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ABSTRACT

HIGH-THROUGHPUT APPROACHES FOR THE ASSESSMENT OF FACTORS
INFLUENCING BIOAVAILABILITY OF SMALL MOLECULES IN PRE-CLINICAL DRUG
DEVELOPMENT
by
Megan M. McCallum

The University of Wisconsin - Milwaukee, 2013
Under the Supervision of Professor Alexander (Leggy) Arnold

A bioactive molecule must pass many hurdles to be designated as a “good”
pharmaceutical lead or hit compound. It should have a significant activity,
selectivity, bioavailability, and metabolic half-life. Many factors have been identified
that influence the free drug concentration or bioavailability of orally administered
drugs in the earliest development stages. In vitro pre-clinical assays have been
developed to measure these parameters. The small molecule properties that are
investigated here include aqueous solubility, permeability, reactivity
(electrophilicity), small molecule-protein binding, and displacement of protein-
bound molecules (drug-drug interactions). The development of rapid and

miniaturized assays to quantify these factors is presented herein.

First, a 384-well filter plate based assay was developed to determine the
aqueous compound solubility to greatly decrease the time and amount of compound
necessary for analysis. Secondly, one of the most common and simple permeability
assays (parallel artificial membrane permeability assay, PAMPA) was optimized

using a filter membrane impregnated with a long chain alkane (hexadecane)



solution as an artificial membrane. Thirdly, permeability was also determined
rapidly with the use of Immobilized Artificial Membrane (IAM) and C18 stationary

phases by HPLC. The solitary and sequential usage of these columns was compared.

Fourthly, a novel fluorescence-based high-throughput assay was developed
to identify electrophilic molecules rapidly, in parallel, among small molecule
libraries using only sub-milligram quantities. Subsequently, a filtration-based assay
to estimate compound binding with plasma protein was developed for a 384-well
plate format. This assay not only increases the throughput, but also addresses non-
specific compound binding to the filtration apparatus, which is problematic with
other ultra-filtration methods. Finally, a simple high-throughput competitive
protein binding assay was developed based on the multiplexing of fluorescent small
molecule probes with different spectroscopic and binding properties. The inhibition
of probe-protein binding has been identified as a good indicator for plasma protein

binding.
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CHAPTERI

INTRODUCTION

1. Introduction of Drug Discovery and Development

The complete drug development process is generally thought to occur in four
stages: target identification, drug discovery, clinical trials, and FDA approval before
subsequent production (Figure 1). The focus of the drug discovery phase is the
identification of potent, selective, and bioavailable drug candidates (lead
compounds) that have in vivo activity. In the early stages of drug discovery,
biochemical assays are applied to enable the screening of diverse compounds
against the target protein (high-throughput screening, HTS).1 With the advent of
combinatorial chemistry and parallel synthesis, these small molecule libraries can
be produced rapidly.2 The characterization of derivatives of hit molecules is done to
determine structure-activity relationships for each compound class and develop
optimized drug candidates or lead compounds. Because of the vast numbers of
molecules that are analyzed for each potential target, high-throughput assays are

preferred in the early drug discovery stages.

The pharmaceutical industry and academic drug discovery laboratories
rigorously test small molecule drug candidates to ensure that compounds with poor
physiological properties do not advance. Failure to do so will consume resources,
time, and interest which could have been expended on more promising compounds
in the later stages of drug development. Therefore, it is crucial for pre-clinical drug

discovery efforts to identify those drug candidates that will be readily absorbed and



distributed throughout the body in an early stage. It can also be argued that it may
be more important to identify those compounds that are not absorbed or
distributed. The characterization is necessary so that a sensible choice can be made
as to whether to put forth the effort in formulation or modification of drug
candidates. Early in vitro pre-clinical screening has been enforced to identify
problematic compounds within screening libraries yielding increased efficiency and
success. 3-5 This is accomplished by the use of high-throughput (HT) assays that
determine pre-clinical small molecule properties, in parallel, for thousands of
compounds using low-milligram quantities.* With the continuing development of
HT pre-clinical assays, there has been an increasing need for improvements in

efficiency and accuracy.
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Figure 1. Drug development pipeline with the general purpose of each stage.

2. Bioavailability

Oral bioavailability of a drug is defined as the measure of the rate and extent
of the drug reaching the systemic circulation and its availability at the site of action.®
Poor oral bioavailability is one of the leading causes of failure for drug candidates in

clinical studies. Compounds with low bioavailability exhibit a high variability in free



drug concentrations between individuals.” Bioavailability is a key factor that affects
drug efficacy and other adverse effects, which has therefore received considerable

attention.”

Currently, it is difficult to predict bioavailability because there are numerous
factors that are related to the free drug concentration in vivo. Some of these factors
include physicochemical properties (i.e., dissolution, solubility, and absorption),
biological factors (i.e., permeability, protein binding, metabolism, excretion), diet
factors (i.e., food-drug interactions), and finally, co-administered drug factors (i.e.,
drug-drug interactions). Figure 2 depicts the general pathway of an orally
administered drug throughout the body. Absorption, distribution, binding,
metabolism, and excretion (ADME) of a drug is directly related to its free

concentration available at the site of action.8
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Figure 2. The relationship of adsorption, distribution, binding, metabolism, and
excretion of a drug on the free drug concentration available to the site of action.8



Because of the numerous factors that affect oral bioavailability, it cannot be
fully quantified with the use of in vitro assays solely. The most effective alternative
is to measure those individual factors influencing bioavailability (solubility,
permeability, non-specific binding, metabolism, etc.). Continued progress to
develop better assays for the understanding of physicochemical and biochemical
profiling of drug or drug-like molecules is therefore needed to improve the

characterization of drug candidates with respect to bioavailability.”

3. High-Throughput In Vitro Pre-clinical Assays

Understanding the interactions between drug candidates and potential
molecular targets is essential to estimate in vivo safety and to reduce late-stage
failures of drugs in the development process.? The pre-clinical development process
is a type of risk assessment that extrapolates in vitro safety and efficacy information
to a potential in vivo result.10 In general, drug candidates are evaluated with respect
to absorption, distribution, metabolism, excretion, and toxicity (ADMET) through a
number of different assays, as depicted in Figure 3. Even with the current number
of primary and secondary screens reported, there is still insufficient in vitro
information to estimate critical pharmacokinetic variables such as clearance and
bioavailability.10 Therefore, additional assays to predict in vivo ADMET properties

of drug candidates are needed.

The cellular absorption of molecules is studied with a number of different
assays. One of the earliest assays performed during pre-clinical screening is the

aqueous solubility assay. The detailed descriptions of the solubility assays are



found in Chapter 2. Aqueous solubility is determined in the earliest stage because

poor solubility can have a negative effect on any subsequent screens. Compound

solubility can be assessed in buffer solutions with different pH values to mimic the

environment of different physiological locations (e.g., stomach, gut, blood). The

“gold standard” for solubility determination is the thermodynamic shake flask
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Figure 3. In vitro pre-clinical screens studying the absorption, distribution,
metabolism, excretion, and toxicity (ADMET) of drug candidates.?




Once the molecule is solubilized, it can be more effectively absorbed by the
body. Absorption of molecules is studied by assessing their membrane
permeability. The most common permeability assays are discussed in detail in
Chapter 3. The “gold standard” of permeability assays uses a layer of human colon
epithelial cancer (Caco-2) cells grown on a filter. The diffusion of molecules across
this layer is quantified by ultraviolet (UV) absorption.1213 A different high-
throughput assay, called the parallel artificial membrane permeability assay
(PAMPA), uses an artificial hydrophobic layer to mimic the cell membrane.13-15
Recently, chromatographic methods have been investigated that use immobilized
lipids.16 The lipophilicity of molecules correlates strongly with membrane
permeability. Therefore, small molecule partitioning coefficients (i.e., logPoctanol/water
or logPliposome/water) have also been determined to estimate drug absorption.1? In
addition, computational methods enable the calculation of hydrophobic and
hydrophilic compound surfaces, which in turn, enables the calculation of

partitioning coefficients.®

Additional generalizations about molecules with drug-like properties have
been proposed by Lipinski, called Lipinski’s Rules of Five.l® For example, molecules
with more than five hydrogen bond donors, a molecular weight over 500,
logPoctanol/water greater than five, or a sum of nitrogen and oxygen atoms within the

molecule over ten indicate poor ADME properties.18 19

Carrier-mediated transport mechanisms of molecules have been studied as

well. All of the before-mentioned permeability assays (i.e., Caco-2, PAMPA,



Lipinski’s Rules of Five) are representative of passive diffusion of molecules. Highly
lipophilic molecules can traverse the lipid bilayer, whereas highly hydrophobic
molecules are absorbed by paracellular transport (i.e., between cells). There are
numerous membrane transporter systems in the intestines that facilitate the
absorption of essential nutrients and drugs.1® To study the active transport-
mediated efflux and absorption, Madin-Darby canine kidney epithelial (MDCK) cells
that stably express membrane transporters have been developed.l® Everted (inside
out) intestinal sacs have also been used, providing information that is most similar
to in vivo human permeability. Unfortunately, inconsistencies in the tissue as well as

time and labor-intensive procedures makes this method difficult for routine use.1®

Understanding the stability of a potential drug is vital in the development
process because degraded or metabolized drugs may not have the desired
pharmaceutical effects. The stability of the molecule can be assessed at varying
physiological pH values, which are simply determined by incubating a molecule at
or below its solubility value in buffers over a range of pH values. The solution is
then analyzed by liquid chromatography-mass spectrometry (LC-MS) to quantify the
compound remaining, determine the stability over time, and identify the

decomposition products.® 20

After absorption into the bloodstream, drugs are distributed all over the
body. Drug distribution refers to the reversible relocation of the drug from blood to
the various tissues in the body.¢ There are several factors that affect the rate and

extent of drug distribution, such as the physicochemical properties of a drug and the



blood flow to the tissues. The distribution of the drug to different tissues directly
affects the duration and magnitude of the therapeutic affect and toxicity. The
binding to tissue and plasma proteins has a large effect on the metabolism and
distribution of drugs throughout the body.2! The plasma protein binding assays that
are most commonly used in pre-clinical screens are described in detail in Chapter 5.
Equilibrium dialysis is considered the “gold standard” for protein binding analysis.22
Another common method of protein-binding analysis is ultrafiltration. This method
is more simple and less time consuming than equilibrium dialysis.23 Other higher
throughput methods include HPLC with immobilized proteins24 or surface plasmon
resonance.?> However, these methods assume that immobilized proteins retain the
same binding affinities as native proteins.26 Another method for distribution
analysis is blood cell partitioning. The compounds are incubated in whole blood or
red blood cells (RBC) suspended in plasma, serum or buffer at physiological pH and
temperature.2’” The drug concentrations in both the whole blood or RBC solutions

are determined by HPLC or LC-MS.27

Drugs are cleared from the body by two general pathways; metabolism and
excretion. Many drugs primarily undergo excretion, while some drugs are first
metabolized. Drug metabolism is important for the elimination of highly lipophilic
molecules because these molecules are more readily excreted after undergoing
biotransformation toward more polar metabolites.1? Drug or drug metabolite
toxicity and metabolizing enzyme inhibition are major causes for the termination of
drug candidacy.28 To study this, compounds are incubated in liver microsomes, liver

homogenate (S9 fraction), hepatocytes, or plasma over multiple time points to



assess the half life (t1,2) of molecules in the presence of the drug metabolizing
cytochrome P450 enzymes (CYP).2? The drug metabolites are then characterized by
LC-MS or LC-MS/MS. Reaction phenotyping assays can be performed to identify the
enzymes responsible for the metabolism of the compounds. This is done by
incubation of the compound of interest with a single enzyme at a time. The
identification of enzymes responsible for metabolism (predominately CYP enzymes)
can provide important information for potential drug-drug interactions.? Potential
drugs are likely to be withdrawn if they inhibit the metabolism of co-administered
drugs.3 If a reduced amount of metabolite is quantified, by fluorescence techniques

or LC-MS, the metabolism of that molecule has been inhibited.3 19, 30-32

Of all of the ADMET properties, excretion is possibly the least studied in vitro.
Renal and fecal excretions are generally studied using animals, but there are no in
vitro surrogates for excretion analysis.1? All drugs are eliminated, to some extent,
via the renal route. Large lipophilic molecules must first be converted to more
water-soluble products before elimination. The other major organ for drug
elimination is the liver via its capacity for biliary excretion.® To estimate the rate of
excretion of drugs, the hepatocyte uptake can be analyzed. Hepatic uptake studies
typically measure the rate of appearance of substrate into cells after a relatively
short incubation period, which assess the impact of hepatic uptake on unbound drug

intrinsic clearance (CLint).2% 33

Identification of potential toxicity at an early stage in drug discovery can save

both time and costs, and most importantly reduce the likelihood of late-stage failure.
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Cardiotoxicity, hepatotoxicity, and neurotoxicity continue to be the most common
underlying issues for drug attrition at all stages of development. The use of human
cells with retained organ-specific properties is the most important method for early
toxicity screening. Some of the primary human cell cultures include hepatocytes for
liver toxicity, renal proximal epithelial cells for nephrotoxicity, vascular endothelial
cells for vascular toxicity, neuronal and glial cells for neuotoxicity, and
cardiomyocytes for cardiotoxicity.1® Cytotoxicity endpoints such as membrane
integrity34, cellular metabolite content33, mitochondrial functions3®, lysosomal
functions3¢, and apoptosis37 are used for the screening of organ-specific toxicity.1?
Cardiotoxicity is commonly analyzed with HEK293 or Chinese hamster ovary (CHO)
cells transfected with the human ether-a-go-go related gene (hERG). This gene
encodes the inward rectifying voltage-gated potassium channel in the heart which is
involved in cardiac repolarization. The effect of drugs on the influx of potassium

ions is studied with a patch clamp assay.38

Many of these assays can be related to more than one category of ADMET; as
with anything in the body, everything is correlated. For example, CYP inhibition can
be related to metabolism and toxicity as drug-drug interactions. The lipophilicity of
molecules can be correlated to all ADMET properties (permeability, interaction with
proteins, metabolic pathway, etc.). Permeability is not only directly related to
absorption, but also affects the rate of distribution in the body. With the
development of new assays that study ADMET properties of new molecules in vitro,

a greater understanding of the risk of the molecules can be reached at earlier stages.
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4. Analytical Methods in High-Throughput Screening

For the development of new high-throughput assays, the quality of the
method of analysis is crucial. The sensitivity, selectivity, and throughput of the
analytical method has a direct impact on the validity of the pharmacological assay.3?
One of the largest challenges has been the lack of sample capacity for high-
throughput quantitative analysis. Obtaining and processing analytical data is
usually the rate limiting step in the development process. The analytical methods
should provide as much information as possible in the shortest possible time.
Ideally, the best way to achieve this would be through the use of techniques that
rapidly provide orthogonal information (i.e., based on independent or non-
overlapping methods).#0 Spectroscopic techniques have greatly contributed to the
knowledge of how drugs interact with biological systems. Techniques such as
absorption and fluorescence spectroscopy are sensitive and non-destructive.*!
Although, mass spectrometry is also sensitive and selective it is a destructive

technique. These techniques will be discussed in detail herein.

4.1. Absorbance Spectroscopy

The use of absorbance spectroscopy to measure concentrations of samples in
pharmaceutical research is uncommon due to the inability to handle complex
mixtures directly. UV detection is generally much faster than other methods, as
speed in analysis is very important for high-throughput screening.#? Many drug
molecules have strongly ultraviolet or visible absorbing chromophores.4! Although

this method is generally simple and rapid, the purity of the sample is important.
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Impurities in the sample can lead to interference in the absorbance spectra and may

necessitate purification prior to analysis.

In absorption spectroscopy, the amount of light absorbed as a function of
wavelength is measured, which can give qualitative and quantitative information
about the sample.#3.44 Molecular absorption spectroscopy of dilute solutions is
described by Beer’s Law (Equation 1), where A is the absorbance (log(lo/1), Figure
4), € is the molar absorptivity (M-1cm1), c is the concentration (M) of the solution,

and b is the path length (cm).
Equation 1) A = ecb;where A = logIT0

Beer’s equation is used to quantitatively describe how the amount of
attenuation is dependent on the concentration of absorbing molecules through the
path-length over which absorption occurs. As the light travels through the sample
containing the absorbing analyte, a decrease in intensity occurs as the analyte
becomes excited, as illustrated in Figure 4. As the path-length increases, the number
of absorbing analytes in the path also increases thereby causing an increase in

attenuation.44

)| ||

<>
h

Figure 4. Incident light, Iy, passing through the sample of path-length b, resulting in a
diminished intensity of light, I, emerging from the sample.
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Instrumental and chemical interference can cause deviation from Beer’s Law.
As stated above, Beer’s Law describes the absorption of dilute solutions. At
concentrations exceeding approximately 10 mM, the average distances between the
analyte molecules is diminished by the effect of the charge distribution of
neighboring molecules. This effect can also be observed with high concentrations of
other species in the sample solution, such as electrolytes. There is also a
requirement for monochromatic parallel light and the absence of stray light for
Beer’s Law to apply. Contaminating light causes the apparent absorbance to be
lower than the true absorbance, which has the most significant affect at high
absorbance values. The effect of polychromatic or stray light, as well as geometrical
factors, can be minimized through better quality instrument design and choice of

components .44

A representative schematic of a spectrophotometer used as a detector in
HPLC is provided in Figure 5. All absorbance spectrophotometers have the same
essential components: a light source, monochromator and/or filters, sample cell,
and detector. In the example shown in Figure 5, the light sources are deuterium and
tungsten-halogen lamps so that the spectral properties can be observed over the
ultraviolet and visible wavelength range, respectively. From the source, the light is
directed through a monochromator and/or filter to select the wavelength(s) of
interest and also to reduce any stray light. The incident light is then passed through
the sample in a flow cell (as in Figure 5), cuvette, or microplate with a fixed path-

length. Longer path-lengths (typically up to 5 cm) are preferred for dilute solutions,
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such as in HPLC. Finally, in certain instruments, the transmitted light is directed
through a second monochromator and/or set of filters (used to reduce any stray
light again) and finally to the detector. A detector, such as a photomultiplier tube or
photodiode array (as in Figure 5) can be used, giving single wavelength or full

spectrum absorbance data, respectively.
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Figure 5. Schematic of a UV-Vis spectrophotometer.4>

4.2. Fluorescence Spectroscopy

One of the more important features of fluorescence is that it is a highly
sensitive and rapid technique. As stated in the previous section, the speed of
analysis is very important for high-throughput screening.#2 It is also selective, as
sample impurities should generally not interfere with the analytical wavelength(s)
due to the ability to select both the excitation and emission wavelengths. Small
fluorescent molecules are an indispensable tool for many bioanalytical methods

because they are abundantly used for labeling, substrates, indicators, and stains.
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The choice of an ideal fluorophore for a specific purpose can be challenging because

of the multitude of molecules available.46

The first well-defined small molecule fluorophore identified was quinine. In
1845, Herschel visually observed an emission of a vivid blue color from an aqueous
solution of quinine.4” Soon after this observation, Stokes was able to show, by the
use of rudimentary filters (blue-stained glass and a goblet of yellow-colored wine),
that this phenomenon was due to the absorbance and subsequent emission of light.

Stokes then coined the term “fluorescence” to describe this process.48 49

The process of fluorescence is illustrated in the Jablonski diagram5% shown in
Figure 6. Fluorescence begins when a molecule in its singlet electronic ground state
(So) absorbs a photon (i). If there is a suitable amount of energy associated with the
photon, an electron is then promoted to a higher energy orbital (S1 or Sz). The
energy difference between the Spo and S1 energy states is too large for thermal
population of the S; excited state. Therefore, light is used to induce fluorescence as
opposed to heat.#? The fluorophore is usually excited to some higher vibrational
state within the S; or Sz electronic states. The S; excited and higher vibrational
states quickly decay (ii) to the lowest vibrational level of the first singlet excited
state (S1) by loss of heat. Then, the decay of the excited state can occur with the
emission of a photon (i.e., fluorescence) (iii) or non-radiative decay (iv). The excited
state can also undergo intersystem crossing (v) via spin conversion to the triplet
excited state (T1), in which the subsequent relaxation can occur with the emission of

a photon (i.e., phosphorescence) (vi) or non-radiative decay (vii). Phosphorescence



is most frequently observed for molecules with heavy atoms, such as iodine or

bromine.46 48,49
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Figure 6. Jablonski diagram for fluorescence. (i) absorption of a photon to an
excited state, (ii) internal conversion to Sy, (iii) fluorescence, (iv) non-radiative
decay, (v) intersystem crossing to Ty, (vi) phosphorescence, (vii) non-radiative

decay. 46

A generic absorption/emission spectrum is shown in Figure 7. The Amax of
the absorbance spectrum is as described in the previous section (4.1). The
wavelength of maximum emission (Aem) occurs at a longer wavelength, or lower
energy, than the Amax due to the loss of energy as vibrational energy, excited state

reactions, solvent effects, and/or energy transfer.#® 49 Radiative energy loss

16

between excitation and emission is universally observed for fluorescent molecules

in solution. Having first observed this phenomenon with the use of his experiment

with simple filters*8, this difference between Amax and Aem, or energy difference has

been subsequently named the “Stokes shift”.46
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Stokes Shift
— >

Absorbance Fluorescence

)Lma X 1L]'I'l

Wavelength (nm) ———

Figure 7. Generic absorbance and fluorescent emission spectra where the Stokes
shift is the difference between the peaks in the spectra.¢

Selection of a fluorophore requires the consideration of a number of different
properties. Fluorophores with a very small Stokes shift are susceptible to self-
quenching (quenching is generally anything that decreases intensity of emission)
and would therefore not be ideal for use with fluorescence detection methods.
Fluorescence lifetime and quantum yield are very important characteristics of a
fluorophore.#® The lifetime of the excited state is characteristically defined as the
average time the molecule spends in the excited state before it returns to the ground
state. The excited state lifetime is proportional to the fluorescent quantum yield.
The fluorescent quantum yield is fundamentally the ratio of photons emitted
through fluorescence to those absorbed. The quantum yield of a fluorophore is

decreased by non-radiative processes and photochemical reactions, which have a
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higher propensity for occurrence with longer excited state lifetimes. Fluorescence

intensity is proportionally related to the quantum yield.>!

Discovery of the first fluorophore, quinine, stimulated the development of
the first commercially available spectrofluorometer in the 1950s. The first
rudimentary instruments were used during World War II for the monitoring of anti-
malarial drugs. The National Institutes of Health (NIH) subsequently developed the
first practical spectrofluorimeter.4?.52 The success of any experiment requires
attention to experimental conditions and understanding of the instrumentation.
There are many instrumental factors that can affect the quality of excitation and

emission spectra.

A spectrofluorometer has the following main components as shown in
Figure 8: a light source, monochromator, filters, photomultiplier tube (PMT), and a
computer to collect the data as well as control the instrument. This instrument has
a xenon lamp as the excitation source. Lamps such as this are useful due to their
high intensity at all wavelengths (250 nm and up). The shutters are used to close
the light on and off from the sample. The instrument has monochromators at both
the excitation and emission side of the sample which are used for the selection of
the excitation and emission wavelengths. The concave gratings of the
monochromator are used to further reduce any stray light as well as select the
wavelength of interest.4? Filters many be used to further isolate the wavelength.
The monochromators and filters determine the resolution of the instrument. The

sample is located at a 90° angle to the source light so that it is not observed by the
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detector. After the emitted light, which occurs in all directions, passes through the

second monochromator, the fluorescence is detected by a PMT and then quantified

with the computer. The results are then presented graphically and stored

digitally.*°
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Figure 8. Schematic representation of a conventional spectrofluorometer.4?
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Figure 9. Schematic of spectrofluorometer used to read microplates.*?

Along with the development of high-throughput techniques, there has
become a growing need for high-throughput detection methods. High-throughput
screening methods used in drug discovery are usually performed in 96 or 384-well
microplates. Measurements of numerous samples can be carried out rapidly using a
microplate reader, as was used in the methods presented herein, shown in Figure 9.
The optical arrangement in the microplate reader is different than in a conventional
instrument. The plate containing the samples is taken into the instrument for
analysis and must remain horizontal. Therefore, it is not possible to observe at a
right angle as conventionally used. A xenon flash lamp is now commonly used as the
light source negating the need for the shutters as in Figure 8. As with a conventional

spectrofluorometer, the monochromator is used to select the desired wavelength
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and directed with mirrors to the sample. Fluorescence from the sample, which
occurs in all directions, is then directed to the emission monochromator and finally
to the detector. Lastly, the microplate is typically on an x-y scanning stage in which

it will move in order to detect the samples in all of the wells.4?

4.3. High Performance Liquid Chromatography

High performance liquid chromatography (HPLC) is frequently used in
bioanalytical analysis for the separation and characterization of components of
complex mixtures. With the implementation of an autosampler capable of
introducing samples from microplates, HPLC becomes a necessity for any high-
throughput screening lab. Using multiple detectors, such as UV and MS, sample
information can be obtained along with the separation. With the increasing number
of stationary phases being manufactured, nearly any mixture of compounds can be

separated and/or analyzed based on varying retention mechanisms.* 40.53

Chromatography was first developed by M. S. Tswett in 1906 during his
research on plant pigments. The basis of liquid chromatography is the use of a solid
stationary phase and a liquid mobile phase. In the original experiments by Tswett,
calcium carbonate in glass tubes was employed as the stationary phase while
ether/ethanol mixtures were used as the eluent to separate chlorophylls and other
pigments. Using this approach, Tswett was able to observe the separation of the
colors on the column, which prompted the term chromatography (Greek for “color

writing).>4-56
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Classical chromatography is most easily understood with the idea of
theoretical plates, introduced by Martin and Synge.57 Although high flawed, this
concept describes the chromatographic column consisting of a series of hypothetical
layers, or theoretical plates, in the direction perpendicular to the direction of sample
migration. According to this theory, with every theoretical plate, equilibration of the
solute between the stationary and mobile phase occurs. As the analyte moves down
the column, it represents the passage from one separation stage or equilibrated
mobile phase to the next. The largest shortcoming of this theory is that equilibrium
is never reached in the system. The thickness of each of these layers or plates is
called the height equivalent to a theoretical plate (HETP, H). With any given
chromatographic column, the number of theoretical plates (N) is equivalent to the
ratio of the column length (L) to the plate height (N = L/H). Improving the
separation of compounds can most easily be achieved by increasing the number of

theoretical plates.53.56
. B i
Equation 2) H=A+ E+ Ci

Several models have been developed to estimate the plate height, one of
which is known as the van Deemter equation, Equation 2.58 Here, the relationship
between the plate height and the linear flow rate, 1, are related to the eddy diffusion
constant, A, longitudinal diffusion, B, and the mass transfer between the mobile and
stationary phase, C. The eddy diffusion term, A, results from non-homogeneity of
the flow velocities and path lengths around the stationary phase particles. Larger

particles lead to larger void spaces between the particles and thus an increase in the
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eddy diffusion. Longitudinal diffusion, B, describes the diffusion of the solute away
from the center of the sample peak, both with and against the direction of flow. This
term is independent of the particle size, but largely dependent upon the time that
the sample is on the column. As shown in the equation, it is inversely related to the
flow rate (i.e., as flow rate increases, longitudinal diffusion decreases). Finally mass
transfer, C, comes from the finite rate of transfer of the analyte molecule between
the mobile phase and stationary phase as the sample migrates through the column.
The analyte must reach the interface between the two phases to undergo the
transfer process. Therefore, mass transfer is primarily dependent upon the particle
size and flow rate. Large particles, as with eddy diffusion, leave larger void spaces
and therefore increased diffusion time to reach the interface. As shown in the
equation, it is directly proportional upon flow rate because with faster flow rates,

less time is allowed for the transfer process to occur.5¢

Attempts to increase the flow rate to improve the speed of analysis
necessitated improvements in stationary phase materials. Early chromatographic
materials were not ideal because they would get crushed under the increased
pressure. Therefore, materials with increased mechanical strength have since been
introduced. Also, from the van Deemter equation (Equation 2), decreased particle
size could also improve the separation at higher flow rates. The combination of
increased pressure, increased flow rate, and decreased particle size resulted in

faster and more efficient separations.>¢
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The basic components of an HPLC system, Figure 10, include a solvent
reservoir, pump, injector, analytical column, detector, and data collection. Other
optional components include an inlet and in-line solvent filters, sample filter, pre-

column filter, guard column, and back-pressure regulator.>°
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Figure 10. Basic schematic of HPLC.>?

An HPLC system begins with the solvent reservoir, which contains the
solvent used to carry the sample through the system. Many systems use up to four
different solvents, which can be mixed in a constant ratio (isocratically) or in
changing ratios (gradient). All solvents are filtered with an inlet solvent filter to
remove any particles that could potentially damage the system's sensitive
components. The solvents are propelled through the system by the pump. This
includes internal pump seals, which can slowly break down over time by chemical
and mechanical means. As these seals break down and release particles into the

flow path, inline solvent filters ideally prevent any post-pump component damage.>°

The next component in the system is the sample injector. This injection valve

is equipped with a sample loop of the appropriate volume for the analyte. The
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sample loop allows for the repeatable introduction of sample into the flow path.
Because samples often contain particulate matter, it is important to utilize either a
sample filter or a pre-column filter to prevent valve and analytical column damage.
Following the injector, a sacrificial guard column is often included just prior to the
analytical column to chemically remove components of the sample that would
otherwise foul the main column. The analytical column allows primary sample
separation to occur. The separation is based on the differential attraction of the
sample components between the solvent (i.e., the mobile phase) and the packing

material (i.e., the stationary phase) within the column.>?

4.4. Mass Spectrometry

Mass spectrometry (MS) is frequently used in pre-clinical screening due to its
ability to separate, quantify, and identify molecules with high selectivity and
sensitivity. Itis frequently used in combination with HPLC for samples that are
highly impure or complex (e.g., biological samples). Liquid chromatography-mass
spectrometry (LC-MS ) has been shown to be a suitable instrument for HT analysis
due to the ease of automation and minimal sample preparation.#2 Because MS is a

destructive method, the sample cannot be recovered, however.

A block diagram of an LC-MS is shown in Figure 11. After the sample elutes
from the HPLC column, it is directed to the ionization source, usually atmospheric
pressure ionization (API). The vacuum system then draws the vaporized ions into
the ion optics where they are then focused and accelerated into the mass analyzer.

A common mass analysis system is the quadrupole. In the mass analyzer, the
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sample ions are separated according to their mass-to-charge ratios with the use of
applied radio frequency (RF) and direct current (DC) fields. The mass analyzer
ejects the ions to the ion detection system, where an ion current signal is produced
through the detection of the sample ions. The ion current signal that is produced is
proportional to the number of ions in the solution. Finally, the signal is amplified

and sent to the data system for processing and storage.60

Mass Detector
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Figure 11. Schematic diagram of a mass spectrometer with HPLC as the sample
introduction system.60

Among the many different ionization methods, electrospray ionization (ESI)
and atmospheric pressure chemical ionization (APCI) are typically used because
they are both soft ionization techniques (i.e., most likely to leave the ionized
molecule fully intact). ESI is most desirable for large molecules such as proteins or
polymers, as this method can yield sample ions with multiple charges. The APCI
method only yields singly-charged sample ions and is therefore limited to molecules

with masses up to about 2000 atomic mass units (amu). In contrast to ESI, APCI
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allows for the ionization of less polar compounds. Although ESI is the method of
choice for ionization of very large molecules, both methods provide sufficient

ionization for small molecules.

To produce gas phase ions by ESI (Figure 12), a high voltage, usually between
3 and 5 kV, is continually applied to the ESI capillary. The eluent is pumped through
the heated capillary, spraying the solution into a fine mist of droplets (aerosol) that
have a charged surface. The charge density at the surface of the droplets increases
as the solvent evaporates until the critical point, known as the Rayleigh stability
limit, is reached. At this point, the droplets divide into smaller droplets due to the
electrostatic repulsion being greater than the surface tension. This process
continues until very small and highly charged droplets have formed. The
electrostatic repulsion from the very small, highly charged droplets ejects the
sample ions into the gas phase. The charged capillary repels ions of the same charge
and attracts ions of the same charge in the gaseous phase. Finally, the low vacuum
produced by the forepump draws the positively charged ions and neutral molecules
in the gas phase through the entrance cone and toward the high-vacuum of the mass

analyzer.60
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- v +.|.+ ++ + +  gjected from
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Capillary, +3 to +5 kV Charged Droplet Repulsion

Figure 12. Positive ion generation mechanism by electrospray ionization.t0
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To produce gas phase ions by APCI (Figure 13), the APCI capillary sprays the
eluent into a fine mist of droplets. A high temperature tube that surrounds the
capillary vaporizes the droplets. Located near the exit of the heated tube, the
corona pin with a constant current between 2 and 10 pA creates a corona discharge
leading to the formation of ions. The energized electrons produced by the corona
discharge ionize the flowing nitrogen gas by primary ion formation. The ionized
nitrogen reacts with the solvent molecules (such as water in Figure 14), forming
solvent ions through secondary ion formation. The solvent ions then react via a
proton transfer reaction with the sample molecules to form sample ions [M+H]*.
Finally, as with the ESI method, the low vacuum produced by the forepump draws
the positively charged ions and neutral molecules in the gas phase through the

entrance cone and toward the mass analyzer.60
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Figure 13. Positive ion generation mechanism by atmospheric pressure chemical
ionization.®®
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Primary Ion Formation: e + Nz — Na* + 2e-

Secondary Ion Formation: Nz* + H,0 — N2 + H,0*+
H>0+ + H,0 — H30* + OH"

Proton Transfer: H30* + M — [M+H]* + H20

Figure 14. Positive ion formation by APCI.

As the forepump draws the ions and neutral molecules through the entrance
cone and toward the mass detector, the neutral molecules are separated from the
ions. The ions enter through a second entrance cone and pass through a RF/DC pre-
filter (a pre-filter is not necessary in all MS systems). The pre-filter focuses the ions
that are produced by the API source and transmits them to the mass analyzer. The
pre-filter in the system consists of a square array of square-shaped rods (i.e., a
quadrupole of square-shaped rods). During ion focusing and transmission, a
positive offset voltage (for analysis of positive ions) is applied to the pre-filter
quadrupole. Increasing the offset voltage also increases the kinetic energy of the

ions along the axis of the quadrupole.

After focusing and acceleration by the pre-filter, the ions then enter the mass
analyzer. The quadrupole mass filter consists of a set of four stainless steel
cylindrical rods positioned in a square array (similar to the pre-filter). Rods
opposite each other have either a positive or negative direct-current potential at
which an alternating-current (AC) potential is superimposed, Figure 15. The AC
potential, in the RF region, successively reinforces and overwhelms the DC field. As

the ions are introduced into the quadrupole, they begin to oscillate in the plane
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perpendicular to the length of the rods as they traverse the filter. At a given instant,

one particular set of RF and DC voltages are applied to the mass analyzer rods.

+RF/DC
Voltage

|
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Figure 15. Applied RF and DC voltages to the rods in the quadrupole mass analyzer.

The trajectories of the ions of a particular mass to charge (m/z) ratio,
matching a specific RF/DC voltage, are stable and are transmitted toward the
detector. Ions with unstable trajectories do not pass through the quadrupole
because their oscillation becomes infinite.>¢ These ions strike the surface of one of
the rods, become neutralized, and are pumped away by the vacuum. As the mass
analyzer scans over the designated mass range by changing the RF and DC voltage,
the ions of different m/z ratios are transmitted to the detector. The scanning
mechanism of the quadrupole results in a differentiation between ions with similar

m/z ratios without the use of filters.60

After the ions have been separated by the mass analyzer, they are detected.
The ion detection system in the instrumentation used in the analysis herein is an
electron multiplier, illustrated in Figure 16. The ions exiting the mass analyzer are

directed to the conversion dynode. The conversion dynode is a concave piece of
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metal with a potential of -10 kV which is located at a 90° angle to the ion beam. The
off-axis orientation greatly reduces the noise by limiting the probability that a
neutral molecule will strike the conversion dynode. A high voltage is used to
increase the conversion efficiency and thus increase the signal. The conversion
dynode shield protects the vacuum manifold from the electric field produced by the

conversion dynode.®0

Electron
Multiplier

"""u,. Secondary
. Particles

Mass Analyzer E

Conversion Dynode

Figure 16. lon detection system.®0

When an ion strikes the surface of the conversion dynode, one or more
secondary particles are produced (negative ions or electrons from positive ions).
The secondary particles are focused by the curved surface and accelerated by a
voltage gradient into the electron multiplier. The electron multiplier contains a

cathode and an anode. The cathode is a lead-oxide funnel-like resistor. A potential
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of up to -2.5 kV is applied by the high voltage ring to the entrance of the cathode,
while the exit of the cathode is near ground potential. The anode of the electron
multiplier is a small cup that is located at the exit of the cathode and collects the

electrons produced by the cathode.®0

Secondary particles that are produced by the conversion dynode strike the
inner walls of the electron multiplier cathode with enough energy to eject electrons.
The ejected electrons are accelerated farther into the cathode as they are drawn by
the increasingly positive potential gradient. Because of the funnel shape of the
cathode, the electrons do not travel far before they strike the surface of the cathode
again, causing the emission of more electrons. A cascade of electrons is created as

this process continues, creating a measurable current collected by the anode.56. 60
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CHAPTER I

AQUEOUS SOLUBILITY

1. Introduction

In a general sense, solubility is an easy concept to understand and measure.
It can be defined as the amount of substance that dissolves in a given volume of
solvent at a specific temperature. This is different than the concept of dissolution,
which measures the time-dependent solvation of a solid. In a more specific sense of
the concept, solubility can be defined as un-buffered, buffered, or intrinsic solubility.
Un-buffered solubility is normally measured in water at the final pH of the saturated
solution. Buffered solubility is measured at a specific pH, neglecting the influence of
salt formation with counterions in solution. Finally, intrinsic solubility is the

solubility of the neutral form of an ionizable compound.11

Solubility is an essential physiochemical property that must be evaluated
during the drug discovery and development process.6? The oral bioavailability of
poorly soluble drugs is highly susceptible to food affects, pH changes,
gastrointestinal metabolism, and efflux transporters.62 Solubility-limited absorption
can influence the effectiveness of a drug and is preferably addressed in the early
stages of drug discovery.*2 Compounds with poor solubility have a high risk of
failure with in vitro assays due to insufficient solubility to reach effective
concentration in solution.3 63.64 [n vivo, poor solubility results in a limited

absorption of orally administered drugs.6>
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Depending on the design of the solubility assay, the experiment can measure
either the kinetic or thermodynamic solubility. The kinetic solubility is often
considered a misnomer because it measures the precipitation rate rather than the
solubility.> Kinetic solubility values are time-dependent and may be overestimated
(with respect to the thermodynamic value) due to pH or co-solvent effects. The
results obtained from one particular kinetic solubility assay are not expected to be
reproducible between different kinetic methods. Thermodynamic solubility
involves the saturation of the compound in solution in equilibrium with an excess of
un-dissolved compound. Although thermodynamic solubility is regarded as the
‘true’ solubility, the values are not absolute. The values depend on a number of
different experimental factors such as compound morphology, temperature, and

time.

Thermodynamic equilibrium always seeks the overall lowest energy state of
the system. Since equilibrium must be reached, it makes the thermodynamic
solubility assay a very time consuming assay. Few researchers have the patience to
stir the solution for an infinite amount of time in order to ensure equilibrium has
been reached. Because of this, a high purity crystalline material gives the best
chance that equilibrium can be reached after a reasonable period of time.®5 As
parallel synthesis and combinatorial chemistry have increasingly become the most
dominant methods of compound synthesis in the lead discovery stage, there is an
increasing probability that the physical form of the compounds will be amorphous
due to impurities and solvent residues. This is important to consider when choosing

a method of solubility determination because non-crystalline materials are almost
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always more soluble in solvents including aqueous media.*? In early discovery
stages, it is less practical to measure thermodynamic solubility because time, purity,
physical form, and quantity are all important factors for accurate solubility

determination.

Kinetic solubility, often called “shake flask solubility”, measures the rate of
formation of precipitate. Typically, the compound is first dissolved in
dimethylsulfoxide (DMSO) to make a stock solution of a known concentration.> 42
This stock solution is then added gradually to an aqueous solution until
precipitation of the molecule occurs.®> In general, there are two main approaches to
determine the kinetic solubility. The first is done by removing the precipitate by
filtration through a membrane by vacuum or centrifugation and determining the
compound concentration by UV absorption or mass spectrometry. The second
approach detects the formation of precipitate by monitoring the scattering of light
by the particles using UV absorbance or directly by detecting the light scattering by

nephelometric turbidity detection.11

In the discovery stages, a researcher deals with a large number of drug
candidates with very small sample sizes and a need to select a limited number of
compounds for further investigation based on activity and solubility. In order to
accomplish the characterization, a solubility assay must be high-throughput, have
minimal sample use, be inexpensive, and fast.6¢ Therefore, a miniaturized kinetic-
based high-throughput assay for the determination of the solubility of small

molecules has been developed.
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2. Experimental

2.1. Materials and Instrumentation

All materials were used as they were received, with no further purification.
Five bioactive small molecules; 4,5-diphenylimidazole (Alfa Aesar), -estradiol (Alfa
Aesar), diethylstilbestrol (Spectrum Chemicals), ketoconazole (CalBioChem), 3-
phenylazo-2,6-diaminopyridine (Alfa Aesar) were used as standards. Each of the
standards were made to a 10 mM solution in DMSO (Acros, Spectroscopic Grade
99.9+%). The buffer was prepared in 18 MQ water with 90 mM ethanolamine (Alfa
Aesar, ACS grade 99+%), 90 mM KH2PO4 (J.T. Baker), 90 mM potassium acetate
(Fisher Biotech), and 30 mM NacCl (Fisher) and adjusted to pH 7.4 with HCl

(Mallinckrodt).

HPLC grade acetonitrile (Columbus Chemical Industries) was used to make a
20% by volume solution in buffer for the preparation of the calibration plate. The
calibration solutions (0-300 puM, 50uL each) were read in a 384-well UV plate
(Greiner Bio-One, 781801), which was also used for the solubility assay absorbance
readings. The incubation and filtration were performed in a 384-well filter plate
(Pall, #5071), which was sealed with an aluminum cover (Corning, #6570) during
incubation and mixing. The filtration of the plates was performed using a Millipore
MultiScreenyrs Vacuum Manifold (MSVMHTS00). All of the absorbance readings

were performed on an Infinite M1000 plate reader (Tecan).
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Calibration plots were generated to obtain the relationship between solute

concentration and absorbance. For each 384-well plate, 16 molecules were serially

diluted in a 384-well UV plate according to Table 1, with one compound per row.

Once the solutions were added to the wells, they were mixed thoroughly by pipette.

The top of the plate was then covered with an aluminum plate cover. The UV plate

is then carefully placed in the bench-top sonicator so that it floats on top of the

water. Itis then sonicated for 1 minute and centrifuged at 1000 rpm for 3 minutes

to ensure that all of the solution remains in the wells. The plate is then scanned for

absorbance with the Tecan plate reader from 230-800 nm at 5 nm increments with

10 flashes per well.

Table 1. Preparation of calibration plate for solubility assay.

9,10, 13,14, | 17,18, | 21,22,

Well Numbers | 1,2,3,4 | 5,6,7,8 | 170 ey o 5
Volume Buffer | 109.13 uL | 16.67 uL | 33.33 uL | 41.67 uL | 45.83 uL 47.5 uL
Volume 10 mM

DMSO Stock | S38HE
Volume DMSO 2.5 uL
Mgl 3333uL | 16.67ul | 833uL | 4.167 uL

Wells 1,2,3,4 =S 71 ey 07 ]

il 300uM | 200uM | 100puM | 50uM 25 uM 0 uM

Concentration H H H H H H

Once the calibration plates were read, a calibration plot for each compound

of adjusted absorbance vs. solute concentration at the maximum wavelength (Amax)
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was generated. This was done by subtracting the average absorbance of the buffer
(0 uM, background) from the absorbance of each of the other wells. Each of the
calibration plots was labeled with the compound name or code and maximum
wavelength. Finally, a best fit linear trend line through the origin of the plot with

the equation and r2 value to 6 decimal places was added to the plot.

After the calibration plots were generated at the wavelength of maximum
absorbance for each molecule, the solubility assay was performed. The wells in the
384-well filter plate were pre-wetted with 20-40 pL of buffer. The buffer was left to
sit in the wells for about 5 minutes and subsequently removed by vacuum. An
aluminum plate cover was then adhered underneath the filter plate to prevent
wicking out or evaporation of the solvents during the incubation period. The
solubility assay was then prepared in the filter plate according to Table 2 with four
wells per molecule. With an adhesive plate cover on top and underneath the filter
plate, it was sonicated for 1 minute, and shook on a reciprocating plate shaker

overnight.

Table 2. Preparation of solution for solubility assay.

500 uM Blank

47.5 uL buffer 47.5 uL buffer

2.5 pL of 10 mM stock DMSO solution 2.5 uL. DMSO
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The next morning, the solution was filtered into a collection plate (384-well
polystyrene plate). From the filtrate, 30 pL from each well from the collection plate
was transferred into a 384-well UV plate using a multichannel pipette. Next, 20 uL
of acetonitrile was added to each well by pipette and shaken for 5 minutes on the
plate shaker followed by centrifugation at 1000 rpm for 3 minutes. The absorbance

was scanned from 230-800 nm at 5 nm increments with 10 flashes per well.

Adjusted Absorbance at Apyax (3)
5

Equation 3) Solubility = Slope
Finally, the solubility was determined using Equation 3 with the slope from
the calibration plot for the molecule. At the maximum wavelength for each
compound, the average absorbance from the blank wells (no small molecule) was
subtracted from the absorbance of the solution after filtration (Adjusted Absorbance
at Amax). The average of the solubility values was calculated and the standard
deviation was determined. Five small molecules (4,5-diphenylimidazole, 3-

estradiol, diethylstilbestrol, ketoconazole, 3-phenylazo-2,6-diaminopyridine) with

known solubility values were analyzed as standards on each solubility assay plate.

3. Results and Discussion

The five standard molecules were used for comparison of the miniaturized
assay with the standard solubility assay provided by Millipore (96-well plate
format). Firstly, the calibration plots exhibited an improved r? value (i.e., closer to

1) than those published by Millipore.6” Secondly, some solubility values were
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similar to those published by Millipore, while others were not. The results of the
average solubility concentration with one standard deviation (SD) from the mean
for the standard molecules are shown below in Table 3 (standard deviation from the
standard method was not reported). The relative standard deviation from the
miniaturized solubility assay is less than or equal to 5% in all cases. The values
determined by the 384-well solubility assay were very similar to those from the
standard method, except for diethylstilbestrol, which was much lower than the
reported value. The reported solubility for diethylstilbestrol using the shake flask
method was 66 uM¢7, which is closer to the value determined by the miniaturized
method than the standard method. This suggests that the 384-well miniaturized
solubility assay is more accurate that the method outlined in the Millipore

protocol.6”

Table 3. Solubility results of the standard small molecules by the standard method
in comparison to the miniaturized method.

Name Standard Method Miniaturized Method
Solubility (uM)%7 (n=3) Solubility (uM) (n=4)
4,5-diphenylimidazole 68 67.3+3.7
B-estradiol 34 43.0+2.3
Diethylstilbestrol 156 108.3 +5.4
Ketoconazole 141 1345+2.4
3-phenylazo-2,6- 355 357.7 +7.0
diaminopyridine




41

Along with the standard molecules, solubility values were determined for an
in-house library of small molecules containing hit molecules with varying structures
as well as a scaffold library containing molecules with a common structural scaffold.
The results are shown in Table 4 and 5 as well as in Appendix A. Generally, a
compound with a solubility of 10 uM or less can have problematic oral activity or
bioavailability.#2 68 In Table 4, a series of 2-indolyl methanamines exhibit very good
solubilities. Interestingly, the position of the aromatic chloro-substituent plays an
important role with respect to the solubility. The ortho-chloro substituted
compound has a solubility of 129 uM, whereas the meta-chloro substituted
compound has a solubility of 209 uM. In the case of the methoxy substituent, the
position effect on solubility is negligible. This trend is also observed with the series
of 2-indolyl methanamines, shown in Table 5. A chloro substituent at the Ry

position leads to a very poor solubility as compared to the non-substituted molecule

(bolded in Table 5).

Table 4. Aqueous solubility of a series of N-((2-methyl-1H-indol-3-
yl)(phenyl)methyl)pyridin-2-amine molecules.

R R -R Solubility +
1 2 3 1 SD (uM)
H
N H -Cl -H 209.2+9.2
N
N
O “ -l H -H 1293+0.8
R1 A
o O ‘H -OCH, -H 318.2 £ 21.4
2
R3 H -H -OCH_ | 320.1%55




Table 5. Aqueous solubility of a series of N-((2-methyl-1H-indol-3-
yl)(phenyl)methyl)aniline molecules.
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Solubility
‘R, ‘R, ‘R, ‘R, +1SD
(1M)
-Cl -H -OCH, -H 59.8+8.1
-l -H -H -H 31.6 5.5
-l -H -H -Cl 6.8+ 1.6
-Cl -H -H [ -N(CH)_ | 21.0z:27
-Cl -H -H -CH, 36.0 £ 6.7
-Cl -H -H -NO, 49+1.1
-Cl -H -H OCH, | 842127
-H -H -H -H 252.9+5.6
-H -CH, -H -H 175.2+8.3
-H -l -H -H 94.0 £ 2.6
-H -N(CH)), -H -H 157.8 +33.7
-H -NO, -H -H 117.7 £1.9
-H | ‘O(CH)OH | .y -H 503.5 +16.5
-H -OCH, -H -H 237.6 + 4.4

4. Conclusions

For scaffold libraries, as in Tables 4 and 5, the influence of different

substituents on the solubility of the molecules can be correlated. This information is

crucial for the identification of improved drug candidates and can assist in the

design of molecules with improved properties. The solubility information can also

be used to determine the optimal concentration for any subsequent screening

assays.

A typical high-throughput solubility assay is normally carried out in a 96-well

polycarbonate filter plate. In the preparation of the calibration and assay plates



about 76 pL of each compound solution is used. This amount allows for two
independent measurements per concentration for the calibration and three
independent measurements for the solubility determination.61.67.69 Only 8
molecules can be analyzed at a time in one calibration plate, while 30 compounds
can be analyzed in one assay filter plate.6? In the case that milligram quantities of
molecules are available, this assay will use about 30% of the stock supply. This

leaves little room for error and insufficient material for further studies.

For this novel 384-well filter plate assay, a total of only 23.5 uL of each
compound solution was used. This amount was sufficient for four independent
measurements for each calibration concentration and four replicates for
determination of the solubility concentration. With the 384-well plate format, 16
molecules can by analyzed in one calibration plate and 95 molecules can be

analyzed in one assay filter plate.

The small molecules could be studied further by analyzing their solubilities
at different buffer pH values. It is understood that the pH at which the molecule is
most soluble determines the location where it will most likely be absorbed. For

example, drugs that dissolve in acidic solutions are absorbed through the lining of
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the stomach. Molecules that dissolve readily in alkaline conditions will be absorbed

through the walls of the small intestine and into the bloodstream. The

understanding of the pH influence on solubility will help to determine other factors

influencing permeability and distribution.
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CHAPTERIII

MEMBRANE PERMEABILITY

PART 1: PARALLEL ARTIFICIAL MEMBRANE PERMEABILITY ASSAY (PAMPA)

1. Introduction

Similar to solubility, permeability is directly related to the bioavailability of a
drug. Though, unlike solubility, permeability cannot be manipulated by formulation.
Achieving desired permeability must be done through optimization of the molecule
itself.70 Assays that predict cellular absorption of small molecules have become
increasingly important in the drug discovery process. It is essential to have reliable

methods of predicting the in vivo permeability through the use of in vitro methods.®

The oral route of the administration of drugs is the most commonly used
method as it is the most convenient for patients. The absorption of an orally
administered drug is largely determined by its ability to cross the gastrointestinal
tract, its penetration of the blood brain barrier, and its transport across cell
membranes.”! Several mechanisms, such as paracellular transport and active
uptake or efflux can also influence the permeability of drugs.”? It is generally
assumed that sufficiently lipophilic compounds are transported via passive
diffusion, while small hydrophilic compounds (<200 Da) are believed to be
transported through the paracellular route if not by active transport.”3 Active
transport of small molecules is difficult to replicate with in vitro assays. For this

reason, the assessment of passive cellular absorption is the preferred method.
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In vitro assays that measure the passive cellular compound absorption often
employ artificial or biological membranes such as Caco-2 cells, lipids, or long chain
alkanes (dodecane or hexadecane). These methods are based on the passive
diffusion process, including paracellular and trans-cellular permeation.”* However,
in vivo permeability cannot be measured by isolation from biological events. All in
vitro permeability measurements are essentially various forms of lipophilicity
analysis.> Although related, permeability and lipophilicity values are not

interchangeable, but can correlate significantly.>

Many factors based on physiochemical parameters have been recognized to
govern the passive absorption of a drug including lipophilicity, molecular weight,
polar surface area, ionization state, and hydrogen bonding capacity.’2 74 Drug
lipophilicity is commonly used as a predictor for membrane permeability because
membranes are primarily lipophilic in nature. Molecular size can also play a
distinct role in the permeation process because larger molecules diffuse more

slowly than smaller molecules.

Lipids within a membrane that contain hydrogen-bonding acceptor groups
can associate with the hydrogen-bonding solutes. This hydrogen-bonding prevents
the solutes from penetrating the membrane and slows down the diffusion process.
Directly related to the hydrogen-bonding capacity is the polar surface area.® Polar
surface area is the molecular surface area associated with hydrogen bonding
acceptor atoms (i.e., oxygen and nitrogen) plus the area of the hydrogen atoms.

Finally, membranes are more permeable to non-ionized forms of drug than the
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ionized species because of their greater lipid solubility and the charged nature of the

membranes.®

To reduce the time and cost involved with animal models for the estimation
of permeability, artificial membranes have long been employed. When screening for
passive membrane permeability, artificial membrane models have the advantage of
enabling a reproducible and high-throughput format.> The first such artificial
membrane permeability assessments was discovered in 1962 when an optically
black bilayer lipid membrane was formed over a small hole in a thin sheet of
Teflon.”> This model, however, had serious drawbacks due to the fragility of the
membrane. Nevertheless, membranes such as this have since been viewed as more
useful models than the more complex “natural” membranes such as excised
tissues.*2 Since then, passive artificial membrane permeability has been extensively

studied and compared with cell-based permeability.”3.76.77

The Caco-2 cell model has been long considered the “gold standard”
technique and has been used as a standard for comparison for other absorption
techniques. Caco-2 cells are human colon adenocarcinoma cells which exhibit many
in vivo intestinal cell characteristics. These cells have tight intracellular junctions,
microvilli, and express intestinal enzymes and transporters. Due to these
characteristics, the permeation across a layer of Caco-2 cells correlates to human
intestinal permeation. This model measures passive diffusion, active transport, and
paracellular diffusion. This technique is performed by culturing a layer of cells on a

filter support, usually in a microplate.> ¢
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Although the Caco-2 model is regarded as a standard technique, it is quite
laborious and costly. It can take from days to weeks to generate a fully confluent
layer of cells which have gone though enough passages so that they have been fully
differentiated.l? Because of the tedious culture period necessary for Caco-2 cells,
other cell-based models had been developed using Madin-Darby Canine Kidney
(MDCK) and Lewis Lung Carcinoma-Porcine Kidney (LLC-PK1) cells. Although, the
MDCK method correlates closely with transport mediated drug permeability, the

LLC-PK1 method has not yet been fully correlated to in vivo absorption.®

The parallel artificial membrane permeability assay (PAMPA) has been used
as an alternative method for predicting passive permeability. It has been regarded
as an excellent model because it is amendable to high-throughput, reproducible, and
low cost. Although, PAMPA methods are not completely predictive of in vivo
permeability, they can identify definitive trends in the ability of a molecule to

permeate membranes by passive diffusion.*2

The PAMPA is usually performed in a 96-well plate with two parts, the donor
plate and the acceptor plate as illustrated in Figure 17. The donor plate has a
permeable membrane or filter along the bottom which aligns with the wells in the
acceptor plate. The artificial membrane (composed of lecithin, phosphatidylcholine,
hexadecane, porcine brain lipid extract, etc. in organic solvents) is impregnated into
the filter of the donor plate. Buffer and compound are added to the donor wells
while buffer is added to the acceptor wells. With the impregnated filter in contact

with both solutions, the assay plates are incubated for a set amount of time, and the
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concentration of compound that has passed through the membrane is determined
(usually by absorbance spectroscopy, HPLC, or LC-MS). An illustration of the

PAMPA method is shown in Figure 18.

A Multi-well filter plate Compound solution
. N B ol
L L L L L L L L EEEEEEE
el
Receiver plate Buffer

Figure 17. llustration of PAMPA plates. A) 96-well filter plate pre-coated with an
artificial membrane with a matched 96-well receiver plate. B) Solutions of the
compounds in buffer are added to the filter plate on top of the artificial membrane
(donor plate), while buffer is added to the receiver plate (acceptor plate).”8

Donor

Artificial Membrane
on Filter

Acceptor

_UIe
_UBED

én.lq 4O UOISNyIa aNISSEd |

0 Hours 2-24 Hours

Figure 18. Example of a PAMPA assay performed in a multi-well plate.

The effective permeability determined by cell-based or PAMPA method is

calculated using Equation 4. Here, dCa/dt (mg/s-mL) is the increase of drug
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concentration in the receiver chamber over the incubation period. The term A (cm?)
is the surface area of the membrane that is exposed to the compound. Va (mL) is the
volume of the solvent in the acceptor chamber. Finally, Ca and Cp (mg/mL) are the

initial drug concentration in the acceptor and donor chambers, respectively.®

. 1% ac
Equation 4) Peff = A(CDiCA) ( d:)

Along with PAMPA, other methods have been used to estimate the
membrane permeability of small molecules. These alternative methods include
HPLC with columns containing immobilized lipids, liposomes, or micellular
chromatography. These methods have shown to have a better correlation to
permeability than octanol/water partitioning, but are not yet regarded as reliable
methods yet. The HPLC method of permeability estimation will be described further

in Part 2 of this chapter.

Human in vivo Pess values obtained under physiological conditions provide
the basis for establishing in vitro-in vivo correlations, which can be used to make
predictions about oral absorption. Therefore, many in vitro methods are directly
correlated to in vivo values in order to assess the accuracy of the assay. One such
method is the Loc-I-Gut method, which has been used to establish a
Biopharmaceutics Classification System (BCS) database of in vivo human

permeability values for orally administered drugs.
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Figure 19. Functional diagram of the Loc-I-Gut technique used for the determination
of human in vivo permeability and absorption.>

The Loc-I-Gut method, shown in Figure 19, is a perfusion technique for the
proximal region of the human jejunum (upper intestinal section). It employs a
multichannel polyvinyl chloride tube that is 175 cm long and an external diameter
of 5.3 mm. The tube contains six channels and also has two 40 mm long, elongated
latex balloons which are placed 10 cm apart. Each balloon is separately connected
to one of the smaller channels. The two wider channels in the center of the tube are
for infusion and aspiration of perfusate. The remaining smaller channels are used
for administration of marker substances and/or drainage. A tungsten weight at the
far end of the tube aids the passage of the tube into the jejunum. The balloons are
then filled with air when the second balloon has passed through the junction
between the duodenum and jejunum. Finally, 1#C-PEG 4000 is used as a volume

marker to detect water flux across the intestinal barrier.5 79-81

The BCS classifies drugs as having either high or low permeability. It is based
indirectly on the extent of absorption of a drug in humans and directly on the

measurement of rates of mass transfer across a human intestinal membrane. A drug
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is considered highly permeable when the extent of absorption in humans is
determined to be 90% or more of the administered dose based on a mass-balance
determination or in comparison to an intravenous dose.82 Using BCS classified
drugs as standards, a hexadecane artificial membrane PAMPA (HDM-PAMPA) was
performed with a library of small molecules and the permeability of these molecules

was assessed.

2. Experimental

2.1. Materials and Instrumentation

All materials were used as received with no further purification. The
following small molecules were used as standards: verapamil hydrochloride (Tocris
Bioscience), diethylstilbestrol (Spectrum Chemical Mfg. Corp.), B-estradiol (Alfa
Aesar), caffeine (Alfa Aesar), 10,11-dihydrocarbamazepine (Alfa Aesar), D,L-
propranolol hydrochloride (MP-Biomedicals), 4,5-diphenyl imidazole (Alfa Aesar),
piroxicam (MP-Biomedicals), metoprolol tartarate (LKT Laboratories), naproxen
(MP-Biomedicals), atenolol (MP-Biomedicals), and ranitidine hydrochloride (Alfa
Aesar). Each of the small molecules were dissolved in DMSO to make a 10 mM

solution (Acros, Spectroscopic Grade 99.9+%).

The PAMPA assay was performed with the Millipore MultiScreen filter plates
(MAIPNTR10) and Millipore transport receiver plates (MATRNPS50) using a 5% by
volume n-hexadecane (Acros) in n-hexane (Fisher) solution to create the artificial
layer. The absorbance readings were completed with a Corning Costar 96 well UV

plate (3635). 1x Phosphate buffered saline (PBS) was prepared in 1L batches using
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18 MQ water with 3.23 mM K;HPO4-7H20 (J.T. Baker), 7.84 mM KH,PO4 (J.T. Baker),
5 mM KCI (Fisher), 150 mM NaCl (Fisher), and adjusted to pH 7.2 with HCI
(Mallinckrodt) and NaOH (Fisher). All of the absorbance readings were performed

on an Infinite M1000 plate reader (Tecan).

2.2. PAMPA

The artificial membrane was prepared by carefully pipetting 15 pL of the 5%
(v/v) hexadecane in hexane solution to each of the wells of the donor plate (assay
plates as shown in Figure 16). The plate was placed into a fume hood for 1 hour to
ensure complete evaporation of the hexane. After the hexane had evaporated, 300
uL of PBS with 5% (v/v) DMSO was added to each of the wells of the acceptor plate.
The hexadecane treated donor plate was then placed on top of the acceptor plate
taking care that the underside of the membrane is completely in contact with the
solution in each of the acceptor wells. Each of the compounds solutions were
prepared in triplicate in a separate 96-well plate to 300 uM (4.5 pL of 10 mM
compound solution in DMSO, 3 uL. DMSO, and 95 pL buffer). Then, 150 pL of the
compound solution was added to the donor wells. For each plate, carbamazepine
(medium-high permeability), verapamil (high permeability), and ranitidine (low

permeability) were used as standard molecules for reference.

The lid was placed on the plates and the entire plate sandwich was placed
into a closed container with a wet paper towel along the bottom to circumvent
evaporation during the incubation process. The container was then placed on a

reciprocal shaker for agitation at about 100 rpm. The time at the beginning of the
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incubation was recorded, as this is a thermodynamic-based assay. The incubation

was then allowed to continue for approximately eighteen hours.

The next day, the plates were removed from the incubation container and the
time of the end of the incubation period was noted. The donor plate was removed
and 50 pL of the acceptor solution was transferred to the UV plate. Drug solutions
at the theoretical equilibrium concentration (300 uM) was also prepared and
transferred to the UV plate. The absorbance of the solutions in the UV plate was

then scanned from 250-600 nm with 1 nm steps and a 5 nm bandwidth.

Equation 5) logP = log {C X —In (1 — %)} ;Where C = (%)
The relative permeability (cm/s) of the small molecules was calculated with
Equation 5, where Vp is the volume of the donor well in cm3 (150 uL), Va is the
volume in the acceptor well in cm3 (300 pL), A is the active surface area of the
membrane in cm? (0.283 cm?), T is the incubation time of the assay in seconds,
[Drug]a is the absorbance of the compound in the acceptor well after the incubation
period, and [Drug]g is the absorbance of the compound at the concentration of the
theoretical equilibrium (as if the donor and acceptor solutions were simply
combined).83 The equation is derived from Equation 4, described previously, in

which the change in concentration of the solute is time dependent.
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3. Results and Discussion

The resulting values of the HDM-PAMPA for the three standard molecules on
each assay plate were compared to literature values. This was done to determine
the validity of each assay plate as well as to determine the numbers correlating to
high and low permeability. The HDM-PAMPA results are shown in Table 6, the
literature values were determined using a 2% lipid (2-dioleoyl-sn-glycer-3-
phosphocholine) in dodecane as an artificial membrane.83 From the results
collected from the standard molecules, it was determined that molecules with a logP
value of about -6.75 cm/s and above (i.e., closer to zero) are considered to be highly

permeable according to the BCS classification.

Along with the standard molecules, a permeability assay was also performed
using an in-house library of small molecules containing molecules with varying
structures as well as a scaffold library containing molecules with a common
structural scaffold or backbone. The permeability values and structures of the
compounds are shown in Appendix B. The average permeability results with
standard deviations from two different indole-based scaffolds are summarized in

Tables 7 and 8.

Table 6. Comparison of PAMPA values.

Molecule BCS Literature Experimental
Permeability 8283 | logP 42,83 (cm/s) logP (cm/s)
Carbamazepine High (Medium) -5.21 -6.81
Ranitidine Low -8.00 -8.01
Verapamil High -4.40 -5.99
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Table 7. HDM-PAMPA (pH 7.2) values for a series of N-((2-methyl-1H-indol-3-
yl)(phenyl)methyl)pyridin-2-amine molecules.

'R1 'Rz 'R3 logP (cm/s)
! -H -Cl -H -5.86 + 0.02
NN
) -Cl -H -H -6.12+0.17
N
-H -OCH, -H -6.02 £ 0.03
-H -H -OCH, | -6.07 +0.08

In Table 7, a series of 2-indoyl methanamine molecules with different
aromatic substituents exhibit high permeabilities. The position of the aromatic
methoxy group (meta or para) does not significantly change the permeability of the
compounds. In contrast, the position of the chloro-substituents (ortho or meta) has
a strong influence on the permeability. Permeability values for a different series of
2-indoyl methanamines are summarized in Table 8. A chlorine substituent at the R;
position leads to a poor permeability as compared to the non-substituted molecule
(bolded in Table 8). With the substitution of a tertiary amine at the R; and R4
position, the permeability decreases significantly. It is also shown that the electron-
withdrawing nitro substituent on the aniline significantly decreases the
permeability. In general, any additional substitutions on this molecular scaffold
decreases the permeability determined by HDM-PAMPA. This may be due to the

increase of molecular weight and therefore size of the molecule.



Table 8. HDM-PAMPA (pH 7.2) values for series of N-((2-methyl-1H-indol-3-
yl)(phenyl)methyl)aniline molecules.
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R R R R logP
1 2 3 4 (cm/s)

-Cl -H -OCH, -H -6.22 +0.08
-l -H -H -H -6.42 +0.02
-l -H -H -l -6.25 +0.10
-Cl -H -H | -N(CH)_ | .7.28+0.16
-Cl -H -H -CH | -6.46+0.25
-Cl -H -H NO_ | -7.61+041
-Cl -H -H -OCH, | -6.31:0.08
-H -H -H -H -6.00 + 0.11
-H -CH,_ -H -H -6.34 £ 0.04
-H -l -H -H -6.04 +0.02
-H -N(CH), -H -H -6.88 £ 0.08
-H -NO, -H -H -6.09 0.10
-H | O(CH)OH | .y -H -6.83 £0.03
-H -OCH, -H -H -6.10 +0.02

4., Conclusions

The HDM-PAMPA has been shown to be a reliable high-throughput method

for the estimation of the passive cellular diffusion of small molecules. Molecules

that have been well characterized according to BCS classifications were used to

determine the range of permeability values to characterized small molecules

according their passive absorption abilities.
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The determination of permeabilities of small molecules within scaffold
libraries, as in Tables 7 and 8, enables the correlation between different
substituents and their influence on the compound permeability. This information is
essential for further development of drug candidates and the identification of drug
candidates for further development. As stated previously, unlike solubility,

permeability cannot be improved through the formulation of the drug.

As discussed previously, in the context of aqueous solubility, the
permeability of small molecules could be further analyzed at different pH values.
This could be done at the body compartment pH, where the molecule is most likely
to be absorbed. Also, buffers with different pH values in the donor and acceptor
wells can be used to replicate the difference in pH between the gut and blood or
intestines and blood. The determination of the pH influence on small molecule
permeability will help to understand the complex factors of absorption and

distribution of new drug candidates.
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PART 2: PERMEABILITY BY HPLC METHODS

1. Introduction

As described in Part 1 of this chapter, there are many different methods for
the estimation of cellular permeability of a small molecule. One such method that
has recently become of interest is the application of HPLC.84-8¢ The advantage of
HPLC-based permeability assays is the ease of implementation and low cost in

contrast to the traditional methods which are time and cost intensive.

The C18 column (octadecane bound to a silica stationary phase) is the most
popular stationary phase in reverse phase HPLC methods. During the development
of a reliable high-throughput method for the assessment of permeability of small
molecules, HPLC methods employing a C18 column have been frequently reviewed.
It has been thoroughly established that retention factors obtained by isocratic
methods can be related to the lipophilicity of molecules.1¢.8> In fact, the retention
factors for purely aqueous mobile phases have been considered to be more
representative of lipophilicity than octanol/water partitioning.85 Octanol/water
partitioning has long been considered the “gold standard” for reporting lipophilicity
of molecules.> Although C18 HPLC methods have been shown to model the
hydrophobic contribution to drug-membrane interactions, they do not mimic polar

lipid head and ionic interactions.16

Immobilized Artificial Membrane (IAM) chromatography was developed by
Dr. Charles Pigeon at Purdue University.8487 Most commonly, an [AM column

consists of an aminopropyl-functionalized silica stationary phase that has been
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reacted with a lipid, usually phosphatidylcholine, Figure 20. This configuration
functions as an “artificial membrane” formed on the surface of the silica particles.
The analyte interacts primarily with the polar head groups as it passes through the
column. The IAM column has been well studied and retention factors have been
shown to have a good correlation with values determined by a Caco-2 permeability
assay®4, liposome/water partitioning!’, and octanol/water partitioning.
Nevertheless, there is limited contribution of the drug-membrane interactions with
the use of either IAM or C18, which may be improved with the use of multiple

columns in sequence.
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Figure 20. IAM column with immobilized phosphatidylcholine on aminopropyl silica
with alkyl endcapping.88
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For any HPLC-based method, interactions of the analytes with free silanol
groups on the silica stationary phase result in increased retention. The mechanism
can be attributed to both hydrogen bonding and electrostatic forces between the
small molecule and the silanol groups.8> To suppress this effect, free silanol groups
are reduced by endcapping during manufacturing. For example, IAM columns have
been endcapped with aminopropyl groups.8* With advances in column
manufacturing, the effect on retention from free silanol groups in the stationary

phase can be minimized, but not completely eliminated.

Other chromatographic methods for permeability assessment have been
developed, such as Immobilized Liposome Chromatography (ILC), as an alternative
to IAM chromatography.8? In ILC, hydrophobic-functionalized gel beads are used as
the stationary phase and treated with phospholipids to form immobilized
liposomes. The separations of compounds with the same logP value using this
method can sometimes show very different degrees of partitioning, depending on
the charge of the compound.#28° Micellular chromatography methods have also

been studied, but do not show an improvement upon the current techniques.*2

C18 and [IAM column chromatography have been shown to be the most
promising chromatographic methods for the determination of permeability. To take
advantage of the hydrophobic contribution as well as the polar contribution to the
drug-membrane interaction, both types of columns have been employed in the same
analysis. The hypothesis of the lipid bilayer partitioning being modeled by HPLC

partitioning/retention is shown in Figure 21. The columns were linked together
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with column couplers and the retention factors of the standard drugs were
compared to those reported HDM-PAMPA (Part 1 of this chapter) as well as human
jejunal permeability. The compound retention times of the linked columns were

also compared to those determined for the IAM and C18 columns alone.
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Figure 21. The partitioning of small molecules through a lipid is hypothesized to be
modeled by the retention and/or partitioning of the molecules as they pass through
[AM-C18-1AM column in series.

2. Experimental

2.1. Materials and Instrumentation
All materials were used as received. The following small molecules were

used as standards: verapamil hydrochloride (Tocris Bioscience), diethylstilbestrol
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(Spectrum Chemical Mfg. Corp.), B-estradiol (Alfa Aesar), caffeine (Alfa Aesar),
10,11-dihydrocarbamazepine (Alfa Aesar), D,L-propranolol hydrochloride (MP-
Biomedicals), 4,5-diphenyl imidazole (Alfa Aesar), piroxicam (MP-Biomedicals),
metoprolol tartarate (LKT Laboratories), naproxen (MP-Biomedicals), atenolol (MP-
Biomedicals), and ranitidine hydrochloride (Alfa Aesar). Each of the small
molecules were dissolved in DMSO to make a 10 mM solution (Acros, Spectroscopic

Grade 99.9+%)).

Chromatograms and mass spectra were collected using a Thermo Surveyor
MSQ LC-MS with an APCI probe with 10 pA corona, 350°C probe temperature, 80 V
entrance cone. Waters XBridge C18, 5 pm, 4.6x30 mm column and Regis
[IAM.PC.Fast Screen 1 cm x 3.0 mm with a 1x PBS at pH 7.2 (BDH) and methanol
(Fisher) gradient was used for the determination of retention factors. The columns
were linked together using Upchurch Scientific column couplers with a 0.007 inch

inner diameter stainless steel tubing (U-284).

Octanol/water partitioning was performed in 1.5 mL microcentrifuge tubes
(Fisher). The partitioning of the small molecules was analyzed between 1-octanol
(Alfa Aesar) and PBS. Phosphate buffered saline (PBS) was prepared in 1 L batches
using 18 M) water with 3.23 mM K;HPO4-7H0 (].T. Baker), 7.84 mM KH2POx4 (].T.
Baker), 5 mM KCI (Fisher), 150 mM NaCl (Fisher), and adjusted to pH 7.2 with HCI
(Mallinckrodt) and NaOH (Fisher). The absorbance readings were completed with a
Corning Costar 96 well UV plate (3635). All absorbance readings were performed

on a Tecan Infinite M1000 plate reader.
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2.2. HPLC Permeability Assay

The standard molecules were analyzed for permeability by HPLC using
various combinations of IAM and C18 columns (IAM, C18, I[AM-C18, C18-1AM, [AM-
C18-IAM). An injection volume of 1 pL from the 10 mM solutions in DMSO was
introduced onto the columns and eluted at 500 pL/minute with 1x PBS and
methanol mobile phase. The solvents were held isocratically at 20% (v/v) methanol
for 5 minutes followed by an increase to 90% methanol over the next 5 minutes.
After each run, the columns were re-conditioned with 20% methanol for 1 minute
before the next analysis. All small molecules were analyzed in triplicate. The
retention factor, k’, of the compounds were calculated using Equation 6, where t; is
the retention time (minutes) of the compound and tm (minutes) is the void time of

the column(s) (determined by the retention time of DMSO).

kl tr—tim

Equation 6)

tm

2.3. Octanol/Water Partitioning

Solutions of each molecule were prepared to 1 mg/mL in 1-octanol and PBS.
From these solutions, 100, 300, and 400 pL of the analyte solution were transferred
to separate 1.5 mL microcentrifuge tubes. Then, 400, 200, and 100 pL of 1-octanol
or PBS were added to each to make the total volume 500 pL. Finally, 500 pL of the
other phase (PBS to the vials with 1-octanol solution or 1-octanol to the vials with

the PBS solution) was added to each tube.?® All of the tubes were securely closed
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and put on the reciprocating shaker at 150 rpm for agitation and incubation

overnight. Violent shaking was avoided to prevent emulsion formation.

After about 24 hours of incubation, the tubes were centrifuged for 5 minutes
at 1000 rpm. From both phases, 50 pL were transferred to a 384-well UV plate. The
UV plate was then centrifuged for 2 minutes at 1000 rpm to ensure a uniform liquid
surface in each of the wells. The absorbance for each well was then scanned from
250-500 nm, every 2 nm, with 100 flashes per well. The log of the partitioning
between phases (logP,/w) was then calculated using the adjusted absorbance, A,
(with the background absorbance of the solvent subtracted) of each phase at the

Amax of each compound, Equation 7.

AOctanol)
Awater

Equation 7) logP,,, = log (

3. Results and Discussion

Given the nature of the C18 column, one would expect that a good correlation
would be observed between the retention in C18 HPLC and the permeability values
determined by HDM-PAMPA. Both methods are based on hydrophobic interactions
between the molecules and long-chain alkanes. The correlation between the two
methods is illustrated in Figure 22. As can be seen, there is a very poor correlation
between HDM-PAMPA and retention on the C18 column for all compounds tested.
This may be due to the partitioning mechanism (i.e. equilibration between the
stationary and mobile phases) that occurs between the analyte and the functional

groups in a HPLC column. Itis concluded that the difference in the interaction
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mechanism between the small molecules and the long chain alkyl groups between
the two methods is very different and can therefore not be used as equivalent

methods of analysis.
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Figure 22. Correlation between the log of the retention factor on a C18 column and
the HDM-PAMPA logP at pH 7.2.

Plots of the log of the small molecule retention factors, k’, for the coupled
column combination of IAM-C18-IAM (23A), C18-1AM (23B), IAM-C18 (23C), and
finally for the C18 column (23D) in relationship to logPe¢ are shown in Figure 23.
Tables containing all the values are located in Appendix B. The literature values for
logPefr were determined as human jejunal permeability?3.77.83 using a single-pass
perfusion of a proximal human jejunum between two inflated balloons, as described
in part 1 of this chapter.”3.79-81 The plots depicted in Figure 23 have a similar
pattern, suggesting that the C18 column retention is the limiting factor for these
column combinations. The greater hydrophobicity of the C18 column retains the

small molecules more than the IAM column. Nevertheless, the R? correlation values
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of the linear regressions suggest a good correlation between C18 retention and in

vivo human jejunal permeability values. This shows that the C18 column alone

could give a simple and rapid method for the estimation of intestinal permeability.
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Figure 23. Relationship between log k’ and log P33 on A) coupled IAM-C18-1AM
columns in series, B) coupled C18-IAM columns in series, C) coupled IAM-C18 in
series, and D) C18 column.
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Figure 24. Relationship between A) log Pesrand B) log P (HDM-PAMPA at pH 7.2)
versus log k’ on the [AM column.

The relationships between the log of the small molecule retention factors for
the IAM column with respect to the logPesr and logP by HDM-PAMPA are shown in
Figure 24 A and B. These results show that the retention on the IAM column is more
closely related to the logP from the HDM-PAMPA than logPes. This suggests that the
HDM-PAMPA is based on a mechanism that is predominantly hydrophobic, which

has previously been reported for the IAM column.??

As stated previously, all in vitro permeability measurements are based, to
some degree, on lipophilicity. Measurements of lipophilicity can be related to in vivo
permeability, but are not interchangeable with permeability. To determine which of
these measurements are more directly related to pure lipophilicity, octanol /water
partitioning was measured. The correlation between logP values and octanol/water

partitioning is depicted in Figure 25. There is a strong correlation between logPe



and logk’(C18) with logPoct/water (Figure 25 A and C). These results support the

correlation between the logk’ for the C18 column and logPes (Figure 23D).
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The correlation with the octanol/water partitioning also suggests that these

measurements are strongly lipophilicity-based measurements. A poorer correlation

was observed between logPoct/water with logk’(IAM) and logP(HDM-PAMPA), shown

in Figure 25 B and D. Again, this is consistent with a mechanism of retention on the

IAM column based predominantly on hydrophobicity. This also suggests that the
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HDM-PAMPA is also dominated by a hydrophobic mechanism as opposed to
lipophilicity. The difference in the mechanisms between the Pefr and the HDM-

PAMPA are shown in Figure 26, with a poor correlation between the two.
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Figure 26. Correlation between HDM-PAMPA and effective permeability values from
intestinal perfusion (Peff).”3

Using the C18 column HPLC method, an unsatisfactory differentiation
between highly lipophilic molecules was observed. This is especially obvious in
Figure 25C. It is possible to increase the resolution of these compounds by
decreasing the gradient of PBS to methanol and increasing the length of the
experiment. In changing the HPLC solvent method, a larger k’ difference for highly
lipophilic molecules (logPoct/water > 0) may be achieved. Nevertheless, the current

data shows a good correlation between methods to determine the logPes and logk’.

4. Conclusions
The analysis of the retention of compounds using a combination of C18 and
IAM columns has no advantage over the analysis using both columns separately.

Nevertheless, a strong correlation has been shown between the retention of drugs
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on the C18 column and in vivo jejunal logPes values. In addition, a good correlation
was observed between the retention of the molecules on the IAM column and HDM-

PAMPA logP values.

It was previously reported that the retention on an IAM column is dominated
by a partitioning mechanism and thus, represents hydrophobicity.?? The correlation
of the retention on the IAM column with HDM-PAMPA, suggest that both methods
are predominately based on a hydrophobicity mechanism. The poor correlation
between both of these methods with octanol/water partitioning supports this as
well. The correlation of the retention factors on the C18 column with in vivo jejunal
Petr values for the same compounds suggests that both methods are based on a
similar mechanism. The good correlation between both of these methods with
octanol/water partitioning suggests that both are based predominately on

lipophilicity.

The goal of these methods is to predict the membrane permeability of small
molecules in high-throughput. It has been shown that there is a strong correlation
between the retention in the C18 column with in vivo Peg values, which were
obtained using a single-pass perfusion of a proximal human jejunum between two
inflated balloons. This research suggests that HPLC analysis on a C18 column may
give a greater estimation of actual permeability than most lipophilicity or

hydrophobicity measurements.
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CHAPTER IV

ELECTROPHILICITY

1. Introduction

Confirmation of activity and selectivity of hit molecules identified by high-
throughput screening (HTS) is an essential part of drug discovery. Especially for
inhibitor screens, this often results in hundreds to thousands of hit molecules. The
characterization of these molecules by secondary screens, which are not always
amendable to a higher throughput format, leads to a bottleneck in the discovery
pipeline. Frequently, these hit molecule selections contain a large number of
promiscuous inhibitors that have a very poor outcome in the following steps of drug

discovery.

Multiple underlying non-specific mechanisms have been identified for these
inhibitors, such as aggregation®4, redox activity??, protein modification®3, and
compound interference with the assay signal.?# High-throughput assays have been
developed to detect compound aggregation®> and redox active compounds.?®
Virtual screening filters are applied to identify reactive molecules among hit
compounds.?7-101 Importantly, some FDA approved drugs would be eliminated by
these filters, such as irreversible H*, K*-ATPases inhibitors for duodenal and gastric
ulcer.

To deactivate highly reactive and toxic species, the body produces a large
amount of glutathione (GSH) to suppress the alteration of vital proteins. Thiol-

containing molecules are extremely effective at reducing highly reactive,



72

electrophilic species. Glutathione donates an electron to reactive species with a high
redox potential of -0.33.102 It also indirectly regulates the dimerization of proteins

that are based on the formation of disulfide bonds.
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Figure 27. Formation of glutathione (GS) adducts with electrophilic species. 1)
Displacement reaction, 2 and 3) addition to activated double bonds, 4) opening of a
strained ring.103

Highly reactive species can be absorbed by the body or formed by enzymes,
such as CYP enzymes (Figure 27 reactions 3 and 4). For example, oxidation by CYP
enzymes may result in the formation of a quinones or epoxides. One common
example is the oxidation of acetaminophen and subsequent reaction with
glutatione.194 Binding to glutathione not only eliminates the risk of a highly reactive
xenobiotics, but also increases the solubility of molecules for excretion.195 Reactions

of glutathione with electrophilic carbons are classified into three types (Figure 27):
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displacement reactions, opening of strained rings, and addition to activated double
bonds.103 After the formation of glutathione adducts, the cell can replenish its

glutathione levels within minutes.102

Currently, HTS assays that determine the electrophilicity of small molecules
and thus the ability to react with naturally occurring thiols have yet to be fully
developed. One of the few approaches is a competitive binding assay using
glutathione and fluorescein-5-maleimide.196 Although, this assay could be adapted
to high-throughput, it does not allow for the differentiation between electrophilic
compounds that react with glutathione and nucleophilic compounds that react with
fluorescein-5-maleimide. Additionally, many screening compounds interfere with
the yellow/green fluorescence detection at 480/520 nm.?* More recently, another
lower throughput method has been developed using HSQC NMR by monitoring the
13C shift of small molecules that bind to thiol groups in a La antigen protein. The
results were compared to the competitive fluorescein-based assay in which it
achieves a better validation rate, although the method is far from high-throughput
and requires expensive instrumentation.197 There is still a great need for a simple,
high-throughput method that can accurately assess the thiol-binding abilities of

small molecules.

Herein, the development of a fluorescence-based (E)-2-(4-mercaptostyryl)-
1,3,3-trimethyl-3H-indol-1-ium (MSTI) assay that enables the identification of thiol-
reactive small molecules in a high-throughput manner is presented. In contrast to

the very low-throughput detection of small molecule-glutathione adducts using
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HPLC, we have developed a nucleophilic fluorescent probe with a discreet
fluorescence at 510/650 nm, which enables the detection of thiol-reactive
compounds in a 384-well plate format. Strong electrophilic drug candidates can
represent a liability in drug discovery because of their elevated toxicity in cell-based
assays and in vivo studies. Non-specific protein interactions can cause allosteric
protein changes and depletion of glutathione levels, which are essential for the
redox chemistry of the cell.198 Therefore, the MSTI assay represents a novel HTS
tool to identify compounds that interact with a nucleophilic sulfur group, such as
cysteine, and enables the elimination of these compounds in an early stage of drug

discovery.

2. Experimental

2.1. Materials and Instrumentation

All materials were used as they were received. Screening was performed
with the Library of Pharmacologically Active Compounds; LOPAC-1280 (Sigma
Aldrich). Each of the small molecules were dissolved in DMSO to make a 10 mM
solution (Acros, Spectroscopic Grade 99.9+%). Phosphate buffered saline (PBS) was
prepared in 1 L batches using 18 M(1 water with 3.23 mM K;HPO4-7H0 (]J.T. Baker),
7.84 mM KH2PO4 (J.T. Baker), 5 mM KCI (Fisher), and 150 mM NacCl (Fisher) and
adjusted to pH 7.4 or pH 12 with HCI (Mallinckrodt) and NaOH (Fisher).
Nonylphenyl Polyethylene Glycol (NP-40) surfactant (Boston BioProducts) was used
as a buffer additive at 0.01% (v/v). The absorbance readings were completed in a

384-well UV plate (Greiner Bio-One, 781801). The assay was performed in a 384-
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well, flat bottom, black assay plate (Corning, 3573) which was sealed with an

aluminum cover (Corning, 6570) during incubation and mixing.

All of the absorbance and fluorescence readings were performed on a Tecan
Infinite M1000 plate reader. Small volume transfers were performed on the Tecan
Freedom EVO liquid handling system with a 100 nL pin tool transfer (V&P
Scientific). Chromatograms and mass spectra were collected using a Thermo
Surveyor MSQ LC-MS with an atmospheric pressure chemical ionization (APCI)
probe with 10 pA corona or electrospray ionization (ESI) probe with 3kV capillary,
350°C probe temperature, and Waters XBridge C18, 5 um, 4.6x30 mm column. A
Biotage SP1 flash chromatography system and Gilson preparative LC (PrepLC) (215
Liquid Handler, 306 Pump, 112 UV Detector) with a Waters XTerra Prep MS C18
OBD column (5 um, 30x50 mm or 19x50 mm) were used for MSTI purification. A
BioTek MicroFlo Select instrument was used for the addition of the MSTI probe

solution to the assay plate.

2.2. Generation of MSTI

To detect thiol-reactive compounds, and thus electrophiles, a fluorescent
probe was designed that exhibits different spectroscopic properties when in the
nucleophilic state as opposed to a conjugate with electrophiles. Therefore, an
aromatic nucleophilic thiol functionality was bound to a conjugated m-system of a
fluorophore. An indolium dye in conjunction with a thiophenol was chosen for the
formation of (E)-2-(4-mercaptostyryl)-1,3,3-trimethyl-3H-indol-1-ium (MSTI),

shown in Figure 28.



76

MSTI, like all thiophenols, is oxygen sensitive and rapidly forms disulfides in
non-degassed solvents. Attempts to store MSTI for a prolonged time in the reduced
form as a solid or in solution were not successful. Similar difficulties have been
reported for fluorescent thiophenols.19° MSTI was synthesized from acetyl-MSTI
under alkaline conditions, and acetyl-MSTI was in turn synthesized from 4-

formylbenzyl thioacetate and 1,2,3,3-tetramethyl-3H indolium iodide, Figure 28.

o)
Acetyl-MSTI >

—

pH 12 PBS
50% v/v Methanol

Figure 28. In Situ conversion from Acetyl-MSTI to MSTI

Acetyl-MSTI is stable as a solid as well as in solution and represents an
excellent precursor for MSTI. Therefore, MSTI was generated in situ from acetyl-
MSTI for screening purposes. A 10 mM solution of acetyl-MSTI in methanol was
diluted in degassed PBS with 50% by volume methanol at pH 12 and stirred for 2
minutes. After that time, the solution became purple in color, and more than 80% of
acetyl-MSTI was converted into MSTI as determined by absorbance, fluorescence,
and LC-MS. Chromatograms and mass spectra for the conversion of acetyl-MSTI to

MSTTI are shown in Appendix C, Figures 70 and 71.

2.3. Thiol Reactivity Assay
In the preparation of the “compound plate”, 15 pL of the 10 mM solution of

small molecules in DMSO were dispensed in a 384-well polystyrene plate filling
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rows 1 to 18. A second 384-well polystyrene plate, the “control plate”, had rows 19-
24 filled with 15 pL. DMSO. Acetyl-MSTI was dissolved in methanol as a 10 mM
solution and added to a PBS buffered solution at pH 12 with 50% methanol in a ratio
of 1:10 creating a dark purple colored solution. After stirring for 2 minutes, the
solution was diluted with PBS at pH 7.4 with 2% DMSO0, 0.01% NP40, and 5%

methanol to form a pink colored, 30 uM solution at pH 7.4 of MSTI.

Next, 20 uL of the 30 uM solution was dispensed in row 1-23 (black
polystyrene “assay plate”). A 30 uM solution of acetyl-MSTI (positive control) was
made in the same buffer and 20 pL of this solution was dispensed to the assay plate
(row 24). With the Tecan liquid handling system, 100 nL from the compound plate
and 100 nL from the control plate were transferred into the assay plate using the
pin transfer tool. The assay plate was then centrifuged for 2 minutes at 1000 rpm,
covered with the aluminum cover, and put on the plate shaker for agitation during

the incubation period.

&
S E* \
— \ E
Electrophile S

Aex/em = 510/650nm

MSTI
Figure 29. Electrophilic molecule addition to MSTI.

Addition of electrophilic molecules to MSTI occurs as in Figure 29. After 30
minutes of incubation, the assay plate is once again centrifuged for 2 minutes at

2000 rpm to ensure a uniform liquid surface during the reading. The assay plate
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was then read using the Tecan M1000 plate reader for the detection of the un-
reacted MSTI. An excitation wavelength of 510 nm and emission wavelength of 650
nm with a bandwidth of 20 nm and 10 nm respectively, 100 flashes, 25 ps
integration time, optimized gain and z-position (optimized for maximum intensity of
the 30 uM MSTI solution), were used for the quantification of the fluorescence
signal. The Z’ value, Equation 8, for the assay was then calculated using MSTI as the
negative control (0% binding) and acetyl-MSTI as the positive control (100%
binding).110 The percent binding of the small molecules at a concentration of 100

uM was reported as normalized response.

Equation8) Z'=1-— (

3 X (Standard Deviation Positive + Standard Deviation Negative))
|Average Positive — Average Negative|

3. Results and Discussion

At a concentration of 500 pM in PBS, MSTI at pH 12 and acetyl-MSTI at pH 7.4
show different absorbance and fluorescence spectra (Figure 30 A and B). After
changing the pH of the MSTI solution from pH 12 to 7.4, no change in the
absorbance spectrum was observed. The wavelength of maximum absorbance
(Amax) of acetyl-MSTI was measured at 384 nm, while the Amax of MSTI is at 526 nm
(Figure 30A). This absorbance shift is very likely responsible for the appearance of
a pink color of the MSTI solution. The fluorescence emission between 530 nm and
750 nm for both compounds at an excitation wavelength of 510 nm was measured
for 100 uM MSTI and 200 puM acetyl-MST], respectively. The gain optimization

function of the instrument (Tecan M1000) automatically adjusts the highest
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fluorescence value between 40,000 and 50,000 units. The Amax of fluorescence
emission with excitation at 510 nm was 562 nm for acetyl-MSTI and a broad
emission peak between 550 nm and 700 nm was observed for MSTI (Figure 30B).
Because MSTI was generated in situ from acetyl-MSTI, around 20% of acetyl-MSTI
remained, which was responsible for the emission peak at 562 nm in the
fluorescence spectrum of MSTI. However, a large fluorescent intensity difference

between MSTI and acetyl-MSTI was observed.
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Figure 30. A) Absorbance spectra of 500 uM acetyl-MSTI and MSTI in PBS at pH 7.4.
B) Fluorescence spectra of 200 uM acetyl-MSTI and MSTI in PBS at pH 7.4 with an
excitation wavelength of 510 nm.

To optimize the fluorescence signal, the composition of the buffer was
studied by monitoring the absorbance while varying the buffer reagent, pH, ionic
strength (concentration of sodium chloride), or the concentration of MSTI. In each
of the absorbance spectra for Figures 31-33,a 200 uM concentration of MSTI was

used. A similar absorbance in PBS (50 mM phosphate, 150 mM NacCl, pH 7.0) and
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Tris buffer (10 mM Tris base, 150 mM NaCl, pH 7.0) was observed for MSTI (Figure
31). Atdifferent pH values (pH = 6-9) in PBS, MSTI showed only a marginal
difference in absorbance with the highest values between pH 7.0 and 8.0 (Figure

32). The optimal NaCl concentration was 150 mM giving the highest absorbance for

MSTI (Figure 33).
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Figure 31. Absorbance spectra dependence of 200 uM MSTI on buffer composition.
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Figure 32. Absorbance spectra dependence of 200 uM MSTI on buffer pH.
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Figure 33. Absorbance spectra dependence of 200 uM MSTI on buffer ionic strength.
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Figure 34. Concentration of MSTI vers

us absorbance and fluorescence intensity.

The absorbance (525 nm) and fluorescence (510/650 nm) for MSTI in PBS

(pH 7, 150 mM NaCl) were measured at different concentrations (Figure 34). Both

absorbance and fluorescence intensity were linear between 0.01 and 125 pM MSTI.

Relative standard deviations of <5% for the absorbance and fluorescence intensity
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were observed for all concentrations used. From this study it was determined that
an acceptable Z’ valuell? of around 0.6 could be achieved with as little as 30 uM of

MSTTI in the presence of phosphate buffer (50 mM) at pH 7 and 150 mM NacCl.

i O\/\/O

ﬁw@

Figure 35. Compound key for Figures 36, 37, and 38.
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Compounds 1-6 changed the fluorescence intensity of MSTI, whereas
compound 7 did not (Compound key, Figure 35). Compound 1 has been
investigated as a proteasome inhibitor with low micromolar toxicity.111 The mode
of action of this compound has not yet been elucidated, but the formation of the
conjugate of compound 1 and MSTI has been confirmed by MS (Appendix C, Figures
64 and 65). Compound 2 and 3 are from a series of 2-indolyl methanamines, which
have been recently identified as an irreversible inhibitors of the vitamin D receptor

(VDR)—co-activator interaction.112 The mode of action of these molecules includes
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the formation of an electrophilic species, which is believed to allosterically inhibit
the VDR protein-protein interaction with co-regulators. The formation of adducts of
compounds 2 and 3 with MSTI have also been identified by MS (Appendix C, Figures
66 and 67 for compound 2, Figures 68 and 69 for compound 3). The electrophilic
bisnitrile compound 4 was identified during the assay optimization. Compound 5 is
rabeprazole, a proton pump inhibitor that is known to form disulfide bonds with
cysteine residues of H*, K*-ATPases.113 Compound 6 was identified as an
irreversible inhibitor of the thyroid receptor—coactivator interaction by forming an
unsaturated ketone that alkylates a cysteine residue in the thyroid receptor-
coactivator binding pocket.114115 Finally, as a negative control, verapamil

(compound 7) was used.
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Figure 36. Evaluation of the MSTI assay in the presence of small molecules, PBS (50
mM, pH 7.4, 150 mM NaCl), MSTI (30 puM) and an excitation and emission
wavelength of 510 nm and 650 nm, respectively. Change of fluorescence intensity in
the presence of small molecules 1-7 (Compound Key, Figure 35) (100 uM) and
different additives (n=3).
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Three different additives (methanol, DMSO and NP-40) and several
combinations of additives were investigated (Figure 36). In this study, 30 uM of
MSTI and compounds 1-7 (100 uM) in PBS (50 mM, pH 7.4, 150 mM NaCl) were
incubated for 30 minutes and analyzed by fluorescence detection (510nm/650nm).
As controls, MSTI (negative) and acetyl-MSTI (positive) were used and the signal
was normalized to percent of the MSTI signal. Interestingly, only small differences
were observed for the compounds 1-7 in the presence of buffer additives.
Nevertheless, the addition of NP-40 was preferred to circumvent the possibility of
compound aggregation ¢4 95,116 and the addition of DMSO and methanol to enhance

small molecule solubility.
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Figure 37. Change of the fluorescence intensity in the presence of small molecules 1-
7 (100 uM) with 2% DMSO, 5% methanol, and 0.01% NP-40 by volume in PBS at
different time points (n=3). PBS (50 mM, pH 7.4, 150 mM NaCl), MSTI (30 uM) and
an excitation and emission wavelength of 510 nm and 650 nm, respectively
(Compound Key, Figure 35).
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Furthermore, different time points were investigated confirming the time
dependency of covalent bond formation between compounds and MSTI. All six
active compounds showed a stronger alkylation after 30 minutes than immediately
after the addition (Figure 37). Compounds 2, 5, and 6 showed a further decrease
after 1 hour. Finally, for the investigation of compound concentrations, for all six
compounds a change of the MSTI signal in the presence of more compound (100 uM
instead of 50 uM) was observed (Figure 38). Interestingly, no further changes of the

signal were observed at the highest compound concentration used (150 pM).
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Figure 38. Change of the fluorescence intensity in the presence of small molecules 1-
7 (50, 100 and 150 puM) with 2% DMSO, 5% methanol, and 0.01% NP-40 by volume
in PBS. PBS (50 mM, pH 7.4, 150 mM NaCl), MSTI (30 uM) and an excitation and
emission wavelength of 510 nm and 650 nm, respectively (Compound Key, Figure
35).

With the optimized MSTI assay conditions: PBS (50 mM, pH 7, 150 mM Nacl),

MSTI (30 uM), compounds (100 pM), 5% methanol, 2% DMSO, and 0.01% NP-40; a
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library of small molecules was screened. The Library of Pharmacologically Active
Compounds-1280 (LOPAC) screening collection was used to determine the quality
of the assay and the ability to identify compounds that are reactive towards

nucleophiles. Each LOPAC compound was measured in triplicate (Figure 39).
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Figure 39. Results of MSTI-LOPAC screen (1280 compounds), n=3.

The Z’ values of this screen ranged between 0.62 and 0.88 with a mean of
0.75 (Figure 40). The mean fluorescence intensity of all compounds in the presence
of MSTI, was 107.0% of the MSTI signal with a standard deviation (o) of 14.2%. In
order to safely distinguish between active and inactive molecules, a cutoff of 1.5
standard deviations from the mean was chosen as indicated with the gray lines in
Figure 39. Observing a subset of random 224 LOPAC compounds more closely, the
cutoff of 1.50 represents an acceptable distinction between both populations

(Figure 41).
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Figure 40. Summary of the Z’ values of each assay plate.
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Figure 41. Normalized fluorescence intensity data of a single 384-well LOPAC
compound plate in triplicate with their standard deviation.
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Figure 42. A) Fluorescence intensity (FI) (510nm/650nm) of all LOPAC compounds;

B) Structures of fluorescently interfering compounds.
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The background fluorescence was also determined for each LOPAC molecule
(100 uM) in the absence of MSTI at a 510 nm excitation and 650 nm emission
wavelength. The vast majority of LOPAC compounds exhibited no fluorescence and
gave fluorescence intensity values similar to those measured for the assay media
(i.e., background) (Figure 42A). However, eleven compounds exhibit an intrinsic
fluorescence intensity of more than 1.50 of the mean fluorescence signal (21.3%) of

MSTI (Figure 42B).

The MSTI-LOPAC screen identified 9 compounds that exhibit a fluorescence
intensity of more than 129% of the MSTI fluorescence intensity and 55 compounds
with less than 85 % of MSTI fluorescence intensity. The summary of these
compounds is provided in Appendix C. Using a cut-off of +1.5 o, the hit rate was
determined to be 5%. The majority of the hits identified, as predicted, were
electrophilic compounds (Figure 43A). These include transition metal complexes
bearing ions such as Au?+ and Pt?+, a-haloketones, quinones, NO-releasing
compounds, halo-alkenes, and unsaturated carbonyl or carbonyl-like compounds.
The MSTI conjugates of electrophilic molecules were characterized by 1H-NMR and
MS, such as the 2-iodoactamide-MSTI conjugate (Appendix C). Other compounds
identified are those that can undergo a conversion to an electrophilic compound
such as B-aminoketones (conversation into unsaturated ketones) and 2-
chloroamine derivatives (conversion into aziridines) (Figure 43B). Interestingly, we
also identified lansoprazole, a proton pump inhibitor that forms disulfide bonds
with cysteine residues. The same mode of action has been reported for positive

control compound 5, rabeprazole (Figure 35).
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This assay also identified the compound class of apomorphines (Figure 43C).
A possible explanation could be the formation of the corresponding diketone, which
has been reported under aqueous conditions.117 The diketones, in contrast to the
norapomorphines, have a red-shifted absorbance, which might be the underlying
mechanism for these false positive hits. Finally, the majority of disulfides and
sulfoxides (Figure 43D) were identified by the MSTI assay, confirming the

sensitivity of the reduced MSTI probe for other oxidized sulfur species.
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Figure 43. Thiol-reactive compound classes identified by the MSTI assay.
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4. Conclusions

Molecules that react with thiols, such as cysteine, have the potential to non-
selectively modulate proteins or alter their modes of action, which can be a hallmark
of promiscuous inhibition. MSTI, a newly developed molecular probe, can be used
to identify thiol-reactive small molecules. MSTI bears a nucleophilic thiol group that
can easily react with electrophilies or oxidants to form conjugates or disulfides. The
covalent bond formation has a dramatic influence of the fluorescent properties of
MST], significantly reducing the fluorescence intensity at 650 nm. The MSTI assay
only requires an incubation time of 30 minutes and although optimized for a 384-

well format, it is easily convertible to 1536-well format.118

The application of a precursor, acetyl-MSTI, has the advantage that the
reactive MSTI probe can be reliably produced in situ, thus circumventing any
challenging storage regimes for MSTI. The MSTI assay is the first HTS assay that
identifies thiol-reactive small molecules among screening library compounds.
Therefore, this assay can identify their mode of action, as shown for several
examples of irreversible inhibitors among the LOPAC screening library. The far-red
detection of MSTI limits the number of molecules interfering with the assay, which
was 0.85% for the LOPAC screening library. The assay has an excellent
reproducibility (Z' > 0.6) and standard deviation of < 5% for each compound. The
MSTTI assay will be a helpful tool to quickly identify potential promiscuous inhibitors
among screening hits and enable the fast identification of the mode of action of hit

compounds in regard to their ability to react with nucleophilic protein residues.
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CHAPTERV

PROTEIN-SMALL MOLECULE BINDING

PART 1: HIGH-THROUGHPUT ULTRAFILTRATION

1. Introduction

It is widely understood that the extent of drug-plasma protein binding is a
major determinant of drug distribution to sites of action as well as metabolism.
Only the unbound drug is capable of passing through membranes and bind to
metabolic enzymes.11° Non-specific binding of small molecules to plasma proteins
causes a decrease in the free drug concentration available to the site of action.
Interactions between drugs and plasma proteins may occur through ionic binding,
hydrogen bonding, or Van der Waals interactions. Although reversible, drug-plasma
protein binding has a significant influence on the pharmacokinetic and
pharmacodynamic properties of drugs.24 120 [t also can have a large affect on other

pre-clinical screens.120.121

Serum albumin is one of the most abundant blood proteins. It is a carrier for
many low polarity metabolites and drugs. The lack of specificity toward particular
ligands, multiple binding sites, and allosteric effects complicate the studies of
binding to albumin.122.123 Albumin is the major culprit for binding of acidic and
neutral drugs.124¢ Basic drugs are bound to a lesser extent to albumin, but bind to

globulins.125 Protein binding studies are typically studied in vitro with either plasma
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or serum. Equilibrium dialysis and ultrafiltration are the most commonly used

techniques for protein-binding measurements.28

@ <«
A ® A @ Plasma Protein

:A .A A /A Compound
A . < PA

Figure 44. Equilibrium dialysis method for the determination of plasma-protein
binding.

Equilibrium dialysis is often considered the “gold standard” method for in
vitro determination of drug-protein binding. An image illustrating equilibrium
dialysis is shown in Figure 44. A plasma solution spiked with drug is placed in one
cell of the dialysis apparatus and buffer is placed in the other. The two cells are
separated by a semipermeable membrane through which the macromolecule cannot
pass. Unbound drug diffuses across the membrane down its electrochemical
gradient until equilibrium is reached and the unbound concentration of the drug is
equal in both compartments. Usually an incubation period of 6 hours at 37°C is
sufficient for most compounds to reach equilibrium (with a 1 mL volume in each
cell).28 With equilibrium dialysis, theoretically, non-specific binding to the
apparatus is not an issue if equilibrium is reached. Some studies have shown that
pre-treatment of the membranes with detergents, such as Tween or NP-40, reduces

the extent of non-specific binding.126 Equilibrium dialysis continues to be the
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benchmark by which other methods are assessed, although it is labor intensive,
costly, time consuming, and difficult to automate.?22 Recently, developments have
been made to improve the equilibrium dialysis method by application in 96-well
dialysis blocks, but at least 4 hours of incubation are required to reach

equilibrium.22 127,128
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Figure 45. Ultrafiltration method for determination of drug-protein binding.

Ultrafiltration methods have also been readily employed for the
determination of plasma protein binding. An illustration of the ultrafiltration
method is shown in Figure 45. The ultrafiltration tube contains two parts. The
upper part has a semipermeable membrane through which small molecules pass
while macromolecules are retained. The plasma is pre-incubated with the drug,
typically at 37°C for about 15 minutes. The pre-spiked plasma solution is loaded
into the ultrafiltration tube and centrifuged at 500 x g until about 10% of the volume

initially loaded is separated out as filtrate in the collection tube.28 The ultrafiltrate is
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then analyzed for the drug concentration. It is best to ensure that the volume of the
ultrafiltrate does not exceed 10% of the volume loaded to circumvent concentration
effects.2® In some methods, the recommended acceptable volume of filtrate is 20-
35% percent of the original plasma sample, resulting in minimum disturbance to the
protein-binding equilibrium.129 Ultrafiltration is a relatively fast and simple method
which has been shown to have a good correlation to other methods. Nevertheless,
non-specific binding to the filtration apparatus has been a major issue.?3.127 The
main disadvantage of these techniques is the disturbance of the drug-protein

equilibrium by the separation of the free drug.130
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Figure 46. Diagram of surface plasmon resonance (SPR).131

Surface plasmon resonance (SPR) is an optical biosensor technique that
measures binding events at the gold metal surface by detecting changes in the local
refractive index (Figure 46).131 SPR is a surface sensitive technique that is ideal for

studying the interactions between immobilized biomolecules and analyte in
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solution. Because the measurements are based on changes in refractive index,
sensitive and label-free detection is possible. Also, analysis can be performed in
real-time, enabling the calculation of kinetic and thermodynamic binding
constants.?> 131 Finally, SPR is sensitive to the binding of molecules over a wide
range of molecular weights and affinities.2> However, this method assumes that the

immobilized protein retains its full binding characteristics.26

In effort to increase throughput of plasma protein binding techniques,
methods such as LC-MS with an immobilized human serum albumin (HSA)
columni28,132,133 capillary electrophoresis128 134,135 or HSA immobilized on silica
beads36 have been applied with reasonable success. However, as stated before,
these methods assume that the immobilized protein retains it full binding
characteristics and assumes non-specific binding has no impact.2¢ Fluorescence
methods have also been used for the determination of drug-protein binding. These

methods will be discussed in detail in Part 2 of this chapter.

More recently, attempts have been made to increase the throughput of the of
ultrafiltration methods. Studies have been published using a 96-well plate with a 10
kDa molecular weight cutoff (MWCO) membrane along the bottom of the wells.120,
129 The samples were pooled, four molecules incubated with serum per well, to
increase the throughput of analysis.120 Sample pooling may cause saturation of the
binding sites available on the proteins and therefore yield inaccurate results. Both
96-well plate methods, with analysis of the ultrafiltrate by LC-MS/MS, have a fair

correlation to conventional methods.120.129 Concentration effects may play a
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significant role in the results.28 120 Also, collection of different volumes at the edges
of the filter plate versus the central wells can be an issue with application in 96-well
plates.12? Another major issue concerning the throughput of these methods is that a
centrifugation time of 45-60 minutes was necessary for collection of the
ultrafiltrate.120.129 Application of silica-immobilized HSA (TRANSIL-HSA) has also
been applied in 96 and 384-well plates and has shown good correlation to
equilibrium dialysis methods, with a centrifugation period of only five minutes.136
This method has even been marketed recently as a kit for plasma protein-binding
analysis.137.138 Development of a 384-well plate with a MWCO membrane that has
been shown to have uniform filtration rates across the plate!3? makes it possible for
the development of a higher throughput ultrafiltration assay without the need for

sample pooling.

2. Experimental

2.1. Materials and Instrumentation

All materials were used as received. The following small molecules were
used as standards: diethylstilbestrol (Spectrum Chemical Mfg. Corp.), -estradiol
(Alfa Aesar), caffeine (Alfa Aesar), D,L-propranolol hydrochloride (MP-
Biomedicals), piroxicam (MP-Biomedicals), metoprolol tartarate (LKT
Laboratories), naproxen (MP-Biomedicals). Each of the small molecules were

dissolved in DMSO (Acros, Spectroscopic Grade 99.9+%) to make 10 mM solutions.

Solutions from lyophilized powder, fatty acid free, globulin free, 299%

human serum albumin (HSA) (Sigma Aldrich) were made in phosphate buffer.
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Dialysis of HSA solutions were performed with 10 mL, 50 kDa dialysis tubes
(Spectrum Labs, G235070). After dialysis, HSA solutions were stored for no longer
than one week at 4°C. Phosphate buffered saline (PBS) was prepared in 1 L batches
using 18 M() water with 3.23 mM K;HPO4-7H20 (J.T. Baker), 7.84 mM KH2PO4 (J.T.
Baker), 5 mM KCI (Fisher), 150 mM NacCl (Fisher), and adjusted to pH 7.2 with HCI
(Mallinckrodt) and NaOH (Fisher). Nonylphenyl polyethylene glycol (NP-40) 0.01%
(v/v) surfactant (Boston BioProducts) and glycerol (Fisher) were used as buffer

additives.

The absorbance readings were completed in a 384-well UV plate (Greiner
Bio-One, 781801). The assay was performed in a 384-well filter plate with 30 kDa
molecular weight cutoff membrane (Pall, 5078) which was sealed with an aluminum
cover (Corning, 6570) during incubation and mixing. Separation of the ultrafiltrate
was done by centrifugation with an Eppendorf 5810R centrifuge. All of the
absorbance readings were performed on a Tecan Infinite M1000 plate reader.
Chromatograms and mass spectra were collected for molecules and reaction
products using a Thermo Surveyor MSQ LC-MS using electrospray ionization (ESI)
with 3 kV capillary, 350°C probe temperature, and Waters XBridge C18, 5 um,

4.6x30 mm column

2.2. High-Throughput Ultrafiltration Assay
A 5.0 mg/mL solution of HSA was prepared in PBS and dialyzed exhaustively
(4 times, 24 hours each) in 3 L of the same buffer at 4°C. After dialysis, 68 pL of the

HSA solution were added to half of wells in the filter plate. In the other half of the
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plate, 68 uL of PBS were added. To both the HSA solution and PBS, 2 uL of the 10
mM standard molecule solutions in DMSO were added in triplicate. As a control, for
the background signal, 2 pL. of DMSO was added in triplicate to both the HSA
solution and PBS. The filter plate was placed on top of a 384-well polystyrene
collection plate. The plate was then covered and agitated on the reciprocal plate

shaker for ten minutes.

After the incubation period, the plate was centrifuged for 20 minutes at 1500
x g with the collection plate still underneath the filter plate. The ultrafiltrate was
collected in the filter plate during centrifugation. After collection, 50 pL of the
ultrafiltrate were transferred to the 384-well UV plate. The absorbance was then
measured over a range from 250 to 500 nm, every 2 nm, with 100 flashes per well.
The percentage of bound compound was then calculated with Equation 9 at the Amax
of the molecule, where A. is the absorbance of the ultrafiltrate at equilibrium after
incubation of the small molecules with HSA, Agigq, e is the absorbance of the
ultrafiltrate at equilibrium after incubation of DMSO with HSA, Ao is the absorbance
of the ultrafiltrate of the small molecules incubated in buffer, and Agkgd,o is the
absorbance of the ultrafiltrate of DMSO incubated in buffer.

Equation 9) % Bound = (1 — [MD x 100

Ao— ABkgd,o

3. Results and Discussion
To determine the maximum concentration of protein that can be added to the

wells of the 384-well filter plate, while still allowing solvent to pass through the
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membrane, a dilution of HSA in buffer was performed. Concentrations of 40, 34, 28,
23,17,11, 6, and 3 mg/mL HSA were investigated in triplicate at a final volume of
70 uL. The plate was centrifuged for 20 minutes at 1500 x g. After 20 minutes of
centrifugation, only the wells with 6 and 3 mg/mL HSA solutions were filtered
completely. After an additional 20 minutes of centrifugation at 1500 x g, the wells
containing 11 mg/mL HSA solution were filtered, with minimal to no filtrate
collected from the higher HSA concentrations. To retain the highest throughput, a
short centrifugation time was preferred. Therefore a maximum concentration of 5

mg/mL (75 uM) HSA was chosen for subsequent experiments.

Table 9. Calculated percent bound of standard small molecules after high-
throughput ultrafiltration method with varying volumes of 10 mM compound
solution in DMSO (n=3) in comparison to literature in vitro values. (x = Ae greater

than Ao)

Calculated | Calculated | Calculated | Calculated

% Bound,
. % Bound, % Bound, % Bound, % Bound,

Molecule Literature

Value 1puL 2 uL 3uL 4 L

Compound | Compound | Compound | Compound
Piroxicam**° 91 56.6+2.4 | 39.8+23 | 452+1.6 | 40.8+1.2
Metoprolol*** 3.5+32.0 X X 22.7+35 | 93.8+1.3
Propranolol**? 87+6 51.4+99 | 29.0+43 | 27.4+1.1 | 482+5.0
Naproxen™" ! | 953+1.7 | 106.7+5.5 | 81.2+5.3 | 67.2+1.7 | 71.0+0.6
Caffeine’® 36+7 X 37.7+56 | 22.8+8.7 | 41.0+1.8

Next, the concentration of small molecules with the 5 mg/mL HSA was

determined. The concentration must be sufficient for UV detection, but low enough

to prevent over-saturation of protein binding sites. Therefore, compound

concentrations of 143, 286, 429, and 571 uM (1, 2, 3, and 4 uL of the 10 mM
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compound solutions in DMSO) were analyzed in triplicate. The resulting calculated
percentages of HSA-bound compound in comparison with in vitro plasma protein
binding values are shown in Table 9. (3-Estradiol and diethylstilbestrol were
excluded from the table because A. was greater than Ag at all concentrations. This
was observed for other molecules as well (caffeine and metoprolol), as indicated by
an x in the Tables 9, 10, and 11. The reasons for this observation may be the
displacement of interfering molecules upon the binding of the drug, breakthrough of

the plasma protein during filtration, or low absorbance (Figure 47).

. Slope
® B-Estradiol 0.00107 £ 4.14e-005
9 31 Diethylstilbestrol | 0.00244 + 3.24e-005
3 Metoprolol 0.00133 + 5.86e-005
E o Propranolol 0.00402 + 0.000119
3 Naproxen 0.00168 + 1.10e-005
® Caffeine 0.00636 £ 0.000120
B 11 Piroxicam 0.0139 £ 0.000348
E O p-Estradiol = Metoprolol
» Diethylstilbestrol v Propranolol
0 1 1 1 .
0 200 400 600 O Naproxen ¢ Caffeine
Concentration (uM) + Piroxicam

Figure 47. Calibration plot correlating absorbance with concentration of standard
molecules at the Amax at each of the molecules, respectively. Slope of the line for
each molecule given in the table with standard deviation.

The co-solvents, NP-40 and glycerol, were investigated for the reduction of
non-specific binding during ultrafiltration assays.23 126 NP-40 as well as other

surfactants are frequently added to buffers to circumvent aggregation as well as to
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increase solubility of proteins and small molecules.t4 95116 Therefore, 0.01% by
volume NP-40 was added to the buffer. The results in Table 10 with the addition of
NP-40 showed a much better correlation to the in vitro values than those in Table 9,
without buffer additives. The addition of glycerol, typically 10% by volume, in
protein buffers enhances the solubility and stability of many proteins.12 Very poor
results were observed with the addition of 10% by volume glycerol, which may be
due to the increased viscosity of the solution possibly clogging the pores in the

membrane.

Table 10. Calculated percent bound of standard small molecules after high-
throughput ultrafiltration method with 2 pL of 10 mM compound solution in DMSO
(n=3) and 0.01% NP-40 and 0.01% NP-40 with 10% glycerol (v/v) in comparison to

literature in vitro values. (x = Ae greater than Ao)

% Bound, Calculated % Cal;ulated =
Molecule Literature Bound, It
Value 0.01% Np-ao | 10% Glycerol,
0.01% NP-40
Piroxicam™*° 91 56.7+0.4 55.9+8.5
Metoprolol™** 3.5+32.0 21.0+1.7 X
Propranolol**? 87+6 32.0%2.1 X
Naproxenl“’ 143 95.3%+1.7 76.7£3.2 62.5 +23.7
Caffeine® 36+7 33.4+7.9 X

To determine if there is a concentration effect with the separation of a large
percentage of the initial volume, the plate was only centrifuged for 5 minutes,
collecting 10 pL of filtrate. The calculated percent bound for high-binding molecules

(piroxicam and naproxen), both with a Amax greater than 300 nm, were significantly
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lower than the in vitro literature values. The values for all other molecules were not

calculable (Ae greater than Ao) because of the highly dilute solutions.

Table 11. Calculated percent bound of standard small molecules after high-
throughput ultrafiltration method with 1 pL of 10 mM compound solution in DMSO
(n=3) with 0.01% NP-40, detection by UV absorbance and LC-MS in comparison to
literature in vitro values. (x = Ae greater than Ao)

% Bound Calculated Calculated
Molecule Liter:\ture V;Iue % Bound, % Bound,
uv LC-MS
Piroxicam™*° 91 66.8 +2.1 68.0 £ 0.2
Metoprolol*** 3.5+32.0 X 09+0.5
Propranolol142 876 X 17.5£0.9
Naproxen**! 143 95.3+1.7 69.4+4.4 81.6+0.5
Caffeine™* 36+7 41+23 5.3 +0.2

Many protein-binding methods (equilibrium dialysis and ultrafiltration) use
LC-MS or LC-MS/MS for detection due to the sensitivity that can be achieved.21 22120,
128,129,136 The percent binding of the molecules presented in Table 11 were
determined by UV absorbance and LC-MS detection using the ratio of the peak areas
of the analytes. The percent binding of B-estradiol and diethylstilbestrol could not
be calculated because it co-eluted with DMSO. This could be improved by adjusting
the HPLC method. For all other compounds, a similar protein binding was
determined by both UV absorbance and LC-MS. With optimization of the LC-MS
method, molecules with low absorbance or low maximum wavelengths could be

detected more easily.
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4. Conclusions

Sieve effects are commonly seen for ultrafiltration methods, in which water
molecules are preferentially filtered as compared to the drug molecules giving an
underestimation of the free drug concentration.'4* Concentration effects by
separation of large amounts of the volume can also have an influence on low-
binding molecules such as metoprolol and caffeine. Addition of NP-40 to the assay
buffer greatly increases the correlation to reported in vitro values for plasma
protein binding. This can be due to the decrease in non-specific binding to the filter

apparatus®% 95116 and decreased aggregation of the molecules and proteins.6% 95 116

It has been discussed previously that ultrafiltration methods are not a
sufficient substitute for equilibrium dialysis.}4> There is some variation between in
vitro methods; for example, equilibrium dialysis has reported 23% plasma protein
binding for fleroxacin whereas ultrafiltration has reported 47% plasma protein
binding for the same compound.14¢ Many high-throughput methods that have been
developed for ultrafiltration plasma protein binding that correlate the results to
conventional single-tube ultrafiltration values.120.129 QOther reports describe the
study of the binding of one or two molecules, not multiple.120.129 Application of LC-
MS or LC-MS/MS may increase the sensitivity of detection, but can greatly decrease
the throughput of analysis. With further optimization, application of the plasma
protein binding method in a 384-well filter plate with 30 kDa molecular weight
cutoff membrane can be a useful ultrafiltration method for drug-protein binding

studies.
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PART 2: COMPETITIVE PROTEIN BINDING

1. Introduction

Fluorescence spectroscopy can be applied as a highly sensitive method for
protein analysis.147.148  The fluorescent probes can be analogs of natural ligands
and drugs or act as binding site markers in competition assays.148-150 1-
Anilinonaphthalene-8-sulfonate (ANS) is one of the first fluorophores discovered
that displays a change in fluorescence intensity upon interaction with
biomolecules.’>? ANS and its dimeric form, 4,4’-bis-1-anilinonaphthalene-8-
sulfonate (Bis-ANS) are the most frequently used dyes in protein
characterization.130.147,151-153 Prodran has been used to characterize the warfarin
binding site on HSA.148 Another fluorescence-based method used danslyamide and
dansylsarcosine, with fully characterized binding sites on HSA.148 The decrease in
the fluorescence intensity can be interpreted as displacement of the fluorescent
probe by an added ligand through a competitive mechanism.148.15¢ The decrease in

fluorescence intensity can also be related non-competitive allosteric inhibition.

Nile Red

Aex/em = 514/532 nm

Figure 48. Structures of Mega Red and Nile Red with wavelengths of excitation and
emission in PBS with 0.5 mg/mL HSA.
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Figure 49. Jablonski diagram describing the fluorescence process including solvent
relaxation and (twisted) intramolecular charge transfer.14”

To determine the extent of drug-plasma protein binding, fluorescent
molecules were chosen that bind non-specifically and non-covalently with proteins.
Some fluorophores have a very low quantum yield in water, but a large quantum
yield in the presence of proteins such as bovine serum albumin (BSA). These
changes are due to solvent or environmental effects, altering the rates of non-
radiative decay.1#?. 155 This phenomenon is observed for many fluorescent
molecules including Mega Red and Nile Red, Figure 48. The electron process is
described in Figure 49. Upon the absorption of light, electrons are excited from the
ground state, So, to a higher energy level. There are several processes that compete
with fluorescence, resulting in energy loss. These processes include vibrational
relaxation, internal conversion, solvent relaxation, and intramolecular charge
transfer (ICT) or twisted intramolecular charge transfer (TICT), illustrated by the

dotted arrows in Figure 49. Once the molecule has reached the lowest vibrational
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level, S1 or Sryict, the molecule can relax back to the ground state by fluorescence
emission of a photon or non-radiative decay. The twisted intramolecular charge
transfer, as opposed to normal planar ICT, involves intramolecular rotation and full

charge transfer.

Mega Red contains a coumarin moiety which demonstrates the ability to
associate non-covalently and non-specifically with proteins.156.157 Nile Red is a non-
ionic fluorescent probe that binds non-covalently to protein surfaces. A large stokes
shift, with respect to the emission, makes it useful for observing changes in protein
structure.1>® The fluorescence properties of Nile Red are governed by TICT in which
an electron transfers from the diethylamino group to the electron-withdrawing
aromatic system with rotation around the aromatic-nitrogen bond.147.159 A
diethylamino group is also present in Mega Red, causing a similar TICT process,
although it has not been fully characterized yet. In polar solvents, the TICT state and
non-radiative decay are favored causing the low quantum yield in aqueous
solutions. In apolar environments, such as with human serum albumin (HSA) or
BSA, the TICT process is thermodynamically unfavorable, which results in a
significant increase in fluorescence lifetime and quantum yield.147.159

Herein, the first high-throughput method to determine drug-protein binding
is presented. In contrast to equilibrium dialysis and ultrafiltration methods, this
method requires short times and no centrifugation. Importantly, it is carried out in
384-well plate format. The application of fluorescent probes, (E)-1-(5-

carboxypentyl)-2-(2-(7-(diethylamino)-4-hydroxy-2-oxo-2H-chromen-3-yl)vinyl)-
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3,3-dimethyl-3H-indol-1-ium-5-sulfonate (Mega Red)!>7 and 9-(diethylamino)-5H-
benzo[a]phenoxazin-5-one (Nile Red)!58, enables the quantification of two
independent compound-plasma protein binding constants in one assay at different
HSA binding sites. The concept of using multiple fluorescent probes simultaneously
for the study of small molecule-protein interactions has been discussed previously,
but was not fully developed.1® Compounds can also be measured in a dose-
response analysis to determine the affinity of compound binding. This fluorescence-
based assay represents a novel high-throughput screening (HTS) tool for the

estimation of plasma protein binding of small molecules.

2.1. Materials and Instrumentation

All materials were used as received. The following small molecules were
used as standards: verapamil hydrochloride (Tocris Bioscience), diethylstilbestrol
(Spectrum Chemical Mfg. Corp.), B-estradiol (Alfa Aesar), caffeine (Alfa Aesar), D,L-
propranolol hydrochloride (MP-Biomedicals), piroxicam (MP-Biomedicals),
metoprolol tartarate (LKT Laboratories), naproxen (MP-Biomedicals), atenolol (MP-
Biomedicals), ranitidine hydrochloride (Alfa Aesar), ketoconazole (Calbiochem),
lansoprazole (Sigma Aldrich), omeprazole (Sigma Aldrich), rabeprazole (Sigma
Aldrich), nadolol (Sigma Aldrich), linezolid (Sigma Aldrich), antipyrine (Sigma
Aldrich), ofloxacin (Sigma Aldrich), and methotrexate (Sigma Aldrich). Each of the
small molecules were dissolved in DMSO (Acros, Spectroscopic Grade 99.9+%) to

make 10 mM solutions.
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Solutions from lyophilized powder, fatty acid free, globulin free, 299%
human serum albumin (HSA) (Sigma Aldrich) were made in buffer. HSA solutions
were stored for no longer than one week at 4°C. Phosphate buffered saline (PBS)
was prepared in 1L batches using 18 M) water with 3.23 mM K;HPO4-7H0 (].T.
Baker), 7.84 mM KH,PO4 (J.T. Baker), 5 mM KCI (Fisher), 150 mM NacCl (Fisher), and
adjusted to pH 7.2 with HCI (Mallinckrodt) and NaOH (Fisher). Nonylphenyl
polyethylene glycol (NP-40) 0.01% (v/v) surfactant (Boston BioProducts) and
glycerol (Fisher) were used as buffer additives. Fluorescent molecules, Red Mega
500 (Mega Red) (Fluka) and Nile Red (Acros Organics), were dissolved to 10 mM in

DMSO upon receiving and stored at -20°C until used.

The absorbance readings were completed in a 384-well UV plate (Greiner
Bio-One, 781801). The assay was performed in a 384-well, flat bottom, black assay
plate (Corning, 3573) which was sealed with an aluminum cover (Corning, 6570)
during incubation and mixing. All of the absorbance and fluorescence intensity
readings were performed on a Tecan Infinite M1000 plate reader. Small volume
transfers were performed on the Tecan Freedom EVO liquid handling system with a
100 nL pin tool transfer (V&P Scientific). A BioTek MicroFlo Select instrument was
used for the addition of solutions to the assay plate. TA Instruments low volume
Nano-isothermal titration calorimeter (ITC) was used for the determination of
binding constants of standard molecules to HSA. Analysis of the ITC data for the
calculation of thermodynamic data was performed with NanoAnalyze software

(Thermo Scientific).
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2.2. Protein Binding Assay

In the preparation of the “compound plate”, 15 pL of the 10 mM solution of
small molecules in DMSO were dispensed in a 384-well polystyrene plate filling
rows 1 to 18. A second 384-well polystyrene plate, the “control plate”, had rows 19-
24 filled with 15 uL. DMSO. The assay buffer was prepared by mixing 10% by volume
glycerol and 0.01% by volume NP-40 in PBS. Next, 20 uL of a 500 nM solution of
Nile Red and Mega Red in the assay buffer (positive control) was dispensed to the
assay plate (row 24). The rest of the assay plate was filled with 20 pL per well of the
assay solution, 0.20 mg/mL HSA and 500 nM Nile Red and Mega Red in the assay

buffer.

With the Tecan liquid handling system, 200 nL from the compound plate and
200 nL from the control plate were transferred into the assay plate using the pin
transfer tool. The assay plate was then centrifuged for 2 minutes at 2500 rpm and
agitated for 5 minutes. The assay plate was read using the Tecan M1000 plate
reader. An excitation and emission wavelength of 510 nm and 543 nm for Mega Red
and 570 nm and 640 nm for Nile Red, 100 flashes, 20 ps integration time, optimized
gain and z-position (optimized to the 500 nM Mega Red and Nile Red solution with
0.20 mg/mL HSA), were used for the quantification of the fluorescence intensity
signal. The Z’ value for this assay was calculated using Nile Red and Mega Red with
HSA as the negative control (0% binding) and Nile Red and Mega Red in buffer
without protein as the positive control (100% binding).119 The percent binding of

the small molecules at a concentration of 100 uM was reported as normalized
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response to the fluorescence intensity of Mega Red and Nile Red in the presence of

HSA.

3. Results and Discussion
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Figure 50. A) Absorbance and fluorescence spectra at 514 nm excitation of Mega
Red in PBS with 0.5 mg/mL HSA. B) Absorbance and fluorescence spectra at 570 nm
excitation of Nile Red in PBS with 0.5 mg/mL HSA.
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The absorbance and fluorescence spectra of Mega Red and Nile Red in PBS in
the presence of 0.5 mg/mL HSA are shown in Figure 50. The different wavelengths
for the two fluorophores allow the simultaneous application of both within the same
experiment. Serial dilutions of Mega Red and Nile Red with 0, 0.2, 0.5, and 1.0
mg/mL of HSA in PBS are depicted in Figure 51. There is a linear relationship
between the concentration of fluorophore and their fluorescence intensity at
concentrations below 2.1 uM. The fluorescent intensity also increases with
increasing concentration of HSA, reaching a saturation of signal at 0.5 mg/mL for
both Mega Red and Nile Red. The Z’ values (Figure 52) were calculated for each of
the probe concentrations summarized in Figure 51. This data was used to
determine the optimal assay concentrations, which were 500 nM of both Mega Red

and Nile Red and 0.2 mg/mL HSA.
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Figure 52. 7’ value (without HSA, positive control; with HSA, negative control) with
changing concentration of HSA and A) Mega Red or B) Nile Red.
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Figure 53. Binding response of one standard molecule, naproxen, with changing
buffer composition.

To optimize the fluorescence signal of Mega Red and Nile Red in the presence
of HSA and drugs, the buffer composition was varied. For simplicity, the binding
response of only one standard molecule, Naproxen, is show in Figure 53. The data
for all standard molecules with changing buffer composition can be found in
Appendix D. DMSO is often added to buffers because it can greatly enhance the
solubility of small molecules, but may also influence the performance of an assay as
it may affect the stability of many biomolecules. DMSO was added at 1, 2, 3, 4, and
5% by volume in PBS. The displacement of Mega Red and Nile Red by naproxen
decreased with increasing concentration of DMSO. The strength of electrostatic

interactions as well as protein stability can be modulated by varying the ionic
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strength of buffers.161 Increasing the NaCl concentration from 150 mM to 500 mM
resulted in poor binding of naproxen, as well as other standard molecules. When
the pH of the buffer was changed to 8.0, an increase in HSA binding was observed
for naproxen, while no improvement was seen with other standard molecules.
Changing the buffer to a zwitterionic HEPES buffer at 200 mM and pH 7.2 showed
minimal improvements in binding of naproxen as well as other standard molecules.
The addition of glycerol, typically 10% by volume, in protein buffers enhances the
solubility and stability of many proteins.1? This is due to the increased
hydrophobicity of the buffer with increasing concentration of glycerol. NP-40 as
well as other surfactants are frequently added to buffers to circumvent aggregation
as well as to increase solubility of proteins and small molecules.4 95,116 The small
molecule binding was determined with varying percent of glycerol, 5%, 10%, and
20% by volume, in PBS with and without the presence of 2% by volume DMSO and
0.01% or 0.001% NP-40. With 5% by volume glycerol, only a minimal HSA binding
was observed for naproxen. Increasing the amount of glycerol to 10% and 20%
showed a drastic increase in the binding. Little difference was observed between
10% and 20% (v/v) glycerol by volume, therefore 10% was preferred. Decreasing
or removing the NP-40 from the buffer with 10% (v/v) glycerol showed a drastic
decrease in the HSA binding of naproxen, therefore 0.01% NP-40 was preferred in
the buffer. Finally, with the addition of 2% by volume of DMSO to the buffer with
10% glycerol showed an increase in binding of naproxen. Nonetheless, it is
preferable to minimize DMSO in assay solutions for concerns of protein stability.162

For every assay, 1% (v/v) DMSO was added with the transfer of compounds. The



115

optimized assay buffer consisted of PBS at pH 7.2 with 150 mM NacCl, 10% glycerol,

and 0.01% NP-40 by volume.

All standard molecules were screened for the displacement of 500 nM Mega
Red and Nile Red and compared with literature values for in vivo plasma protein
binding, Figure 54. The standard deviations for literature values are given when
reported. The standard molecules were screened in triplicate as described in
section 2.2. The displacement of the fluorescent molecule resulted in a decrease in
fluorescence intensity. The percent binding of the small molecules at a
concentration of 100 pM was reported as normalized response to the fluorescence
intensity of Mega Red and Nile Red in the presence of HSA. The larger of the two
values was used for the percent bound value in comparison to the literature values

(Figure 54).

A good correlation between the experimental and literature in vivo plasma
protein binding values was observed. Groups of low, medium, and high protein
binding molecules were assigned in the plot (Figure 54). Experimental values for
20% (40% in vivo binding values) or less binding correspond to low binding
molecules, designated by the dotted lines on the plot. Experimental values for 40%
(80% in vivo binding values) or greater binding correspond to highly binding
molecules, designated by the dashed lines on the plot. The values between 20% and
40% (40% and 80% in vivo binding values), falling between the dotted and dashed

lines, correspond to the medium binding molecules.
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Figure 54. Standard molecule displacement of 500 nM Mega Red and Nile Red in PBS
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binding molecules.
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With the optimized assay conditions: PBS (50 mM, pH 7.4, 150 mM NaCl),
500 nM Mega Red and Nile Red, compounds (100 uM), 0.20 mg/mL HSA, 10%
glycerol and 0.01% NP-40; a library of small molecules was screened. The Library of
Pharmaceutically Active Compounds-1280 (LOPAC) screening collection (Sigma)
was used to determine the quality of the assay and the ability to identify compounds
that significantly bind to plasma proteins. Each LOPAC compound was measured in
triplet (Figure 55). The results for all of the compounds within the library are
summarized in Appendix D. The Z’ values of this screen ranged between 0.60 and
0.91 with a mean of 0.93 for Mega Red and 0.72 for Nile Red. The mean fluorescence
intensity of all compounds in the presence of Mega Red and 0.20 mg/mL HSA was
10.3% of the Mega Red with HSA signal with a standard deviation of 13.8%. The
mean fluorescence intensity of all compounds in the presence of Nile Red and 0.20

mg/mL HSA was 9.0% of the Nile with HSA signal with a standard deviation of 9.5%.

The results of the high-throughput screen identified 82 compounds that
displaced Mega Red and/or Nile Red at 40% or greater. This was a hit rate of 6.4%
for molecules within the library falling above the high plasma protein binding cutoff
limit set by the standard molecules. Of the 82 hit compounds, 75 of these molecules
were determined to be moderately to highly lipophilic, with a calculated logPo/w)
greater than 1.183 Within the hit molecules identified by Mega Red, 10 molecules
contained negatively charged groups such as sulfate, nitrate, or phosphate groups.
Among the group of hits were P2 receptor antagonists, Figure 56, displacing more

than 70% of Mega Red. In addition, many hormones were identified, Figure 57, such
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as B-estradiol, that exhibit medium and high binding by the displacement of Nile

Red.

1004 |* Mega Red .
o Nile Red o

% Bound (i.e. Probe Displaced)

Compounds

Figure 55. Results of the LOPAC screen (1280 compounds) with cutoff for medium
and high binding cutoff values at 20% and 40%.
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Figure 57. Selected hormones identified as protein binding hit molecules.

With the combination of both Mega Red and Nile Red, 18 of the 20
prostaglandin synthesis inhibitors within the LOPAC library were identified as
medium and high-protein binding molecules, Figure 58. Interestingly, two
compounds within this family, naproxen and piroxicam, were among the standard
molecule used for the optimization of the assay. In vivo plasma protein binding
values for some of these molecules have previously been studied, such as diclofenac
with 99.5% plasma protein binding!84 displaced 43.8% of Nile Red, indomethacin
with 90% plasma protein binding18> displaced 34.2% of Mega Red, ibuprofen with
about 99% plasma protein binding86.187 displaced 36.8% of Mega Red, and
ketorolac with a 99% plasma protein binding!88 displaced 68.8% of Mega Red and

28.7% of Nile Red.
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Figure 58. Prostaglandin synthesis inhibitors (COX 1&2) identified as protein
binding hit molecules.

The background fluorescence intensity was determined for each LOPAC
molecule (100 uM) in the absence of Nile Red and Mega Red with an excitation and
emission wavelength of 514 nm and 532 nm as well as 570 nm and 640 nm,
respectively. The vast majority of LOPAC compounds exhibited minimal
fluorescence intensity and gave a value similar signal to those measured for the
assay media (Figure 59A, compound (black), buffer (white/gray)). However, 10
compounds exhibit a fluorescence of more than 1o of the mean background
fluorescence intensity (Figure 59B). Interestingly, the fluorescence intensity for
these molecules was decreased in the LOPAC screen in the presence of Mega Red

and Nile Red (possibly due to the quenching process).
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Figure 60. Binding dose-response curves for A) naproxen, B) piroxicam, C) (3-
estradiol, and D) diethylstilbestrol with corresponding IC50 values.

The standard molecules can also be screened in a dose response manner,

giving both the efficacy and affinity of binding. The dose response curves for the

standard molecules naproxen, piroxicam, $-estradiol, and diethylstilbestrol are

shown in Figure 60. The titration of naproxen resulted with an ICso of 24.6 + 8.3 uM

for the displacement of Mega Red. The dose response of piroxicam resulted with an

ICs0 value of 4.2 + 1.1 pM for the displacement of Mega Red. p-Estradiol displaced
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both Mega Red and Nile Red nearly equally, resulting with an ICso of 11.6 + 3.7 and
7.7 £ 3.3 uM. Finally, dose response of diethylstilbestrol resulted with an ICso of 4.4
+ 1.9 uM for the displacement of Mega Red and 23.4 + 3.8 uM for the displacement of

Nile Red.

It has previously been shown that the binding or interaction of Nile Red does
not alter the native structure of albumin in aqueous solutions.1>8 [sothermal
titration calorimetry (ITC) was performed to quantify the direct binding of
naproxen with HSA in the absence of Mega Red and Nile Red. All solutions were
prepared in the assay buffer optimized for the fluorescence-based assay. A 50 uM
solution of HSA was added into the cell and a 350 uM naproxen solution was loaded
into the syringe. A stir rate of 200 rpm at 25°C was used in the analysis with
injection volumes of 2.02 pL of the naproxen solution with 300 seconds between
each of the 20 injections. The resulting data for the binding of naproxen with HSA
under these conditions is shown in Figure 61, giving a Kq value of 58.25 + 5.06 uM.
An n value of 0.500 was used for the thermodynamic calculations (largest n value,
while still achieving a good fit). The K4 value is very similar to the ICso value
determined by the fluorescence-based competition assay supporting the
observation that the binding of Mega Red and Nile Red does not alter native HSA

protein structure.
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analysis time. (n=2) B) Enthalpogram for the titration of naproxen into HSA with 20-
2.02 pL injections. C) Thermodynamic data from the fit lines in A.




125

4. Conclusions

Molecules that bind strongly to plasma proteins have unique
pharmacokinetics that may result in some liabilities in later pre-clinical screens. It
is also understood that plasma protein bound molecules have a low available
concentration for the site of action and exhibit a limited in vivo clearance.
Therefore, protein binding is frequently investigated in the early stages of discovery
to enable chemical optimization of this property. For the first time, large libraries of
molecules can be screened in high-throughput format using the described

fluorescence plasma protein binding assay.

The TICT mechanism of both Mega Red and Nile Red results in a very low
quantum yield in water that significantly increases once bound to proteins like
serum albumin. The identification of competing compounds required minimal
incubation time and although optimized for 384-well plates, it could be easily
minimized to 1536-well plate format. The far-red detection of both Mega Red and
Nile Red limits the number of molecules interfering with the assay, which was
0.78% for the LOPAC screening library. The assay has an excellent reproducibility
(Z’ > 0.9 and 0.7 for Mega Red and Nile Red, respectively) and identifies compounds
that bind HSA and are moderately to strongly lipophilic. Importantly, not all
lipophilic compounds were able to compete with Mega Red and Nile Red for HSA
binding; thus HSA binding is rather specific for each small molecule. This is
supported by the fact that dose-dependent inhibition of Mega Red and Nile Red -

HSA binding was observed with saturation at higher compound concentrations.
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All ICsp values measured were between 3-24 uM and had different efficacies
and Hill-slopes. This behavior suggests that different HSA binding for each
compound with different affinities, and overlapping binding sites for Mega Red and
Nile Red. For naproxen, the measured inhibition constant (ICso) and binding
constant (K,) are similar. Thus, the binding of both fluorescent molecules does not
alter native HSA protein structure. This has been shown for Nile Red—HSA
binding!58 but here for the first time for the interaction between HSA and Mega Red.
In addition, the HTS fluorescence competition assay is capable of producing similar

results with the time-intensive label-free ITC measurements.

Overall, a novel HTS assay to determine plasma protein binding was
reported. Future studies for the improvements to this method include the
investigating of the application of blood plasma instead of HSA as well as other

fluorescent probes to improve the detection of small molecule—HSA binding.



APPENDIX A

SOLUBILITY ASSAY

Table 12. Solubility assay results of compound library (n=4).
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Continued, Table 12. Solubility assay results of compound library (n=4).
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Continued, Table 12. Solubility assay results of compound library (n=4).
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Continued, Table 12. Solubility assay results of compound library (n=4).
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APPENDIX B

PERMEABILITY ASSAY

Table 13. Results of HDM-PAMPA assay for compound library (n=3).
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Continued, Table 13. Results of HDM-PAMPA assay for compound library (n=3).
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Continued, Table 13. Results of HDM-PAMPA assay for compound library (n=3).
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Continued, Table 13. Results of HDM-PAMPA assay for compound library (n=3).
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Table 14. Results for IAM-C18-IAM coupled columns.
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, HDM-PAMPA logP log Pess
Compound log k (cm/s) g (c?n/s)
4,5-diphenylimidazole 1.242 -6.75 n/a
B-Estradiol 1.240 -7.65 n/a
Diethylstilbestrol 1.246 -7.98 n/a
3-phenylazo-2,6-diaminopyridine | 1.222 -5.89 n/a
Verapamil 1.263 -5.98 -3.174
Carbamazepine 1.195 -6.82 -3.367
Ranitidine 0.650 -8.41 -4.367
Piroxicam 1.128 -7.66 -3.108
Metoprolol 1.077 -7.51 -3.886
Propranolol 1.223 -6.82 -3.538
Atenolol -0.199 -7.19 -4.699
Naproxen 1.160 -7.65 -3.056
Caffeine 0.248 -7.53 n/a
Table 15. Results for C18-IAM coupled columns.
, | HDM-PAMPA logP log Pess
Compound log k A & (cfn /s)
4,5-diphenylimidazole 1.283 -6.75 n/a
B-Estradiol 1.282 -7.65 n/a
Diethylstilbestrol 1.289 -7.98 n/a
3-phenylazo-2,6-diaminopyridine | 1.268 -5.89 n/a
Verapamil 1.307 -5.98 -3.174
Carbamazepine 1.240 -6.82 -3.367
Ranitidine 0.669 -8.41 -4.367
Piroxicam 1.161 -7.66 -3.108
Metoprolol 1.075 -7.51 -3.886
Propranolol 1.256 -6.82 -3.538
Atenolol -0.212 -7.19 -4.699
Naproxen 1.194 -7.65 -3.056
Caffeine 0.260 -7.53 n/a




Table 16. Results for IAM-C18 coupled columns.

136

, | HDM-PAMPA logP log Pes
Compound log k e & (cfn/s)
4,5-diphenylimidazole 1.283 -6.75 n/a
B-Estradiol 1.271 -7.65 n/a
Diethylstilbestrol 1.288 -7.98 n/a
3-phenylazo-2,6-diaminopyridine | 1.255 -5.89 n/a
Verapamil 1.297 -5.98 -3.174
Carbamazepine 1.240 -6.82 -3.367
Ranitidine 0.642 -8.41 -4.367
Piroxicam 1.154 -7.66 -3.108
Metoprolol 1.078 -7.51 -3.886
Propranolol 1.240 -6.82 -3.538
Atenolol -0.212 -7.19 -4.699
Naproxen 1.186 -7.65 -3.056
Caffeine 0.276 -7.53 n/a
Table 17. Results for C18 column.
, HDM-PAMPA logP log Pest
Compound log k A & (cfn /s)
4,5-diphenylimidazole 1.343 -6.75 n/a
B-Estradiol 1.338 -7.65 n/a
Diethylstilbestrol 1.345 -7.98 n/a
3-phenylazo-2,6-diaminopyridine | 1.326 -5.89 n/a
Verapamil 1.369 -5.98 -3.174
Carbamazepine 1.300 -6.82 -3.367
Ranitidine 0.746 -8.41 -4.367
Piroxicam 1.216 -7.66 -3.108
Metoprolol 1.086 -7.51 -3.886
Propranolol 1.304 -6.82 -3.538
Atenolol -0.279 -7.19 -4.699
Naproxen 1.250 -7.65 -3.056
Caffeine 0.271 -7.53 n/a




Table 18. Results for IAM column.

, | HDM-PAMPA logP log Pest
Compound log k (cm/s) e
4,5-diphenylimidazole 1.375 -6.75 n/a
B-Estradiol 1.124 -7.65 n/a
Diethylstilbestrol 0.640 -7.98 n/a
3-phenylazo-2,6-diaminopyridine | 1.436 -5.89 n/a
Verapamil 1.190 -5.98 -3.174
Carbamazepine 0.351 -6.82 -3.367
Ranitidine 0.852 -8.41 -4.367
Piroxicam 0.282 -7.66 -3.108
Metoprolol -0.048 -7.51 -3.886
Propranolol 1.079 -6.82 -3.538
Atenolol 0.916 -7.19 -4.699
Naproxen 0.913 -7.65 -3.056
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Table 19. Octanol/water partitioning coefficients at pH 7.2 beginning with 1mg/mL
compound solutions in 1-octanol.

1-Octanol Solutions
Volume of Drug Solution: 100 pL 300 pL 400 pL
Compound logPo/w logPo/w logPo/w
4,5-diphenylimidazole 1.74 1.76 1.70
B-estradiol 1.08 1.51 1.53
Diethylstilbestrol 1.37 1.88 1.85
3-phenylazo-2,6-diaminopyridine 1.92 1.93 1.72
Verapamil 1.24 1.58 1.40
Carbamazepine 0.770 1.01 0.975
Ranitidine -0.850 -0.577 -0.492
Piroxicam -0.0981 | -0.0218 | -0.0325
Metoprolol -0.0702 -0.274 -0.299
Propranolol 0.872 0.801 0.459
Atenolol -0.394 -0.789 -0.663
Naproxen 0.475 0.559 0.513
Caffeine -0.104 n/a n/a
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Table 20. Octanol/water partitioning coefficients at pH 7.2 beginning with 1mg/mL
compound solutions in phosphate buffered saline.

pH 7.4 PBS Solutions
Volume of Drug Solution: 100 pL 300 pL 400 pL
Compound logPo/w logPo/w logPo/w
4,5-diphenylimidazole 1.22 1.21 1.64
B-estradiol 0.642 0.930 1.02
Diethylstilbestrol 0.674 0.938 0.946
3-phenylazo-2,6-diaminopyridine 1.66 1.83 1.46
Verapamil 1.33 1.52 1.43
Carbamazepine 0.610 0.693 0.720
Ranitidine -0.974 -0.647 -0.520
Piroxicam -0.140 -0.0359 -0.0214
Metoprolol -0.0706 -0.249 -0.270
Propranolol 0.902 0.599 0.353
Atenolol -0.446 -0.840 -0.723
Naproxen 0.444 0.508 0.507
Caffeine -0.120 n/a n/a
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APPENDIX C
THIOL BINDING ASSAY

Table 21. Results of fluorescence-based electrophile screen of the LOPAC library.
Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)

271 272 273 | 274 275
o,
° 355 LT oY
L = Y ! -~ 5

o St | AN | {7

I N ’ L £ ) : \’J
= | OO

L S b | -

S L o~ . S . -

o /
Avg. %: 114 Avg. %: 114 Avg. %: 114 Avg. %: 114 Avg. %: 114

276 277 278 | 279 288 |

enel

Avg. %: 114 Avg. % 114 Avg. % 114 Avg. % 114
281 282 283 284 285 |
g . N i Y i
oo \s - T
el
L€ N (
- ')w) N = T E:],/\r U, ]\- ___/] O_/_Oi\-’%
e L % e t
c|| \ —..Hifo"'“—-f ) ™,
Z\ cl = N
Avg. ¥: 114 Avg. %: 114 Avg. % 114 Avg. %: 114 Avg. %: 114
286 287 288 289 2598
N\ [
A\ .
'} Y [+ R
- I ' i W
; : >y | L oo N -
| 9
Avg. %: 114 Avg. X: 114 Avg. %: 114 Avg. %: 114 Avg. %: 114
2591 252 293 284 295 |
= D N
5 d o T h / &
o OX <o | O - A
— - - s o
Avg. %: 114 Avg. %: 113 Avg. %: 113 Avg. %: 113 Avg. %: 113
296 I 297 298 299 igg
W ,l’r_‘ "
/ g ) 7 ."’j:h\f" N & '
|y Vedly g
. YN Pt
; |l H Y | Yy -
~ = | I & % | 4 ”
Avg. %: 113 Avg. %: 113 Avg. %: 113 Avg. %: 113 Avg. %: 113




149

Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)

421 422 423 424 425
N =
o H C\E [ﬂ,}_ )
B o5 | o
/_>—_: 0 N 0 = /\/%\K\N,\' L\w‘ —’"“‘f“*-.j-.- —
0 | ﬁ
o
Avg. %: 112 Avg. %: 111 Avg. %: 111 Avg. %: 111 Avg, %: 111
426 427 428 429 438
I T,
N
. i ° / HiN
'“\/ﬂ\ g {=\T’ W
P T |
U 5 . o
0
Avg. ®: 111 Avg. %: 111 Avg. %: 111 Avg. %: 111 Avg., %: 111
431 432 433 434 435 I
o, o = o o
et
-~ o = .
\?_.ﬁ- _..ll«l N
I cl
" d
!
= = F ¥ 0
Avg. ®: 111 Avg. %: 111 Avg. %: 111 Avg. %: 111
436 437 439 448 I
N N
| o
I Y ’
—H TR | Ty i
)Q:} ; I|\ | \.\\ MN
o M W L ‘ A\ W
M —
- it
2
"
ci xN,/
Avg. %: 111 Avg. % 111 Avg. % 111 Avg. %: 111
441 | 242 | 444 | 445 |
a = | N
3 8 H a—
- RO NN .
" ~F ]_'H /'—l».k | 2220 \_\_ / B‘:‘.
J Y i VN ¥ o 2 ( W o
| > - i
Avg. %: 111 Avg. % 111 Avg. %: 111 Avg. %: 111
446 | 447 | 449 | 458
J , i /"‘--\.\_\_ I"'——_- | I ’/ CI-
L | srorgr |
_I)“\_‘ RN ¥ . )
Avg. %: 111 Avg. %: 111 Avg. ¥: 111 Avg. %: 111 Avg. %; 111




154

Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)

511 512 513 514 515
Oy
=5 "
| a
N i
o / | /N | h
l ||: & M+ /.—T— e e s T Ty
¢ o /\\/ R \
E J; ~ N o o
Avg. :?6 11e Avg. %: 11@ Avg. %: 118 Avg. %: 11e Avg. %: 118
516 517 518 519 528
e

N n--J\zs j\—J’"/M CK/L/ \ ; -
\L—:':;JqLJHJ e i i
gy L ~ 7T S\
o - e lln' o

Avg. %: 1l1e Avg. %: 118 Avg. %: 118 Avg. %: 11e Avg. %: 118

521 522 523 524 525

. P S — |—-' } ) | . 2 Q/JQ ‘
%H:T T2 o, | 800 (ol

T /
H i 2 e
Avg. %: 11e Avg. ¥ 118 Avg. %: 118 Avg. #: 118 Avg. %: 11@
526 527 528 529 538

- | l_/ & G ;T 2 ; N
S| o[ B o

Avg. %@ 118 Avg. % 118 Avg. %: 110 Avg. %: 118 Avg. %: 118

531 532 533 534 535

536 537 538 539 548

Avg. %: 118 Avg. % 1lle Avg, %: 118 Avg. %: 118 Avg. #: 118




157

Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC

library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)

874

168

876

879

pa

L0 “‘f

¢
*H\J

Avg. %: 185

Avg. %: 185

Avg. %: 185
882

AvE. %: 185
883

Ay
B84

A

88e

e,
2

Cl

E. %: 185 Avg. %: 185

Avg. %: 185

886

887

| -0

Avg. %: 1@5

.,

Avg. %: 185

ly’ .

Avg. %: 185

BES

2

Avg. %: 185

891

892

12 -

Avg. %: 165

Br

894

890

895

[_

[ ]

o

\r"h}"‘m_/'\/“\/'

Avg. %: 185

896

“\hj//”x

B

Avg. %: 1@5

557 ]

P

N

N\

Be

899




169

Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC

library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)

1851 | 1852 I 1853 | 1854 I 1855 I
a M
o, 3 T, N‘\ \' BS
) YN eS| P |2
e A A oS L K Y
\J / \‘H/- S - _:/ |||
,—" ‘ 8
- -\_,jt ot \“;‘?
Avg. %: 181 Avg, %: lel Avg. %: 10l Avg. %: 181 Avg. %: 1el
1856 | 1857 I 1858 | 1859 I 1868 |
N, /_o )jj iy
N\ %
\ ___/ . .
.-f‘\/:]\r -}/\_’,\ r lj_'-._.-‘— ,.a’“,_/l\\/‘\ (“h \ (_fI L J
»l-\ | N M r T~ “‘( P . ﬁ
2 o - -
\0/ X =,
LI
Avg. %: 101 Avg. %: 180 Avg. %: lee Avg. %: 10@ Avg. %: 108
1861 | 1862 | 1063 | 1864 I 1865 |
o
~ -
. - \\;J_' ) — N ‘I N AN
. -u\ -~ R SR 7 e Wy o
oY e | ST -
- ! T 1T e (hn ” W
b 4 [
: (#]
Avg. %: 108 Avg. %: 180 Avg. X: 100 Avg. %: 1080 Avg. %: 100
1866 | 1867 I 1068 I 1869 1678 I
j’ J—--" L“* N "é;t‘-\] dfx\‘ N"Kl’/ |
| N e ¢ Y
6 W JL - 1’ Ty = o /\%“\Qt/ ““5/N -‘H‘\ !
S I T &N\,
Avg. %: 100 Avg. X: 180 Avg. X: 1ee Avg. %: 180 Avg. %: 100
1871 | 1872 | 1873 | 1874 l 1875 |
".J{h /‘J
=
,’-\ o . w ’“‘“a_ L J
C - | -
/L ,’] _ a e ES
N* NF
Avg. %: 10@ Avg, %: le@ Avg. %: 1lee Avg. %: 109 Avg. %: 1ee
1876 | 1877 | 1878 | 1879 | 1888 |
E o
4 NOSIN] Seilys
e INAEY | NN 656 25 O
T XNHO O (L]
3 ~ %
'\____f" R N
Avg. %: 180 Avg. %: 108 Avg. %: 1ee Avg. %: 1@ Avg. %: 1ee




175

Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC

library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)
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Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)

Y

J Cﬂ\ i q‘\ s _
O T 1. | ) J_ 0
ool o K O o

&

Avg. X: BS Avg. %: 85

1236 | 1237 I 1238 I 1239 I
o

1231 | 1232 | 1233 1234 ! 1235 |

o

[ s

Avg. %: 85

Avg. %: 84 Avg. X: B84

1248 |

< L U |2t | eserts

Avg. %: 71 Avg. %: 71 Avg. %: 69 Avg. %: 68 Avg. %: 65
1246 | 1247 | 1248 | 1249 l 1258 |
N=—0O
. ~
= ‘-\"l — N==0 - 2
o ]’-’ = | o i
5:04 1 G EISTU Y g Y
. \[ 1 \T » NN,
[=]
0
Avg., %: 64 Avg. %: B4 Avg. %: 64 Avg. %: 58 Avg. %: S0
1251 | 1252 1253 | 1254 I 1255 |
N

| N
o
Avg. X: 48 Avg. %: 46 Avg. %: 46 Avg. X: 46 Avg. X: 41
1256 | 1257 | 1258 | 1259 I 1268 |
—
T 2 J q / >
I,J/ /’l\'\' > ~ . “zj e A ﬂ | ;&E%&H
I L I 4
S/"“-s
Avg. %: 3@ Avg. %: 28 Avg. %: 23 Avg. %: 23 Avg. %: 21




181

Continued, Table 21. Results of fluorescence-based electrophile screen of the LOPAC
library. Values are presented as a percent of the MSTI signal (Avg. %). (n=3)

1261 | 1262 | 1263 | 1264 | 1265 I
45""--\]_ J::’“*]i:]
| M R - - - -
ST a1 T T [L;j\, N 3 et s L.
/\7— L Hi "] . 7T
“ e | | Q‘“‘n"' ™~ T 2 ~
S IJ“ s
Avg., %: 20 AvE. %: 19 Avg. %: 19 Avg. %: 19 Avg., %: 18
1266 | 1267 | 1268 | 1269 | 1278 |
O PN L
5 o Pl S
I J L e 0
f:“'\”,-’ ‘“xf“'\.%%h [l/ ” S, ‘L%J\ P . ) '?\T//' R N
N e | N Mg ) | N N e ‘
| [
Avg. %: 18 Avg. %: 15 Avg. %: 13 Avg. X: 5 Avg. %: @
1271 | 1272 | 1273 | 1274 | 1275 |
o g o + .. .
A \ N ! i b
7 S '{H'\' '4}—'\ \\"‘EB—G o | N \]’ L“"’A'J):u
N~ 3& A X K ci—pPt—cl I'T g
[ "\ J*ﬂ{ " /\f & W / \
N VS N* i
AvE. %: @ Avg. %: B Avg. %: @ Avg., X: 0 Avg., k. @
1276 | 1277 | 1278 | 1279 | 1288
i A Y N o[ A
Mﬂﬂr . . \I ( _g:lr _,! q.j_\ = LT/L = e ) ,55' :'..,_5_ ,/' )_\_\,.A ’__
coul [y O QT | (0T |57 )
\‘._ JI - 6'; . 1.‘\ : /:')=_
Avg., X: @ Avg. %: @ Avg. %: @ Avg. %: @ Avg. %: @




182

351.19

Relatve Abundance
w
T

174,23

m o
INIERTREY N AT

150,95 336.10
I 383.19 40514 453,03 ‘T"LDS
T L |

1 12239 gy | | 782 22015 27814 P31 55 ‘Dl.
e  LARAT R4 WAL Mol LAY Lo \And MM MAGLE L Litad RS AL LASAE AR WAL WA T T
150 200 250 300 350 400 450 500

A R LA MG R Lok s L |
mz

=
=

Figure 62. Mass spectrum of 2-iodoacetamide-MSTI conjugate; ESI probe, 80 V
entrance cone, 3 mV capillary, and 350 °C probe temperature.
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Figure 63. Fluorescence spectrum of 2-iodoacetamide-MSTI conjugate with an excitation
wavelength of 510 nm.
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Figure 64. Addition of MSTI to small molecule 1 to form adduct molecule 1c.
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Figure 65. Mass spectrum of adduct molecule 1c¢ formed in Scheme 1. Mass spectrum of

the assay mixture in Scheme 1 which confirms the formation of adduct of MSTI with the

small molecule (Molecule 1). ESI probe, 120 V entrance cone, 3 mV capillary, and 350
°C probe temperature.
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Figure 66. Addition of MSTI to small molecule 2 to form adduct molecule 2c.
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Figure 67. Mass spectrum of adduct molecule 2¢ formed in Scheme 2. Mass spectrum of
the assay mixture in Scheme 1 which confirms the formation of adduct of MSTI with the
small molecule (Molecule 2). ESI probe, 40 V entrance cone, 3 mV capillary, and 350
°C probe temperature.
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Figure 68. Addition of MSTI to small molecule 3 to form adduct molecule 3c.
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Figure 69. Mass spectrum of adduct molecule 3¢ formed in Scheme 3. Mass spectrum of
the assay mixture in Scheme 3 which confirms the formation of adduct of MSTI with the
small molecule (Molecule 3). ESI probe, 40 V entrance cone, 3 mV capillary, and 350
°C probe temperature.
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Figure 70. Conversion of acetyl-MSTI to MSTI analyzed by LC-MS. A) Chromatogram
of acetyl-MSTI B) Chromatogram of MSTI after conversion at pH 12 with
approximately 20% acetyl-MSTI remaining.



187

33614

Ralatve Abundance
8

204 .14

368.20
153.18 R lEQD 19 43018 48818 617.26 67334 70707 79037 87235 02450 08241
L] A LA AR M) A R AR Lk MAAZ R S RRS Rt LAt AR St A AR Sond Rt Lkn bk bihd R R RABY LA Aim Libd Shal Rickd AR S48 Lt b T

0= T T
100 200 300 400 500 600 700 £00 400 1000

miz

5

279.13 |

28319

@m @ =
o ;o

clnvalepentyniloiiiionnil

w
n

Relative Abundance
a o
‘?[ 1

woow
=
dlpppalorilpiialoninlingg

]
o

= 27813

o
1

tn

16027 24842 | i | 48212 5524 51728 gag0g 71138 77481 829,02 89860 94250
Rk Rl A 133 R N AUAS RART RARY ik M Wbl LAckd Sk ik RAR bkl BALE bAAJ MEAD RARE UL RAGE LN Lk Nl R Il i b ME LAY MY BARY A2 AL RAAT L LAk nAkd AR R Rkl Liia

0 200 300 400 500 600 700 800 900 1000
mz

=]

Figure 71. Mass spectra of MSTI (A) and acetyl-MSTI (B), corresponding to the
chromatograms in Figure 6. ESI probe, 80 V entrance cone, 3 mV capillary, and 350
°C probe temperature.
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APPENDIX D

COMPETITIVE PROTEIN BINDING

Literature Value % Bound
i.e., Probe Displaced
(e % Bound in Plasma ( P X )
Mega Red Nile Red
Antipyrine'®® 4.0+2.0 2.2+0.5 5.5+1.4
Atenolol® 6% 1% 10.0+5 3.8+3.7 5.0+2.7
Metoprolol® 1618 11.0+1 25+26 24+4.4
Ranitidine® 15.0+3 47+2.6 6.4+3.1
Nadolol*® 15.5+11.5 34421 24+46
Ofloxacin®* 1”2 19.0 £ 11.0 0.8+3.9 40+4.8
Caffeine'” 30.0+5 5.0+0.6 7.2+2.0
Linezolid® *74*"® 31.0+1.0 2.1+3.5 0.2+5.3
B-Estradiol'”’ 65.0 £ 15 47.2+0.7 29.3+1.7
Diethylstilbestrol*’® 65.0 + 15 24.4+2.0 38.9+2.1
Omeprazole'”® 95.0 44.1+3.5 93+73
Lansoprazole'” 95.5+1.5 47.4+33 0.2+5.0
Naproxen® '8 99.7+0.1 11.2+2.7 18.4+3.1
60 5% Glycerol, 0.01% NP-40
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Figure 72. Standard small molecule displacement of 500 nM Mega Red and Nile Red

in PBS with 5% glycerol and 0.01% NP-40 by volume in the presence of 0.2 mg/mL

HSA (n=3). Average of literature values for in vivo plasma protein binding are given
in comparison. Larger % bound values used for the plot.
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Literature Value % Bound
i.e., Probe Displaced
e % Bound in Plasma ( = . )
Mega Red Nile Red
Antipyrine'®® 4.0+2.0 24+35 07+4.4
Atenolol® % 1¢> 10.0+5 3.2+45 2.8+7.6
Metoprolol® 6168 11.0+1 0.6+7.0 6.3+6.8
Ranitidine® ' 15.0+3 6.9+0.2 39+2.2
Nadolol'” 15.5+11.5 0.3+1.4 39+1.2
Ofloxacin®* " 19.0 £11.0 24+7.38 0.5+7.9
Caffeine'” 30.0+5 7.2+2.7 15.2+2.5
Linezolid® 747 31.0+1.0 23427 5.7+6.2
B-Estradiol'”’ 65.0 £ 15 33.6+3.7 30.1+2.6
Diethylstilbestrol*’® 65.0 £ 15 24.6+1.5 30.3+0.8
Omeprazole'”® 95.0 59.0+1.0 9.6+5.1
Lansoprazole'” 95.5+1.5 62.6+1.2 12.0+4.1
Naproxen® '8 99.7 +0.1 55.7+2.2 30.0+3.6
10% Glycerol, 0.01% NP40
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Figure 73. Standard small molecule displacement of 500 nM Mega Red and Nile Red
in PBS with 10% glycerol and 0.01% NP-40 by volume in the presence of 0.2 mg/mL
HSA (n=3). Averages of literature values for in vivo plasma protein binding are
given in comparison. Larger % bound values used for the plot.
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Literature Value

% Bound

i.e., Probe Displaced
e % Bound in Plasma ( = . )
Mega Red Nile Red
Antipyrine'®® 4.0+2.0 3.3+2.1 2.8+3.1
Atenolol® % 1¢> 10.0+5 7.5+2.8 5.7+2.2
Metoprolol® 6168 11.0+1 5.8+2.6 5.1+1.5
Ranitidine® ' 15.0+3 6.8+2.1 59+2.5
Nadolol*”® 15.5+11.5 1.8+1.2 0.1%£0.5
Ofloxacin®* " 19.0 £11.0 9.7+2.1 8.7+3.0
Caffeine'” 30.0+5 6.1+3.5 84+48
Linezolid® 747 31.0+1.0 48+5.5 3.2+5.4
B-Estradiol'”’ 65.0 £ 15 33.5+2.7 30.2+2.8
Diethylstilbestrol*’® 65.0 £ 15 27.2+0.8 33.2+1.2
Omeprazole'”® 95.0 489+4.3 1.7+8.0
Lansoprazole'” 95.5+1.5 55.0+ 2.4 5.6+4.1
Naproxen® '8 99.7 +0.1 47.1+3.5 18.9+3.8
20% Glycerol, 0.01% NP-40
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Figure 74. Standard small molecule displacement of 500 nM Mega Red and Nile Red
in PBS with 20% glycerol and 0.01% NP-40 by volume in the presence of 0.2 mg/mL
HSA (n=3). Averages of literature values for in vivo plasma protein binding are

given in comparison. Larger % bound values used for the plot.
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Literature Value % Bound

i.e., Probe Displaced

e % Bound in Plasma ( = . )
Mega Red Nile Red
Antipyrine'®® 4.0+2.0 51+3.6 7.7+7.4
Atenolol® % 1¢> 10.0+5 5.3+3.1 8.8+2.7
Metoprolol® 6168 11.0+1 11.1+3.6 7.1+2.1
Ranitidine® ' 15.0+3 5.7+8.5 7.2+113
Nadolol'” 15.5+11.5 0.02+3.1 0.9 +10.5
Ofloxacin®* " 19.0 £11.0 8.6+4.3 9.6+6.2
Caffeine'” 30.0+5 3.1+3.4 1.1+£523
Linezolid® 747 31.0+1.0 6.6+5.3 83+7.8
B-Estradiol'”’ 65.0 £ 15 45.6+1.7 18.6 +5.5
Diethylstilbestrol*’® 65.0 £ 15 31.1+0.6 47.6+2.8
Omeprazole'”® 95.0 39.5+1.4 0.3+3.6
Lansoprazole'” 95.5+1.5 42.8+3.6 12.3+6.5
Naproxen® '8 99.7 +0.1 45+6.6 28.7+6.1

10% Glycerol
60-

R2 = 0.692

% Bound (i.e. Probe Displaced)

G ) I ) ) ) J
0 20 40 60 80 100

% Bound In Plasma

Figure 75. Standard small molecule displacement of 500 nM Mega Red and Nile Red
in PBS with 10% glycerol by volume in the presence of 0.2 mg/mL HSA (n=3).
Averages of literature values for in vivo plasma protein binding are given in
comparison. Larger % bound values used for the plot.
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Literature Value % Bound
i.e., Probe Displaced
S IuTE % Bound in Plasma ( o . )
Mega Red Nile Red
Antipyrine'®® 4.0+2.0 25+1.3 04+26
Atenolol® % 1¢> 10.0+5 2.6+4.0 42+4.7
Metoprolol® 6168 11.0+1 45+2.0 7.7+0.7
Ranitidine® ' 15.0+3 1.6+3.4 20+3.8
Nadolol'” 15.5+11.5 1.9+2.2 1.5+2.0
Ofloxacin®* " 19.0 £11.0 47+4.3 47+6.8
Caffeine'” 30.0+5 8.6+1.8 11.5+2.5
Linezolid® 747 31.0+1.0 56+1.2 7.6+3.8
B-Estradiol'”’ 65.0 £ 15 38.6+0.4 25.6+ 0.6
Diethylstilbestrol*’® 65.0 £ 15 26.8+1.1 24.7+0.5
Omeprazole'”® 95.0 48.6+0.9 7.8+2.2
Lansoprazole'” 95.5+1.5 50.9+4.1 9.9+5.0
Naproxen® '8 99.7 +0.1 42.0+2.6 18.8+3.0
10% Glycerol, 2% DMSO
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Figure 76. Standard small molecule displacement of 500 nM Mega Red and Nile Red
in PBS with 10% glycerol and 2% DMSO by volume in the presence of 0.2 mg/mL
HSA (n=3). Averages of literature values for in vivo plasma protein binding are
given in comparison. Larger % bound values used for the plot.
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% Bound (i.e. Probe Displaced)

R2=0.810

Literature Value % Bound

i.e., Probe Displaced

Compound % Bound in Plasma (i.e., Probe Disp ac.e )
Mega Red Nile Red
Antipyrine'®® 4.0+2.0 1.5+3.0 0.8+3.5
Atenolol® % 1¢> 10.0+5 0.8+3.6 1.6+4.4
Metoprolol® 6168 11.0+1 3.6+3.2 19+3.4
Ranitidine® ' 15.0+3 46+0.8 3.7+1.4
Nadolol'” 15.5+11.5 7.3+2.6 9.0+2.2
Ofloxacin®* " 19.0 £11.0 5.0+3.1 5.1+4.0
Caffeine'” 30.0+5 3.2+3.9 3.3+2.8
Linezolid® 747 31.0+1.0 6.2+0.4 43+4.1
B-Estradiol'”’ 65.0 £ 15 30.3+0.7 30.6 +1.3
Diethylstilbestrol*’® 65.0 £ 15 321+16 459+ 2.7
Omeprazole'”® 95.0 38.5+1.8 9.1+3.9
Lansoprazole'” 95.5+1.5 44.1+3.9 41+5.8
Naproxen® '8 99.7 +0.1 16.5+2.9 30.1+2.7

60 10% Glycerol, 0.001% NP40

20

40

60 80

% Bound In Plasma

100

Figure 77. Standard small molecule displacement of 500 nM Mega Red and Nile Red
in PBS with 10% glycerol and 0.001% NP-40 by volume in the presence of 0.2
mg/mL HSA (n=3). Averages of literature values for in vivo plasma protein binding

are given in comparison. Larger % bound values used for the plot.
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Literature Value

% Bound

% Bound In Plasma

i.e., Probe Displaced
e % Bound in Plasma ( = . )
Mega Red Nile Red
Antipyrine'®® 4.0+2.0 20+1.4 3.7+1.1
Atenolol® % 1¢> 10.0+5 29+0.3 1.2+45
Metoprolol® 6168 11.0+1 0.4+35 20+4.3
Ranitidine® ' 15.0+3 7.1+2,2 6.6+2.3
Nadolol'” 15.5+11.5 43+2.1 2.5+2.2
Ofloxacin®* " 19.0 £11.0 1.6+15 1.1+2.6
Caffeine'” 30.0+5 0.6+3.6 1.4+3.8
Linezolid® 747 31.0+1.0 48+4.7 6.3+3.7
B-Estradiol'”’ 65.0 £ 15 46.0+2.8 33.5+0.9
Diethylstilbestrol*’® 65.0 £ 15 27.5+4.2 39.2+2.7
Omeprazole'”® 95.0 49.1+1.2 44+26
Lansoprazole'” 95.5+1.5 47.8+0.7 0.7+3.2
Naproxen® '8 99.7 +0.1 34+2.1 21.9+2.0
500 mM NacCl
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Figure 78. Standard small molecule displacement of 500 nM Mega Red and Nile Red
in PBS with 500 mM NaCl in the presence of 0.2 mg/mL HSA (n=3). Averages of
literature values for in vivo plasma protein binding are given in comparison. Larger
% bound values used for the plot.
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% Bound In Plasma

Literature Value . % Bour.\d
Compound % Bound in Plasma (i.e., Probe Dlsplac.ed)
Mega Red Nile Red
Antipyrine'®® 4.0+2.0 49+13 51+1.6
Atenolol® % 1¢> 10.0+5 48+0.7 6.6+1.3
Metoprolol® 6168 11.0+1 0.1+5.4 1.8+55
Ranitidine® ' 15.0+3 48+2.3 6.1+1.2
Nadolol*”® 15.5+11.5 1.4+2.1 1.9+0.7
Ofloxacin®* " 19.0 £11.0 2.2+3.0 7.1+4.6
Caffeine'” 30.0+5 43+4.6 3.6+6.7
Linezolid® 747 31.0+1.0 15+1.4 1.9+0.8
B-Estradiol'”’ 65.0 £ 15 39.0+0.8 34.7+2.3
Diethylstilbestrol*’® 65.0 £ 15 37.1+1.1 444+ 1.0
Omeprazole'”® 95.0 55.0£2.2 2.7+3.7
Lansoprazole'” 95.5+1.5 473+1.5 7.8+5.0
Naproxen® '8 99.7 +0.1 36.4+4.6 17.2+4.3
80- PBS, pH 8.0
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Figure 79. Standard small molecule displacement of 500 nM Mega Red and Nile Red
in PBS at pH 8.0 in the presence of 0.2 mg/mL HSA (n=3). Averages of literature
values for in vivo plasma protein binding are given in comparison. Larger % bound

values used for the plot.
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Literature Value % Bound
i.e., Probe Displaced
S IuTE % Bound in Plasma M::ga Red o Nile )Red

Antipyrine'®® 4.0+2.0 0.8+1.6 1.5+1.7
Atenolol® % 1¢> 10.0+5 51+1.0 3.6+1.5
Metoprolol® 6168 11.0+1 0.7%5.5 44+4.6
Ranitidine® ' 15.0+3 5.7+3.0 49+25
Nadolol'” 15.5+11.5 42+2.6 6.6 +4.5
Ofloxacin®* " 19.0 £11.0 24419 1.8+23
Caffeine'” 30.0+5 1.4+4.6 74+2.8
Linezolid® 747 31.0+1.0 41+1.9 5.1+2.3
B-Estradiol'”’ 65.0 £ 15 36.6 +3.3 36.3+2.8
Diethylstilbestrol*’® 65.0 £ 15 32.6+0.2 40.9+0.8
Omeprazole'”® 95.0 45.2+35 0.5+8.1
Lansoprazole'” 95.5+1.5 413+21 1.6+4.1
Naproxen® '8 99.7 +0.1 8.8+2.5 183+ 1.7
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Figure 80. Standard small molecule displacement of 500 nM Mega Red and Nile Red
in 200 mM HEPES buffer at pH 7.4 in the presence of 0.2 mg/mL HSA (n=3).
Averages of literature values for in vivo plasma protein binding are given in

comparison. Larger % bound values used for the plot.
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Table 22. Results of fluorescence-based drug-protein binding screen of the LOPAC
library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Avg. % MegaRed: 98.7 Avg. % MegaRed: 96.6 Avg. X MegaRed: 9@.4 Avg. % MegaRed: 89.3 Avg. % MegaRed: 86.1
Avg. % NileRed: 93.8 Avg. ¥ NileRed: 42.1 Avg. % NileRed: 19.4 Avg. ¥ NileRed: 75.9 Avg. % NileRed: 57.3

| L7 | L2 ] EN|

A | AN | LD
oA a0y
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Avg. % MegaRed: 77.1 Avg. % MegaRed: 73.2 Avg. % MegaRed: 70.5 Avg. X MegaRed: 70.0 Avg. % MegaRed: 69.2
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Avg. % MegaRed: 5.5 Avg. % MegaRed: &5.5 Avg. X MegaRed: 64.4 Avg. % Hegaked. 62.6 Avg. X MegaRed: 62.5
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Avg. % MegaRed: 61.7 Avg. % MegaRed: 61.4 Avg. % MegaRed: 60.8 Avg. % MegaRed: 60.2 Avg. % MegaRed: 59.7
Avg. % NileRed: 57.4 Avg. % NileRed: 6.38 Avg. % NileRed: 24.7 Avg. % NileRed: 48.1 Avg. X NileRed: 2.64
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Avg. % MegaRed: 56.9 AVE. % MegaRed: 56.3 AvVE. % MegaRed: 54.7 Avg. % MegaRed: 54.0 AVE. % MegaRed: 53.2
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)

244 245 246 247 248
| 244 | (23]
W : CL/LV\O P ‘\/‘g:/ e 4 S
o ] " j = \/J:\, & F 'J'::‘? ]
':/K:‘ H‘\J—? o fJ ‘-H,,_p?‘"‘:/ 'ﬁ /“‘_:

Avg. % MegaRed: 12.9

o

Avg. % MegaRed: 12.9
Avg. X NileRed: 3.66

Avg. % MegaRed: 12.9
Avg. % NileRed: 7.76

Avg. % MegaRed: 12.9
Avg. X NileRed: 4.9@

Avg. % MegaRed: 12.8
Avg. % NileRed: B.B2

Avg. % MegaRed: 13.1 Avg. % MegaRed: 13.1 Avg. % MegaRed: 13.@ Avg. X MegaRed: 13.@
Avg. % NileRed: 7.50@ Avg. % NileRed: 3.15 Avg. % NileRed: 3.48 Avg. % NileRed: 43.9 Avg. % NileRed: 2.18
249 258 251 253 254'

Br -

0 I
s //’l | 1 o - '}."J. o~ /"l' )\L =N
jﬁ | }7»/ \/ N -IN\V_,IT e . o 1’\]—
o \ \ / ) ;\\(,Jx_Jﬁx o [fﬁ}j[_f G
| & ) ~ g ~a N N - o

Avg. % MegaRed: 12.8
Avg. X NileRed: 7.61

N >§'
o5F

Avg. X MegaRed: 12.7
Avg. % NileRed: 12.2

256

5 N

P

Avg. % MegaRed: 12.6
Avg. X NileRed: 6.55

257

_{::>_¢_‘,iﬁ.,ﬂwwﬁ\

Avg. % MegaRed: 12.5
Avg. % NileRed: 23.8

258

Avg. % MegaRed: 12.5
Avg. % NileRed: 2.34

Avg. % MegaRed: 12.4
Avg. % NileRed: 11.9

I

(=]

Avg. % MegaRed: 12.4
Avg. % NileRed: 5.80

261
Q 0

D/J\/T-- xﬂ“‘“o

Avg. % MegaRed: 12.4
Avg. % NileRed: 2.84

262

Avg. % MegaRed: 12.3
Avg. % NileRed: 2.96

263

)

Avg. % MegaRed: 12.3
Avg. % NileRed: 7.74

Avg. % MegaRed: 12.2
Avg. % NileRed: 15.@

265

(¥}

p—

-

S~ AN

I

Avg. ¥ MegaRed: 12.2
Avg., % NileRed: 12.5

(%]

266

Jeatn

Avg. % MegaRed: 12.1
Avg. % NileRed: 4.25

267

"‘1;5}‘:(6 :

Avg. % MegaRed: 12.1
Avg. & NileRed: 12.@

268

o

P

-~

L3

_\LEJ_. ﬁ:}

Avg. % MegaRed: 12.8
Avg. % NlleRed: 1.8@

269

Avg. % MegaRed: 12.8
Avg. % NileRed: 2.82

A

5
Avg. X MegaRed: 12.9

Avg. X NileRed: 23.@

271

= ;\.
-J] j\:,__, ,('L \ =

\

Avg. X MegaRed: 11.8
Avg. % NileRed: 2.51

272

+
N

—pl—ef

N{
Avg. % MegaRed: 11.8
Avg. %X NileRed: 25.@

273

o

Avg. % MegaRed: 11.8
Avg. X NileRed: 1@.6

274

TN
3 El
Avg. % MegaRed: 11.8

Avg. X NileRed: 6.82




206

Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)

748

A~

Avg. % MegaRed: 4.62
Avg. % NileRed: 12.4

741

&

/”\_,{}ﬁf
Y

a_p
Fa

Avg. % MegaRed: 4.61
Avg. % NileRed: 5.25

742

Avg. % MegaRed: 4.57
Avg. % NileRed: 1.78

743

by

7 \. 3

R O

Avg. % MegaRed: 4.57
Avg. % NileRed: 13.9

[ 744 |

(=

HC }\

Avg. % MegaRed: 4.57
Avg. % NileRed: 3.86

745'

Avg. % MegaRed: 4.56

746

\ka;zgiEijzxﬁl:jf

AVE. % MegaRed: 4.56

Avg. % MegaRed: 4.55

; \

Avg. % MegaRed: 4.52

749
\_fl\‘/\./'\W/W

Avg. % MegaRed: 4.51

Avg. % NileRed: 6.72 Avg. % MileRed: 3.18 Avg. X NileRed: 2.30@ Avg. % NileRed: 1.36 Avg. % NileRed: 3.39
758 751 752 753 ?54[
P —
—y T / o —N
Y s (__ - \\ b o /
O=5 rd L\%#;
3 . ﬁ\’%_[\f‘[] > 9 1 e
o i | ','I
v ~ 5. . i )
W S A ] 6
Avg. % MegaRed: 4.58 Avg. % MegaRed: 4.48 Avg. % MegaRed: 4.48 Avg. % MegaRed: 4.48 Avg. % MegaRed: 4.47
Avg. % NileRed: 16.8 Avg. % NileRed: 1.62 Avg. % NileRed: 12.5 Avg. % NileRed: 9.72 Avg. % NileRed: 2.87

755

A

4.47
4.98

Avg. X MegaRed:
Avg. % NileRed:

756

Avg. % MegaRed: 4.46
Avg. % NileRed: 6.39

757

o

A
2

H

0,

Avg. % MegaRed: 4.46
Avg. X NileRed: 18.7

758

Avg. % MegaRed: 4.46
Avg. % NileRed: 3.84

759

§
*S o

Avg. ¥ MegaRed: 4.44
Avg. ¥ NileRed: 1.7@

6@

761

O

Q*aﬁ,//“\x!,f’ ~¢

762

9
I~ N

{ )ﬁ/%”?

763

LY _/
04{:::>f““\vr,{L_

764 ]
P
joes

Avg. % MegaRed: 4.44 Avg. % MegaRed: 4.43 Avg. % MegaRed: 4.43 Avg. % MegaRed: 4.41 Avg. % MegaRed: 4.41
Avg. % NileRed: 1@.3 Avg. % NileRed: 12.8 Avg. X NileRed: 6.76 Avg. % NileRed: 3.93 Avg. % NileRed: 6.79
765 766 | 767 768 769
N i} "
N N
A — u\\\ -
| / ” \ﬁ Na 0/ o
2 N “ \"v/ S~ \ i f;a
N |
|
& = N
Avg. % MegaRed: 4.48 AVE. % MegaRed: 4.40 Avg. % MegaRed: 4.39 Avg. % MegaRed: 4.38 Avg. % MegaRed: 4.38
Avg. % NileRed: 2.73 Avg. % NileRed: 5.28 Avg. % NileRed: 3.44 Avg. % NileRed: 4.09 Avg. % NileRed: 5.86




222

Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)

| 954 |

) .Ti(“i’i?

Avg. X% MegaRed: 3.23
Avg. % NileRed: 5.21

955
"x‘[/ W/‘x/"xr“

Avg. X MegaRed: 3.23
Avg. % NileRed: 9.19

-
e
Sk ‘

]

Avg. % MegaRed: 3,22
Avg. % NileRed: 2.56

957

"Tl/l"']’]\"

Avg. % MegaRéd: 3.22
AVE. % NileRed: 1.45

958

-\T," -
g -\;O

e

Avg. X MegaRed: 3.21
Avg. % NileRed: 13.@

959

o

S~

< s
o .

Avg. X MegaRed: 3.20
Avg. % NileRed: 6.66

968

N—=0

cl
Avg. % MegaRed: 3.19
Avg. % NileRed: 18.1

961

&

Avg. % MegaRed: 3.18
Avg. % NileRed: 6.53

962

A
LT

Avg. ¥ MegaRed: 3.17
Avg. X NileRed: 6.88

963

1
Sene

Avg. % MegaRed: 3.17
Avg. % NileRed: 4.16

G64 [ -
Ve
D,djg

Avg. X MegaRed: 3.17
Avg. % NileRed: 15.3

965

C"?’\a .
ke

Avg. % MegaRed: 3.16
Avg. X NileRed: 9.86

966

jﬁn
|

N

Avg. % MegaRed: 3.16
Avg. % NileRed: 11.8

567
§ Gy Iﬂ
\ .

Avg. % MegaRed: 3.16
Avg. % NileRed: 18.@

968
N
I
2 TN
T H\
o - “:N/ ~N

Avg. % MegaRed: 3.15
Avg. X NileRed: ©.96

Sg9
I |

Avg. % MegaRed: 3.14
Avg. % NileRed: 10.8

a7e

~
b/lg
N
S ’““/y/L
o g

-~

o

/
Avg. ¥ MegaRed: 3.14
Avg. % NileRed: 6.42

971

353
O

=T

Avg. % MegaRed: 3.13
Avg. % NileRed: 6.33

972
F
- a
\ |
e o~ -—-! A{\f

b
Jlr

Avg. % MegaRed: 3.12
Avg. % NileRed: 2.81

<f3w

Avg. % MegaRed: 3,11
Avg. % NileRed: 4.85

974

Avg. % MegaRed: 3.11
Avg. X NileRed: 1.47

975

N Q

A
|8

C‘_\ '&ﬁ'}w‘r_\

Avg. % MegaRed: 3.1@
Avg. X NileRed: 4.59

977

SN

Avg. % MegaRed: 3.1@
Avg. % NileRed: 18.7

978

/1;?%}4
|

Avg. % MegaRed: 3.99
Avg. % NileRed: 4.22

979

o

o

Avg. X% MegaRed: 3.89
Avg. % NileRed: 15.4

988

Avg. % MegaRed: 3.89
Avg. % NileRed: 11.0

981
(5] .'"
~ A
N7 —™N
P
-y
= P

Avg. % MegaRed: 3.98
Avg. % NileRed: 1.14

982
=y

<+ 0
2543

Avg. % MegaRed: 3.98
Avg. % NileRed: 7.74

983

a

Avg. % MegaRed: 3.87
Avg. % NileRed: 3.85

S84

Avg. % MegaRed: 3.86
Avg. % NileRed: 23.@




229

Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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Continued, Table 22. Results of fluorescence-based drug-protein binding screen of
the LOPAC library. Values are percent of Mega Red and Nile Red displaced. (n=3)
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