinoma cells which exhibit many 

in vivo intestinal cell characteristics.  These cells have tight intracellular junctions, 

microvilli, and express intestinal enzymes and transporters.  Due to these 

characteristics, the permeation across a layer of Caco-2 cells correlates to human 

intestinal permeation.  This model measures passive diffusion, active transport, and 

paracellular diffusion.  This technique is performed by culturing a layer of cells on a 

filter support, usually in a microplate.5, 6   
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Although the Caco-2 model is regarded as a standard technique, it is quite 

laborious and costly.  It can take from days to weeks to generate a fully confluent 

layer of cells which have gone though enough passages so that they have been fully 

differentiated.12  Because of the tedious culture period necessary for Caco-2 cells, 

other cell-based models had been developed using Madin-Darby Canine Kidney 

(MDCK) and Lewis Lung Carcinoma-Porcine Kidney (LLC-PK1) cells.  Although, the 

MDCK method correlates closely with transport mediated drug permeability, the 

LLC-PK1 method has not yet been fully correlated to in vivo absorption.6 

The parallel artificial membrane permeability assay (PAMPA) has been used 

as an alternative method for predicting passive permeability.  It has been regarded 

as an excellent model because it is amendable to high-throughput, reproducible, and 

low cost.6  Although, PAMPA methods are not completely predictive of in vivo 

permeability, they can identify definitive trends in the ability of a molecule to 

permeate membranes by passive diffusion.42   

The PAMPA is usually performed in a 96-well plate with two parts, the donor 

plate and the acceptor plate as illustrated in Figure 17.  The donor plate has a 

permeable membrane or filter along the bottom which aligns with the wells in the 

acceptor plate.  The artificial membrane (composed of lecithin, phosphatidylcholine, 

hexadecane, porcine brain lipid extract, etc. in organic solvents) is impregnated into 

the filter of the donor plate.  Buffer and compound are added to the donor wells 

while buffer is added to the acceptor wells.  With the impregnated filter in contact 

with both solutions, the assay plates are incubated for a set amount of time, and the 
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concentration of compound that has passed through the membrane is determined 

(usually by absorbance spectroscopy, HPLC, or LC-MS).  An illustration of the 

PAMPA method is shown in Figure 18. 

 

 

Figure 17. Illustration of PAMPA plates.  A) 96-well filter plate pre-coated with an 
artificial membrane with a matched 96-well receiver plate.  B) Solutions of the 

compounds in buffer are added to the filter plate on top of the artificial membrane 
(donor plate), while buffer is added to the receiver plate (acceptor plate).78 

 

 
Figure 18. Example of a PAMPA assay performed in a multi-well plate. 

 

The effective permeability determined by cell-based or PAMPA method is 

calculated using Equation 4.  Here, dCA/dt (mg/s�mL) is the increase of drug 



49 

 

 

 

concentration in the receiver chamber over the incubation period.  The term A (cm2) 

is the surface area of the membrane that is exposed to the compound.  VA (mL) is the 

volume of the solvent in the acceptor chamber.  Finally, CA and CD (mg/mL) are the 

initial drug concentration in the acceptor and donor chambers, respectively.6 

 

Equation 4)    3!44 =� 5*
�(7897:) /

�7:
� 2   

 
Along with PAMPA, other methods have been used to estimate the 

membrane permeability of small molecules.  These alternative methods include 

HPLC with columns containing immobilized lipids, liposomes, or micellular 

chromatography.  These methods have shown to have a better correlation to 

permeability than octanol/water partitioning, but are not yet regarded as reliable 

methods yet.  The HPLC method of permeability estimation will be described further 

in Part 2 of this chapter.   

Human in vivo Peff values obtained under physiological conditions provide 

the basis for establishing in vitro–in vivo correlations, which can be used to make 

predictions about oral absorption.  Therefore, many in vitro methods are directly 

correlated to in vivo values in order to assess the accuracy of the assay.  One such 

method is the Loc-I-Gut method, which has been used to establish a 

Biopharmaceutics Classification System (BCS) database of in vivo human 

permeability values for orally administered drugs.   
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Figure 19. Functional diagram of the Loc-I-Gut technique used for the determination 
of human in vivo permeability and absorption.5 

 

The Loc-I-Gut method, shown in Figure 19, is a perfusion technique for the 

proximal region of the human jejunum (upper intestinal section).  It employs a 

multichannel polyvinyl chloride tube that is 175 cm long and an external diameter 

of 5.3 mm.  The tube contains six channels and also has two 40 mm long, elongated 

latex balloons which are placed 10 cm apart.  Each balloon is separately connected 

to one of the smaller channels.  The two wider channels in the center of the tube are 

for infusion and aspiration of perfusate.  The remaining smaller channels are used 

for administration of marker substances and/or drainage.  A tungsten weight at the 

far end of the tube aids the passage of the tube into the jejunum.  The balloons are 

then filled with air when the second balloon has passed through the junction 

between the duodenum and jejunum.  Finally, 14C-PEG 4000 is used as a volume 

marker to detect water flux across the intestinal barrier.5, 79-81 

The BCS classifies drugs as having either high or low permeability.  It is based 

indirectly on the extent of absorption of a drug in humans and directly on the 

measurement of rates of mass transfer across a human intestinal membrane.  A drug 
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is considered highly permeable when the extent of absorption in humans is 

determined to be 90% or more of the administered dose based on a mass-balance 

determination or in comparison to an intravenous dose.82  Using BCS classified 

drugs as standards, a hexadecane artificial membrane PAMPA (HDM-PAMPA) was 

performed with a library of small molecules and the permeability of these molecules 

was assessed. 

2. Experimental 

2.1. Materials and Instrumentation 

All materials were used as received with no further purification.  The 

following small molecules were used as standards: verapamil hydrochloride (Tocris 

Bioscience), diethylstilbestrol (Spectrum Chemical Mfg. Corp.), β-estradiol (Alfa 

Aesar), caffeine (Alfa Aesar), 10,11-dihydrocarbamazepine (Alfa Aesar), D,L-

propranolol hydrochloride (MP-Biomedicals), 4,5-diphenyl imidazole (Alfa Aesar), 

piroxicam (MP-Biomedicals), metoprolol tartarate (LKT Laboratories), naproxen 

(MP-Biomedicals), atenolol (MP-Biomedicals), and ranitidine hydrochloride (Alfa 

Aesar).  Each of the small molecules were dissolved in DMSO to make a 10 mM 

solution (Acros, Spectroscopic Grade 99.9+%).   

The PAMPA assay was performed with the Millipore MultiScreen filter plates 

(MAIPNTR10) and Millipore transport receiver plates (MATRNPS50) using a 5% by 

volume n-hexadecane (Acros) in n-hexane (Fisher) solution to create the artificial 

layer.  The absorbance readings were completed with a Corning Costar 96 well UV 

plate (3635).  1x Phosphate buffered saline (PBS) was prepared in 1L batches using 
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18 MΩ water with 3.23 mM K2HPO4·7H2O (J.T. Baker), 7.84 mM KH2PO4 (J.T. Baker), 

5 mM KCl (Fisher), 150 mM NaCl (Fisher), and adjusted to pH 7.2 with HCl 

(Mallinckrodt) and NaOH (Fisher).  All of the absorbance readings were performed 

on an Infinite M1000 plate reader (Tecan).   

2.2. PAMPA 

The artificial membrane was prepared by carefully pipetting 15 µL of the 5% 

(v/v) hexadecane in hexane solution to each of the wells of the donor plate (assay 

plates as shown in Figure 16).  The plate was placed into a fume hood for 1 hour to 

ensure complete evaporation of the hexane.  After the hexane had evaporated, 300 

µL of PBS with 5% (v/v) DMSO was added to each of the wells of the acceptor plate.  

The hexadecane treated donor plate was then placed on top of the acceptor plate 

taking care that the underside of the membrane is completely in contact with the 

solution in each of the acceptor wells.  Each of the compounds solutions were 

prepared in triplicate in a separate 96-well plate to 300 µM (4.5 µL of 10 mM 

compound solution in DMSO, 3 µL DMSO, and 95 µL buffer).  Then, 150 µL of the 

compound solution was added to the donor wells.  For each plate, carbamazepine 

(medium-high permeability), verapamil (high permeability), and ranitidine (low 

permeability) were used as standard molecules for reference.   

The lid was placed on the plates and the entire plate sandwich was placed 

into a closed container with a wet paper towel along the bottom to circumvent 

evaporation during the incubation process.  The container was then placed on a 

reciprocal shaker for agitation at about 100 rpm.  The time at the beginning of the 
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incubation was recorded, as this is a thermodynamic-based assay.   The incubation 

was then allowed to continue for approximately eighteen hours. 

The next day, the plates were removed from the incubation container and the 

time of the end of the incubation period was noted.  The donor plate was removed 

and 50 µL of the acceptor solution was transferred to the UV plate.  Drug solutions 

at the theoretical equilibrium concentration (300 µM) was also prepared and 

transferred to the UV plate.  The absorbance of the solutions in the UV plate was 

then scanned from 250-600 nm with 1 nm steps and a 5 nm bandwidth. 

 

Equation 5)  �
�3 = �
� <�� × − ln /1 −� BC$�DE:
BC$�DEF2G�;Hℎ
�
�� = � / 5:�×�58

(58I�5:)��×�J2  

 
The relative permeability (cm/s) of the small molecules was calculated with 

Equation 5, where VD is the volume of the donor well in cm3 (150 µL), VA is the 

volume in the acceptor well in cm3 (300 µL), A is the active surface area of the 

membrane in cm2 (0.283 cm2), T is the incubation time of the assay in seconds, 

[Drug]A is the absorbance of the compound in the acceptor well after the incubation 

period, and [Drug]E is the absorbance of the compound at the concentration of the 

theoretical equilibrium (as if the donor and acceptor solutions were simply 

combined).83  The equation is derived from Equation 4, described previously, in 

which the change in concentration of the solute is time dependent. 



54 

 

 

 

3. Results and Discussion 

The resulting values of the HDM-PAMPA for the three standard molecules on 

each assay plate were compared to literature values.  This was done to determine 

the validity of each assay plate as well as to determine the numbers correlating to 

high and low permeability.  The HDM-PAMPA results are shown in Table 6, the 

literature values were determined using a 2% lipid (2-dioleoyl-sn-glycer-3-

phosphocholine) in dodecane as an artificial membrane.83  From the results 

collected from the standard molecules, it was determined that molecules with a logP 

value of about -6.75 cm/s and above (i.e., closer to zero) are considered to be highly 

permeable according to the BCS classification. 

Along with the standard molecules, a permeability assay was also performed 

using an in-house library of small molecules containing molecules with varying 

structures as well as a scaffold library containing molecules with a common 

structural scaffold or backbone.  The permeability values and structures of the 

compounds are shown in Appendix B.  The average permeability results with 

standard deviations from two different indole-based scaffolds are summarized in 

Tables 7 and 8.  

 

Table 6. Comparison of PAMPA values. 

Molecule 
BCS  

Permeability 82, 83 

Literature  

logP 42, 83 (cm/s) 

Experimental 

logP (cm/s) 

Carbamazepine High (Medium) -5.21 -6.81 

Ranitidine Low -8.00 -8.01 

Verapamil High -4.40 -5.99 
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Table 7. HDM-PAMPA (pH 7.2) values for a series of N-((2-methyl-1H-indol-3-
yl)(phenyl)methyl)pyridin-2-amine molecules. 

 
-R

1
  -R

2
  -R

3
  logP (cm/s) 

-H  -Cl  -H  -5.86 ± 0.02 

-Cl  -H  -H  -6.12 ± 0.17 

-H  -OCH
3
  -H  -6.02 ± 0.03 

-H  -H  -OCH
3
  -6.07 ±0.08 

 

 

In Table 7, a series of 2-indoyl methanamine molecules with different 

aromatic substituents exhibit high permeabilities.  The position of the aromatic 

methoxy group (meta or para) does not significantly change the permeability of the 

compounds.  In contrast, the position of the chloro-substituents (ortho or meta) has 

a strong influence on the permeability.  Permeability values for a different series of 

2-indoyl methanamines are summarized in Table 8.  A chlorine substituent at the R1 

position leads to a poor permeability as compared to the non-substituted molecule 

(bolded in Table 8).  With the substitution of a tertiary amine at the R1 and R4 

position, the permeability decreases significantly.  It is also shown that the electron-

withdrawing nitro substituent on the aniline significantly decreases the 

permeability.  In general, any additional substitutions on this molecular scaffold 

decreases the permeability determined by HDM-PAMPA.  This may be due to the 

increase of molecular weight and therefore size of the molecule. 

 

 

H
N

H
N

N

R2

R1

R3



56 

 

 

 

Table 8. HDM-PAMPA (pH 7.2) values for series of N-((2-methyl-1H-indol-3-
yl)(phenyl)methyl)aniline molecules. 

� -R
1
 -R

2
 -R

3
 -R

4
 logP 

(cm/s) 

-Cl -H -OCH
3
 -H -6.22 ± 0.08 

-Cl -H -H -H -6.42 ±0.02 

-Cl -H -H -Cl -6.25 ± 0.10 

-Cl -H -H -N(CH
3
)

2
 -7.28 ± 0.16 

-Cl -H -H -CH
3
 -6.46 ± 0.25 

-Cl -H -H -NO
2
 -7.61 ± 0.41 

-Cl -H -H -OCH
3
 -6.31 ± 0.08 

-H -H -H -H -6.00 ± 0.11 

-H -CH
3
 -H -H -6.34 ± 0.04 

-H -Cl -H -H -6.04 ± 0.02 

-H -N(CH
3
)

2
 -H -H -6.88 ± 0.08 

-H -NO
2
 -H -H -6.09 ± 0.10 

-H -O(CH
2
)

3
OH -H -H -6.83 ±0.03 

-H -OCH
3
 -H -H -6.10 ± 0.02 

 

 

4. Conclusions 

 The HDM-PAMPA has been shown to be a reliable high-throughput method 

for the estimation of the passive cellular diffusion of small molecules.  Molecules 

that have been well characterized according to BCS classifications were used to 

determine the range of permeability values to characterized small molecules 

according their passive absorption abilities. 

H
N

H
N

R1

R4

R3

R2
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The determination of permeabilities of small molecules within scaffold 

libraries, as in Tables 7 and 8, enables the correlation between different 

substituents and their influence on the compound permeability.  This information is 

essential for further development of drug candidates and the identification of drug 

candidates for further development.  As stated previously, unlike solubility, 

permeability cannot be improved through the formulation of the drug. 

As discussed previously, in the context of aqueous solubility, the 

permeability of small molecules could be further analyzed at different pH values.  

This could be done at the body compartment pH, where the molecule is most likely 

to be absorbed.  Also, buffers with different pH values in the donor and acceptor 

wells can be used to replicate the difference in pH between the gut and blood or 

intestines and blood.  The determination of the pH influence on small molecule 

permeability will help to understand the complex factors of absorption and 

distribution of new drug candidates.  
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PART 2: PERMEABILITY BY HPLC METHODS 

1. Introduction 

 As described in Part 1 of this chapter, there are many different methods for 

the estimation of cellular permeability of a small molecule.  One such method that 

has recently become of interest is the application of HPLC.84-86  The advantage of 

HPLC-based permeability assays is the ease of implementation and low cost in 

contrast to the traditional methods which are time and cost intensive.   

 The C18 column (octadecane bound to a silica stationary phase) is the most 

popular stationary phase in reverse phase HPLC methods.  During the development 

of a reliable high-throughput method for the assessment of permeability of small 

molecules, HPLC methods employing a C18 column have been frequently reviewed.  

It has been thoroughly established that retention factors obtained by isocratic 

methods can be related to the lipophilicity of molecules.16, 85  In fact, the retention 

factors for purely aqueous mobile phases have been considered to be more 

representative of lipophilicity than octanol/water partitioning.85  Octanol/water 

partitioning has long been considered the “gold standard” for reporting lipophilicity 

of molecules.5  Although C18 HPLC methods have been shown to model the 

hydrophobic contribution to drug-membrane interactions, they do not mimic polar 

lipid head and ionic interactions.16 

 Immobilized Artificial Membrane (IAM) chromatography was developed by 

Dr. Charles Pigeon at Purdue University.84, 87  Most commonly, an IAM column 

consists of an aminopropyl-functionalized silica stationary phase that has been 
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reacted with a lipid, usually phosphatidylcholine, Figure 20.  This configuration 

functions as an “artificial membrane” formed on the surface of the silica particles.  

The analyte interacts primarily with the polar head groups as it passes through the 

column.  The IAM column has been well studied and retention factors  have been 

shown to have a good correlation with values determined by a Caco-2 permeability 

assay84, liposome/water partitioning17, and octanol/water partitioning16.  

Nevertheless, there is limited contribution of the drug-membrane interactions with 

the use of either IAM or C18, which may be improved with the use of multiple 

columns in sequence. 

 

 

Figure 20. IAM column with immobilized phosphatidylcholine on aminopropyl silica 
with alkyl endcapping.88 
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For any HPLC-based method, interactions of the analytes with free silanol 

groups on the silica stationary phase result in increased retention.  The mechanism 

can be attributed to both hydrogen bonding and electrostatic forces between the 

small molecule and the silanol groups.85  To suppress this effect, free silanol groups 

are reduced by endcapping during manufacturing.  For example, IAM columns have 

been endcapped with aminopropyl groups.84  With advances in column 

manufacturing, the effect on retention from free silanol groups in the stationary 

phase can be minimized, but not completely eliminated. 

 Other chromatographic methods for permeability assessment have been 

developed, such as Immobilized Liposome Chromatography (ILC), as an alternative 

to IAM chromatography.89  In ILC, hydrophobic-functionalized gel beads are used as 

the stationary phase and treated with phospholipids to form immobilized 

liposomes.  The separations of compounds with the same logP value using this 

method can sometimes show very different degrees of partitioning, depending on 

the charge of the compound.42, 89  Micellular chromatography methods have also 

been studied, but do not show an improvement upon the current techniques.42 

 C18 and IAM column chromatography have been shown to be the most 

promising chromatographic methods for the determination of permeability.  To take 

advantage of the hydrophobic contribution as well as the polar contribution to the 

drug-membrane interaction, both types of columns have been employed in the same 

analysis.  The hypothesis of the lipid bilayer partitioning being modeled by HPLC 

partitioning/retention is shown in Figure 21.  The columns were linked together 
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with column couplers and the retention factors of the standard drugs were 

compared to those reported HDM-PAMPA (Part 1 of this chapter) as well as human 

jejunal permeability.  The compound retention times of the linked columns were 

also compared to those determined for the IAM and C18 columns alone.  

 

 

Figure 21. The partitioning of small molecules through a lipid is hypothesized to be 
modeled by the retention and/or partitioning of the molecules as they pass through 

IAM-C18-IAM column in series. 

 

 

2. Experimental 

2.1. Materials and Instrumentation 

All materials were used as received.  The following small molecules were 

used as standards: verapamil hydrochloride (Tocris Bioscience), diethylstilbestrol 
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(Spectrum Chemical Mfg. Corp.), β-estradiol (Alfa Aesar), caffeine (Alfa Aesar), 

10,11-dihydrocarbamazepine (Alfa Aesar), D,L-propranolol hydrochloride (MP-

Biomedicals), 4,5-diphenyl imidazole (Alfa Aesar), piroxicam (MP-Biomedicals), 

metoprolol tartarate (LKT Laboratories), naproxen (MP-Biomedicals), atenolol (MP-

Biomedicals), and ranitidine hydrochloride (Alfa Aesar).  Each of the small 

molecules were dissolved in DMSO to make a 10 mM solution (Acros, Spectroscopic 

Grade 99.9+%).   

Chromatograms and mass spectra were collected using a Thermo Surveyor 

MSQ LC-MS with an APCI probe with 10 µA corona, 350°C probe temperature, 80 V 

entrance cone.   Waters XBridge C18, 5 µm, 4.6x30 mm column and Regis 

IAM.PC.Fast Screen 1 cm x 3.0 mm with a 1x PBS at pH 7.2 (BDH) and methanol 

(Fisher) gradient was used for the determination of retention factors.  The columns 

were linked together using Upchurch Scientific column couplers with a 0.007 inch 

inner diameter stainless steel tubing (U-284). 

Octanol/water partitioning was performed in 1.5 mL microcentrifuge tubes 

(Fisher).  The partitioning of the small molecules was analyzed between 1-octanol 

(Alfa Aesar) and PBS.  Phosphate buffered saline (PBS) was prepared in 1 L batches 

using 18 MΩ water with 3.23 mM K2HPO4·7H2O (J.T. Baker), 7.84 mM KH2PO4 (J.T. 

Baker), 5 mM KCl (Fisher), 150 mM NaCl (Fisher), and adjusted to pH 7.2 with HCl 

(Mallinckrodt) and NaOH (Fisher).  The absorbance readings were completed with a 

Corning Costar 96 well UV plate (3635).  All absorbance readings were performed 

on a Tecan Infinite M1000 plate reader. 
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2.2. HPLC Permeability Assay 

The standard molecules were analyzed for permeability by HPLC using 

various combinations of IAM and C18 columns (IAM, C18, IAM-C18, C18-IAM, IAM-

C18-IAM).  An injection volume of 1 µL from the 10 mM solutions in DMSO was 

introduced onto the columns and eluted at 500 µL/minute with 1x PBS and 

methanol mobile phase.  The solvents were held isocratically at 20% (v/v) methanol 

for 5 minutes followed by an increase to 90% methanol over the next 5 minutes.  

After each run, the columns were re-conditioned with 20% methanol for 1 minute 

before the next analysis.  All small molecules were analyzed in triplicate.  The 

retention factor, k’, of the compounds were calculated using Equation 6, where tr is 

the retention time (minutes) of the compound and tm (minutes) is the void time of 

the column(s) (determined by the retention time of DMSO). 

Equation 6)     KL =�  M�9� )
 )    

 2.3. Octanol/Water Partitioning 

 Solutions of each molecule were prepared to 1 mg/mL in 1-octanol and PBS.  

From these solutions, 100, 300, and 400 µL of the analyte solution were transferred 

to separate 1.5 mL microcentrifuge tubes.  Then, 400, 200, and 100 µL of 1-octanol 

or PBS were added to each to make the total volume 500 µL.  Finally, 500 µL of the 

other phase (PBS to the vials with 1-octanol solution or 1-octanol to the vials with 

the PBS solution) was added to each tube.90  All of the tubes were securely closed 
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and put on the reciprocating shaker at 150 rpm for agitation and incubation 

overnight.  Violent shaking was avoided to prevent emulsion formation. 

 After about 24 hours of incubation, the tubes were centrifuged for 5 minutes 

at 1000 rpm.  From both phases, 50 µL were transferred to a 384-well UV plate.  The 

UV plate was then centrifuged for 2 minutes at 1000 rpm to ensure a uniform liquid 

surface in each of the wells.  The absorbance for each well was then scanned from 

250-500 nm, every 2 nm, with 100 flashes per well.  The log of the partitioning 

between phases (logPo/w) was then calculated using the adjusted absorbance, A, 

(with the background absorbance of the solvent subtracted) of each phase at the 

λmax of each compound, Equation 7. 

Equation 7)    �
�3#/O� = �
� /�PQR*STU
�V*RWM

2   

3. Results and Discussion 

 Given the nature of the C18 column, one would expect that a good correlation 

would be observed between the retention in C18 HPLC and the permeability values 

determined by HDM-PAMPA.  Both methods are based on hydrophobic interactions 

between the molecules and long-chain alkanes.  The correlation between the two 

methods is illustrated in Figure 22.  As can be seen, there is a very poor correlation 

between HDM-PAMPA and retention on the C18 column for all compounds tested.  

This may be due to the partitioning mechanism (i.e. equilibration between the 

stationary and mobile phases) that occurs between the analyte and the functional 

groups in a HPLC column.  It is concluded that the difference in the interaction 
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mechanism between the small molecules and the long chain alkyl groups between 

the two methods is very different and can therefore not be used as equivalent 

methods of analysis. 
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Figure 22. Correlation between the log of the retention factor on a C18 column and 
the HDM-PAMPA logP at pH 7.2. 

 
 

Plots of the log of the small molecule retention factors, k’, for the coupled 

column combination of IAM-C18-IAM (23A), C18-IAM (23B), IAM-C18 (23C), and 

finally for the C18 column (23D) in relationship to logPeff are shown in Figure 23.  

Tables containing all the values are located in Appendix B.  The literature values for 

logPeff were determined as human jejunal permeability73, 77, 83 using a single-pass 

perfusion of a proximal human jejunum between two inflated balloons, as described 

in part 1 of this chapter.73, 79-81  The plots depicted in Figure 23 have a similar 

pattern, suggesting that the C18 column retention is the limiting factor for these 

column combinations.  The greater hydrophobicity of the C18 column retains the 

small molecules more than the IAM column.  Nevertheless, the R2 correlation values 
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of the linear regressions suggest a good correlation between C18 retention and in 

vivo human jejunal permeability values.  This shows that the C18 column alone 

could give a simple and rapid method for the estimation of intestinal permeability. 
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Figure 23. Relationship between log k’ and log Peff
83 on A) coupled IAM-C18-IAM 

columns in series, B) coupled C18-IAM columns in series, C) coupled IAM-C18 in 
series, and D) C18 column. 
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Figure 24.  Relationship between A) log Peff and B) log P (HDM-PAMPA at pH 7.2) 
versus log k’ on the IAM column. 

 

 

The relationships between the log of the small molecule retention factors for 

the IAM column with respect to the logPeff and logP by HDM-PAMPA are shown in 

Figure 24 A and B.  These results show that the retention on the IAM column is more 

closely related to the logP from the HDM-PAMPA than logPeff.  This suggests that the 

HDM-PAMPA is based on a mechanism that is predominantly hydrophobic, which 

has previously been reported for the IAM column.91 

As stated previously, all in vitro permeability measurements are based, to 

some degree, on lipophilicity.  Measurements of lipophilicity can be related to in vivo 

permeability, but are not interchangeable with permeability.  To determine which of 

these measurements are more directly related to pure lipophilicity, octanol/water 

partitioning was measured.  The correlation between logP values and octanol/water 

partitioning is depicted in Figure 25.  There is a strong correlation between logPeff 



68 

 

 

 

and logk’(C18) with logPoct/water (Figure 25 A and C).  These results support the 

correlation between the logk’ for the C18 column and logPeff (Figure 23D).   
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Figure 25.  Octanol/Water partitioning correlation to A) logPeff B) logPHDM-PAMPA C) 
logk’C18 and D) logk’IAM. 

 

The correlation with the octanol/water partitioning also suggests that these 

measurements are strongly lipophilicity-based measurements.  A poorer correlation 

was observed between logPoct/water with logk’(IAM) and logP(HDM-PAMPA), shown 

in Figure 25 B and D.  Again, this is consistent with a mechanism of retention on the 

IAM column based predominantly on hydrophobicity.  This also suggests that the 
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HDM-PAMPA is also dominated by a hydrophobic mechanism as opposed to 

lipophilicity.  The difference in the mechanisms between the Peff and the HDM-

PAMPA are shown in Figure 26, with a poor correlation between the two.   
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Figure 26. Correlation between HDM-PAMPA and effective permeability values from 

intestinal perfusion (Peff).73 

 

Using the C18 column HPLC method, an unsatisfactory differentiation 

between highly lipophilic molecules was observed.  This is especially obvious in 

Figure 25C.  It is possible to increase the resolution of these compounds by 

decreasing the gradient of PBS to methanol and increasing the length of the 

experiment.  In changing the HPLC solvent method, a larger k’ difference for highly 

lipophilic molecules (logPoct/water > 0) may be achieved.  Nevertheless, the current 

data shows a good correlation between methods to determine the logPeff and logk’. 

4. Conclusions 

 The analysis of the retention of compounds using a combination of C18 and 

IAM columns has no advantage over the analysis using both columns separately.  

Nevertheless, a strong correlation has been shown between the retention of drugs 
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on the C18 column and in vivo jejunal logPeff values.  In addition, a good correlation 

was observed between the retention of the molecules on the IAM column and HDM-

PAMPA logP values.   

 It was previously reported that the retention on an IAM column is dominated 

by a partitioning mechanism and thus, represents hydrophobicity.91  The correlation 

of the retention on the IAM column with HDM-PAMPA, suggest that both methods 

are predominately based on a hydrophobicity mechanism.  The poor correlation 

between both of these methods with octanol/water partitioning supports this as 

well.   The correlation of the retention factors on the C18 column with in vivo jejunal 

Peff values for the same compounds suggests that both methods are based on a 

similar mechanism.  The good correlation between both of these methods with 

octanol/water partitioning suggests that both are based predominately on 

lipophilicity. 

 The goal of these methods is to predict the membrane permeability of small 

molecules in high-throughput.  It has been shown that there is a strong correlation 

between the retention in the C18 column with in vivo Peff values, which were 

obtained using a single-pass perfusion of a proximal human jejunum between two 

inflated balloons.  This research suggests that HPLC analysis on a C18 column may 

give a greater estimation of actual permeability than most lipophilicity or 

hydrophobicity measurements. 
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CHAPTER IV 

ELECTROPHILICITY 

1. Introduction 

 Confirmation of activity and selectivity of hit molecules identified by high-

throughput screening (HTS) is an essential part of drug discovery.  Especially for 

inhibitor screens, this often results in hundreds to thousands of hit molecules.  The 

characterization of these molecules by secondary screens, which are not always 

amendable to a higher throughput format, leads to a bottleneck in the discovery 

pipeline.  Frequently, these hit molecule selections contain a large number of 

promiscuous inhibitors that have a very poor outcome in the following steps of drug 

discovery.   

Multiple underlying non-specific mechanisms have been identified for these 

inhibitors, such as aggregation64, redox activity92, protein modification93, and 

compound interference with the assay signal.94  High-throughput assays have been 

developed to detect compound aggregation95 and redox active compounds.96   

Virtual screening filters are applied to identify reactive molecules among hit 

compounds.97-101  Importantly, some FDA approved drugs would be eliminated by 

these filters, such as irreversible H+, K+-ATPases inhibitors for duodenal and gastric 

ulcer.    

To deactivate highly reactive and toxic species, the body produces a large 

amount of glutathione (GSH) to suppress the alteration of vital proteins.  Thiol-

containing molecules are extremely effective at reducing highly reactive, 
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electrophilic species.  Glutathione donates an electron to reactive species with a high 

redox potential of -0.33.102  It also indirectly regulates the dimerization of proteins 

that are based on the formation of disulfide bonds.   
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Figure 27. Formation of glutathione (GS) adducts with electrophilic species. 1) 
Displacement reaction, 2 and 3) addition to activated double bonds, 4) opening of a 

strained ring.103 

 

Highly reactive species can be absorbed by the body or formed by enzymes, 

such as CYP enzymes (Figure 27 reactions 3 and 4).  For example, oxidation by CYP 

enzymes may result in the formation of a quinones or epoxides.  One common 

example is the oxidation of acetaminophen and subsequent reaction with 

glutatione.104  Binding to glutathione not only eliminates the risk of a highly reactive 

xenobiotics, but also increases the solubility of molecules for excretion.105  Reactions 

of glutathione with electrophilic carbons are classified into three types (Figure 27): 
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displacement reactions, opening of strained rings, and addition to activated double 

bonds.103  After the formation of glutathione adducts, the cell can replenish its 

glutathione levels within minutes.102   

Currently, HTS assays that determine the electrophilicity of small molecules 

and thus the ability to react with naturally occurring thiols have yet to be fully 

developed.  One of the few approaches is a competitive binding assay using 

glutathione and fluorescein-5-maleimide.106  Although, this assay could be adapted 

to high-throughput, it does not allow for the differentiation between electrophilic 

compounds that react with glutathione and nucleophilic compounds that react with 

fluorescein-5-maleimide.  Additionally, many screening compounds interfere with 

the yellow/green fluorescence detection at 480/520 nm.94  More recently, another 

lower throughput method has been developed using HSQC NMR by monitoring the 

13C shift of small molecules that bind to thiol groups in a La antigen protein.  The 

results were compared to the competitive fluorescein-based assay in which it 

achieves a better validation rate, although the method is far from high-throughput 

and requires expensive instrumentation.107  There is still a great need for a simple, 

high-throughput method that can accurately assess the thiol-binding abilities of 

small molecules. 

Herein, the development of a fluorescence-based (E)-2-(4-mercaptostyryl)-

1,3,3-trimethyl-3H-indol-1-ium (MSTI) assay that enables the identification of thiol-

reactive small molecules in a high-throughput manner is presented.  In contrast to 

the very low-throughput detection of small molecule–glutathione adducts using 
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HPLC, we have developed a nucleophilic fluorescent probe with a discreet 

fluorescence at 510/650 nm, which enables the detection of thiol-reactive 

compounds in a 384-well plate format.  Strong electrophilic drug candidates can 

represent a liability in drug discovery because of their elevated toxicity in cell-based 

assays and in vivo studies.  Non-specific protein interactions can cause allosteric 

protein changes and depletion of glutathione levels, which are essential for the 

redox chemistry of the cell.108  Therefore, the MSTI assay represents a novel HTS 

tool to identify compounds that interact with a nucleophilic sulfur group, such as 

cysteine, and enables the elimination of these compounds in an early stage of drug 

discovery.  

2. Experimental 

2.1. Materials and Instrumentation 

All materials were used as they were received.   Screening was performed 

with the Library of Pharmacologically Active Compounds; LOPAC-1280 (Sigma 

Aldrich).  Each of the small molecules were dissolved in DMSO to make a 10 mM 

solution (Acros, Spectroscopic Grade 99.9+%).  Phosphate buffered saline (PBS) was 

prepared in 1 L batches using 18 MΩ water with 3.23 mM K2HPO4·7H2O (J.T. Baker), 

7.84 mM KH2PO4 (J.T. Baker), 5 mM KCl (Fisher), and 150 mM NaCl (Fisher) and 

adjusted to pH 7.4 or pH 12 with HCl (Mallinckrodt) and NaOH (Fisher).  

Nonylphenyl Polyethylene Glycol (NP-40) surfactant (Boston BioProducts) was used 

as a buffer additive at 0.01% (v/v).  The absorbance readings were completed in a 

384-well UV plate (Greiner Bio-One, 781801).  The assay was performed in a 384-
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well, flat bottom, black assay plate (Corning, 3573) which was sealed with an 

aluminum cover (Corning, 6570) during incubation and mixing.  

All of the absorbance and fluorescence readings were performed on a Tecan 

Infinite M1000 plate reader.  Small volume transfers were performed on the Tecan 

Freedom EVO liquid handling system with a 100 nL pin tool transfer (V&P 

Scientific).  Chromatograms and mass spectra were collected using a Thermo 

Surveyor MSQ LC-MS with an atmospheric pressure chemical ionization (APCI) 

probe with 10 µA corona or electrospray ionization (ESI) probe with 3kV capillary, 

350°C probe temperature, and Waters XBridge C18, 5 µm, 4.6x30 mm column.  A 

Biotage SP1 flash chromatography system and Gilson preparative LC (PrepLC) (215 

Liquid Handler, 306 Pump, 112 UV Detector) with a Waters XTerra Prep MS C18 

OBD column (5 µm, 30x50 mm or 19x50 mm) were used for MSTI purification.  A 

BioTek MicroFlo Select instrument was used for the addition of the MSTI probe 

solution to the assay plate. 

2.2. Generation of MSTI 

 To detect thiol-reactive compounds, and thus electrophiles, a fluorescent 

probe was designed that exhibits different spectroscopic properties when in the 

nucleophilic state as opposed to a conjugate with electrophiles. Therefore, an 

aromatic nucleophilic thiol functionality was bound to a conjugated π-system of a 

fluorophore.  An indolium dye in conjunction with a thiophenol was chosen for the 

formation of (E)-2-(4-mercaptostyryl)-1,3,3-trimethyl-3H-indol-1-ium (MSTI), 

shown in Figure 28. 
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 MSTI, like all thiophenols, is oxygen sensitive and rapidly forms disulfides in 

non-degassed solvents.  Attempts to store MSTI for a prolonged time in the reduced 

form as a solid or in solution were not successful.  Similar difficulties have been 

reported for fluorescent thiophenols.109  MSTI was synthesized from acetyl-MSTI 

under alkaline conditions, and acetyl-MSTI was in turn synthesized from 4-

formylbenzyl thioacetate and 1,2,3,3-tetramethyl-3H indolium iodide, Figure 28.   

N S N S

O
Acetyl-MSTI MSTI

pH 12 PBS
50% v/v Methanol  

Figure 28. In Situ conversion from Acetyl-MSTI to MSTI 

 

Acetyl-MSTI is stable as a solid as well as in solution and represents an 

excellent precursor for MSTI. Therefore, MSTI was generated in situ from acetyl-

MSTI for screening purposes.  A 10 mM solution of acetyl-MSTI in methanol was 

diluted in degassed PBS with 50% by volume methanol at pH 12 and stirred for 2 

minutes.  After that time, the solution became purple in color, and more than 80% of 

acetyl-MSTI was converted into MSTI as determined by absorbance, fluorescence, 

and LC-MS.  Chromatograms and mass spectra for the conversion of acetyl-MSTI to 

MSTI are shown in Appendix C, Figures 70 and 71. 

2.3. Thiol Reactivity Assay 

In the preparation of the “compound plate”, 15 µL of the 10 mM solution of 

small molecules in DMSO were dispensed in a 384-well polystyrene plate filling 
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rows 1 to 18.  A second 384-well polystyrene plate, the “control plate”, had rows 19-

24 filled with 15 µL DMSO.  Acetyl-MSTI was dissolved in methanol as a 10 mM 

solution and added to a PBS buffered solution at pH 12 with 50% methanol in a ratio 

of 1:10 creating a dark purple colored solution.  After stirring for 2 minutes, the 

solution was diluted with PBS at pH 7.4 with 2% DMSO, 0.01% NP40, and 5% 

methanol to form a pink colored, 30 μM solution at pH 7.4 of MSTI.   

Next, 20 µL of the 30 μM solution was dispensed in row 1-23 (black 

polystyrene “assay plate”).  A 30 µM solution of acetyl-MSTI (positive control) was 

made in the same buffer and 20 µL of this solution was dispensed to the assay plate 

(row 24).  With the Tecan liquid handling system, 100 nL from the compound plate 

and 100 nL from the control plate were transferred into the assay plate using the 

pin transfer tool.  The assay plate was then centrifuged for 2 minutes at 1000 rpm, 

covered with the aluminum cover, and put on the plate shaker for agitation during 

the incubation period.  

N S

I

Electrophile

E+
N

S
E

I

MSTI

λex/em = 510/650nm

 

Figure 29. Electrophilic molecule addition to MSTI. 

 

Addition of electrophilic molecules to MSTI occurs as in Figure 29.  After 30 

minutes of incubation, the assay plate is once again centrifuged for 2 minutes at 

2000 rpm to ensure a uniform liquid surface during the reading.  The assay plate 
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was then read using the Tecan M1000 plate reader for the detection of the un-

reacted MSTI.  An excitation wavelength of 510 nm and emission wavelength of 650 

nm with a bandwidth of 20 nm and 10 nm respectively, 100 flashes, 25 µs 

integration time, optimized gain and z-position (optimized for maximum intensity of 

the 30 μM MSTI solution), were used for the quantification of the fluorescence 

signal.  The Z’ value, Equation 8, for the assay was then calculated using MSTI as the 

negative control (0% binding) and acetyl-MSTI as the positive control (100% 

binding).110  The percent binding of the small molecules at a concentration of 100 

μM was reported as normalized response. 

 

Equation 8)  XL = 1 −�/0�×�(, %&�%$��C!YZ% Z#&�[#�Z ZY!�I�, %&�%$��C!YZ% Z#&�\!D% ZY!)
]�Y!$%D!�[#�Z ZY!�9��Y!$%D!�\!D% ZY!] 2 

 

3. Results and Discussion 

At a concentration of 500 µM in PBS, MSTI at pH 12 and acetyl-MSTI at pH 7.4 

show different absorbance and fluorescence spectra (Figure 30 A and B).   After 

changing the pH of the MSTI solution from pH 12 to 7.4, no change in the 

absorbance spectrum was observed.  The wavelength of maximum absorbance 

(λmax) of acetyl-MSTI was measured at 384 nm, while the λmax of MSTI is at 526 nm 

(Figure 30A).  This absorbance shift is very likely responsible for the appearance of 

a pink color of the MSTI solution.  The fluorescence emission between 530 nm and 

750 nm for both compounds at an excitation wavelength of 510 nm was measured 

for 100 µM MSTI and 200 µM acetyl-MSTI, respectively.  The gain optimization 

function of the instrument (Tecan M1000) automatically adjusts the highest 
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fluorescence value between 40,000 and 50,000 units.  The λmax of fluorescence 

emission with excitation at 510 nm was 562 nm for acetyl-MSTI and a broad 

emission peak between 550 nm and 700 nm was observed for MSTI (Figure 30B).  

Because MSTI was generated in situ from acetyl-MSTI, around 20% of acetyl-MSTI 

remained, which was responsible for the emission peak at 562 nm in the 

fluorescence spectrum of MSTI.  However, a large fluorescent intensity difference 

between MSTI and acetyl-MSTI was observed. 
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Figure 30. A) Absorbance spectra of 500 µM acetyl-MSTI and MSTI in PBS at pH 7.4. 

B) Fluorescence spectra of 200 µM acetyl-MSTI and MSTI in PBS at pH 7.4 with an 

excitation wavelength of 510 nm. 

 

To optimize the fluorescence signal, the composition of the buffer was 

studied by monitoring the absorbance while varying the buffer reagent, pH, ionic 

strength (concentration of sodium chloride), or the concentration of MSTI.  In each 

of the absorbance spectra for Figures 31-33, a 200 μM concentration of MSTI was 

used.  A similar absorbance in PBS (50 mM phosphate, 150 mM NaCl, pH 7.0) and 
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Tris buffer (10 mM Tris base, 150 mM NaCl, pH 7.0) was observed for MSTI (Figure 

31).  At different pH values (pH = 6-9) in PBS, MSTI showed only a marginal 

difference in absorbance with the highest values between pH 7.0 and 8.0 (Figure 

32).  The optimal NaCl concentration was 150 mM giving the highest absorbance for 

MSTI (Figure 33).  
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Figure 31. Absorbance spectra dependence of 200 µM MSTI on buffer composition. 
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Figure 32. Absorbance spectra dependence of 200 µM MSTI on buffer pH. 
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Figure 33. Absorbance spectra dependence of 200 µM MSTI on buffer ionic strength. 
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Figure 34.  Concentration of MSTI versus absorbance and fluorescence intensity. 

 

The absorbance (525 nm) and fluorescence (510/650 nm) for MSTI in PBS 

(pH 7, 150 mM NaCl) were measured at different concentrations (Figure 34).  Both 

absorbance and fluorescence intensity were linear between 0.01 and 125 μM MSTI.  

Relative standard deviations of <5% for the absorbance and fluorescence intensity 
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were observed for all concentrations used.  From this study it was determined that 

an acceptable Z’ value110 of around 0.6 could be achieved with as little as 30 μM of 

MSTI in the presence of phosphate buffer (50 mM) at pH 7 and 150 mM NaCl. 

 

O

S
HN

S
OH

OOH

Br

O

H
N

Cl
NH

H
N

Cl
NH

O

N

N
Br

OH

N N

S

N

O

S
O O

N

N

NH

N

O

N

O

O

N

O

O

1 2

3

4

5
6

7

 

Figure 35. Compound key for Figures 36, 37, and 38. 

 

 

Compounds 1-6 changed the fluorescence intensity of MSTI, whereas 

compound 7 did not (Compound key, Figure 35).  Compound 1 has been 

investigated as a proteasome inhibitor with low micromolar toxicity.111  The mode 

of action of this compound has not yet been elucidated, but the formation of the 

conjugate of compound 1 and MSTI has been confirmed by MS (Appendix C, Figures 

64 and 65).  Compound 2 and 3 are from a series of 2-indolyl methanamines, which 

have been recently identified as an irreversible inhibitors of the vitamin D receptor 

(VDR)−co-activator interaction.112  The mode of action of these molecules includes 
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the formation of an electrophilic species, which is believed to allosterically inhibit 

the VDR protein-protein interaction with co-regulators.  The formation of adducts of 

compounds 2 and 3 with MSTI have also been identified by MS (Appendix C, Figures 

66 and 67 for compound 2, Figures 68 and 69 for compound 3).  The electrophilic 

bisnitrile compound 4 was identified during the assay optimization.  Compound 5 is 

rabeprazole, a proton pump inhibitor that is known to form disulfide bonds with 

cysteine residues of H+, K+-ATPases.113  Compound 6 was identified as an 

irreversible inhibitor of the thyroid receptor−coactivator interaction by forming an 

unsaturated ketone that alkylates a cysteine residue in the thyroid receptor-

coactivator binding pocket.114, 115  Finally, as a negative control, verapamil 

(compound 7) was used. 
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Figure 36. Evaluation of the MSTI assay in the presence of small molecules, PBS (50 

mM, pH 7.4, 150 mM NaCl), MSTI (30 μM) and an excitation and emission 
wavelength of 510 nm and 650 nm, respectively.  Change of fluorescence intensity in 

the presence of small molecules 1-7 (Compound Key, Figure 35) (100 μM) and 
different additives (n=3). 
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Three different additives (methanol, DMSO and NP-40) and several 

combinations of additives were investigated (Figure 36).  In this study, 30 μM of 

MSTI and compounds 1-7 (100 μM) in PBS (50 mM, pH 7.4, 150 mM NaCl) were 

incubated for 30 minutes and analyzed by fluorescence detection (510nm/650nm).  

As controls, MSTI (negative) and acetyl-MSTI (positive) were used and the signal 

was normalized to percent of the MSTI signal.  Interestingly, only small differences 

were observed for the compounds 1-7 in the presence of buffer additives.  

Nevertheless, the addition of NP-40 was preferred to circumvent the possibility of 

compound aggregation 64, 95, 116 and the addition of DMSO and methanol to enhance 

small molecule solubility.  
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Figure 37. Change of the fluorescence intensity in the presence of small molecules 1-

7 (100 μM) with 2% DMSO, 5% methanol, and 0.01% NP-40 by volume in PBS at 
different time points (n=3).  PBS (50 mM, pH 7.4, 150 mM NaCl), MSTI (30 μM) and 

an excitation and emission wavelength of 510 nm and 650 nm, respectively 
(Compound Key, Figure 35). 
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Furthermore, different time points were investigated confirming the time 

dependency of covalent bond formation between compounds and MSTI.  All six 

active compounds showed a stronger alkylation after 30 minutes than immediately 

after the addition (Figure 37).  Compounds 2, 5, and 6 showed a further decrease 

after 1 hour.  Finally, for the investigation of compound concentrations, for all six 

compounds a change of the MSTI signal in the presence of more compound (100 μM 

instead of 50 μM) was observed (Figure 38).  Interestingly, no further changes of the 

signal were observed at the highest compound concentration used (150 μM). 
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Figure 38. Change of the fluorescence intensity in the presence of small molecules 1-
7 (50, 100 and 150 μM) with 2% DMSO, 5% methanol, and 0.01% NP-40 by volume 

in PBS.  PBS (50 mM, pH 7.4, 150 mM NaCl), MSTI (30 μM) and an excitation and 
emission wavelength of 510 nm and 650 nm, respectively (Compound Key, Figure 

35). 

 

With the optimized MSTI assay conditions: PBS (50 mM, pH 7, 150 mM NaCl), 

MSTI (30 μM), compounds (100 μM), 5% methanol, 2% DMSO, and 0.01% NP-40; a 
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library of small molecules was screened.  The Library of Pharmacologically Active 

Compounds-1280 (LOPAC) screening collection was used to determine the quality 

of the assay and the ability to identify compounds that are reactive towards 

nucleophiles.  Each LOPAC compound was measured in triplicate (Figure 39). 
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Figure 39. Results of MSTI-LOPAC screen (1280 compounds), n=3. 

 

The Z’ values of this screen ranged between 0.62 and 0.88 with a mean of 

0.75 (Figure 40).  The mean fluorescence intensity of all compounds in the presence 

of MSTI, was 107.0% of the MSTI signal with a standard deviation (σ) of 14.2%.  In 

order to safely distinguish between active and inactive molecules, a cutoff of 1.5 

standard deviations from the mean was chosen as indicated with the gray lines in 

Figure 39.  Observing a subset of random 224 LOPAC compounds more closely, the 

cutoff of 1.5σ represents an acceptable distinction between both populations 

(Figure 41).   
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Figure 40. Summary of the Z’ values of each assay plate. 

 

 

 

Figure 41. Normalized fluorescence intensity data of a single 384-well LOPAC 
compound plate in triplicate with their standard deviation. 
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Figure 42. A) Fluorescence intensity (FI) (510nm/650nm) of all LOPAC compounds; 

B) Structures of fluorescently interfering compounds. 
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The background fluorescence was also determined for each LOPAC molecule 

(100 μM) in the absence of MSTI at a 510 nm excitation and 650 nm emission 

wavelength.  The vast majority of LOPAC compounds exhibited no fluorescence and 

gave fluorescence intensity values similar to those measured for the assay media 

(i.e., background) (Figure 42A).  However, eleven compounds exhibit an intrinsic 

fluorescence intensity of more than 1.5σ of the mean fluorescence signal (21.3%) of 

MSTI (Figure 42B). 

The MSTI-LOPAC screen identified 9 compounds that exhibit a fluorescence 

intensity of more than 129% of the MSTI fluorescence intensity and 55 compounds 

with less than 85 % of MSTI fluorescence intensity.  The summary of these 

compounds is provided in Appendix C.  Using a cut-off of ±1.5 σ, the hit rate was 

determined to be 5%.  The majority of the hits identified, as predicted, were 

electrophilic compounds (Figure 43A). These include transition metal complexes 

bearing ions such as Au2+ and Pt2+, α-haloketones, quinones, NO-releasing 

compounds, halo-alkenes, and unsaturated carbonyl or carbonyl-like compounds.  

The MSTI conjugates of electrophilic molecules were characterized by 1H-NMR and 

MS, such as the 2-iodoactamide-MSTI conjugate (Appendix C).  Other compounds 

identified are those that can undergo a conversion to an electrophilic compound 

such as β-aminoketones (conversation into unsaturated ketones) and 2-

chloroamine derivatives (conversion into aziridines) (Figure 43B).  Interestingly, we 

also identified lansoprazole, a proton pump inhibitor that forms disulfide bonds 

with cysteine residues.  The same mode of action has been reported for positive 

control compound 5, rabeprazole (Figure 35). 
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This assay also identified the compound class of apomorphines (Figure 43C). 

A possible explanation could be the formation of the corresponding diketone, which 

has been reported under aqueous conditions.117  The diketones, in contrast to the 

norapomorphines, have a red-shifted absorbance, which might be the underlying 

mechanism for these false positive hits.  Finally, the majority of disulfides and 

sulfoxides (Figure 43D) were identified by the MSTI assay, confirming the 

sensitivity of the reduced MSTI probe for other oxidized sulfur species. 
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Figure 43. Thiol-reactive compound classes identified by the MSTI assay. 
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4. Conclusions 

Molecules that react with thiols, such as cysteine, have the potential to non-

selectively modulate proteins or alter their modes of action, which can be a hallmark 

of promiscuous inhibition.  MSTI, a newly developed molecular probe, can be used 

to identify thiol-reactive small molecules.  MSTI bears a nucleophilic thiol group that 

can easily react with electrophilies or oxidants to form conjugates or disulfides.  The 

covalent bond formation has a dramatic influence of the fluorescent properties of 

MSTI, significantly reducing the fluorescence intensity at 650 nm.  The MSTI assay 

only requires an incubation time of 30 minutes and although optimized for a 384-

well format, it is easily convertible to 1536-well format.118   

The application of a precursor, acetyl-MSTI, has the advantage that the 

reactive MSTI probe can be reliably produced in situ, thus circumventing any 

challenging storage regimes for MSTI.  The MSTI assay is the first HTS assay that 

identifies thiol-reactive small molecules among screening library compounds.   

Therefore, this assay can identify their mode of action, as shown for several 

examples of irreversible inhibitors among the LOPAC screening library.  The far-red 

detection of MSTI limits the number of molecules interfering with the assay, which 

was 0.85% for the LOPAC screening library.  The assay has an excellent 

reproducibility (Z’ > 0.6) and standard deviation of < 5% for each compound.  The 

MSTI assay will be a helpful tool to quickly identify potential promiscuous inhibitors 

among screening hits and enable the fast identification of the mode of action of hit 

compounds in regard to their ability to react with nucleophilic protein residues. 
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CHAPTER V 

PROTEIN-SMALL MOLECULE BINDING 

PART 1: HIGH-THROUGHPUT ULTRAFILTRATION 

1. Introduction 

 It is widely understood that the extent of drug-plasma protein binding is a 

major determinant of drug distribution to sites of action as well as metabolism.  

Only the unbound drug is capable of passing through membranes and bind to 

metabolic enzymes.119  Non-specific binding of small molecules to plasma proteins 

causes a decrease in the free drug concentration available to the site of action.  

Interactions between drugs and plasma proteins may occur through ionic binding, 

hydrogen bonding, or Van der Waals interactions.  Although reversible, drug-plasma 

protein binding has a significant influence on the pharmacokinetic and 

pharmacodynamic properties of drugs.24, 120  It also can have a large affect on other 

pre-clinical screens.120, 121  

 Serum albumin is one of the most abundant blood proteins.  It is a carrier for 

many low polarity metabolites and drugs.  The lack of specificity toward particular 

ligands, multiple binding sites, and allosteric effects complicate the studies of 

binding to albumin.122, 123  Albumin is the major culprit for binding of acidic and 

neutral drugs.124  Basic drugs are bound to a lesser extent to albumin, but bind to 

globulins.125 Protein binding studies are typically studied in vitro with either plasma 
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or serum.  Equilibrium dialysis and ultrafiltration are the most commonly used 

techniques for protein-binding measurements.28 

 

 

Figure 44.  Equilibrium dialysis method for the determination of plasma-protein 
binding. 

 

 Equilibrium dialysis is often considered the “gold standard” method for in 

vitro determination of drug-protein binding.  An image illustrating equilibrium 

dialysis is shown in Figure 44.  A plasma solution spiked with drug is placed in one 

cell of the dialysis apparatus and buffer is placed in the other.  The two cells are 

separated by a semipermeable membrane through which the macromolecule cannot 

pass.  Unbound drug diffuses across the membrane down its electrochemical 

gradient until equilibrium is reached and the unbound concentration of the drug is 

equal in both compartments.  Usually an incubation period of 6 hours at 37�C is 

sufficient for most compounds to reach equilibrium (with a 1 mL volume in each 

cell).28  With equilibrium dialysis, theoretically, non-specific binding to the 

apparatus is not an issue if equilibrium is reached.  Some studies have shown that 

pre-treatment of the membranes with detergents, such as Tween or NP-40, reduces 

the extent of non-specific binding.126  Equilibrium dialysis continues to be the 
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benchmark by which other methods are assessed, although it is labor intensive, 

costly, time consuming, and difficult to automate.22  Recently, developments have 

been made to improve the equilibrium dialysis method by application in 96-well 

dialysis blocks, but at least 4 hours of incubation are required to reach 

equilibrium.22, 127, 128 

 

 

Figure 45. Ultrafiltration method for determination of drug-protein binding. 

 

Ultrafiltration methods have also been readily employed for the 

determination of plasma protein binding.  An illustration of the ultrafiltration 

method is shown in Figure 45.  The ultrafiltration tube contains two parts.  The 

upper part has a semipermeable membrane through which small molecules pass 

while macromolecules are retained.  The plasma is pre-incubated with the drug, 

typically at 37°C for about 15 minutes.  The pre-spiked plasma solution is loaded 

into the ultrafiltration tube and centrifuged at 500 x g until about 10% of the volume 

initially loaded is separated out as filtrate in the collection tube.28  The ultrafiltrate is 
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then analyzed for the drug concentration.  It is best to ensure that the volume of the 

ultrafiltrate does not exceed 10% of the volume loaded to circumvent concentration 

effects.28  In some methods, the recommended acceptable volume of filtrate is 20–

35% percent of the original plasma sample, resulting in minimum disturbance to the 

protein-binding equilibrium.129  Ultrafiltration is a relatively fast and simple method 

which has been shown to have a good correlation to other methods.  Nevertheless, 

non-specific binding to the filtration apparatus has been a major issue.23, 127  The 

main disadvantage of these techniques is the disturbance of the drug-protein 

equilibrium by the separation of the free drug.130 

 

 

Figure 46. Diagram of surface plasmon resonance (SPR).131 

 

 Surface plasmon resonance (SPR) is an optical biosensor technique that 

measures binding events at the gold metal surface by detecting changes in the local 

refractive index (Figure 46).131  SPR is a surface sensitive technique that is ideal for 

studying the interactions between immobilized biomolecules and analyte in 
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solution.  Because the measurements are based on changes in refractive index, 

sensitive and label-free detection is possible.  Also, analysis can be performed in 

real-time, enabling the calculation of kinetic and thermodynamic binding 

constants.25, 131  Finally, SPR is sensitive to the binding of molecules over a wide 

range of molecular weights and affinities.25  However, this method assumes that the 

immobilized protein retains its full binding characteristics.26 

In effort to increase throughput of plasma protein binding techniques, 

methods such as LC-MS with an immobilized human serum albumin (HSA) 

column128, 132, 133, capillary electrophoresis128, 134, 135, or HSA immobilized on silica 

beads136 have been applied with reasonable success.  However, as stated before, 

these methods assume that the immobilized protein retains it full binding 

characteristics and  assumes non-specific binding has no impact.26  Fluorescence 

methods have also been used for the determination of drug-protein binding.  These 

methods will be discussed in detail in Part 2 of this chapter. 

More recently, attempts have been made to increase the throughput of the of 

ultrafiltration methods.  Studies have been published using a 96-well plate with a 10 

kDa molecular weight cutoff (MWCO) membrane along the bottom of the wells.120, 

129  The samples were pooled, four molecules incubated with serum per well, to 

increase the throughput of analysis.120  Sample pooling may cause saturation of the 

binding sites available on the proteins and therefore yield inaccurate results.  Both 

96-well plate methods, with analysis of the ultrafiltrate by LC-MS/MS, have a fair 

correlation to conventional methods.120, 129  Concentration effects may play a 
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significant role in the results.28, 120  Also, collection of different volumes at the edges 

of the filter plate versus the central wells can be an issue with application in 96-well 

plates.129  Another major issue concerning the throughput of these methods is that a 

centrifugation time of 45-60 minutes was necessary for collection of the 

ultrafiltrate.120, 129  Application of silica-immobilized HSA (TRANSIL-HSA) has also 

been applied in 96 and 384-well plates and has shown good correlation to 

equilibrium dialysis methods, with a centrifugation period of only five minutes.136   

This method has even been marketed recently as a kit for plasma protein-binding 

analysis.137, 138  Development of a 384-well plate with a MWCO membrane that has 

been shown to have uniform filtration rates across the plate139 makes it possible for 

the development of a higher throughput ultrafiltration assay without the need for 

sample pooling. 

2. Experimental 

2.1. Materials and Instrumentation 

All materials were used as received.  The following small molecules were 

used as standards: diethylstilbestrol (Spectrum Chemical Mfg. Corp.), β-estradiol 

(Alfa Aesar), caffeine (Alfa Aesar),  D,L-propranolol hydrochloride (MP-

Biomedicals), piroxicam (MP-Biomedicals), metoprolol tartarate (LKT 

Laboratories), naproxen (MP-Biomedicals).  Each of the small molecules were 

dissolved in DMSO (Acros, Spectroscopic Grade 99.9+%) to make 10 mM solutions.  

Solutions from lyophilized powder, fatty acid free, globulin free, ≥99% 

human serum albumin (HSA) (Sigma Aldrich) were made in phosphate buffer.  
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Dialysis of HSA solutions were performed with 10 mL, 50 kDa dialysis tubes 

(Spectrum Labs, G235070).  After dialysis, HSA solutions were stored for no longer 

than one week at 4°C.  Phosphate buffered saline (PBS) was prepared in 1 L batches 

using 18 MΩ water with 3.23 mM K2HPO4·7H2O (J.T. Baker), 7.84 mM KH2PO4 (J.T. 

Baker), 5 mM KCl (Fisher), 150 mM NaCl (Fisher), and adjusted to pH 7.2 with HCl 

(Mallinckrodt) and NaOH (Fisher).  Nonylphenyl polyethylene glycol (NP-40) 0.01% 

(v/v) surfactant (Boston BioProducts) and glycerol (Fisher) were used as buffer 

additives.   

The absorbance readings were completed in a 384-well UV plate (Greiner 

Bio-One, 781801).  The assay was performed in a 384-well filter plate with 30 kDa 

molecular weight cutoff membrane (Pall, 5078) which was sealed with an aluminum 

cover (Corning, 6570) during incubation and mixing.  Separation of the ultrafiltrate 

was done by centrifugation with an Eppendorf 5810R centrifuge.  All of the 

absorbance readings were performed on a Tecan Infinite M1000 plate reader.  

Chromatograms and mass spectra were collected for molecules and reaction 

products using a Thermo Surveyor MSQ LC-MS using electrospray ionization (ESI) 

with 3 kV capillary, 350°C probe temperature, and Waters XBridge C18, 5 µm, 

4.6x30 mm column 

2.2. High-Throughput Ultrafiltration Assay 

A 5.0 mg/mL solution of HSA was prepared in PBS and dialyzed exhaustively 

(4 times, 24 hours each) in 3 L of the same buffer at 4�C.  After dialysis, 68 µL of the 

HSA solution were added to half of wells in the filter plate.  In the other half of the 
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plate, 68 µL of PBS were added.  To both the HSA solution and PBS, 2 µL of the 10 

mM standard molecule solutions in DMSO were added in triplicate.  As a control, for 

the background signal, 2 µL of DMSO was added in triplicate to both the HSA 

solution and PBS.  The filter plate was placed on top of a 384-well polystyrene 

collection plate.  The plate was then covered and agitated on the reciprocal plate 

shaker for ten minutes. 

After the incubation period, the plate was centrifuged for 20 minutes at 1500 

x g with the collection plate still underneath the filter plate.  The ultrafiltrate was 

collected in the filter plate during centrifugation.  After collection, 50 µL of the 

ultrafiltrate were transferred to the 384-well UV plate.  The absorbance was then 

measured over a range from 250 to 500 nm, every 2 nm, with 100 flashes per well.  

The percentage of bound compound was then calculated with Equation 9 at the λmax 

of the molecule, where Ae is the absorbance of the ultrafiltrate at equilibrium after 

incubation of the small molecules with HSA, ABkgd, e is the absorbance of the 

ultrafiltrate at equilibrium after incubation of DMSO with HSA, A0 is the absorbance 

of the ultrafiltrate of the small molecules incubated in buffer, and ABkgd,0 is the 

absorbance of the ultrafiltrate of DMSO incubated in buffer.   

Equation 9)   %�_
�`a = �b1 − c�W9��defg,W
��9��defg,�

ij �× 100   

3. Results and Discussion 

 To determine the maximum concentration of protein that can be added to the 

wells of the 384-well filter plate, while still allowing solvent to pass through the 
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membrane, a dilution of HSA in buffer was performed.  Concentrations of 40, 34, 28, 

23, 17, 11, 6, and 3 mg/mL HSA were investigated in triplicate at a final volume of 

70 µL.  The plate was centrifuged for 20 minutes at 1500 x g.  After 20 minutes of 

centrifugation, only the wells with 6 and 3 mg/mL HSA solutions were filtered 

completely.  After an additional 20 minutes of centrifugation at 1500 x g, the wells 

containing 11 mg/mL HSA solution were filtered, with minimal to no filtrate 

collected from the higher HSA concentrations.  To retain the highest throughput, a 

short centrifugation time was preferred.  Therefore a maximum concentration of 5 

mg/mL (75 µM) HSA was chosen for subsequent experiments. 

 

Table 9. Calculated percent bound of standard small molecules after high-
throughput ultrafiltration method with varying volumes of 10 mM compound 

solution in DMSO (n=3) in comparison to literature in vitro values. (x = Ae greater 
than A0) 

Molecule 

% Bound, 

Literature 

Value 

Calculated 

% Bound, 

1 µL 

Compound 

Calculated 

% Bound, 

2 µL 

Compound 

Calculated 

% Bound, 

3 µL 

Compound 

Calculated 

% Bound, 

4 µL 

Compound 

Piroxicam
140

 91 56.6 ± 2.4 39.8 ± 2.3 45.2 ± 1.6 40.8 ± 1.2 

Metoprolol
141

 3.5 ± 32.0 x x 22.7 ± 3.5 93.8 ± 1.3 

Propranolol
142

 87 ± 6 51.4 ± 9.9 29.0 ± 4.3 27.4 ± 1.1 48.2 ± 5.0 

Naproxen
141, 143

 95.3 ± 1.7 106.7 ± 5.5 81.2 ± 5.3 67.2 ± 1.7 71.0 ± 0.6 

Caffeine
142

 36 ± 7 x 37.7 ± 5.6 22.8 ± 8.7 41.0 ± 1.8 

 

Next, the concentration of small molecules with the 5 mg/mL HSA was 

determined.  The concentration must be sufficient for UV detection, but low enough 

to prevent over-saturation of protein binding sites.  Therefore, compound 

concentrations of 143, 286, 429, and 571 µM (1, 2, 3, and 4 µL of the 10 mM 
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compound solutions in DMSO) were analyzed in triplicate.  The resulting calculated 

percentages of HSA-bound compound in comparison with in vitro plasma protein 

binding values are shown in Table 9.  β-Estradiol and diethylstilbestrol were 

excluded from the table because Ae was greater than A0 at all concentrations.  This 

was observed for other molecules as well (caffeine and metoprolol), as indicated by 

an x in the Tables 9, 10, and 11.  The reasons for this observation may be the 

displacement of interfering molecules upon the binding of the drug, breakthrough of 

the plasma protein during filtration, or low absorbance (Figure 47).   
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Figure 47. Calibration plot correlating absorbance with concentration of standard 
molecules at the λmax at each of the molecules, respectively.  Slope of the line for 

each molecule given in the table with standard deviation. 

 

The  co-solvents, NP-40 and glycerol,  were investigated for the reduction of 

non-specific binding during ultrafiltration assays.23, 126  NP-40 as well as other 

surfactants are frequently added to buffers to circumvent aggregation as well as to 
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increase solubility of proteins and small molecules.64, 95, 116  Therefore, 0.01% by 

volume NP-40 was added to the buffer.  The results in Table 10 with the addition of 

NP-40 showed a much better correlation to the in vitro values than those in Table 9, 

without buffer additives.  The addition of glycerol, typically 10% by volume, in 

protein buffers enhances the solubility and stability of many proteins.12  Very poor 

results were observed with the addition of 10% by volume glycerol, which may be 

due to the increased viscosity of the solution possibly clogging the pores in the 

membrane. 

 

Table 10. Calculated percent bound of standard small molecules after high-
throughput ultrafiltration method with 2 µL of 10 mM compound solution in DMSO 

(n=3) and 0.01% NP-40 and 0.01% NP-40 with 10% glycerol (v/v) in comparison to 
literature in vitro values. (x = Ae greater than A0) 

Molecule 

% Bound, 

Literature 

Value 

Calculated % 

Bound, 

0.01% NP-40 

Calculated % 

Bound, 

10% Glycerol, 

0.01% NP-40 

Piroxicam
140

 91 56.7 ± 0.4 55.9 ± 8.5 

Metoprolol
141

 3.5 ± 32.0 21.0 ± 1.7 x 

Propranolol
142

 87 ± 6 32.0 ± 2.1 x 

Naproxen
141, 143

 95.3 ± 1.7 76.7 ± 3.2 62.5 ± 23.7  

Caffeine
142

 36 ± 7 33.4 ± 7.9 x 

  

To determine if there is a concentration effect with the separation of a large 

percentage of the initial volume, the plate was only centrifuged for 5 minutes, 

collecting 10 µL of filtrate.  The calculated percent bound for high-binding molecules 

(piroxicam and naproxen), both with a λmax greater than 300 nm, were significantly 
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lower than the in vitro literature values.  The values for all other molecules were not 

calculable (Ae greater than A0) because of the highly dilute solutions. 

 
Table 11.  Calculated percent bound of standard small molecules after high-

throughput ultrafiltration method with 1 µL of 10 mM compound solution in DMSO 

(n=3) with 0.01% NP-40, detection by UV absorbance and LC-MS in comparison to 
literature in vitro values. (x = Ae greater than A0) 

Molecule 
% Bound, 

Literature Value 

Calculated 

% Bound, 

UV 

Calculated 

% Bound, 

LC-MS 

Piroxicam
140

 91 66.8 ± 2.1 68.0 ± 0.2 

Metoprolol
141

 3.5 ± 32.0 x 0.9 ± 0.5 

Propranolol
142

 87 ± 6 x 17.5 ± 0.9 

Naproxen
141, 143

 95.3 ± 1.7 69.4 ± 4.4 81.6 ± 0.5 

Caffeine
142

 36 ± 7 4.1 ± 2.3 5.3 ±0.2 

 

Many protein-binding methods (equilibrium dialysis and ultrafiltration) use 

LC-MS or LC-MS/MS for detection due to the sensitivity that can be achieved.21, 22, 120, 

128, 129, 136    The percent binding of the molecules presented in Table 11 were 

determined by UV absorbance and LC-MS detection using the ratio of the peak areas 

of the analytes.  The percent binding of β-estradiol and diethylstilbestrol could not 

be calculated because it co-eluted with DMSO.  This could be improved by adjusting 

the HPLC method.  For all other compounds, a similar protein binding was 

determined by both UV absorbance and LC-MS.  With optimization of the LC-MS 

method, molecules with low absorbance or low maximum wavelengths could be 

detected more easily. 
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4. Conclusions 

 Sieve effects are commonly seen for ultrafiltration methods, in which water 

molecules are preferentially filtered as compared to the drug molecules giving an 

underestimation of the free drug concentration.144  Concentration effects by 

separation of large amounts of the volume can also have an influence on low-

binding molecules such as metoprolol and caffeine.  Addition of NP-40 to the assay 

buffer greatly increases the correlation to reported in vitro values for plasma 

protein binding.  This can be due to the decrease in non-specific binding to the filter 

apparatus64, 95, 116 and decreased aggregation of the molecules and proteins.64, 95, 116 

 It has been discussed previously that ultrafiltration methods are not a 

sufficient substitute for equilibrium dialysis.145  There is some variation between in 

vitro methods; for example, equilibrium dialysis has reported 23% plasma protein 

binding for fleroxacin whereas ultrafiltration has reported 47% plasma protein 

binding for the same compound.146  Many high-throughput methods that have been 

developed for ultrafiltration plasma protein binding that correlate the results to 

conventional single-tube ultrafiltration values.120, 129  Other reports describe the 

study of the binding of one or two molecules, not multiple.120, 129  Application of LC-

MS or LC-MS/MS may increase the sensitivity of detection, but can greatly decrease 

the throughput of analysis.  With further optimization, application of the plasma 

protein binding method in a 384-well filter plate with 30 kDa molecular weight 

cutoff membrane can be a useful ultrafiltration method for drug-protein binding 

studies. 



105 

 

 

 

PART 2: COMPETITIVE PROTEIN BINDING 

1. Introduction 

 Fluorescence spectroscopy can be applied as a highly sensitive method for 

protein analysis.147, 148    The fluorescent probes can be analogs of natural ligands 

and drugs or act as binding site markers in competition assays.148-150  1-

Anilinonaphthalene-8-sulfonate (ANS) is one of the first fluorophores discovered 

that displays a change in fluorescence intensity upon interaction with 

biomolecules.151  ANS and its dimeric form, 4,4’-bis-1-anilinonaphthalene-8-

sulfonate (Bis-ANS) are the most frequently used dyes in protein 

characterization.130, 147, 151-153  Prodran has been used to characterize the warfarin 

binding site on HSA.148  Another fluorescence-based method used danslyamide and 

dansylsarcosine, with fully characterized binding sites on HSA.148   The decrease in 

the fluorescence intensity can be interpreted as displacement of the fluorescent 

probe by an added ligand through a competitive mechanism.148, 154  The decrease in 

fluorescence intensity can also be related non-competitive allosteric inhibition. 
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Figure 48. Structures of Mega Red and Nile Red with wavelengths of excitation and 
emission in PBS with 0.5 mg/mL HSA. 



106 

 

 

 

 

Figure 49. Jablonski diagram describing the fluorescence process including solvent 
relaxation and (twisted) intramolecular charge transfer.147 

 

To determine the extent of drug-plasma protein binding, fluorescent 

molecules were chosen that bind non-specifically and non-covalently with proteins.  

Some fluorophores have a very low quantum yield in water, but a large quantum 

yield in the presence of proteins such as bovine serum albumin (BSA).  These 

changes are due to solvent or environmental effects, altering the rates of non-

radiative decay.149, 155  This phenomenon is observed for many fluorescent 

molecules including Mega Red and Nile Red, Figure 48.   The electron process is 

described in Figure 49.  Upon the absorption of light, electrons are excited from the 

ground state, S0, to a higher energy level.  There are several processes that compete 

with fluorescence, resulting in energy loss.  These processes include vibrational 

relaxation, internal conversion, solvent relaxation, and intramolecular charge 

transfer (ICT) or twisted intramolecular charge transfer (TICT), illustrated by the 

dotted arrows in Figure 49.  Once the molecule has reached the lowest vibrational 
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level, S1 or S(T)ICT, the molecule can relax back to the ground state by fluorescence 

emission of a photon or non-radiative decay.  The twisted intramolecular charge 

transfer, as opposed to normal planar ICT, involves intramolecular rotation and full 

charge transfer. 

Mega Red contains a coumarin moiety which demonstrates the ability to 

associate non-covalently and non-specifically with proteins.156, 157  Nile Red is a non-

ionic fluorescent probe that binds non-covalently to protein surfaces.  A large stokes 

shift, with respect to the emission, makes it useful for observing changes in protein 

structure.158  The fluorescence properties of Nile Red are governed by TICT in which 

an electron transfers from the diethylamino group to the electron-withdrawing 

aromatic system with rotation around the aromatic-nitrogen bond.147, 159  A 

diethylamino group is also present in Mega Red, causing a similar TICT process, 

although it has not been fully characterized yet. In polar solvents, the TICT state and 

non-radiative decay are favored causing the low quantum yield in aqueous 

solutions.  In apolar environments, such as with human serum albumin (HSA) or 

BSA, the TICT process is thermodynamically unfavorable, which results in a 

significant increase in fluorescence lifetime and quantum yield.147, 159 

 Herein, the first high-throughput method to determine drug-protein binding 

is presented.  In contrast to equilibrium dialysis and ultrafiltration methods, this 

method requires short times and no centrifugation.  Importantly, it is carried out in 

384-well plate format.  The application of fluorescent probes, (E)-1-(5-

carboxypentyl)-2-(2-(7-(diethylamino)-4-hydroxy-2-oxo-2H-chromen-3-yl)vinyl)-
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3,3-dimethyl-3H-indol-1-ium-5-sulfonate (Mega Red)157 and 9-(diethylamino)-5H-

benzo[a]phenoxazin-5-one (Nile Red)158, enables the quantification of two 

independent compound-plasma protein binding constants in one assay at different 

HSA binding sites.  The concept of using multiple fluorescent probes simultaneously 

for the study of small molecule-protein interactions has been discussed previously, 

but was not fully developed.160  Compounds can also be measured in a dose-

response analysis to determine the affinity of compound binding.  This fluorescence-

based assay represents a novel high-throughput screening (HTS) tool for the 

estimation of plasma protein binding of small molecules. 

2.1. Materials and Instrumentation 

All materials were used as received.  The following small molecules were 

used as standards: verapamil hydrochloride (Tocris Bioscience), diethylstilbestrol 

(Spectrum Chemical Mfg. Corp.), β-estradiol (Alfa Aesar), caffeine (Alfa Aesar), D,L-

propranolol hydrochloride (MP-Biomedicals), piroxicam (MP-Biomedicals), 

metoprolol tartarate (LKT Laboratories), naproxen (MP-Biomedicals), atenolol (MP-

Biomedicals), ranitidine hydrochloride (Alfa Aesar), ketoconazole (Calbiochem), 

lansoprazole (Sigma Aldrich), omeprazole (Sigma Aldrich), rabeprazole (Sigma 

Aldrich), nadolol (Sigma Aldrich), linezolid (Sigma Aldrich), antipyrine (Sigma 

Aldrich), ofloxacin (Sigma Aldrich), and methotrexate (Sigma Aldrich).  Each of the 

small molecules were dissolved in DMSO (Acros, Spectroscopic Grade 99.9+%) to 

make 10 mM solutions.  
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Solutions from lyophilized powder, fatty acid free, globulin free, ≥99% 

human serum albumin (HSA) (Sigma Aldrich) were made in buffer.  HSA solutions 

were stored for no longer than one week at 4°C.  Phosphate buffered saline (PBS) 

was prepared in 1L batches using 18 MΩ water with 3.23 mM K2HPO4·7H2O (J.T. 

Baker), 7.84 mM KH2PO4 (J.T. Baker), 5 mM KCl (Fisher), 150 mM NaCl (Fisher), and 

adjusted to pH 7.2 with HCl (Mallinckrodt) and NaOH (Fisher).  Nonylphenyl 

polyethylene glycol (NP-40) 0.01% (v/v) surfactant (Boston BioProducts) and 

glycerol (Fisher) were used as buffer additives.  Fluorescent molecules, Red Mega 

500 (Mega Red) (Fluka) and Nile Red (Acros Organics), were dissolved to 10 mM in 

DMSO upon receiving and stored at -20°C until used. 

The absorbance readings were completed in a 384-well UV plate (Greiner 

Bio-One, 781801).  The assay was performed in a 384-well, flat bottom, black assay 

plate (Corning, 3573) which was sealed with an aluminum cover (Corning, 6570) 

during incubation and mixing.  All of the absorbance and fluorescence intensity 

readings were performed on a Tecan Infinite M1000 plate reader.  Small volume 

transfers were performed on the Tecan Freedom EVO liquid handling system with a 

100 nL pin tool transfer (V&P Scientific).  A BioTek MicroFlo Select instrument was 

used for the addition of solutions to the assay plate.  TA Instruments low volume 

Nano-isothermal titration calorimeter (ITC) was used for the determination of 

binding constants of standard molecules to HSA.  Analysis of the ITC data for the 

calculation of thermodynamic data was performed with NanoAnalyze software 

(Thermo Scientific). 
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 2.2. Protein Binding Assay 

In the preparation of the “compound plate”, 15 µL of the 10 mM solution of 

small molecules in DMSO were dispensed in a 384-well polystyrene plate filling 

rows 1 to 18.  A second 384-well polystyrene plate, the “control plate”, had rows 19-

24 filled with 15 µL DMSO. The assay buffer was prepared by mixing 10% by volume 

glycerol and 0.01% by volume NP-40 in PBS.  Next, 20 µL of a 500 nM solution of 

Nile Red and Mega Red in the assay buffer (positive control) was dispensed to the 

assay plate (row 24). The rest of the assay plate was filled with 20 µL per well of the 

assay solution, 0.20 mg/mL HSA and 500 nM Nile Red and Mega Red in the assay 

buffer.   

With the Tecan liquid handling system, 200 nL from the compound plate and 

200 nL from the control plate were transferred into the assay plate using the pin 

transfer tool.  The assay plate was then centrifuged for 2 minutes at 2500 rpm and 

agitated for 5 minutes. The assay plate was read using the Tecan M1000 plate 

reader. An excitation and emission wavelength of 510 nm and 543 nm for Mega Red 

and 570 nm and 640 nm for Nile Red, 100 flashes, 20 µs integration time, optimized 

gain and z-position (optimized to the 500 nM Mega Red and Nile Red solution with 

0.20 mg/mL HSA), were used for the quantification of the fluorescence intensity 

signal. The Z’ value for this assay was calculated using Nile Red and Mega Red with 

HSA  as the negative control (0% binding) and Nile Red and Mega Red in buffer 

without protein as the positive control (100% binding).110  The percent binding of 

the small molecules at a concentration of 100 μM was reported as normalized 
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response to the fluorescence intensity of Mega Red and Nile Red in the presence of 

HSA. 

3. Results and Discussion 
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Figure 50. A) Absorbance and fluorescence spectra at 514 nm excitation of Mega 

Red in PBS with 0.5 mg/mL HSA. B) Absorbance and fluorescence spectra at 570 nm 
excitation of Nile Red in PBS with 0.5 mg/mL HSA. 
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Figure 51. Serial dilution of A) Mega Red and B) Nile Red in PBS with varying 

concentrations of HSA. 
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The absorbance and fluorescence spectra of Mega Red and Nile Red in PBS in 

the presence of 0.5 mg/mL HSA are shown in Figure 50.  The different wavelengths 

for the two fluorophores allow the simultaneous application of both within the same 

experiment.  Serial dilutions of Mega Red and Nile Red with 0, 0.2, 0.5, and 1.0 

mg/mL of HSA in PBS are depicted in Figure 51.  There is a linear relationship 

between the concentration of fluorophore and their fluorescence intensity at 

concentrations below 2.1 µM.  The fluorescent intensity also increases with 

increasing concentration of HSA, reaching a saturation of signal at 0.5 mg/mL for 

both Mega Red and Nile Red.  The Z’ values (Figure 52) were calculated for each of 

the probe concentrations summarized in Figure 51.  This data was used to 

determine the optimal assay concentrations, which were 500 nM of both Mega Red 

and Nile Red and 0.2 mg/mL HSA. 
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Figure 52. Z’ value (without HSA, positive control; with HSA, negative control) with 
changing concentration of HSA and A) Mega Red or B) Nile Red. 
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Figure 53. Binding response of one standard molecule, naproxen, with changing 
buffer composition. 

 

 
To optimize the fluorescence signal of Mega Red and Nile Red in the presence 

of HSA and drugs, the buffer composition was varied.  For simplicity, the binding 

response of only one standard molecule, Naproxen, is show in Figure 53.  The data 

for all standard molecules with changing buffer composition can be found in 

Appendix D.  DMSO is often added to buffers because it can greatly enhance the 

solubility of small molecules, but may also influence the performance of an assay as 

it may affect the stability of many biomolecules.  DMSO was added at 1, 2, 3, 4, and 

5% by volume in PBS.  The displacement of Mega Red and Nile Red by naproxen 

decreased with increasing concentration of DMSO.  The strength of electrostatic 

interactions as well as protein stability can be modulated by varying the ionic 
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strength of buffers.161  Increasing the NaCl concentration from 150 mM to 500 mM 

resulted in poor binding of naproxen, as well as other standard molecules.  When 

the pH of the buffer was changed to 8.0, an increase in HSA binding was observed 

for naproxen, while no improvement was seen with other standard molecules.  

Changing the buffer to a zwitterionic HEPES buffer at 200 mM and pH 7.2 showed 

minimal improvements in binding of naproxen as well as other standard molecules.  

The addition of glycerol, typically 10% by volume, in protein buffers enhances the 

solubility and stability of many proteins.12  This is due to the increased 

hydrophobicity of the buffer with increasing concentration of glycerol.  NP-40 as 

well as other surfactants are frequently added to buffers to circumvent aggregation 

as well as to increase solubility of proteins and small molecules.64, 95, 116  The small 

molecule binding was determined with varying percent of glycerol, 5%, 10%, and 

20% by volume, in PBS with and without the presence of 2% by volume DMSO and 

0.01% or 0.001% NP-40.  With 5% by volume glycerol, only a minimal HSA binding 

was observed for naproxen.  Increasing the amount of glycerol to 10% and 20% 

showed a drastic increase in the binding.   Little difference was observed between 

10% and 20% (v/v) glycerol by volume, therefore 10% was preferred.  Decreasing 

or removing the NP-40 from the buffer with 10% (v/v) glycerol showed a drastic 

decrease in the HSA binding of naproxen, therefore 0.01% NP-40 was preferred in 

the buffer.  Finally, with the addition of 2% by volume of DMSO to the buffer with 

10% glycerol showed an increase in binding of naproxen.  Nonetheless, it is 

preferable to minimize DMSO in assay solutions for concerns of protein stability.162  

For every assay, 1% (v/v) DMSO was added with the transfer of compounds.  The 
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optimized assay buffer consisted of PBS at pH 7.2 with 150 mM NaCl, 10% glycerol, 

and 0.01% NP-40 by volume. 

All standard molecules were screened for the displacement of 500 nM Mega 

Red and Nile Red and compared with literature values for in vivo plasma protein 

binding, Figure 54.  The standard deviations for literature values are given when 

reported.  The standard molecules were screened in triplicate as described in 

section 2.2.  The displacement of the fluorescent molecule resulted in a decrease in 

fluorescence intensity.  The percent binding of the small molecules at a 

concentration of 100 μM was reported as normalized response to the fluorescence 

intensity of Mega Red and Nile Red in the presence of HSA.  The larger of the two 

values was used for the percent bound value in comparison to the literature values 

(Figure 54).   

A good correlation between the experimental and literature in vivo plasma 

protein binding values was observed.  Groups of low, medium, and high protein 

binding molecules were assigned in the plot (Figure 54).  Experimental values for 

20% (40% in vivo binding values) or less binding correspond to low binding 

molecules, designated by the dotted lines on the plot.  Experimental values for 40% 

(80% in vivo binding values) or greater binding correspond to highly binding 

molecules, designated by the dashed lines on the plot.  The values between 20% and 

40% (40% and 80% in vivo binding values), falling between the dotted and dashed 

lines, correspond to the medium binding molecules. 
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Compound 
Literature Value  

% Bound in Plasma 

% Bound  

(i.e., Probe Displaced) 

Mega Red Nile Red 

Antipyrine
163

 4.0 ± 2.0 0.5 ± 2.0 1.6 ± 1.1 

Atenolol
8, 164, 165

 10.0 ± 5 7.4 ± 1.7 0.2 ± 1.5 

Metoprolol
8, 166-168

 11.0 ± 1 4.6 ± 3.9 5.2 ± 1.3 

Ranitidine
8, 169

 15.0 ± 3 3.8 ± 1.3 0.7 ± 1.6 

Nadolol
170

 15.5 ± 11.5 7.0 ± 2.9 4.5 ± 1.2 

Ofloxacin
171, 172

 19.0 ± 11.0 3.4 ± 1.6 0.1 ± 3.3 

Caffeine
173

 30.0 ± 5 2.8 ± 3.4 3.5 ± 0.7 

Linezolid
8, 174-176

 31.0 ± 1.0 3.5 ± 4.0 0.8 ± 3.4 

β-Estradiol
177

 65.0 ± 15 34.9 ± 1.3 32.4 ± 2.4 

Diethylstilbestrol
178

 65.0 ± 15 11.8 ± 2.9 25.0 ± 3.3 

Omeprazole
179

 95.0 49.9 ± 3.0 6.7 ± 5.3 

Lansoprazole
179

 95.5 ± 1.5 57.2 ± 1.4 7.9 ± 4.5 

Piroxicam
177, 180, 181

 99.0 ± 0.3 70.7 ± 0.9 12.5 ± 1.3 

Naproxen
8, 182

 99.7 ± 0.1 68.1 ± 1.3 4.4 ± 3.5 
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Figure 54. Standard molecule displacement of 500 nM Mega Red and Nile Red in PBS 
with 10% glycerol and 0.01% NP-40 in comparison with literature values for in vivo 
plasma protein binding (n=3).  Larger of the values, in gray, for % bound (i.e., probe 
displaced) is taken for the plot.  Dotted line correlates to the cutoff for low protein 

binding molecules and the dashed line correlates to the cutoff for high protein 
binding molecules. 
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With the optimized assay conditions: PBS (50 mM, pH 7.4, 150 mM NaCl), 

500 nM Mega Red and Nile Red, compounds (100 μM), 0.20 mg/mL HSA, 10% 

glycerol and 0.01% NP-40; a library of small molecules was screened. The Library of 

Pharmaceutically Active Compounds-1280 (LOPAC) screening collection (Sigma) 

was used to determine the quality of the assay and the ability to identify compounds 

that significantly bind to plasma proteins. Each LOPAC compound was measured in 

triplet (Figure 55).  The results for all of the compounds within the library are 

summarized in Appendix D.  The Z’ values of this screen ranged between 0.60 and 

0.91 with a mean of 0.93 for Mega Red and 0.72 for Nile Red. The mean fluorescence 

intensity of all compounds in the presence of Mega Red and 0.20 mg/mL HSA was 

10.3% of the Mega Red with HSA signal with a standard deviation of 13.8%. The 

mean fluorescence intensity of all compounds in the presence of Nile Red and 0.20 

mg/mL HSA was 9.0% of the Nile with HSA signal with a standard deviation of 9.5%.  

The results of the high-throughput screen identified 82 compounds that 

displaced Mega Red and/or Nile Red at 40% or greater.  This was a hit rate of 6.4% 

for molecules within the library falling above the high plasma protein binding cutoff 

limit set by the standard molecules.  Of the 82 hit compounds, 75 of these molecules 

were determined to be moderately to highly lipophilic, with a calculated logP(o/w) 

greater than 1.183  Within the hit molecules identified by Mega Red, 10 molecules 

contained negatively charged groups such as sulfate, nitrate, or phosphate groups.  

Among the group of hits were P2 receptor antagonists, Figure 56, displacing more 

than 70% of Mega Red.  In addition, many hormones were identified, Figure 57, such 
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as β-estradiol, that exhibit medium and high binding by the displacement of Nile 

Red. 
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Figure 55. Results of the LOPAC screen (1280 compounds) with cutoff for medium 

and high binding cutoff values at 20% and 40%. 
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Figure 56. P2 receptor antagonists identified as protein binding hit molecules. 
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Figure 57. Selected hormones identified as protein binding hit molecules. 

 

With the combination of both Mega Red and Nile Red, 18 of the 20 

prostaglandin synthesis inhibitors within the LOPAC library were identified as 

medium and high-protein binding molecules, Figure 58.  Interestingly, two 

compounds within this family, naproxen and piroxicam, were among the standard 

molecule used for the optimization of the assay. In vivo plasma protein binding 

values for some of these molecules have previously been studied, such as diclofenac 

with 99.5% plasma protein binding184 displaced 43.8% of Nile Red, indomethacin 

with 90% plasma protein binding185 displaced 34.2% of Mega Red, ibuprofen with 

about 99% plasma protein binding186, 187 displaced 36.8% of Mega Red, and 

ketorolac with a 99% plasma protein binding188 displaced 68.8% of Mega Red and 

28.7% of Nile Red. 
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Figure 58. Prostaglandin synthesis inhibitors (COX 1&2) identified as protein 
binding hit molecules. 

 

The background fluorescence intensity was determined for each LOPAC 

molecule (100 μM) in the absence of Nile Red and Mega Red with an excitation and 

emission wavelength of 514 nm and 532 nm as well as 570 nm and 640 nm, 

respectively. The vast majority of LOPAC compounds exhibited minimal 

fluorescence intensity and gave a value similar signal to those measured for the 

assay media (Figure 59A, compound (black), buffer (white/gray)). However, 10 

compounds exhibit a fluorescence of more than 1σ of the mean background 

fluorescence intensity (Figure 59B).  Interestingly, the fluorescence intensity for 

these molecules was decreased in the LOPAC screen in the presence of Mega Red 

and Nile Red (possibly due to the quenching process). 
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Figure 59. A) Fluorescence intensity (514/532 nm and 570/640 nm) of all LOPAC 
compounds (white points correspond to background at 514/532 nm, grey points 

correspond to background at 570/640 nm); B) Structures of fluorescently 
interfering compounds, fluorescent intensity (FI) at 514/532 nm in black and 

570/640 nm in grey. 
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Figure 60. Binding dose-response curves for A) naproxen, B) piroxicam, C) β-
estradiol, and D) diethylstilbestrol with corresponding IC50 values. 

 

The standard molecules can also be screened in a dose response manner, 

giving both the efficacy and affinity of binding.  The dose response curves for the 

standard molecules naproxen, piroxicam, β-estradiol, and diethylstilbestrol are 

shown in Figure 60.  The titration of naproxen resulted with an IC50 of 24.6 ± 8.3 µM 

for the displacement of Mega Red.  The dose response of piroxicam resulted with an 

IC50 value of 4.2 ± 1.1 µM for the displacement of Mega Red.  β-Estradiol displaced 
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both Mega Red and Nile Red nearly equally, resulting with an IC50 of 11.6 ± 3.7 and 

7.7 ± 3.3 µM.  Finally, dose response of diethylstilbestrol resulted with an IC50 of 4.4 

± 1.9 µM for the displacement of Mega Red and 23.4 ± 3.8 µM for the displacement of 

Nile Red.   

It has previously been shown that the binding or interaction of Nile Red does 

not alter the native structure of albumin in aqueous solutions.158  Isothermal 

titration calorimetry (ITC) was performed to quantify the direct binding of 

naproxen with HSA in the absence of Mega Red and Nile Red.  All solutions were 

prepared in the assay buffer optimized for the fluorescence-based assay.  A 50 µM 

solution of HSA was added into the cell and a 350 µM naproxen solution was loaded 

into the syringe.  A stir rate of 200 rpm at 25�C was used in the analysis with 

injection volumes of 2.02 µL of the naproxen solution with 300 seconds between 

each of the 20 injections. The resulting data for the binding of naproxen with HSA 

under these conditions is shown in Figure 61, giving a Kd value of 58.25 ± 5.06 µM.  

An n value of 0.500 was used for the thermodynamic calculations (largest n value, 

while still achieving a good fit). The Kd value is very similar to the IC50 value 

determined by the fluorescence-based competition assay supporting the 

observation that the binding of Mega Red and Nile Red does not alter native HSA 

protein structure.   
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A 

 
B 

 

C Ka (1/M) 1.730 ± 0.150 x 10
4 

Kd (M) 5.825 ± 0.506 x 10
-5 

dH (kJ/mol) -221.0 ± 9.0 

dS (J/mol·K) -660.1 ± 30.8 

n 0.500 

Figure 61. Isothermal titration calorimetry results for the binding of naproxen (350 
µM) and HSA (50 µM).  A) Plot of peak areas for each injection in correlation with 

analysis time. (n=2) B) Enthalpogram for the titration of naproxen into HSA with 20- 
2.02 µL injections. C) Thermodynamic data from the fit lines in A. 
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4. Conclusions 

Molecules that bind strongly to plasma proteins have unique 

pharmacokinetics that may result in some liabilities in later pre-clinical screens.  It 

is also understood that plasma protein bound molecules have a low available 

concentration for the site of action and exhibit a limited in vivo clearance.  

Therefore, protein binding is frequently investigated in the early stages of discovery 

to enable chemical optimization of this property.  For the first time, large libraries of 

molecules can be screened in high-throughput format using the described 

fluorescence plasma protein binding assay.   

The TICT mechanism of both Mega Red and Nile Red results in a very low 

quantum yield in water that significantly increases once bound to proteins like 

serum albumin.  The identification of competing compounds required minimal 

incubation time and although optimized for 384-well plates, it could be easily 

minimized to 1536-well plate format.  The far-red detection of both Mega Red and 

Nile Red limits the number of molecules interfering with the assay, which was 

0.78% for the LOPAC screening library.  The assay has an excellent reproducibility 

(Z’ > 0.9 and 0.7 for Mega Red and Nile Red, respectively) and identifies compounds 

that bind HSA and are moderately to strongly lipophilic. Importantly, not all 

lipophilic compounds were able to compete with Mega Red and Nile Red for HSA 

binding; thus HSA binding is rather specific for each small molecule.  This is 

supported by the fact that dose-dependent inhibition of Mega Red and Nile Red – 

HSA binding was observed with saturation at higher compound concentrations.   
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All IC50 values measured were between 3-24 μM and had different efficacies 

and Hill-slopes.  This behavior suggests that different HSA binding for each 

compound with different affinities, and overlapping binding sites for Mega Red and 

Nile Red.  For naproxen, the measured inhibition constant (IC50) and binding 

constant (Ka) are similar.  Thus, the binding of both fluorescent molecules does not 

alter native HSA protein structure.  This has been shown for Nile Red−HSA 

binding158 but here for the first time for the interaction between HSA and Mega Red. 

In addition, the HTS fluorescence competition assay is capable of producing similar 

results with the time-intensive label-free ITC measurements.  

Overall, a novel HTS assay to determine plasma protein binding was 

reported.  Future studies for the improvements to this method include the 

investigating of the application of blood plasma instead of HSA as well as other 

fluorescent probes to improve the detection of small molecule−HSA binding. 
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APPENDIX A 

SOLUBILITY ASSAY 

Table 12. Solubility assay results of compound library (n=4). 
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Continued, Table 12. Solubility assay results of compound library (n=4). 
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Continued, Table 12. Solubility assay results of compound library (n=4). 
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Continued, Table 12. Solubility assay results of compound library (n=4). 
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APPENDIX B 

PERMEABILITY ASSAY 

 

Table 13. Results of HDM-PAMPA assay for compound library (n=3). 
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Continued, Table 13. Results of HDM-PAMPA assay for compound library (n=3). 
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Continued, Table 13. Results of HDM-PAMPA assay for compound library (n=3). 
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Continued, Table 13. Results of HDM-PAMPA assay for compound library (n=3). 

 

  



135 

 

 

 

Table 14. Results for IAM-C18-IAM coupled columns. 

Compound log k' 
HDM-PAMPA logP 

(cm/s) 

log Peff 

(cm/s) 

4,5-diphenylimidazole 1.242 -6.75 n/a 

β-Estradiol 1.240 -7.65 n/a 

Diethylstilbestrol 1.246 -7.98 n/a 

3-phenylazo-2,6-diaminopyridine 1.222 -5.89 n/a 

Verapamil 1.263 -5.98 -3.174 

Carbamazepine 1.195 -6.82 -3.367 

Ranitidine 0.650 -8.41 -4.367 

Piroxicam 1.128 -7.66 -3.108 

Metoprolol 1.077 -7.51 -3.886 

Propranolol 1.223 -6.82 -3.538 

Atenolol -0.199 -7.19 -4.699 

Naproxen 1.160 -7.65 -3.056 

Caffeine 0.248 -7.53 n/a 

 

 

 

Table 15. Results for C18-IAM coupled columns. 

Compound log k' 
HDM-PAMPA logP 

(cm/s) 

log Peff 

(cm/s) 

4,5-diphenylimidazole 1.283 -6.75 n/a 

β-Estradiol 1.282 -7.65 n/a 

Diethylstilbestrol 1.289 -7.98 n/a 

3-phenylazo-2,6-diaminopyridine 1.268 -5.89 n/a 

Verapamil 1.307 -5.98 -3.174 

Carbamazepine 1.240 -6.82 -3.367 

Ranitidine 0.669 -8.41 -4.367 

Piroxicam 1.161 -7.66 -3.108 

Metoprolol 1.075 -7.51 -3.886 

Propranolol 1.256 -6.82 -3.538 

Atenolol -0.212 -7.19 -4.699 

Naproxen 1.194 -7.65 -3.056 

Caffeine 0.260 -7.53 n/a 
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Table 16. Results for IAM-C18 coupled columns. 

Compound log k' 
HDM-PAMPA logP 

(cm/s) 

log Peff 

(cm/s) 

4,5-diphenylimidazole 1.283 -6.75 n/a 

β-Estradiol 1.271 -7.65 n/a 

Diethylstilbestrol 1.288 -7.98 n/a 

3-phenylazo-2,6-diaminopyridine 1.255 -5.89 n/a 

Verapamil 1.297 -5.98 -3.174 

Carbamazepine 1.240 -6.82 -3.367 

Ranitidine 0.642 -8.41 -4.367 

Piroxicam 1.154 -7.66 -3.108 

Metoprolol 1.078 -7.51 -3.886 

Propranolol 1.240 -6.82 -3.538 

Atenolol -0.212 -7.19 -4.699 

Naproxen 1.186 -7.65 -3.056 

Caffeine 0.276 -7.53 n/a 

 

 

 

Table 17. Results for C18 column. 

Compound log k' 
HDM-PAMPA logP 

(cm/s) 

log Peff 

(cm/s) 

4,5-diphenylimidazole 1.343 -6.75 n/a 

β-Estradiol 1.338 -7.65 n/a 

Diethylstilbestrol 1.345 -7.98 n/a 

3-phenylazo-2,6-diaminopyridine 1.326 -5.89 n/a 

Verapamil 1.369 -5.98 -3.174 

Carbamazepine 1.300 -6.82 -3.367 

Ranitidine 0.746 -8.41 -4.367 

Piroxicam 1.216 -7.66 -3.108 

Metoprolol 1.086 -7.51 -3.886 

Propranolol 1.304 -6.82 -3.538 

Atenolol -0.279 -7.19 -4.699 

Naproxen 1.250 -7.65 -3.056 

Caffeine 0.271 -7.53 n/a 
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Table 18. Results for IAM column. 

Compound log k' 
HDM-PAMPA logP 

(cm/s) 

log Peff 

(cm/s) 

4,5-diphenylimidazole 1.375 -6.75 n/a 

β-Estradiol 1.124 -7.65 n/a 

Diethylstilbestrol 0.640 -7.98 n/a 

3-phenylazo-2,6-diaminopyridine 1.436 -5.89 n/a 

Verapamil 1.190 -5.98 -3.174 

Carbamazepine 0.351 -6.82 -3.367 

Ranitidine 0.852 -8.41 -4.367 

Piroxicam 0.282 -7.66 -3.108 

Metoprolol -0.048 -7.51 -3.886 

Propranolol 1.079 -6.82 -3.538 

Atenolol 0.916 -7.19 -4.699 

Naproxen 0.913 -7.65 -3.056 

 

 

 

 

Table 19. Octanol/water partitioning coefficients at pH 7.2 beginning with 1mg/mL 
compound solutions in 1-octanol. 

 

1-Octanol Solutions 

Volume of Drug Solution: 100 µL 300 µL 400 µL 

Compound logPo/w logPo/w logPo/w 

4,5-diphenylimidazole 1.74 1.76 1.70 

β-estradiol 1.08 1.51 1.53 

Diethylstilbestrol 1.37 1.88 1.85 

3-phenylazo-2,6-diaminopyridine 1.92 1.93 1.72 

Verapamil 1.24 1.58 1.40 

Carbamazepine 0.770 1.01 0.975 

Ranitidine -0.850 -0.577 -0.492 

Piroxicam -0.0981 -0.0218 -0.0325 

Metoprolol -0.0702 -0.274 -0.299 

Propranolol 0.872 0.801 0.459 

Atenolol -0.394 -0.789 -0.663 

Naproxen 0.475 0.559 0.513 

Caffeine -0.104 n/a n/a 
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Table 20. Octanol/water partitioning coefficients at pH 7.2 beginning with 1mg/mL 
compound solutions in phosphate buffered saline. 

pH 7.4 PBS Solutions 

Volume of Drug Solution: 100 µL 300 µL 400 µL 

Compound logPo/w logPo/w logPo/w 

4,5-diphenylimidazole 1.22 1.21 1.64 

β-estradiol 0.642 0.930 1.02 

Diethylstilbestrol 0.674 0.938 0.946 

3-phenylazo-2,6-diaminopyridine 1.66 1.83 1.46 

Verapamil 1.33 1.52 1.43 

Carbamazepine 0.610 0.693 0.720 

Ranitidine -0.974 -0.647 -0.520 

Piroxicam -0.140 -0.0359 -0.0214 

Metoprolol -0.0706 -0.249 -0.270 

Propranolol 0.902 0.599 0.353 

Atenolol -0.446 -0.840 -0.723 

Naproxen 0.444 0.508 0.507 

Caffeine -0.120 n/a n/a 
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APPENDIX C 

THIOL BINDING ASSAY 

Table 21. Results of fluorescence-based electrophile screen of the LOPAC library.  
Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 

 



160 

 

 

 

Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 

 



181 

 

 

 

Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC 
library.  Values are presented as a percent of the MSTI signal (Avg. %). (n=3) 
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Figure 62. Mass spectrum of 2-iodoacetamide-MSTI conjugate; ESI probe, 80 V 

entrance cone, 3 mV capillary, and 350 °C probe temperature. 

 

550 600 650 700 750
0

10000

20000

30000

40000

50000

MSTI

MSTI + 2-Iodoacetamide

Wavelength (nm)

F
lu

o
re

s
c

e
n

t 
In

te
n

s
it

y
 (

5
1

0
 n

m
 E

x
.)

 

Figure 63. Fluorescence spectrum of 2-iodoacetamide-MSTI conjugate with an excitation 

wavelength of 510 nm. 



183 

 

 

 

N S

HO NH

S
O

O

Br

OH

S

OH

O

S

O

O

Br

NH
N SH

Molecular Weight: 468

Molecular Weight: 671

1

MSTI

1c

 

Figure 64. Addition of MSTI to small molecule 1 to form adduct molecule 1c. 

 

 

Figure 65. Mass spectrum of adduct molecule 1c formed in Scheme 1.  Mass spectrum of 

the assay mixture in Scheme 1 which confirms the formation of adduct of MSTI with the 

small molecule (Molecule 1).  ESI probe, 120 V entrance cone, 3 mV capillary, and 350 

°C probe temperature. 
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Figure 66. Addition of MSTI to small molecule 2 to form adduct molecule 2c. 

 

 

Figure 67. Mass spectrum of adduct molecule 2c formed in Scheme 2.  Mass spectrum of 

the assay mixture in Scheme 1 which confirms the formation of adduct of MSTI with the 

small molecule (Molecule 2).  ESI probe, 40 V entrance cone, 3 mV capillary, and 350 

°C probe temperature. 
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Figure 68. Addition of MSTI to small molecule 3 to form adduct molecule 3c. 

 

 

Figure 69. Mass spectrum of adduct molecule 3c formed in Scheme 3.  Mass spectrum of 

the assay mixture in Scheme 3 which confirms the formation of adduct of MSTI with the 

small molecule (Molecule 3).  ESI probe, 40 V entrance cone, 3 mV capillary, and 350 

°C probe temperature. 
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Figure 70. Conversion of acetyl-MSTI to MSTI analyzed by LC-MS. A) Chromatogram 
of acetyl-MSTI B) Chromatogram of MSTI after conversion at pH 12 with 

approximately 20% acetyl-MSTI remaining. 
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Figure 71. Mass spectra of MSTI (A) and acetyl-MSTI (B), corresponding to the 
chromatograms in Figure 6.  ESI probe, 80 V entrance cone, 3 mV capillary, and 350 

°C probe temperature. 
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APPENDIX D 

COMPETITIVE PROTEIN BINDING 

Compound 
Literature Value  

% Bound in Plasma 

% Bound  

(i.e., Probe Displaced) 

Mega Red Nile Red 

Antipyrine
163

 4.0 ± 2.0 2.2 ± 0.5 5.5 ± 1.4 

Atenolol
8, 164, 165

 10.0 ± 5 3.8 ± 3.7 5.0 ± 2.7 

Metoprolol
8, 166-168

 11.0 ± 1 2.5 ± 2.6 2.4 ± 4.4 

Ranitidine
8, 169

 15.0 ± 3 4.7 ± 2.6 6.4 ± 3.1 

Nadolol
170

 15.5 ± 11.5 3.4 ± 2.1 2.4 ± 4.6 

Ofloxacin
171, 172

 19.0 ± 11.0 0.8 ± 3.9 4.0 ± 4.8 

Caffeine
173

 30.0 ± 5 5.0 ± 0.6 7.2 ± 2.0 

Linezolid
8, 174-176

 31.0 ± 1.0 2.1 ± 3.5 0.2 ± 5.3 

β-Estradiol
177

 65.0 ± 15 47.2 ± 0.7 29.3 ± 1.7 

Diethylstilbestrol
178

 65.0 ± 15 24.4 ± 2.0 38.9 ± 2.1 

Omeprazole
179

 95.0 44.1 ± 3.5 9.3 ± 7.3 

Lansoprazole
179

 95.5 ± 1.5 47.4 ± 3.3 0.2 ± 5.0 

Naproxen
8, 182

 99.7 ± 0.1 11.2 ± 2.7 18.4 ± 3.1 
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Figure 72. Standard small molecule displacement of 500 nM Mega Red and Nile Red 
in PBS with 5% glycerol and 0.01% NP-40 by volume in the presence of 0.2 mg/mL 
HSA (n=3).  Average of literature values for in vivo plasma protein binding are given 

in comparison. Larger % bound values used for the plot. 
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Compound 
Literature Value  

% Bound in Plasma 

% Bound  

(i.e., Probe Displaced) 

Mega Red Nile Red 

Antipyrine
163

 4.0 ± 2.0 2.4 ± 3.5 0.7 ± 4.4 

Atenolol
8, 164, 165

 10.0 ± 5 3.2 ± 4.5 2.8 ± 7.6 

Metoprolol
8, 166-168

 11.0 ± 1 0.6 ± 7.0 6.3 ± 6.8 

Ranitidine
8, 169

 15.0 ± 3 6.9 ± 0.2 3.9 ± 2.2 

Nadolol
170

 15.5 ± 11.5 0.3 ± 1.4 3.9 ± 1.2 

Ofloxacin
171, 172

 19.0 ± 11.0 2.4 ± 7.8 0.5 ± 7.9 

Caffeine
173

 30.0 ± 5 7.2 ± 2.7 15.2 ± 2.5 

Linezolid
8, 174-176

 31.0 ± 1.0 2.3 ± 2.7 5.7 ± 6.2 

β-Estradiol
177

 65.0 ± 15 33.6 ± 3.7 30.1 ± 2.6 

Diethylstilbestrol
178

 65.0 ± 15 24.6 ± 1.5 30.3 ± 0.8 

Omeprazole
179

 95.0 59.0 ± 1.0 9.6 ± 5.1 

Lansoprazole
179

 95.5 ± 1.5 62.6 ± 1.2 12.0 ± 4.1 

Naproxen
8, 182

 99.7 ± 0.1 55.7 ± 2.2 30.0 ± 3.6 
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Figure 73. Standard small molecule displacement of 500 nM Mega Red and Nile Red 
in PBS with 10% glycerol and 0.01% NP-40 by volume in the presence of 0.2 mg/mL 

HSA (n=3).  Averages of literature values for in vivo plasma protein binding are 
given in comparison. Larger % bound values used for the plot. 
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Compound 
Literature Value  

% Bound in Plasma 

% Bound  

(i.e., Probe Displaced) 

Mega Red Nile Red 

Antipyrine
163

 4.0 ± 2.0 3.3 ± 2.1 2.8 ± 3.1 

Atenolol
8, 164, 165

 10.0 ± 5 7.5 ± 2.8 5.7 ± 2.2 

Metoprolol
8, 166-168

 11.0 ± 1 5.8 ± 2.6 5.1 ± 1.5 

Ranitidine
8, 169

 15.0 ± 3 6.8 ± 2.1 5.9 ± 2.5 

Nadolol
170

 15.5 ± 11.5 1.8 ± 1.2 0.1 ± 0.5 

Ofloxacin
171, 172

 19.0 ± 11.0 9.7 ± 2.1 8.7 ± 3.0 

Caffeine
173

 30.0 ± 5 6.1 ± 3.5 8.4 ± 4.8 

Linezolid
8, 174-176

 31.0 ± 1.0 4.8 ± 5.5 3.2 ± 5.4 

β-Estradiol
177

 65.0 ± 15 33.5 ± 2.7 30.2 ± 2.8 

Diethylstilbestrol
178

 65.0 ± 15 27.2 ± 0.8 33.2 ± 1.2 

Omeprazole
179

 95.0 48.9 ± 4.3 1.7 ± 8.0 

Lansoprazole
179

 95.5 ± 1.5 55.0 ± 2.4 5.6 ± 4.1 

Naproxen
8, 182

 99.7 ± 0.1 47.1 ± 3.5 18.9 ± 3.8 
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Figure 74. Standard small molecule displacement of 500 nM Mega Red and Nile Red 
in PBS with 20% glycerol and 0.01% NP-40 by volume in the presence of 0.2 mg/mL 

HSA (n=3).  Averages of literature values for in vivo plasma protein binding are 
given in comparison. Larger % bound values used for the plot. 
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Compound 
Literature Value 

 % Bound in Plasma 

% Bound  

(i.e., Probe Displaced) 

Mega Red Nile Red 

Antipyrine
163

 4.0 ± 2.0 5.1 ± 3.6 7.7 ± 7.4 

Atenolol
8, 164, 165

 10.0 ± 5 5.3 ± 3.1 8.8 ± 2.7 

Metoprolol
8, 166-168

 11.0 ± 1 11.1 ± 3.6 7.1 ± 2.1 

Ranitidine
8, 169

 15.0 ± 3 5.7 ± 8.5 7.2 ± 11.3 

Nadolol
170

 15.5 ± 11.5 0.02 ± 3.1 0.9 ± 10.5 

Ofloxacin
171, 172

 19.0 ± 11.0 8.6 ± 4.3 9.6 ± 6.2 

Caffeine
173

 30.0 ± 5 3.1 ± 3.4 1.1 ± 5.3 

Linezolid
8, 174-176

 31.0 ± 1.0 6.6 ± 5.3 8.3 ± 7.8 

β-Estradiol
177

 65.0 ± 15 45.6 ± 1.7 18.6 ± 5.5 

Diethylstilbestrol
178

 65.0 ± 15 31.1 ± 0.6 47.6 ± 2.8 

Omeprazole
179

 95.0 39.5 ± 1.4 0.3 ± 3.6 

Lansoprazole
179

 95.5 ± 1.5 42.8 ± 3.6 12.3 ± 6.5 

Naproxen
8, 182

 99.7 ± 0.1 4.5 ± 6.6 28.7 ± 6.1 
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Figure 75. Standard small molecule displacement of 500 nM Mega Red and Nile Red 
in PBS with 10% glycerol by volume in the presence of 0.2 mg/mL HSA (n=3). 

Averages of literature values for in vivo plasma protein binding are given in 
comparison. Larger % bound values used for the plot. 
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Compound 
Literature Value  

% Bound in Plasma 

% Bound  

(i.e., Probe Displaced) 

Mega Red Nile Red 

Antipyrine
163

 4.0 ± 2.0 2.5 ± 1.3 0.4 ± 2.6 

Atenolol
8, 164, 165

 10.0 ± 5 2.6 ± 4.0 4.2 ± 4.7 

Metoprolol
8, 166-168

 11.0 ± 1 4.5 ± 2.0 7.7 ± 0.7 

Ranitidine
8, 169

 15.0 ± 3 1.6 ± 3.4 2.0 ± 3.8 

Nadolol
170

 15.5 ± 11.5 1.9 ± 2.2 1.5 ± 2.0 

Ofloxacin
171, 172

 19.0 ± 11.0 4.7 ± 4.3 4.7 ± 6.8 

Caffeine
173

 30.0 ± 5 8.6 ± 1.8 11.5 ± 2.5 

Linezolid
8, 174-176

 31.0 ± 1.0 5.6 ± 1.2 7.6 ± 3.8 

β-Estradiol
177

 65.0 ± 15 38.6 ± 0.4 25.6 ± 0.6 

Diethylstilbestrol
178

 65.0 ± 15 26.8 ± 1.1 24.7 ± 0.5 

Omeprazole
179

 95.0 48.6 ± 0.9 7.8 ± 2.2 

Lansoprazole
179

 95.5 ± 1.5 50.9 ± 4.1 9.9 ± 5.0 

Naproxen
8, 182

 99.7 ± 0.1 42.0 ± 2.6 18.8 ± 3.0 
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Figure 76. Standard small molecule displacement of 500 nM Mega Red and Nile Red 
in PBS with 10% glycerol and 2% DMSO by volume in the presence of 0.2 mg/mL 

HSA (n=3).  Averages of literature values for in vivo plasma protein binding are 
given in comparison. Larger % bound values used for the plot. 
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Compound 
Literature Value  

% Bound in Plasma 

% Bound  

(i.e., Probe Displaced) 

Mega Red Nile Red 

Antipyrine
163

 4.0 ± 2.0 1.5 ± 3.0 0.8 ± 3.5 

Atenolol
8, 164, 165

 10.0 ± 5 0.8 ± 3.6 1.6 ± 4.4 

Metoprolol
8, 166-168

 11.0 ± 1 3.6 ± 3.2 1.9 ± 3.4 

Ranitidine
8, 169

 15.0 ± 3 4.6 ± 0.8 3.7 ± 1.4 

Nadolol
170

 15.5 ± 11.5 7.3 ± 2.6 9.0 ± 2.2 

Ofloxacin
171, 172

 19.0 ± 11.0 5.0 ± 3.1 5.1 ± 4.0 

Caffeine
173

 30.0 ± 5 3.2 ± 3.9 3.3 ± 2.8 

Linezolid
8, 174-176

 31.0 ± 1.0 6.2 ± 0.4 4.3 ± 4.1 

β-Estradiol
177

 65.0 ± 15 30.3 ± 0.7 30.6 ± 1.3 

Diethylstilbestrol
178

 65.0 ± 15 32.1 ± 1.6 45.9 ± 2.7 

Omeprazole
179

 95.0 38.5 ± 1.8 9.1 ± 3.9 

Lansoprazole
179

 95.5 ± 1.5 44.1 ± 3.9 4.1 ± 5.8 

Naproxen
8, 182

 99.7 ± 0.1 16.5 ± 2.9 30.1 ± 2.7 
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Figure 77. Standard small molecule displacement of 500 nM Mega Red and Nile Red 
in PBS with 10% glycerol and 0.001% NP-40 by volume in the presence of 0.2 

mg/mL HSA (n=3).  Averages of literature values for in vivo plasma protein binding 
are given in comparison. Larger % bound values used for the plot. 
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Compound 
Literature Value  

% Bound in Plasma 

% Bound  

(i.e., Probe Displaced) 

Mega Red Nile Red 

Antipyrine
163

 4.0 ± 2.0 2.0 ± 1.4 3.7 ± 1.1 

Atenolol
8, 164, 165

 10.0 ± 5 2.9 ± 0.3 1.2 ± 4.5 

Metoprolol
8, 166-168

 11.0 ± 1 0.4 ± 3.5 2.0 ± 4.3 

Ranitidine
8, 169

 15.0 ± 3 7.1 ± 2,2 6.6 ± 2.3 

Nadolol
170

 15.5 ± 11.5 4.3 ± 2.1 2.5 ± 2.2 

Ofloxacin
171, 172

 19.0 ± 11.0 1.6 ± 1.5 1.1 ± 2.6 

Caffeine
173

 30.0 ± 5 0.6 ± 3.6 1.4 ± 3.8 

Linezolid
8, 174-176

 31.0 ± 1.0 4.8 ± 4.7 6.3 ± 3.7 

β-Estradiol
177

 65.0 ± 15 46.0 ± 2.8 33.5 ± 0.9 

Diethylstilbestrol
178

 65.0 ± 15 27.5 ± 4.2 39.2 ± 2.7 

Omeprazole
179

 95.0 49.1 ± 1.2 4.4 ± 2.6 

Lansoprazole
179

 95.5 ± 1.5 47.8 ± 0.7 0.7 ± 3.2 

Naproxen
8, 182

 99.7 ± 0.1 3.4 ± 2.1 21.9 ± 2.0 
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Figure 78. Standard small molecule displacement of 500 nM Mega Red and Nile Red 
in PBS with 500 mM NaCl in the presence of 0.2 mg/mL HSA (n=3). Averages of 

literature values for in vivo plasma protein binding are given in comparison. Larger 
% bound values used for the plot. 

 



195 

 

 

 

Compound 
Literature Value  

% Bound in Plasma 

% Bound  

(i.e., Probe Displaced) 

Mega Red Nile Red 

Antipyrine
163

 4.0 ± 2.0 4.9 ± 1.3 5.1 ± 1.6 

Atenolol
8, 164, 165

 10.0 ± 5 4.8 ± 0.7 6.6 ± 1.3 

Metoprolol
8, 166-168

 11.0 ± 1 0.1 ± 5.4 1.8 ± 5.5 

Ranitidine
8, 169

 15.0 ± 3 4.8 ± 2.3 6.1 ± 1.2 

Nadolol
170

 15.5 ± 11.5 1.4 ± 2.1 1.9 ± 0.7 

Ofloxacin
171, 172

 19.0 ± 11.0 2.2 ± 3.0 7.1 ± 4.6 

Caffeine
173

 30.0 ± 5 4.3 ± 4.6 3.6 ± 6.7 

Linezolid
8, 174-176

 31.0 ± 1.0 1.5 ± 1.4 1.9 ± 0.8 

β-Estradiol
177

 65.0 ± 15 39.0 ± 0.8 34.7 ± 2.3 

Diethylstilbestrol
178

 65.0 ± 15 37.1 ± 1.1 44.4 ± 1.0 

Omeprazole
179

 95.0 55.0 ± 2.2 2.7 ± 3.7 

Lansoprazole
179

 95.5 ± 1.5 47.3 ± 1.5 7.8 ± 5.0 

Naproxen
8, 182

 99.7 ± 0.1 36.4 ± 4.6 17.2 ± 4.3 
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Figure 79. Standard small molecule displacement of 500 nM Mega Red and Nile Red 
in PBS at pH 8.0 in the presence of 0.2 mg/mL HSA (n=3).  Averages of literature 

values for in vivo plasma protein binding are given in comparison. Larger % bound 
values used for the plot. 
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Compound 
Literature Value  

% Bound in Plasma 

% Bound  

(i.e., Probe Displaced) 

Mega Red Nile Red 

Antipyrine
163

 4.0 ± 2.0 0.8 ± 1.6 1.5 ± 1.7 

Atenolol
8, 164, 165

 10.0 ± 5 5.1 ± 1.0 3.6 ± 1.5 

Metoprolol
8, 166-168

 11.0 ± 1 0.7 ± 5.5 4.4 ± 4.6 

Ranitidine
8, 169

 15.0 ± 3 5.7 ± 3.0 4.9 ± 2.5 

Nadolol
170

 15.5 ± 11.5 4.2 ± 2.6 6.6 ± 4.5 

Ofloxacin
171, 172

 19.0 ± 11.0 2.4 ± 1.9 1.8 ± 2.3 

Caffeine
173

 30.0 ± 5 1.4 ± 4.6 7.4 ± 2.8 

Linezolid
8, 174-176

 31.0 ± 1.0 4.1 ± 1.9 5.1 ± 2.3 

β-Estradiol
177

 65.0 ± 15 36.6 ± 3.3 36.3 ± 2.8 

Diethylstilbestrol
178

 65.0 ± 15 32.6 ± 0.2 40.9 ± 0.8 

Omeprazole
179

 95.0 45.2 ± 3.5 0.5 ± 8.1 

Lansoprazole
179

 95.5 ± 1.5 41.3 ± 2.1 1.6 ± 4.1 

Naproxen
8, 182

 99.7 ± 0.1 8.8 ± 2.5 18.3 ± 1.7 
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Figure 80. Standard small molecule displacement of 500 nM Mega Red and Nile Red 

in 200 mM HEPES buffer at pH 7.4 in the presence of 0.2 mg/mL HSA (n=3). 
Averages of literature values for in vivo plasma protein binding are given in 

comparison.  Larger % bound values used for the plot. 
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Table 22. Results of fluorescence-based drug-protein binding screen of the LOPAC 
library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 

 



233 

 

 

 

Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 

 



234 

 

 

 

Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of 
the LOPAC library.  Values are percent of Mega Red and Nile Red displaced. (n=3) 
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