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ABSTRACT
PERSISTENCE IN STEM: DEVELOPMENT OF A PERSISTENCE MODEL
INTEGRATING SELF-EFFICACY, OUTCOME EXPECTATIONS AND
PERFORMANCE IN CHEMISTRY GATEWAY COURSES
by
SHALINI SRINIVASAN
The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Professor Kristen Murphy, PhD

STEM persistence has been an important issue, especially in the context of
underrepresented groups based on race and gender. Researchers in the last decade or so have been
examining the powerful impact that affective and cognitive factors can exert individually on
performance and persistence. It is only reasonable to hypothesize that combining affective and
cognitive measures would offer a more thorough understanding of factors that impact students’
performance and STEM persistence. Evaluating these outcomes in the context of gateway courses
is particularly essential due to the non-negligible percentage of students who drop out of these
courses or decide to change their intended STEM majors after key testing events.

Using social cognitive career theory (SCCT) as a framework, this exploratory study set out
to develop / adapt surveys to capture two key SCCT constructs — self-efficacy (SE) and outcome
expectations (OE). These surveys were psychometrically tested and used in the development of
cross-sectional predictive performance and persistence models for general chemistry. Items from
both full-length surveys were subsequently used in the development of a shortened survey, which
was administered as key points during a semester to evaluate changes in performance, SE or OE

prior to or after testing events. Interventions, packaged as study tools, were also administered to



students before these events; the impact of these study tools on students’ SE, OE and performance

was also assessed in efforts to assemble preliminary profiles for at-risk students.
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CHAPTER 1: INTRODUCTION

Over the past several decades, there has been a substantial decrease in the percentage of
science, technology, engineering and mathematics (STEM) majors relative to the overall
undergraduate population (PCAST, 2012). One of the major sources of this decline has been
students’ lack of persistence in their intended STEM majors; about 60% of students who enroll in
a STEM field switch to a non-STEM field or drop out of their degree program entirely (PCAST,
2012; Waldrop, 2015). The numbers become even more alarming when underrepresented student
groups — females, racial and ethnic minorities — are considered. About a third of the catalogued
federal funding for STEM education is geared towards increasing the participation of
underrepresented groups in STEM careers, with about 10% of that funding explicitly directed
towards females in STEM education (PCAST, 2012). While the gender gap has narrowed in the
physical sciences, in engineering, half the female students leave the field while only 10% of the
male students leave (Singh et al., 2013). Thus, much of the research in STEM persistence and any
effective interventions have focused on initiatives to help introduce female students to math and
engineering as careers. Given that the United States workforce will face a deficit of one million
college graduates in STEM over the next decade or so, it is imperative to address the very real
problem of persistence in STEM and develop a model to help identify factors that contribute to a
lack of persistence (PCAST, 2012).

Taking up this phenomenon of STEM persistence in the chemistry domain is essential
because similar to engineering and math, a vast majority of students intending to major in STEM
fields enroll in chemistry gateway courses during the first two years of their program; these years
mark a critical decision point to “switch” or persist in STEM majors. The first year is especially
important because 35 % of STEM majors “switch” after their first year (Business-Higher
Education Forum, 2010); besides, a non-negligible percentage of students attempting introductory
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chemistry drop the course or change to a non-STEM major (PCAST, 2012). While the reasons for
understanding these phenomena have almost always focused on the cognitive domain,
investigating STEM persistence has necessitated the exploration of domains beyond the academic.
Regardless of ability, students’ interests, motivations and beliefs about themselves have a fairly
strong impact on whether they “persist in”, “‘switch out of”” or leave STEM fields entirely (Seymour
& Hewitt, 1997). Discipline-based education researchers interested in retention and representation
issues have for some time shifted their focus to the affective domain to better understand
persistence and the participation differential in STEM.

Social cognitive career theory (SCCT) has become a frequently used framework for
studying academic and career development. The performance model in SCCT lists five distinct,
yet bi-directionally related cognitive and affective variables that influence academic performance
and persistence: Past performance, ability, outcome expectations, self-efficacy beliefs and goal
mechanisms (Brown et al., 2008). Two key constructs (factors) to emerge from this framework
were self-efficacy and outcome expectations. While individual instruments to measure self-
efficacy have been developed and tested in most science disciplines, including chemistry, outcome
expectation measures have received minimal attention. Ideally, the measures for persistence
should be merged with performance measures and tested on an entire sample of students and key
subgroups within that sample. However, the scarcity of psychometrically viable outcome
expectations measures has limited the development and testing of comprehensive, longitudinal
performance and persistence models. In addition, while these models have been tested empirically,
their predictive utility has not been examined on a finer grain to (a) identify students at risk for

lack of persistence, (b) identify the point at which there is a decline in persistence or performance



measures and (c) implement an appropriate intervention to target students and offset their lack of

persistence.

Purpose of the Study

The objective of this study was to investigate the impact of performance, self-efficacy and

outcome expectations on persistence of students in STEM majors during their enrollment in

general chemistry gateway courses. As part of this objective:

1)

2)

3)

4)

5)

6)

This study aimed to develop a valid and reliable instrument that could be used to measure
chemistry outcome expectations (COES) in first-year chemistry courses.

A valid and reliable chemistry self-efficacy instrument (CSEAS) was adapted specifically for
this study.

Models of performance (content based and course performance) were tested locally within a
course to identify predictors that would influence chemistry performance.

Affective measures, in combination with performance, were used in the development of
persistence models which categorized membership of students based on whether they persisted
in their intended STEM majors while enrolled in a course.

Based on changes in the pre-post affective measures, a subset instrument was developed to
capture changes in performance and affective measures on a much finer grain; this also allowed
for identification of triggers and points at which a performance or affective measured dropped.
Finally, based on the profiles and changes indicated by the subset instrument, interventions
were developed, utilized and tested in an effort to offset the decline in measures of

performance, persistence or both.



CHAPTER 2: LITERATURE REVIEW

This chapter reviews the literature and theories of persistence, both in college and STEM
in particular, that have shaped this research. Seminal works that have addressed the historic
underrepresentation of females in science will also be examined. In addition, this review offers an
insight into the cognitive and affective domains and how these domains and resulting theories have
not only helped understand and explain persistence and the participation differential in STEM, but
also provided a framework for this study.

Persistence in College

For several decades now, student retention has been an extremely important goal for higher
education institutions and scholars alike. While studies examining ‘retention’ and ‘persistence’
have been abundant, these terms have often been used ambiguously and in some cases mistakenly
interchangeably (Reason, 2009). Retention is an “organizational phenomenon” used to described
the idea of educational institutions retaining students. On the contrary, persistence is an
“individual phenomenon”, which describes students’ intentions to “persist to a goal” (Reason,
2009). These goals could be proximal (completing a course) or distal (completing a degree),
offering an added distinction between the phenomena of retention and persistence (Reason, 2009).

Two of the earliest and fairly important models to explain college persistence were Vincent
Tinto’s Student Integration Model (SIM) (Tinto, 1975) and Bean’s Student Attrition Model (Bean,
1980). While Tinto’s model is based on the extent to which a student is socially and academically
integrated into an institution, the Student Attrition Model examines the role of intentions, attitudes
and external factors as predictors of persistence. Despite the scarcity in studies that tested the
predictive validity of these models, several subsequent studies utilized these models as theoretical

frameworks for studying aspects of college persistence (Cabrera, Castafieda, Nora & Hengstler,



1992). While retention rates certainly improved during the 1990s, the collective impact on
graduation rates remained minimal and although these seminal models provided a basis for
persistence studies, much of the work does not account for the interrelated influences that dictate
student persistence.

More recently, Reason and Terenzini compiled a comprehensive review of persistence
research and developed a conceptual framework that integrated students’ precollege
characteristics, their peer environment, institutional characteristics and individual student
experience (Terenzini & Reason, 2005; Reason, 2009). While this framework definitely provided
a more comprehensive examination of college persistence in general, viewing this phenomenon
through sociodemographic and psychosocial lenses was offering some alarming results of its own.
Degrees in STEM (science, technology, engineering and mathematics) fields were not being
awarded at the same rate as the total numbers of bachelor’s degrees in the United States; in 2006,
the percentage of students graduating with degrees in STEM was no different (or lower) than that
in previous years (National Science Foundation [NSF], 2010; Maltese & Tai, 2011). Moreover,
there was a crucial need to address norms and practices which made it difficult for
underrepresented minorities, especially female students, to persist (Seymour & Hewitt, 1997).

Persistence and gender in STEM

Concerns about the nature of science and mathematics education started coming into the
spotlight in the mid-1980s when the Higher Education Research Institute brought attention to the
waning percentage of freshmen opting to enter and persist in science and mathematics-based
majors (Dey, Astin & Korn, 1991; Astin & Astin, 1993; Astin et. al., 1985; Seymour & Hewitt,
1997). Much of the debate surrounding these issues was motivated by knowledge that the general

population lacked science literacy due to the disappointing efforts made in science and



mathematics education; moreover, not enough was being done to recruit and retain students in
these fields and any recruitment was severely biased in terms of gender and race (Seymour &
Hewitt, 1997).

To clarify terminology at this point, the terms gender and sex have been used
interchangeably and incorrectly in most literature on social sciences, including affective research.
The term sex refers to a biological construct and defines an individual as male or female based on
genetics, anatomy and physiology (Tannenbaum et al., 2016). On the other hand, gender refers to
a multifaceted and fluid construct, impacted by social and cultural contexts and environments
(Tannenbaum et al., 2016). As gender is a fairly broad term that can also indicate the identities of
girls, women, boys and men, the definitions of sex and gender are changing and are often
interrelated (Tannenbaum et al., 2016). However, for the implementation of research methods or
reporting outcomes by males vs. females, the term sex is deemed more appropriate. While this
dissertation uses the delineations of males and females, these categories appear under the term
‘gender’ in demographic data sought through institutional research and will be used as part of this
term (as opposed to the correct terminology ‘sex’) to stay consistent.

Factors that have shown to contribute to the persistence of females and minorities in STEM
fields range from institutional policies, preparation in high school and college to financial
assistance (May & Chubin, 2003; George-Jackson, 2011). Students’ scores on standardized tests
and their performance in high school math and science courses have been known to predict college-
level math and science performance in addition to persistence in STEM fields (Elliot et al., 1996;
George-Jackson, 2011). Differential decisions made by male and female students about their
majors have also been attributed to academic performance wherein male and female students

respond differently to failing a course in their major. A study conducted using chemical



engineering students revealed that male students were more likely to retake a failing course while
female students were likely to seek out a new major (Felder et al., 1995).

On the heels of these statistics, the President’s Council of Advisors on Science and
Technology released a report in 2012 in which the problem of persistence and preparedness in
STEM subjects was addressed. The report stated that if the United States had to sustain its position
as leader in research and development, it must produce approximately one million more workers
in STEM fields over the next decade (PCAST, 2012). While this report reinforced the idea of a
general lack of persistence in STEM fields, it emphasized the serious underrepresentation of
females in STEM and the need for opportunities that would encourage and allow females to fully
participate in exciting STEM experiences.

The issue of underrepresentation of females in STEM has been prevalent since the 1970s
when the metaphor “leaky pipeline” was used to describe the relatively high attrition of females
from STEM fields at multiple time points during their academic tenures (Miller & Wai, 2015;
Berryman, 1983; Alper, 1993). Studies have shown that this metaphor, while useful at the time,
has in fact revealed inconsistencies due to the changing landscape in the 1990s when the gender
gap narrowed among STEM bachelor’s degree earners. Other studies have shown that the
persistence differential exists only in some STEM fields. Recently, a 30-year retrospective
analysis investigating empirical support for the “leaky pipeline” revealed its utility in partially
explaining historical gender differences, but suggested that the metaphor is not very applicable to
current gender differences in the transition from STEM bachelors to Ph.D. programs as persistence
rates have converged in several STEM fields. (Miller & Wai, 2015). In the 1970s, male students
earning pSTEM bachelor’s degrees were 1.6 to 1.7 times as likely as females to later earn a pSTEM

Ph.D; however, this gap completely closed by the 1990s (Miller & Wai, 2015). In general, the



utilization of this metaphor ignores factors such as a student’s entry into STEM before pursuing a
bachelor’s degree or that successful completion of a STEM degree occurs even if a student has not
navigated the traditional STEM “pipeline” (Miller & Wai, 2015).

Regardless of the studies that suggest convergence in persistence rates between males and
females, the literature on gender differences in STEM fields is conflicting and requires further
investigation. Furthermore, while the factors that impact a student’s pursuit of, persistence in and
departure from STEM fields have almost always involved the cognitive domain, several
researchers over the last decade or so have been looking at non-cognitive factors to understand
academic performance and persistence. Moreover, these non-cognitive factors manifest
themselves in various ways, resulting in performance or persistence differentials among student
subgroups.

Affect and gender in science education

The origins of the domains of learning can be traced to the period between 1956 — 1972
when a group of educators made unique contributions to the development and refinement of each
domain. Benjamin Bloom started examining educational objectives by exploring the cognitive
domain, which has been the main focus of curricula and involves the development of intellectual
skills (Bloom et. al, 1956). Krathwohl’s taxonomy focused on the affective domain, which
examines emotional and behavioral outcomes such as feelings, motivations and attitudes
(Krathwohl, Bloom & Masia, 1973). Various versions of taxonomies pertaining to the
psychomotor domain, which involves development of motor-skills and coordination, were
developed by Simpson, Harrow and Dave (Dave, 1970; Harrow, 1972 & Simpson, 1972). While

research integrating all three domains is limited, studies have examined each domain or



combinations quite comprehensively in science education overall, and within specific divisions in
science education.

Work in the affective domain dates back to the early 1960s when a comprehensive inquiry
was initiated to evaluate the number of students entering science and technology in higher
education. The phenomenon, known as the ‘swing from science’ was attributed to declining
interest in science and general dissatisfaction among science students (Dainton, 1968; Osborne,
Simon & Collins, 2003). This led to a plethora of work over the past forty years by the science
education research community, with much of the work heavily focused on students’ attitudes
towards science (Osborne, Simon & Collins, 2003). Over the years, the definition of ‘attitudes’
has been amended to include several sub-constructs - such as anxiety, self-esteem and motivation
- that proportionally contribute towards an individual’s attitude towards science (Osborne, Simon
& Collins, 2003). Attitude toward science has been shown to influence achievement, choice of
science courses and careers (Napier & Riley, 1985; Germann, 1988).

Investigation of the factors that impact students’ attitudes towards science revealed that
gender was a key contributor towards students’ attitudes; much of the research conducted in the
early 1990s showed that boys had a more positive attitude to science than girls. A report published
by the National Education Goals (1993) stated that positive attitudes toward science and
mathematics were more likely to be demonstrated by students in higher grade levels, with large
gaps between male and female students. Although this trend changed in the late 1990s and gender
did not play a major role in achieving success, female students with high abilities and confidence
were still opting out of pursuing science fields due to the uninspiring nature of these fields
(Osborne, Simon & Collins, 2003). This effect was further emphasized when Seymour and Hewitt

conducted their ethnographic project to examine science, mathematics and engineering (SME)



students’ reflections on their undergraduate experiences and determine the reasons for attrition and
persistence; while students who switched out of (‘switchers’) or stayed in (‘non-switchers’) STEM
displayed the same range of abilities, motivations and behaviors, those who persisted shared
distinct attitudes and coping skills including confidence, a strong, sustained interest in their
intended fields of study and in their careers and a strong support system, especially for female
students. Reasons cited by students who left STEM fields included poor quality of teaching, a
“chilly classroom climate”, lack of faculty-student interaction, lack of preparation and
discouragement at academic challenges (Seymour & Hewitt, 1997; Hall & Sandler, 1982). While
Seymour and Hewitt focused primarily on students who have already entered STEM fields, their
study signaled a shift in emerging research in which educators started to address factors impacting
STEM career choices and underrepresentation at the high school level as well (Williams & Ceci,
2007; Hughes, 2011).

Several researchers investigated the effects of “rigorous” high school coursework and
concluded that the rigor of a high school program had a significant impact on students’ attainment
of college degrees (Adelman, 2006; Horn & Kojaku, 2001; Trusty, 2002; Tyson et al. 2007;
Maltese & Tai, 2010). High school grade point average (GPA) and high educational aspirations
were also positively associated with male and female students majoring in STEM (Ware & Lee,
1988). Mau (2003) examined the effects of gender and race on the stability of aspirations to follow
a career in science and engineering; the conclusions revealed that gender, race, mathematics self-
efficacy and academic proficiency were key factors in the persistence of career aspirations. What
these studies emphasized was the need to examine factors beyond performance (cognition) to
provide a better understanding of and model for learning, performance, vocational choices and

persistence. The social context, interplay between self-beliefs and environment, self-regulation
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and the idea that learning takes place even in the absence of an observable response have become
important concepts critical for learning and modeling both performance and persistence (Bandura,
1986).
Social Cognitive Theory

In 1986, Albert Bandura developed social cognitive theory (SCT) as a way to explain
human behavior. Deviating from traditional behaviorist theories — in which situational and
cognitive influences are mostly ignored (Bandura, 1977) — the SCT framework sought to explain
behavior as a mechanism in which external environmental factors, overt behavior and personal
agency (in the form of cognition, affect and biological events) function as interacting components
that reciprocally impact each other as well. This model — known as “triadic reciprocal causality”
— forms the basis of SCT (Bandura, 1986). The implication is that while individuals can exercise
personal agency, they are constrained by external consequences, their own experiences and self-
reflective processes. Self-referent thought mediates knowledge and action and the strength of
self-regulatory processes determines what courses of action are pursued (Bandura, 1986). The
ways in which individuals interpret their goals or attainments impact how their environments and
self-beliefs might be altered; these interpretations subsequently alter their future performance goals
(Pajares, 1996). Among the various personal determinants of psychosocial functioning, three
mechanisms have been influential in understanding vocational choices and career development.
The concepts of self-efficacy, outcome expectations and goals and the relationships among these
concepts form the core of the theoretical framework that shapes the research discussed in this

dissertation.
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Self-efficacy

Self-efficacy refers to “people’s judgments of their capabilities to organize and execute
courses of action required to attain designated types of performance” (Bandura, 1986, p. 391);
quite simply, it answers the question “can I do this?”. Bandura theorized four sources of self-
efficacy: Performance accomplishments, vicarious learning or modeling, verbal persuasion and
emotional arousal in relation to the behavior. Performance outcomes, described as an individual’s
successes and failures, and past experiences are expected to have the greatest influence on self-
efficacy beliefs. Success in a task increases a person’s confidence to perform another similar task
while failure correspondingly decreases their self-efficacy (Bandura, 1986). However, if
individuals can see these failures as attainable challenges and overcome them by conviction, they
can increase their self-motivated persistence (Bandura, 1977). Individuals also form self-efficacy
beliefs through vicarious experiences such as watching peers succeed or fail. According to
Bandura, vicarious experiences can have a larger impact on a person’s self-efficacy if the person
has less experience in a task and consequently less stability in their self-efficacy beliefs (Bandura,
1986). These conditions can also be helped by verbal encouragement or verbal persuasions, the
third source of self-efficacy. The expertise and credibility of the ‘persuader’ are factors that impact
the effectiveness of persuasions. Thus, if an individual attempts a task due to verbal persuasion
and fails, the ‘persuader’ may be discredited (Bandura, 1986). Lastly, emotional states such as
anxiety, stress and fatigue also impact self-efficacy beliefs. Judgments of self-efficacy are not
directly predicated by these sources; instead they are highly dependent on the manner in which a
person combines these sources to select, integrate, interpret and recollect information.
Consequently, making judgments of self-efficacy is a highly personal and person specific process

(Bandura, 1986).
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Often considered the most pervasive factor of personal agency, self-efficacy beliefs have
received increasing attention in educational research, especially in studies involving academic
motivation and self-regulation (Pintrich & Schunk, 1995). Bandura hypothesized that self-efficacy
beliefs influence other motivational constructs, effort, choice of activities, achievement and
persistence. For example, individuals with low self-efficacy for completing a task may choose to
avoid it and those who feel efficacious are hypothesized to persist longer and work harder in the
face of obstacles (Bandura 1989; Bandura, 1977; Schunk, 1991). Thus, self-efficacy acts as a
mediator for performance, academic outcomes and cognitive engagement (Patrick & Hicks, 1997;
Hall & Ponton, 2005). Students with high self-efficacy engage is more effective self-regulatory
strategies at each level of ability (Bouffard-Bouchard, Parent & Larivee, 1991). In academic
settings, self-efficacy research has been explored extensively in several domains, including science
and mathematics where it has been shown to predict outcomes such as academic performance,
motivation and other psychosocial constructs (Schunk, 1991). The relationship between self-
efficacy and student achievement has been confirmed by several researchers (Hampton & Mason,
2003; Multon et. al, 1991; Pajares & Miller, 1994; Shell et. al, 1995). Studies of college students
who pursue science and engineering courses have shown that the academic persistence, necessary
to maintain high academic achievement, is influenced by high self-efficacy beliefs (Lent, Brown,
& Larkin, 1984, 1986; Pajares, 1997). Academic self-efficacy also correlated with semester and
final year grades, in-class homework, exams and quizzes (Pintrich & De Groot, 1990).

Studies conducted in mathematics have shown that college undergraduates’ interest in
mathematics and their choice of math-related courses and majors is predicted to a greater degree
by their mathematics self-efficacy than their prior math achievement (Hackett, 1985; Hackett &

Betz, 1989; Lent, Lopez & Bieschke, 1991). Pajares (1996) used a path model to examine the
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interactions between self-efficacy judgments and mathematical problem-solving of middle school
students mainstreamed in algebra classes; in this model, math self-efficacy made a unique
contribution to the problem-solving performance of regular education students (+=.387) and of
gifted students (=.455) when the model was controlled for the effects of math anxiety, cognitive
ability, mathematics grades, sex and self-efficacy for self-regulatory behaviors. Pajares also
reported that girls, including gifted ones, consistently underestimated their confidence even when
their scores warranted greater confidence. This gender differential in self-efficacy judgments
continued in college, where male undergraduates reported higher mathematics self-efficacy than
did female undergraduates (Hackett, 1985; Hackett & Betz, 1989; Lent, Lopez & Bieschke, 1991);
this differential is manifested in the negative stereotype that female students have weaker math
ability than male students. Thus, the performance of high-achieving female students on
challenging math tests can be impaired by a phenomenon known as stereotype threat, which
emerges when a negative task-relevant stereotype is activated (Steele & Aronson, 1995). Negative
stereotypes about women can lower their performance, self-efficacy, and in combination, these
effects can impact women’s career decisions. Consequently, the underestimation of confidence
rather than lack of skill is cited as one of the primary reasons young female students have exhibited
avoidance behaviors towards math-related courses and careers (Hackett, 1995).

Despite the importance of self-efficacy in predicting behavior, it is not solely responsible
for behavioral mechanisms. Other variables that come into play, especially in achievement
settings, include outcome expectations, skills and the perceived value of outcomes (Schunk, 1991).
The lack of skills will result in incompetent performances even if self-efficacy is high; outcome
expectations play a key role because individuals usually act in ways they believe will cause

positive outcomes; desiring certain outcomes relative to others is the perceived value that people
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place on outcomes. When these variables (skills, outcome expectations, perceived value of
outcomes) manifest themselves in optimal ways, self-efficacy is hypothesized to impact much of
human behavior (Bandura, 1989).
Outcome expectations

Outcome expectations are defined as an individual’s judgment of the likely consequence
of a behavior (Bandura, 1989). They answer the question, “If I do this, what will happen?”.
People’s notions of outcomes can have different sources — symbolic thinking, vicarious
experiences and modeling behaviors and the actual incentive value of the outcome (Bandura, 1977;
Bandura, 1986). The origin of outcome expectations can be traced back to expectancy-value
theories, which emphasize the idea that behavior is jointly impacted by (a) people’s perceived
expectations of obtaining a particular outcome when performing a behavior and (b) the extent that
they value those outcomes (Schunk, 1991). Bandura stated that individuals are more likely to
engage in behaviors in which they place greater importance or value on the outcome expectation.
However, he ultimately stressed the importance of self-efficacy and noted that the value placed on
the outcome expectation is immaterial if the individual does not have the self-efficacy to perform
the task and be rewarded (Bandura, 1986; Fouad & Guillen, 2006). Thus, self-efficacy is
hypothesized to determine outcome expectations as the expectation of achieving desirable
outcomes in a task is tied to an individual’s self-efficacy in performing that task (Lent, Brown &
Hackett, 1994). While outcome expectations are hypothesized to directly influence interests,
intentions and activities (Fouad & Guillen, 2006), Bandura (1997) noted that the dependency of
outcome expectations on self-efficacy evaluations will prohibit the former from making a unique

contribution to predictions of behavior when self-efficacy perceptions are controlled. Despite
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studies supporting the construct validity of outcome expectations, it is still an unexplored
construct, individually and when modeled with other behavioral constructs.

Hackett and Betz (1981) focused on self-efficacy to explain traditional career choices of
females, consequently applying Bandura’s SCT to vocational choices. They hypothesized that the
limited range of career options for females could be attributed to their low self-efficacy (Betz &
Hackett, 1981); this hypothesis was empirically tested using college students and revealed gender
differences in their confidence to complete the responsibilities and requirements for nontraditional
occupations. Male and female students demonstrated higher self-efficacy levels for traditionally
male and female occupations respectively (Betz & Hackett, 1981).

Rather than focus on the type of vocational choices, Hackett (1995) decided to examine the
factors that influenced the vocational decision making process. Using the mechanisms of interest
development, self-efficacy, outcome expectations and goals and the idea that these person and
contextual variables are dynamic interactions, Lent, Brown and Hackett (1994) presented their
framework — social cognitive career theory (SCCT) — in a landmark article that set the stage for
SCCT to become the most frequently used framework for studying academic and career
development.

Social Cognitive Career Theory

The SCCT framework incorporates several environmental and person variables and
hypothesizes the manner in which these variables interact to affect an individual’s career interests
and behavior. Three explanatory models, each constituting different sociocognitive mechanisms,
form the core of the SCCT framework. These models were developed to understand the

mechanisms by which (a) career and academic interests are formed — the interest development
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model, (b) career choices are realized — model of career choice, and (c) career performance
outcomes are achieved — model of performance (Lent, Brown & Hackett, 1994, p.80).
SCCT model of interest development

As shown in the center of Figure 2.1, this model links self-efficacy and outcome
expectations to the development of occupational interests. Over the course of childhood and
adolescence, people are directly and vicariously exposed to several occupationally relevant
activities in their environments (Lent et al., 1994). Differential reinforcements received for

continued engagement in different activity domains influence people’s self-efficacy beliefs

(Bandura, 1986).
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Figure 2.1. Social Cognitive Career Theory Model (Lent, Brown & Hackett, 1994, Figure 2, p. 93).

Lent et al. (1994) hypothesized that these people are most likely to develop interests in activities
in which they are efficacious and from which they expect positive outcomes. An ongoing feedback
loop is created in which sustained involvement in an activity leads to subsequent mastery or failure
experiences, which help revise self-efficacy beliefs, outcome expectations and ultimately interests.
Development of interests demonstrates fluidity until late adolescence, the point at which these

interests stabilize. However, exposure to new learning experiences such as parenting or job
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training in post adolescent years can alter an individual’s sense of self-efficacy and outcome
expectations, thereby changing their interests (Lent et al., 1994). Regardless of objective talent,
the formation of strong self-efficacy beliefs and positive outcome expectations are essential in the
development of interests.
SCCT model of career choice

While this model builds on the model of interest, the key distinction is that in the model of
career choice, career-related interests are linked to goals and actions, especially related to
occupational decisions. The choice model emphasizes that learning experiences give rise to self-
efficacy beliefs and outcome expectations and these experiences are influenced by environmental
factors such as levels of support, barriers and opportunities afforded to a person (Lent et al., 1994).
SCCT hypothesizes that when contextual factors moderate the formation of choice goals and
execution of choice actions, interests will be a strong predictor of the types of choices people make
depending on the environmental conditions. Under supportive conditions, interests are expected
to have the greatest influence on academic and occupational choices. On the contrary, restrictive
conditions may require individuals to compromise their interests and consider the more culturally
acceptable or pragmatic choice (Lent et al., 1994). As depicted in Figure 2.1, a feedback loop is
developed between performance attainments and learning experiences.
SCCT model of task performance

The performance model, a subset of the career choice model, links self-efficacy and
outcome expectations to performance goals, which then lead to performance attainment levels
(Lent et al., 1994). This model is concerned with predicting and explaining two primary aspects
of performance: their accomplishments and behavioral persistence (e.g. stability in an academic

major). In this model, as shown in Figure 2.2, abilities and past performance inform self-efficacy
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beliefs and outcome expectations (Lent et al., 1994). Self-efficacy and outcome expectations work
in conjunction with ability, in part by influencing the types of performance goals. When ability
levels are controlled, high self-efficacy and positive outcome expectations dictate the performance
goals individuals establish for themselves. This model excludes interests as a mediating variable;
according to Lent et al., (1994) interest are “more integral to choice of career/academic activities

than to selection of performance goals” (p. 99).

Self-efficacy
Ability/Past Performance Performance
Performance Goals/Subgoals 7| attainment Level
b
Outcome

expectations

Figure 2.2. SCCT Model of task performance (Lent, Brown & Hackett, 1994, Figure 3, p. 99).

SCCT in STEM
As SCCT has been a useful framework for explaining educational and vocational interests,
choices and performance, a substantial body of research has been conducted to test the theorized
relationships in each SCCT model.
The model of interest development has been explored in math, in which Lent, Brown and
Hackett (1994) posited that math self-efficacy was significantly and strongly correlated with math
interests (» range=.53-.63). Using path analysis, Smith and Fouad (1996) tested several hypotheses

from Lent et al.’s work (1994) in a study using middle school students who had similar
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socioeconomic status (SES). Results showed strong positive correlations between self-efficacy
and outcome expectations (r=.55) and between outcome expectations and intentions (r=.39). Self-
efficacy had a strong direct influence on interests (7=.29), which subsequently influenced
intentions (7=.28).

When examining predictors of goals, Waller (2002) and Lent et al., (1993) conducted
studies that showed significant correlations between math self-efficacy and math goals (=46 and
r=.63 respectively), math outcome expectations and goals (=.42 and r=.52 respectively) and math
interests and goals (7=.68 and r=.71 respectively). Lent et al., (2008) tested the predictive utility
of the SCCT model using a diverse sample of students majoring in computing disciplines. Results
showed that the SCCT model accounted for nearly 40% of the variance in interests and 33% of the
variance in persistence goals for these students.

While hypotheses in the interest and choice models have been tested using all SCCT
predictors, the same cannot be said about the performance model as most studies have usually
examined only subsets of this model. Meta-analyses results have indicated correlations of .38 -
.50 between self-efficacy and college student academic performance (Multon et al., 1991; Robbins
et al., 2004). A full corrected correlation of .36 was also reported between academic self-efficacy
beliefs and college retention criteria. Finally, as hypothesized by SCCT, a significant correlation
of =45 was observed between indices of past (high school) academic performance and college
performance (Robbins et al., 2004).

Progressing beyond bivariate correlations, Brown et al., (2008) used path analyses to model
academic performance and academic persistence. General cognitive ability (e.g. ACT or SAT
scores) and past performance (high school GPA) were used as predictors respectively. As meta-

analytic estimates were unavailable for outcome expectations, the researchers conducted their own
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meta-analyses of outcome expectations to fill in the gaps. However, as only self-efficacy-outcome
expectations relationships had been sufficiently examined to provide valid meta-analytic
estimates, outcome expectations were excluded from the analyses and a reduced version of
SCCT’s performance model was tested (Brown, 2008). Results indicated that self-efficacy seemed
to influence academic performance directly as opposed to being mediated by goal mechanisms.
This finding was not aligned with SCCT’s model of academic performance perhaps due to way
goals were operationalized; given that goals were measured as intentions to complete college rather
than as performance indicators, there was a mismatch between the measurement and the outcome
it was predicting (Brown et al., 2008). However, goals were much better predictors of retention
suggesting that the reliability of social cognitive variables is dependent on how well they match
criterion variables (Lent & Brown, 20006).

Brown et al., (2008) also found that indices of academic aptitude showed indirect
relationships to college retention outcomes via self-efficacy beliefs and goals to complete college.
Thus, for students with similar academic abilities, the likelihood of finishing college was
influenced by the confidence they placed in their academic abilities and the goals developed for
college completion (Brown et al., 2008). Between the two predictors used for this study, prior
high school performance showed a strong relation to self-efficacy beliefs in comparison to general
cognitive ability; however, cognitive ability rather than past high school performance seemed to
inform college performance to a greater degree (Brown et al., 2008). Despite these findings, the
generalizability of SCCT has been limited due to the predictors and outcome variables in the
models being examined at a single time point, resulting in cross-sectional studies. Additionally,
these models utilize regression and correlational analyses to assess relationships among variables;

while these techniques are beneficial in supporting SCCT’s hypothesized relationships among its
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constructs, the cross-sectional nature of the models does not allow for causal pathways to be
established between the predictors and criterion variables (Lent, 2008).

Using a sample of mostly first semester engineering students, Lent et al., (2008) extended
the longitudinal study of SCCT’s interest and choice models by examining variables besides self-
efficacy and interests; in addition, this was conducted at two points in time, five months apart to
explore the temporal relations among the variables. Three possible models were proposed for the
role of self-efficacy: antecedent, consequent and bidirectional. The antecedent model conceived
self-efficacy as a precursor to outcome expectations, interests and goals, the consequent model
viewed it as a consequent of the other variables and the bidirectional model conceptualized self-
efficacy as having a reciprocal relationship with the other variables (Lent et al., 2008). Results
from this study indicated that the antecedent model provides “a sufficient and parsimonious
explanation of the relations among the theoretical variables”. The predominant temporal flow
appeared to be from self-efficacy to the other variables rather than vice versa” (Lent et al., 2008,
p.333).

SCCT in Studies with Underrepresented Populations

Given that SCT was extended into SCCT based on the idea that low self-efficacy deters
females from selecting careers of their choice, several studies have examined the role of sex in the
context of each SCCT model. In addition, the influence of marginalized groups within each SCCT
model have also been investigated.

Using a scale created to measure educational and career-related barriers in high school
students, McWhirter (1997) found that male and European American high school students
experienced fewer educational and vocational barriers in comparison to female and Mexican-

American high school students. However, in a study that used SCCT to predict interests and major
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choice for male and female students in engineering, Lent et al., (2005) found that although there
were no differences between male and female students in terms of their self-efficacy, outcome
expectations or interests, female students encountered fewer social barriers and experienced more
social support in their pursuit of an engineering major than did male students.

To investigate the contextual factors from SCCT comprehensively, Fouad et al., (2010)
developed an instrument to recognize the vocational and educational barriers and supports
perceived by male and female students in the mathematics and sciences domains; this study was
conducted at three educational levels: middle school, high school and college. The results from
this study are summarized in Tables 2.1 and 2.2 respectively. Table 2.1 displays the results for
the top supports and barriers in math while Table 2.2 displays the top supports and barriers in
science.

Table 2.1. Top supports and barriers in Math for male and female students at three educational levels
(Fouad et al., 2010)

Top supports
P SUPPOMS| \tiddle School |  High School College
in Math
Clarity in career
Males Teachers Teachers
goals
Females Teachers Teachers Teachers
Top barriers | )
in Math Middle School | High School College
Lack of role Uninspired | No opportunities
Males )
models teachers outside school
Females Teachers Teachers Teachers
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Table 2.2. Top supports and barriers in Science for male and female students at three educational levels
(Fouad et al., 2010)

Top supports
‘p 'pp Middle School High School College
in Science
Teachers with . .
) Teachers with Inherent interest
Males high ] i ; :
i high expectations in subject
expectations
Teachers with
'r W Teachers with Inherent interest
Females high . . . ;
: high expectations in subject
expectations
Top barriers
: P ; Middle School High School College
in Science
Uninterested Uninspired Lack of help from
Males .
friends teachers parents
Uninspired Uninspired
Females P Test anxiety e
teachers teachers

In a study conducted in Spain, Inda et al., (2013) used sophomore engineering students to
test SCCT and the role of gender in predicting engineering interests and major choice goals.
Findings indicated that female students have weaker self-efficacy beliefs and interest than male
students, despite the lack of differences in outcome expectations and goals. In addition, peers and
parents are among the top support systems for female students while male students perceive more
parental barriers than females (Inda et al., 2013).

From a broader perspective, the findings of these studies strengthen the utility of the SCCT
model in the context of career development. The affective domain addressed in science and
engineering studies is no different than what instructors and advisors encounter in chemistry,
especially in gateway courses, which serve as crucial points when students decide to persist in or
change their academic paths. The low self-efficacy beliefs and interest demonstrated by female

students in engineering have already been documented in chemistry; Zusho et al., (2003) observed
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decreased motivational levels among students, especially low achievers, across a semester in
introductory chemistry. In organic chemistry, males have reported higher levels of self-efficacy
than female students (Lynch & Trujillo, 2010). In recent years, several statistical models have
been tested and used to predict student achievement in college chemistry. In an effort to examine
meaningful learning in chemistry, Brandriet et al., (2013) used structural equation modeling (SEM)
to test the relationship between cognition, affect and chemistry achievement. Results showed the
existence of a tripartite relationship among the three variables. By using students’ math ability,
prior conceptual knowledge in chemistry and attitude towards chemistry as predictors, Xu,
Villfane and Lewis (2013) used SEM to predict achievement in chemistry; results showed that the
three predictors accounted for 69% of the variance in chemistry achievement. Given the domain
specific nature of affective constructs and the nuanced yet sometimes conflicting gender
differences in various domains, including chemistry, it is essential to examine the impact of
affective and cognitive variables on students’ performance and persistence in their intended STEM
majors within the context of chemistry gateway courses.

While much of the literature has utilized SCCT in cross-sectional and longitudinal models
to support hypothesized relationships and paths in the framework, these models have been
incomplete due to the lack of operationalized outcome expectation measures. This exploratory
study aims to fill this gap by developing an instrument to measure outcome expectations in
chemistry. This instrument, in conjunction with self-efficacy and measures of cognitive ability,
will be used to develop a comprehensive model of performance and STEM persistence in gateway
courses populated by STEM majors as opposed to chemistry majors. This complete model and

examination of its affective components on a finer scale are expected to offer a much better
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understanding of how students persist in a STEM major, when they might leave this major and

how to intervene and potentially remediate this situation.
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CHAPTER 3: INSTRUMENTS AND METHODS

The development of a model that combines persistence and performance requires the use
of psychometrically sound persistence measures to capture latent constructs (unobserved
variables). This chapter provides a brief description of the full-length, norm-referenced, self-report
quantitative research instruments that were adapted or developed to measure self-efficacy and
outcome expectations. Some information about a subset instrument — developed from the full-
length surveys and used to collect data at several points during a semester — is provided as well.
Also included are the research design, a general framework for scale development, and
descriptions of samples to which surveys were administered. Only the methods common to
development and psychometric evaluation of the two full-length surveys will be described here.

Norm-referenced instruments

Norm-referenced instruments serve multiple purposes; they can be utilized to classify
students, assess progressive changes or predict results of some tests. These instruments reveal
differences between and among students based on the characteristics being measured and establish
a rank order of students across a continuum of values (Mishel, 1998; Waltz et al., 1991; Pett et al.,
2003; Bond, 1996).

In this case, the instruments used to measure self-efficacy and outcome expectations were
designed using norm-referenced frameworks as the surveys were measuring specific
characteristics and the goal of each survey was to obtain a range of students’ scores that would
enable the researcher to discriminate one student’s self-efficacy or expectations from those of other

students or a norm group (Pett et al., 2003).
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Instruments and participants
The instruments, their target populations and modes of administration are summarized in
Table 3.1. Instrument development, scale construction and psychometrics will be discussed
further in the chapters dedicated to each instrument.

Table 3.1: List of instruments and administration details

No. of Timing of .
Instrument | Construct(s) items Mode administration Target populations
Chemistry .
. Start and end Preparatory chemistry,
self-efficacy Self- 30 Pilot f eneral chemistry I and II
1 | and anxiety | efficacy and (paper), | °© semester & and chemis try for
survey anxiety electronic (pre-post) eneineerin 11;1ya'ors
(CSEAS) & £ ma)
Chemistry Preparatory chemistry,
outcome .
. Outcome Start and end general chemistry [ and II
2 | expectations . Paper .
survey expectations 25 of semester and chemistry for
(COES) (pre-post) engineering majors
Before and
Subset 25(13 after each
survey Sel- from hourly exam
3 | (combination cfficacy and | CSEAS Paper during the General chemistry I and II
of CSEAS outcome & 12 semester
expectations | from
and COES) COES) (exams 1,2 &
3)

Mixed methods design
The studies detailed in chapters 4 — 6 involve the collection of data using quantitative
survey instruments. Given the latent nature of the constructs being measured, quantitative research
is often insufficient to understand the context or setting in which students respond (Creswell,
2003). In addition, the inability to actually communicate with students and hear their opinions and
biases can cloud the interpretation of these surveys. Although survey construction usually starts

with qualitative data collection, in this study quantitative data collection was followed by
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qualitative research in the form of semi-structured interviews. While these interviews offer rich
data that aid in scale development, the limited number of participants restricts generalizability of
these findings. Thus, quantitative and qualitative data collected in combination or in sequence
offer more thorough evidence for understanding the research questions posed in this dissertation.
This justifies the use of sequential exploratory mixed methods research in collection and analyses
of quantitative and qualitative data (Creswell, 2003).

Pilot versions of the CSEAS and COES — containing open- and close-ended items — were
administered to students for the purposes of scale development and coding of open-ended
responses for subsequent analyses. Following the initial administration, semi-structured student
interviews were conducted to elicit interpretations of each survey and consequently refine survey
items. A second round of these interviews was conducted after finalized versions of each survey
were in administration. Comparing the data to evaluate similar patterns obtained subjectively and
statistically allowed for data triangulation and psychometric support that would have been difficult
to establish using either a qualitative or quantitative approach alone (Towns, 2008).

Description of samples
Preparatory chemistry

This 4-credit course serves as an introductory course in general inorganic chemistry
intended for students with little or no previous science background. Acting as a feeder course for
traditional and returning students, this course constitutes students with a variety of majors;
following completion of preparatory chemistry, students typically enroll in GCIL, II, or general
chemistry for engineers. This course has discussions but does not have an associated laboratory

component.
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General Chemistry I and II (GC I and II)

These courses (5 credits each) form the two-semester gateway sequence of introductory
college chemistry courses. Enrolled students include all science majors (except nursing and
engineering) and some allied health majors usually planning to enter professional programs in
medicine, dental hygiene, pharmacy, physical therapy and the like. These courses also administer
an internal placement test to assess students’ backgrounds in mathematics and chemistry. General
Chemistry I (GC I) administers the Toledo Chemistry Placement Exam (TCPE), written by the
American Chemical Society (ACS) while General Chemistry II (GC II) offers one component
(paired exam — GCO5PQF) of the two-part standardized final exam taken by students in GC L
Both courses have associated discussion and laboratory components. Both courses also take an
ACS standardized final exam (GCO5PQF and GCO8C).

General Chemistry for Engineers

This is the terminal course in chemistry for engineering majors. Composed primarily of
engineering majors, this course is also taken by some finance, math and computer science majors.
This course has an associated discussion and laboratory component. Students take a standardized
final exam.

General scale development

This section describes a general framework for instrument development. While this
framework served as a guide to the development of both surveys in this dissertation, each survey
had specific criteria that needed to be fulfilled; these issues will be discussed in detail in the
chapters dedicated to each survey.

a) The first step in instrument development requires defining the target construct accurately

followed by assessing the need for instruments to measure these constructs.
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b)

d)

g)

The type of scale and response style for the instrument was determined based on the analyses
to be conducted on the data. The need to measure latent variables, obtain descriptive statistics
and subsequently analyze resulting data justified the use of a subject-centered Likert-type scale
in the design of both instruments (Dawis, 1987) in this study. The Likert-type scales described
here are considered ‘quasi-interval’ — a type of scaling that falls between ordinal and interval.
While technically ordinal, these scales are the sum of Likert-type items comprising of five or
more levels of the latent variable being examined and as such end up being a reasonable
approximation of an interval data point (Rattray & Jones, 2007).
An initial pool of items was generated from an extensive literature search for existing measures
after which the number of items was reduced based on consultations with principal investigator
and fellow researchers.
The type of items, order in which they were presented and the language used were important
decisions to make in order to avoid biased responses. Open ended questions were added, if
necessary.
Surveys were pilot tested with each sample of intended respondents.
Psychometric analyses were conducted on each survey. The methods constituting
psychometric evaluation are discussed later in this chapter.
Following pilot testing and item deletion, a final version of survey was administered to a
different sample of respondents with ongoing psychometric testing.

Brief description of instruments

The first instrument, focused on measuring students’ perceived strength of self-efficacy

beliefs, is the Chemistry self-efficacy and anxiety survey (CSEAS) — in administration since Fall

2012 and comprising of 30 items measuring self-efficacy and 15 items measuring anxiety. Items

31



/ statements in this survey were vetted with students in semi-structured interviews. Each item was
evaluated on a Likert scale of 1-6 (1 = not confident at all to 5 = totally confident and 6 = not
applicable / not sure), adapted from Coll (Coll, Dalgety & Salter, 2002), and the survey was
administered in a pre/post manner. A short anxiety survey was also integrated within the CSEAS
to collect data that would aid in establishing some degree of validity. In addition, the instrument
asks for students’ majors and includes a plethora of questions to assess student behaviors and
interests. As this survey is offered during the first week of class, the majors indicated in the
CSEAS are more current than the information provided through institutional research;
consequently, these majors are coded and used for any analyses that requires this information.
Demographic information for the students, details about the instrument development process and
establishment of psychometric reliability and validity from the resulting data are presented in
chapter 4.

The second instrument, focused on measuring students’ outcome expectations, is the
Chemistry outcome expectations survey (COES) — in administration since Fall 2013. Given the
scarcity of surveys that capture outcome expectations, especially in chemistry, this instrument
would be the first in chemical education research to measure this construct. Students were asked
to indicate their level of agreement, with several ‘if-then’ statements (Fouad & Guillen, 2006)
using a Likert scale of 1-5 (1 = strongly agree and 5 = strongly disagree). The ‘if” sub-statement
was associated with a particular task; ‘then’ was used to phrase the outcome sub-statement (e.g. If
I work hard enough, I will pass this course). Comprising of 25 items, this survey was also
administered in a pre/post manner. Demographic information for the students, details about the
instrument development process and establishment of psychometric reliability and validity from

the resulting data are presented in chapter 5.
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The third survey was a subset instrument — in administration since Fall 2014 — comprising
of items from both the CSEAS and COES. While the utility of the full length CSEAS and COES
was tested on students in preparatory chemistry, GC I, GC II and chemistry for engineers, the
subset instrument was only administered to students in GC I and II as these courses constitute the
two-semester gateway sequence and serve as important decision points in the persistence model.
This instrument consisted of 25 items from both persistence measures (13 self-efficacy items from
the CSEAS and 12 items from the COES) and used the same Likert scales as the original full length
instrument for each construct. This instrument was also vetted with students in semi-structured
interviews. Demographic information for the students, details about the instrument development
process and establishment of psychometric reliability and validity from the resulting data are
presented in chapter 6.

Instruments that were administered on paper (“fill in the bubble” forms) were scanned and
processed using Remark Classic OMR (Optical Mark Recognition) software; the resulting data
were saved as Excel files for subsequent screening and use in analyses. Instruments administered
online were done so using Qualtrics; parameters of the survey included forced response for all
items, time stamps for total time taken, headers repeated at page breaks, page separation for
different components of the survey and the inability to go backwards. Resulting data were
exported into Excel accordingly. In addition, for the entire length of the study, demographic data
was sought through institutional research to offset any possible stereotype threat (Steele &
Aronson, 1995; Steele, 1997). Stereotype threat is a concern that members of underrepresented
groups experience about their performance or actions reinforcing or confirming a negative group
stereotype (Steele, 1997). For instance, the pervasive negative stereotype about “boys being better

than girls in mathematics” can result in girls performing poorly on a test they believe is measuring
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math ability due to their anxieties about confirming the negative stereotype (Spencer, Steele, &
Quinn, 1999). In many cases, the process of identifying oneself as female before taking a math
test was sufficient to trigger anxiety and result in lower test scores (Danaher & Crandall, 2008).
Consequently, instead of having students provide demographic information as part of survey
completion, these data, which included students’ sex, ACT scores, intended major and minor, high
school GPA and educational level, were obtained through institutional research. Some of this
information was utilized for characterizing the sample and for analyses relevant to each study.
Methods and data analyses

The following statistical procedures constituted the analyses that were completed to
characterize the sample, evaluate the instruments and assess the relationships among the variables
that framed each study.
Descriptive statistics

Given the considerable number of variables in each study, descriptive statistics were useful
in summarizing these variables and presenting this information in a manageable form. Measures
of central tendency like mean, median and mode provide the most basic information about the
observations in a data set. In addition, assessing the dispersion and normality of distributions also
offers a better understanding of the sample being studied. Descriptive statistics examined in this
work include cross-tabulations, means, standard deviations, skewness and kurtosis values.
Normality of distributions are assessed as required by the statistical technique.
Comparative statistics

T-tests and associated effect sizes were used to make comparisons between groups of

students. Paired sample t-tests were used to examine differences between measurements from the
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same group of students. Given the pre-post administration of surveys and comparisons in a single
group, these tests were useful in detecting statistical differences between the means in a population.

Independent sample t-tests were used to examine differences between two unrelated
groups. These tests were useful in evaluating changes between subgroups based on gender, ability
(high vs. low), performance (high vs. low) or construct (high vs. low self-efficacy or outcome
expectations).

Effect sizes, measured by Cohen’s d, were reported in both tests to evaluate the magnitude
of mean differences between groups (Cohen, 1988).

Correlation analysis

A bivariate correlation describes the extent of a relationship between two variables. The
correlation coefficient ‘7’ is a single value that expresses the direction and degree of linear
relationships between two individual variables in a sample. Depending on the type of data being
analyzed, the correlation coefficient can be a Pearson product-moment correlation, Spearman
Rank, Lagged and others. Correlation analyses were used in aspects of psychometric testing for
the CSEAS and COES. When multiple variables are involved, the correlations between each pair
of variables is expressed in the form of a correlation matrix (Thorndike, 1978).

This matrix serves as the starting point for various statistical techniques, including those
used to analyze data resulting from the studies described in this dissertation. Correlation analysis
was utilized in two basic ways: to reveal relationships between variables for informational and
decision making purposes and to determine the predictive ability of a variable such as in the case
of regression analysis, which will be discussed in some detail in chapter 6. As with any other

statistic, the proper interpretation of correlation coefficients depends on the sampling scheme used
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to generate the data. Adequate heterogeneity in sampled groups is essential to allow for the
manifestations of relationships (Miles & Banyard, 2007).
Factor analysis — Exploratory

Factor analysis refers to a collection of statistical techniques used to examine relationships
among complex variables. When these variables are latent — such as psychological or affective
states - and there is no direct method to measure them, surveys incorporating multiple items are
developed with the idea that there are underlying unobservable factors that will emerge based on
patterns in the survey responses (Field, 2009). The goal of factor analysis is to assess the patterns
of responses and regroup a large set of variables into smaller sets of factors; each factor is an
indication of the overall variance in the observed responses (Yong & Pearce, 2013). In this study,
factor analysis was used in psychometric instrument development as a way to refine the item pool
for each Likert-scale survey; in addition, it also contributed towards establishing aspects of
psychometric testing. The first phase of factor analysis was purely exploratory, aptly name
exploratory factor analysis (EFA). Once an underlying structure was established for each survey,
a confirmatory factor analysis (CFA) was used to test the stability of this structure.

There were several decisions involved in conducting factor analyses and interpreting the
results. The following steps describe these decisions, starting with some checks that were
necessary even before analysis was conducted:

a) Adequacy of sample size — The guidelines for adequacy of total sample size are varied. While

Tabachnick and Fidell (2001) recommend a sample size of at least 300 cases, they also indicate
that smaller sample sizes (e.g., n = 150) are adequate when other criteria necessary for accurate
interpretation of factor analysis results are satisfied. A minimum sample size of 100 cases is

recommended provided other requirements meet necessary standards (Rattray & Jones, 2007).
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b)

These guidelines have been criticized by some researchers who suggest that the data collected
should dictate the appropriate sample size; thus, the aim should be to obtain the largest possible
sample and make judgements about the adequacy of this sample size post data analysis
(Henson & Roberts, 2006). In this study, homogeneous data sets such as GC I-post and GC
II-pre from the same semester were combined once t-tests indicated that students in both
groups had similar ability levels (no significant differences) based on their ACT or TP scores.

Fulfilling assumptions — Data collected should be from a random sample and fulfil the

assumptions required of multivariate statistical techniques namely absence of outliers,
linearity, continuous data and low percentage of missing data (Comrey, 1985; Pett et al., 2003;
Beavers et al., 2013; Child, 2006). Multivariate normality is an assumption depending on the
method used to extract factors (Stevens, 2002).

Assessing the correlation matrix — The resulting correlation matrix was examined for moderate

to strong correlations among the variables (survey responses) because these are essential for
patterns to emerge and result in factors. The correlation matrix was also evaluated for
singularity based on its determinant. The determinant indicates whether the vectors comprising
the matrix are linearly independent. If rows or columns in a matrix are zeros, equal or a linear
combination of other rows or columns, resulting in linear dependencies, the determinant of this
matrix will be zero and this indicates singularity. In factor analysis, a determinant close to
zero would indicate presence of potentially redundant items that are strongly correlated and
deserve further evaluation (Pett et al., 2003). Other indices provided by the statistical software
were also used to assess the appropriateness of the correlation matrix: Kaiser-Meyer-Olkin
(KMO) which measures the shared variance in the items, Bartlett’s test of sphericity which

tests the null hypothesis that the correlation matrix is singular and measures of sample
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d)

adequacy (MSA) which examine the correlations of an item with other items in the matrix (Pett
et al., 2003).

Extraction of factors — A variety of methods are available for fitting the factor analysis model.

Principal Component Analysis (PCA) is used in data reduction and reduces a large number of
items to smaller components. The goal of PCA is parsimony wherein the maximum amount
of variance is extracted using the smallest number of factors (Field, 2009). In addition, PCA
extracts components that include the total variance (common, unique and error). Other
extraction methods include principal axis factoring (PAF) and maximum likelihood. PAF
parses out unique and error variances, thus accounting for just common variance among factors
while maximum likelihood not only extracts factors but also provides additional information
such as fit statistics (Pett et al., 2003). In this study, both PCA and PAF were used to extract
factors, make comparisons between the resulting factor structures and decide which structure
was meaningful substantively and statistically. If these techniques produced highly dissimilar
structures, this would call for reevaluation of the data — the correlation matrix would be
examined for low off-diagonal elements which could result in low communalities (proportion
of each variable’s variance that can be explained by the component) (Field, 2009).

Retention of factors — Several criteria were followed when deciding on how many factors to

retain. Mathematically, there can be as many factors as there are variables; however, not all
these factors contribute to the overall structure (Henson & Roberts, 2006). As the goal was to
explain the largest variance using fewest factors, only meaningful factors explaining aspects
of the construct being examined were retained. Kaiser’s criterion retains factors that have
eigenvalues greater than 1. Given the overestimation of factors using this criterion, the scree

plot was also used to make determinations about factor retention. The number of factors above
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the natural bend or ‘elbow’ were retained (Costello & Osborne, 2005; Thompson & Daniel,
1996). Parallel analysis — a Monte Carlo simulation technique — offered the best approach to
determine how many factors to retain. This method makes comparisons between the
magnitude of eigenvalues obtained using the dataset in question and those obtained from
randomly generated correlation matrices of the same size; factors retained were dictated by the
number of eigenvalues (generated from the researcher’s dataset) that were larger than the
corresponding random eigenvalues (Horn 1965). The parallel analysis engine used to calculate
these eigenvalues was available online (Patil et al., 2007; Patil et al., 2008; O’Connor, 2000).
In this dissertation, a combination of criteria was used to decide how many factors to retain.
In addition to those mentioned above, the residuals, percentage of cumulative variance and
characteristics of the resulting factor structure were evaluated to make this decision.

Factor rotation — Rotating each group of items toward the axis allows for easy interpretation
of the factor structure (Osborne, 2015). Two commonly used rotation methods are orthogonal
— where the factors are uncorrelated to each other — and oblique, in which the factors are
correlated. Achieving ‘simple structure’ was the goal behind selecting a certain type of
rotation. Simple structure is a condition in which each item has a high or important loading
(absolute value near 1) on one factor only, each factor has meaningful loadings for only some
of the items and no variable cross loads (Pett et al., 2013). While it is expected that most
factors would correlate with each other, thus justifying use of an oblique rotation, the main
concern of these exploratory analyses was to identify meaningful dimensions resulting from
structuring of variables. In addition, the methods used in much of the literature dedicated to
instruments developed here utilized an orthogonal rotation to achieve simple structure. Due to

these reasons, Varimax rotation, the default orthogonal rotation in SPSS, was used in the factor
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g)

analyses conducted on each instrument developed in this dissertation. As long as simple
structure is clear, either method of rotation should result in similar interpretations (Kline,
2002).

Interpretation — Each factor structure was examined for a few criteria: Mathematically and
substantively, a factor was considered meaningful only if it had three or more constituent
survey items, each with a strong correlation (“loading”) with the factor. As the analyses in
chapters 4 and 5 were mainly based on principal components (but checked with principal axis
factoring), resulting in higher estimated loadings, absolute loadings less than 0.50 were
suppressed; this was a stringent criterion indicating that 25% (or more) of the variance on the
item was shared with the factor. Items that cross-loaded (appeared in more than one factor)
were considered for removal if the loading in each factor was greater than 0.40 (Costello &
Osborne, 2005). The process of obtaining the most stable and meaningful factor structure was
an iterative one; deletion or modification of items was always ensued by an EFA with a range
of factors extracted to allow for comparisons between factor structures. If the items within
each factor showed a high degree of relatedness, the scores (survey responses) of these items
were combined into a single average subscale score. This process was followed for the factors
in both the CSEAS and COES. Obtaining a single, pure factor structure (with sensibly grouped
items) for each survey was the first step towards making meaningful measurements

longitudinally.

Factor analysis — Confirmatory

Having developed an instrument and obtained a factor structure using exploratory methods,

the next step was to confirm the stability of this structure across other population samples.

Confirmatory factor analysis (CFA) was used to test the factor structure(s) obtained using EFA.
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CFA utilizes a variance-covariance matrix to test a measurement model; as CFA was being used
to test the factor structure identified through EFA, the datasets used for CFA were different than
those used for EFA (Pett et al., 2003). In addition, as the factor structures from both the CSEAS
and COES had to be stable for longitudinal measurements, each structure had to demonstrate a
reasonable to good model fit at three different time points — start of GC I, end of GC I and start of
GC II. Consequently, data sets from each of these time points were utilized in CFA testing.

The proc calis procedure in SAS 9.3 was used to conduct a CFA; code for this procedure
is shown in Appendix A. While this code shows items from the COES, a similar code was written
for CFA conducted using CSEAS items. IBM SPSS AMOS 24 was used to create the CFA path
diagram and verify the results from SAS 9.3. For both instruments, the factor model was specified
using the latent factors and their constituent variables from EFA. The nonzero loadings (on
variables comprising each factor) were designated as free parameters and each observed variable
loaded on exactly one factor. Factor variances were fixed at 1.0 and error variances of the observed
variables were left as free parameters. The model was tested using correlated factors (co-variances
among factors were free parameters) and Lagrange Multiplier (LM) tests offered suggestions on
how to improve fit indices for the model. Residuals, outliers and leverage values were also
requested for in the SAS code. Models were tested with and without cases that were outliers or
had high leverage and residual values to check for improvements. Maximum likelihood (ML)
estimation was used as the model-fitting procedure and observations with missing values were
excluded. Although CFA requires a much larger sample size than an EFA and the full information
maximum likelihood (FIML) method allows inclusion of observations with random missing
values, this method was not used here mainly to stay consistent with the deletion procedures that

were used in all other analyses.
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Model fit was assessed using several types of fit indices: Absolute fit indices, relative fit
indices and non-centrality fit measures (Tanaka, 1993; Maruyama, 1998). Absolute fit indices:

a) The chi square test (x2) — A non-significant (p > .05) chi-square value indicates that the model

is acceptable; the observed and predicted covariance matrices are similar. However, chi square
tests are highly dependent on sample size, with large samples sometimes resulting in model

rejection (Schmitt, 2011). Thus, alternate fit indices are considered when reporting model fit.

b) Standardized root mean square residual (SRMR) — This represents the square root of the mean
of the covariance residuals. A good fit is indicated by a value less than .08 (Hu & Bentler,
1999).

Relative fit indices: These indices compare the target model to a null or baseline model.

a) Tucker-Lewis index (TLI) — Values above .95 indicate good fitting models (Hu & Bentler,

1999).
Non-centrality fit indices:

a) Root mean square error of approximation (RMSEA) — Currently the most popular measure of

model fit, the thresholds for acceptance are varied. However, according to Hu & Bentler
(1999), a value less than or equal to .06 indicates good model fit. In addition, the lower value
of the 90% confidence interval should be close to zero and the upper value should be less than
.08. Reporting the value of this index along with its confidence interval provides precise
information about the estimate of the RMSEA (Hu & Bentler, 1999).
In the instruments developed here, fit indices, parameter estimates, standard errors, standardized
residuals and factor correlations, squared multiple correlations were examined to justify fair to

good model fit of the factor structures. If these measures indicated poor model fit, modification
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indices were examined to make alterations to the factor structure; if this did not improve model fit,

EFA was conducted again.

Cluster analysis

Cluster analysis is a technique similar to factor analysis and ordinarily used to group people
instead of variables. These clusters result from similarity in people’s responses to variables or
items in a survey. However, for the instruments developed here, cluster analysis was used as an
alternative to factor analysis; thus, the goal was to cluster variables (survey items) that were similar
to one another. This method was used to obtain factor or ‘cluster’ structures in two chemistry
courses: preparatory chemistry and general chemistry for engineers. SPSS version 22/23 and

Excel version 2014/2015 were used to perform these analyses. The rationale for using this

technique for these courses was threefold:

a) To test the utility of a method typically reserved for grouping cases and examine the resulting
cluster structures.

b) Given that preparatory chemistry and general chemistry for engineers are ‘feeder’ and
‘terminal’ courses respectively, the fairly heterogeneous make-up of these courses and
resulting heterogeneity in survey responses called for a technique that would allow leeway for
non-normality in data and utilize measures of similarity other than the correlation coefficient
to analyze the variables.

c) To find an empirical classification and contextual similarity in responses based on the a priori
theoretically defined factor structures from general chemistry.

Cluster analysis used the Euclidean distance, d, as a measure of similarity with smaller distances

between variables representing greater similarity in variables. As this measure is highly sensitive

to large variances in responses, variables were standardized before analysis. The ‘hierarchical
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cluster’ method — in which variables start out in one cluster and gradually form individual clusters
—was used in this study (Everitt et al., 2001). Average (between-group) linkages, based on average
Euclidean distance, are used to create the clusters. The resulting dendrogram displays the links
between variables and allows for identification of variables that form distinct clusters. As this
method was an alternative to factor analysis, the dendrogram was used to create the analogous
“rotated factor structure”. Cluster and factor analyses were used as complements to examine
similarity in association and context when the surveys were administered to students in courses
related to general chemistry (Gorman & Primavera, 1983).
Psychometric theory

One of the crucial aspects of survey development involves the psychometric evaluation of
data resulting from these surveys. The ongoing validity and reliability testing of these data dictate
the utility of these survey instruments in research and practice. An existing instrument undergoing
modifications or being used outside of its target population requires data validity and reliability
checks with as much rigor as does a new instrument that is operationalizing a construct. This
section will present the validity and reliability tests that were conducted on data resulting from the
CSEAS and COES.
Validity

Validity refers to the extent that an instrument measures what it is intended to measure
(Barbera & VandenPlas, 2011). Construct and criterion-related validity were the two main types
of validity that were assessed in the CSEAS and COES.
a) Construct validity refers to whether a construct has been operationalized accurately. It

evaluates whether the instrument is actually measuring the construct it is supposed to measure.
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b)

Reliability

Factor analyses and student interviews were used to evaluate construct validity in the CSEAS

and COES.

Criterion-related validity evaluates the extent to which an operationalized construct relates to

some external criteria (Drost, 2011). Subcategories of criterion-related validity were examined

to assess a particular type of validity measure:

(1)

(ii)

Predictive validity evaluates the instrument’s ability to predict an external variable
based on theory. This was done using correlation analyses which assessed the
relationship between the instrument’s measures and performance indicators such final
exam scores or past performance such as placement test scores.

Convergent and discriminant validity examine the degree to which an instrument’s
measures are related or unrelated to other operationalized measures (Barbera &
VandenPlas, 2011). Correlation analyses were used to assess the relationships between
self-efficacy and anxiety within the CSEAS and self-efficacy and outcome expectations
between both surveys. In addition, other measures in the CSEAS were also correlated
with self-efficacy factors to test for convergent validity.

Convergent validity was also established qualitatively by verifying whether factors
resulting from each survey were similar to the item groups students created during

semi-structured interviews.

Reliability examines the quality of measurement, particularly the random error in observed

data (Barbera & VandenPlas, 2011; Trochim, 2000). Reliability for the CSEAS and COES was

assessed using estimates of internal consistency. Cronbach’s alpha (o) — mathematically, the

average of all possible split-half correlation estimates — was used as the reliability measure for the
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CSEAS and COES (Barbera & VandenPlas, 2011; Trochim, 2000). SPSS version 22/23 was used

to determine this value for both instruments. Ranging from 0.00 to 1.00, good internal consistency

is indicated by alpha values greater than 0.7. However, values higher than 0.9 indicate potentially
redundant items in an instrument (Barbera & VandenPlas, 2011). As the subscales (factors) within
the CSEAS and COES were measuring different aspects of the same construct, Cronbach’s alpha
was reported for each subscale as opposed to one alpha value for the CSEAS and COES
respectively.

In addition to Cronbach’s alpha, item total correlations and square multiple correlations
were also examined to assess the reliability of both survey instruments.

Data cleaning

The following measures were implemented to provide the ‘purest’ data sets for analyses:

a) Given the tendency of students to picket fence in self-report instruments, any student whose
survey responses showed zero variance was excluded from analyses.

b) As datasets from different semesters of the same course were combined for analyses, a student
retaking the course was included based on their first attempt at the survey because this was
their initial, ‘pure’ response free of any bias.

c) Unless stated otherwise, listwise deletion (from SPSS) was used for all datasets with missing
data; cases with multiple responses, missing ID, or a response beyond the intended range
were also excluded.

Human Subjects Approval
Research involving data collection from human subjects requires ethical training and
approval by the local institutional review board (IRB). The methods utilized, data collected and

authorization to disseminate findings were compliant with the IRB protocols at University of
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Wisconsin — Milwaukee. Students signed one consent form at the beginning of each semester to
designate their participation or lack thereof in data collection procedures for all class-wide surveys
administered during that semester. A separate consent form under the same IRB # was used for
data obtained using think aloud student interviews. Both forms can be found in Appendices B

and C.
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CHAPTER 4: DEVELOPMENT AND VALIDATION OF THE CHEMISTRY
SELF-EFFICACY AND ANXIETY SURVEY
This chapter describes the development and psychometric testing of data produced by the
Chemistry Self-Efficacy and Anxiety survey (CSEAS).
Background and Rationale

Self-efficacy has been a much researched construct ever since Hackett and Betz (1981)
proposed that women were severely underrepresented in scientific and technical fields due to their
relative lack of preparation in mathematics and their subsequent avoidance of math; while this
phenomenon has been attributed to negative attitudes (Fennema & Sherman, 1977) and math
anxiety (Richardson & Suinn, 1972), Hackett and Betz explored this investigation by extending
Bandura’s (1977) self-efficacy theory to the domain of mathematics; they hypothesized that
college females have weaker mathematics self-efficacy beliefs than college males and that these
beliefs play a key role in the career decision making process, particularly with regards to selecting
science-based majors. The first step towards exploring mathematics self-efficacy expectations
was to develop a measure of mathematics self-efficacy expectations (Betz & Hackett, 1983). The
mathematics self-efficacy scale (MSES) was operationalized to include perceived self-efficacy in
three domains: Solving math problems, everyday math tasks and college coursework. The final
version of the MSES consisted of 52 items and requested students to indicate their confidence in
their ability to “successfully perform the task, solve the problem, or obtain a grade of “B” or better
in the college course” (Betz & Hackett, 1983, p332). Students responded using a 10-point rating
(O=not confidence at all to 9=complete confidence). The results showed that males displayed
stronger self-efficacy expectations than females on most of the items in the MSES, with an

emphasis on those related to college coursework. When the tasks consisted of stereotypically
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feminine activities such as ‘grocery shopping’, the self-efficacy expectations of females were
equivalent to those of males. These results brought up the question of whether similar phenomena
existed in other domains and if self-efficacy expectations were a potential contributor to these
behaviors. Consequently, several researchers began to develop and validate surveys to assess self-
efficacy in various academic domains.

The Science Self-Efficacy Questionnaire (SSEQ), consisting of 27 items, was developed
to examine high school students’ self-efficacy in science; students responded to the prompt “how
much confidence do you have about doing each of the behaviors” on an A-E letter scale with
A=quite a lot and E=very little. A pilot test and subsequent EFA revealed four factors, three of
which related to self-efficacy in biology, physics and chemistry and the fourth factor related to
laboratory self-efficacy (Smist, 1992). When the SSEQ was administered to college students
enrolled in general chemistry, the same factors were observed with females displaying
significantly lower self-efficacy than males on only the factor related to laboratory self-efficacy.

The LAESE (longitudinal assessment of engineering self-efficacy) instrument was
developed and validated to measure the self-efficacy of women studying engineering, in addition
to measuring outcome expectations and feelings of inclusion (Marra et al., 2005). The survey
resulted in six subscales: Engineering career expectations, engineering self-efficacy I and II,
feeling of inclusion, efficacy in coping with difficulties and math outcomes efficacy. In addition,
the survey also includes several self-reported measures related to students’ persistence in their
degree plans.

Baldwin et al., (1999) developed a college biology self-efficacy instrument to assess
students’ self-reported confidence in understanding and utilizing biology in their lives. This

survey (Biology Self-efficacy scale), containing 23 Likert-type items, was administered to
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nonbiology-major students; subsequent EFA resulted in three factors: Methods of biology, which
reflected students’ perceived confidence in using analytical skills to conduct biological
experiments, generalizing skills learned in biology to other biology/science courses and students’
confidence in their ability to apply biological concepts to everyday occurrences.

In the chemistry domain, Coll, Dalgety and Salter (2002) developed the Chemistry
Attitudes and Experiences Questionnaire (CAEQ) to measure the impact of students’ learning
experiences on their attitudes towards chemistry and their chemistry self-efficacy. The final
version of the CAEQ comprised of three scales — Attitude towards chemistry scale (21 items across
all attitudinal subscales), self-efficacy scale (17 items with five items per subscale) and the learning
experiences scale (31 items with five items per subscale). These subscales measured attitudes
towards chemists, chemistry in society, career interest in chemistry, lecture learning experiences,
tutorial learning experiences and such. The self-efficacy component of the CAEQ, for which
students indicated how confident they felt about undertaking the specified tasks, was measured
using a 7-point semantic differential scale from ‘very confident’ (7) to ‘not confident at all’ (1).

Bauer (2008) developed a survey instrument — Attitude toward the Subject of Chemistry
Inventory (ASCI) - for measuring student attitudes regarding chemistry. The 20-item survey used
a 7-point semantic differential format with students indicating their attitudes toward chemistry on
the 7-point scale between two polar opposite adjectives. The survey was administered to students
in a general chemistry course; most of these students were in their first year and represented diverse
majors, including engineering, sciences, and liberal arts. Students took the survey across an entire
week near the end of the semester (Bauer, 2008). EFA results showed the presence of three distinct
factors: Interest and Utility, Anxiety and Intellectual Accessibility; some items did not emerge as

separate factors and either loaded weakly across the three factors or appeared as a standalone item
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(Bauer, 2008). One item was very distinct and called the “fear” item, although it never loaded on
the anxiety factor. A second set of items resulted in weak loadings across the three major factors;
these items were called the ‘emotional satisfaction’ item set as opposed to a factor (Bauer, 2008).

Uzuntiryaki and Aydin (2009) developed and validated the Chemistry self-efficacy scale
for college students (CCSS) to assess college students’ beliefs in their ability to perform essential
chemistry tasks. The 21-item survey requested students to indicate their opinion about various
statements related to chemistry tasks; the statements were phrased as questions which examined
students’ ability in terms of “how well they could” or “to what extent could they”. Students
responded on a scale ranging from 1-9 (1=very poorly and 9=very well with interim ratings of
‘poorly’, ‘average’ and ‘well’). EFA resulted in three factors: self-efficacy for cognitive skills,
self-efficacy for psychomotor skills and self-efficacy for everyday applications.

While these surveys have been tested for reliability and validity, resulting in ease of item
selection, this study aimed to develop or adapt items which would establish an existence of task
specificity similar to that in math so as to capture finer changes/fluctuations in self-efficacy that
could be tied into specific content areas. The first step to this goal was to capture the greatest
changes in self-efficacy in a pre/post manner for the course context so as to replicate literature
studies. This necessitated the construction of a meaningful measure of self-efficacy. Thus, the
following objectives guided this study:

a) To develop an instrument to assess students’ self-efficacy in chemistry.
b) To establish validity and reliability for the target population of the data resulting from this

instrument.
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Methodology

This section describes the phases involved in development of the CSEAS. The selection
of items, construction of the instrument, testing and participants will also be detailed. The analyses
conducted to psychometrically evaluate the resulting data will also be examined.
Development of the CSEAS items — Self-efficacy and anxiety

Conceptualizing the self-efficacy items in the CSEAS involved an adaptive process due to
the multitude of global and domain-specific self-efficacy surveys in the literature. In addition to
the self-efficacy surveys in chemistry, self-efficacy surveys from other STEM domains were also
referred to during the CSEAS development process. As the purpose of the CSEAS was to establish
task specificity in chemistry similar to that in math, the MSES, developed by Hackett and Betz
(1983) was used to guide the development of similar items and subscales in chemistry. Dalgety
and Coll’s CAEQ was used for some of the items, despite these items being fairly omnibus in their
measurement of self-efficacy. Furthermore, the CSSS, developed and validated recently as a
measure of self-efficacy for college chemistry, was used to incorporate several items too. Lab
related items were excluded from the CSEAS not only for parsimony but also for utility of this
instrument in courses that did not have a laboratory component. Given the highly context- and
task-dependent nature of self-efficacy beliefs, the desired level of specificity for the CSEAS had
to be selected carefully.

Researchers have recommended generality in efficacy measures if self-efficacy beliefs are
being used to explain performance within a generic setting, such as student performance in a
chemistry class (particular course). In such situations, there is a tendency for people to make
efficacy judgments across the entire range of tasks required by that setting (lab, quizzes,

discussion) (Lent & Brown, 2006). Generality is also favored when the breadth of tasks to be
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considered in the evaluation of efficacy is not fully realized. On the other hand, if the purpose
were to predict student performance levels for a particular task, such as a certain type of chemistry
problem, a highly specific measure of self-efficacy would be needed to provide the best predictive
power. In general, efficacy beliefs offer the most accurate predictions when measures of these
beliefs correspond highly with performance criteria (Lent & Brown, 2006).

In this study, the item pool was generated giving consideration to generality, domain and
task specificity. Despite the strong emphasis on these three dimensions and their role in
distinguishing self-efficacy from other conceptualizations such as self-concept (Pajares, 1996),
care had to be taken in adapting statements so that they adequately differentiated self-efficacy from
self-concept. While the latter is a person’s general perception of self in given fields of functioning,
self-efficacy is a person’s expectations of what he/she can accomplish in given situations. The
evaluation of each of the constructs requires the students to pose different questions about
themselves; while self-efficacy beliefs require assessments of confidence and answer the question
“can I do this?”, self-concept beliefs necessitate reflections of “feeling” or “being” and assess
answer the question “how do I feel about myself in a subject specific context?” Thus, the items
and prompt to measure self-efficacy using the CSEAS had to be fairly specific for students to
immediately pose questions about the confidence in their abilities to perform the given tasks as
opposed to making self-appraisals.

In addition to task and domain specificity, self-efficacy judgments are situation-specific
(contextual) as well. Context-specificity is crucial in measures of self-efficacy because the
accuracy of self-efficacy judgments requires careful consideration of all the affordances and
constraints of the task-performing situation (Pajares, 1996). The case for the contextual and

mediational role of self-efficacy in human behavior can be examined by exploring the four sources
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of efficacy beliefs: Mastery experiences, vicarious experiences, verbal persuasions and
physiological states. While mastery experiences are the most influential source of these beliefs as
they relate to an individual’s successful performance, vicarious learning and verbal persuasions
are less impactful on efficacy beliefs. On the other hand, physiological states such as anxiety,
stress and mood can be influenced by self-efficacy and affect students’ performance; studies have
shown that mathematics anxiety can often affect students who, ordinarily, do not experience
anxiety in other subject domains (Cates & Rhymer, 2003). While the effects of math anxiety are
specific to an individual, students with high levels of math anxiety are more inclined to develop
negative attitudes towards math and are more likely to avoid taking math courses in college. Given
the unfavorable impact of anxiety on self-efficacy and achievement, this study developed a short
scale to measure chemistry students’ anxiety; while the utility of this scale has been primarily for
validation purposes, the relationship between self-efficacy and anxiety might offer added insight
into profiles of students who might be at-risk of dropping the course due to the adverse impact of
anxiety on their self-efficacy. In addition, anxiety differences and test performance between male
and female students could offer empirical support for stereotype threat.

The item pool for the anxiety survey was gathered from two surveys:

a) Revised Mathematics Anxiety Rating Scale (RMARS), developed by Plake and Parker (1982).
This survey consisted of 16 items and resulted in two factors — Anxiety related to learning
mathematics and anxiety related to mathematics evaluation.

b) Derived Chemistry Anxiety Rating Scale (DCARS), developed by Eddy (2000). This 36-item
survey was used to measure anxiety related to learning chemistry, being evaluated in chemistry

and handling chemicals.
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Items related to anxiety about handling chemicals were not included in the CSEAS. The items
were selected based on the extent to which they shared similar contexts or aspects with the self-
efficacy statements.

Lastly, when selecting a prompt for this survey, the question of whether self-efficacy and
confidence were evaluating the same construct was addressed. While several surveys using
‘confidence’ to assess self-efficacy have been psychometrically tested as extremely valid and
reliable, understanding the differences between these terms was essential to the interpretation of
the survey and in the development of related assessment measures. According to Bandura (1997),
confidence refers only to the strength of certainty of one’s beliefs, and without the need for a
positive outcome, such as an individual being completely confident in failure. Despite
“confidence” not being synonymous with self-efficacy, when expressed positively, it can be
viewed as a component of self-efficacy (Marra & Bogue, 2006).

Structure of the CSEAS

As the structure of the CSEAS varied from the pilot administration (Fall 2012) until it was
first administered online (Spring 2013), this section will describe the development by semester
and the accompanying changes.

Fall 2012

The structure of the pilot CSEAS survey was adapted from Zaracova et al., (2005) and had
30 Likert-type items modified from existing self-efficacy surveys. Two versions of this survey
were administered to evaluate and compare the resulting data and finalize a version for subsequent
semesters. The first version required students to assess just their self-efficacy by responding to 30
items using the prompt “How confident are you about:”, with the scale ranging from (1 = not

confident at all to 5 = totally confident and 6 = not applicable/not sure). The second version
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required students to assess their self-efficacy and stress for the same 30 items using the prompts
“How confident are you about:” for self-efficacy (same scale as above) and a new prompt “How
stressful are you about:” for stress on a scale of (1 = not stressful at all to 5 = totally stressful and
6 = not applicable/not sure). These two scales were utilized not only to facilitate psychometric
validation — college-related stress has been found to be inversely related to academic performance
among traditional undergraduates (Pritchard & Wilson, 2003) — but also to assess students’
efficacy beliefs about handling a task they perceived as a threat or a challenge as this would
indicate use of coping strategies and persistence at managing the task (Zaracova et al., 2005).

In addition, an anxiety survey was also administered and required students to respond to
12 Likert-type items using the prompt “How anxious do you get when:”, with the scale ranging
from (1 = not anxious at all to 5 = totally anxious and 6 = not applicable/not sure). In order to
measure stress and confidence in the same direction for high stress to correlate with low
confidence, the confidence scale was recoded so that raw confidence scores of 1-5 were scored as
5-1 while raw stress scores were scored as rated from 1-5. A rating of 6 on both scales was recoded
to zero, which was further changed to a blank (missing value) so as to not impact parametric
statistical analyses. The pilot versions of the self-efficacy, self-efficacy and stress and anxiety
surveys are shown in Appendices D, E and F respectively.
Spring 2013

Online administration of the survey was started in Spring 2013; based on analyses of the
pilot survey and in an effort to try and gather much more information on an online platform, this
survey version excluded the assessment of stress and consisted (in this order) of 30 slightly revised
self-efficacy items, 15 items to evaluate anxiety (three of these items were verification items that

were added based on student interviews for the pilot version) and a plethora of items which
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required students to select possible reasons for their self-efficacy and persistence in the course,
their likelihood of persisting in a major, information about their current majors, study habits and
their sources of help when they struggled in the course (Seymour & Hewitt, 1997; Grunert &
Bodner, 2011).

Student interviews — instrument development and implementation

The purpose of this phase of semi-structured student interviews (conducted in Fall 2012)
was to aid in instrument development by refining items (from the pilot version) based on student
interpretation. The graduate student solicited for participants during the last five minutes of
lecture, where the class was informed of the goal of the interviews, compensation for voluntary
participation, recording and videotaping of the process and confidentiality guarantees.
Compensation was a $20 gift card to the university book store and the interview was scheduled to
last 45-60 minutes. 15 students signed up to participate in semi-structured interviews, during
which paper copies of the CSEAS (with stress and self-efficacy) and anxiety surveys were
presented and students responded to each statement while verbalizing their thoughts about the
items and associated contexts.

During interviews, several students required clarification about assessing their self-efficacy
in tasks which involved solving a quantitative problem; these students started solving the problem
and based their ratings on whether they could successfully solve the problem during the interview.
Consequently, these students had to be instructed to assess ‘perceived’ confidence as opposed to
confidence when actually performing the task. While there were revisions made to the self-
efficacy items from pilot to online versions, these revisions were minor and were especially
pertinent with regards to omnibus items because some students characterized these items as being

“too vague”. For instance, the item “determining what answer is required from a written
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description of a problem” was revised to “understanding what a written chemistry problem is
asking you to do” because of problems related to context/scope (chemistry vs. other domains) and
clarity (“written problems do not always involve answers that can be firmly determined” or “the
word determined sounds like it relates to a mathematical problem”). Similarly, in a different item,
the term “formula” was replaced with “equation” due to students’ familiarity with the latter term.
Some of the items were revised because of the idea that students’ self-efficacy would plateau or
stay unchanged due to the overly simplistic nature of the item; for example, “converting the
temperature in your home from degrees Celsius to Kelvin” was changed to “converting the
temperature from Fahrenheit to Kelvin”. One of the items that posed some issues even after
revisions was “learning chemistry in this chemistry course (if there were no exams to take)”. Most
students stated that “without exams, they would not know how well they had learned material”
and were inclined towards the neutral option on the survey. When this item was revised to
“learning chemistry (if all exams were take-home exams)”, some students gravitated towards
indicating a confidence level due to the presence of an evaluative component, albeit a take-home
exam, that would allow them to use what they had learned.

With regards to the stress component in the CSEAS, research supports the assumption that
awareness of a negative stereotype increases situational anxiety, stress and fear of evaluation
(Steele & Aronson, 1995). For instance, a negative stereotype exists about female students being
inferior in math relative to male students; if female students were to be evaluated or judged in
terms of a negative stereotype, they would be likely to perform worse in a domain in which their
subgroup experiences negative stereotypes. Given that negative effects of stereotype threat on
performance are mediated by physiological states such as stress, female students would be doubly

threatened about not only their perceived confidence on math items, but also being reduced to a

58



negative stereotype targeting their group in the chemistry domain (Steele & Aronson, 1995). There
were no apparent of indications of stereotype threat during the interviews; some female students
who exhibited an innate stress or low self-efficacy for certain items or throughout the interview
process were those who were non-traditional students or had not taken a chemistry class in several
years. From a psychometric perspective, while the general prediction was that stress and
confidence would demonstrate an inverse relationship, this was not a consistent and clear
relationship. Students’ responses to stress and confidence for a statement were highly dependent
on the appraisal of the task and whether it was deemed a challenge or a threat (Chemers et al.,
2001). For instance, while the students were not very confident about explaining why salt melts
ice, there were not stressful at all about the task due to the minimal threat it posed from an
assessment or evaluative standpoint. Another item that displayed similar issues was regarding
students’ confidence about receiving the grade they desired in the course. While some students
were confident of their study habits and of the grade that would be received, they were highly
stressed because “sometimes hard work did not necessarily translate to an expected grade”. Thus,
subsequent to pilot testing, the CSEAS administered online excluded the ‘stress’ scale in order to
avoid ambiguities about the purported relationship between stress and self-efficacy.

For the anxiety survey, some students had a different interpretation of ‘anxious’ and viewed
it as excitement or anticipation instead of making a negative association. This required the original
anxiety survey to be amended to included three verification items. These are items that are inclined
to elicit either an absolutely positive or absolutely negative response with little to no room for
interpretational ambiguities. Scale for the anxiety survey was 1=not anxious at all to 5=totally
anxious and 6= not applicable/not sure. The verification items added to the anxiety survey were

students’ anxiety related to:
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a) Getting extra credit for attending your chemistry lecture

b) Cramming the night before your chemistry exam

c) Not knowing the material on your chemistry exam

Thus, if students indicated low anxiety levels for items (b) or (c) or high anxiety levels for item
(a), these students were perhaps interpreting anxious differently and were subsequently excluded
from analyses. The final version of the online CSEAS is included in Appendix G.

The purpose of this second phase of semi-structured student interviews was to aid in
psychometric testing by establishing another layer of validity. Additionally, these interviews also
aided in understanding context sensitivity by examining the degree to which context/perception of
a student affected their perceived confidence.

The graduate student solicited for participants during the last five minutes of lecture, where
the class was informed of the goal of the interviews, compensation for voluntary participation and
confidentiality guarantees. Compensation was a $10 gift card to the university book store and the
interviews were scheduled to last 30-45 minutes.

During the interview, the researcher demonstrated the task at hand by using an example unrelated
to chemistry. Notecards with culinary references and items were placed on the table as shown in
Figure 4.1. The researcher then demonstrated the task by sorting the cards into appropriate

categories as shown in Figure 4.2.

Roasting Banana Apple Orange
Grocery Frying Peeling Dicing
shopping

Figure 4.1. Example of notecards used for sorting task during interviews
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Grocery Roasting Peeling Orange
shopping
Banana
Frying Dicing Apple
Standalone
Culinary techniques Fruits

Figure 4.2. Example of notecards sorted into meaningful groups

Following this demonstration, students were given notecards, each with the name and number of
a self-efficacy item from the CSEAS as shown in Figure 4.3. Students were asked to group these

items and offer a category name.

Preparing for Asking questions
chemistry exams 29 27 during lecture

Talking to your
chemistry professor 2s

Figure 4.3. Example of notecards with actual survey items and numbers for sorting task during interviews

Students listed their categories and constituting items, following which the researcher compared
their groupings to those obtained from factor analyses. In addition, groupings created by
interviewees were also compared to each other to evaluate potential similarities in context
association, if any.
Data collection and participants

A summary of the measures collected, time point and purpose of testing is shown in Table

4.1.
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Table 4.1. Summary of testing purpose, timeline and data collected - CSEAS

Testing Purpose of testing Time point Data collected

a) Survey with standalone self-efficacy prompt
1 Pilot survey administration (paper) Fall 2012 b) Survey with self-efficacy and stress

c) Anxiety survey

a) Stress-self-efficacy survey and anxiety survey

2 Interviews - pilot instrument Fall 2012 and
development and psychometric testing Fall 2013 b) Notecards with item names (for grouping)
. . a) Self-efficacy, anxiety, contextual measures and
. . ) ) Since spring ; .
3 Main survey administration (Qualtrics) intended major

2013

The first attempt at measuring self-efficacy was carried out in Spring 2012 using a semantic
differential instrument (Bauer, 2008). As data was collected by a different researcher, the
demographic details of participants have been excluded from this section. However, a summary
of the results and excerpts from interviews conducted with two students will be presented in the
appendix as part of the results and discussion for this preliminary data.

The CSEAS has been in administration since Fall 2012; the pilot study using CSEAS on
paper was conducted in Fall 2012 while online data collection using the final version of the CSEAS
has been occurring since Spring 2013.

In fall 2012, the two versions of the CSEAS paper survey were tested on two different
lecture sections of GC I to compare resulting factor structures and decide on a version for
administration in subsequent semesters. Each section of students was given a version of the self-
efficacy survey and the anxiety survey by the course instructor in lecture during the first week of
class. For courses other than GCI, surveys were distributed and collected by teaching assistants
during their discussions. Each discussion section received either version of the self-efficacy
survey and the anxiety survey.

For GC 1, course instructor explained the purpose and importance of the surveys during

lecture, in addition to extra credit incentives that would be offered upon completion of the surveys.
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Students who returned incomplete surveys or did not return their surveys within the first two weeks
since start of classes were not included in data analyses as there was a chance that these students
had been sufficiently exposed to the course material and to the instructor for their responses to be
biased. The post surveys (two versions) for both lecture sections of GC I were distributed a week
or two before the start of final exam week. Surveys were distributed and collected in the same
lecture. The paper surveys (self-efficacy and anxiety) typically took 10-15 minutes to complete.
Starting in spring 2013, the CSEAS was distributed online using a link generated by
Qualtrics, the platform that housed the survey. As this link was common to another survey
(assessing students’ knowledge of scale) that was already being administered to GC I students, the
CSEAS survey was attached to this survey. Thus, students responded to the scale survey followed
by the CSEAS. This sequential administration of two surveys was followed for GC I only. All
other courses were sent links that only administered the CSEAS. Links for the pre-surveys were
sent out to each course instructor along with a brief greeting to the students, explaining extra credit
incentives and the duration for which the link would be open. As these incentives were specific
to each course, instructors modified the incentives as they saw fit before sending out the link to
their students. Links were sent out a day or two before classes would start and were active for one
week. While there was no official “deactivation” of the survey, students who submitted their
surveys past the closing deadline (as indicated by timestamps associated with each submission)
were not included in analyses. The CSEAS portion of the survey typically took about 20 - 30
minutes to complete although it was possible to complete the survey in about 6 minutes if responses
were clicked blindly. Post-survey links (following the same protocols as described above) were

sent out a week or two before the start of final exams week.
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The studies described in this chapter were conducted at a large, urban, research intensive
public university in the Midwestern United States. Surveys were administered to students enrolled
in preparatory chemistry, GC I, GC II and general chemistry for engineers; the descriptions of
these courses are given in chapter 3. Tables 4.2 and 4.3 show the participants for the pilot and
online administrations of the CSEAS. Table 4.2 shows participants for the version of the survey
that incorporated the standalone self-efficacy scale (without the stress scale) as this standalone
version was going to be in use for subsequent semesters.

Table 4.2. Participants (by course) for pilot administration of paper version of CSEAS — Fall 2012

Fall 2012 (pilot) Prep. Chem Gen. Gen. Gen. C.hem. for
Chem.| | Chem. engineers

Pre (N) - SE only 84 155 58 39

Pre (N) - Anxiety 156 150 55 65

Post (N) - SE only 65 85 78 50

Post (N) - Anxiety 67 100 110 43

Table 4.3. Participants (by course) for administration of online version of CSEAS — Spring 2013

Spring 2013 Prep. Chem Gen. Gen. Gen. Clhem. for
Chem.!| | Chem.ll engineers
Pre (N) 166 181 102 36
Post (N) 80 114 60 N/A

Data analyses
Data were cleaned as described in chapter 3. For the pilot version which had both self-
efficacy and stress assessments, the confidence (self-efficacy) scale was recoded so that raw
confidence scores of 1-5 were scored as 5-1 while raw stress scores were scored as rated from 1-
5. This was done in order to measure stress and confidence in the same direction so that a high
stress score would correlate with low confidence scores. A rating of 6 on both scales was recoded

to zero, which was further changed to a blank (missing value) so as to not impact parametric
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statistical analyses. Although the online version of the survey excluded the ‘stress’ prompt,
recoding the self-efficacy scale as described above was continued to stay consistent.

An additional piece of information that had to be noted since the online administration of
the survey was the timestamp associated with each student’s response. As there were timestamps
that were either too low (possible lack of variance in student responses) or two high (if students
had the survey open, moved on to other tasks and returned to complete it), a plot of frequency vs.
timestamp, as shown in Figure 4.4 was observed for normality. These plots, observed each
semester, show an average time of an hour for completing both surveys that are part of the link
with some students who fall into timestamp ranges well below and beyond the mean. While
students on the lower end often coincided with those who lacked any variance in their responses
and were excluded on this basis as part of data cleaning, students on the upper end displayed
considerable variance in their ratings, and had typed out text for some of their open response items.
Therefore, for the purposes of this study, only students who had zero variance in their data were
excluded from any analyses. While timestamps continue to be noted, excluding students on the
basis of short completion times because they may not have responded to the survey thoroughly

was not the approach that was taken here.

65



TimeStamp

=
'}
1|

Frequency
1§

5
1

EEEEL LN LLL
1’61& UMM 474653

TimeStamp

Figure 4.4. Plot of frequency of students against online survey completion time for Fall 2014
Descriptive statistics were obtained for all items in the CSEAS for assessments of univariate
normality, skew, kurtosis and missing data.

For GC I alone

EFA was conducted in an effort to replicate the factor structure resulting from data
collected at another institution.

For data from GC I and GC 11

Factor analysis (EFA and CFA) was conducted to determine the most robust and
meaningful factor structure. An average score was calculated for each subscale (“factor”) based
on the student responses to statements (items) and the high degree of relatedness of the items that
constituted the subscale. As the overall goal of this project was to obtain consistently stable
measures of self-efficacy and outcome expectations at different time points during a longitudinal
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model, EFA was meant to be conducted using datasets from courses that frame the different time
points in this model and comprise of fairly homogeneous groups of students in terms of ability
levels — post-GC I, pre-GC II and a combined dataset respectively. However, as GC II had
different instructors for a semester or two, there were lapses in data collection due to delayed
distribution of survey links, which resulted in exclusion of data from these semesters. As a result,
while sample sizes were adequate for conducting EFA on post-GC I datasets, they were not large
enough for EFA to be conducted on pre-GC II datasets by themselves. Therefore, EFA were
conducted on two combined datasets from Fall 2012 and Spring 2013. These results were
compared to an EFA that was run using post-GC I data alone.

Comparative statistics were obtained (using GC I) as described in chapter 3. For
independent sample t-tests, high vs. low performing groups (on final exam and in the course) were
created based on z-scores for the raw data. Students with z-scores > 0 were categorized as the
high-performing group while z-scores < 0 were the low-performing group. In the CSEAS, a low
average score on a self-efficacy subscale implied high self-efficacy (confidence) while a low
average score on a stress or anxiety subscale implied low stress or anxiety.

Reliability and validity were established using the measures detailed in chapter 3.

For data from preparatory chemistry and general chemistry for engineers

Cluster analyses were used to group the responses from students in these courses. While
these courses do not play an integral role in the development of a longitudinal model, they serve
as two key courses that pave the way for students to be primed for enrollment in general chemistry
or in their respective engineering fields. Thus, the analysis conducted here is the first step to
establish affective and cognitive meaning in two courses comprising of highly heterogeneous

groups of students.
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Results and discussion
Semantic differential
The quantitative and qualitative results of this analysis, using data collected prior to
Spring 2012, are summarized in Appendix H.
Descriptive statistics
The demographic statistics for combined datasets from Fall 2012, Spring 2013 and post-
GC I from Fall 2014 are provided in Table 4.4.

Table 4.4. Demographic characteristics of a) combined datasets from Fall 2012, Spring 2013 and post-

GC I from Fall 2014
Post-GCl + Pre-GC Il - Fall'12 Post-GCl + Pre-GC || - Spring'13 Post-GCl - Fall'14
Variable N % Variable N % Variable N %
Gender Gender Gender
Male 56 39.4 Male 84 39.6 Male 49 45.0
Female 86 60.6 Female 128 60.4 Female 60 55.0
Acad.Level Acad.Level Acad.Level
Freshman 13 9.2 Freshman 34 16.0 Freshman 21 19.3
Soph. 64 45.1 Soph. 82 38.7 Soph. 52 47.7
Junior 29 20.4 Junior 44 20.8 Junior 20 18.3
Senior 36 25.4 Senior 52 24.5 Senior 15 13.8
ACT scores Average ACT scores Average ACT scores Average
Composite 24.29 Composite 23.92 Composite 23.60
Math 24.18 Math 24.09 Math 22.99
Sci. 24.39 Sci. 23.97 Sci. 23.75

Among the intended majors, on average, about 30% of students were biology,
microbiology and biochemistry majors, while close to 20% were undecided followed by 12% of
students with various majors in liberal arts and the remaining percentage allocated to majors in
miscellaneous fields such as business, engineering and education. Although the data show ACT
scores for combined datasets and one post-GC I dataset, when t-test results were examined for
differences in ACT scores between students in post-GC I and pre-GC II, no significant differences
were observed for ACT scores in either component or overall; consequently, a combined dataset

of students from post-GC I and pre-GC II was used for factor analyses. The fall 2012 combined
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dataset had the highest percentage of missing data (2.8%) for items 9, 18 and 21 while the spring
2013 combined dataset had 2.4% missing data for items 10, 18 and 20 and 2.9% for items 28 and
25. While some individual items displayed skewness and kurtosis above recommended values,
the resulting subscales or factors for the final model had values within range.
Factor analysis — Exploratory

Table 4.5 shows the factor structure of two combined datasets from Fall 2012, Spring
2013 and a post-GC I dataset from Fall 2014. These structures shown items in sequence and
how these items tracked across the structures; decisions were made about items that needed to be
excluded from analyses. The correlation matrix and item characteristics are only shown for the

dataset that lead into the final factor structure.
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Table 4.5. Component matrices: Factor structures of datasets from Fall 2012, Spring 2013 and Fall 2014
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These structures were extracted using the eigenvalue > 1 condition. Each combined dataset
was obtained from semesters when the mode of survey administration was different. The dataset
from just post-GC I shows one factor (items 23-14) that comprises much of the assessment and
evaluation items. When an EFA was carried out on just this factor, it separated into two factors —
one involving interpersonal tasks (items 21,27 and 28) while the other comprised of tasks related
to chemistry learning, assessment and evaluation. This dataset also resulted in a factor structure
where task specificity was not particularly prevalent. This was not an unusual observation with
pre vs. post factor structures in general. Task specificity was more distinct in pre survey results as
opposed to post results, where context association perhaps seemed less important than the act of
problem solving thereby resulting in mass groupings of items showing little to no contextual
delineation.

According to Schunk and Pajares (2001), a key distinction exists between self-efficacy for
performance vs. self-efficacy for learning. When there is familiarity with the rigors of an activity
or task, students are likely to draw upon self-efficacy beliefs related to prior experiences with
similar tasks — these beliefs are called self-efficacy for performance as they are associated directly
with an intended performance goal. On the other hand, students might not aware of the skills they
require when confronted with unfamiliar tasks. In these situations, students infer their self-efficacy
beliefs from past achievements in situations perceived as similar to the new one — these beliefs are
called self-efficacy for learning as they are inferred assessments made about one’s capability to
learn the necessary skills for successful completion of the task (Schunk, 1996; Zimmerman,
Bandura & Martinez-Pons, 1992). This could explain why some degree of task specificity might

be observed in pre-factor structures in comparison to post-structures.

71



While combining a pre-GC II dataset to a post-GC I set did assist in resolving factor 1 into smaller
groups, it also revealed several problematic items that either did not load at all or was an item all
by itself. Some of these items were common to both combined datasets although the combined
dataset resulting from the paper survey produced groups that were more meaningful substantively,
especially when the problem items were excluded.

As task specificity in factor structure was one of the goals of developing this instrument
and subsequently developing a shortened version of this instrument, the factor structure resulting
from the Fall 2012 combined dataset was used as the starting point; items were excluded and
resulting factor structures were compared to decide on the most meaningful structure. The item
means, standard deviations and inter-item correlation matrix for this dataset are presented in Table
4.6. On a 6-point scale, where 1=not confident at all and 5=totally confident and ratings of 6=not
applicable/not sure were treated as zeros (and subsequently changed to blanks), means ranged from
1.44 to 3.23. The correlation matrix does not show any correlations exceeding »=.70, thus
indicating no problems with multicollinearity. Bartlett’s test of sphericity was significant (x> =
1588.9, p = .000), which indicated that the correlation matrix was not an identity matrix. The
KMO statistic (.80) was between 0.5 and 1 and categorized as ‘fair,” indicating the matrix was

appropriate for factor analysis. The determinant of this matrix was 1.02x10°.
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Table 4.6. Correlation matrix, means and standard deviations for the chemistry self-efficacy component of

the CSEAS. Complete data from 127 students was used for EFA.
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.28); however, no negative ITCs or extremely low square multiple correlations were
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Item-to-total correlations (ITCs) showed low values for some items (items 5 and 9

observed. Under the conditions of PCA as the extraction method, varimax rotation and the default
eigenvalue > 1 criterion, an eight-factor solution was obtained. Item 19 loaded by itself, and there
were several factors that only comprised of two items. Subsequently, the number of factors to be
extracted was entered manually, leaving other conditions unchanged. Factor solutions ranging
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from four to seven factors were extracted. The six-factor solution displayed a structure in which
most subscales containing at least three items per factor and one subscale containing two items.
This structure was then examined for problem items that elicited exclusion from further analyses.
In the six-factor solution, items 24 and items 7 showed cross-loadings, while no factor loaded
items 9,14,6,12 and 19. The scree plot, shown in Figure 4.5 justified retention of four or five

factors.
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Figure 4.5. Scree plot showing eigenvalues for retaining a four- or five-factor solution
Additionally, parallel analysis results shown in Table 4.7 recommended retention of four factors.

Table 4.7. Parallel analysis results showing eigenvalues for actual and random ordered data — CSEAS

Eigenvalue # ﬁ'lftual data Rarjdu:rm order Percentile
eigenvalue eigenvalue
1 7.86757 204523 2.18536
2 274764 188852 1.99689
3 198788 176736 186331
4 170715 1.667389 174141
5 1.38210 157639 1.65083
B 1.25600 149498 1562581
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Using the six-factor solution as the starting point and comparing it to other extracted
solutions items 9,14,6,19, and 7 were excluded for not loading on any factor or displaying cross
loadings consistently. Items 15 and 30 excluded on the basis consistently moving around and
being part of factors that were otherwise meaningful. Although item 24 showed a cross loading in
the six-factor solution, it did not cross load when some of the problem items were removed and
reanalyzed sequentially. A four-factor solution, after item exclusions, was the most conceptually
interpretable factor structure. Item 4 had a cross loaded with factors 2 and 4. However, as the
difference in loadings was considerable, this item was deemed a part of factor 4. The total variance
explained by the factors was 54.3%. Variance explained by each factor was as follows: factor 1 =
19.3%, factor 2 = 15.4%, factor 3 = 11.7% and factor 4 = 8.0%. The factor loadings from the
rotated component matrix are shown in Table 4.8. Factor names and items in each factor are
shown in the table. This factor structure was tested using a different data set for CFA; the final
model for the CSEAS is represented in the path diagram. This model accounts for any
modifications from CFA to improve model fit.

Subscales were named based on the tasks described by the items. Tasks which involved
recalling information or cognitive memory thinking such as trends in the periodic table or using
the periodic table to identify elements that are gases were called “low order / recall tasks”.
Similarly, those tasks that required divergent thinking where several reasonable answers were
possible were categorized as “higher order tasks” (Pavelich, 1982). Tasks related to assessment
and evaluation (taking exams, receiving grades and learning chemistry) were named as such and
those subscales that consisted of simple or slightly complex problems involving application of

chemistry to everyday tasks were labeled using similar terms.
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Table 4.8. Rotated component matrix for four-factor solution: CSEAS (post-GC II + pre-GCI; N=127)

Factor &

Four factors - Pre GC Il + Post GC1

Item - 1 2 3 4
Factor1 Self efficacy related to assessment, evaluation and interpersonal tasks
28 Talking to your chemistry professor a8
23 Receiving the grade you desire in this course 752
26 Preparing for chemistry exams a3
27 Understanding your chemistry professor 729
20 Doing well on chemistry course exams, given you exert enough effort 705
23 Taking an exam or quiz in your chemistry course 685
21 Asking questions during lecture 556
Factor 2 Self efficacy related to applying problem solving strategies
3 Determining appropriate units for a numerical result 694
2 Choosing an appropriate equation to solve a chemistry problem 693
1 Understanding what a written chemistry problem is asking you to do 681
24 Taking a chemistry exam or quiz where considerable math is involved 665
22 Learning material in chemistry courses where considerable math is involved 650
25  Signing up for more chemistry courses in the future (regardiess of the outcome of this course
or the requirements for your major)
Factor 3 Self efficacy related to higher order and applying chemistry to everyday tasks
18 Writing a summary of the main points of a television documentary that deals with some
aspect of chemistry -
16 Explaining why addition of salt melts ice B71
17 Using chemistry to propose a solution that keeps cooking water from boiling over 661
11 Converting your speedometer reading from mph to yards/second (1 mile = 1760 yards) 614
12 Calculating the density of lemonade (made by adding 50g of lemons to 500mL of water) 552
13 Identifying the type of change (physical vs. chemical) when milk gets sour 520
Factor4 Self efficacy related to low order / recall tasks
5  Describing trends in the periodic table (atomic size, electronegativity) 698
4 Reading and writing a chemical formula 514 594
8  Identifying elements that are gases at room temperature (from the periodic table) 568

Although the anxiety survey was utilized primarily for psychometric validation of the self-

efficacy subscales, a sound factor structure was required for this purpose as well. EFA was

conducted on data resulting from the anxiety surveys (after excluding students who responded to

verification items against the ‘normal’ grain). Verification items were not included in the analyses.

The decision process to arrive at a factor structure was not as extensive due to fewer items and no

emphasis on whether a combined or standalone dataset was used. The final factor structure for the
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anxiety scale is shown in Table 4.9. This structure was obtained using a pre-GC I dataset from

Fall 2014.

Table 4.9. Component matrix: Four-factor solution for the anxiety scale from CSEAS (F14 GCI, N=110)

Factor &

Four factors - Pre GC |

Item rem 1 2 3 4
Factor 1 Anxiety related to learning chemistry
1 Signing up for your next chemistry course B23
3 Learning chemistry in your current and future chemistry courses Ble
4 Hearing the word "chemistry” 758
5 Learning new concepts in chemistry 640
Factor 2 Anxiety related to low stakes assessments
11 Reading your chemistry textbook to help with homework R4S
13 Watching and following your chemistry instructor work a problem on the
board 792
12 Listening ta lecture in your chemistry class 767
Factor 3 Anxiety related to interactions
8 Talking to your chemistry professor R4S
9 Asking or answering questions in your chemistry course Fa0
B Walking into your chemistry lecture 503
Factor 4 Anxiety related to high stakes assessments
14 Waiting to get a chemistry test returned 930
7 Taking examinations in your current chemistry course 511

Factor analyses — Confirmatory

As the overall concern of this project is to make meaningful measurements longitudinally,

it was essential that the factor structure obtained by administering the CSEAS and the survey

discussed in chapter 5 (COES) provided adequate to good model fit at time points that constituted

the longitudinal period — the two-semester chemistry sequence of gateway courses, GC I and GC

II. Thus, the factor structure shown in Table 4.8 was imposed on self-efficacy datasets from each

of these time points (pre-GC I, post-GC I and pre- GC II) to assess model fit and robustness of the

factor structure. Model fit was evaluated with and without outliers resulting from the SAS code

(included in Appendix A). In the case of CSEAS, as some of the items exhibited slightly high

skew and kurtosis values (items 2 and 3), excluding outliers resulted in better model fit at all three

time points.
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The factor structure resulting from EFA did not provide adequate overall model fit, with
RMSEA values close to 0.1. While modification indices were explored for recommendations to
better model fit, other factor structures from EFA were also examined to see if items in their current
subscales had been grouped differently (or more meaningfully) in other structures. Consequently,
various models were attempted with some of the items placed in subscales other than their current
ones. For instance, fit was assessed when two were grouped with factor 1 instead of factor 2.
Reverting to EFA results of post-GC I, when the multitude of items in factor 1 were factor
analyzed, they resolved into two factors; the same technique was attempted to assess model fit
when factor 1 separated into the interpersonal subscale and remaining assessment items. After
several iterations, the fit indices were still fair, with RMSEA values displaying good fit at two time
points and CFI values well within range. The fit indices shown in Table 4.10 have been obtained
using datasets in which outliers (indicated by the output) were excluded. In addition, determining
a meaningful factor for the CSEAS required the use of several trial datasets; consequently, CFA
could only be conducted using combined data from two semesters. Only the most commonly
reported fit indices are displayed in this table. Detailed description of the indices shown have been
included in chapter 3.

Table 4.10. Goodness-of-fit indicators of models for CSEAS at three time points during AY15-16

Model tested on: N X2 df x2 / df SRMR CFI RMSEA RMSEA CI

F15+S16 pre -GC| 288 374.11 194 1.93 .054 .922 .060 0.0506 - 0.0688
F15+S516 post-GC | 166 394.96 194 2.05 .068 .923 .079 0.0680 - 0.0904
F15+S16 pre-GCIlI 201 350.61 194 1.81 .052 .939 .064 0.0528 - 0.0741

As shown in Table 4.10, the indices display good fit for pre-datasets from GCI and GCII;

while the CFI and SRMR are well within range for the post GCI dataset, the RMSEA value
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represents a reasonable error of approximation with an upper limit on the confidence interval above
the recommended threshold of .08. Given the loss of task specificity in subscales when examining
pre vs. post factor structures in the CSEAS, it is possible that the degree to which the
context/perception of a student affects their perceived confidence is much higher in a post scenario.
The small sample size could also impact some indices relative to others. In addition, when
timestamps outside the normal range were excluded, model fit worsened considerably, possibly
suggesting that those who took longer to complete the survey may have taken the it more seriously.
Thus, for datasets from all three time points, only responses with zero variance were excluded.
Based on these observations, the model fit and periodic examination of the CSEAS factor structure
are essential to ensure the stability of the model. The path diagram for the finalized CSEAS model

is shown in Figure 4.6.
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Figure 4.6. Standardized coefficients for the final, refined six-factor model of the chemistry self-efficacy
and anxiety scale. All coefficients are significant at p <0.01.
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Comparative statistics

Pre-post score changes on each subscale (factor) were examined using a GC I dataset.
These results are shown in Table 4.11. A pre- and post-GC I sample was used as the test dataset
for these analyses.

Table 4.11. CSEAS subscale scores showing pre to post changes for GC I (S14-S16, N = 367)

— Avg. prettest  Avg. posttest . p Effect size
scores scores

1. SE related to assessment and evaluation 2.02 2.59 -10.211 <0.0001 0.669
2, SE related to interpersonal tasks 2.32 2,79 -7.866 <0.0001 0.506
3. SE related to applying strategies 2.23 2.04 4.199 <0.0001 -0.274
4. SE related to higher order tasks 2.70 2.31 7.828 <0.0001 -0.476
5. SE related to applying chemistry to everyday tasks 2.04 1.65 8.527 <0.0001 -0.545
6. SE related to low order tasks 2.14 1.88 5.970 <0.0001 -0.383

All six subscale scores showed significant changes across a semester, with self-efficacy related to
applying strategies, performing low order tasks, higher order tasks and applying chemistry to
everyday tasks showing lower average posttest scores, indicating higher self-efficacy (confidence).
Subscales in which students displayed lower confidence at the end of the semester were those
related to assessment and evaluation and interpersonal tasks. While confidence related to
interpersonal tasks is fairly subjective, it is possible that most students taking their first college
chemistry course might exhibit lower confidence with regards to interacting with their peers or
instructors either in person or during their large lectures. Given the various components that
contribute to students’ assessment and evaluation, it would not be unusual for students to display
lower confidence especially when the tasks in this subscale are being evaluated close to an
impending assessment (final exam). Additionally, as stated during the interviews, if the mindset
of hard work not translating to grades is pervasive, students could be drawing heavily on past
experiences when responding to the items in this subscale. The indication of significant changes

in each subscale suggests that there could be changes happening at key time points during the
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semester. While the task specific subscales displayed higher posttest confidence overall,
examining these factors by subgroups might paint a different picture.

Differences between gender subgroups were examined for each subscale using a pre- and
post-GC 1 dataset. Results for the pre-GC I dataset are shown in Table 4.12. For ease of
interpretation, only subscales in which significant gender differences were observed are displayed.

Table 4.12. Results showing differences in CSEAS subscales based on gender (Nmates = 153, Neemales =
214), GCI pre, S14-S16.

Effect size,
Factor Males Females t P
d:nrer
2. SE related to interpersonal tasks 2.19 241 -2.537 .012 .270
5. SErelated to applying chemistry to everyday tasks 1.594 211 -2.140 .033 227

Subscale differences by gender (at the start of the course) reveal that females have lower self-
efficacy than males with regards to interpersonal tasks and applying chemistry to everyday tasks
despite being similar in ability levels (based on ACT test). As stated by female students in
interviews, the interactions with their instructor depended to a large extent on the environment in
which this interaction had to occur (lecture vs. in-person). Students mentioned that the they were
fairly anxious interacting in a lecture setting as opposed to meeting their instructor during office
hours. Given the minimal expectations about the course and perhaps their first experience with a
college chemistry course, it is not unreasonable to expect students, especially females, to display
lower confidence when it comes to interactions with their instructors or teaching assistants.

With regards to applying chemistry to everyday tasks, as the items comprising this task
were fairly mathematical in nature (‘converting your speedometer reading’, ‘calculating the
density of lemonade’), it is not unusual that females exhibited lower confidence in this subscale;
the historically low self-efficacy of females in math-related tasks and their resulting avoidance of

science-related careers is the seminal study (Hackett & Betz, 1989) that has shaped decades of
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work related to women in STEM fields. In addition, it is possible that some students started solving
the problems or answering the questions within the subscale despite being instructed to indicate
their perceived confidence. These in-the-moment problem solving attempts could have either
worsened an existing low self-efficacy or triggered some anxiety if the students experienced
difficulty with solving the problems. It is also possible that this subscale drew heavily upon
students’ past experiences, with females being more impacted by prior negative experiences.

When these same gender differences were tested for each subscale using a post-GC 1
dataset, there were no significant differences between males and females in each subscale. These
results conflict with some other studies in literature, which have observed persistent gender
differences across a semester. Regardless of the situation, examining gender differences in self-
efficacy has produced mixed results, consequently requiring closer attention. Given the changes
in social psychological climate and attributes of today’s female scientists, the role of gender in
self-efficacy and other affective measures requires further investigation. These results also justify
the need for an instrument that can examine this construct on a finer level and identify the changes
that are occurring during a semester.
Reliability

Factor correlations and factor alpha coefficients were calculated for the model confirmed

by CFA. These results are shown in Table 4.13.
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Table 4.13. Factor correlations and Cronbach alpha coefficients for the CSEAS (pre-GCI, S14-F16,
N=453). All correlations are significant at the 0.01 level.

Factor Mean Stdde. 1 2 3 4 5 C;T::: EE;
1. SE related to assessment and evaluation 2.08 g1 1.000 0.681
2. SE related to interpersonal tasks 231 .82 611 1.000 0.736
3. SE related to applying strategies 227 .68 451 167 1.000 0.716
4. SE related to higher order tasks 272 .81 .296 247 263 1.000 0.712
5. SE related to applying chemistry to everyday tasks 2.09 .78 298 212 39 409 1.000 0.714
6. SE related to low order tasks 2.18 .68 336 194 417 418 330 1.000 0711
Total scale (n=22) 0.748

Reliability estimates ranged from .68 to .74 with a total scale Cronbach’s alpha equal to .748.
When the scale with 30 items was evaluated, Cronbach’s alpha was equal to .905. Item-total
statistics did not reveal low ITCs for the scale. The estimates overall and by subscale (except for
factor 1) are above the recommended threshold of .70 (Nunally, 1978).
Validity

Construct validity was established using exploratory and confirmatory factor analysis. As
the subscales established are fairly fluid and highly sensitive to the quality of standalone or
combined data, especially given the administration using an online platform, these subscales were
tested for fit using CFA with freshly collected data each semester. The presence of distinct
subscales that show meaningful and significant changes across a semester is indicative of an
instrument that is capturing a construct that is unlikely to be captured using performance indicators
alone.

Predictive validity (a form of criterion-related validity) was evaluated by correlating mean
subscale scores to placement test scores, final exam and course performance scores. These
analyses were conducted using a pre and post GC-I dataset; the pre-GC I correlations are displayed

in Table 4.14.
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Table 4.14. Correlations between pre-CSEAS subscale scores and performance indicators in GC 1
(N =302, S14-S16). ™. Correlations significant at 0.01 level; *. Correlations significance at 0.05 level.

Factor ACT Comp.  ACT Math ACT-SciRe Final Exam % Course %
1. SE related to assessment and evaluation -.087 -0.142* -.086 -.250** -.296%*

2. SE related to interpersonal tasks -.046 -046 -.068 -119* -197**
3. SE related to applying strategies -124* -151% -079 -.246%* -.264**
4, SE related to higher order tasks -.003 0.03 -.013 -.102 -.114%

5. SE related to applying chemistry to everyday tasks -122* -.206* -.078 -276** -.304**
6. SE related to low order tasks 069 044 .064 -120% -.159*%*

Research on the relationship between self-efficacy and achievement has demonstrated
significant and positive correlations (r values in a range of 0.38 to 0.42) between self-efficacy for
cognitive abilities or skills, which are assessed prior to instruction (Schunk & Hanson, 1985);
positive correlations in the range of 7=.46 to .90 have also resulted between self-efficacy and skill
assessed after instruction (Schunk, 1989; Schunk, 1995). In addition, self-efficacy and
performance, evaluated after instruction, have consistently displayed significant and positive
correlations in the range of 7=.27 to .84 (Schunk, 1989).

The results in Table 4.14 offer support for some of these relationships; the correlations are
negative because in the CSEAS, a high average self-efficacy score implies low self-efficacy
(confidence). Self-efficacy related to applying strategies and chemistry to everyday tasks
(mathematical problem solving tasks) show significant ‘positive’ correlations to ACT composite
and math scores. As these were evaluated prior to instruction or interaction, confidence related to
interpersonal tasks showed no significant correlations with any measures of cognitive abilities.
The tasks most relevant and similar to what students’ might have encountered to test their abilities
are tasks related to applying general strategies and problem solving tasks (which comprise the
subscale related to applying chemistry to everyday tasks). This could perhaps be the reason behind

these subscales ‘positively’ correlating with ACT composite and math scores.
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Perceived confidence in all pre-subscales significantly correlates with students’ performance in
the course. The results of this correlational analysis using post-CSEAS subscale scores is shown
in Table 4.15.

Table 4.15. Correlations between post- CSEAS subscale scores and performance indicators in GC |
(N =302). ™. Correlations significant at 0.01 level; *. Correlations significance at 0.05 level.

Factor ACT Comp. ACT Math ACT-SciRe Final Exam %  Course %
1. SE related to assessment and evaluation .011 -.071 -.031 -.163** -.260**
2. SE related to interpersonal tasks .034 -.007 .019 -.035 -121%*
3. SE related to applying strategies -.041 -.095 -108 -111 -177%*
5. SE related to applying chemistry to everyday tasks -.106 -.101 -124* - 178** -.193**
6. SE related to low order tasks -.050 -.035 -.041 -.088 -113*

The correlations between CSEAS subscales and course performance, using post subscale
scores, are significant, but weaker than with pre-subscale scores. Self-efficacy related to higher
order tasks did not significantly correlate with any performance indicators. Given that these results
are post instruction, perceived confidence levels are fairly conservative, perhaps realistic, and align
with the lower end (closer to 7=.27) of the range of correlations mentioned by Schunk (1985). In
addition, while almost all subscales correlate significantly with course performance, self-efficacy
related to assessment and evaluation and applying chemistry (mathematical problem solving) are
significantly correlated to the performance on the final exam. Given that these two subscales are
assessing perceived self-efficacy beliefs in tasks that closely correspond to the criterial task to
which they are compared, a positive relationship would be expected between these subscales and
the final exam. On the other hand, course performance, dependent on performance on several
tasks, is correlated positively to almost all subscales, which involve tasks that contribute in some

way towards successful performance in the course. While these correlations imply only weak to
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moderate relationships, these are indications that the CSEAS is capturing affective dimensions and
is not just another measure of academic ability.

When differences were examined by high vs. low performing student groups based on final
exam performance, significant differences were observed between both groups on all subscales
with high performing students consistently displaying lower average subscale scores, implying
higher self-efficacy (confidence) than the low performing student group. These results are shown
in Table 4.16.

Table 4.16. Results showing differences in subscales based on high vs. low performing groups on the
final exam - CSEAS (Niow peformers = 172, Nhigh performers = 196) — GC 1 pre, S14-S16

Factor perfl;norhr‘:]ers perfl-gfrlr]lers ' P Effect size
1. SE related to assessment and evaluation 2.20 1.86 4784 <0.0001 -0.500
2. SE related to interpersonal tasks 2.42 2.23 2.162 0.031 -0.226
3. SE related to applying strategies 2.43 2.05 5.599 <0.0001 -0.585
4. SE related to higher order tasks 2.81 2.61 2374 0.018 -0.248
5. SE related to applying chemistry to everyday tasks 2.26 1.84 5.378 <0.0001 -0.565
6. SE related to low order tasks 2.27 2.03 3.468 0.001 -0.362

When differences were further examined by gender and performance on the final exam, no
significant differences were observed between high performing males vs. females on any of the
subscales. However, when low performing students were examined, significant differences were
found between low performing males and females on two subscales — self-efficacy related to
interpersonal tasks and self-efficacy related to low order tasks; low performing females exhibited

lower efficacy than males with regards to both subscales. These results are detailed in Table 4.17.
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Table 4.17. Results showing gender differences in subscales based on low performance on the
final exam — CSEAS (Nmales = 52, Niemales = 119); GC I pre, S14-S16.

Factor Males Females t p Effect size
2. SE related to interpersonal tasks 2.22 2.52 -2.146 0.032 0.3259
6. SE related to low order tasks 2.09 2.24 -2.088 0.038 0.247

When this process was repeated using performance in the course, significant differences
were observed between high vs. low performing groups on all subscales except self-efficacy
related to higher order tasks. These results are displayed in Table 4.18. Only subscales in which
significant differences were observed are shown.

Table 4.18. Results showing differences in subscales based on high vs. low performing groups in the
COUI'SC - CSEAS (MOW pcformcrs = 168, Nhlgh pcrformcrs = 200); GC I pl'e, Sl4'Sl6.

Factor perfI;:JOrh:’iers perfl-inirgr:ers P Effect size
1. SE related to assessment and evaluation 2.21 1.86 4894 <0.0001 -0.512
2. SE related to interpersonal tasks 2.46 2.21 2.877 0.004 -0.202
3. 5E related to applying strategies 2.41 2.08 4792 <0.0001 -0.501
5. SE related to applying chemistry to everyday tasks 2.25 1.84 4961 <0.0001 -0.527
6. SE related to low order tasks 2.23 2.06 2,417 0.01e -0.225

High performing students displayed higher confidence than low performing students on the
subscales that showed significant differences. With regards to the non-significant differences for
self-efficacy related to high order tasks, it is possible that confidence in performing higher order
tasks or demonstrating divergent thinking were perceived as crucial to a high stakes assessment
such as the final exam; however, as performance in the course was dependent on a multitude of
tasks throughout the semester with not all tasks requiring a higher level of thinking (for example,
moodle homework or tasks that involved study groups for lab reports or discussion activities), this
subscale did not display significant differences between high vs. low performing student groups

based on course performance.
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When differences were further examined by gender and course performance, no significant
differences were observed between high performing males vs. females on any of the subscales.
However, when low performing students were examined, significant differences were found
between low performing males and females on two subscales — self-efficacy related to
interpersonal tasks and self-efficacy related to low order tasks; low performing females exhibited
lower efficacy than males with regards to both subscales. These results are detailed in Table 4.19.

Table 4.19. Results showing gender differences in subscales based on low performance in the
Course - CSEAS (Nmates = 61, Niemales = 106); GC 1 pre, S14-S16

Factor Males Females t o) Effect size
2. SE related to interpersonal tasks 2.29 2.56 -2.054 0.046 0.230
6. SE related to low order tasks 2.06 2.33 -2.370 0.014 0.381

Evidence of convergent validity was provided by examining relationships between the self-
efficacy and anxiety subscales of the CSEAS. These correlations are displayed in Table 4.20. The
correlations are positive because a higher average subscale score on the self-efficacy scale implies
lower self-efficacy (confidence) while a higher average subscale score on the anxiety scale implies
higher anxiety. It was expected that anxiety related to high stakes assessment would correlate
strongly with self-efficacy related to assessment and evaluation. In addition, anxiety related to
interactions would be expected to correlate strongly with self-efficacy related to interpersonal
skills. Moreover, it was also expected that anxiety related to low stakes assessment would correlate

strongly with self-efficacy related to low order tasks.
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Table 4.20. Correlations between self-efficacy and anxiety subscales in the CSEAS — GC I (F14-F15, N =
452). "Correlation is significant at the 0.01 level; *Correlation is significant at the 0.05 level

Anxietyrelated  Anxiety related to Anxiety  Anxiety related to
Factor to learning low stakes related to high stakes
chemistry assessments interactions  assessments
1. SE related to assessment and evaluation S561%* A1** A19%% 358%*
2. SE related to interpersonal tasks .289%* 320%* 523** 275%*
3. SE related to applying strategies .320%* 248%* J164%* A71%*
4, SE related to higher order tasks J169** B 16 g .061 070
5. SE related to applying chemistry to everyday tasks .180** JA62%* J44** J118*
6. SE related to low order tasks Z221% 190%* 081 039

As indicated in the Table 4.20, self-efficacy and anxiety subscales show moderate to strong
‘negative’ correlations, supporting their inverse relationship. As anxiety related to learning
chemistry increases, self-efficacy related to assessment decreases. The weaker correlation
between anxiety related to high stakes assessments (taking examinations and waiting to get a test
returned) and self-efficacy related to assessment and evaluation could perhaps suggest the highly
situational and contextual nature of anxiety and self-efficacy. While students may perceive ‘taking
examinations’ as threats and not feel confident about being in a test-taking environment (anxious
test takers), learning chemistry not only involves a greater contribution from the student in terms
of self-regulatory behavior and implementing effective study habits, but it also incorporates
connecting knowledge from various components and materials available in the course. A high
anxiety level with regards to learning chemistry could, in the absence of help, result in poor study
habits and decrease self-efficacy (related to assessment and evaluation) to a much greater extent
than a high anxiety level with regards to high stakes assessments. The strong relationship between
anxiety related to interactions and self-efficacy related to interpersonal tasks offers support for
convergent validity; one would expect these subscales to correlate strongly as they are measuring

common dimensions between two distinct constructs. The non-significant relationship between
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anxiety related to interactions and self-efficacy related to higher order tasks is not unusual given
that there is minimal commonality between two fairly different subscales.

Further validation was provided when average subscale scores were correlated to other
items in the CSEAS. When subscale scores were correlated with the importance of chemistry in
students’ academic preparation (1=very important to S=very unimportant), there were significant,
positive correlations observed for self-efficacy related to low order tasks (r=.158), self-efficacy
related to applying chemistry to everyday tasks (r=.151), self-efficacy related to applying
strategies (=.133), self-efficacy related to higher order tasks (=.122) and self-efficacy related to
assessment and evaluation (=.163). These findings corroborate results from Hackett and Betz’s
(1983) administration of the MSES, in which they indicated that students with stronger
mathematics self-efficacy expectations had a greater tendency to view math as useful.

As a final check of validity, results from students’ interviews were examined for student
generated item groupings. An example of item groupings and group names generated by a female
interviewee is shown in Table 4.21. This student was a kinesiology major (declared) who had
previously taken three physics courses and her experiences in these courses impacted the way she
responded and perceived the CSEAS items. These students were given all 30 items to sort into

groups; no item was excluded.
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Table 4.21. Example of student generated CSEAS item groupings and subscale names — GC |

application of chem.
to everyday tasks

On its own

Mastery of skill
study guide/exam

Background (sp. To course)
person + effort

Actual exam
subcategory of 3rd group

Item groupings

Describing fundamental structure of an atom (7)

Learning material in chemistry courses where considerable math is involved (22)

Using chem. to propose solution that keeps cooking water from boiling over (17)
Classifying Al foil, salt & salad dressing as elements, mixtures, compounds (15)
Temperature in your home from degree Fahrenheit to K (9)

Identifying type of change (physical vs. chemical) when milk goes sour (13)

Writing summary of the main pts of a TV docu. that deals with some aspect of chem (18)
Explaining why addition of salt melts ice (16)

Percent composition of iron in 10g rust (Fe203) from garage door (14)

Writing the chemical formula of Calcium carbonate, TUMS ingredient (10)

Signing up for more chemistry courses in the future (regardless....) - 25

Density of lemonade (50¢ lemons to 500mI. water) - 12

Converting speedometer reading from mph to yards/sec (1 mile = 1760 yds) (11)
Balancing chemical equations (6)

Describing the trends in the periodic table (atomic size, electroneg.) - 5

Choosing an appropriate equation to solve a chemistry problem (2)

Determining the approptiate units for a numerical result (3)

Elements that are gases at rtp (from petiodic table) - 8

Reading and wtiting a chemical formula (4)

Learning chemistry in this course (if all exams were take home exams) - 19
Understanding your chemistry professor - 27

Talking to your chemistry professor - 28

Asking questions during lecture - 21

Doing well on chemistry course exams, given you exert effort (20)
Understanding what a written chemistry problem is asking you to do (1)

Taking an exam or quiz in your chemistry course - 23

Doing homework for this course - 30

Receiving grade you desire in this course (29)

Preparing for chemistry exams - 26

Taking a chemistry exam or quiz where considerable math is involved - 24

Most female students went in-depth and created highly specific groups such as:

- Post exam (items 20, 29, 25)

- Related to exam (items 1,2,23,24)

- Before class and outside (items 26,30)

- Tasks that would benefit their grades (items 21,28,27,19)

- Everyday life (items 16, 17, 15,9, 18, 14, 11, 12)

- Interaction (21,27,28)
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The indication that some students perceived interaction or interpersonal tasks as among
those that would benefit their grades helps to explain the factor structures in which assessment and
interpersonal tasks would combine to form one factor. In addition, despite the presence of a factor
that was categorized in the study as ‘higher order tasks’, students seldom perceived tasks in terms
of the level of thinking that would be required to perform the task. While female interviewees
parsed out tasks that involved math vs. other basic (general) material, male students did not
perceive any degree of task specificity in the survey items. An engineering student in GC I, who
was exploring other majors, categorized the items as follows:

- Interaction (items 21, 28, 27)

- Learning throughout the course (items 3,4,5,2,1,6,7,8,9,10,11,12,13,14,15,16,17,18,19,22,30)
- Exams/assessment (items 23,26,24)

- End results/evaluation (items 20,29,25)

While the comparisons were not meant to be identical, it was observed that most students
were essentially thinking about items in a similar context. The lack of task specificity in groups
for a few interviewees might explain some of the correlation results in this study. If students were
perceiving all non-assessment related items as one task group, it would be expected that all the
subscales related to chemistry tasks would be correlated in a similar manner to key performance
indicators. Given that students were able to create groups to begin with was an indication that
items were factoring either because students were using the same or similar context association or
that the association was much less important than the perception of problem solving separate from

context.

93



Cluster analyses

The cluster structures resulting from data collected in preparatory chemistry and general
chemistry for engineers are shown in Tables 4.22 and 4.23. As detailed earlier, the cluster
structures are displayed here only in an effort to examine utility of the CSEAS instrument. No
items were excluded from the analyses.

Preparatory chemistry

The dataset used for obtaining the cluster structure consisted of 668 students, out of whom
41.9% were males and 58.1% were females. 52.5% were freshmen, 42.4% were sophomores,
12.4% were juniors and 7.6% were seniors. The average ACT composite, math and sci-re scores
were 22.4, 22.3 and 22.6 respectively. The most meaningful cluster structure was obtained using
the 30-item survey when items 19 and 20 were excluded. This structure is shown in Table 4.22.

General chemistry for engineers

The dataset used for obtaining the cluster structure consisted of 238 students, out of whom
91.6% were males and 8.4% were females. 37.8% were freshmen, 38.7% were sophomores,
13.0% were juniors and 10.5% were seniors. The mean ACT composite, math and science-
reasoning scores were 24.2, 25.3 and 24.6 respectively. The most meaningful cluster structure was
obtained using the 30-item survey; items 9 and 30 were excluded. This structure is shown in Table

4.23.
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Table 4.22. Three-cluster solution for preparatory chemistry (N=668)

Cluster

. Item
and item
Cluster 1 Self efficacy related to applying chemistry to everyday tasks
16 Explaining why addition of salt melts ice
17 Using chemistry to propose a solution that keeps cooking water from boiling over
14 Calculating the % composition of iron in rust (Fe203) from garage door
13 Identifying the type of change (physical vs. chemical) when milk gets sour
15 Classifying aluminum foil, salt and salad dressing as compounds, mixture or elements
12 Calculating the density of lemonade (made by adding 50g of lemons to 500mL of water)
10 Writing the chemical formula of Calcium carbonate, TUMS ingredient
18  Writing a summary of the main points of a television documentary that deals with some
aspect of chemistry
11 Converting your speedometer reading from mph to yards/second (1 mile = 1760 yards)
9 Converting the temperature in your home from F to Kelvin
Cluster 2 Self efficacy related to assesment and evaluation
29 Receiving the grade you desire in this course
26 Preparing for chemistry exams
23 Taking an exam or quiz in your chemistry course
28  Talking to your chemistry professor
27 Understanding your chemistry professor
21 Asking questions during lecture
24  Taking a chemistry exam or quiz where considerable math is involved
25 Signing up for more chemistry courses in the future (regardless of the outcome of this course
or the requirements for your major)
22 Learning material in chemistry courses where considerable math is invoived
30 Doing homework for this course
Cluster 3 Self efficacy related to general chemistry tasks
2 Choosing an appropriate equation to solve a chemistry problem
1 Understanding what a written chemistry problem is asking you to do
8 Identifying elements that are gases at room temperature (from the periodic table)
7 Describing the fundamental structure of an atom
5 Describing the trends in the periodic table (atomic size, electroneg.)
4 Reading and writing a chemical formula
6 Balancing chemical equations
3 Determining the appropriate units for a numerical result
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Table 4.23. Three-cluster solution for general chemistry for engineers (N = 238)

Cluster
and item
Cluster 1 Self efficacy related to assesment, evaluation and interpersonal tasks
1 Understanding what a written chemistry problem is asking you to do
2 Choosing an appropriate equation to solve a chemistry problem
3 Determining the appropriate units for a numerical result
21 Asking questions during lecture
22 Learning material in chemistry courses where considerable math is involved
23  Taking an exam or quiz in your chemistry course
24 Taking a chemistry exam or quiz where considerable math is involved
25 Signing up for more chemistry courses in the future (regardless of the outcome of this course
or the requirements for your major)
26 Preparing for chemistry exams
27  Understanding your chemistry professor
28  Talking to your chemistry professor
29 Receiving the grade you desire in this course
Cluster 2 Self efficacy related to general chemistry tasks
4 Reading and writing a chemical formula
5 Describing the trends in the periodic table (atomic size, electroneg.)
6 Balancing chemical equations
7
8

Item

Describing the fundamental structure of an atom
Identifying elements that are gases at room temperature (from the periodic table)
10 Writing the chemical formula of Calcium carbonate, TUMS ingredient
11 Converting your speedometer reading from mph to yards/second (1 mile = 1760 yards)
12 Calculating the density of lemonade (made by adding 50g of lemons to 500mL of water)
13 Identifying the type of change (physical vs. chemical) when milk gets sour
14 Calculating the % composition of iron in rust (Fe203) from garage door
Cluster 3 Self efficacy related to low stakes tasks
15 Classifying aluminum foil, salt and salad dressing as compounds, mixture or elements
16 Explaining why addition of salt melts ice
17 Using chemistry to propose a solution that keeps cooking water from boiling over
18 Writing a summary of the main points of a television documentary that deals with some
aspect of chemistry
19 Doing homework in this course
20 Doing well on chemistry course exams, given you exert enough effort

The cluster structure of data from preparatory chemistry was similar to the item groups
generated by GC-I students during interviews. The scope of task specificity was grouping items
as general chemistry tasks or those which involved applying chemistry to everyday tasks. Items
19 and 20 were excluded from analyses as they either formed a group together, appeared as

standalone items or did not fall into a meaningful cluster. Given the highly fundamental level of
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knowledge of students in this course, it is possible that students were unfamiliar with the types of
problems or questions consequently responding to items from a problem-solving perception as
opposed to using contextual associations.

A similar structure is obtained by analyzing data from general chemistry for engineers.
Items 9 and 30 were excluded as they always appeared as standalone items. While most of the
general chemistry task items grouped together, cluster 3 was home to some items that did not
appear to substantively belong in that cluster. In this structure, the omnibus items and interpersonal
tasks were perhaps interpreted as tasks that had to be performed to ensure success in the course;
consequently, they clustered with assessment related items.
Despite being a feeder and terminal course respectively, the structures resulting from these courses
appear to be meaningful. The lack of task specificity in content areas from both structures suggests
that students may be placing less emphasis on contextual associations and more on the perception
of problem solving. Despite this, the formation of distinct groups comprising of items with a
moderate to high degree of relatedness suggests that the CSEAS could be a viable survey to
measure self-efficacy in courses besides general chemistry.

Limitations

Obtaining a factor structure for this survey was a not so easy quest especially as this was
previously validated. Being a follow-up instrument to an extensive concept inventory, the ongoing
concern was always one of student fatigue resulting in loss of valid responses. While factor
structures from standalone and sequential administration of surveys have been examined, with no
major differences, making affective measurements using an online platform was expected to be
prone to problems regarding missing data, ceiling/floor effects and students clicking responses

with little to no thought behind their choices. As all the items in the CSEAS were positively
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worded, the chance of acquiescence bias was high. Thus, zero variance items were always
excluded. However, despite data checks and monitoring of timestamps in the collected data, online
self-report surveys are unlikely to be completely free of bias.

While the items in this survey have attempted to include a reasonable degree of specificity
in terms of content and course, and are purported to measure self-efficacy related to chemistry vs.
general self-efficacy, it is possible that a certain degree of the latter might be unavoidably
incorporated in student responses.

The analysis in this study, especially obtaining and confirming a factor structure, was
limited by the size of some standalone datasets such as pre-GC II. Thus, the analysis had to be
conducted using a combined dataset to begin with, thereby not allowing for comparisons to be
made between results obtained using standalone vs. combined datasets. In addition, while some
of the items used in this survey (items 1,2 and 3) have been criticized as omnibus measures that
assess general self-efficacy and have low predictive power (Pajares, 1996), they were utilized in
this survey as problem solving strategies applicable to several domains, including chemistry.
Although the factor structure resulting from data collected using this survey is being checked
periodically and with larger datasets, these results appear to be generalizable to the same institution
/ student type.

Conclusions and Implications
This study presented a detailed description of the phases involved in developing/adapting and
validating an instrument to measure self-efficacy. In an effort to aid in psychometric testing, an
anxiety survey was also developed and integrated with the self-efficacy component to result in the
chemistry self-efficacy and anxiety survey (CSEAS). The pilot administration of this survey was

done on paper, with subsequent administrations online. EFA of the 30-item instrument resulted in
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exclusion of eight items and a six-factor factor whose fit was tested using CFA. While this model
displayed good fit at pre-GC I and pre-GC II time points, the post-GC I time point resulted in a
poor fit. This could be attributed to the lack of task specificity in the post factor structure. The
differences between self-efficacy for learning and self-efficacy for performance might explain the
lack of task specificity in post-factor structures. Given that students become familiar with tasks at
the end of the semester, their post self-efficacy beliefs are based on their past efficacy beliefs in
similar tasks during the semester. As their post-beliefs are closely tied to performance, it is
possible that students view their confidence in performing all tasks, including assessment related
ones, as being important towards their intended performance in the course. On the contrary, pre
self-efficacy beliefs are more inferential and less inclined to be drawn from past experiences; thus,
students might be responding to pre-surveys based on the idea that their perceived confidence in
specific tasks will help them accomplish similar tasks they might encounter during the semester.
Cronbach’s alpha for the 22-item scale was .748 with reliability estimates ranging from .68 to .74.
All six subscales showed significant changes across a semester, indicative of an instrument that
was capturing dimensions of a variable that could not be measured using traditional performance
indicators. Validity for the CSEAS was supported by correlational analyses, comparative statistics
and student interviews.

All pre-CSEAS subscales were significantly correlated with course performance while all
subscales except self-efficacy related to higher order tasks showed significant correlations with
performance on the final exam. These correlations were low to moderate, suggesting that the
CSEAS was not simply another measure of academic performance. The post-subscale
coefficients, although weaker, showed significant correlations of all subscales with performance

in the course. The presence of a significant relationship between self-efficacy and performance
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offers support for the domain specificity or correspondence of the CSEAS. Gender-based
differences were observed for self-efficacy related to interpersonal tasks and self-efficacy related
to applying chemistry to everyday tasks. Women exhibited lower confidence than men in both
subscales. These differences were no longer significant in any subscale at the end of the semester.

When parsed out by performance, high performing students on the final exam consistently
displayed higher confidence on all subscales than low performers. When this was examined by
performance in the course, high performing students were more confident than low performing
students on all subscales except self-efficacy related to higher order tasks. When high performing
students were parsed out by gender, there were no significant differences between high performing
males or females on any subscale. However, when examining low performers, significant
differences were found between males vs. females, with females displaying lower confidence than
males on two subscales — self-efficacy related to interpersonal tasks and self-efficacy related to
low order tasks.

Furthermore, self-efficacy subscales were correlated with anxiety subscales to reveal
strong ‘negative’ correlations between almost all anxiety and self-efficacy subscales. The
strongest correlations were among self-efficacy related to assessment and evaluation and all the
anxiety subscales. Self-efficacy subscales also showed positive correlations with the importance
that students placed on chemistry in their academic preparation. The ability of the CSEAS to
measure fairly distinct clusters in preparatory chemistry and general chemistry for engineers
provide support for the viability of this instrument to make meaningful self-efficacy measurements
in courses related to general chemistry.

The CSEAS was partly developed and mostly adapted from the vast number of valid and

reliable self-efficacy surveys in the literature. While validity in the CSEAS was purported based
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on the general acceptance of its constituent parts by numerous efficacy researchers, psychometric
testing of this survey was conducted to establish validity and reliability for its use in the two-
semester general chemistry sequence of courses that constitute time points within the longitudinal
model; the utility of this survey was also tested on students in preparatory chemistry and general
chemistry for engineers. This instrument complements the existing body of self-efficacy research;
while several open ended and contextual items of this survey were unused for testing, they present
substantially beneficial information that could be used to understand the self-efficacy and
behaviors of students enrolled in chemistry courses. The task specific factors obtained and
confirmed in this study allow for the development of a subset instrument that will be utilized to

track potential changes in self-efficacy during the semester.
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CHAPTER 5: DEVELOPMENT AND VALIDATION OF THE CHEMISTRY
OUTCOME EXPECTATIONS SURVEY
This chapter describes the development and psychometric evaluation of data produced by the
Chemistry Outcome Expectations Survey (COES).
Background and Rationale

Despite the integration of outcome expectations as a distinct construct in SCCT and the
combined role of self-efficacy and outcome expectations in predicting interests, this construct has
not received the same attention as its more prevalent companion construct, self-efficacy. From an
assessment perspective, the domain specific nature of OFE has resulted in varied operationalizations
of the construct. Brooks and Betz (1990) developed an instrument to measure occupational values,
but each item in the instrument was examined individually as opposed to using a summation of the
items. Riggs et al., (1994) developed the Personal Outcome Expectancy Scale to measure OE for
individuals in the workplace. Hackett et al., (1992) developed the Outcome Expectations Scale to
assess how successfully people complete a bachelor’s degree in engineering. The Educational
Outcome Expectancy Scale (EOE), developed by Springer et al., (2001) is a six-item Likert-type
scale to capture the consequences an individual expects from completing a bachelor’s degree.
However, six items were inadequate to measuring the full range of OE, thereby limiting the utility
of this scale. The Vocational Outcome Expectations (VOE) scale has been used to measure
expectations about future career outcomes. Using SCCT as a framework, this scale was developed
to capture youths’ sense of being able to obtain a fruitful vocational outcome (McWhirter,
Crothers, & Rasheed, 2000).

In an effort to comprehensively measure outcome expectations, Smith & Fouad (1999)

developed an instrument comprising of 153 items rated on a six-point Likert scale. The items
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measure self-efficacy, outcome expectations, interests and goals in four subject matter areas:
math/science, social studies, English and art. In the physical sciences, the Maryland Physics
Expectations Test (MPEX), a five-point Likert-scale survey was developed to measure students’
attitudes about physics and their cognitive expectations of physics courses (Redish, Steinberg &
Saul, 1998). The MPEX consists of 34 items grouped into six clusters that represent different
aspects of expectations about learning: independence, coherence, concepts, reality link, math link,
and effort (Redish, Steinberg & Saul, 1998). In addition, a more widened gap between student
and faculty expectations was observed over the course of a semester. In an effort to investigate
the existence of a similar phenomenon in chemistry, Grove & Bretz (2007) developed the
Chemistry Expectations Survey (CHEMX), consisting of 47 statements grouped into seven
clusters: Effort, concepts, math link, reality link, outcome, laboratory, and visualization. Contrary
to merely changing survey domain from physics to chemistry, development of this instrument
integrated various concepts and dimensions specific to chemistry such as visualizations and a focus
on the particulate, symbolic and macroscopic aspects. Out of 47 statements, 22 were original items
written specifically for CHEMX (Grove & Bretz, 2007). While these surveys were used to gauge
attitudes and cognitive expectations in physics and chemistry courses, they did not necessarily
probe the construct of outcome expectations as the statements were not operationalized in the
context of predictive “if-then” statements.

Given the limitations of these surveys and the resulting inadequacies in capturing outcome
expectations meaningfully, the following objectives guided this study:
a) To develop an instrument to assess chemistry outcome expectations.

b) To establish validity and reliability of the data resulting from this instrument.
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Methodology

This section describes the phases involved in the development of the COES. The selection
of items, construction of the instrument, testing and participants will also be detailed. In addition,
the analyses conducted to psychometrically evaluate and validate the data will also be examined.
Development of the COES items

Operationalizing OE for development of the COES required the fulfillment of a few
criteria:
a) Conceptually distinguishing it from self-efficacy — The focus of outcome expectations
was not on the behavioral performance itself, but rather on the likely consequences of the behavior.
Thus, the ‘predictive’ nature of this construct had to be reflected in the items, which were
consequently expressed as ‘if-then’ statements (Fouad & Guillen, 2006). In distinguishing these
two constructs, the strength of the relationship between them had to be taken into consideration
when formulating statements in the COES:

(1) Complete relationship of OE to SE: As outcomes people expect are largely dependent
on their self-efficacy beliefs, it is quite possible that the outcomes are completely
dependent on SE beliefs. Thus, some of the tasks / behaviors (condition statements) in
the COES were complements of the tasks from the CSEAS, for example “confidence

in understanding one’s chemistry professor” would be complemented by “If I can

follow my instructor in lecture, then...” in the COES. This relationship has also been

supported by the self-efficacy-antecedent model, which tested the temporal path of self-
efficacy being a precursor of outcome expectations, interests and goals. Results from
this investigation offered support for SCCT’s hypothesis that the predominant temporal

path was from self-efficacy to other variables rather than vice versa (Lent, 2008).
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(i)  Partial relationship of OE to SE: When outcomes that result from specific performances
are not themselves controlled by such performances, efficacy beliefs account for a
smaller part of the variance in outcome expectations (Bandura, 1986).
(ii1))  Completely excluding considerations of outcome from self-efficacy judgments.
b) Domain specificity — Being a domain-specific construct, the survey statements were tailored
to measure student outcome expectations in chemistry vs. general expectations about their program
or expectations in other domains.
c) Integrating different forms of outcome expectations — According to Bandura (1997), outcome
expectations can take three major forms — physical outcomes of the behavior, social reactions to
the behavior and self-evaluative reactions to personal behavior. Physical outcomes include the
pleasant physical sensations that follow behaviors, social reactions — positive and negative — are
the second form of behavioral outcomes, where positive social reactions include approval and
recognition while negative reactions include disapproval and social rejection. Self-evaluative
reactions — positive and negative — are the third form of outcomes that accompany behaviors.
Positive and negative self-evaluations include self-satisfaction and self-criticism respectively
(Bandura, 1997; Fouad & Guillen, 2006). While the predictive utility of these specific types of
expectations has not been examined, the statements in the COES have attempted to capture these
forms of outcome expectations, in addition to investigating the effects of proximal (course) and
distant (career) outcomes. Items related to career outcome expectations were included as a way to
understand career indecision / career choices as one progressed through their major. In addition,
these outcome expectations were viewed as perceived environmental contingencies — outcome
expectations beyond an individual’s control and independent of one’s self-perception of

competence (Bandura, 1986).
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The item pool for the development of the COES was obtained from an extensive literature
review of existing surveys attempting to measure outcome expectations in STEM and non-STEM
domains. As the items in these surveys were declarative statements, they had to be adapted in
ways that would make them usable as conditions or outcomes for the COES. In addition, if these
statements were used as conditions, consequences or outcomes had to be added and vice versa.
The items specific to chemistry were adapted primarily from ChemX and to a small degree from
its predecessor MPEX. Once items were gathered from all surveys, they were grouped based on
what each item was assessing and the utility of each item towards measuring some aspect of
outcome expectations. The first step, investigating content validity, involved refining the initial
pool of items; this was done by the principal investigator (PI) and graduate student working on
this project. The decision to reduce the number of items to a manageable, yet meaningful
instrument was made by (a) using gaps in the literature to dictate the utility of the COES and (b)
using information based on the PI’s teaching experiences, interactions with students and their
posited interpretation of the items. Three examples of what this process entailed are described in
Table 5.1, where an original item from the ChemX was refined and tailored to the COES. The

change made to the original item is indicated (in bold).
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Table 5.1. Examples of revisions made to items from ChemX for COES item development

Example

" Original item (ChemX) Revision Revised item(s) (COES)
item
Itis possible to pass this course Made more specific If 1 do not understand the
1 (geta "C" or better) without concepts in this course, | can
understanding the chemistry well pass (with at leasta C)

If 1 can learn how to think

Added consequence logically about the physical

world, | will do well in this
course

The main skill 1 get out of this
2 course is to learn how to reason
logically about the physical world.

i) If | have a good
understanding of chemistry, |
will have a better chance of
achieving my career goals
AND
ii) If 1 obtain a good grade in
this course, 1 will have a
better chance of achieving my
career goals

A good understanding of chemistry
is necessary for me to achieve my Splitinto two
career goals. A good grade in this statements

course is not enough

Statements from other surveys which measured career outcome expectations that pertained to
obtaining a degree or a job were also modified into “if-then” statements.

Subsequently, in an effort to reduce acquiescence bias, some of the OE statements were
negatively worded. As these were “if-then” statements, a decision had to be made about which
part of the statement — task or outcome — would be negatively worded. In this case, the purported
relationship between self-efficacy and outcome expectations had to be considered to arrive at a
decision. As all the tasks described in the CSEAS items were positively worded, it was decided

that tasks in some of the COES items would be negatively worded.
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Structure of the COES

The COES started with four Likert-type statements from the College Student Experiences
Questionnaire (CSEQ); the goal of the CSEQ was to assess new student decisions and expectations
about how and with whom they will interact in college and how much effort would be invested in
using institutional resources (Pace & Kuh, 1998). Thus, some of the items regarding ‘time spent’
were modified for use in the context of career development and included in the COES in an attempt
to examine how dimensions of the COES may relate to student intentions or career exploratory
plans. For example, statements in the CSEQ pertaining to time spent on learning material in the
course could be related to statements in the COES that were relevant to outcomes expected from
learning material in the course. The prompt for these statements was “How often do you expect
to do the following?”” with students responding with the amount of time (1 = never to 4 = very
often and 5 = not sure). As this survey (CSEQ) operation closed in Spring 2014, the full survey is
no longer available online. This survey is included in Appendix 1.

This was followed by the Likert-type COES “if-then” items which were chosen for the
final version of the survey based on (a) results from pilot testing the survey (b) discussions between
principal investigator and graduate student and (c) semi-structured student interviews. As this
survey was administered in a pre/post manner to measure outcome expectations, some statements
in the post version of the survey were modified to allow students to respond to prospective
outcomes (future chemistry course) rather than have them retroactively make causal associations
between the task and outcome, especially when the outcome was tied to performance in the course.
An example of this change from pre- to post-COES is shown below:
1A) Pre- COES: If I work hard enough, I will be more likely to pass this course.

1B) Post- COES: If I work hard enough, I will be more likely to pass a future chemistry course.
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The pilot version of the pre-COES had 28 items, many of which were revised and/or removed for
the post version based on student interviews and analyses.
Student interviews — instrument development and implementation

The solicitation and interview processes were similar to those described in chapter 4 for
the CSEAS. 13 students signed-up to participate in semi-structured think aloud interviews, during
which the survey was presented and students responded to each statement while verbalizing their
thought processes. Almost all students were biology majors on a pre-med track with an equal
number of male and female participants. Compensation was a $10 gift card to the university book
store.

The common thread for almost all interviewees was the inability to respond to statements
where the outcomes, especially related to career, were posed as certainties, for example:
1A) Pilot version: If I earn my undergraduate degree, I will be able to meet my financial goals
1B) Final version: If I earn my undergraduate degree, I will be more likely to meet my financial
goals.

Some of the students suggested that career-related statements should be “nixed” and saved
for upper level chemistry courses, when students are more certain of their goals and career plans.
While social and self-evaluative outcome expectations were important to some students, especially
those who were re-taking the course or going into medicine because they came from a family of
doctors, most students cared little about the approval of family and friends. Lab related items
required multiple revisions because most students did not necessarily “visualize the chemistry”
while performing an experiment. This phrase had to be revised to “understand the chemistry”.
Three statements were excluded because they did not fit the idea of an outcome expectation during

interviews and pilot testing:
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a) IfIam given an equation, I have no interest in its derivation (participants had no idea what the
statement was asking and when clarified, most students offered a neutral rating about the item).

b) If I did not have to take exams in this chemistry course, I would have a better understanding
of course material (students had mixed feelings about this statement as they understood the
value of taking exams, but would like the option of not taking them because they were anxious
test takers)

c) IfI can use the correct equation or fact to obtain my answer, I can do well on quizzes/exams
in this course (almost all students disagreed with this statement because they believe there was
more to doing well on quizzes and exam than using the correct equation or fact).

Based on these revisions and removals, the final version of COES was developed. This version

had 25 items hypothesized to measure expectations reflecting self-evaluative, social, physical

reactions to personal behavior, expectations specific to academic performance and career and
variations of behaviors and tasks in the CSEAS.

The final version of the COES are included in Appendices J and K.

A second round of interviews was conducted as part of the implementation phase of the
instrument. The solicitation and interview processes were similar to those described in chapter 4
for the CSEAS. Eight students signed-up to participate in semi-structured think aloud interviews.
Almost all students were biology majors on a pre-med track with an equal number of male and
female participants. Compensation was a $10 gift card to the university book store and the
interviews lasted 30-45 minutes.

Data collection and participants

The COES has been in administration since Fall 2013; the pilot study was conducted in

Fall 2013 while data collection on the final version of the survey has been occurring since Spring
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2014. The survey has been administered on paper since Fall 2013. The number of participants
from the pilot and main administrations are shown (by course) in Table 5.2 and Table 5.3
respectively.

The pre-COES surveys for the pilot study were distributed and collected by teaching

assistants in their respective discussions during the first week of class. In subsequent semesters,
instructors distributed the pre-surveys on the first day of lecture with students returning them at
the next lecture. Instructors were able to explain the purpose and the importance of the survey and
encouraged students to complete it to the best of their ability. Students who did not complete their
surveys or return their completed surveys within the first two weeks since start of classes were not
included in data analyses; it was postulated that, in two weeks, these students had been sufficiently
exposed to course material and the instructor for their responses to be influenced or biased. The
post surveys were distributed a week or two before the start of final exam week. Surveys were
distributed and collected in the same lecture or collected at the next lecture depending on the
instructor’s convenience. The surveys typically took 10-15 minutes to complete and students were
given extra credit points for completing both surveys (COES and CSEAS).
The studies described in this chapter were conducted at a large, urban, research intensive public
university in the Midwestern United States. Surveys were administered to students enrolled in
preparatory chemistry, GC I, GC II and general chemistry for engineers; the descriptions of these
courses are given in chapter 3.

Table 5.2. Participants (by course) for pilot administration of COES — Fall 2013

Prep. Gen. |Gen. Chem. Gen. Chem. fi
Fall 2013 (pilot) rep en en. Chem en . em. for
Chem. Chem. | Il engineers
Pre (N) 58 182 146 108
Post (N) 90 136 91 56
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Table 5.3. Participants (by course) for main administration of COES — Spring 2014

Prep. Gen. Gen. Chem. Gen. Chem. f
Spring 2014 (main) rep en en. Chem en : em. for
Chem. Chem. | Il engineers
Pre (N) 348 209 146 93
Post (N) 311 182 115 60

Data analyses

Data were cleaned as described in chapter 3. Statements with conditions that were
negatively worded had to be reverse scored before proceeding with any analyses. Although
analyses were conducted on the pilot version as well, the results mandated major revisions in the
pilot version. The focus in these analyses will be on data collected since Spring 2014 (first
administration of the final version of COES).
Descriptive statistics were obtained for all items in the COES for assessments of univariate
normality, skew, kurtosis and missing data.

For data from GC I and GC 11

Factor analyses (EFA and CFA) was conducted to determine the most robust and
interpretable factor structure. A mean score was calculated for each subscale (“factor”) based on
the raw responses to statements (items) that constituted the subscale. In an effort to obtain the
most robust, meaningful factor structure from a fairly homogeneous dataset, EFA was not only
conducted on pre- and post-GC I and GC II data respectively but also on a combination of GC II
and GC I data. Among the datasets analyzed, the combination pre-GC II and post-GCI resulted in
the most meaningful factor structure.

Comparative statistics were obtained (using GCI) as described in chapter 3. For
independent sample t-tests, high vs. low performing groups (on final exam and in the course) were

created based on z-scores for the raw data. Students with z-scores > 0 were categorized as the
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high-performing group and z-scores < 0 were the low-performing group. In the COES, a low mean
score on a factor implied positive or high outcome expectations.
Reliability and validity were established using the measures detailed in chapter 3.

For data from preparatory chemistry and general chemistry for engineers

Cluster analyses were used to group the student responses from these courses. While these
courses do not play an integral role in the development of a longitudinal model, they serve as two
key courses that pave the way for students to be primed for enrollment in general chemistry or in
their respective engineering fields. Thus, the analysis conducted here is the first step to examine
the degree to which affective and cognitive meaning can be established in two courses comprising
of highly heterogeneous groups of students.

Results and discussion
Descriptive statistics

The descriptive statistics for post-GC I, pre- GC II and the combined dataset are provided

in Table 5.4.

Table 5.4. Demographic characteristics of a) post-GC I, b) pre-GC II and c) the combined dataset from
Spring 2014

Post GC| Pre GCII Post-GC | + Pre-GCII
Variable N % Variable N % Variable N %
Gender Gender Gender
Male 81 44.5 Male 69 47.3 Male 150 45.7
Female 101 55.5 Female 77 52.7 Female 178 54.3
Acad. Level Acad. Level Acad. Level
Freshman 34 18.7 Freshman 9 6.2 Freshman 43 13.1
Soph. 77 42.3 Soph. 54 37 Soph. 131 39.9
Junior 37 20.3 Junior 51 34.9 Junior 88 26.8
Senior 34 18.7 Senior 31 21.2 Senior 65 19.8
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The mean ACT composite scores (not shown here) for post GC-I, pre-GC II and the combined
dataset were 22.78, 23.97 and 23.29 respectively. The mean ACT Math scores were 22.57, 23.97
and 23.17 respectively while the mean ACT Sci-Re scores were 22.77, 24.09 and 23.33
respectively. The ACT scores and gender distributions reveal a fairly homogenous group of
students in each course and in combination. In the combined dataset, the highest percentage of
majors were in biology (24.7%), followed by undecided (13.1%) and biomedical sciences (11.6%).
Over 95% of the students were in STEM fields, with the rest in non-STEM fields such as marketing
and accounting. The percentage of missing item responses was 7% overall with the highest number
being five missing responses for item 19. Although some individual items displayed skewness
and kurtosis above recommended values, the resulting subscales or factors for the final model had
values within range.

As different data sets were used for factor analysis and subsequent comparative statistics
and reliability/validity testing, Table 5.5 summarizes the number of students in the dataset, the

course and the testing that was conducted using the corresponding dataset.
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Table 5.5. Summary of datasets - number of students, course and time point for analyses

Analyses conducted N Course Semester(s)
1. EFA (exploratory factor analyses) 312 GCl post + GC Il pre Si4
2. CFA (confirmatory factor analyses) 152 -377 GClpre, post & GClipre F14, 515, 516, F16
3. Pre to post changes in COES subscales 368 GC | pre and post 514 - 516
4. Differences in COES subscales by gender 368 GC | pre and post 514 - 516
5. Reliability testing 315 GC | post + GC |l pre 514
6. C.orrelatlonal analysis - subscales & performance 354 GCl pre $14.- 16
indicators
¥ 5 Clorrelationa[ analysis - subscales & performance 336 GCl post $14- S16
indicators
8. Differences in subscales (high vs. low performers 368 GC 1 pre $14-516
on final exam)
.9. Differences in subscales (high vs. low performers 368 GC 1 pre $14.- 516
in the course)
10. Correlational analyses {:efv.reen 'pre-CO£S and pre- 367 GC 1 pre 14 - S16
CSEAS subscale scores (validity testing)

: lational I -
11. Correlational analyses between post-COES and 368 GC 1 post $14-516

post-CSEAS subscale scores (validity testing)

Factor analysis - Exploratory

Table 5.6 shows the factor structure of each dataset with descriptions of the results that led
to using a combined dataset. The correlation matrix and item characteristics are only shown for
the final factor structure. Items shaded in gray did not align between the two factors in that they
showed loadings in one factor structure but did not load at all in the other structure. Similarly,

items that loaded by themselves also did not align across factor structures.
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Table 5.6. Component matrix: Six-factor solutions for post GC I and pre GC II respectively.

— Six factors - Post GC | it Six factors - Pre GC Il
1 2 3 - 5 6 1 2 3 - 5 6
24 730 24 806
2 2 753
1 790 1 750
22 762 22 747
12 .635 12 632
17 598 17 .599
21 627 21 572
15 735 15
18 635 18 702
14 719 14 691
9 9 649
16 752 16 576
- 782 4 -.755
25 714 25 -.688
13 522 13 .616
19 .600 19 510
11 642 11 .683
23 537 23 579
10 672 10 -.562
5 557 5 -.741
7 7 .645
6 607 6
8 .768 B .650
3 749 3
20 521 20

Post GC 1

The item responses in this dataset satisfied univariate normality and the correlation matrix
satisfied KMO measures of sampling adequacy (.85 = good) indicating a dataset appropriate for
factor analysis; using the eigenvalue > 1 condition resulted in six factors for the post GC I data.
However, parallel analysis recommended a two-factor solution; in addition, correlating the factors

and using an oblique rotation method such as promin resulted in one factor that did not make
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substantive sense. The factor correlation matrix indicated low degree of correlation among the
factors. Thus, varimax was the preferred method of rotation and the factor structure shown in
Table 5.6 was retained.

Pre-GC II

The item responses in this dataset had some variables that displayed considerable skew and
kurtosis. The matrix was deemed fair using the KMO statistic (.74). This suggests that, although
a factor analysis may yield common factors, there were concerns about variables not loading on
any factor or cross loading. As observed, the six-factor structure displays items that did not load
or loaded in factors that were not as meaningful.

When comparing the two factor structures, there are some items that factor in post GC I
but do not in pre-GC II and vice versa. When the number of extracted factors changes, previously
‘unloaded’ items have loadings. There were problematic items common to both structures which
elicit removal or exclusion from analysis.

Thus, it was decided to combine both these datasets to facilitate a better dataset with a respectable
sample size for factor analysis. The item means, standard deviations and inter-item correlation
matrix for this analysis are presented in Table 5.7. On a 5-point scale, where 1=strongly agree
and 5=strongly disagree, means ranged from 1.33 to 3.21. The correlation matrix does not show
many correlations exceeding 7=.70, thus indicating no problems with multicollinearity. Bartlett’s
test of sphericity was significant (x> = 2230.4, p < 0.001), which indicated that the correlation
matrix was not an identity matrix. The KMO statistics (.84) was good indicating that the matrix

was appropriate for factor analysis.
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Table 5.7. Correlation matrix, means and standard deviations for the chemistry outcome expectations

scale (COES)
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When the item-to-total scale correlations were examined, some of the items showed low or

=.139,

194, item 8
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item 10 = .157). When PCA analyses was conducted on this combined dataset using varimax
rotation and the default eigenvalue > 1 criterion, a six-factor solution was obtained. Items 2 and 7
cross loaded, items 13 and 21 showed no loadings while items 5 and 8 either loaded by themselves
or had negative loadings. The factor that loaded item 10 did not make substantive sense as this
item loaded with two lab related items. Based on Table 5.6, these items were problematic in the
individual factor structures as well. The scree plot, shown in Figure 5.1 justified retention of five
factors, while parallel analyses results in Table 5.8 recommended retention of four factors; the
cutoff point for parallel analysis was when the random order eigenvalue exceeded the actual data

eigenvalue.

Scree Plot

Eigenvalue
()
1
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Figure 5.1. Scree plot showing eigenvalues for a five-factor solution
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Table 5.8. Parallel analysis results showing eigenvalues for actual and random ordered data - COES

Eigenvalue # AFtuaI data Rar.1dom order Percentile
eigenvalue eigenvalue
1 5.96428 1.542 1.64483
2 2.24658 1.4554 1.53269
3 1.68895 1.3921 1.45284
4 1.44269 1.3368 1.39154
5 1.20394 1.2853 1.33602
6 1.06431 1.2400 1.28759

Based on these results, items 5, 8, 10, 13, 2, 7 and 21 were excluded from analyses to obtain a new
structure. After several iterations, a five-factor solution was selected because it was the most
conceptually interpretable factor structure. The total variance explained by the five factors was
58.2%. Variance explained by each factor was as follows: factor 1 = 15.0%, factor 2 = 13.9%,
factor 3 = 10.8%, factor 4 = 9.9% and factor 5 = 8.7%.

The factor loadings from the rotated component matrix are shown in Table 5.9. Factor names and
items in each factor are shown in the table. Items with asterisks were reverse scored before
analyses. This factor structure was tested using CFA; the final model for the COES is represented
in the path diagram. This model accounts for any modifications resulting from CFA to improve
model fit.

Each factor was named based on the tasks producing the outcomes or the outcomes
themselves.  Subscales that involved outcomes related to career were named ‘outcome
expectations related to career goals/planning”, items that were related to task based outcomes were
named according to the nature of the tasks being performed. The subscale that was named outcome
expectations related to performance based tasks was done so according to the meaning of
performance based learning, which represents a set of strategies for acquisition and application of
knowledge, skills and work habits through the performance of tasks that are meaningful and
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engaging; similarly, the factor relating outcome expectations to understanding chemistry was
named based on whether the condition or outcome of the statement involved a task that
necessitated understanding chemistry either on a fundamental level or applying higher order

thinking for abstract tasks such as ‘changing ideas about how the physical world works’.
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Table 5.9. Rotated component matrix for five-factor solution: COES (post GC I + pre-GC [; N = 312).
Items with asterisks were reverse scored.

Factor & tem Five factors- Pre GCIl +Post GCI
Item 1 2 3 4 5
Factor1 Outcome expectations related to performance based tasks
1 Iflworkhard enough, | will be more likely to pass this course 815
22 Ifidoeverything possible [for example, review class notes...), Iwill dowell inthiscourse  .804
2 Ifl do everything possible (for example, review class notes...), be prepared for 7
quizzes/exams in this course :
12 Iflobtain a good grade in this course, | will have a better chance of achieving career 582
goals ’
Factor2 Qutcome expectations related to understanding chemistry
14 Ifllearnchem, | expecttochange some of myideas about how the phys.world works 780
16 Iflcanrelate chemtosituationsin everyday life, | expectto learn it better 731
18 Iflunderstand a fundamental concept, | can solve homework/exam problems on that 591
concept ;
17 Ififigure out what | did wrong on my exam, | will improve my understanding of course cee
material for the next exam '
19 Ificanfollow myinstructorin lecture, | expecttodo betterinthis course 506
Factor3 Outcome expectations related to career planningand choices
15 Ifl succeed at getting my intended degree, | will be more likely to achieve my career 276
goals '
3 Iflgraduate with my current major, | will be more likelyto get a well paying job 746
6  Ifl know myinterests and abilities, then | will make better career decisions 534
Factord4 Qutcome expectations related to learner based tasks
4*  Ifalll dois memorize the solution to any problem, | will be successful in this course 743
25¢ Iflcan remember the solution to a problem and know where to put numbers, dowell on 738
auizzesfexams '
11*  ifidon'tunderstand the concepts inthis course, | can pass (with atleastaC) .668
Factor5 Qutcome expectations related tosuccessin lab
23 Iflunderstand the principles behind the experiments, | will be more likely to succeed in 330
laboratory ’
20 If I finish my experiment and while in lab, figure out what my data means, | expecttodo 659
wellin laboratory ’
g IfItry and understand the chemistry while performing an experiment, | will dowell in 501

laboratory
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Factor analyses — Confirmatory

The factor structure detailed in Table 5.9 was imposed on multiple datasets to check model
fit at each time point during the two-semester gateway sequence. Imposing one factor structure
was necessary to fix items so reasonable subscore comparisons could be facilitated. In addition,
obtaining a pure, meaningful factor structure (with sensibly grouped items) was the first step
towards making meaningful measurements longitudinally.

Although the SAS code (shown in appendix A) requested for outliers, these were not
excluded arbitrarily. Fit indices were checked with and without exclusion of outliers, along with
other generated output, to make decisions about model fit. While the above data provided a model
with reasonable fit, indices improved considerably when item 12 was moved from factor 1
(expectations related to performance based tasks) to factor 3 (expectations related to career
outcomes). The results shown in Table 5.10 are for models that have incorporated this change.
Not all fit indices are shown in this table. Detailed descriptions of the indices shown have been
included in chapter 3.

Table 5.10. Goodness-of-fit indicators for COES models tested at three time points during AY 14-15.

Model tested on: N ¥2 df y2 fdf SRMR CFl RMSEA RMSEA CI
F14 + 515 pre -GC | 377 277.06 125 2.21 057 822 057 0.0479 - 0.0659
F15 + 516 pre-GC | 369 252 .25 135 2.01 57 841 053 0.0436-0.0623
F14 + 515 post-GC | 289 26371 125 210 056 841 060 0.0516-0.0725
F15 + 516 post-GC | 287 28974 125 231 068 832 070 0.0631-0.0832
F14 + 515 pre-GC Il 259 27329 125 218 060 805 068 0.0568 - 0.0786
F15 + 516 pre-GC I 287 288.90 125 2.31 o=t 821 a8 0.0575 - 0.0780
F16 pre-GC | 226 24931 125 1499 058 827 067 0.0544 - 0.0785
F16 pre-GC I 152 15215 125 154 LBE 836 060 00422 -0.0759
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As shown in the Table 5.10, the indices display reasonable — good model fit at each time
point as indicated by SRMR values less than the recommended value of .08, CFI values > .90 and
RMSEA values either at or less than the recommended value of .06. Although chi-square values
were significant for all test datasets, this was to be expected with N > 200 in almost all datasets.
Despite combining datasets, the clarity in factor structure and model fit are indications that students
are responding to items using similar context associations. However, ongoing factor structure and
model fit examinations are necessary to ensure the stability of the model as some of the fit indices
for post data sets are above recommended values. The path diagram for the finalized COES model

is shown in Figure 5.2.
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Figure 5.2. Standardized coefficients for the final, refined five-factor model of the chemistry outcome
expectations scale. All coefficients are significant at p <0.01.

Comparative statistics

Pre-post score changes on each subscale (factor) were examined using the dataset indicated

earlier in Table 5.5. Pre- and post-GC I samples was used as the test datasets for these analyses.
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Scores for each multi-item subscale were obtained by calculating mean response scores for the
items constituting the subscale (after reverse scoring items with negatively worded conditions).
These results are shown in Table 5.11.

Table 5.11. COES scores showing pre to post changes for GC I (N = 368, S14-S16)

Factor Avg. prettest Avg. posttest ; p Effect size
scores scores

1. Expectations related to performance based tasks 1.35 1.76 -10.822 <0.0001 0.720

2. Expectations related to understanding chem. 1.73 1.92 -5.786 <0.0001 0.383

3. Expectations related to career planning 1.57 1.73 -5.387 <0.0001 0.340

4. Expectations related to learner based tasks 2.71 2.75 -0.693 0.489 0.040

5. Expectations related to success in lab 1.84 1.89 -1.012 0.312 0.071

Aside from expectations related to learner based tasks and success in lab, the other
subscales had significantly higher posttest scores, indicating less positive expectations related to
the outcomes in each subscale. Expectations related to performance based tasks showed the
greatest numerical increase (nearly a full standard deviation), indicating that students had the least
positive (lowest) expectations about the outcomes related to these tasks. Expectations related to
understanding chemistry also showed a significant increase in subscale score, indicating that
students had less positive expectations about understanding chemistry; similarly, expectations
related to career planning also showed a significant increase in average subscale scores, implying
that students had lower expectations related to career planning/goals at the end of the semester.

It is quite possible that, despite making changes to the statements to reflect a future
chemistry course, students were responding to post survey items by reflecting on everything they
had done during the semester to judge their performance outcome expectations. Given that some
students stated during interviews that “doing everything possible for the course wouldn’t

necessarily ensure doing well in the course”, it is possible that such beliefs have may resulted in
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negative expectations at the end of the course. Expectations related to career outcomes, while still
significantly less positive posttest, did not show a drastic increase quantitatively as indicated by
the effect size. This could indicate that although career expectations form and evolve through the
course of GC I, they are distal outcomes which probably get established better as students transition
through chemistry courses necessary for their major. The lack of a significant difference for
expectations related to learner based tasks could reflect students’ global vs. domain specific beliefs
that understanding concepts rather than mere memorization is essential to succeed not just in
chemistry but in other courses too. For expectations related to success in lab, it is possible that
students viewed lab as an independent entity and not as a complement to the material covered in
lecture; thus, they could have an indifferent view towards the tasks integral to success in lab. At
the same time, if students working in groups were vicariously successful in lab due to their lab
partners, they could have a falsified sense of positive outcome expectations. While these are
changes observed overall, differences could be manifested in other ways when observed by
subgroups.
The results of examining the factors by gender subgrouping are shown in Table 5.12.

For ease of interpretation, only significant t-test results are displayed.

Table 5.12. Results showing differences in COES pre-subscales based on gender (Nmates = 152, Niemates =
215) - GC 1 (S14-S16)

Effect size,
Factor Males Females t
dtohen
1. Expectations related to performance based tasks 1.28 1.39 -2.421 0.016 0.251
4. Expectations related to learner based tasks 2.87 2.60 3.402 0.001 -0.361
5. Expectations related to success in lab 173 1.92 -2.574  0.010 0.264

Subscale differences based on gender reveal that females have less positive outcome expectations
than males with regards to performance based tasks and success in lab but display more positive

outcome expectations than males with regards to learner based tasks. To examine the impact of
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prior ability on these differences, 117 males and 182 females were examined by ability level; the
placement tests (TP and ACT) were used as proxies for prior ability. Male and female students
differed significantly in their performance on the TP Chemistry placement test (¢ (227) = 2.526, p
=.012) and TP total (z (297) = 2.630, p = .011). Based on these differences, the subscales shown
in Table 5.12 were examined for differences between male and female students of high vs. low
ability respectively in both TP chemistry and TP overall. When examined by ability in TP
chemistry, no significant differences were observed between high ability males and females on
any subscale shown in Table 5.12.

However, when low ability students were examined, female students showed more positive
expectations than males about performance outcomes related to learner based tasks such as
memorization of material without understanding concepts. In addition, female students showed
less positive expectations with regards to success in lab and performance based tasks. These results
are summarized in Table 5.13.

Table 5.13. Results showing gender differences within subscales for low ability students (based on TP
chemistry); (Nmates = 62, Nfemales = 126) — GC 1 pre-COES, S14-S16

Effect size,
Factor Males Females t
Deoran
1. Expectations related to performance based tasks 131 146 -2.072 040 312
4. Expectations related to learner based tasks 3.02 2.63 3.251 002 -.514
5. Expectations related to success in lab 172 198 -2.679 .008 380

When TP total was used as the indicator for ability, no significant differences were observed
between high ability males and females on either subscale. However, low ability females showed
more positive expectations than males with regards to learner based tasks; they also demonstrated

more negative expectations than males with respect to success in lab.
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Reliability
Factor correlations and factor alpha coefficients were calculated for the model confirmed
by CFA. These results are shown in Table 5.14.

Table 5.14. Factor correlations and Cronbach alpha coefficients for the COES (N =315, S14 GC Il pre +
GCI post) “Correlation is significant at the 0.01 level. *Correlation is significant at the 0.05 level.

Factor Mean std. 1 . 3 2 Cronbach's
dev. alpha (a)
1. Expectations related to performance based tasks (n=3) | 1.62 62 1.000 0.814
2. Expectations related to understanding chem. (n=5) 190 .54 .492% 1000 0.767
3. Expectations related to career planning (n=4]) 172 48 450%F  4B0**  1.000 0.636
4 Expectations related to learner based tasks (n=3) 273 78 -072 005  -084 1000 0.607
5. Expectations related to success in lab (n=3) 220 67 278¥F  4BD*F  331%F -118* 1.000 0.602
Total scale (n=18) 0.770

As the factors were expected to correlate a certain extent, moderate correlations were
expected between expectations related to understanding chemistry and expectations related to
performance based tasks as a huge component of performance based learning involves tasks that
require a strong understanding of material. On the other hand, weak correlations were expected
between expectations related to learner based tasks and understanding chemistry as the tasks and
outcomes for learner based subscale did not necessitate much understanding of material. Moderate
correlations were also expected between expectations related to success in lab and performance
based tasks due to lab success being one of the tasks that dictated high performance in the course.
It was expected that expectations related to career would display weak correlations with some of
the subscales; as this dataset contained GC II as well, perhaps the decisions about career goals
were better established and could result in some moderate correlations.

Based on the results in Table 5.14, moderate and significant correlations were observed
between expectations related to understanding chemistry and performance based tasks as expected,
similar strength of correlations was also observed between expectations related to career planning

129



and performance based tasks, between expectations related to career planning and understanding
chemistry and expectations related to success in lab and understanding chemistry. The negative
values indicate an inverse relationship between expectations related to learner based tasks and
performance tasks; in addition, as expected, extremely weak and non-significant correlations were
observed between expectations related to learner based tasks and understanding chemistry.
Negative and non-significant correlations were also observed between expectations related to
learner based tasks and career planning, indicating that students who had positive expectations
about learner based tasks such as memorizing material to pass the course had negative expectations
about career planning and setting career goals. The significantly negative correlation between
expectations related to learner based tasks and success in lab indicates that students with positive
expectations about learner based tasks such as memorizing material had low expectations about
success in lab. Given the reasonable degree of complexity in lab related tasks, starting with
preparation before the experiment until after completion, it would not seem unreasonable that
students with highly positive expectations about learner based tasks would have less positive
expectations about success in lab, where a level of thinking above memorizing material might be
warranted.

Reliability estimates were calculated using the same dataset that was used in factor analysis
(S14 GCII pre + GCI post, N=315); these estimates ranged from .60 to .81 with a total scale
Cronbach’s alpha equal to .770. When the scale with 25 items was evaluated, Cronbach’s alpha
was equal to .776. Although the scale displayed some low item-total correlations, when the item
was examined within its subscale, the low item-total correlation was no longer prevalent. When
tested on a GC I pre dataset, the estimate was .745 and with a post dataset, it was .801. As some

of the subscales displayed low reliability estimates and reliability for an instrument in production

130



was required to be above 0.80 (Nunnally, 1978), this structure was to be monitored and tested
consistently for appropriate model fit.
Validity

Construct validity was established using exploratory and confirmatory factor analyses. The
presence of distinct factors measuring different aspects of outcome expectations suggest that the
survey captures dimensions of this construct that would otherwise be immeasurable using
performance indicators alone.

Predictive validity (a form of criterion-related validity) was evaluated by correlating mean
subscale scores to placement test scores, final exam and course performance percentages. These
correlations are displayed in Table 5.15. Expectations related to career outcomes did not show a
significant correlation with any performance indicator; as these were pre-COES subscales, it is
possible that students have not thought about outcomes or expectations related to career goals for
this subscale to have a significant relationship with measures of cognitive ability or exam/course
performance.

Table 5.15. Correlations between pre- COES subscale scores and performance indicators in GC I
(N =354, S14-S16). “Correlations significant at 0.01 level; "Correlations significance at 0.05 level.

1. Expectations related to performance based tasks | -.108% -078  -118% - 154%F A80%

2. Expectations related to understanding chem. -116% -.0483 -101  -158%* - 154%*
4 Expectations related to learner based tasks - 239%*% - 158%* -150% -238% - 213%*
5. Expectations related to success in lab -.069 -0 -118* -0.09 -170%*

The results in Table 5.15 support the hypothesis from SCCT’s model of performance that
a positive relationship exists between positive outcome expectations and career/academic
performance. The correlations are negative because in the COES, a high score implies negative

expectations (1=strongly agree and 5=strongly disagree). Expectations related to success in lab
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demonstrate a significant correlation to course performance but not to performance on the final
exam; given the lab component’s influence on the course grade as opposed to the final exam could
explain this significant correlation. Weak to moderate correlations between the subscales and
performance measures indicate that the COES is not just another measure of academic ability or
achievement.

When these correlations were repeated using the post subscale scores, they became slightly
stronger as the outcome expectations were assessed at a time point close to the final exam; in
addition, as Bandura suggests, it is likely that the post expectations were influenced partially by
self-efficacy beliefs as the outcomes were closely linked to the quality of one’s performance (Lent
etal., 1994; Bandura, 1986). Expectations related to career planning become significant with some
performance measures. Despite the increased strength in correlations between the post-subscale
scores and performance indicators, the performance and persistence models developed in this
project utilized pre measures because a) the interest was in examining affective measures of
students entering the course as opposed to how the course impacted these measures and b) the pre
measures allowed models to account for students coming in with varied ability levels as they would
be predicted to do better or worse accordingly. While using post measures would increase variance
explained by the models, there would be no way of knowing if this was because of an increased
affective measure due to increased ability or some other reason beyond performance. Results are

shown in Table 5.16.
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Table 5.16. Correlations between post- COES subscale scores and performance indicators in GC I (N =

336, S14-S16). ™. Correlations significant at 0.01 level; *. Correlations significance at 0.05 level.

ACT ACT ACT- Final
Factor Course %
Comp. Math SciRe Exam
1. Expectations related to performance based tasks -.085 -.057 -.069 v N
2. Expectations related to understanding chem. -.098* -.051 -.062 -.216%* -.221%*
3. Expectations related to career planning -.035 .002 -.044 - 112* - 129%*
4. Expectations related to learner based tasks -227FF - 170%* - 189** - 128%* - 130%*
5. Expectations related to success in lab -.106* -0p4  -122* - 158** -.158**

When differences were examined by high vs. low performing student groups based on final exam
performance, significant differences were observed between both groups on each subscale. High
performers consistently showed lower average scores (more positive outcome expectations) than
the low performing group. These results are shown in Table 5.17.

Table 5.17. Results showing differences in COES pre-subscales based on high vs. low performing groups
on the final exam (Mow peformers = 173, Nhigh performers = 195) — GC I (S14-S16)

Low High .

Factor t p Effect size
performers  performers

1. Expectations related to performance based tasks 144 126 3.837 =<00001 -0407
2. Expectations related to understanding chem. 1.82 166 3.532 «<0.0001 -0.369
3. Expectations related to career planning 162 152 2039 0010 -0.213
4. Expectations related to learner based tasks 2.82 2.61 2.591 0042 -0.271
5. Expectations related to success in lab 1585 175 2747  0.006 -0.287

When this process was repeated using performance in the course, significant differences
emerged between both groups for all subscales, except expectations related to career planning.
High performers consistently showed lower average scores (more positive outcome expectations)
than the low performing group. It is possible that neither high nor low performing students have
fully mapped out their expectations related to career tasks as GC I might be fairly premature for

students to start thinking about fulfilling financial and career goals. Given that career outcome
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expectations are environmental contingencies, students are less likely to have any expectations
with regards to outcomes that are beyond their control regardless of their performance; for
instance, during interviews, several students were cautious about having any expectations at all
with regards to job related outcomes, especially when the outcomes were influenced by external
factors e.g. “graduating with their intended majors would not necessarily earn them well-paying
jobs as the job market would influence the situation”. These correlations are shown in Table 5.18.

Table 5.18. Results showing differences in COES pre-subscales based on high vs. low performing groups
in the course (Mow performers — 168, Nhigh performers — 200) - GCI (814-816)

Lowr High .

Factor t 2] Effect size
performers  performers

1. Expectations related to performance based tasks 144 1.27 3662 «0.0001 -0.393
2. Expectations related to understanding chem. 179 1.68 2250 0025 -0.235
3. Expectations related to career planning 161 154 1450 0148 -0.152
4. Expectations related to learner based tasks 281 2.63 2.266 0.025 -0.236
5. Expectations related to success in lab 185 1.75 2.835 0.005 -0.297

Validity of the subscales was also tested by examining the degree to which the subscales
measuring different aspects of outcome expectations were related or unrelated to other
operationalized measures. Thus, average subscale scores were correlated with students’ certainty
of persisting in their majors (1= very certain to 5=very uncertain). This was an item (‘How certain
are you of persisting in your intended major?’) that constituted the supplemental items in the
CSEAS survey. It was expected that students with positive expectations related to some of the
subscales, particularly career goals, would display significant and moderate correlations with their
certainty of persisting in a major. For GC I pre-COES subscale scores (S14-F14)), there was a
significant, positive correlation between outcome expectations related to career planning and
students’ certainty of persisting in their majors (N = 283, r=.185). Students with more positive
outcome expectations related to careers were more certain of persisting in their majors.
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When COES subscale scores were correlated with the four items from CSEQ, each
measuring how often students a) discussed course information with their instructor (grades,
possible make-up work, assignments) b) applied material learned in class to other areas
(job/internship, other courses, interactions with others) c¢) memorized formulas, definitions,
technical terms and concepts and d) discussed career plans and ambitions with anyone (advising
staff, faculty members, family members) on a scale of 1=never, 4=very often and 5=not sure), it
was expected that expectations related to learner based tasks would correlate to a moderately
significant degree to students’ memorizing formulas as learner based tasks involved memorization
as well; it was also expected that expectations related to performance based tasks and
understanding chemistry would correlate with applying material to other areas quite often.

The results indicated the following significant correlations: As expected, students who had
more positive expectations related to performance based tasks and understanding chemistry
applied material they had learned in class to other areas (=.240 and r=.272 respectively) more
often. Students with positive outcome expectations about their success in lab rarely discussed
course information with their instructors (7= -.269). Those with positive outcome expectations
related to learner based tasks memorized formulas, definition and concepts more often (r=.116).
Lastly, students with positive outcome expectations related to understanding chemistry and career
planning discussed their career plans and ambitions more often (7=.118 and 7=.236 respectively).
These results suggest that the outcome expectation subscales are relating meaningfully and as
expected with items or scales that share commonality with tasks in some of these subscales.

In addition, convergent validity was examined by correlating subscales from the COES

with those from the CSEAS. Results were evaluated for pre- and post-subscale scores for GC 1.
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The results for correlations obtained using pre-COES and pre-CSEAS subscales are shown in
Table 5.19.

Table 5.19. Correlations between pre-COES and pre-CSEAS subscale scores in GC |
(N =367, S14-S16). ™. Correlations significant at 0.01 level; *. Correlations significance at 0.05 level.

Fattor SE - assessment SE- SE- SE-low SE-high  SE-everyday tasks
&examprep interpersonal strategies ordertasks ordertasks involving chem.

1. Expectations related to performance based tasks 409** 275** .265* J141** J129* 247

2. Expectations related to understanding chem. 301%* 207 132* J61%* 170** 165%*

3. Expectations related to career planning .289°* 204** 084 025 07 1307

4, Expectations related to learner based tasks -02 014 -015 -.045 -.113* .005

5. Expectations related to successin lab 294 .236** J20* J168** J3g** 085

Given the complete and partial relationship between self-efficacy and outcome
expectations described earlier in this chapter, correlations were expected between certain COES
and CSEAS subscales such as self-efficacy in assessment vs. expectations related to performance
based tasks, expectations related to understanding chemistry and to a small extent expectations
related to learner based tasks. According to Lent et al., (1994), outcome expectations would relate
strongly to self-efficacy, especially when outcomes are closely tied to the quality of one’s
performance. Lent et al., observed a significant correlation (r=.49) between self-efficacy and
outcome expectations.

This is in alignment with the correlation (=.409) between efficacy beliefs related to
assessment and expectations related to performance outcomes. It was also expected that subscales
sharing commonalities in tasks would correlate strongly. Thus, it was expected that expectations
related to performance based tasks would correlate strongly with self-efficacy related to
assessment and exam preparation; in addition, expectations related to understanding chemistry
would correlate moderately with self-efficacy related to higher order tasks or applying chemistry

strategies. Efficacy related to interpersonal tasks was expected to correlate weakly with some
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COES subscales, but a strong correlation was expected between interpersonal self-efficacy and
expectations related to understanding chemistry; the outcome of understanding chemistry could
perhaps correlate to a certain degree with students’ confidence about asking questions or
interacting with the instructor. Career related outcome expectations were not expected to correlate
strongly to any efficacy subscales as these were pre-subscales and expectations related to career
might have just started developing.

The correlations between expectations related to understanding chemistry and all CSEAS
subscales suggest a reasonable degree of commonality between the tasks involved in
understanding chemistry and the self-efficacy subscales. Less expected were correlations between
subscales in the CSEAS and expectations related to career planning. Although CSEAS subscales
were expected to correlate weakly with expectations related to learner based tasks, the only
significant correlation was between self-efficacy related to higher order tasks and expectations
related to learner based tasks. The results for correlations between post subscale scores are shown
in Table 5.20.

Table 5.20. Correlations between post-COES and post-CSEAS subscale scores in GC 1
(N =368, S14-S16). ™. Correlations significant at 0.01 level; *. Correlations significance at 0.05 level.

S SE - assessment SE- SE- SE-low SE-high  SE-everyday tasks
&examprep interpersonal strategies ordertasks ordertasks involving chem.

1. Expectations related to performance based tasks 476% 428** 341%* 130* 223 210*

2. Expectations related to understanding chem. 354 3324 243 J57%* 194%¢ 219%

3. Expectations related to career planning 125¢ 139% 127¢ 084 .106* 146%**

4. Expectations related to learner based tasks -091 -072 012 094 -027 Japee

5. Expectations related to success in lab 223% 216%* 246% J118% 226% 239%*

The posttest scores from both surveys show stronger correlations than pretest measures possibly
because the outcomes (exam or course performance) are more closely tied to the quality of a
student’s performance either on a high-stakes assessment measure like the final exam or lab
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practical or other components that contribute towards their grade in the course. The moderate

correlations between subscales from both constructs support the contention that SE and OE are

distinctly different yet related constructs.
As a final check of validity, results from student interviews were examined for item
groupings. Some of the common groupings resulting from these interviews were as follows:

a) Items 22 and 24 (expectations related to performance based tasks) were selected to be grouped
together by almost all students. This was similar to the factor structure (Table 5.9), in which
items 22 and 24 always grouped together due to the similarity in tasks, despite different
outcomes.

b) Items 1,3,5,6,7,8,12 and 15 were grouped as “future plans and career”. In one case, item 1 was
grouped with other items that had performance outcomes such as items 4,9,11,13,16,17,18,19
and 20. While these items were categorized as career, not all of them were part of the
corresponding subscale in the factor structure because of being standalone items or items which
consistently cross loaded and warranted removal (items 5,8,7). However, the fact that items 5
and 7 were measuring career outcomes and categorized appropriately by students is an
indication that items were being interpreted in similar contexts.

c) Items 13,20 and 23 were lab related items. While item 13 was dropped from the final model,
items 20 and 23 were measuring components of success in lab.

d) 2,6 and 10 were labeled “self”. While these items (purported to measure self-evaluative,
physical and social outcome expectations) did not consistently load or form substantively
meaningful groupings with other items, two of them (2 and 10) were excluded from the final

factor structure. However, given that students recognize items as possibly measuring some
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component of “self”, demonstrates the similar contextual associations made with regards to
these items.
e) 5 and 8 were called “major”.
In general, students came up with categories like careers/jobs, learning and performance.
Concerning the items that were removed to produce the final COES model, students made the
following comments during interviews:
A) JF, a male student in computer science said the following about item 10 — ‘If [ make a good
career decision, then my family and friends will approve of me’.
“I do not like this item as a career based decision. It is equivalent to ‘going to church’ so others
see you as a religious person; it has no bearing on the thought process for career decisions. If this
were a non-career based decision, it would make more sense because making poor life decisions
would invoke approval or disapproval and impact others around you”.
He also mentioned that item 2 — “If I do well/get a good grade in this course, I will be proud of
myself”’- would elicit a neutral response because “it is expected of me that I will do well”. The
student was focused more on the condition than the outcome because he mentioned that “the
converse condition would probably elicit a different response from me”.
B) TS, male student with a major in biology intending to go into pre-med stated about item 8 — ‘If
I am unable to pass this course, I will be more likely to change my major’.
“Throw out item 8. It is difficult to judge if major will change based on only one course. The item
would be a lot more useful at higher level chemistry courses”
The student also stated, with regards to item 7 — ‘If [ earn my undergraduate degree, I will be more

likely to meet my financial goals’.
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“I do not necessarily agree with this statement because having a degree does not always relate to
financial goals. The condition and outcome are not related. You have to do what makes you
happy. It is a perception of people that earning a degree means you will make more money and
be happy”

When comparing factor structures, items grouped by students aligned fairly well with
factors generated quantitatively. Given the variability of students and the fact that the context was
not explicitly stated for the items, it was not an easy task to determine context association,
especially for the classwide data. It was expected that either the items would factor (as they were
preliminarily) or they would not. As the items factored into meaningful subscales, similar to the
item groups students had created, it was either because students were using the same or similar
context association or the association was much less important. In this case, it seems the context
used by the students (and the commonality of this) was fairly similar, thus offering some support
for similarity in the classwide data as well.

Cluster analyses

The cluster structures resulting from data collected in preparatory chemistry and general
chemistry for engineers are shown. As stated earlier, only the cluster structures are displayed here
(with information about items that were excluded) in an effort to examine the utility of the COES
survey. Items with asterisks were reverse scored before proceeding with analyses.

Preparatory chemistry

The dataset used for obtaining the cluster structure consisted of 628 students, out of whom
58.6% were females and 41.4% were males. 47.4% were freshmen, 36.4% were sophomores,
10.5% were juniors and 5.4% were seniors. The average ACT composite, math and sci-re scores

were 22.3, 22.2 and 22.5 respectively. Based on a range of cluster solutions, items 2,5,8,10 and

140



11 were excluded to obtain the most meaningful four-cluster solution, shown in Table 5.21. The
factor structure for preparatory chemistry data shows some factors common to the final factor
structure (Table 5.9). The cluster describing expectations related to learner based tasks contains
two items common to the subscale in the final factor structure. The subscale and cluster related to
career planning and understanding also consist of similar items. In the case of preparatory
chemistry though, there was no discrimination between the clusters corresponding to performance
based tasks and other items containing outcomes related to course performance as there was in the
factor structure for general chemistry. Items were grouped together based on their outcomes being
related to course performance. Given the absence of a laboratory component in preparatory
chemistry, it is possible that students perceive items related to course performance as being in the
same category regardless of whether the performance is in the course or in laboratory. There were
also two items that clustered without any meaning to the cluster.

General chemistry for engineers

The dataset used for obtaining the cluster structure consisted of 839 students, out of whom
57.8% were females and 42.2% were males. 47.3% were freshmen, 36.8% were sophomores,
9.8% were juniors and 6.0% were seniors. The average ACT composite, math and sci-re scores
were 22.4,22.5 and 24.0 respectively. Based on a range of cluster solutions, items 5,8 and 10 were
excluded to obtain the most meaningful five-cluster solution, shown in Table 5.22. The data
resulting from these students followed a similar pattern to preparatory chemistry in that there was
no discrimination among items whose outcomes were related to course performance. This cluster
structure displayed a cluster, containing the same items as the structure in Table 5.9, for

expectations related to lab success. Data from general chemistry for engineers showed more
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meaningful clusters. However, several items in this structure were also grouped into one large
cluster related to course performance.

As quite a few students in engineering are also in the workforce, the interests and goals of
these students could be well crystallized to make assessments about their careers and financial
goals. In addition, as the context of a ‘future chemistry course’ does not apply to these students
given the terminal nature of this course, it is possible that students made retroactive associations

when responding to some of the statements in the post survey.
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Table 5.21. Four-cluster solution for preparatory chemistry students — COES (N = 628)

Cluster &
Itermn

Item

Cluster 1

1

17

18

159

20

21

22

23

24

Cluster 2

15

Cluster 3

g *

25 %

Cluster 4

14

16

Outcome expectations related to course performance

If 1 work hard enough, I will be more likely to pass this course

If | figure out what | did wrong on my exam, | will improwe my
understanding of course material for the next exam

If | understand a fundamental concept, | can solve homewor k/fexam
problems on that concept

If | can follow my instructor in lecture, | ex pect to do better im this course
If I finish my experiment and while in lab, figure out what my data means, |

expect to do well im laboratory

If | can explaima problem or concept to a classmate, | will understand the
material better

If | do everything poszible (for example, review class notes___ ), 1 will do wzll

in this course
If | understand the principles behind the experiments, | will be more likely to

succeed in laboratory
If | do everything possible (for exxcample, review class notes.. ), b2 prepared

for quizzesfexams in this course

Outcome expectations related to career planning

If | praduate with my current major, | will be more likely to geta well paying

jchb

If | earn my undergraduate degree, | will be more likely to meet nmry financial

goals

If | succeed at getting my intended degree_ | will be more likely to achieve my
career goals

Outcome expectations related to learner based tasks

If all | do is memorize the solutiomn to any problem, | wil be successful in this

course
If | can remember the solution to a problem and know where to put

numbers, dowell on quizzes/fexams

Outcome expectations related to understanding chemistry
If 1 try and understand the c hemistry while pefforming an experiment, 1 will
dowell in eboratory

If 1 learn chem, | expectto change some of my ideas about how the
phys world works

If| can relate chenn to situations in everyday life, | expectto learn it better

Factors whose items do not make substantive sense

12

13

If | obtain a good grade in this course. | will hawe a better chance of
achieving my career goals

Ifl am able to follow the procedure to perform an experiment, | can
understand what is happening in a future chemistry laboratory course
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Table 5.22. Four-cluster solution for general chemistry for engineers - COES (N = 839)

Cluster &
ltem
item
Cluster 1 Outcome expectations related to course performance
1 If 1 work hard enough, | will be more likely to pass this course
2 If 1 dowel/ get a good grade in this course, | will be proud of myself
12 If | obtain a good grade in this course, | will have a better chance of achieving my career
goals
13 if 1 am able to follow the procedure to perform an experiment, | can understand what is
happening in a future chemistry laboratory course
14 If I learn chem, | expectto change some of my ideas about how the phys.world works
16 If 1 can relate chem to situations in everyday life, | expect to learn it better
17 If 1 figure out what | did wrong on my exam, | will improve my understanding of course
material for the next exam
19 If 1 can follow my instructor in lecture, | expectto do better in this course
22 If | do everything possible (for example, review class notes...), | will do well in this course
24 If | do everything possible (for example, review class notes...), be prepared for
quizzes /exams in this course
Cluster 2 Qutcome expectations related to career planning
3 If | graduate with my current major, 1 will be more likely to get a well paying job
6 If | know my interests and abilities, then | will make better career decisions
7 If | earn my underg rerduate degree, | will be more likely to meet my financial goals
15 If | succeed at getting my intended degree, | will be more likely to achieve my career goals
Cluster 3 Outcome expectations related to success in lab
9 if | try and understand the chemistry while performing an experiment, | will dowellin
laboratory
20 If | finish my experiment and while in Iab, figure out what my data means, | expectto do
veell in laboratory
23 If | understand the principles behind the experiments, | will be more likely to succeed in
laboratory
Cluster 4 Outcome expectations related to understanding chemistry
18 If 1 understand a fundamental concept, | can solve homework/exam problems on that
concept
21 If 1 can explain a problem or concept to a classmate, | will understand the material better
Cluster 5 Outcome expectations related to learner based tasks
4+ If all | do is memorize the solution to any problem, | will be successful in this course
e If | don't understand the concepts in this course, | can pass (with at least aC)
25« If | can remember the solution to a problem and know where to put numbers, do well on

quizzes/exams
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Despite being a feeder and terminal course respectively, the formation of meaningful clusters from
highly heterogeneous datasets in these two courses indicates that the COES could be a viable
survey to measure outcome expectations in courses similar to general chemistry.

Limitations

Although self-report surveys to measure affective constructs have been used extensively,
any self-report instrument cannot guarantee the absence of response bias. While the COES items
did not demonstrate ceiling or floor effects, the COES also attempted to reduce acquiescence
bias by including negatively worded tasks.

One of the concerns regarding existing measures of outcome expectations has been the lack
of both positive and negative potential outcomes (Fouad & Guillen, 2006). Due to the positively
worded tasks in the CSEAS, the COES includes negative conditions but mostly positive outcomes,
thus sustaining a limitation mentioned for current outcome expectations surveys.

Despite the use of interviews to offer validity for some of the quantitative results,
interpretations and reasons provided in the analyses do not take into account some of the other
contextual and environmental factors, such as socioeconomic status and race, that could potentially
impact outcome expectations. With the development of an instrument to measure OE, path
analyses or structural equation modeling could provide a more thorough exploration of the
construct and its relationship to other affective and contextual variables in chemistry.

While this dissertation focused primarily on developing and examining the psychometrics of the
COES in first year chemistry courses, utilizing and validating this instrument for use in upper level
chemistry courses would perhaps offer more insight into students’ expectations about their

vocational choices and goals. In addition, testing the validity of the antecedent model using self-
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efficacy as a precursor will provide a longitudinal view of the relationships among SCCT
constructs.
Conclusions and Implications

This study presented a detailed description of the process involved in developing and
validating an instrument to measure outcome expectations in chemistry. Exploratory factor
analysis of the 25-item instrument resulted in exclusion of seven items and a psychometrically
distinct five-factor solution whose fit was tested using confirmatory factor analyses. This model
showed a reasonable fit at pre-GCI, post-GCI and pre-GCII time points making this survey
sufficiently stable to make longitudinal measurements. Cronbach’s alpha for the 18-item scale
was .770 while reliability estimates for the subscales ranged from .60 to .81. Validity for the COES
was supported in several ways.

The final exam score was significantly correlated to pre-subscales (except OE related to
career and success in lab) while performance in the course was significantly correlated to all pre-
subscales except OE related to career. Low to moderate correlations were observed suggesting
that the COES was not just another measure of academic performance. These correlations support
SCCT’s hypothesis of a positive relationship between positive OE and academic performance.
When assessed using post subscale scores, the correlations became stronger either as a result of
OE being measured at a time point close to the final exam or due to the partial influence of self-
efficacy beliefs. Gender-based differences were observed for subscales that measured outcomes
for tasks very specific to the course (performance- and learner-based tasks, success in lab).
Students who were high performers on the final exam consistently demonstrated more positive
outcome expectations for all subscales. Students with more positive expectations related to career

outcomes were more certain of persisting in their majors. In addition, students who demonstrated
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more positive outcome expectations related to performance based tasks and understanding
chemistry were more likely to apply material they learned in class to other areas. Career related
outcomes did not display significant correlations consistently; being environmental contingencies,
their relationship to performance indicators and other variables in the COES was fairly dynamic.
It is possible that career related outcomes are impacted by contextual variables that have not been
accounted for in these correlations. When CSEAS and COES subscales were correlated, subscales
which displayed commonalities in each survey showed significant correlations, indicating support
for convergent validity. The ability of the COES to measure fairly distinct dimensions in
preparatory chemistry and general chemistry for engineers offers support for the viability of this
instrument to measure outcome expectations in courses other than general chemistry — courses
which constitute a highly heterogeneous group of students.

Previously developed OE instruments have been used to test and empirically support SCCT
hypotheses in science and engineering. While the CHEMX has measured cognitive expectations,
the COES is the first instrument to measure outcome expectations in a specific subject such as
chemistry. Although the COES attempted to include statements assessing various types of
outcome expectations, some of these items — related to self-evaluative tasks or conditions eliciting
social approval — did not load on any factor resulting in their exclusion. As no causal relationships
were tested, excluding these items does not automatically imply their lack of predictive utility.
This valid and reliable survey offers chemical education researchers a way to capture a fairly
unexplored construct, thereby allowing for research into the role of outcome expectations in SCCT,
relating this construct to areas of career development theory and subsequently using these results
to propose and implement interventions that will help understand students’ vocational choices and

goals. The meaningful factor structure obtained using the COES is the first step towards making
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substantive measurements longitudinally. Psychometric testing is ongoing for this survey and as
is the norm for any study that utilizes assessments to capture cognitive or affective measures, using
this survey in domains besides chemistry or on a new student demographic may require revisions
to survey items and a definite psychometric reevaluation of data resulting from survey

administration.
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CHAPTER 6: DEVELOPMENT AND VALIDATION OF A SHORTENED
INSTRUMENT TO MEASURE SELF-EFFICACY AND OUTCOME EXPECTATIONS

This chapter describes the development and validation of a shortened instrument to
measure finer changes in self-efficacy and outcome expectations when administered at key points
throughout a single semester.

Background and Rationale

Shortened instruments have been employed to capture affective dimensions in chemistry
in an effort to either curb student fatigue that possibly accompanies the usage of long surveys or
to examine how affective measures vary on a narrower and frequent time scale (several time points
across a semester) as opposed to just the start vs. end time points. Xu and Lewis (2011) utilized
factor analysis to refine and shorten the ASCI (Bauer, 2008). The original 20-item ASCI was
administered to a different group of students and resulting data were analyzed using EFA and CFA
in an effort to replicate the original results. Following this process, the researchers conceptualized
new scales based on psychometric evidence and conducted CFA on the newly reconstructed
models. According to Xu and Lewis (2011), items with poor descriptive measures, especially
skew and kurtosis, low item-total correlations, weak factor loadings or strong factor loadings that
cross load elicit removal from an instrument. By using CFA to test several one- and two-factor
combinations of items from the original factors, an 8-item instrument — ASCI(V2) — was developed
and validated.

Using the shortened ASCI version, in conjunction with surveys to measure self-concept
and motivation, Chan and Bauer (2014) employed cluster analyses to identify at-risk students in
general chemistry. Six affective variables - measuring self-concept, self-efficacy, anxiety and

other attitudinal dimensions — from three surveys were used to categorize students into low,
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medium and high groups based on their scores on each variable. The predictive utility of these
variables was supported by differences being observed between high, medium and low scoring
groups on all variables. Students in the high cluster group demonstrated better study strategies
and displayed significantly higher performance on the first hourly exam than medium and low
cluster groups.

Using five items — assessing self-efficacy beliefs regarding applying chemistry knowledge
— from the CAEQ, Villafane et al., (2014) measured chemistry self-efficacy five times during a
semester in a preparatory chemistry course for science majors. Based on CFA results, the self-
efficacy items were interpreted as measuring one construct; consequently, analyses were
conducted at the scale level (using a composite self-efficacy score) as opposed to at the item level
(Villafane, 2014). With the aid of multilevel modeling (MLM) changes in self-efficacy were item-
level self-efficacy were examined across the semester. In addition, differences based on sex and
race/ethnicity were also assessed. Results showed that the apparent differences in expected self-
efficacy at the start of the semester were unnoticeable by the end of the semester. More
importantly, this study revealed key trends in self-efficacy based on sex and race/ethnicity. These
studies emphasize the need for assessment tools that can effectively measure affective constructs
over time in order to examine changes overall and by student subgroups.
The results described in chapters 4 and 5 support that the CSEAS and COES capture meaningful
data related to self-efficacy and outcome expectations respectively and these measures are not
equivalent between instruments or between gender subgroups. Additionally, the significant
changes identified over the course (as measured pre to post) of a single semester for factors
resulting from the CSEAS and COES indicate the possibility of more changes occurring during

the semester (prior to or following performance events). Capturing these changes on a much finer
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level and identifying the key points at which an affective component drops and results in any
corresponding change in persistence is crucial in the development of a comprehensive affective
profile for at-risk students; furthermore, disadvantages for female students due to gateway course
performance can be investigated through changes in self-efficacy and outcome expectations and
this may occur differentially for female students. These persistence profiles will provide
opportunities to implement targeted interventions to offset changes in persistence. The first step
towards assessing these constructs on a finer level is to employ a shortened instrument that offers
simultaneous measurements of self-efficacy and outcome expectations and can be administered at
multiple points during a semester. Thus, two objectives guided this study:
a) To construct and validate a subset instrument measuring self-efficacy and outcome
expectations.
b) To implement the instrument and resulting data in developing predictive performance
models at key performance events during the semester.
Methodology

This section describes the process used in the development of the subset instrument. The
selection of items, construction of the instrument, testing and participants will also be detailed. In
addition, the analyses conducted to evaluate and validate the resulting data will also be examined.
Item selection for the subset survey

Using the subscales resulting from the full-length surveys — CSEAS and COES — items for
the subset were selected based on a) subscales that showed significant changes over a single
semester not just overall but also by student subgroups and b) relevance to performance events
(testing) or decision points (such as dropping the course) over a semester. In addition to the

subscales, item selection for the subset survey was further aided by examining student interviews
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utilized in the validation of the full-length surveys, descriptive statistics of the items, reliability of
the subscales and item-total correlations (ITCs). The final subset instrument comprised of items
that were selected using a combination of these factors. Tables 6.1 and 6.2 show the subscales
resulting from the CSEAS and COES respectively.

Table 6.1. Subscales resulting from the CSEAS. Subscales with ‘x’ showed significant pre-post changes.

Pre-post
Factor

change
1. Expectations related to performance based tasks (n=3) X
2. Expectations related to understanding chemistry (n=5) X
3. Expectations related to career planning (n=4) X

4., Expectations related to learner based tasks (n=3) -

5. Expectations related to success in lab (n=3) -

Table 6.2. Subscales resulting from the COES. Subscales with ‘x” showed significant pre-post changes.

Factor F::E-Iigzt
1. Self-efficacy related to assessment and evaluation (n=7) X
2. Self-efficacy related to interpersonal tasks (n=3) X
3. Self-efficacy related to problem solving strategies (n=3) kS
4 Self-efficacy related to higher order tasks (n=3) X
5. Self-efficacy related to applying chemistry to everyday tasks (n=3) X
6. Self-efficacy related to performing low order tasks (n=3) X

Using the information in Tables 6.1 and 6.2 as starting points, items were selected for the subset
based on some of the criteria described below. Each criterion is detailed using either the COES or
CSEAS subscales as examples for subset item selection.

a) Based on the results in chapter 5, the COES subscales that showed significant changes in
average pre- vs. post-test scores were OE related to performance based tasks (factor 1),
understanding chemistry (factor 2) and career goals (factor 3). Although OE related to learner
based tasks and success in lab did not reveal significant changes on a pre vs. post level, there

were significant differences observed in these subscales when subgroups of students were
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b)

d)

examined either based on their gender or performance on the final exam / in the course. Thus,
items from these subscales were included in the subset survey.

With regards to the CSEAS subscales, although all subscales showed significant changes in
average pre- vs. post-test scores, items for the subset were not selected from all subscales.
Based on student interviews, items that constituted the factor that measured self-efficacy
related to higher order tasks were described as “not being particularly valuable or impactful on
student performance in the course”. As a result, items from this subscale were excluded from
the subset instrument.

When ITCs were examined for the CSEAS subscale related to interpersonal tasks, item 21
(‘asking questions in lecture’) had the lowest ITC; Cronbach’s alpha for this subscale increased
from .714 to .831 when this item was removed. This item was also described in student
interviews as one in which self-efficacy was highly dependent on “whether the lecture
environment was conducive enough to allow students to pose questions”; additionally, self-
efficacy in asking questions during lecture was “dependent on whether a student was
comfortable speaking up in front of their peers as some students exhibit more confidence
during face-to-face meetings”. Thus, when selecting items from the CSEAS subscale related
to interpersonal tasks, this item was excluded from the subset instrument.

In a situation where the original subscale comprised of more than three items, for example the
CSEAS subscale related to assessment and evaluation or the COES subscale related to
understanding chemistry, selections were made based on items that would have the most
relevance to performance events or items whose outcomes would specifically target the
dimension represented by the subscale respectively. Thus, in the case of self-efficacy related

to assessment, the three items that were selected for the subset were confidence related to
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preparing for exams, taking exams and receiving a grade on the exam. Similarly, for outcome
expectations related to understanding chemistry, the two items selected for the subset were
those whose outcomes involved understanding the workings of the physical world and relating
chemistry to situations in everyday life.
Given that the original full-length surveys had 3-6 items per subscale (three items being the
minimum for each subscale to ensure over-identification of the construct in CFA), at least two
items (fairly correlated with each other) from each subscale in the COES and CSEAS were
incorporated into the subset instrument to reliably and substantively represent the original
subscales.
Structure of the subset instrument
The 25-item subset survey integrated 13 items from five CSEAS subscales and 12 items
from five COES subscales; these 25 items were displayed on one page with the Likert-type
response format for each construct preserved from the original surveys. The original subscales

from each survey and corresponding items used for the subset are shown in Tables 6.3 and 6.4.
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Table 6.3. COES subscales and their associated subset items.
Items with asterisks indicate negatively coded items.

Factor & Subset
Item Item items
Factor1 Outcome expectations related to performance based tasks
1 If  work hard enough, | will be more likely to pass this course
22 If I do everything possible (for example, review class notes...), | will do well in this course X
24 If I do everything possible (for example, review class notes...), be prepared for X
quizzes/exams in this course.
Factor 2 Outcome expectations related to understanding chemistry
14 If I learn chem, | expect to change some of my ideas about how the phys. world works X
16 If | can relate chem to situations in my everyday life, | expect to learn it better X
18 If l understand a fundamental concept, | can solve homework/exam problems on that X
concept
17 If | figure out what | did wrong on my exam, | will improve my understanding of course
material for the next exam
19 If I can follow my instructorin lecture, | expect to do better in this course
Factor3 Outcome expectations related to career planning and choices
15 If I succeed at getting my intended degree, | will be more likely to achieve my career goals X
3 If | graduate with my current major, | will be more likely to get a well paying job
6 If | know my interests and abilities, then | will make better career decisions X
12 If I obtain a good grade in this course, | will have a better chance of achieving career goals X
Factor4 Outcome expectations related to learner based tasks
4* If all I do is memorize the solution to any problem, | will be successful in this course X
25*%  If | can remember the solution to a problem and know where to put numbers, do well on
quizzes/exams
11*  If Idon't understand the concepts in this course, | can pass (with at least a C) X
Factor5 Outcome expectations related to success in lab
23 If  understand the principles behind the experiments, | will be more likely to succeed in
laboratory
20 If | finish my experiment and while in lab, figure out what my data means, | expect to do well X
in laboratory
9 If I try and understand the chemistry while performing an experiment, | will do well in X
laboratory
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Table 6.4. CSEAS subscales and their associated subset items.

Factor & - Subset

Item items
Factor 1 Self efficacy related to assessment, evaluation

20 Doing well on chemistry course exams, given you exert enough effort
22 Learning material in chemistry courses where considerable math is involved

26 Preparing for chemistry exams x
29 Receiving the grade you desire in this course X
23 Taking an exam or quiz in your chemistry course x

24 Taking a chemistry exam or quiz where considerable math is involved
25  Signing up for more chemistry courses in the future (regardless of the outcome of this course

or the requirements for your major)

Factor 2 Self efficacy related to interpersonal tasks
21 Asking questions during lecture
28  Talking to your chemistry professor X
27 Understanding your chemistry professor X

Factor 3 Self efficacy related to applying problem solving strategies
3 Determining appropriate units for a numerical result
e Choosing an appropriate equation to solve a chemistry problem x
1 Understanding what a written chemistry problem is asking you to do X
Factor 4 Self efficacy related to higher order tasks

18 Writing a summary of the main points of a television documentary that deals with some
aspect of chemistry
16 Explaining why addition of salt melts ice
17 Using chemistry to propose a solution that keeps cooking water from boiling over
Factor 5 Self efficacy related to applying chemistry to everyday tasks

11 Converting your speedometer reading from mph to yards/second (1 mile = 1760 yards) X
12 Calculating the density of lemonade (made by adding 50g of lemons to 500mL of water)

13 Identifying the type of change (physical vs. chemical) when milk gets sour x

Factor 5 Self efficacy related to performing low order tasks
5 Describing trends in the periodic table (atomic size, electronegativity)

- Reading and writing a chemical formula
8 Identifying elements that are gases at room temperature (from the periodic table)

Sl ! Calculating the percent composition of iron in rust (Fe;0;) obtained from your garage door X

The two asterisks for item 14 in Table 6.4 indicate that although item 14 was not part of the final
CSEAS model, it was included in the subset survey, at the time, based on student interviews, ITCs
and its sporadic loading in the SE factor related to applying chemistry to everyday tasks. However,

in order to preserve the integrity of the final CSEAS model, this item was included in factor
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analyses of the subset instrument to track its presence in factor structures at each point, but was
omitted when calculating average subscale scores for further analyses. Thus, only the two items
from the SE factor related to applying chemistry to everyday tasks (as indicated in Table 6.4) were
used as representative items to calculate a composite score for this subscale in the subset
instrument. Item 14 was excluded from this calculation.
Student interviews

The solicitation and interview processes were similar to those described in chapter 4 for
the CSEAS except students were not given notecards with item names and numbers for the process
of creating item groups. 15 students in total signed up to participate in semi-structured think aloud
interviews, during which the subset survey was presented and students responded to each statement
while verbalizing their thought process. As there was no change in the items themselves, these
interviews were conducted to primarily evaluate the design of the survey (presence of items from
both constructs on the same page of the survey as opposed to being administered full length surveys
at different times) and examine the effectiveness of the prompts as these surveys were administered
across the semester. Consequently, students were solicited for interviews twice — before the first
and third hourly exams. The first set of interviews were conducted before exam 1 in an attempt to
offer fairly “untainted” opinions about the items and survey structure in general. The second set
of interviews — conducted before exam 3, were examined for effects of survey familiarity and the
context of students’ responses, especially for the items related to outcome expectations. Students
were primarily biology and microbiology majors, with some of them on a pre-med track.
Compensation was a $20 gift card to the university book store; the interviews lasted 45 — 60

minutes.
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During the second set of interviews, several students stated that they were retroactively
making causal associations between the task and outcome when responding to the outcome
expectations items. They also mentioned that the retroactive associations were more distinct for
surveys administered closer to the end of the semester. As a result, instead of making changes to
the items’ outcomes as was done in Chapter 5, a change was made to the prompt for the outcome
expectations section of the subset survey administered before and after exam 3. These changes in
prompt are shown below:

a) Before and after exams 1 and 2:
- Please indicate your level of agreement with each of the statements.
b) Before and after exam 3:

- When thinking about what you will still do in this course, please indicate your level of

agreement with each of the statements.
While these changes were made in an effort to guide students into thinking about prospective
outcomes, there is a possibility that some students bypassed the prompt entirely and continued
responding retroactively.
The final version of the subset instrument is included in Appendix L.
Data collection and participants

A schematic indicating the survey administration time points and potential triggers is

shown in Figure 6.1.
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Figure 6.1. Subset administration (GC I and GC II) showing time points and potential triggers

The subset instrument has been administered on paper since Fall 2014; as the goal of the subset
survey was to create affective student profiles and offer targeted interventions, data from three
semesters (Fall 2014 — Fall 2015) served as the control, pre-intervention dataset.

Subset survey administration took place six times during the semester — before and after
exams 1, 2 and 3. The instrument was administered prior to and following these important events
throughout the semester to clarify the point at which lower self-efficacy or outcome expectations
may occur as well as the events that could trigger this reduction. There was no subset survey
administered between exam 3 and the final exam as there were multiple assessments such as the
laboratory practical (high stakes) and practice exams (low stakes) that were offered during this
interim period to determine the degree to which an event triggered a decrease in self-efficacy or

outcome expectations.
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The pre- and post-hourly exam surveys were distributed and collected by instructors during
the week of the corresponding hourly exam. As an example, for pre-exam surveys, if students had
an exam on Wednesday or Thursday, the pre-exam surveys were distributed in lecture on Monday
and collected during lecture on Wednesday. Surveys were included in analyses as long as they
were returned before students took the exam. Post-exam surveys were distributed and collected
during lecture on Friday of the exam week. As grades were posted online or graded exams were
being returned during student discussions, it is possible that a subset of students responded to these
surveys after they had received their graded exams. While a general review of trends across time
points suggest minimal fluctuations in students’ affective measures after each exam, the possibility
of an interaction between time point and affective measures was not examined in this study.

The surveys typically took 10 minutes to complete and for completing both pre- and post-
exam surveys, students were given two extra credit points. The studies described in this chapter
were conducted at a large, urban, research intensive public university in the Midwestern United
States. To stay consistent with the courses that will ultimately be examined using a longitudinal
model, this survey was only administered to the chemistry courses that constituted the two-
semester gateway sequence — GC I and GC II. The descriptions of these courses are given in
chapter 3. As the interventions that were developed have been tested on GC I students only, the
analyses and results presented in this chapter will focus on GC I to help maintain a meaningful
transition from a control (pre-intervention) group to the post-intervention group, whose data and
results will be the focus of chapter 7. Table 6.5 shows the number of students — in total and parsed
out by gender — who took the surveys at each point. While these numbers are respectable when
each time point was compartmentalized, there were only 84 students (28 males and 56 females)

who responded to all surveys from start to end.
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Table 6.5. GC I participants (by gender) for different time points of subset administration

Fall'14 - Fall'15 Start Pre Ex 1 |Post Ex 1| Pre Ex 2 | Post Ex 2 | Pre Ex 3 |Post Ex 3 End
Total 445 474 448 451 419 417 403 289
Males 208 227 207 207 197 189 187 122

Females 236 247 241 244 222 228 216 167

Data analyses

Data were cleaned as described in chapter 3. Outcome expectations statements that were
negatively worded in the full-length surveys and selected for the subset instrument were reverse
coded, just as they had been in the full-length surveys. Descriptive statistics were obtained for
subscales in the subset survey for assessments of univariate normality, skew, kurtosis and
missing data.
Comparative statistics

Similar to the full-length surveys, average subscale scores were calculated for each
representative subscale in the shortened, subset instrument. These scores were calculated using
raw responses to the items constituting each subscale. In order to facilitate effective comparisons
between subscale scores across all time points, including start and end of the semester, the
subscales in the full-length surveys had to be “similar” in constitution to the subset instrument.
Thus, each average subscale score for the full-length surveys was calculated using just the items
that represented the subscale in the shortened instrument as opposed to using all items that
comprised that subscale. Interpretation of these scores in the subset survey was similar to the full-
length surveys; thus, higher average scores denoted lower self-efficacy and less positive/lower
outcome expectations respectively.

For the series of data collected across the semester, comparative statistics involved

examining mean subscale scores overall and by gender to elucidate trends in the corresponding
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affective components across the semester. This was merely a cursory examination of trends, with
no implications of significant differences overall, between scores or interactions between gender
and subscale scores at each time point.

Psychometric testing — construct validity

Exploratory factor analysis (EFA) was conducted on data obtained at each time point and
resulting factor structures were compared to not only evaluate construct validity but also assess
concerns regarding over-sampling of students due to repeated administrations of a survey within a
short time span. Examining the robustness of the survey constructs was highly important
especially in later administrations of the survey.

Predictive validity — Standard multiple linear regression (SMLR)

Given that changes in affective measures (self-efficacy and outcome expectations) could
indicate students who are at risk due to gateway course performance, this idea was extended to the
subset survey by assessing the impact of affective measures on exam performance. On a very
“local” and much finer level, this process entailed developing and testing performance models
using affective and cognitive variables and examining their contribution towards predicting student
performance on each high-stake assessment (hourly exam) offered during a semester.

Multiple regression is a statistical method used to explore relationships among multiple
variables in a sample with the goal of either comprehending a trend and extending this
understanding to a population or using a sample to generate a stable regression equation which can
be used to predict outcomes for individuals in a different sample (Osborne, 2000). In general, the
multiple regression equation of ‘Y’ on Xi, Xa,...Xx is given by:

Y =bo+b1Xi +bxXo+.... 4 buXn
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Where by is the intercept and by, bz, bs, ....bs are similar to the slope in linear regression equation
and are also called regression coefficients.

This study utilized multiple regression for two purposes: To understand how much exam
performance was impacted by affective and cognitive variables and to use a combination of these
variables (predictors / independent variables) in the generation of a regression equation which was
then used to predict students’ scores (outcome / dependent variable) on each hourly exam, thus
providing evidence of a valid model. Establishing the predictive utility of this model was essential
in testing the impact of interventions, whose design and implementation will be described in
chapter 7.

In this study, three models were developed to predict performance on three hourly exams.
The predictor and outcome variables for each model are summarized in Table 6.6.

Table 6.6. Predictors and outcome variable for each subset performance model (GC I)

Model Predictors Outcome

1 ACT scores (Composite, Math, Sci-Re)
TP Math (Total, Chemistry, Math)
Five SE mean subscale scores - Start of semester survey
Five OE mean subscale scores - Start of semester survey Score on Exam 1
Five SE mean subscale scores - Pre-Ex 1 subset survey
Five OE mean subscale scores - Pre-Ex 1 subset survey

Gender

2 Five SE mean subscale scores - Post-Ex 1 subset survey

Five OE mean subscale scores - Post-Ex 1 subset survey

Five SE mean subscale scores - Pre-Ex 2 subset survey

Score on Exam 2

Five OE mean subscale scores - Pre-Ex 2 subset survey
Gender

Exam 1score

3 Five SE mean subscale scores - Post-Ex 2 subset survey
Five OE mean subscale scores - Post-Ex 2 subset survey

Five SE mean subscale scores - Pre-Ex 3 subset survey
Score on Exam 3
Five OE mean subscale scores - Pre-Ex 3 subset survey

Gender

Exam 2 score
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The correlation matrix, which displays Pearson’s correlation coefficients among the
outcome and predictor variables, served as a starting point to decide which predictors (based on
smallest p-value or largest t-value) might contribute to the model and account for significant
portions of variance. In addition, if the correlation between two predictors was stronger than the
correlation between each predictor and the outcome variable, partial correlations were also
considered to control for confounding variables. For example, in this case, using model 1 from
Table 6.6 as an example, including an affective subscale from the start of the semester and from
the subset survey might not seem particularly beneficial as there could be shared variance between
these two predictors that are essentially measuring the same construct as two different time points.
Thus, a partial correlation was run for each of the significant predictors, while controlling for co-
variates, with the outcome variable to assess the relative impact of each predictor on the outcome
(Van den Burg & Lewis, 1988; Soofi et al., 2000).

While regression techniques offer various methods to enter and select predictor variables
for the equation (enter, stepwise, forward selection), this study used the standard method of entry
and all independent variables were entered into the equation simultaneously. While stepwise
regression is recommended when there are several potential predictors in the model, this method
was not attempted due its tendency to capitalize on chance and result in biased regression
coefficients and variance values (Cook & Weisberg, 1999; Field, 2009).

Some of the assumptions that need to be met for multiple regression include the normal
distribution of variables, the existence of a linear relationship between the independent and
dependent variable(s), absence of multicollinearity and the normality of residuals. While these are
criteria to consider when assessing predictors, the distributional assumption for model errors

(residuals) was particularly important as the goal of this study was to use multiple regression to
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develop and test the fit of a predictive model (Pedhazur, 1997) whose residuals would be examined
for changes due to interventions.
Predicting group membership - Discriminant analysis

Discriminant analysis (DA) is a technique used to build a predictive model for group
membership. Using a discriminant function, based on a composite (linear combination) of
independent (predictor) variables, this model determines the most parsimonious way to achieve
maximum separation between two or more naturally occurring and mutually exclusive groups
(Klecka, 1980). Discriminant functions are determined using an optimal combination of variables
so that the first function maximizes the difference between the values of the outcome (dependent)
variable while the second function provides the maximum separation while controlling the first
function. Similar to multiple regression, a discriminant score can be calculated based on the
weighted combination of the independent variables:

Discriminant score = a + b1 X1 + b2Xz + ... + buXa

Where b is the discriminant coefficient and X is the independent variable. The coefficients denote
the unique contribution of each variable to the discriminant function (Klecka, 1980). These
discriminant scores can be divided into each grouping category (low / medium / high or good /
bad) and the mean discriminant score can be calculated for each group. The group means on the
composite variable are known as centroids. Discriminant coefficients are chosen so as to maximize
the distance between centroids and discriminate between the groups to the highest extent
(Tabachnick & Fidell, 2001).

Testing the significance of a set of discriminant functions takes place using a matrix of
variances and covariances. F tests are used to compare these matrices and determine the existence

of significant group differences (with regard to all variables). An overall significant F test leads
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into further examination of specific variables that have significantly different means across the
groups. Once a discriminant function is obtained, discriminant scores can be calculated for new
cases which can then be classified into categories in which they had the highest classification
scores. DA assumes multivariate normality, homogeneity of variances/covariances, absence of
outliers and non-multicollinearity (Klecka, 1980).

In this study, the purpose of DA was to predict student membership in high vs. low
performance groups on each hourly exam. As DA for two groups is conceptually similar to
multiple regression, both techniques were used in this study as confirmatory methods expected to
yield similar results. Despite differences in computations and type of results obtained, regression
and discriminant coefficients are interpreted similarly (Kort, 1973). Discriminant functions and
regression equations involve linear combinations of the independent variables and their weights,
in addition to a constant. While multiple regression was used to predict actual performance on the
exam, the use of a DA model provided an index, which - depending on whether its numerical value
was above or below a certain point — predicted membership in one of two performance groups.
Thus, discriminant analysis was performed in succession to multiple regression analysis, as a
secondary confirmation and test of an empirical performance model.

The discriminant function obtained at each performance event in this study was used to
classify new cases, exposed to an intervention, in chapter 7. Predictors for each DA model were
the same as those used multiple regression; dummy coding was used for the gender variable (0 =
male; 1 = female). As no special relationship was predicted or assumed to exist among the
predictors and group membership, all predictor variables were entered and analyzed at once,
following which only variables which resulted in a significant overall F test were entered. In this

study, as the outcome variable was dichotomized, Pearson correlations were interpreted as point-
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biserial correlation coefficients under the assumptions of approximate normal distributions and
lack of outliers for the continuous variable for each category of the dichotomous variable.

Descriptive statistics were obtained for relevant variables at each time point. These
analyses were performed using SPSS statistical software 23/24 and Excel 2015/2016.

Results and Discussion

Prior to examining comparative statistics and the variables that impact performance and
membership in performance groups, descriptive statistics were obtained for the subscales at each
time point. Tables 6.7 and 6.8 show descriptions, means, standard deviations and other statistics
for self-efficacy and outcome expectations subscales respectively. While the sample sizes for
OE and SE subscales at each time point are similar as both constructs were part of the same
subset survey, the variations in sample size at each point within a construct indicate that not all

students completed the series of surveys from start to end.
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Table 6.7. Descriptive statistics for self-efficacy subscales at each time point during subset survey
administration (F14 — F15) in GC 1

Subset factor Time point N Min Max Mean Std. dev. Skew Kurtosis
Start 445 1.00 5.00 2.06 .76 87 1.06
PreEx 1 474 1.00 5.00 2.58 .92 61 -.08
Post Ex 1 448 1.00 5.00 271 1.00 .26 -.54
SE - assessment Pre Ex 2 450 1.00 5.00 2.82 1.00 21 -.65
Post Ex 2 418 1.00 5.00 3.09 1.07 .05 -.87
Pre Ex 3 416 1.00 5.00 2.99 1.01 A5 -.61
Post Ex 3 403 1.00 5.00 3.03 1.07 29 -.88
End 289 1.00 5.00 2.88 1.06 31 -.83
Start 444 1.00 5.00 1.93 .79 82 .94
PreEx1 473 1.00 5.00 2.50 1.05 56 -.39
Post Ex 1 447 1.00 5.00 2.51 1.07 55 -.25
SE - interpersonal Pre Ex 2 447 1.00 5.00 2.61 1.06 34 -.45
Post Ex 2 416 1.00 5.00 2.71 1.08 27 -.57
Pre Ex 3 414 1.00 5.00 2.72 1.04 36 -.33
Post Ex 3 401 1.00 5.00 2.76 1.11 34 -.55
End 289 1.00 5.00 2.65 1.11 55 -.36
Start 445 1.00 5.00 2.01 .79 73 .37
Pre Ex 1 474 1.00 5.00 1.84 72 1.13 1.67
Post Ex 1 444 1.00 5.00 1.75 .68 96 1.19
SE - applying chem. to Pre Ex 2 449 1.00 5.00 1.68 72 136 2.15
everyday tasks Post Ex 2 417 1.00 5.00 1.74 71 114 1.80
Pre Ex 3 416 1.00 5.00 1.71 72 1.09 124
Post Ex 3 400 1.00 4.67 1.73 73 96 .65
End 289 1.00 4.33 1.64 .68 1.25 1.77
Start 443 1.00 4.50 2.03 .70 67 38
PreEx 1 474 1.00 5.00 211 .80 75 .35
Post Ex 1 446 1.00 5.00 2.08 74 79 91
SE - low order tasks Pre Ex 2 449 1.00 5.00 2.08 .76 72 75
Post Ex 2 419 1.00 5.00 2.15 .78 60 .28
Pre Ex 3 417 1.00 5.00 2.08 .76 79 .76
Post Ex 3 402 1.00 4.50 2.05 .76 g3 .29
End 289 1.00 5.00 1.92 .69 78 1.07
Start 445 1.00 4.50 2.23 77 68 A3
PreEx 1 474 1.00 5.00 2.08 .75 97 111
PostEx 1 448 1.00 5.00 2.05 .75 82 91
SE - applying general Pre Ex 2 450 1.00 5.00 211 .78 70 .53
chem. strategies Post Ex 2 419 1.00 5.00 2.16 .84 71 .28
Pre Ex 3 417 1.00 5.00 2.18 .80 69 32
Post Ex 3 403 1.00 4.50 2.15 77 73 .55
End 289 1.00 4.00 2.00 72 66 27
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Table 6.8. Descriptive statistics for outcome expectations subscales at each time point during subset
survey administration (F14 — F15) in GC I

Subset factor Time point N Min Max Mean Std. dev. Skew Kurtosis
Start 445 1.00 3.00 1.55 .49 .55 -.52
Pre Ex 1 474 1.00 4.33 1.77 .58 .83 1.73
Post Ex 1 448 1.00 4.00 1.75 .55 .49 31
OE - career Pre Ex 2 450 1.00 4.00 1.81 .59 .66 .94
Post Ex 2 417 1.00 4.67 1.83 .63 .78 1.09
Pre Ex 3 416 1.00 4.00 1.84 .58 41 .19
Post Ex 3 402 1.00 4.00 1.82 .62 .50 -.03
End 289 1.00 4.00 1.78 .55 .48 .45
Start 445 1.00 5.00 1.38 .56 1.72 4.68
Pre Ex 1 474 1.00 5.00 1.76 .79 1.23 2.09
Post Ex 1 448 1.00 5.00 1.82 .82 .92 .68
OE - performance Pre Ex 2 450 1.00 5.00 1.94 .87 .80 .36
based tasks Post Ex 2 417 1.00 5.00 2.18 1.02 .78 .08
Pre Ex 3 416 1.00 5.00 2.11 .87 .82 .92
Post Ex 3 403 1.00 5.00 2.20 1.07 .78 .01
End 289 1.00 5.00 1.88 .76 1.02 1.75
Start 445 1.00 5.00 2.39 .81 .75 .60
Pre Ex 1 474 1.00 5.00 2.37 .75 .66 .36
Post Ex 1 448 1.00 5.00 2.40 .75 .59 .24
OE - learner based Pre Ex 2 451 1.00 5.00 2.39 .77 .60 31
tasks Post Ex 2 418 1.00 5.00 2.43 .82 .54 .00
Pre Ex 3 417 1.00 5.00 2.46 .86 .37 -.32
Post Ex 3 403 1.00 5.00 2.45 .84 .45 -.09
End 289 1.00 5.00 2.49 .80 .35 -.15
Start 445 1.00 4.50 1.59 .55 .82 1.24
Pre Ex 1 474 1.00 4.50 1.86 .62 .86 1.97
Post Ex 1 448 1.00 4.00 1.85 .60 42 .37
OE - lab success Pre Ex 2 451 1.00 4.00 1.89 .61 .63 1.09
Post Ex 2 417 1.00 5.00 1.96 .70 .98 2.15
Pre Ex 3 417 1.00 4.50 1.97 .62 .34 41
Post Ex 3 403 1.00 4.50 1.95 .70 71 1.02
End 289 1.00 5.00 191 .61 .86 3.04
Start 444 1.00 3.33 1.79 .51 12 -.64
Pre Ex 1 474 1.00 4.33 1.98 .59 .32 .50
Post Ex 1 448 1.00 4.33 1.98 .62 .39 .50
OE - understanding Pre Ex 2 450 1.00 5.00 2.02 .66 .62 1.30
chem. Post Ex 2 417 1.00 4.33 2.10 .67 .52 .64
Pre Ex 3 417 1.00 4.33 2.12 .68 .29 .24
Post Ex 3 403 1.00 4.33 2.07 .69 .37 13
End 289 1.00 4.33 2.04 .56 .40 1.14
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Descriptive statistics indicate subscales with high skewness and kurtosis values at certain
time points. Given the affective measures and triggers between time points, it is possible that
students indicate disproportionately higher or lower perceived confidence and expectations at
certain time points relative to others, resulting in skewness and kurtosis values being out of range.
While these are criteria to consider when assessing predictors for both analyses, the more important
distributional assumption for multiple regression is for model errors; although some subscales
were non-normal at each level of the outcome variable for DA, these analyses were carried out
under this limitation and without any transformation to the subscales.

When the subscale means for each construct were examined by gender and overall at each
time point, no apparent differences were observed between males and females across time points
for most subscales. Figures 6.2 and 6.3 indicate the average self-efficacy and outcome
expectations subscale scores at each time point across the semester. As displayed, only 84
complete sets of responses were available to track across the semester. Figure 6.3, in particular,
shows that OE related to learner based tasks displays the most noticeable differences between
males vs. females. On a superficial level, these plots indicate that there might be events that trigger
a decline in affective measures at certain time points and these decreases could be manifested

differentially based on gender.
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Figure 6.3. Cursory trends in outcome expectations (subset survey) across semesters (AY 14-AY'15) in

GCl1
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Psychometric testing — Exploratory factor analyses (EFA)

Tables 6.9 and 6.10 show the factor structures for self-efficacy and outcome expectations
obtained at each time point across a semester using data from AY14-15. These structures have
been displayed by items in sequence (as opposed to size of item loadings in each factor) to facilitate
tracking the changes in items in their construct locations across the three time points. Cronbach
alpha values for the self-efficacy subscales ranged from .881 - .903 while values for the outcome
expectations subscales range from .797 - .834. When comparing the factor structures across the
semester and before / after each exam, item movement is observed between factors towards the
end of the semester (exam 3) vs. at the start. While certain subscales (items 9-13) stayed grouped
consistently, one or two items appeared as standalone items, while others did not load at certain
time points. Although interpersonal and assessment items in the self-efficacy instrument were two
distinct factors in the full-length surveys, the items selected from these factors grouped together
across subset administrations (items 9-13). Subscales in the outcome expectations component of
the subset display more stability across a semester, prior to and after performance events. While
each structure had some item movement or combination of subscales at different time points,
perhaps indicative of oversampling and varied interpretation of items, the presence of distinct,
mostly meaningful factors and reasonable reliability estimates suggest a psychometrically valid

measure of self-efficacy and outcome expectations.
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Table 6.9. Self-efficacy factor structures (tracking item changes) from subset survey administration

across a semester (AY14-15) in GC I
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Table 6.10. Outcome expectations factor structures (tracking item changes) from subset survey

administration across a semester (AY 14-15) in GC L
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Standard multiple linear regression (SMLR)

Three regression models were developed to predict the students’ performance on three
performance events (hourly exams 1, 2 and 3). To achieve a respectable sample size for each
model, data were compartmentalized and examined using predictors leading up to each
performance event. Due to the reduced number of complete surveys, data were not examined as a
time series; instead each model was developed using students who had complete data for predictor
and outcome variables utilized for that model. The analyses and results for development of model
1 (for exam 1) have been described in detail. As similar protocols were followed for subsequent
performance models, only the results have been included for these models.

Model 1: Predicting performance on Exam 1

One of the first steps to determine the variables that would be included in the model was
to conduct a correlational analysis. If a predictor displayed a significant correlation with the
outcome variable, it was considered for potential inclusion. The correlation matrix (for this model)
displaying significant correlations among variables and the score on Exam 1 is shown in Table

6.11.
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Higher SE/OE scores indicate lower SE/OE.
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Among the performance indicators, the strongest and significant correlations to score on
Exam 1 resulted from the placement measures: ACT Composite (r=.380"), ACT Math (=.358"),
ACT Sci-Re (1=.344""), TP Math (r=.422""), TP Chem. (r=.137") and TP total (r=.543""). Among
the persistence measures, there were significant correlations among almost all SE subscales (at the
start and pre-Ex 1) with the highest correlation for SE related to assessment at pre-Ex 1 (r=-.355").
Fewer OE subscales at either time point correlated significantly with the score on Exam 1.

Closer examination of the matrix indicated some strong, significant inter-correlations
among performance variables; as these inter-correlations were higher than those displayed between
these predictors and the outcome variable, and the violation of the assumption of multicollinearity
was an issue when considering these predictors. Consequently, only those predictors that
displayed significantly stronger correlations with the dependent variable than other variables were
considered in the model.

ACT Math and TP total had the strongest correlations with the Exam 1 score (r=.358 " and
r=.543"" respectively); however, ACT Math displayed a higher correlation with TP total (r=.421"").
Among the affective predictors, SE related to everyday tasks, applying strategies and assessment
had moderate correlations with the outcome variable (at the start and pre-Ex 1). However, these
variables also had strong inter-correlations as they were measuring the same subscale at two
different points. Thus, partial correlations were examined to assess the relative impact of each
predictor. For instance, when SE related to assessment at the start was correlated with Exam 1
score, controlling for SE related to assessment at pre-Ex 1, the correlation was no longer
significant. However, when SE related to assessment at pre-Ex 1 was correlated with the outcome
variable, controlling for the effects of assessment related SE at the start, this correlation was still

significant. Thus, using the correlation matrix, in combination with partial correlations resulted in
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a model with two predictors (total TP scores and SE related to assessment at pre-exam 1) that
accounted for 34% of the variance in the model as shown in Table 6.12.

Table 6.12. Summary of multiple regression analysis for students’ Exam 1 scores in GC I (N=254)

Zero-
Variables B SE (B) ] t Sig. (p) order Partial | Part | Tolerance | VIF

TP_total .761 .084 | .483 | 9.086 .000 543 497 465 .928 1.077

SE_assessment - Pre

Ex1 -3.573 | .B43 | -.225 | -4.237 | .000 -355 | -258 | -.217 928 1.077

R*=.342; Adj. R’ =.337 Exam 1 score = 30.034 + (.761 TP_total) + (-3.573 SE_assessment - Pre Ex 1)
F(2,253) = 65.250, p < .001

Average of residuals (control) = -0.01

The model was statistically significant, F(2,253) = 65.250, p <.001. The unstandardized
coefficients (B) provide information about the relationship between the score on Exam 1 and each
predictor. In this model, as total TP scores increase by one point, the score on Exam 1 increases
by .761 points. Because in the self-efficacy scale, a higher mean subscale score indicates lower
self-efficacy, an increase in self-efficacy score related to assessment and exam preparation right
before exam 1 by 1 point decreases the score on exam 1 by 3.57 points. As this affective measure
was closely tied to the outcome (performance on exam 1), it is expected that it would make a strong
contribution to the performance model, in addition to past performance indicators (ability), which
students draw upon considerably in learning course material for a performance event.

Placing emphasis on model errors (residuals), standardized regression residual plots, as
displayed in Figure 6.4, showed most of the residual values around zero with no obvious
‘funneling’; thus, homoscedasticity was assumed. Additionally, the average of residuals was zero,
normal P-P plot of regression standardized residual did not show deviations from the straight line
and Shapiro-Wilk’s test of normality was not significant (p=.056), indicating that residuals were

normal. Although sum and mean of residuals in a least-squares regression are exactly zero as long
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as an intercept term is included as this is a consequence of the “normal equations” that are solved
to find the estimates of the regression coefficients (Pedhazur, 1997), in this model the average of
the residuals was close to zero but the sum was not zero. This could perhaps indicate error in
model specification, thus necessitating a change in the model or a closer investigation into the

predictors used for model development.

Scatterplot of residuals vs. predicted values for Exam I scores in GC 1
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Figure 6.4. Scatter plot distribution of residuals for a performance model using scores on Exam 1 — GCI

Similar models, using the protocols described above, were developed for predicting performance
on the second (Exam 2) and third (Exam 3) hourly exams respectively. Only the summary of
regression analyses and results of Shapiro-Wilks’ normality tests have been included for these
models. Scatterplots for each model did not show ‘funneling’; in addition, P-P plots also did not

display deviations from the straight line.
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Model 2: Predicting performance on Exam 2

This model was statistically significant, F(3,309) = 79.319, p<.001. Three predictors
accounted for 43.2 % of the variance in the model. While the score on exam 1 was a significant
predictor in this model, affective variables also made significant contributions towards predicting
scores on the second exam as shown in Table 6.13.

Table 6.13. Summary of multiple regression analysis for students’ Exam 2 scores in GC I (N=310)

Variables B | se@) B t | siglp) z:";:; Partial | Part | Tolerance | VIF
Exam 1 score .630 051 575 12.303 .000 .632 575 528 .840 1.1590
OE_learner based tasks -
= -1.903 505 -091 -2.103 J036 -019 -119 -090 .980 1.020
Post Ex 1
SE-app["""g::r:‘eg’es “Pre) 3g71| 993 | -181 | 3897 | 000 | -3%9 | -217 | 167 | 854 | 1170
R®=.437; Adj. R? = .432 Exam 2 score = 33.109 + (.630 Exam 1 score) + (-1.903 OE_learner based tasks - Post Ex 1)
F(3,309) = 79.319, p <.001 +(-3.871 SE_applying strategies - Pre Ex 2)
Average of residuals (control) = -0.02

Average of residuals was -0.02; a non-significant result for Shapiro-Wilk normality test on
standardized residuals (p=.750) indicated that the residuals were normal. As score on exam 1
increases by one point, score on exam 2 increases by 0.63 points; as post-exam 1 expectations
related to learner based tasks increases by 1 point, the score on exam 2 decreases by 1.9 points and
as confidence related to applying strategies increases by 1 point, the score on exam 2 decreases by
3.87 points.

Model 3: Predicting performance on Exam 3

The summary of these regression results is displayed in Table 6.14. This model was
statistically significant, F(2,297) = 120.020, p<.001. Average of residuals was 0.01; Shapiro-Wilk
normality test on standardized residuals was non-significant (p=.703), indicating that residuals

were normal. Two predictors accounted for 44.5% of the variance in this model. Increasing the
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score on exam 2 by a point increases the corresponding score on exam 3 by .61 points, while an
increase in the score of confidence related to interpersonal tasks (post Ex-2) by 1 point reduced
scores on exam 3 by 1.66 points.

Table 6.14. Summary of multiple regression analysis for students’ Exam 3 scores in GC I (N=298)

Zero-
Variables B SE (B) B t Sig. (p) i Partial | Part | Tolerance | VIF

Exam 2 score .608 .044 | .627 | 13.862| .000 .661 .628 299 912 1.096

SE_interpersonal -
Post Ex 2

-1.659 | .662 | -.113 | -2.507 | .013 -.299 | -144 | -.108 912 1.096

R® =.449; Adj. R? = .445 Exam 3 score = 33.960 + (.608 Exam 2 score) + (-1.659 SE_interpersonal - Post Ex 2)
F(2,297) = 120.020, p <.001
Average of residuals (control) = 0.01

Discriminant analyses (DA)

Data analyses using this method was approached in the same way as multiple regression;
due to the reduced number of complete surveys across a semester, each performance event was
evaluated as a compartmentalized model in order to utilize a larger dataset leading up to each
event. Three DA models were developed to predict student membership in high vs. low
performing groups on three performance events (hourly exams 1, 2 and 3). High vs. low
performing groups were designated by calculating z-scores for each student’s exam score. Z-
scores > () were denoted as the high performing group while z-scores < 0 were considered the low
performing group. The analyses and results for predicting group membership for exam 1 (model
1) have been described in detail. As similar protocols were followed for subsequent models, only
the key results have been included for these models.

Model 1: Predicting membership in high vs. low performing groups on Exam 1

Similar to multiple regression, the starting point of this analysis was to find potential

predictors for the membership model corresponding to each performance event. As the outcome
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variable in this case was dichotomous, point-biserial correlational analysis was conducted between
the outcome variable and all predictors in the model leading up to Exam 1. Based on descriptive
statistics and evaluation of assumptions, while some subscales were non-normal on each category
of the outcome variables with considerable skewness and kurtosis present in subscales at certain
time points, Levene’s test for homogeneity of variances resulted in p-values>0.05 for almost all
subscales at each time point indicating that the variances were equal (Tabachnick & Fidell, 2001);
analysis was conducted under these distributional limitations and without transformation of any
predictor variables.

Using the correlation matrix shown in Table 6.15, evaluations similar to those in multiple
regression were conducted to find predictors that showed strong, significant correlations with the
outcome variable (performance group) and relatively weaker correlations among one other. The
strongest significant correlation was observed between TP total score and performance group
while SE related to assessment (before exam 1) showed the strongest correlation with the outcome
variable. While other pre-exam 1 SE subscales also showed moderate to strong correlations with
the dependent variable, these subscales displayed significantly stronger and higher correlations
among themselves; thus, pre-exam 1 SE related to assessment was the only subscale that was

utilized in the model.
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Table 6.15. Point-biserial correlations between predictor variables and performance group on Exam 1 for

GCI (AY14-15). Higher SE/OE scores indicate lower SE/OE.
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The size of this dataset was N=254 with 124 students (48.8%) in the low performing group and
130 (51.2%) in the high performing group. Based on the evaluations resulting from correlational
analysis, two predictors (SE related to assessment — pre-exam 1 and TP total score) were used to
develop a discriminant model to predict membership in performance groups on Exam 1. While
the results produced were substantial, key parameters that required evaluation will be described
for this model.

Univariate ANOVAs were carried out for each independent variable to determine if these
variables differ for the two groups (high performing and low performing). These results are shown
in Table 6.16.

Table 6.16. Tests of Equality of Group Means - DA model predicting group membership in Exam 1 - GCI

Wilks'
F dfl df2 Sig.
Lambda '8
TP_total 0.841 47.484 1 252 0.000
SE related to
0.925 20.387 1 252 0.000
assessment (pre-Ex 1)

The ANOVA results indicate that both total TP score and average score for SE related to
assessment (pre-exam 1) differ (Sig. = .000) for the two performance groups. Wilks’ lambda
denotes the importance of the predictor to the discriminant function, with smaller values implying
greater importance of the independent variable to the discriminant function.

Box’s test allows for assessing the homogeneity of covariance matrices. This test presents

two pieces of information, as shown in Table 6.17, to evaluate this assumption.
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Table 6.17. Box’s test of equality of covariance matrices

Box's M 8.869 Performance group on Exam 1 Rank LO'?
Determinant
F Approx. 2.931 Low performing (0) 2 4,383
dfl 3 High performing (1) 2 3.679
df2 12305888.002 Pooled within-groups 4.058
Sig. 0.032

The log determinants describe the extent to which a certain group’s covariance matrix differs, with
larger log determinants indicating greater differentiation. Rank refers to the number of
independent variables (2) in this model. As DA assumes homogeneity of covariance matrices
between groups, determinants that are relatively equal would be preferred.

Box’s M test evaluates the assumption of homogeneity of covariance matrices. In this model, a
significant value of 0.032 indicates that groups do differ in their covariance matrices, potentially
violating an assumption of DA. As outliers and transformations were not considered in this model,
this was an expected result and analysis proceeded under these limitations.

Information about the discriminant function was provided by examining the eigenvalues and

canonical correlations as shown in Table 6.18.

Table 6.18. Summary of canonical discriminant functions for membership in performance groups — GC |
Exam 1

. . % of . Canonical
Function Eigenvalue . Cumulative % ]
Variance Correlation
1 0.232 100.0 100.0 0.434
Tes.t of Wilks Chi- df Sig.
Function(s) Lambda square
1 0.811 52.448 2 0.000

As there are only two groups in the outcome variable, only one discriminant function is produced.
The canonical correlation is the measure of association between the discriminant function and the

dependent variable. Squaring the canonical correlation coefficient results in the percentage of
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variance explained in the dependent variable. Thus, in this model, the DA suggests that two
variables considered as a set are related to performance groups and explain around 19% of its
variance. Conversely, the value of Wilks’ Lambda denotes the amount of variance unaccounted
for by this model. Thus, 81.1% of the variance in performance group membership on Exam 1 is
unexplained by this model. A significant Wilks’ Lambda suggests that the model is a good fit for
the data.

The unstandardized discriminant function coefficients (similar to unstandardized
regression coefficients in multiple regression) are used to construct the actual prediction equation
which can be used to classify new cases. These coefficients are shown in Table 6.19.

Table 6.19. Unstandardized canonical discriminant function coefficients

Function
1
TP_total 0.095
SE_assessment - pre Ex 1 -0.493
(Constant) -5.391

Thus, for this model, the discriminant function was given by:
Dexam 1 =-5.391 — 0.493 (SE assessment — pre-exam 1) + 0.095 (TP total)

If variable means (rather than individual values for each student) were to be entered into the
discriminant function, the resulting average discriminant scores for cases in the two groups would
be referred to as centroids. In this model, the average score for the high performing group on the
discriminant function was .469 while the average score for the low performing group was -.492.
Using this information, if a student’s score on the discriminant function was closer to -.492, then
the data probably came from the low performing group. Practically, a cutting point of halfway
between the two centroids would be used to determine group membership of a student. In this

case, the cutting point would be equal to (-.492 + .469)/2 = -0.0115. Thus, if a student’s score on
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the discriminant function was above -0.0115, the student probably belonged to the high performing
group; if the score were below -0.0115, student was probably in the low performing group.

Lastly, the classification results shown in Table 6.20 were used to assess the efficacy of
the discriminant function in classifying students correctly and incorrectly.

Table 6.20. Classification statistics showing correct and incorrect classification of cases — Exam 1

Predicted Group
Performance group (high or low) on Membership Total
Exam 1 Low High
performing | performing
Low performing 86 38 124
Count
o High performing 36 94 130
Original -
o Low performing 69.4 30.6 100.0
° High performing 27.7 723 100.0
Low performing 85 39 124
Count
Cross- High performing 37 93 130
validated o Low performing 68.5 31.5 100.0
’ High performing 28.5 715 100.0

*70.9% of original grouped cases correctly classified.

** 70.1% of cross-validated grouped cases correctly classified.

Based on this table, the discriminant function correctly classified 70% of the cases, making about
the same proportion of mistakes for both categories. In essence, 20% of cases were classified
above chance level, which was adequate. 69% of students in the low performing group were
correctly classified while 30.6% were incorrectly classified. In the high performing group, 72.3%
of students were correctly classified while 27.7% were incorrectly classified. Thus, the function
seems to perform equally for both groups, although the classification results are likely more
reliable for students in the high performing group. The cross-validation method, called ‘leave-
one-out classification’, classifies each case by the functions derived from all cases other than that

casc.
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Model 2: Predicting membership in high vs. low performing groups on Exam 2

Using the same process as for Exam 1, the correlation matrix was evaluated for potential
predictors; the dataset had 310 cases, with 156 (50.3%) students in the low performing group and
154 students (49.7%) in the high performing group. The average scores on Exam 1 for the high
and low performing groups were 82.5 and 66.4 respectively. In the model for predicting
membership in performance groups for Exam 2, two predictors were used in the development of
the model: Exam 1 score and SE related to applying chemistry to everyday tasks (Pre-exam 2).
The test of equality of group means was significant for both variables, with score on exam 1 being
the more important variable to the discriminant function (Wilks’ Lambda = .702,
F(1,308)=130.773, p=.000).

Box’s M test for equality of covariance matrices was significant (p=.046), indicating that
the groups differed in their covariance matrices. The canonical correlation was .557, implying that
31% (.557%) of variance was explained in the dependent variable for model 2. The discriminant
function for this model was given by:

Dexam2 =-5.068 - (.372 SE-applying chem. to everyday tasks Pre-exam 2) + (.076 Exam 1 score)
Classification results for this model showed that overall, 73.2% of cases were correctly classified.
The function was likely more reliable for the high performing student group as 76.6% of students
in this group were correctly classified while 69.9% of students in the low performing group were
correctly classified.

Model 3: Predicting membership in high vs. low performing groups on Exam 3

This dataset had 298 cases, with 148 (49.7%) students in the low performing group and
150 students (50.3%) in the high performing group. The average scores on Exam 2 for the high

and low performing groups were 76.0 and 59.1 respectively. In the model for predicting
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membership in performance groups for Exam 3, two predictors were used in the development of
the model: Exam 2 score and SE related to interpersonal tasks (Post-exam 2). The test of equality
of group means was significant for both variables, with score on exam 2 being the more important
variable to the discriminant function (Wilks’ Lambda = .715, F(1,296)=118.243, p=.000).

Box’s M test for equality of covariance matrices was not significant (p=.123), indicating
equality of covariance matrices. The canonical correlation was .554, implying that 30.7% (.554%)
of variance was explained in the dependent variable for model 3. The discriminant function for
this model was given by:

Dexam3 =-3.675 - (.316 SE-interpersonal tasks Post-exam 2) + (.067 Exam 2 score)
Classification results for this model showed that overall, 72.1% of cases were correctly classified.
The function was only slightly more reliable for the high performing student group as 73.3% of
students in this group were correctly classified while 70.9% of students in the low performing
group were correctly classified.

Limitations

One of the glaring limitations of this study was not utilizing incomplete data sets to
examine a true growth model and the interaction of variables in this model at each time point. It
is possible that the differences observed between models could have been a product of missing
data. The implementation of modeling techniques such as hierarchical or multilevel modeling,
which allow for inclusion of incomplete data sets, would have enabled changes in affective
variables to be tracked across a semester, both overall and by gender subgroups.

The importance of predictors, to develop the regression models in this study, was based on
the bivariate or partial correlation coefficients between predictors and the outcome variables.

While these methods resulted in residuals that were normal and whose averages were close to zero,
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there is literature that suggests methods other than correlational analysis would offer more intuitive
measures of predictor importance. Methods such as dominance analysis, that rely on variance
decomposition and changes in model fit, would allow for comparisons between several subset
models and evaluation of predictor contributions across these models (Azen & Budescu, 2003;
Johnson & LeBreton, 2004).

Although CFA was not conducted on the subset instrument, similar to related studies in the
literature, the items on the subset were obtained from confirmed factor structures of the full-length
surveys; in addition, the use of more than one item in the subset instrument to represent an original
subscale allowed for a more thorough representation of the construct while tracking changes.

While this study monitored and assessed statistics related to residuals in a
compartmentalized multiple regression analyses for each performance event, the potential of non-
independence of residuals was prevalent due to time effects; if observations were obtained at
different times, those from points that are closer in time would be more highly related (than those
from later/earlier times); the same phenomenon would also be observed in the case of repeated
measurement over time. A time series analysis or modeling techniques would have helped to
remedy this situation.

While discriminant analysis is a unique method to predict group membership and build
predictive profiles for students, one of the more fundamental requirements of this method is that
the groups that constitute the dependent variable should be naturally occurring and mutually
exclusive. Although high and low performing groups exist naturally, this study created groups by
manually dichotomizing interval data into z-scores and assigning a group based on these scores.

Utilizing DA required the fulfilment of several assumptions, only some of which were considered
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in this study. Thus, it would be irresponsible to attest to the generalizability of the results obtained
using DA.
Conclusions and implications

As changes in affective measures could potentially impact performance in chemistry
gateway courses, the development of predictive models to elucidate the point at which affective
measures decline would be valuable in implementing targeted interventions to offset the decline
in these measures. To that end, the purpose of this study was to utilize ‘control’ data sets in
developing predictive models whose utility (model residuals) would be examined on data sets
comprising of students who have participated in an intervention. As the number of students with
complete survey responses was low and did not allow for examination of a time series analysis,
data were examined using all relevant predictors leading up to key performance events (hourly
exams) during the semester. Regression models developed for predicting scores on each hourly
showed zero residual averages and normality of residuals.

This same approach was used to develop predictive models that would be able to categorize
students into low and high performing groups on each hourly exam. While these models were
consistently better at classifying high performing students, the low performing group did not fare
too poorly in being classified correctly. Examining and identifying students at-risk for low
performance and ultimately perhaps low persistence would be highly valuable in assembling
persistence profiles that can be used to identify key factors that place students at higher risk for
lack of persistence. It should be noted that the categorization of a ‘low performing’ group is from
a normative reference (e.g. below average) in this case and could have demonstrated considerable

proficiency on the exam (e.g. if the entire class did well).
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The results of these analyses — an average of an increase in 1 point on SE/OE (affective
measure) decreased the score on an exam by an average of 2.75 points, while controlling for prior
academic proficiency — reveal the importance and contributions of affective and performance
indicators in understanding and explaining, on a finer scale, events that could potentially trigger
lower measures of persistence. The identification of these triggers and the measures they impact,
whether performance, self-efficacy or outcome expectations, present an opportunity to intervene
and offset the decline in these factors. Ultimately, if these interventions could trigger a change in
decision-making regarding choice of major, it would immensely aid in keeping students on track

for graduating with a STEM major.
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CHAPTER 7: DESIGN AND TESTING OF
INTERVENTIONS IN GENERAL CHEMISTRY

This chapter details the development and subsequent testing of interventions for students
enrolled in GC 1. Results obtained from usability studies and the implementation of these
interventions will also be described.

Background and Rationale

Several efforts have been dedicated towards improving student persistence in courses and
performance in specific tasks and the entire course. Institutional efforts to improve these measures
have mostly involved curricular changes, the addition of remedial courses to accommodate for
deficiencies, assistance with major selections and career advising. However, researchers have for
some time now, initiated and sustained targeted interventions towards improving students’
behavioral attributes (Toven-Lindsey et al., 2015; Pajares, 1997; Margolis & Mccabe, 2006). The
introduction of social cognitive theory brought into focus several interrelated constructs which
have influenced a student’s choice of activities, persistence and effort. Of these constructs, self-
efficacy has been the most prevalently studied factor due to its utility in being an effective predictor
of learning and student performance. While no single process can explain the complexity and
variations in students’ motivational beliefs and efforts to learn, studies have shown that self-
efficacy beliefs provide students with a sense of support that helps motivate their learning through
the use of self-regulatory processes which are systematically oriented toward attainment of one’s
own goals (Zimmerman, 2000).

Self-regulated learners engage in self-evaluation and are active participants in their own
learning (Ablard & Lipschultz, 1998). They also possess a variety of cognitive and metacognitive

strategies that are employed when needed to accomplish academic tasks. One study (Zimmerman,
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1999) recognized five important aspects of students’ efforts to self-regulate their learning: Setting
goals, context adaptations, using strategies, social processes and self-monitoring.

Research in self-regulated learning has shown that these learners are typically high-
achievers; students scoring in the top 1% on an achievement test utilized certain self-regulated
learning strategies more frequently. These strategies were geared toward optimizing, organizing,
transforming information and providing their own rewards and punishments based on performance
(Zimmerman & Martinez-Pons, 1990). Perceived verbal and mathematical efficacy and strategy
were measured with fifth, eighth and eleventh grade students, and showed a 16-18% shared
variance between efficacy beliefs and strategy use across the three grade levels of schooling
(Zimmerman & Martinez-Pons, 1990). While trait measures of self-perceptions are fairly stable
across time and setting, self-efficacy is cyclical and has a tendency to respond to changes in
personal context and outcomes, regardless of the source of the efficacy beliefs (performance
accomplishments, vicarious experiences, verbal persuasion and physiological states). This
sensitivity allows evaluations of self-efficacy beliefs as indicators of change during instructional
interventions as well as signs of initial individual differences (Zimmerman, 2000).

Studies have shown that improvements in self-efficacy have been facilitated by training
students with learning and motivational deficiencies to model specific self-regulatory techniques,
describe the impact of the technique and provide feedback regarding their impact (Zimmerman,
2000). The frequency and immediacy of feedback created higher perceptions of personal efficacy
(Schunk, 1983). Students’ attribution of feedback to their effort allowed for perceptions of greater
progress, sustained higher motivation and greater efficacy for further learning (Schunk, 1987).

These studies not only indicated the sensitivity of efficacy beliefs to instructional interventions,
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but also the mediational role of these beliefs in explaining self-regulation and achievement
outcomes in learners (Zimmerman, 2000).

Given the importance of self-efficacy beliefs in playing a causal role in students’ academic
development, use of learning strategies and persistence, the goal of this study was to design
interventions which could positively impact student performance, self-efficacy or outcome
expectations, and provide a better understanding of how to maximize the likelihood of keeping
students on track for graduating with a STEM major.

Using results from the subset instrument and the hypothesis that changes in affective
measures occur prior to and following important performance events, this study was an opportunity
to design study tools (intervention) which could ultimately target students with low performance
or low affective measures (perhaps at a critical time point) and offset the decline before these
measures resulted in a lack of persistence. Two objectives guided this study:

a) To examine changes in predicted performance and affective measures in students who had
completed the intervention.
b) To evaluate student usability of these interventions, especially their engagement with
problem solving strategies.
Methodology

This section describes the process used in designing the intervention. The format,
construction of the intervention module, the testing and the participants will also be detailed.
Analyses conducted to evaluate the efficacy and usability of the interventions will be described.
Design of the intervention module

The interventions developed for this study were aimed at targeting one, two or all three

measures examined during development of the predictive persistence model: performance, self-
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efficacy and outcome expectations. The occurrence of a performance (testing) event was likely to
trigger changes in students’ affective measures, especially following a testing event. For instance,
if students’ experienced lower self-efficacy following a testing event in GC I, the goal was to target
this lower self-efficacy and increase confidence by planning course specific tasks tied to the
content area that perhaps triggered the decline. Thus, these tasks had to be representative of
instructional material in the course; in addition, consideration also had to be given to the level of
challenge associated with the tasks so as to not artificially inflate or lower confidence or doubt
students’ abilities (Pintrich & Schunk, 1995). Consequently, instructional-level tasks had to be
slightly above the student’s current performance level (Margolis and Mccabe, 2006). In order to
avoid issues with selecting relevant and overly challenging or simple tasks, this intervention tool
utilized problems from past exams in the course to examine changes in self-efficacy. These
problems were a combination of multiple choice and free response items, similar to the format of
the hourly exams.

The second component to these tasks was the feedback offered to the student upon
completion of a problem. As there was no score assigned to the problems in this intervention
module, there was less importance placed on the correctness of the answer. Students were
informed of the correct answer (regardless of the correctness of their answers), commended on
their effort for a correct answer with a nod to the difficulty of the problem if the subject matter
was one with which students usually struggled e.g. “Great job on getting this question correct.
This was not an easy problem!”. While this was the extent of feedback in the S16 experiment (the
first implementation of the intervention), students’ comments indicated that ‘knowing the answer
alone’ was of little benefit to them without a solution to which they could compare their work.

Consequently, in F16, following the assessment about the correctness of their answer, students

197



were offered a detailed explanation of the solution to the problem. This instructive feedback was
given to aid students, especially struggling learners, who perhaps benefited from a comprehensive
map to compare and correct their mistakes, thereby correcting their understanding of material.
The third component of this module was the inclusion of problem solving strategies
specific to the problem being solved; in addition, feedback was offered to students based on their
selection of strategies. The type of strategies to include was dependent on the specific type of
problem solving. As general problem solving involves four major steps — understanding the
problem, devising a plan to solve the problem, implementing a solution plan and reflecting on the
problem (Polya, 1957) — and each step involves smaller tasks, strategies for each problem were
also divided based on what students did ‘at the start of the problem’, ‘during the problem’ and ‘as
they finished the problem’. Within these three categories, task specific strategies were listed based
on common ways in which students approached problem solving in chemistry (Bodner & Herron,
2002). For example, a GC I student attempting to solve a problem related to calculating density
using water displacement would be shown the strategies as displayed in Table 7.1. While some
of these strategies were applicable to most quantitative problems, others had to be customized for
the problem at hand. Using Table 7.1 as an example, ‘recalling conversion factors or equations’
to start the problem and ‘using dimensional analysis or diagramming the scenario’ while solving

the problem were specific to the question posed.
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Table 7.1. Example of problem solving strategies contained in intervention module — GC I

What was the most important strategy you used to start the problem?

(0 Identifying and writing down the information given and asked for in the problem
() Recalling conversion factors to link the given unit to the final unit

() Recalling a rule, equation or principle to solve the problem

() Finding a similar problem and plugging in the numbers as shown in that problem
() Recalling a similar question done in lecture/practice examsiextbook/discussion

() Some other strategy not listed here. Please provide:

| |

What was the most important strategy you used while solving the problem?

() Using dimensional analysis to solve the problem

) Performing the mathematical calculations

) Breaking the problem down into a series of steps that will enable me to determine what | need to know
_ Diagramming the scenario or system either macroscopically or on the particle level

() Finding a similar problem and plugging in the numbers as shown in that problem

(' Did notwrite anything down; starting plugging in numbers in my calculator

() Some other strategy not listed here. Please provide:

| |

What was the most important strategy you used as you finished the problem?
() Applying the correct number of significant figures to the final answer
() Reviewing: re-reading the original problem and selecting the correct answer
) Guessing

() Did not write anything down; plugged in numbers and conversion factors directly my calculator to get the answer

) Some other strategy not listed here. Please provide:

I |

After considering how you did on this problem and the strategies you used to solve this problem, how
will this change how you study for this material and prepare for your test?
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The fourth component of this module (to complement the strategies themselves) was the
feedback students received upon selection of a problem-solving strategy. The feedback was
proposed by researchers (and loaded into Qualtrics) depending on the strategy selected by students.
This feedback was provided to not only commend students for effort, and persistence in working
on moderately challenging tasks, but also to offer students a logical and systematic sequence of
steps for approaching difficult tasks. Commending students on the use of effective strategies was
expected to reinforce their beliefs of their own cognitive and metacognitive strategies. In addition,
the identification of ineffective strategies was expected to engage students’ metacognitive
strategies with the expectation that this could change. The ultimate goal of this approach was, of
course, to impact students’ self-efficacy and performance.

While outcome expectations and self-efficacy are correlated to a moderate degree, with
commonality between some subscales in the COES and CSEAS, interventions aimed at targeting
low outcome expectations were not designed to be as task specific as SE as some dimensions of
OE involved proximal and distal outcomes. Instead, targeting low OE necessitated an
understanding of students’ expectations, their goals and subsequently helping them establish a
connection between their actions and expectancies; students also reflected on how they expected
to prepare for their exams, the resources that would be utilized and whether the feedback on their
performance and strategies had made them aware of their learning.

The entire module was designed on the Qualtrics platform; as Qualtrics allowed for
different question types, some multiple-choice questions, such as selecting a figure, were displayed
using a ‘hot spot’, which represented the figures and accompanying letter choices in a colored
region; students had to click on a region vs. a radio button to indicate their answer. Each question

was validated to be ‘forced response’, with open response items allowing a maximum of 100
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characters. Students who responded correctly to a problem could view feedback on their answer
and a detailed explanation on the same page as the question. Students who answered questions
incorrectly viewed the question, their chosen answer, the correct answer and explanation on the
subsequent page; this was done to dissuade students from changing their answers after viewing the
explanation on the same page. Students were introduced to the module using a cover page which
offered a brief description of the module and its constituent tasks, in addition to requesting
students’ first and last names. The module for each hourly exam followed the same format; to stay
consistent with material covered in class and reflect coverage on the upcoming exam, questions
differed in content and in some cases, quantity.

Testing interventions — Classwide usability study

These interventions were only tested with students in GC [; although the intention of these
interventions was to target students at-risk, the intervention was provided to the entire class. As it
is expected that there would be multiple opportunities for interventions as needed throughout one
semester, these interventions were packaged as “study packets/tools” for students to complete, thus
integrating the necessity to complete these into the course.

Testing the interventions involved studying the usability of these interventions using a
hybrid of eye-tracking studies and semi-structured interviews. Eye-tracking is a technique that
captures eye behavior in response to a visual stimulus such as a computer interface, photograph or
page in a newspaper. An eye tracker captures eye movements and determines the position of one
or both eyes multiple times per second. Fixation duration is a brief glance lasting between 100-
300 milliseconds, although longer fixation ranges have been documented by some researchers
(Palmer, 2002). Usability testing is a technique that evaluates the ease of use of a product. In

usability testing, a representative sample of actual or potential end users is asked to attempt real
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tasks using the product (Dumas & Redish, 1999). Combining eye tracking with usability testing
allows for a more complete picture of the interaction as eye movement analysis can support
findings based on behavioral measures (Dumas & Redish, 1999).

In this study, as the emphasis in the module was on selection of effective problem solving
strategies, it was crucial to examine students’ engagement and interactivity with the pages that
displayed these strategies. Thus, each page of the intervention module was coded (using source
code from Qualtrics) into a html webpage (stimulus) and sequentially loaded into the SMI RED500
remote eye-tracking system, used in conjunction with the software SMI iView NG, SMI
Experiment Center v3.7, and SMI BeGaze v3.7.40. As the intention was to track eye movements
on the computer screen and more importantly aggregate results between users, the stimulus had to
be a static page without scrolling capabilities. Consequently, feedback could not be displayed on
the same page as the question and problem solving strategies corresponding to each phase of
problem solving had to displayed on separate pages. In this study, each trial was a page that
displayed a problem-solving strategy; as there were eleven questions in the study packet, there
were 33 trials related to the problem-solving strategies.

GC I students were solicited during the last five minutes of lecture a week before their
second hourly exam; the second exam was selected due to its importance in being a key point
following which students make decisions about staying in or dropping the course (drop date for
the course was after exam 2). Sixteen students signed up to participate in the usability study for
which compensation was an ACS study guide; the process lasted between 45-60min. Most
students were biochemistry and biology majors, with a select few on a pre-med or pre-PT (physical
therapy) track. The study packet that was loaded into the eye tracking system was designed for

exam 2.
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At the start of the interview, students were provided instructions on the experiment process.
This was followed by instructions on how to use the equipment after which a nine-point eye
tracking “calibration” (sampling rate 60 Hz) was conducted by showing dots at several baseline
positions on the screen (corners, center) and having the student fixate on them. Students were
instructed to get situated comfortably in a position that would minimize movement during the
experiment. As less emphasis was placed on the way students solved a problem as opposed to
how they interacted with the strategies, students were instructed to approach the problems as they
would if they worked through the study packet on their own time. The course textbook and scratch
paper were available for use as was the interviewer to answer any content specific questions such
as providing an equation or offering a page number in the textbook for students to quickly access
relevant tables.

In order to minimize movement between the screen and scratch paper while solving a
problem, students were asked to focus on the problem, record all relevant information and
subsequently utilize a binder for reviewing or re-reading the problem; this binder contained paper
copies of all the problems as they appeared on the computer screen. Students were instructed to
solve the problem, verbalize their answer to the interviewer to check for correctness, following
which students could access the detailed explanation of the solution on the screen. As stated
before, whether or not students accessed feedback was of less interest than was how they
approached the selection of the strategies used in each problem. Moreover, as several students had
not started studying for the exam at the time of the interviews, they required considerable help and
did not know how to solve some of the problems, especially those covering content that was

pending instruction in class.
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For the pages containing problem solving strategies, the independent variables were the
stimuli themselves, while the dependent variables were measured as students’ reactions to those
stimuli. Information examined for these pages included time on task, fixation times and counts,
scan paths, pupil diameter and time on areas of interest (AOIs). A scan path is a repetitive
succession of eye fixations (Brandt & Stark, 1997). Josephson and Holmes (2008) conducted
studies in which they found that participants had preferred scan paths and that different participants
exhibited similarities in eye movement sequences. Areas that were designated as AOIs were the
question itself (“what was the most important strategy you used while solving the problem”), the
bold and underlined term denoting the stage of problem solving, the choices as a whole and the
words at the start of the choices as these terms characterized actions that could perhaps indicate
behaviors of students with lower affective measures. Data collected (fixation times, counts, scan
paths) were exported into Excel for analysis. As the outcome expectations component of the study
packet consisted mainly of student reflections and expectations, these questions were asked of
students during the interviews as opposed to having them type answers on a static page.

Using eye tracking measurements, studies have shown that fixation count, duration and
average fixation rates on particular locations are indicative of visual attention, which triggers
mental processes to solve a given task (Just & Carpenter, 1980). Changes in pupil dilation are also
indications of cognitive workload (Laeng et al., 2012). While there was no empirical data for the
actual problem solving process as students’ eyes were off screen and thinking aloud was minimal
on account of students trying to find information to solve a problem or struggling to solve the
problem, it was hypothesized that measures such as fixation times, counts and time spent on certain
regions on the pages containing strategies would offer evidence for how useful students found the

feedback and strategies.
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Data collection and participants

The intervention (“study packet”) has been in use since Spring 2016; data from Spring
2016 — Fall 2016 were used as the intervention dataset while data from Fall 2014 — Fall 2015,
(collected using the subset instrument described in chapter 6) served as the control dataset. The
studies described in this chapter were conducted at a large, urban, research intensive public
university in the Midwestern United States.

The study packet was distributed to GC I instructors using a link generated by Qualtrics.
Subsequently, instructors sent out the link to their students and the study packet was made active
(opened) a week before each hourly exam and data collection was stopped on the day of the exam
(a few minutes before the start of the exam). All responses (complete and in progress) were
downloaded to Excel but only those who had submitted complete study packets were deemed to
have been exposed to the intervention. Students who did not start the intervention or were recorded
as being ‘in progress’ were excluded from analysis. For completing the study packet and pre/post
subset surveys, students were given 5 extra credit points.

As the subset models were compartmentalized for each testing event, the numbers
represented in Table 7.2 account for students who were part of these models and took the
interventions. The asterisk next to Exam 3 indicates that the numbers represent intervention
participants from Spring 2016 only. As data from Fall 2016 were not initially incorporated into
the model, analyses pertaining to Exam 3 only include data from Spring 2016.

Table 7.2. GC I intervention participants (by gender) for three testing events. "Exam 3 shows participants
for Spring 2016 only.

Spring'16 + Fall'lé | Exam 1 | Exam 2 | Exam 3*

Tatal 103 129 73
Males 30 36 19
Females 73 g3 54
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Data analyses

Data were cleaned as described in chapter 3. As the interventions were offered prior to a
testing event to observe changes in affective measures before and after the event, descriptive
statistics were obtained for subscales in the subset survey pre/post each hourly exam for
assessments of univariate normality, skew and kurtosis.

Predictive validity - Standard multiple linear regression (SMLR)

In this study, the regression models developed (in chapter 6) for predicting performance on
each testing event were used to predict exam scores for students who had taken the intervention.
The average of the residuals was examined for changes due to the interventions. If the residual
average was positive, the interventions had improved performance (positive impact) on the exam.
Conversely, if the residual average was negative, the interventions had brought about a decrease
in performance for those who had taken the study packet. It was anticipated that the residual
averages would be slightly positive, signifying an improvement in performance.

Predicting group membership — Discriminant analysis

Using the discriminant functions developed (in chapter 6), group membership was
predicted for students who had completed the intervention. Each discriminant function was used
to calculate a discriminant score; if the score was above the average score calculated using
centroids, the student was placed in the high performing group; if the score was lower than centroid
average, students were in low performing groups. Percentages of those who had been correctly
classified into high or low performing groups were noted. More importantly, misclassifications
were examined for movement of students between groups. Thus, if a student had been classified
(predicted) as low performing, but was actually in the high performing group, this was considered

a positive movement (change); if the number of students misclassified as low but ending up in a
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high performing group exceeded those who had been misclassified as high but ended up in a low
performing group, this was considered a positive change brought about by the intervention —
similar to residual analysis in multiple regression.

Odds ratios (ORs)

To evaluate the impact of the interventions on SE and OE subscales (from the subset
instrument) before and after each testing event, odds ratios (ORs) were calculated for each subscale
using two datasets: control data (not exposed to the intervention — AY 14-15) and treatment data
(exposed to the intervention — S16-F16). Odds ratios are useful because as an effect-size statistic,
they give direct information about which treatment approach has the best odds of benefiting the
individual (McHugh, 2009). In this study, for both control and intervention datasets, a higher
affective measure was the target (dependent) indicator, and being exposed to the intervention was
an independent indicator. As these interventions were targeted toward lower measures of SE or
OE, the odds ratio was calculated to determine whether the odds of moving to a higher SE group
on the same subscale were better for students in the control dataset or for the student group that
had been exposed to the intervention. High and low SE or OE groups were designated based on
raw survey responses, where a mean score > 3 was a low affective group and mean score < 3 was
a high affective group. Confidence intervals and significance statistics were also determined for
each OR. An example of the setup to calculate OR (in this study) is shown in Table 7.3.

Table 7.3. Example of set up for calculating odds ratios (OR)

Control {no Exposed to
intervention) | intervention Odds
F14-F15 (516 + F16)
Stayed in low affective group a b alb
Moved into high affective grp. C d c/d
Totals (a*d)/ (b*c)
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Results and Discussion
Descriptive statistics prior to and following each testing event are displayed in Tables 7.4
and 7.5. These statistics correspond to students who were exposed to the interventions (S16 —
F16) and are organized by each subscale of the subset instrument.

Table 7.4. Descriptive statistics for outcome expectations subscales before and after testing events
(hourly exams) — Treatment (intervention) group in GC I (S16-F16)

Subset factor Time point M Min Max Mean Std. dev. Skew Kurtosis
Pre Ex 1 103 1.00 433 174 57 1.60 5.15
PostEx 1 155 1.00 4.00 1.75 .55 6o 1459
OE - career Pre Ex 2 155 1.00 5.00 1.80 5L 1.43 445
PostEx 2 73 1.00 3.00 178 54 .05 -67
Pre Ex 3 73 1.00 3.67 178 .63 J4 .25
Post Ex 3 72 1.00 3.00 1.75 .56 A2 -71
PreEx1 103 1.00 4.00 173 79 97 48
PostEx 1 155 1.00 5.00 191 80 1.09 1.23
OE - performance Pre Ex 2 155 1.00 5.00 1586 80 1.00 1.22
baszed tasks Post Ex 2 73 1.00 4.00 2.01 80 J0 -.27
Pre Ex 3 73 1.00 5.00 2.10 99 B9 .39
Post Ex 3 72 1.00 5.00 199 a2 a1 J2
Pre Ex 1 103 1.00 4.00 2.38 b7 .26 -46
PostEx 1 155 1.00 5.00 240 B4 AR 00
OE - learner based Pre Ex 2 155 1.00 450 242 5 AD -.03
tasks Post Ex 2 73 1.00 5.00 260 B8 65 A4g
Pre Ex 3 73 1.00 5.00 2.66 84 .35 -51
Post Ex 3 72 1.00 5.00 258 JB .58 51
Pre Ex 1 103 1.00 4.00 193 .63 a2 2.21
PostEx 1 155 1.00 5.00 1495 BB 118 3.52
OE - lab success Pre Ex 2 155 1.00 5.00 189 J2 147 455
PostEx 2 73 1.00 3.50 193 .60 17 -.14
Pre Ex 3 73 1.00 4.00 197 b7 52 .24
Post Ex 3 72 1.00 4.00 150 .65 BB 186
PreEx1 103 1.00 4.00 2.02 .63 .63 1.03
PostEx 1 155 1.00 5.00 2.02 5L 7B 2.56
OE - understanding Pre Ex 2 155 1.00 5.00 2.02 BB 80 232
chem. PostEx 2 73 1.00 3.33 2.04 .58 .20 -.13
Pre Ex 3 73 1.00 433 207 &8 7l 1.09
Post Ex 3 72 1.00 4.00 158 Ba AD B9
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Table 7.5. Descriptive statistics for self-efficacy subscales before and after testing events (hourly exams)
— Treatment (intervention) group in GC I (S16-F16)

Subset factor Time point N Min Max Mean  Std. dev. Skew Kurtosis
Pre Ex1 103 133 5.00 270 a8 64 -16
PostEx1 155 1.00 5.00 278 103 A3 =52
i Pre Ex2 155 100 5.00 280 102 43 =70
Post Ex 2 73 1.00 5.00 293 103 23 -74
Pre Ex3 73 100 5.00 307 105 06 -85
PostEx 3 72 1.00 5.00 298 100 25 =73
Pre Ex1 103 100 5.00 255 93 46 -04
PostEx1 155 1.00 5.00 257 106 72 08
R Pre Ex2 155 1.00 5.00 268 110 42 -57
Post Ex 2 73 100 500 280 112 23 -58
Pre Ex3 73 1.00 5.00 304 114 28 -74
Post Ex 3 72 1.00 5.00 256 105 S0 - 19
Pre Ex1 103 100 5.00 187 79 109 158
Post Ex 1 155 1.00 4.00 186 72 88 54
SE - applying chem. to Pre Ex 2 155 1.00 333 167 B5 B4 =12
everyday tasks Post Ex 2 73 100 333 164 B2 85 -64
PreEx3 73 100 4.00 166 58 134 154
Post Ex 3 72 1.00 4.00 155 61 141 274
Pre Ex1 103 100 4.50 am T2 74 67
PostEx1 155 1.00 450 211 B3 72 15
R e e i Pre Ex2 155 100 450 207 73 87 102
Post Ex 2 73 1.00 4.00 206 i 58 -03
Pre Ex3 73 1.00 5.00 211 80 99 163
Post Ex 3 72 1.00 4.50 197 79 29 135
Pre Ex1 103 100 450 207 73 80 39
PostEx1 155 1.00 5.00 207 80 81 61
SE - applying general Pre Ex 2 155 1.00 450 206 74 &7 37
chem. strategies Post Ex 2 73 1.00 4.00 2m 73 72 65
Pre Ex3 73 100 5.00 232 B85 87 102
PostEx 3 72 1.00 4.00 199 72 58 40

Descriptive statistics indicate subscales with high kurtosis (>2) at certain time points. Although
some subscales were non-normal and had high skewness and kurtosis, testing of predicting models
(developed in chapter 6) using these data was carried out without any transformation to the
subscales.
Standard multiple linear regression (SMLR)

The predictive model residuals, residual averages from the control dataset and regression

equations for each testing event are shown in Table 7.6.
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Table 7.6. Summary of predictive model residuals (control and treatment datasets) and regression equations
— GCI (F16+S16 for exams 1 and 2; only S16 for exam 3)

Residual Control | Intervention Regression equations
averages | (F14-F15)| (S16-F16) g

Exam 1 0.01 +2.10 Exam 1 score = 30.034 + (.761 TP_total) + (-3.573 5E_assessment - Pre Ex 1)

Exam 2 -0.02 -2.78 Exam 2 score = 33.109 + (.630 Exam 1 score) + (-1.903 OE_learner based tasks-3.871 SE_strategies - Pre )
Exam 3* 0.01 -13.0 Exam 3 score = 33.960 + (.608 Exam 2 score) + (-1.659 SE_interpersonal - Post Ex 2)

The residual averages for exam 1 are positive, indicating an improvement in scores as a result of
the intervention. The results for exam 2 were unusual because residual analysis of the S16
intervention dataset alone gave residuals of +2.4 but with the addition of the F16 data, the residual
averages were negative indicating a decline in performance for the students who had been exposed
to the intervention. Student data from only the F16 treatment set were examined and several
combinations of the predictor variables were attempted for which corresponding residual averages
were recalculated; for instance, based on the predictors for exam 2, student combinations of low
SE, low OE and low performance (using z-scores of subscale scores) were created and resulting
residual averages were examined. Some of these results are summarized in Table 7.7.

Table 7.7. Combination of predictor variables and resulting predictive model residuals - GC I (F16)

Fall 2016 (GC | intervention dataset) - variables| Residual
used to predict exam 2 performance averages
Low SE, low OE and low exam 1 performance -7.83
Low SE, high OE and Low performance -5.23
Low SE, high OE and high performance 2.62
Low SE, low OE and high performance 3.35
High SE, high OE and high performance -9.56

The only combination that gave positive residual averages was by including low SE, high
performance, and either high or low outcome expectations. Given that the residual averages were

increasingly negative with high performance and affective measures, the possibility of one of these
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variables having an adverse impact on exam 2 performance despite the intervention warrants this
data set be investigated more thoroughly. While the factors responsible for the highly negative
residual averages for exam 3 were not investigated in this study, it is possible that with the scale
of course obligations and preparation for the final exam and lab practical, students did not spend
enough time on completing the packet thoroughly. Given the results for exam 3 are only from
Spring’16, the data set from Fall’16 needs to be examined individually and in combination with
Spring’16 to evaluate the impact of the intervention.

Predicting group membership — Discriminant analysis

The results of discriminant analyses classifications are shown in Table 7.8.

Table 7.8. Classification table for treatment (intervention) dataset — GC I (S16+F16 for exams 1 and 2;

“only S16 for exam 3)
Exam 1 Exam 2 Exam 3*
N 103 129 73
% correctly
: 68.0 76.7 79.5
classified
% misclassified 32.0 23.2 20.5
Low to high group 69.7 27.0 4.88
% movement among
misclassifications

High to low group 32.3 73.0 95.12

Similar to multiple regression, Table 7.8 displays the efficacy of the discriminant function in
correctly classifying students and the cost of misclassifying students. Two costs are associated
with classification in discriminant analysis: The true misclassification cost per group and the
expected misclassification cost per observation (Guo et al., 2007). Although exam 1 has the lowest
percentage of correctly classified students, the cost of misclassifications is not problematic as the

function appears to shift the classification of cases (among the misclassifications) toward the high
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performing group - as demonstrated by a higher percentage of students (69.7%) moving from the
low to high performance group - thereby indicating an acceptable misclassification rate.

For exams 2 and 3, the cost of misclassifications is higher despite the greater percentage of
correctly classified students. This is also in agreement with the results obtained from multiple
regression, which indicated an improvement in performance on exam 1 but poor performance on
exams 2 and 3.

As the subset instrument was administered and collected in the middle of the intervention
time period (when the intervention was open on Qualtrics), it is possible that the study packets for
exams 2 and 3 revealed what students don’t know, perhaps increasing their anxiety and resulting
in a higher mean value on SE subscales (low self-efficacy). It is also possible that the
accompanying detailed solution lulled the students into complacency with an ‘I know this’
mindset. Furthermore, the multiple regression model was built with a different exam set; it is
possible that exams 2 and 3 for the control group were sufficiently different than those for the
semesters in which the interventions were implemented, resulting in a method (comparison of the
intervention groups to the control) that was flawed.

Odds ratios

While multiple regression and discriminant analysis examined the impact of persistence
measures on each testing event, the changes in these measures prior to and following a testing
event were evaluated using odds ratios. In this study, the two groups were the control group (did
not experience intervention) and the treatment group (exposed to intervention); the event
(occurrence) was being retained in a low self-efficacy group. As the question was to determine
the odds of students in low affective subscales improving their confidence or outcome expectations

(moving to higher affective subscales), the target variable was a higher subscale score (based on
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raw scores greater than or less than 3, which was neutral in the survey) after each testing event. In
this study, two sets of odds ratios were calculated: The first set involved calculating the odds of
students moving from a low affective subscale (score > 3) to a high affective subscale (score < 3).
The second set of ratios involved calculating the odds of students improving their affect from a
low affective subscale (= 4 and < 5) to a slightly higher affective subscale (> 3 and <4).

In general, OR estimates of 1 mean that both groups/categories have the same odds and
there is no association between the suggested exposure (intervention) and the outcome (staying in
a low affective group). Estimates greater than 1 would indicate that the odds of exposure to the
intervention are positively associated with the adverse outcome (staying in a low affective group)
compared to the odds of not being exposed to the intervention. Estimates less than 1 imply suggest
that odds of exposure to the intervention are negatively associated with the adverse outcome.

Confidence intervals and significance values were calculated for ORs corresponding to all
subscales; both self-efficacy and outcome expectations subscales displayed non-significant ratios
for all three testing events; the odds of students in a low affective subscale improving their
confidence or outcome expectations on that subscale were no higher or lower for the control vs.
intervention groups at all three testing events.

The non-significant results for SE subscales at all three testing points were unexpected due
to the significant changes observed in SE subscales across a semester and the expectation that these
changes might be observable during a semester. In addition, although not displayed here due to
the non-significance of the ratios, there was no difference in control vs. intervention groups on any
SE subscale even during the period after the completed hourly exams and before the next one.
However, based on student interviews discussed in previous chapters, most students admitted to

not having sustained declines in their confidence after their exams (even after viewing their
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grades); while the anticipation of a score may have resulted in temporary dips in confidence, once
the students determined how to correct the mistakes on their exams, their confidence returned to
their previously reported levels. Thus, whether SE measures change considerably at testing events
with or without an intervention requires a more in-depth evaluation, perhaps into contextual or
other behavioral factors. In addition, this study looked at students who merely completed the
intervention; the nuances of how each problem in the study packet may have impacted students’
SE would offer a richer assessment of self-efficacy’s role on a much finer scale.

The non-significance of ratios with regards to outcome expectations subscales could
indicate some problems with the way students perceived outcome expectations as it was
operationalized in the study packet. It is possible that the outcome expectations component was
not targeting the associated subscales as intended. The OE component in the study packet was
focused on students’ study practices, course specific (especially assessment related) goals and what
steps students took in order to achieve these goals. As the OE component was operationalized
from a much broader perspective such as course/career goals, explicit connections to targeted OE
subscales were less likely to be observed. Examining and coding students’ detailed responses to
the OE statements in the study packet would offer more insight into the contextual nuances of
students’ expectations and any emergent associations with OE subscales.

Usability studies — Eye tracking and student interviews

The results of the eye tracking data collected indicate that students appear to be engaging
meaningfully with the study packet. Although 16 students signed up to participate in interviews,
data from 10 students were used for analyses as the eye tracking calibrations were successful only

for these students.
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The results detailed here have been analyzed across these trials. Average fixation duration
in this study was ~212 ms, indicating that information was being discerned from a display (Poole
& Ball, 2006). When examining by trials, these durations ranged from 152.9 ms to 278.8 ms
indicating that students were viewing some areas longer than others. As fixation during does not
always indicate positive attention and longer fixations could indicate confusion, these durations
were evaluated based on the pages displaying problem solving strategies. It was determined that
long average fixation durations were observed for pages which were populated with strategies or
had longer statements in the choices. This duration was longer when the area being examined was
closer to the stem of the answer choices than away. The average number of fixation counts was
~66, with larger counts (~300) demonstrated by 1-2 participants; when the interview and scan
paths for these participants were assessed, the high count was likely a byproduct of students trying
to find their way around the page or students fixating on an area while answering a question asked
by the interviewer. The number of fixations across a page were considerable either at the stem of
the statement (with a focus on the verb — “calculating, performing”) or in the case of some
participants, on the bold and underlined word describing the problem-solving phase (start, while,
finished). When examining dwell times by areas of interest, higher dwell times were observed at
the stem of the question (~6581.4, 1866.2, 1449.8 ms) and answer choices with these times
decreasing in areas that were further away from the question (433.2, 699.9, 416.3 ms).

The scan paths obtained in this study were fairly varied across trials with a few key features:
Students either focused on the body of the page especially when there were several choices and
the density of material on the page was substantial or toward the left of the page next to the radio

buttons when the selections were short statements.
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These results indicate that students appear to be engaging meaningfully with the study
packet. While there was minimal insight into their problem-solving process, almost all students
had a consistent group of strategies that were used regardless of their performance on the problem.
As some students were not thoroughly prepared at the time of the interview, they selected
‘guessing’ as a problem-solving strategy; however, this was always selected in combination with
strategies that were part of students’ normal problem solving process such as writing down
information or reviewing the solution before selecting an answer. Students mentioned that the
only time strategies such as ‘recalling a similar problem done in lecture’ would be selected is if
they were at a complete loss on how to approach a problem or it was a complex multi-step problem,
in which case some students were inclined to memorize the series of steps. Based on the interviews
and open response items in the study packet, it appeared that while most students were appreciative
of explanations to solutions and the study packet aided in their planning of material that needed to
be reviewed, the strategies themselves had minimal impact in guiding students toward efficient
problem solving.

Limitations

While this study examined the impact of interventions on affective and performance
measures, exploring these changes thoroughly, by evaluating the strategies that students selected
when working through the study packet, was not examined. Assessing the strategies used for each
problem and the subsequent change in subscales could have allowed for a more in-depth analyses
and better understanding of study packet’s impact on performance and persistence measures.

Students were recruited for interviews a week before their scheduled hourly exam. While
some students had just started to attempt the study packet as part of their preparation for the exam,

there were others who had not started preparing, were unfamiliar with the content and generally
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struggling to solve some of the multi-step numerical problems. These students did not verbalize
their thought processes and guessed most of their answers. As evidence for how useful students
found the feedback and strategies (and how it was used) was based on coordinating the eye-
tracking results with student articulations, students without a walk-through of their process did not
provide a complete picture of how useful strategies and feedback were or how they were used.

Additionally, the eye tracking data only focused on the interactivity of the students with
problem solving strategies in the study packet; the study would have been well complemented by
having the students verbalize their problem-solving process. However, given that this intervention
was packaged as a study tool and students had multiple opportunities to attempt it, students were
quick to guess in an attempt to move on to the next problem. Moreover, one or two students found
the packet useful but wanted to bypass the ‘pesky strategy’ pages. Thus, despite engaging
meaningfully and operationalizing these strategies effectively, it is difficult to ascertain if the study
packet actually improved students’ problem solving strategies or was mainly used as practice
problems with detailed solutions.

As with most self-selection measures, there is a strong possibility of bias associated with
self-selection into the intervention.

Conclusions and implications

The use of targeted interventions to improve persistence for students with low performance
or affective measures is essential in offsetting students’ decisions to drop a course or change out
of a STEM major. Using these interventions to influence performance or persistence measures is
likely to have some impact on a student’s decision making process about their intended majors.
To that end, the purpose of this study was to evaluate the use of interventions by testing their

impact on students’ performance and affective measures prior to and following a testing event.
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Using the predictive models developed in chapter 6, this study examined the utility of these models
by testing them on GC I datasets comprising of students who had been exposed to the intervention;
packaged as a study packet and integrated into the course, this intervention was offered to all
students and could be attempted multiple times as needed before the upcoming exam.

Performance changes were examined using predictive model residuals from the multiple
regression equations developed for each testing event. The results for exam 2 were troubling due
to negative model residuals after students’ exposure to the intervention. While it is possible that
the affective measures in this model might not have been as impactful for this treatment group,
these results necessitate a deeper understanding of the predictors involved or a refinement of the
model itself, especially because this testing event serves as a crucial decision making point for
students to stay in or drop out of the course. These results also called into question the degree to
which students were engaging with the intervention and the problem-solving strategies in
particular.

While eye tracking results offer a sense of student interactivity with the strategies provided
in the study packet, interviews and further probing of interventions are essential to understand the
processes that have the most impact on students’ affective measures, performance and in a much
broader context, their decision-making process about persisting in their intended STEM majors.
The empirical models developed and tested in this study to examine changes in affective measures
and performance are among the preliminary steps to identify the points at which affective measures
decline, the triggers responsible for lowering these measures and the possible ways to offset the

decreased affective components.
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CHAPTER 8: DEVELOPMENT OF PERFORMANCE AND
STEM PERSISTENCE MODELS IN GENERAL CHEMISTRY GATEWAY COURSES
This chapter will discuss the methodology used to develop a model integrating persistence
and performance indicators. The research design, sample, data analysis and limitations of the
model will also be described.
Introduction
The development of persistence models requires the integration of performance and

persistence measures — self-efficacy and outcome expectations. Combining these measures in a

validated persistence model will allow for the best identification of at-risk students based on where

a lack of persistence occurs and what component of the model shows a deficiency. Using the

definition of persistence as an “individual phenomenon”, which describes students’ intentions to

“persist to a goal” (Reason, 2009), these goals being completion of courses or completion of

degrees (Reason, 2009), this study was conceptualized from three perspectives:

a) Course performance: Using pre-affective and cognitive measures as predictors, ‘local’
performance models were developed to examine variables that were most influential in
predicting course (or content) performance outcomes, measured by score in the course or on
the final exam. Changes in affective measures (self-efficacy and outcome expectations) could
indicate students who are at risk due to gateway course performance.

b) Course persistence: This was perceived as sustained enrolment and completion of a course
(for example, GC I) or enrolment in the sequential course (GCII). As an outcome, this would
involve recording whether a student stayed through GCI (cross-sectional) enrolled in GCII or

stayed through GCII (longitudinal).
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c) Persistence in a STEM major: This question was addressed by tracking changes in students’
self-reported majors at the start and end of GCI (cross-sectional) or at the end of GC II
(longitudinal). Using pre-affective and cognitive measures as predictors, a STEM persistence
model was developed to examine variables that were most influential in predicting whether a
student stayed in his or her intended STEM major (outcome) within the context of general
chemistry. The development and subsequent testing of this model overall and by subgroup
would be useful in highlighting differential persistence for underrepresented students,
particularly female students.

Using the SCCT model of career choice as a conceptual framework, models of performance and

persistence were developed in this study using general chemistry courses that constitute the two-

semester sequence of gateway courses. Given that gateway courses in physical sciences are
important decision points for students to persist or leave their intended fields of study, it is essential
to develop a predictive model to examine factors that impact STEM persistence in the context of
chemistry. A robust longitudinal model would prove especially useful to assess stability of these
factors, identify developmental trends and observe progressive changes (Ruspini, 1999).
Purpose of the study
The aim of this study was to develop and test a comprehensive persistence model that
merges self-efficacy and outcome expectations with performance measures. As part of this, two
questions were addressed:

1) What are the significant factors that predict students’ performance while enrolled in general
chemistry?

2) What are the significant factors that predict students’ persistence in their intended STEM

majors while enrolled in general chemistry?

220



Examining STEM persistence of students in the context of chemistry gateway courses will
allow for the development of longitudinal models in not just chemistry but other physical sciences
as well. This study will also utilize affective and performance measures to expand current
knowledge and offer evidence regarding the participation and persistence differential in STEM.
Moreover, examining STEM persistence as more than a dichotomous outcome is a much needed
approach to obtained a richer and more comprehensive understanding of students’ persistence in
their STEM majors.

Research methodology
Research design

The performance and persistence models in this study were developed as ‘proofs of
concept’ using a cross-sectional research design; while the original intent of this study was to
develop longitudinal models, inadequacies in sample size limited the implementation of a
longitudinal design and application of the relevant statistical method.

The performance model was developed by integrating measures of performance with
measures of self-efficacy and outcome expectations (developed and validated in chapters 4 and 5).
Using Toledo placement (TP) and standardized testing scores (ACT) for preliminary performance
and pretesting of persistence measures (mean subscale scores from pre- CSEAS and COES), the
predictive power of this performance model was tested. Performance was measured using
students’ final exam and course percentages. Figure 8.1 shows the predictors and outcome

variable used for developing the performance model.
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Figure 8.1. Outcome and predictors for developing and testing the performance model

The SCCT model of persistence was developed by examining students’ long-term stability
in a STEM major. While the predictors used in this model were identical to those used in the
performance model, the outcome variable was categorical. Gender was used as a predictor in both
models due to the historical relevance of gender in psychosocial models and career development.

The models in this study utilized the following coding for gender: M (1) and F (2). Figure 8.2

shows the predictors and outcome variable used for developing the persistence model.
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Figure 8.2. Outcome and predictors for developing and testing the persistence model

Before developing the persistence model, a few aspects regarding the outcome needed to
be addressed. Students’ majors at the start of GC I were coded as STEM (1), non-STEM (2) or
Undecided (UND = 3). Different organizations and institutions offer varied lists indicating majors
that can be placed in a STEM category. For the purposes of this study, the 2016 STEM Designated
Degree Program List from the U.S. Immigration and Customs Enforcement (ICE) was used to
assign majors as STEM or non-STEM. This list is available in Appendix M.

The outcome variable in the persistence model was STEM persistence, measured by the
stability of a student’s major. As the profile of students’ goes beyond whether or not they stayed
or did not stay in their intended STEM majors, this outcome was not a dichotomous variable.
Instead, it was categorical and comprised of four groups that were coded based on whether a
student’s initial major from GC I (STEM, non-STEM or UND) changed or stayed in the same

category at the end of GC I. The coding scheme to describe persistence is shown in the Table 8.1.
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Table 8.1. Persistence categories and related codes

Category Code
a) Student persisted in a STEM major 1
b) Student switched into a STEM major (from undecided or non-STEM) 2
c) Student stayed in a non-STEM major 3
d) Student switched into a non-STEM major (from undecided or STEM major) 4

Participants

Each question posed in this study was addressed by using students enrolled in GC I at a
large, urban, research intensive public university in the Midwestern United States.

Students considered in the originally intended longitudinal persistence and performance
studies were those who would have started in GC I and ended in GC II the following semester.
While the enrollment in GC II at any subsequent time point could have still constituted a
longitudinal model, only those who took GC I and GC II in sequence would have been considered.
In addition, students who enrolled in either course during summer sessions were excluded from
this model.

Out of 608 IRB approved GC I students (Spring 2014 — Fall 2015), whose data had been
cleaned based on the criteria described in chapter 3, 453 students enrolled in GC II the following
semester. As persistence in STEM involved tracking students’ STEM majors while enrolled in
general chemistry, in order to be included in a longitudinal persistence model, the 608 students in
GC I a) would have to be IRB approved, enrolled in GC II in sequence (the following semester)
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and stay through GC II, b) would have completed pre-affective measures in GCI, post-affective
measures in GC II and pre-affective measures in GC 11, ¢) indicated their intended major at the
start of GC I and end of GC 11, d) would have data available for their indicators of general cognitive
ability (ACT Math, Sci-re, composite scores, TP Math and Chemistry scores, placement test
scores) at the start of GCI and GC 11, and e) indicators of performance (GC I final exam scores).
When these criteria were applied, only 199 students could be used as part of the persistence model
at the end of GC II. For the longitudinal performance study, only 130 students had all relevant
variables and indices to be included in this study; several students had not taken the final exam
and as a result could not be included in the performance model. These limitations resulted in
developing these models using a cross-sectional design.

Students considered in the cross-sectional (referring to the same semester) persistence and
performance studies were those who stayed enrolled in GC I during a semester (pre to post). Out
of 608 IRB approved GC I students (Spring 2014 — Fall 2015), 523 students had usable data (pre-
affective measures, ACT and TP scores at start of GCI) to develop the performance model based
on the final exam score while 552 students had usable data for the performance model based on
course percentages. These performance models were cross-validated using the data from Spring
2016 (103 students with final exam scores and 108 students with course percent data). For the
performance models based on course performance, students who did not take the final exam were
excluded from the regression analyses because course performance was heavily dependent on final
exam scores. The persistence models were developed using data from Spring 2014 — Spring 2016
as the statistical method used for analyses mandated a large sample size. As a result, this model

was developed but not tested for its predictive utility. There were 438 students with available data
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for the persistence model (pre-affective measures, ACT and TP scores at start of GCI, self-reported
majors at start and end of GC I).

The discrepancy in the number of available students arises from the fact that while students
took the final exam and obtained a score, they did not necessarily take the post survey administered
two weeks before the final exam; this survey offered an opportunity to capture the students’ most
recent major and consequently if students did not complete this survey, there was no record of
their major at the end of the tracking period either longitudinally or otherwise. Since these models
had to be stable enough to make predictions or at least have enough cases to conduct cross-
validation analysis, the cross-sectional design was used to develop each model.

Data analysis — Performance model

Standard multiple linear regression (SMLR) analysis was used to develop and test the
performance models for the cross-sectional data set. The outcome variables were performance
indicators — percentage on the final exam (ACS standardized exam) and in the course. This method
was used to assess the size of the overall relationship between the performance indicators and
predictor variables. In addition, the unique contribution of each predictor variable to the model
was also assessed. Correlational analyses were also conducted to discover the significance of the
predictor variables in contributing to the dependent variable. A correlation matrix served as a
starting point to reveal significant associations between predictor and outcome variables. Partial
correlations were also conducted to determine the effects of including confounding variables e.g.
including both ACT Math and TP Math scores might not seem particularly beneficial since there
could be shared variance between the two Math placement indicators. A way to confirm this would
be to run a partial correlation of each predictor, while controlling for the co-variate, with the

outcome variable and assess the relative impact of each predictor on the outcome.
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Since there were several predictor variables, the starting point was to enter all possible
predictor variables in the model. The second approach was to select variables that showed
significant correlations with the outcome variable provided this correlation was stronger than the
relationship between the selected predictors. Correlation coefficients, tolerance levels and the
variance inflation factor (VIF) values between predictor variables were checked to ensure
assumptions of multicollinearity had not been violated. In addition, emphasis was placed on
normality of the residuals when assessing model fit. (Field, 2009).

Data analysis — Persistence model

Logistic regression, an example of a generalized linear model, allows for prediction of a
discrete outcome such as category membership using predictor variables on any level of
measurement. In logistic regression, the relationship between predictor and response variables is
not a linear function but a logarithmic function (logit), in which ‘probability’ or ‘odds’ of the
response assuming a particular value is assessed based on combination of values taken on by the
predictor variables (Menard, 1995). While binary logistic regression is more prevalent and has
dichotomous, probabilistic outcomes of 1 or 0, multinomial logistic regression, an extension of
binary logistic regression, uses multiple independent variables to predict the probability of
category membership in more than two categories of the dependent or outcome variable (Menard,
1995).

Although this method does not require fulfilment of normal distributions or linear
relationships on the predictors in each group, it does require absence of multicollinearity; it is also
assumed that category memberships are independent (Menard, 1995).

Since one of the research questions addressed in this chapter was how performance and

affective measures affect persistence in a STEM major — with persistence having more than two
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levels — multinomial logistic regression was the best analytic approach to develop the persistence
model for the cross-sectional data set. The standard logit model — with all predictors entered into
the model at once — was selected in this regression analysis.

Although both models have several predictor variables, stepwise regression was not
attempted due to its tendency to capitalize on chance and produce results that are often not
generalizable to other similar samples (Field, 2009).

Descriptive statistics were obtained for relevant variables in both models. These analyses
were performed using SPSS statistical software versions 23/24 and Excel 2015/2016.

Results and Discussion
Cross-sectional performance model — GC I final exam as outcome

Prior to examining the variables that impact longitudinal performance, descriptive statistics
were obtained for all the variables in the model. Table 8.2 shows descriptions, means, standard
deviations and other statistics for each GC I pre- performance and affective measure that would
potentially be included in the model. These statistics have been separated by gender to highlight

any apparent differences based on the categorical variable in the model.
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Table 8.2. Descriptive statistics (by sex) for variables in the performance model (data from S14 — F15)

Variables N Missing Mean dei;:mn Min Max  Skewness Kurtosis
ACT Conposite 220 60 23.66 3.52 14 34 .05 -.04
ACT Math 220 60 23.61 3.90 14 34 -17 -.18
ACT Sci-Re 220 60 24.01 3.75 15 36 42 43
TP - Math 273 7 84.60 10.52 50 100 -.65 -.05
TP - Chenustry 273 7 65.92 10.31 25 93 -40 A3
Males (1) TP - Total . 273 7 72.13 8.81 42 93 -.28 -.16
OE - Understanding 279 1 1.68 45 1.00 3.33 28 -.28
OE - Performance based tasks 280 0 1.30 41 1.00 2.67 1.24 72
OE - Career 280 0 1.63 45 1.00 3.50 53 14
OE - Lab tasks 280 0 1.75 .62 1.00 3.67 .65 -.18
OE - Learner based tasks 280 0 2.85 a7 1.00 5.00 15 .07
SE - Assessment 280 0 1.90 .65 1.00 4.43 .87 1.24
SE - Interpersonal 280 0 2.14 .82 1.00 5.00 .60 .28
SE - Strategies and tasks 280 90 2.16 .68 1.00 5.00 1.04 1.59
SE - Low order / recall tasks 280 90 2.13 .63 1.00 4.20 54 .29
SE - High order tasks 280 90 2.52 .78 1.00 5.00 21 -.16
SE - Apply chem. to everyday tasks 280 90 1.92 72 1.00 5.00 93 1.16
GC I Final Exam % 242 38 7217 14.74 32.50 100.00 -40 -49
GC I Course % 255 25 82.50 16.89 1.90 113.38 -1.12 234
ACT Conposite 266 62 2336 346 15 34 07 -.03
ACT Math 266 62 22.70 4.09 14 34 .05 -.56
ACT Sci-Re 266 62 23.17 342 11 35 -.05 1.11
TP - Math 325 3 80.82 13.51 0 100 -1.56 542
TP - Chemistry 325 3 60.21 10.52 23 90 -.15 14
Females (2) TP - Total . 325 3 67.08 9.78 28 92 -.50 78
OE - Understanding 328 0 1.73 43 1.00 2.83 .00 -.89
OE - Performance based tasks 328 0 1.38 47 1.00 3.67 1.13 1.12
OE - Career 328 0 1.57 41 1.00 2.67 39 -.61
OE - Lab tasks 328 0 1.87 73 1.00 4.00 .59 -43
OE - Learner based tasks 328 0 2.56 73 1.00 5.00 33 .02
SE - Assessment 328 0 2.05 72 1.00 4.57 71 50
SE - Interpersonal 328 0 2.30 .80 1.00 4.67 32 -43
SE - Strategies and tasks 328 0 2.30 .73 1.00 5.00 74 .54
SE - Low order / recall tasks 328 0 2.28 72 1.00 4.80 A3 .00
SE - High order tasks 327 1 2.68 .86 1.00 5.00 -.20 -.30
SE - Apply chem. to everyday tasks 228 0 2.08 .79 1.00 5.00 .53 -.01
GC I Final Exam % 281 47 66.53 14.50 11.25 99.50 -35 -.02
GC I Course % 297 31 79.58 16.50 3.30 107.84 -1.38 271

The descriptive statistics show some differences between means for certain variables in each

group. While the significance of these differences is not displayed here, males and females showed
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significant differences in almost all affective measures except outcome expectations related to
career and understanding chemistry. Among the performance indicators, there were significant
differences between males and females in every placement test measure except ACT composite
scores. Skewness and kurtosis values are at acceptable levels for most of the variables, although
there are some variables in each group that exhibit considerable skewness and kurtosis. While
these are criteria to consider when assessing predictors, there is no requirement that variables be
normally distributed in multiple regression. The more important distributional assumption is for
model errors, so the analyses were carried out without any transformations to these variables.

One of the first steps to determine which variables had to be included in the model was to
conduct a correlation analysis. A predictor was considered inclusionary if it exhibited a significant
correlation with the outcome variable. The correlation matrix (for this model) displaying
significant bivariate correlations among predictor variables and the GC I final exam score is shown
in Table 8.3. The mean and standard deviation of each variable is also indicated.

Among the performance indicators, the strongest and significant correlations to GC I final
exam score resulted from the placement measures: ACT Composite (r=.469""), ACT Math (r =
440™), ACT Sci-Re (=.411""), TP Math (= .475""), TP Chem. (+=.498"") and TP total (+=.575"").
Among the persistence measures, there were significant correlations between OE — learner based
tasks (7= -.127""), OE — understanding (= -.097"), SE — exam preparation (r= -.206"), SE —
general strategies and tasks (7= -.2157), SE — low order tasks (7= -.154"") and SE — applying

chemistry to everyday tasks (7= -.249"") and the final exam score respectively.
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Table 8.3. Bivariate correlations between predictor variables and GC I final exam % for cross-sectional

performance model. Higher mean SE and OE subscale scores indicate low SE and OE respectively.
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However, examining the matrix closely indicated that while the performance indicators had
strong, significant correlations with the outcome variable, some of the inter-correlations among
the predictors themselves were significantly higher.  These indications of potential
multicollinearity were confirmed when all the predictors were entered into the multiple regression
model and the VIF values for TP Math, TP Chemistry and TP total were 973.70, 3274.45 and
5667.21 respectively. When TP total was excluded from the model, VIF values returned to
acceptable levels. While the ACT variables did not display values as high as the TP variables, the
VIF and tolerance values were still violating assumptions of multicollinearity, with ACT
Composite making the highest contribution to these violations. Thus, while both ACT Composite
and TP total could be included together in a model, neither could be included along with their
individual subscores. Normal P-P plots for all predictors indicated a reasonably straight line.

ACT composite scores and total TP scores had the strongest correlations with the final
exam score (469 and .575 respectively), while displaying a moderate correlation between
themselves (.392). Among the affective measures, the self-efficacy subscales showed moderate
correlations with the final exam score, with SE-assessment and evaluation and SE-applying
strategies showing strong correlations with the outcome than with the placement test scores. These
predictors were used as the starting points for developing the multiple regression model.

In addition to these evaluations, partial correlations were also examined to assess the
relative impact of each predictor. Using the correlation matrix, in conjunction with partial
correlations, resulted in a model three predictors that accounted for 40 % of the variance in the

model as shown in Table 8.4.
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Table 8.4. Summary of multiple regression analysis for students’ final exam scores in GC I (N = 420).

. . Zero- .
Variables B SE (B) B t Sig. (p) Partial Part | Tolerance VIF
order
TP - total .682 .064 .445 10.742 .000 .575 .466 404 824 1.214
ACT - Comp. 1.146 .164 .286 6.973 .000 470 324 .263 .845 1.184
SE - exam prep -1.980 .784 -097 | -2.525 .012 -.204 -.123 -.095 .967 1.035
R% = .410; Adj. R® = .406 GC | final exam % = - 2.42 + (.628 TP total) + (1.146 ACT-Comp) + (-1.980 SE-exam prep)
F(3,419) = 96.523, p < .001
Average of residuals = .003

The model was statistically significant, (3, 419) = 96.523, p <.001. The unstandardized
coefficients (B) provide information about the relationship between the final exam score and each
predictor. In this model, as total TP scores increase by one point, the final exam score increases
by 0.682 points; as ACT composite scores increase by one point, the final exam score increases by
1.146 points and since in the self-efficacy scale, a higher mean subscale score indicates lower self-
efficacy, a lower self-efficacy related to exam preparation and assessment decreases the final exam
score by 1.98 points. While the model was fair, as indicated by its R? value, it should be noted
that the affective measure captures perceived self-efficacy at the start of the course, and is not very
closely tied to the outcome. Given this situation, it is expected that past performance indicators
(ability) would be the strongest contributors to the performance model.

Standardized regression residual plots, as displayed in Figure 8.3, showed most of the
residual values around zero with no obvious ‘funneling’, thus homoscedasticity was assumed. In
addition, the average of residuals was .003, normal P-P plot of regression standardized residual
did not show deviations from the straight line and normality tests conducted on the residuals were
not significant, indicating that residuals were normal. There were no apparent outliers observed
in the residual plots or influence statistics. Although there was one case that exceeded the critical

value of 18.47 for Mahalanobis distances, removal of this case did not alter the regression model.
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Scatterplot of predicted values vs. residuals for GC | final exam scores
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Figure 8.3. Scatter plot distribution of residuals for performance model using GC I final exam scores

Since the model displayed a fairly moderate R-squared value, a cross-validation analysis
was conducted using this model on a data set of 89 students (with available data) from Spring
2016. However, when this process was implemented, the average of the residuals calculated from
this data set was -2.373, with an R-squared value of 50.7%, indicating an over-estimation of the
model. The small sample size could have contributed to this since sample size and ratio of
predictors to sample size can over-estimate or shrink the values of regression predictors, resulting
in biased R? values. (Copas, 1987). It is also possible that the tests in the spring term were more
difficult or students in the spring term were less motivated to succeed in te course than students in
the fall term. Although not implemented here, alternate procedures such as bootstrapping or

jackknifing would have provided better estimates for R? for a test data set (Browne, 2000).
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Cross-sectional performance model — GC I course performance as outcome

Using the same process as before, the first step was to obtain a correlation matrix

displaying correlations between predictors and the outcome variable — GC I course performance.

This matrix is shown in Table 8.5.

Table 8.5. Bivariate correlations between predictor variables and GC I course % for cross-sectional
performance model. Higher mean SE and OE subscale scores indicate low SE and OE respectively.
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As the outcome was different for this model and used a different sample of students
(excluding those who had not taken the final exam), the correlation matrix had to be replicated.
Among the performance indicators, the moderately significant correlations to GC I course
performance resulted from the placement measures: ACT Composite (7= .254""), ACT Math (r =
234™), ACT Sci-Re (7=.243""), TP Math (= .265""), TP Chem. (r=.293"") and TP total (=.331"").
Among the persistence measures, there were significant correlations between OE — performance
based tasks (= -.110"), OE — understanding (= -.108"), OE — lab (+=-.109"), SE — exam
preparation (7= -.188™"), SE — general strategies and tasks (7= -.154""), SE — low order tasks (r= -
.137"%) and SE — applying chemistry to everyday tasks (7= -.149™") and the course performance
respectively.

However, similar to the final exam performance model, examining the matrix closely
indicated potential multicollinearity among some of the performance indicators measuring general
cognitive ability. These indications were confirmed when all the predictors were entered into the
multiple regression model and the VIF values for TP Math, TP Chemistry and TP total were
1022.342, 3374.50 and 5885.19 respectively. When TP total was excluded entirely or included in
the model by itself, VIF values for remaining variables returned to acceptable levels. In addition,
the inter-correlations among placement test indices were significantly higher than their respective
correlations with the outcome variable. Consequently, when selecting a placement test predictor
for the model, the variable that showed the highest correlation with GC I course performance was
selected to avoid problems with multicollinearity. Thus, in this model, the only placement test

indicator included was the TP total score.
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Using the TP total score, correlation matrix and partial correlations as a starting point, the
model developed consisted of four predictors that accounted for a variance of 26% in the model as
shown in Table 8.6.

Table 8.6. Summary of multiple regression analysis for students’ course performance in GC I (N = 510).

Zero-
Variables B SE (B) B t Sig. (p) Partial Part | Tolerance VIF
order
TP - total .566 .053 418 10.578 | .000 462 426 404 .934 1.071
OE - lab -2.583 .706 -142 | -3.659 .000 -.155 -.161 -.140 .967 1.034
OE - learner based tasks | -2.422 .642 -146 | -3.773 .000 -.151 -.166 -.144 .978 1.023
SE - strategies and tasks | -2.051 .704 -116 | -2.913 .004 -.234 -.129 -111 .925 1.081
R = .264 ; Adj. R = .258 GC | course % = 59.784 + (.566 TP total) + (-2.583 OE-lab) + (-2.422 OE-learner based tasks)
F(4,509) = 45.284, p < .001 +(-2.051 SE-strategies)
Average of residuals = -.02

The model was statistically significant, (4, 509) = 45.284, p < .001. The unstandardized
coefficients (B) provide information about the relationship between the final exam score and each
predictor. In this model, as total TP scores increase by one point, the course percentage increases
by 0.566 points. In the self-efficacy and outcome expectations scales, a higher mean subscale score
indicates lower self-efficacy and less positive outcome expectations. Thus, in this model a lower
self-efficacy related to applying general problem solving strategies and tasks decreases the course
percentage by 2.05 points while lower expectations about lab and learner based tasks decrease the
course percentage by 2.583 and 2.422 points respectively.

Since the model was now concerned with predicting course performance, it makes
substantive sense that components such as general chemistry lab that contribute to the overall grade
in the course become significant contributors to the model. In addition, students’ expectations
related to learner based tasks such as memorizing information and formulas and their confidence
in being able to use problem solving strategies are important predictors of their course

performance. Given that these are pre persistence measures and that even without the pre
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performance measure (TP total score), this model still accounts for ~ 10% variance is an indication
that regardless of past performance or ability, there are affective factors at play when examining
students’ accomplishments and persistence.

Standardized regression residual plots, as displayed in Figure 8.4, showed most of the
residual values around zero with no obvious ‘funneling’, thus homoscedasticity was assumed. In
addition, the average of residuals was -.02, normal P-P plot of regression standardized residual
showed slight deviations from the straight line and normality tests conducted on the residuals were
not significant, indicating that residuals were normal. There were no apparent outliers observed

in the residual plots or influence statistics.

Scatterplot of predicted values vs. residuals for GC | course performance

Regressed standardized predicted value

Regressed standardized residual

Figure 8.4. Scatter plot distribution of residuals for performance model using GC I course percentages

Cross validation using this model on the Spring 2016 data set resulted in the same problems
of overestimation as with the performance model using the final exam. Thus, larger sample sizes

or alternate techniques would offer better estimates for R2.

238



Cross-sectional persistence model
Before conducting the analyses, descriptive statistics were obtained for pre- performance

and persistence measures for students in each category. These statistics are shown in Table 8.7a

and Table 8.7b.
Table 8.7a. Descriptive statistics (by category) for variables in the persistence model (Spring 2014 — Spring
2016)
Variables N Missing [ Mean SFd' Min Max Skewness | Kurtosis
deviaton

Gender (M=1 and F=2) 315 70 1.56 0.50 1 2 -0.23 -1.96
ACT Composite 319 66 23.45 3.53 14 33 -0.06 -0.24
ACT Math 319 66 22.97 3.98 14 34 -0.04 -0.59
ACT Sci-Re 319 66 23.46 3.66 11 36 0.07 0.74
TP - Math 379 6 82.20 12.60 0 100 -1.38 4.70
TP - Chemistry 379 6 62.92 10.43 33 90 -0.26 -0.11

Category 1-17p 1y 379 6 | 6934 | 939 37 90 -0.51 0.32

Stayed in .
STEM OE - Understanding 384 1 1.71 0.44 1.00 2.83 0.12 -0.77

OE - Performance based tasks 385 0 1.35 0.45 1.00 2.67 1.08 0.28
OE - Career 385 0 1.58 0.44 1.00 3.67 0.75 1.20
OE - Lab tasks 385 0 1.82 0.67 1.00 4.00 0.67 -0.08
OE - Learner based tasks 385 0 2.74 0.77 1.00 5.00 0.10 -0.45
SE - Assessment 385 0 2.05 0.72 1.00 4.43 0.66 0.33
SE - Interpersonal 385 0 2.31 0.82 1.00 5.00 0.32 -0.32
SE - Strategies and tasks 385 0 2.23 0.65 1.00 4.33 0.83 0.80
SE - Low order / recall tasks 385 0 2.21 0.68 1.00 4.80 0.60 0.31
SE - High order tasks 384 1 2.68 0.84 1.00 5.00 0.23 -0.28
SE - Apply chem. to everyday tasks 385 0 2.05 0.77 1.00 5.00 0.62 0.07
Gender (M=1 and F=2) 10 2 1.70 0.48 1 2 -1.04 -1.22
ACT Composite 10 2 24.90 5.51 19 34 0.54 -1.18
ACT Math 10 2 24.20 4.08 18 30 -0.07 -1.53
ACT Sci-Re 10 2 25.70 4.30 19 35 0.85 1.96
TP - Math 12 0 88.33 9.13 70 100 -0.70 0.19
TP - Chemistry 12 0 69.58 10.60 53 90 0.12 0.08

Category 2 - \1p _ o) 12 0 | 7583 | 849 60 92 005 | 049

Switched into .

STEM OE - Understanding 12 0 1.54 0.30 1.00 2.00 -0.01 -0.21

OE - Performance based tasks 12 0 1.22 0.41 1.00 2.33 2.17 4.77
OE - Career 12 0 1.51 0.34 1.00 2.00 -0.05 -1.61
OE - Lab tasks 12 0 1.61 0.58 1.00 2.67 0.43 -1.10
OE - Learner based tasks 12 0 2.72 0.91 1.33 4.33 0.02 -0.72
SE - Assessment 12 0 1.75 0.53 1.00 2.86 0.94 0.39
SE - Interpersonal 12 0 2.55 0.78 1.33 3.67 -0.23 -1.50
SE - Strategies and tasks 12 0 1.92 0.78 1.00 4.00 1.79 4.46
SE - Low order / recall tasks 12 0 1.98 0.62 1.40 3.80 2.60 7.96
SE - High order tasks 12 0 2.39 0.90 1.00 4.33 0.36 1.34
SE - Apply chem. to everyday tasks 12 0 1.86 0.87 1.00 4.00 1.25 2.37
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Table 8.7b (Continued). Descriptive statistics (by category) for variables in the persistence model (Spring
2014 — Spring 2016)

Variables N Missing | Mean dei;:t.on Min Max | Skewness | Kurtosis

Gender (M=1 and F=2) 25 6 1.48 0.51 1 2 0.09 2,17

ACT Composite 24 7 23.00 3.28 17 29 -0.30 -0.52

ACT Math 24 7 22.54 3.36 16 29 -0.32 -0.37

ACT Sci-Re 24 7 23.17 3.07 18 29 -0.17 -0.51

TP - Math 30 1 82.83 11.72 40 100 -1.69 513

TP - Chemistry 30 1 59.75 12.34 23 85 -0.71 2.08

Category 3-\1p _ ropa] 30 1| 6744 | 1109 | 28 90 | -126 | 474
Stayed in non .

STEM OE - Understanding 31 0 1.76 0.44 1.00 2.50 -0.09 -0.89

OE - Performance based tasks 31 0 1.32 0.50 1.00 2.67 1.53 1.59

OE - Career 31 0 1.61 0.46 1.00 2.67 0.27 -0.75

OE - Lab tasks 31 0 1.92 0.72 1.00 3.67 0.73 0.11

OE - Learner based tasks 31 0 2.81 0.80 1.33 5.00 0.87 1.31

SE - Assessment 31 0 2.00 0.84 1.00 4.57 1.06 1.48

SE - Interpersonal 31 0 233 0.95 1.00 433 0.33 -0.63

SE - Strategies and tasks 31 0 2.54 0.85 1.00 5.00 0.66 0.98

SE - Low order / recall tasks 31 0 2.40 0.68 1.00 4.40 0.41 1.57

SE - High order tasks 31 0 2.81 0.87 1.00 5.00 0.35 -0.04

SE - Apply chem. to everyday tasks 31 0 2.26 0.75 1.00 3.67 -0.06 -0.86

Gender (M=1 and F=2) 10 0 1.50 0.53 1 2 0.00 -2.57

ACT Composite 9 1 23.44 3.09 17 27 -0.37 -1.59

ACT Math 9 1 22.78 4.02 16 28 -0.37 -1.05

ACT Sci-Re 9 1 24.22 3.27 20 31 0.91 1.46

TP - Math 10 0 81.50 10.55 60 95 -0.94 0.53

TP - Chemistry 10 0 65.75 5.78 53 73 -1.27 2.55

Category 4 -\ 7p _ 1opy) 10 0 | 7101 | 623 62 78 | 058 | -122
Switched into )

non STEM OE - Understanding 10 0 1.63 0.36 1.17 2.17 0.27 -1.03

OE - Performance based tasks 10 0 1.17 0.42 1.00 233 2.85 8.32

OE - Career 10 0 1.62 0.52 1.00 2.50 0.58 -1.14

OE - Lab tasks 10 0 1.63 0.84 1.00 3.00 0.98 -0.79

OE - Learner based tasks 10 0 2.67 0.61 1.33 3.33 -0.96 1.67

SE - Assessment 10 0 1.94 0.46 1.00 243 -1.02 0.59

SE - Interpersonal 10 0 2.30 0.71 1.00 3.33 -0.10 0.23

SE - Strategies and tasks 10 0 2.47 0.53 2.00 3.67 1.50 222

SE - Low order / recall tasks 10 0 2.40 0.55 1.40 3.00 -0.52 -0.64

SE - High order tasks 10 0 2.57 0.61 1.67 333 -0.26 -1.05

SE - Apply chem. to everyday tasks 10 0 2.10 0.65 1.00 333 0.15 0.87
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Selecting the predictors for the persistence model required a different method than
obtaining a Pearson-product correlation matrix. Since the outcome was categorical with four
levels, determining significant associations between the predictors and the outcome was done
using a one-way ANOVA and utilizing the predictors(s) that resulted in significant F-tests. The
results of this ANOVA are shown in Appendix H. When this method was implemented on the
persistence data set, the only significant predictor was SE related to applying problem solving
strategies (SE — strategies and tasks). Consequently, this was the only predictor that was used in
the development of the persistence model.

Before proceeding with analyses, crosstabs were run to check if the cells in the persistence
model were populated. Although multinomial regression is fairly robust against violations of
multivariate normality and suited for smaller samples, a check was done regardless. Tables 8.8
and 8.9 show the results of the crosstab analysis in general and separated by gender respectively.

Table 8.8. Crosstab analysis showing population of each category in the GC I persistence model

Cross-sectional STEM persistence - GC | start to end

Stayedin Switched Stayedin |Switched into Total
STEM into STEM | non STEM non STEM
Count 385 12 31 10 438
Total
% of total 87.9% 2.7% 7.1% 2.3% 100.0%

Table 8.9. Crosstab analysis showing population of each category (by gender) in the GC I persistence

model
Cross-sectional STEM persistence - GC | start to end
Stayedin Switched Stayedin [Switched into Total
STEM into STEM non STEM non STEM
Count 140 3 13 5 161
Male
% of total 87.0% 1.9% 8.1% 50.0% 100.0%
Count 175 7 12 5 199
Female
% of total 87.9% 3.5% 6.0% 50.0% 100.0%
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Since most students stayed in STEM and the other categories were relatively less populated, there
was a possibility of exaggerated effect sizes and estimation of unrealistic coefficients. The analysis
was still conducted and the results shown in this chapter have been obtained under this limitation.
The addition of more cases in each category in subsequent semesters, tracking students until
graduation or narrowing the time point to when students drop the course would offer a more
respectable sample size to develop a model and make predictions.

There are two hypotheses of interest in logistic regression:
a) Null: When all the coefficients in the regression equation take on the value of zero.
b) Alternate: The model with predictors currently under consideration is accurate and differs

significantly from the null.

The indices that are evaluated to assess fit for the null and full models are shown in Table 8.10.

Table 8.10. Model fitting information for GC I cross sectional persistence model

Model Fitting Criteria Likelihood Ratio Tests
Model 2 log
AIC BIC Chi-Square df Sig.
Likelihood i 8
Intercept Only 102.144 114.391 96.144
Final 98.183 122.677 86.183 9.961 3 0.019

The intercept only model (sometimes referred to as the null model) and the final or full model
(which includes all the predictors and the intercept) are assessed using two information theory
based model fit statistics: The Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC). The values for these criteria should be lower for the final model with all
predictors, although the BIC tends to be more conservative and results can be mixed (Agresti,
1996). The -2 log likelihood (-2LL) is a likelihood ratio and represents the unexplained variance
in the outcome variable. Therefore, smaller the value for this ratio, better the model fit (Agresti,

1996). The GC I full persistence model shows lower AIC and -2LL values than the null model.
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The likelihood ratio chi-square test is an alternate test of goodness-of-fit and as with most chi-
square tests, prone to inflation as sample size increases. In this case, the model fit is significant x>
(3) =9.961, p < .05, which indicates that the full model predicts significantly better than the null
model.

Although logistic regression provides pseudo R-square values, these are not displayed here
as they are not analogous to R-square values from linear regression and cannot be interpreted in
the same way. Information about the utility of the predictor included in the model is obtained

using likelihood ratio tests as shown in Table 8.11.

Table 8.11. Likelihood ratio tests to indicate importance of predictors in the persistence model

Model Fitting Criteria Likelihood Ratio Tests
Effect AIC of BIC of -2 Log
Reduced reduced Likelihood of | Chi-Square df Sig.
Model Model reduced Model
Intercept 150.008 162.255 144.008 57.825 3 .000
SE-strategies 102.144 114.391 96.144 9.961 3 .019

The statistics in the table above are the same types as those reported for the null and full models
in Table 8.10. However, in Table 8.11, each element of the model is being compared to the full
model to make determinations about the inclusivity of the predictor in the full model. In this case,
SE -strategies is a significant predictor hypothesized to make a meaningful contribution to the full

effect.
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The impact this predictor has on the outcome is given by the parameter estimates, shown
in Table 8.12.

Table 8.12. Parameter estimates for predictors in the GC I persistence model

95% Confidence
Interval for Exp(B)
Persistence category B Std. Error Wald df Sig. Exp(B)
Lower Upper
Bound Bound
1=Stayed in Intercept 4.783 1.101 18.859 1 0.000
STEM .
SE - strategies -0.484 0.429 1.273 1 0.259 0.616 0.266 1.428
7 = Switched Intercept 3.143 1.539 4.172 1 0.041
Mo STEM | oe_strategies -1.371 | 0.690 3.945 1 0.047 02514 | 0066 | 0.982
3 =Stayed in Intercept 0.828 1.245 0.442 1 0.508
nonSTEM | oe_ctrategies  0.121 0.480 0.064 1 0.800 1129 | 0441 | 2.8%0

Reference category is: Switched into non-STEM (4)

The parameter estimates table shows the logistic coefficient (B) for each predictor variable for
each alternative category of the outcome variable. Multinomial logistic regression requires one
category to be the reference against which all probabilities and odds are compared. In this case,
the reference category is the last one, coded as 4 — switched into non-STEM. The logistic
coefficient is the expected amount of change in the logit (what is being predicted) for each unit
change in the predictor; it is the odds of membership in the category of the outcome variable which
is specified. The closer a logistic coefficient is to zero, the less influence the variable has in
predicting the logit (Agresti, 1996). The table also displays the standard error, the Wald statistic,
df, sig. (p-value), Exp(B) and confidence interval for the Exp(B). The Wald test (and associated
p-value) are used to evaluate whether or not the logistic coefficient is different than zero. The
Exp(B) is the odds ratio associated with each predictor. It is expected that predictors which

increase the logit will display Exp(B) values greater than 1.0, predictors which do not have an
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effect on the logit will display an Exp(B) of 1.0 and those which decrease the logit will have
Exp(B) less than 1.0 (Agresti, 1996).

In the current model, the only category in which the predictor is significant is ‘switching
into STEM’. Thus, a decrease in students’ average self-efficacy related to using general problem
solving strategies makes them .25 times less likely to switch into a STEM major relative to other
categories and with all other predictors (if any) staying constant. While this result may not be as
impactful given the model’s lack of predictive utility, it is meaningful when considering the profile
of students who perhaps refrain from entering the physical sciences due to the abstract or
mathematical nature of the field, consequently demonstrating low self-efficacy in applying some
of the general problem solving strategies required for the tasks in these fields.

Lastly, the ability of this model to correctly classify cases is shown in the classification
Table 8.13.

Table 8.13. Classification table showing utility of model in categorizing cases

Predicted
) ) Switched
Observed . Switched Stayedin ] Percent
Stayed in STEM | into non
inta STEM | non STEM Correct
STEM
Stayed in STEM 385 ] 0 1] 100.0%
Switched into STEM 12 ] i ] 0.0%
Stayed in non STEM 31 0 o 0 0.0%
Switched into non STEM 10 0 o 0 0.0%
Overall Percentage 100.0% 0.0% 0.0% 0.0% 87.9%

A perfect model would show values only on the diagonal, indicating correct classification of all
cases. The total across the rows represents the number of cases in each category in the actual data
while the total down the columns represents the number of cases in each category as classified by

the full model (Agresti, 1996). The key piece of information is the overall percentage in the lower
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right corner which shows the classification accuracy of the current model (with all predictors and
the constant) — 87.9%. While this accuracy would ordinarily be considered excellent, it should be
viewed cautiously in this case considering the model’s lack of differentiation among its predictions
and the disproportionate number of students who stayed in a STEM major, thus resulting in
exaggerated accuracy values.

Limitations

A typical longitudinal study involves several hundred or several thousand participants who
most often represent a national sample. This study was conceptualized to focus on the two-
semester sequence of general chemistry courses as a model for persistence in a STEM major since
these gateway courses serve as points during which students make choices about staying, switching
out of or leaving their intended fields of study. Thus, students who did not take these courses
sequentially were excluded from this study. Moreover, as the number of students taking these
courses in sequence was minimal and resulted in a small sample size at the end of GC II, the
persistence model developed was cross-section in nature and not tested for its predictive utility in
an effort to utilize as many students as possible for its development. Thus, interactions between
variables and the effects of confounding variables such as socioeconomic status, race and interests
were unexplored.

Furthermore, in keeping with the research question addressed in this study, students’
majors were classified as either STEM or non-STEM based on the source consulted. As different
academic and educational organizations offer varied delineations of what majors constitute a
STEM vs. non-STEM category, it is possible some of the majors in this study might have been

classified differently.
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Despite these limitations, the model developed in this study is the first step towards
investigating the affective and cognitive variables that play a role in predicting students’
persistence in STEM majors during their enrolment in a single course, during a two-semester
gateway course or from a longitudinal perspective.

Conclusion and Implications

The purpose of this study was two-fold: To determine the affective and cognitive factors
that impact student performance (on the final exam and in the course) and persistence in a STEM
major during their enrolment in GCI. Both research questions in this study were addressed using
pre-affective measures — self-efficacy and outcome expectations — and measures of cognitive
ability (ACT and TP scores); performance and persistence models were developed using linear
and logistic regression respectively.

With regards to the first research question, both measures of cognitive ability (TP total and
ACT Composite scores) and self-efficacy related to exam preparation were significant predictors,
accounting for 40% of variance in the model based on final exam performance. TP total score,
expectations related to success in lab and performance based tasks, and self-efficacy related to
applying general strategies accounted for ~ 26% in the model based on performance in the course.
As far as the second research question, self-efficacy related to applying strategies was the only
influential variable in predicting a student’s stability in their intended STEM major while enrolled
in GCI. Despite the cross-sectional design of the study, these results show the importance of both
performance and affective measures in understanding student accomplishments and stability in an
academic major.

These results, while preliminary, bring to light the complexity of issues like STEM

persistence and the impact of gender on the persistence differential. Although, from a descriptive
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standpoint, the percentage of women who stayed in and switched into STEM was higher than those
who stayed in non-STEM majors, gender did not play a role in predicting STEM performance or
persistence in the regression models. Given the SCCT postulate concerning the mediating role of
contextual factors such as support systems on the relationship between gender, career self-efficacy
and goals, the direct exclusion of these factors from the models described here could perhaps
explain the absence of gender as a significant predictor variable (Lent, Brown & Hackett, 1994).
Other studies have shown that the predictive utility of variables in the SCCT framework is not
moderated by student’s gender (Lent et al., 2005; Lent et al., 2011). While it is possible that gender
genuinely does not make a significant contribution to the models in the context of chemistry, the
correlational and cross sectional design of these models limits the certainty with which inferences
can be made about the temporal ordering of this variable. A longitudinal model with a large sample
size and adequately populated persistence categories would allow for better interpretation and
generalization across gender subgroups.

Ultimately the objective of any persistence related research, whether in a course or in an
intended STEM major, is to increase the number of students who complete a course or a degree
with their intended STEM major and to identify students who are ‘at risk’ for dropping the course,
changing to a non-STEM major or leaving prior to attaining a degree and consequently designing
interventions to remedy the problems resulting in a lack of persistence. Thus, using a narrower
timeline such as students’ enrolment in the course after the second exam (the drop date for the
course usually ensures the second exam) would address a different persistence outcome; at the
same time, broadening the scope of a longitudinal model to include students who chose to enroll
in GCII out of sequence would offer a different dataset to examine persistence in STEM majors.

This would also allow for the opportunity to interview students to determine what factors play a
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part in student enrolment in GCII either sequentially or after several semesters. Furthermore,
exploring these questions might help understand whether the patterns of STEM-persistence differ
for males and females. Given that individual and gender based differences related to STEM
domain-knowledge exist even before enrolment in college, female underrepresentation in STEM

would be an issue best addressed in high school or perhaps earlier (Ackerman et al., 2013).
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CHAPTER 9: OVERALL CONCLUSIONS AND IMPLICATIONS

This chapter summarizes the overall conclusions about understanding students’ persistence
in STEM majors; the predictive utility of performance models overall and on a much finer scale
are discussed. Implications of the findings and limitations for chemical education research are
also detailed. Lastly, the potential paths for future research will be discussed based on current
findings.

Conclusions

This body of work set out to investigate the impact of performance, self-efficacy and
outcome expectations on persistence of students in STEM majors during their enrolment in general
chemistry gateway courses. This objective was approached by a) developing a valid and reliable
instrument that would provide meaningful measurements for chemistry outcome expectations in
first-year chemistry courses, b) adapting a valid and reliable self-efficacy instrument for capturing
self-efficacy of students in chemistry courses, c¢) testing performance models (content based and
course performance) to identify predictors that would impact chemistry performance d) integrating
performance and affective measures to develop STEM persistence models ) developing a subset
instrument to measure these affective constructs on a subtler level and f) utilizing information from
these finer measures to identify triggers that would cause a person’s affective components to
decline thereby placing that person at-risk for leaving or dropping out of a STEM major.
Instrument development goals were met through a sequential, exploratory mixed methods design

that involved collection of quantitative and qualitative data in combination or in sequence.
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Instrument development and psychometric testing

The chemistry outcome expectations survey (COES) resulted in a five-factor solution,
which was tested at different time points using CFA to assess its model fit at each point. The
necessity to test this model at three time points (GC I pre, GC I post and GC II) was attributed to
the ultimate goal of longitudinal data collection. As the longitudinal design would constitute at
least three time points during chemistry gateway courses — GC I pre, GC I post and GC II pre and
end at GC II post, model fit was tested for each survey’s factor structure. The COES factor
structure resulted in reasonable to good fit indices at the pre-course time points as opposed to the
post-course time point. The CSEAS factor structure also gave reasonable to good fit indices;
however, obtaining this structure was an arduous task especially because the surveys used for
adaptation had been previously validated. The resulting distinct and meaningful factors, in
combination with reasonable fit indices at relevant time points suggested that these instruments
are viable measures of each construct for the longitudinal model. Psychometric testing is ongoing
for both instruments but preliminary results show that the factors resulting from each survey are
meaningful and purport to be measuring unique dimensions of each construct. Additionally,
gender differences in several subscales and differences between performance groups on some
subscales offer support for the subscales measuring what they are purported to measures. Low
performing female students were more positive than male students in their expectations about
learner based tasks. While female students displayed lower self-efficacy than male students in
subscales relate to interpersonal tasks and applying chemistry everyday tasks, these differences
were non-existent at the end of a semester. In addition, low to moderate correlations between self-
efficacy, outcome expectations subscales and performance indicators such as the final exam

suggest that the surveys were not just alternate measures of academic ability.
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Given the pre to post changes occurring in some of these subscales, it was expected that
more changes might be occurring during a semester and at key time points such as before or after
a testing event. Capturing these affective measures at these points and identifying the triggers
would allow for interventions to be developed to offset the lowered affective measure and
potentially benefit at-risk students. To that end, a shortened survey was developed by selecting
the most meaningful statements from each full length self-efficacy and outcome expectations
subscale. This condensed survey was administered at key points throughout a single semester and
its subscales were used as predictors to build a performance model to predict scores on each testing
event. This baseline or control model accounted for ~34 to 45% of the variance going from exam
1 to exam 3, and resulted in residual averages close to zero at all three time points.

Model testing at key time points

In order to examine if average subscale scores and performance were being lowered prior
to or following these testing events, an intervention was developed to assess if affective measures
genuinely changed and the predictive performance model residuals were impacted positively or
adversely after students were exposed to the intervention. These interventions were packaged as
study tools and contained practice problems from past exams along with detailed explanations for
solutions to these problems; additionally, an inquiry was conducted into students’ problem solving
strategies and feedback was offered based on their selected strategies. While these study tools and
problem solving strategies in particular were targeted efforts at increasing students’ beliefs in their
own cognitive and metacognitive strategies, ultimately leading to positive changes in performance
and self-efficacy, this did not appear to be the case based on residual analysis and performance
group memberships as predicted using discriminant analysis. Data from GC I students who had

taken the intervention for exam 2 resulted in negative residuals (~ -2.7%) in comparison to the
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positive value (~2.1%) that resulted from students in exam 1. This was troubling due to the time
point in question being exam 2. As deadlines for dropping a course usually occurred after the
second exam, this was an important point to monitor for declines in affective measures and
performance. Based on the results from the intervention, it is essential that this data be reexamined
and evaluated to identify the potentially egregious predictor(s). It is also quite possible that the
second exam was more difficult in the fall term. Techniques such as common item equating would
account for these variations and offer a clearer interpretation of the models and associated
predictors. Changes in subscale scores were examined, before and after each performance event,
using odds ratios. This method was used to assess if the odds of a student moving from a low
(before an exam) to a high or better affective group (after the exam) were greater for students who
had taken the intervention vs. those who had not. Non-significant odds ratios at all three testing
events indicated that the odds of students showing improvements in affective measures was no
higher or lower regardless of whether students were in the control or the intervention group. These
results indicate that either the interventions might not be operationalized accurately enough to
impact students’ affective measures or that the interventions are only impacting student
performance. However, differences in exams from one semester to the next and students’ study
habits confounding the way the intervention might be approached (taken as practice with all
available resources or as a “quiz” to gauge their preparedness) are factors to consider when
examining the utility and efficacy of the study packets.
Methodological limitations

One of the fairly blatant limitations to the subset development and implementation was the

inability to model the interaction of each affective measure with time and develop a true growth

model by utilizing incomplete datasets as well. Although residuals were assessed at each testing
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events using a compartmentalized model, the potential of non-independence of residuals was
prevalent due to time effects. Although observations were obtained at different times, using two
pre measures for exam 1 (start and pre-exam 1) could have resulted in a strong relationship between
these variables; while partial regressions and correlations were monitored to make decisions about
which time point would offer the most effective predictor between the two listed variables, a time
series analysis or modeling techniques would have helped remedy this situation.

Models of persistence mandate accounting for missing data as it is likely not a random
occurrence. While missing data were completely excluded from analyses in the models
represented in this study, it is essential to address the role of these data not only to better understand
the phenomenon of persistence but also to evaluate the impact of nonresponse on the explanatory
and predictive power of models described in this body of work.

While discriminant analysis was a unique method to predict group membership, one of the
more basic requirements for this technique was the natural occurrence of the groups in the
dependent variable as opposed to being created using some criteria such as high vs. low performing
groups by using z-scores as a criterion. Given DA’s high sensitivity to violations of multivariate
techniques, the results of this analysis had to be considered with caution, thus limiting their
generality.

The issue of insufficient number of cases was especially problematic in the development
of persistence and performance models. While the original intention was to construct a
longitudinal model, the filters that were implemented resulted in too few cases for a technique such
as multinomial logistic regression. Moreover, as almost all students stayed in a STEM major

across a semester, viewing the study using a different lens of persistence such as ‘tracking students
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who enrolled in GC II’ would offer a secondary insight into persistence from an enrolment
perspective.

Although objective measures such as fixation times, counts and the like were obtained from
the usability study and students did appear to be engaging with the problem solving process and
ensuing application of strategies for the problems, the strategies did not seem to be functioning as
ways to make students more aware of their learning; based on interviews and open response items
on the study packet, the strategies seemed to be “in the way” of any “real problem solving” as
students had already determined how to alter their preparation and approach to problem solving
based on the detailed solutions to each problem. A second phase of interviews where students are
solving the problem and going through the entire process of working through a problem and
selecting strategies might offer a richer picture of how students integrate the act of detailed
problem solving with the use of appropriate strategies.

Implications

The findings reported in this study have several implications for both chemistry teaching
and research in chemical education.
Implications for teaching

This study supports some of the hypothesized relationships in social cognitive career
theory, by examining relationships between self-efficacy and outcome expectations and their
relationships with performance variables. While conceptualizing the affective domain, widely
known as emotion, motivation and attitude, is not an easy task, operationalizing these latent
variables during teaching is fairly challenging. The findings in this study indicate the complex
nature of these variables and the specificity with which they need to be measured. Self-efficacy

beliefs in particular can change over the course of a semester, sometimes in highly significant
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ways; judgments of these beliefs will impact the effort students choose to put into a class, their
willingness to persist in an adversarial situation and their willingness to choose to engage in
chemistry in the future (Schunk & Pajares, 2001). While these concerns are relatively easy to get
trivialized in larger, more impersonal, rigorous college chemistry courses, especially from
secondary STEM experiences, and where monitoring students’ efficacy beliefs and expectations
may not be possible or even practical, efforts can be made to integrate study tools, (relevant to
course material) into the course, that will afford students opportunities to reinforce their efforts,
receive frequent, focused, task-specific feedback and ultimately create a record of enactive mastery
or performance (Margolis & Mccabe, 2006). The findings in this study indicate that task specific
and targeted study tools can improve performance on an exam. The results also describe the
changes between male and female students on certain dimensions of self-efficacy beliefs and
outcome expectations. In particular, low performing female students had more positive
expectations than male students about tasks that involved memorization and not understanding
concepts; at the same time, female students also displayed lower confidence than male students
with regards to interpersonal tasks and applying chemistry to daily tasks. As instructors, it is
crucial to understand how affective dimensions can be assessed, how they develop and differ
between student subgroups, how to target and offset low affective measures and ultimately impact
performance.
Implications for Chemical Education Research

The construct of outcome expectations has been unexplored not just in chemistry but in
other domains as well. With existing measures operationalizing this construct in different, and
sometimes highly inaccurate ways, the COES offered the first instrument aimed at measuring

outcome expectations in chemistry courses. Five subscales measured different dimensions of
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outcome expectations: Outcome expectations related to understanding chemistry, learner based
tasks, performance based tasks, success in lab and career goals. These factors, especially
expectations related to career goals, could offer additional information about students’ career
readiness when examined with seemingly related constructs like career decision making self-
efficacy or exploration intentions. Career efficacy and outcome expectation correlated strongly
within a group of male college students than with female college students (Betz et al., 1997). These
assessments could also be effective in designing career awareness interventions to promote math
and science career awareness at educational levels besides college. A measure of outcome
expectations would also help fill in the gaps when examining SCCT’s hypothesized pathways
among its variables. Using this measure in combination with performance and self-efficacy to
develop a persistence model would allow for more robust predictions of whether students will
persist in their intended STEM majors. While this study used multinomial logistic regression and
developed a model by conceptualizing persistence as ‘stability in a STEM major’, other studies
could view persistence from an enrolment standpoint to determine whether students enroll in a
sequential course (such as GC II) or persist until the end of the semester in a current course. From
a profiling perspective, the findings in this study, utilizing predictive, empirical performance
models and odds ratios at key testing events add to the existing work that has been published on
identifying at-risk students in chemistry (Chan & Bauer, 2014) and examining the study habits of
at-risk students in college general chemistry (Ye et al., 2016).
Future Research

The studies conducted in this project form a small part of an impressive body of work that

researchers have been exploring in order to understand persistence in STEM in the context of

chemistry and other domains. While two key constructs from SCCT self-efficacy and outcome
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expectations — constituted the affective measures examined in the models developed in this project,
persistence and performance are influenced by other contextual and affective factors that were not
accounted or controlled for in these studies. The plethora of subjective measures collected in
addition to the survey responses in these studies would provide a much richer profile of students
who are enrolling in the course and perhaps allow for early delineation of students based on study
habits, types of learners and such. These preliminary profiles would provide a clearer picture of
how these groups progress through the semester and what interventions might be appropriate for
a group exhibiting lower performance or persistence measures.

The interventions that have been designed contain several general and highly task specific
problem solving strategies; evaluating how students engage with these strategies on a deeper level
than merely examining them would be highly useful in refining the target time for the intervention
as well as the appropriate type of intervention. Subsequent investigations based on gender or major
in the course would extensively add to and perhaps clarify the existing and sometimes mixed
results on gender based differences in affective research. The efficacy of these interventions can
be monitored for the flexibility of students’ components of persistence and any resulting changes

in predicted career path.
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APPENDICES

APPENDIX A:
SAS code used to conduct confirmatory factor analysis (CFA)

PROC IMPORT datafile="C:\Users\Shalini\Desktop\filename' dbms=tab OUT=Shalini.Subscale
replace;

GETNAMES=YES;

DATAROW=2;

RUN;

PROC PRINT;

RUN;

proc calis data=Shalini.Subscale CORR RESIDUAL modification;

factor

F1 ---> OE18,
F1 ---> OE16,
F1 ---> OE14,
F1 ---> OE9,
F1 ---> OE19,
F1 ---> OE20,

F2 ---> OE22,
F2 ---> OEl,

F2 ---> OE24,
F2 ---> OE12,

F3 ---> OEl5,
F3 ---> OE3,
F3 ---> OE®,
F3 ---> OE7,

F4 ---> OE4,
F4 ---> OE25,
F4 ---> OEI,

F5 ---> OE10,
F5 ---> OE23,
F5 ---> OES;

pvar
F1 F2 F3 F4 F5 =5%*1;
run;
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APPENDIX B:

IRB Consent form — class-wide data collection

CONSENT TO PARTICIPATE IN A RESEARCH STUDY
IMPACT on STUDENT LEARNING in UNDERGRADUATE SCIENCE COURSES

Study to be conducted at: University of Wisconsin - Milwaukee,
Chemistry and Biochemistry Depariment

Principal Investigators: Kiisten Murphy 229-4488
IRE Approval date: 06M6/2015 IRE#: 14.404
INFORMATION:

You are invited fo participate in a research study. The Institufional Review Board (IRB) of the University of
Wisconsin — Miwaukee (UWM) has reviewed this study for the profection of the nghts of human suljects in
research studies, in accordance with federal and slete regulations. However, before you choose fo be a research
participant, it is impartant that you read the following information and ask as many guestions as pecessary fo be
sure that you understand what your parficipation will iInvolve. . Your signalure ot this consent form will
aoknowledgs that you received all of the following information and explanations from the principal investigator (or
histher designated representative), and have been given an opportunity to discuss your questions and concerms
with the principal investigator or 8 co-investigator. Additionally, showld you have any guestions regarding your
righits a5 a human participant, please do not hesitafe fo contact Institutional Review Board af 474-229-3173.

PURPOSE:
This study involves research into effective strategies for improving learning in chemistry, Approximately 1500
studentz per semester will be involved in this research.

PROCEDURES:

If you agree to participate in this study, you are giving permission toe the researchers to use your class
data (exam and quiz responses, laboratory reports, informal assessment questions, sUrvey responses,
practice exam responses, worksheet responses. and final grade in the course) and your demographic
data (gender, year in school, ACT scores and subscores, placement test scores, major or intended major,
minor, high school, year of high school graduation, high school GPA and class rank) for research
purpoeses. Although your name will be linked to your data, all reports and results will report aggregated
data only. Your perzonal identifiers will be removed from the datasetat the end of the study and your
deidentified data will be kept indefinitely. Your classroom and demographic data will only be used for
research purposes if you agree to participate in this study.

POSSIBLE RISKS:

This project is mininial risk research. Any statements or adions on your part will not be identified by your name or
any other identifier to.anyone outside the project. This is accomplished through the use of secure computer
facilities (password protected) for digital data or keptin a locked cabinet. Only the research team has access to
this material. Your participation in this project will be held in confidence, however results of the project may be
published. Any resclts from this project will not contain information by which you may be identified.

EXCLUSION REQUIREMENTS:
Students under 18 years of age will not participate in this research study.

POTENTIAL BENEFITS:

The potential benefits from this research include: improved problem sobving =kills and improved content masteny.
You may be given extra credit points for participating in specific components of this study. [tis not
possible to predict whelher or not any personal benefit will result from your participation in this study. Yoo
understand that the information that is obtained frony this sfudy may be used scientifically and may be helpful to
athers.

Participant's Initiats

Ravised 03/26/2015 Page 1 af 2
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APPENDIX C:

IRB Consent form — think aloud / interviews

CONSENT TO PARTICIPATE IN A RESEARCH STUDY
IMPACT on STUDENT LEARNING in UNDERGRADUATE SCIENCE COURSES

Study 1o be conducted at: University of Wisconsin - Milwaukee,
Chemistry and Biochemistry Department

Principal Investigators: Kristen Murphy 2259-4453

IRE Approval date: 06/16/2015 IRB# 14.404

INFORMATION.

You are invited to participate in a8 research sfudy. The Institutional Review Board (IREB) of the
University of Wisconsin — Milwaukee [LWAM) has reviewed this study for the protection of the rghts of
human subjects in research studies, in accordance with federal and state reguiations. However, before
you choose fo be a research participant, it is important that you read the falfowing information and ask
a5 many questions as necessary o be sure that you understand what your participation wilf imialve.
Your signature on this consent form will acknowledge that you received alil of the following information
and explanations from the principal investigator (or histher designated representative), and have been
given an opportunity to discuss your guesfions and concems with the principal imvestigator or a co-
investigator. Additionally, should you have any questions regarding vour nights as a human participant,
please do nof hesitate fo confact institutional Review Board af 414-229-31732.

PURPOSE:
This study involves research into effective strategies for improving learning in chemistry. Approximately
a maximum 80 students per semester will be invalved in this research.

PROCEDURES:

You will have an opportunity to volunteer to participate in a thirty to sidby-minute interview that may be
videotaped. Additionally, you may have the opporunity to participate in an activity that would invaolve
working problems at a computer that will track you eye movement in order to measure problem-salving
strategies. Additionally, we will collect demographic data about you. Paricipation in the intenviews is
voluntary and not a required component of the course.

POSSIBELE RISKS:

This project is minimal risk research. Any statements or actions on your part will not be identified by
your name or any other identifier to anyone outside the project, and vour participation in this project will
be held in confidence, however results of the project may be published. Any results from this project
will not contain information by which you may be identified.

EXCLUSION REQUIREMENT S:
Students under 18 years of age will not participate in this research study.

POTENTIAL BENEFIT S:

The potential benefits from this research include: improved problem solving skills and improved
content mastery. You may be given financial compensation in the form of a gift card to the LW
Bookstore or a study guide for participating in specific components of this study. It is nof possible fo
predict whether or nof any personal benefit will resuif from your participation in this study. You
understand that the information that is obtained from this study may be used scientifically and may be
helpful to ofhers.

VOLUNTARY PARTICIPATION:
Participation in this study iz voluntary. You may refuse fo participate or withdraw from this study at any

Participant's Initialz

Revised D6/13/2015 Fage1of2
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fime. We may collect demographic data about you. This can include gender, year in school, ACT
scores and subscores, placement test scores, major or intended major, minar, high schoaol, year of high
school graduation, high school GPA and class rank. Research data, however, will not be collected on
students who elect not to participate. if you elect not to parficipate or withdraw from the study at any
time, you will not be penalized or lose any benefits associated with the viewing the images generated
by the instrumentation and your decision will not affect your refafionship with this institufion or your
standing in the chemistny course. If vou elect not to participate in this study, yvou will still be eligible for
possible extra credit points.

The imvestigator may withdraw you from the study at any fime. ¥ this is done it will not affect your grade
in your chemistry course.

You will be informed of any significant new information regarding fhis study that may affect your
willingness to continue in this study.

You would be investing approximately one (1) hour of your fime in each oppartunity for parficipation in
this study.

CONFIDENTIALITY:

The records of your participation are confidential.  The investigator will maintain your information, and
this information may be kept on a computer. Study infarmation or data may be examined by the
Institutional Rewview Board of the Universify of Wiscaonsin - Milwaukee and various federal requiatory
agencies. This sfudy may result in sclentific presentations and publications, but steps will be faken fo
ensure you are not identified by name.

QUESTIONS:

For more informartion concerning this study and research-related risks or injuries, you may
contact the Principal Investigator (see first page for identifying information). You may also
contact a representative of the Institutional Review Board of LMWM for information regarding
rights of participants involved in a research stuay.

COMNSENT:
| have been given an opportunity to ask guestions about this study; answers to such questions (if any)
have been satisfactory.

In consideration of all of the above, | give my consent to participate in this research study. |
acknowledge receipt of a copy of this informed consent statement.

PARTICIPANT S SIGHMATURE: DATE

PARTICIPANT S PRINTED MNAME:

Please sign here if you choose NOT to participate:

Principal Investigator: Kristen Murphy 414-229-4468

Participant's Initialz

Revised DB13AHE Pape 2 of 2
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APPENDIX D:

Fall 2012 Self-efficacy standalone survey

How confident are you about:
1. Understanding what a written chemisty problem:is asking you to do
. Choosing an appropriate eguation to solve & chemistry proklem
. Determining aponopriate units for @ numencal result
- Reading and writing a chemical formula

. Describing trends in the pernodic table {atomic size, elecironegativity)

2

3

4

5

G. Balancing chemical equations
7. Descrbing the fundamental structure of an atom

&. identfying elerments that are gases at roomi iemperatura (from the perodic table)

2. Converting the temperature in your home from degrees Fahrenheit to kelvin

10 Writing the formula of calclum carbonate, a key ingredient in TUMS

11. Converting your speedometer reading from mph to yandsisecond (1 mile = 1760 yards)

12, Calpulating the density of lemenade {made by adding 509 of lemans to 500mL of water}
13. Identifying the type of changs (physical vs. chemical} when milk gets sour

14, Caleulating the percent composition of irom in rust (Fe- G4 ) gbteinad from your garage door
15, Classifying aluminum foil, saft and salad dressing as compounds, mixtures oF elemants

18, Explaining why addition of salt melts ice

17. Usimg chemistry io proposs a solution that keeps cooking watsr from boiling ower

8. Writing a summary of the main points of a television decumeniany that deals with some aspect of
chemistry

18 Leaming chemistry in this course (if all Bxams were take-home exams)

20, Doing well'on chemistry course exams, given you exert enough effort

21. Asking guestions during leciure

22 Leaming matenal in chemistry courses where considerable math is involved
23. Taking an exam of Quiz in your chemistry course

24 Taking a chemistry exam or quiz where considersble math is invalvad

25. Signing up for more chemisiry courses in the future regardless of the outcome of this course or
requirements for your major)

28. Prepanng for cheristry exams

27. Understanding your chemistry professor

28. Talking o your chemistry professor

28. Receiving the grade you desire in this course

30. Deing homework for this course

Mot Confident a1 all

O O0OO0O0O0OO0O O OOOO0OOOOQOOOOOOOOOO

o
O
o
o
o

Faity Confident
Totalty Confident
ot applicable ( Kot sre

O 0 Barmty Confident

O 0O | meun

Q00O
oCco
elieNelioNo
00000
O000O0
Q0000
cReNoNoNe)
oo oNoNs)
oleReloNo)
Q0000
O00C0OO0
00000
O00O0O0O
00000
O0000
Qo000
0000

0000

Q0000
leNeNoloNe)
Q0000
O00O0O0O
olioleNoNo)
Q0000

Q0000

Q0000
oleleloNo)
olieNoR oMo
0000
0000
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APPENDIX E:

Fall 2012 — Survey version with stress and self-efficacy scales

Chemistry Self Efficacy & Anxiety Scale (Fall, 2012)

MName
1D Number
HOL LS
Discussion Section 2ase comple e entire surve filling the bu 5
0 O 0 G D O D G D |:|:|:| ::I:-mpletel:.l ;l:;emtj;pnnsles per 5;:2];1'2:'11;90?11& Earirrb:ss and
elelololololaleNe one for confidence). Retum this in lechure on Wednesday,
©C00000000 00O T
C0O00C00OO0D0 Q00 Thank yout
(sRefleliofofoflelo o] ©00
OC000O0O0O0OCO0O0 00
OCO0O0OO0OO00 200
OCCOO0OO0O0O0OO0O0 000 H"“‘H:::__m H“”y::iiiﬂu‘]t“
ODO00OOQOOO Q0o E E
Q00000000 000 TE =23 |
oo }o] Tt 22£ 3% Fis
£ 5 TRrREFS_ RBEI
oeo Srposh ezt
52353535332 :2;3

. Understanding what a wntien chernisiry problem is asking you to-do

. Choosing an appropriate egqlation to sofve 3 chemisiny problem

.. Determining appropriate wnits for 3 numeneal result

. Reading and writing 3 chemical formula

. Describing trends in the perodic able [atomic sze, electronegativity)

.. Balancing chemical equations

. Describing the fundarmental structure of an atom

tentifying elemants that ane gases at room: remperature (from the periodic
=

. Converting the temperatire in your home from degrees Fahrenheit to kelin

CO00QCO00O00O00O0

CO0000O0O0O0000O0

CO00CO0O00000O0

Co00CO00O00000O0

CO00CO0O000O0000O0

COCOCO0OO00O00O0

00000000000

CO000O0O00O00000O0

o000 00O0O000O0

10. Writing the formula of calcaemn carbonate, @ key ingredient in TUMS

00000000000

11 Comeerting your speedometer resding from moh to yards'second
{1 mite-= 1780 yards)

CoO00O0000000O0

12, Calculating the density of lemonade (made by adding S0g of lemons to
= B0mL of water)

CO00O0O0O000O0
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- kdentifiing the type of change (physical vs. chamical) when milk gets sour

Calculating thie percent composition of iron in rust (Fe 0§ from your
‘ooor

* garags

Classifying 2uminum fod, salt.and salad dressing as compunds,

T mixtures or elements

3

4.

25.

. Explaining why addit:on of szt melts ice

= Using chemistry to prepose a3 solution that keeps cocking water from
* beiling owver

Writing 3 summary of the main points of 3 telewision documentary that

* deals with some aspect of chemistry

. Leaming chemistry in this course (if all exams were ake-home exams)

. Doing well on chemising course exans, gaven you exert enough effon

. Asking questions dunng course hecture

Leaming materal in chemistny courses where considerable math = involved

Taking an exam or Quiz i your chemistry course

Taking a chemistry sxam or quiz whare considerable math is mvalved

Signing up for more chemistry courses in the future {regardiess of the
cutceme of this course or the requirements for your major)

Prepanng for chemistry exams

7. Understanding your chemisoy professor

- Tafking to your chemistry professor

. Fecewing the grade you desire in this course

Ering hoerieweork for this course

How confident are How stressful ars
you about: you about

Moflappicakia [ M ara
Mot appicanis | Mol aure

Mt Conddom o @
Barsly Confdant
Fary Condident
Totaly Confdant
Hcw sl @ Al
Bamly stressfid
Fariy sassiy
Totaiy sirmssii

T
HNaiaral

CO0O00OQOO0O0O0O0OO0
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00000000000

00000000000

000000000000

000000000000
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000000000000

00000000000
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00000000000
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APPENDIX F:
Fall 2012 — Anxiety survey (standalone)

Chemistry Self Efficacy & Anxiety Survey

1D Number MName
HRNNNNEE
[elloNeleRoNoReRo RG]
ODO VDD OGO |  Hemonmisieshoure s o bt orviny e
QOCOOQO0OO0O
000000000 ' e
Q0000000
OOOOQO0O0B0
iofilcNloleollaiiofoNolo) H
OQ0O0OO0OQ0O0O0OO0 - z
OCO0O00C0000 3 o11i
C00O000OO0OO0 §E 85
EEREE
How anxious do you gei when:
1. Signing up for your next chemistry course O 0 0 O 0 O
2, Getting extra credit for attending your chemistry leciure O 0 O G‘ O O
3. Leaming chemistry in your curment and future chemistry courses O 0 0 D O O
4. Hearing the word "chamistry* OO0O00CO
5. Leaming new concepts in chemistry 0 0 O G‘ 0 0
&, Walking into your chemistry lecture O D 0 O 0 O
7. Taking examinations in your current chemistry course O 0 0 D O O
8, Tatking 1 your chemistry professar O000OCO0
8. Asking or answering questions in your chemistry lecture O 0 O D 0 O
10. Cramming the night before your chemistry eaxam O 0 O O‘ O O
11. Reading your che mistry fextbook to help with homewark O00000
12. Listening to lecture in your chemistry class O 0 0 G‘ O O
13, Watching and following your chemistry instructor work & problem on the board O 0 O O O O
14 Waiting to get a chemistry test returned O 0 O O‘ O O
15, Mot knowing the matérial on your chemistry exam O0O0O000
How many chemistry courses have you taken, not counting this one? @ {:) f:} (3 G @ @' O O G)
Have you had laborateny before (chemistry, bislogy or physics)? o &
What is your major {intended or declared}?
maithar
wery imporiant nor wery
impotart  jmportant unimpaortant upnimportant Unimporiant
How important is chemistry in your intended caresr? O O‘ 0 O O‘
How important is chemistry in your academic preparation? O ,D, O O O,
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APPENDIX G:
S13 and after — CSEAS online version (Qualtrics)

How confident are you about:

Mot Mot
confident Barely Fairly Totally applicable
atall confident Meutral confident confident /MNotsure

Understanding what a written chemistry problem is asking you to do

Choosing an appropriate equation to solve a chemistry problem

Determining appropriate units for a numerical result

Reading and writing a chemical formula

Describing trends in the periodic table (atomic size, electronegativity)

Balancing chemical equations

Describing the fundamental structure of an atom

Identifying elements that are gases at room temperature (from the periodictable)
Converting the temperature in your home from degrees Fahrenheit to kelvin

Writing the formula of calcium carbonate, a key ingredient in TUMS

How confident are you about:

Mot Mot
confident Barely Fairly Totally applicable
atall confident Meutral confident confident /MNotsure

Converting your speedometer reading from mph to yards/second (1 mile = 1760 yards)
Calculating the density of lemonade {(made by adding 50 g of lemons to 500 mL of water)
|dentifying the type of change (physical vs. chemical) when milk gets sour

Calculating the percent composition ofiron in rust (Fezoa} obtained from your garage door

Classifying aluminum foil, salt and salad dressing as compounds, mixures or elements
Explaining why addition of salt melts ice
Using chemistry to propose a solution that keeps cooking water from boiling over

Writing a summary of the main points of a television documentary that deals with some aspect of
chemistry

Learning chemistry in this course (if all exams were take home exams)

Doing well on chemistry course exams, given you exert enough effort

How confident are you about:

Mot Mot
confident  Barely Fairly Totally  applicable
atall  confident Meutral confident confident /Motsure

Asking questions during lecture

Learning material in chemistry courses where considerable math is involved
Taking an exam or quiz in your chemistry course

Taking a chemistry exam or quiz where considerable math is involved

Signing up for more chemistry courses in the future (regardless of the outcome of this course or the
requirements for your major)

Preparing for chemistry exams
Understanding your chemistry professor
Talking to your chemistry professor
Receiving the grade you desire in this course

Doing homework for this course
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How anxious do you get when:

Mot Mot
anxious Barely Fairly ~ Totally applicable
atall anxious Meutral anxious anxious /Motsure

Signing up for your next chemistry course

Getting extra credit for attending your chemistry lecture

Learning chemistry in your current and future chemistry courses
Hearing the word "chemistry™

Learning new concepts in chemistry

‘Walking into your chemistry lecture

Taking examinations in your current chemistry course

Talking to your chemistry professor

Asking or answering questions in your chemistry lecture
Cramming the night before your chemistry exam

Reading your chemistry textbook to help with homewark
Listening to lecture in your chemistry class

Watching and following your chemistry instructor work a problem on the board
Waiting to get a chemistry test returned

Mot knowing the material on your chemistry exam

Which of the following reasons influenced your decision to choose your current major (intended / declared)? Select all that apply.

If you have a different reason / your major is undecided, please select "Other”, but specify your reason/option clearly.

[C1Inherent interest [ Following family tradition (not pressured)

[T Influence of others [T Altruism (goodwill / greater good of humanity)
[ Materialism [C] Negative choice or compromise

[7] Good at math/science in high school [7] One of several viable options

[C1 Uninfarmed choice [T 5cholarship maney available

[C1Means to a desired (career) end 7] other

How important is chemistry in your intended career?

Meither Important nor
Very Impartant Important Unimpaortant Unimportant Very Unimportant
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How important is chemistry in your academic preparation?

Meither Important nor
Very Important Impaortant Unimportant Unimportant

How important are the following factors in determining your confidence level in this course?

Meither Important nor
Very Important Important Unimportant Unimportant

Understanding / Learning
Teaching (by course professor)
Teaching (by TAftutor)

Drive and motivation

Working with fellow students

Awvailability of help (supportive learning
culture)

Grades
Enjoyment, interest & satisfaction
Competitive environment

Means to a desired end (moving on to
the next course)

How important are the following factors in determining your persistence in this course?

Meither Important nor
Very Important Important Unimportant Unimportant

Understanding / Learning
Teaching (by course professar)
Teaching (by TAftutory

Drive and motivation

Working with fellow students

Awailability of help (supportive learning
culture)

Grades
Enjoyment, interest & satisfaction
Competitive environment

Means to a desired end (moving on to
the next course

How certain are you of persisting in your current major?

Very Certain Certain Meither Certain nor Uncertain ncertain
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Whichy of the fofiowing reasons infiuenced your response 1o°ihe prévious sialement? Select i thal apply

It you hanee @ different reason [ your major i undecided, plaase salect "Other. bul specify your reasonfoption cheary

Clinnarent imenasi 1 Foltowing family radision inot pressored)
[ClinBusnce of athers ] mraigm (gooawill [ groater gacd of hiumanityy
7 Matesialtsm [ Hegative choice of compromise
[T Gond at matisdancs in high schag| 71 Onr of sl viadle oplions
[ Unintsrmed choles [ Sentaranip money Svailabls
lMsans fo a desiad (career; end

7] CAhar [pémase specihy)

What is your current majar? (If your are inlended. please incluge Tntended” )

What is your curment minar? (f you are inlended. please include “inlented” )

Has your major changed since you began ooliege?
o5 o

Nl anplicande.
& G
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If you struggle in this course, indicate the extent to which you plan to do the following. (Total can be greater than 100)

Do something social ‘
that relaxes me

Form orjoin a student 19
study group

| never feel this way — 0
Nchl:.hg — 0

Seek academic help at 70
atutoring center
Spend more time.
studying — 100
Talkto instructor _ 10
Talkto TA * 60
Talk to adviserfadvising 5
staff
Talk o other 9
studentsifriends
Talkto my parents / 10
siplings.
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APPENDIX H:

Results summary — Semantic differential (Spring 2012, GC I)

Data Analysis - Semantic differential (GC I Spring 2012)

Data Collection:

Data were collected using Bauer’s Semantic Differential Instrument — a direct method for
measuring student attitudes; the instrument consists of a scan sheet with a single word or term at
the top of the page and polar adjective pairs or phrases on either side. The word in this study was
the single attitude object “chemistry”; adjectives were selected based on how comprehensible
they would be to a college-age demographic and also on well they could convey a person’s affect
regarding chemistry. An in-depth description of the instrument and rationale for adjective choices
can be found in (Bauer reference).

Seminal works on semantic differentials originated with Osgood and Tenenbaum, who -
through use of factor analysis — isolated three major dimensions of word meanings; the dimensions
are evaluation (good or bad), potency (strong or weak) and activity (fast or slow). Adjectives
selected for the Differential instrument focus on the evaluation component because this dimension
reflects the affective aspect of attitude and typically explains most of the variance.

The analysis described here will focus on pre and post instrument data obtained from
students enrolled in a 5-credit introductory college chemistry course during fall 2011 and spring
2012 semesters. The instrument was administered by Teaching Assistants during their respective
Thour discussion sessions with students (week 1 of each semester — pre data). Post data were
collected by administering the survey in lecture during the second to last week of each semester.
In addition, qualitative data was also obtained in the form of interviews conducted with students

taking the same course during summer 2012. Survey responses were manually transcribed to
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numerical values in the range of 1-7. Statistical tests were performed using Excel and SPSS, in
particular.
Results:

Factor Analysis helps reduce data from a group of correlated variables into a smaller set of
uncorrelated factors, thus achieving parsimony — explaining the maximum amount of common
variance with as few factors as possible.

Exploratory factory analysis was used to identify survey items that show similar response patterns.
The following criteria were used to decide if the two-by-two correlation matrix (showing
correlations among all the survey items) could be subjected to analysis:

1) Substantial number of correlations in the range of 0.3-0.7.

2) Bartlett’s test of sphericity.

3) Measuring of sample adequacy (MSA).

4) Anti-image correlation matrix.

5) Kaiser-Meyer-Olkin measure (KMO).
Data analyzed here satisfied the necessary criteria and were deemed appropriate for factor analysis
(distinct factors can be extracted). Presence of 20 variables and at least, if not more than 150
students in each sample also fulfilled the rules for adequate sample size (at least 5 times as many
observations as variables). Factors were extracted by the principal components method.
Determining the number of factors that could be retained was dictated by a combination of
methods:

1) Kaiser’s criterion / Eigenvalue > 1

2) Scree plot

3) Fixed percent of variance explained (at least 60-65%).
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Since the Eigenvalue condition has been shown to overestimate the number of extracted / retained
factors, it was used in conjunction with methods 2 and 3 to determine a reasonable number for
retention. 2-7 factors were extracted and the resulting pattern matrix was evaluated for magnitude
of loadings, presence of cross loadings and overall structure. Items that loaded with opposite signs
were reversed on the scale. Ultimately, the pattern matrix used for comparisons was one that
resulted in few cross loadings and struck a balance among percent variance, eigenvalue and scree
plot criteria.

Results for pre data obtained in fall 2011 show 4 factors that accounted for 60% of the
extracted variance while post data show 3 factors that accounted for 60% of the variance. Attempts
to extract more factors resulted in cross loadings and factors which showed only 1 loading. Factors
obtained in this study were not given specific names or labels as observed in Bauer’s work. Items
that constituted each factor did not lean towards one particular affective or semantic category,
which made it difficult to collectively summarize each factor with a unique label.

Comparisons between pre and post data for the fall 2011 class suggest that strong item
loadings for each factor remained a consistent feature in both data sets. The complete absence of
a loading most likely indicates that the item is not conveying anything useful or that the imposed
factor structure is in error. From a semantic standpoint, in the fall 2011 pre data, it is also quite
possible that a student may not be making an immediate association between the word chemistry
and adjective pairs such as scary-fun and insecure-secure, indicating that these items may not be
communicating any useful information and thus resulting in no loadings.

While item groupings, in this study, did not follow or come close to those in Bauer’s work,
Cronbach alpha values for each resulting factor are fairly high, indicating a considerable degree of

similarity among the items constituting each factor. This also brings up the possibility that, while
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responding to an item, a student might go back to an earlier item, similar in meaning, and decide
to give an identical response. So, a student could be — intentionally or otherwise — making
associations among items.

Factor structures for pre and post data obtained in spring 2012 show 3 factors each with
60% and 59% variance accounted for respectively. Factors display loadings for every item, with
the general order of factors staying the same as in fall 2011. Some items undergo reordering while
others shift between factors. This “movement” of items once again brings up the question of how
students are interpreting chemistry and each adjective pair in the context of chemistry and why
items may not be robustly sticking together as more factors are extracted. There is also the
possibility that a student could be retaking the course from fall 2011 while a newer student might
be taking it as the second course in his or her sequence of introductory chemistry course
requirements. In either case, responses to the survey could be impacted by prior chemistry
knowledge, experiences, quality of previous instructors, assessments, grades and the overall course
structure in general. This might explain why an item that did not have any loadings in fall 2011
data has loadings for spring 2012. Of course, it could very well be the case that a student decided
to change his/her mind about a response, did not have an opinion on an item or simply did not put
any thought into the survey itself.
Interviews:

In the interests of not inferring reasons without any evidence, interviews were conducted
with 2 students during summer 2012 to 1) understand their interpretation of the survey and 2)
partly validate possibilities suggested earlier. Participants were 1 male and 1 female (at a large,
public, research-oriented Midwestern university) intending to pursue careers in education and

geophysics respectively. Male participant had taught 6™ grade students but both participants had
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finished their last chemistry course almost 2 years ago (female participant was retaking the course).
Study was approved by the IRB for Human Subjects Protection at the participating academic
institution. Participation in the study was entirely voluntary and confirmed with standard informed
consent protocols. Data collection consisted of demographic information through use of a short
survey and the semantic differential instrument (both of which were completed during the
interview).

Basic demographic data were collected through a short survey, including previous science
courses taken, career goals and importance of chemistry in fulfilling those goals. Additionally,
the participants also completed the semantic differential instrument while rationalizing their
responses for each item; this gave the participant and researcher an opportunity to ask/answer
questions specifically targeting certain items. The idea of item groupings was never approached
by the researcher unless the participant alluded to them during the course of the interview. The
interviews were designed to be conversational and were conducted in a safe, non-threatening office
used solely for interviews. All interviews were digitally recorded and then transcribed. Notes
were taken during the interview to help pace the interviews and to record the researcher’s initial
reactions.

The interview focused on the participant working through each item in the semantic
differential instrument. As a response was chosen, the participant explained the reason for the
choice and moved on to the next item. After completing the instrument, demographic questions
were answered.

General opinions about the survey
Both students had different opinions on how difficult it was to objectively address the

survey without excluding feelings towards instructors (past or present). Male participant, having
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been a teacher himself, placed a larger burden on the role that instructors play in shaping student
attitudes. When talking about this, he said “After all, children first get introduced to chemistry by
teachers — whether biological (parents) or academic.”

Although the female participant had dropped the course 2 years ago due to problems with
an instructor’s personality, her inherent interest in Chemistry has sustained her objectivity. So,
the instructor is relevant when it comes to her feelings about Chemistry.

Prior experiences shaped a lot of their responses. Male participant drew upon how courses
he had taken 2 years ago compared to taking the summer course. Female participant’s Montessori
pre-school experience sparked her interest in Science and she “went against the grain of society”
in public school, where science was “horrible” and math was “hard”. According to female
participant, the Bauer instrument was open for interpretation but easy to complete and while there
was a natural tendency to base responses off of one another, she was able to take the survey
objectively.

Male participant, before starting on the first item, asked what “Chemistry is” meant and if
it was supposed to be thought of in the realm of the chemistry course, chemistry lab, chemistry as
a noun or a whole entity. He also mentioned groupings very early on in the survey and used
previous item responses as a guide (responded to confusing/clear based on complicated/simple).
He suggested that the survey needed to be clearer in terms of its objective because a lot of
adjectives were very vague and it was difficult to answer. Examples of vague adjective pairs, in
his opinion, included good/bad (relative to what?) and pleasant/unpleasant.

Specific Interpretations regarding certain adjective pairs:
Both participants thought about safe/dangerous in the context of chemicals — dangerous

(nitroglycerin) vs. making rock candy or handling salt. Insecure/Secure was most thought
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provoking among all the adjective pairs because neither participant believed it had any relation to
Chemistry at all. After some serious thought, male participant said, “If we’re talking about
Chemistry as a noun, then it is secure. If not, we wouldn’t have the subject matter of Chemistry.
There are unknowns in Chemistry, which do make it insecure, but once you debunk theories and
gain knowledge, it becomes secure.” Female participant put herself in the context of those two
adjectives and said “If I stay on top of my reading, I’'m secure. If not, then I’'m insecure.” After
thinking about an alternate interpretation, she said chemistry is a secure profession and one can
pretty much get a job in sciences.

Scary/Fun was perceived differently by both participants as well. While male participant
stated that it was scary if studying by himself and would be fun if grades were removed from the
equation, the female participant’s interpretation was from an emotive standpoint and whether or
not she “got” the material. “If I get it, I have the biggest smile on my face.” Male participant stated
that his understanding of specific topics and concepts dictated his response for easy/hard. A topic
(subject matter) specific survey resembling the semantic differential would be more meaningful
because one needs a situation/environment or a standard basis to make choices. Besides, given
that every student comes from different backgrounds and has had varied experiences, a topic
specific survey would provide more information. The female participant took a more self-
regulated approach and made a choice based on her study habits. Her responses to
frustrating/satisfying, complicated/simple and the like were dependent on the effort expended by
her and the time she invested in the course.

Summary:
While factor analysis in itself is not a cut and dry statistical method, the instrument is also open to

interpretation as observed in the responses given during interviews. 2 students may not form the
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basis of comprehensive qualitative data, but it can be seen that both students interpreted the survey
in different and interesting ways; these varied interpretations might also help understand the lack

of a robust or meaningful factor structure.
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APPENDIX I:
CSEQ survey

Welcome!

You have not yet experienced life as a student here, But you have some ideas about how you will spend
your time, what you will be doing and so forth. We are interested in these ideas. More specifically, what do
you expect to do this year as a student? Please complete the items on the following few pages in a way

(Questionnaire

that answers this question. It takes less than 15 minutes to complete this survey.
Your responses are confidential. i(eep in mind that the questionnaire will be read by an electronic scanning

device, so be careful in marking your responses. Please use a #2 black lead pencil, Marks made by ink

~ College Student Expectations

pens cannot be scanned. Do not write or make any marks on the questionnairs cutside the spaces for your
answers. Erase cleanly any responses you want to change.

The benefits from this or any other survey depend on the thoughtful responses of these who are asked to

help. Your willingness to participate is very important and very much appreciated. Thank youl

Library and Information
Technology

Experiences with Faculty

5 youninstrioter for
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APPENDIX J:

Pre-COES (outcome expectations) scale

Introductory Chemistry - Discussion Survey

10 Number

Last Name

First Mame
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Instructions: Please fully complete the front and back of this survey. 5

Thank you! " g
8 .58
s8i53
How often do you expect to do the following: oD > 2
1. Disciiss course information with your instrucior {grades, possible make-up work, sssignments etz 0000
2. Apply material leamed in class to other areas (job [ internship, other courses, interactions with others) O0000

3. Memorize formulas, definiions, techmical terms and concepts

4. Discuss your career plans and ambitions with anyone (for example, advising staff, faculty members.

friends ar family members)

0000
00000
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Introductory Chemistry - Discussion Survey

Fiease ndicars your level of agresment witn each of the statements

1. rrrnmrwumm.lﬂbtmzy'hpﬁam:um:.
2. '} do welt'pef 3 good grade 'nthls coorse! | wif o prowd of myset.
3. it gradusie with-my cument majorn, | wil be more isedy b get o well paying ob.

4. & af Tdo ks -meriortee the sorction o any probbem sobred In iechmeidioousslonbextbook, | Wil be fuctessta
In'inis course,

2. ichange my cumantmajor, | will be less Beiy o gel 3o,

E. 'V knom miy Inbenesks & anitian then | Wil make bafer caresr dacisiong

7. 1 eam my undempraduats degree, | i be mone Sely b meet my frandia goats.

B. IF A wrsnis B0 pass BV ooorse, ['wil be mone Doety bo change my majon

5..if 1 try and understang the chemisiny whie. periorming an expenment, | Wil do wel i [aboratony.
A0, 17 | rake 3 goded carsar darlsion, Hien mytta=ity and frisnds wil aporoys of me

14, If | o uncerstand the concepts i s Courne, | Can pass (witfi ok least a G,

42, 171 ckbain 3 good grade i s course, | Wil haue 3 bater charce of achisving my Caresr goals

13 2§ cain folow the proceduns bo perform 2n eepsiment, | wE eecersiand what s hapoening insborsion.
14 810 lmam chemsiry, | expect bo chamge someof my deas sbout o ihe peskesl wond wons,

35, If I succeed ol pefing =y ntencied degree, | will be mone Ikeiy D 3cieve STy Canter oomls.
TE. I can redate chemishny 0 sfuations i imy everyday ITe; | expectoo leam i begier,

A7, 1| igure out what [ .fid weing on- my axam, |wl improve g undiershanaing of e rmanarial for She risat exae

18,1 1 undersiand -a fundarmenty! concept, 4 can soode homeatrk | ey probiems on that conospt
35 1 oo Soilom vy Insiruchor i fechuee, [ eepect by g well In this: coumes,;

0. # Snishemy aaperment and whise intab; Sguns oo wivel =y dala maans, | =ipact o do weE I abordory

.1 can Eypiain & problam or concepl o 3 casomabe, | wil inderziand the materal befar.

22, i | do myvenything possinle Jfor exampis review class robes, read S bednook. sohe several Sampie
probiems, 4o romawork, mianbin pefeac! sBEndance), 1wl Do wel o s course.

2321 endersiand the principies bating the sxparmeants, [ Wil be mans Boely i Succesd o laborony.

24_¥ 1 g mverydiing poscbie {for sxample, eview Class nobes, read e berthook. soive several sample
probiems, 4o homesors, mansen peract Fendsnoe Ell e prepanss for quizzes ¢ sEame In this oodrse.

45, &'l can remember e solulicn oo probiem and onow whens 50 polTee nismbens; |w oo wel on quiszes |
EXAME in this cowse,

§ sges
sl mgr S rae OE S

1

0000
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00000
00000
00000
o000
0000
0000
00000
e ol ol Nle)
00000
00000
OQCOQ0

Qo000
Q0000
C0O0QO0
00000
00000

20000

297




Post-COES (outcome expectations) scale

APPENDIX K:

Introductory Chemistry - End of Semester Survey

1D Number

NiR|N RN
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Instructions: Please fully complete the front and back of this survey.

Thank you!

How often did you do the following:

1. Digcuss course information with your instruclor {grades, possible make-up work, assignments efc:)

2. Apply material leamed in class to other areas (Job / intemship, other courses, inieractions with others)

3. Memorize formulas, definitions; technical terms and concepts

4_ Discuss your career plans-and ambitions with anyone {for example, advising staff, faculty members,

friends or family members)

First Name

LUy

COO0O0O0OC0O0OO
CO0O0O0O0OOO

O
O
0
O
&)

O00OO0OO00OEOOOODOOOOD0OOEO O
00000000000 ODODODODOODOODOD0OOO
O00O0O0O00OROOO0OOO0O0DOODODODLROO
00000000000 O0OODOODOODODODOOO
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00000000 OO0OODOOODOODOODO0OOOO

OO0 00 Never
0000 Ciccasionally
0000 ofen
000 Wery often
OO0 OO nNotsure
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Introductory Chemistry - End of Semester Survey

Piezse indicate your level of agreement with each of the siatements:

1. F1work hard encugh. | will be more likely to pass a future.
2. If | do well’get 3 good grade in this course, |'will be prowd of myself.

3. 1 graduate with my current major, | will be more likely fo get a well paying job.

4. [fall | did was memorize the solution to any problem sclved in lectureldiscussionitextbook, | can be

succassful in & future chemistry course.

B. If | change my cumrent major, | will be less likely to get a job:

&, If | know my interasts & abilities, then [ will make better career decisions.

T. i b eam my undergraduste degree, | will be ableto meet my financial goals:

&. IF i am unable to pass this course, | will be more fikely to change my major.

8. I Lry and understand the chemistry while performing an experiment, | can do better in & future laboratony course.
10,1 I make a good career decision, then my family and friends will approve of me.
11. ¥ | don't understand the concepts in this course, | can pass (with at leasta C).

12. Il obtain a good grade in this cowrse, | 'will have a better chance of achisving my career goals.

13. If I am able io follow the procadure to perform an experiment, | ean understand what is happening in a

future chemisiry laboratony course.

14. If i ieam chemistry, | expect to change some of my ideas about how the physical world works:
15. IF [ succeed at getting my intended degree, | will be more likely o achisve my career goals.

16. i | can relate chemistry to situations in my everyday life, | expect toleamn it betier.

17. If | figure out what | did wrong on my exanm, | wil improve my understanding of course matenal for the

next exam.

18. I | understand a fundamental concept, | can soive homewsork f exam problems on that concept.

18, 1F | can follow miy instrucior in leciure, | expect io do betier in & future chemistry course.

20. If 1 fintsh my experment and while in lab, figure out what my data means, | can do well in a future chemistry

|=boratory course,

21. if | can explain & problem or concept to 3 classmate. |will understand the material betier.

22, If | do everything possible (for example, review class notes, read the textbook, solve several sample
proolems. do homework, maintain perfect attendance), | can do well in a future chemistry course.

23. If { understand the principles behind the experiments, | will be more likely to sucsesd in a future chemistry

laboratory course.

24 1f 1 do evenything possible {for example. review class notes, read the textbook, sofve several sample
prizblenis, do homework, maintain perfect atiendance), | can be prepared for quizzes / exams in a future

chemistry course.

25. If Foan remember the solufion fo a problem and know whers to put the numbers, | can do well on guizzes |

exams in & future chemisty course.

agrea
Heffer agree nor disagres

[haagres
Simagly disagres

@0

00
O 0
0o
00
O 0

eReleRoRo
O0O00O0

CO0O00O0
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0000
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CO00O
CO0O0O0O0
0000

Q0000

00000
0000

Q0000

Q0000

oleloRelo
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Q0000

QO0O0OO0
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APPENDIX L:

Subset (shortened) instrument

Introductory Chemistry - Lecture Survey, Pre-Exam 1

1D Number

N A
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Instructions: Please fully complete the front and back of this survey.,

Retum this in lecture on Wednesday, September 29, 2014.

First Mame

RN NN

OCO0LOOOCGCO
(eReloleoloNoNoNe)

O
000
Q00

O0D0DOOOODOEOODOHLODODODODODODOGO
Q00000000000 ODOO0O00DO0DODOOOO0O0O
00000 DODO0OOOOOODLODODODODOOODOBOOO
00000000 QO0OOOODOODOODOQOOOOO
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00000000000 0O0ODODOD0O0ODO0O0O0O0

For completing this and the post exam 1 survey (handed out during the week of Ocicber
Gth), you will receive 2 extra credit points on exam 1.

Thank you!
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Introductory Chemistry - Lecture Survey

How confident are you about:

1. Choosing an appropriste eguation to-solve g chemistry problem.
2. Deterrnining appropriate units fior 3 numerical result
Reading and writing & chemical formula;
Describing trends in the periodic table (stomic size, electronegativity).

Identifying the type of change (physical ws: chemical) when milk gets scur.

3
4.
B
. Converting your speedometer reading from mph to yardsisec {1 mile = 1780 yands).
T. Calculating the density of lemonade (made by adding 50 g lemonsto 500wk of water).
8. Calculating the percent composition of inon in rust {F=203) obtained from your garage door.
8. Taking an exsm or guiz in your chemistry course:

10. Preparing for chemistry sxams.

11. Understanding your chernistry professor,

12. Talking to your chemistry professor.

13. Receiving the grade you desire in this course.

Please indicate your level of agreement with each of the statements:

14 If all | do is memorize the solution to any problem solvad in lecture/discussionttextbook, | will be successful
‘im this course.

15 1f | know my intarasts: & abilities, then | will make better career decisions.

18. If | try and understand the chemistry while performing an experiment, | will do well in laboratorny.
17. If  dont understand the concepts in this course, | can pass (with at least a C)

18. If Fobtain a good grade in this course, | will have a better chance of achieving my carcer goals.
18. i | lzam chemistry, | expect to change some of my ideas about how the physical world works..
20. If | succeed a1 getting my intended degree, | will be-maors lkely 1o achisve my career goals.

21, If | zan relate chemistry to situations in my everyday fife, | expect to leam it better.

22 1f T understand a fundamental concept. | can solve homework § exam problems on that concept.

2

5]

- If | finish my expenment and while inlab. figure owt what my data means, | expect to do well in laboratony.:

24 If | do evenything possibie (for example, review class notes, read the texibook, solve several sample
problems, do homework, maintain perfect attendance), | will do well in this course.

25. If | do everyhing possible ffor example. review class notes, read the textbook, sofve several sample
preblams; do homework. maintzin perfect atendancs), | will be prepared for quizzes | exams in this course.

QO O MotConfident at al

3
_
T §3
5] E 4 =
i3
g2 78 E%
elleNeNoNo]
o0 0 O
OO0 OO
Q0000
O0O0O00
e Rolele o)
Q00000
o000
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OO0 00
Q0000
OO0 0

:

7

=
B
2R
2,283
2538 ;
OC000
O 000
OO0 Oo0O
Q000
OO0 O00
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O0000O
OQO0O00
eleloNoNs)
oG OO00
OQ0O000
O00Q000
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APPENDIX M:
STEM major designations — as of May 2016

STEM Designated Degree
Program List

Effective May 10, 2016

The STEM Designated Degree Program list is a complete list of fields of study that DHS considers to be science, technology, engineenng or
mathematics (STEM) fields of study for purposes of the 24-month STEM optional practical traiming extension described at 8 CFR 214.2(f).
Under 8 CFR 214.2(1)(10)(u)(C)(2), a STEM field of sudy 1 a field of srudy “included in the Department of Education’s Classification of
Instructional Programs taxonomy within the two-digit series containing engineering, biological sciences, mathematics, and physical sciences,
orarelated field. In general, related fields will include fields mvolving research, innovation, or development of new technologies using
engineenng, mathematics, computer science, or natiral sciences (including physical, biological, and agncultural sciences).”

Accordingly, thus list designates the following four CIP summary groups/senies at the 2-digit CIP code level: Engineenng (CIP code 14),
Biological and Biomedical Sciences (CIP code 26), Mathematics and Statistics (CTP code 27), and Physical Sciences (CIP code 40). Any
new additions to those areas will automatically be included on this STEM Designated Degree Program list. Consistent with the definition of
“related field” above, related fields in this list include fields involving research. mnovation, or development of new technologies using
engineering, mathematics, computer science, of natural sciences. DHS designates these fields at the 6-digit level

CIP Code 2010 CIP I
Trwo-Digit Code CIP Code Title
Series

01 010308  [Agroecology and Sustainable Agriculture

01 01.0001 Animal Sciences, General

01 01.0002  |Agniculiral Animal Breeding

01 01.0903 Animal Health

01 01.0904 Animal Nutrition

01 01.0905 Dai.iy Science

01 01.0906 Livestock Management

01 010907 _ |Poultry Science

01 01.0000 Animal Sciences, Other

01 01.1001 Food Science

0l 01.1002 _ |Food Technology and Processing

01 01.1000 Food Science and Technology, Other

01 01.1101  [Plant Sciences. General

[ 011102 |Agronomy and Crop Science

01 01.1103  |Horticultural Science

01 011104  |Agncultural and Horticulfural Plant Breeding

01 01.1105  |Plant Protection and Integrated Pest Management

01 011106 |Range Science and Management

01 01.1190  |Plant Sciences, Other

01 011201 |Soil Science and Agronomy, General

01 01.1202  [Soil Chemistry and Physics

01 011203  |Soil l\rﬁa’obiolog}'

01 01.1299  |Soil Sciences, Other

03 03.0101  |Natural Resources/Conservation, General

03 03.0103  |Environmental Studies

03 030104  |Environmental Science

03 03.0199  |Namwal Resources Conservation and Research, Other

03 030205  [Water, Wetlands, and Marine Resources Management

302




15 150614 |Welding Engineering Technology Technician

15 15.0615 Chemical Engineering Technology Technician

15 15.0616 Semiconductor Manufacturing Technology

15 15.0699 Industrial Production Technologies Technicians, Other

15 15.0701 Occupational Safety and Health Technology Technician

15 15.0702 Qualitv Control Technology/ Technician

15 15.0703 |Industrial Safety Technology Technician

15 15.0704 Hazardous Matenals Information Systems Technology Techmcian
15 15.0799 Quality Control and Safety Technologies/ Technicians, Other
15 15.0801 Aeronauncal/ Aerospace Engineenng Technology Techmician
15 15.0803 Automotive Engineering Technology Technician

13 15.0805 Mechanical Engineenng/Mechanical Technology Technician
15 150899  |Mechanical Engineening Related Technologies Techmicians, Other
15 150901  |Mining Technology Technician

15 15.0903 |Petroleum Technology Technician

15 15.0999 |Mining and Petroleum Technologies Technicians, Other

15 15.1001 Construction Engineering Technology Technician

15 15.1102 Surveving Technology/Surveying

15 151103 [Hydraulics and Fluid Power Technology Technician

15 15,1199 Engineering-Related Technologies, Other

15 15.1201 Computer Engineerning Technology/Techmician

15 15.1202 Computer Technology Computer Systems Technology

15 15.1203 Computer Hardware Technology Technician

15 15.1204 Computer Software Technology Techmcian

15 151209 |Computer Engineering Technologies/ Technicians, Other

15 151301 |Drafting and Design Technology Technician. General

13 15.1302 ICAD/CADD Drafting and‘or Design Technology Technician
15 15.1303 Architectural Drafting and Architectural CAD'CADD

15 15.1304 Civil Drafting and Civil Engineenng CAD/CADD

15 15.1305 Electrical Electronics Drafting and Electncal Electronics CAD/CADD
13 151306 |Mechanical Drafting and Mechanical Drafting CAD/CADD
15 151399 |Drafting Design Engineering Technologies Technicians, Other
15 15.1401 Nuclear Engineening Technology Technician

15 151501 |Engineering/Industrial Management

15 15.1502 1 ing Design

15 15.1503 Packaging Science

15 15.1599 Engineermg-Related Fields, Other

15 15.1601 Nanotechnology

15 15.0000 Engineering Technologies and Engiuﬂiug-llehmdﬁelds. Other
26 263000 [Biological and cal Sci

2 2700 [Mathematics and Statistics

28 28.0501 Air Science/Airpower Studies

2 280502 Air and Space Operational Ast and Science

28 28.0505 Naval Science and Operational Studies

29 290201 |lmelligence, General

29 200202 [Strategic Intelligence

29 200203 Signal/'Geospanial Intelligence

20 20.0204 Command & Control (C3, C4I) Systems and Operanons

2 20,0205 Information Operations Joint Information Operations

29 290206 |Information/Psychological Warfare and Military Media Relations
20 20.0207 F)wm Operations and Warfare

29 29,0299 Intelligence, Command Control and Information Operations, Other
29 29.0301 Combat Systems 1 1

20 20,0302 Directed Energy Systems

29 200303 |Engineering Acoustics

2 200304 Low-Observables and Stealth Technology

20 29.0305 Space Systems Operations

29 20.0306 Operational

20 20,0307 Undersea Warfare

29 29.0399 Military Applied Sciences, Other

20 20,0401 Aerospace Ground Equipment Technology

2 20,0402 Air and Space Operations Technology

29 29.0403 Aircraft Annament Systems Technology

2 200404 |Explosive Ordinance Bomb Disposal

29 29.0405 |Joint Command Task Force (C3. C4I) Svstems
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03 03.0502 Forest Sciences and Biology

03 03.0508 Urban Forestry

03 03.0509 'Wood Science and Wood Products/Pulp and Paper Technology

03 03.0601 'Wildlife, Fish and Wildlands Science and Management

04 040002  |Architectural and Building Sciences/ Technology

09 09.0702 Digital Communication and Media Multimedia

10 10.0304 Ammation, Interactive Technology, Video Graphics and Special Effects
11 11.0101 Computer and Information Sciences, General

11 11.0102 Aruficial Intelligence

11 11.0103 Informanon Technology

11 11.0104 Informatics

11 11.0199 Computer and Information Sciences, Other

11 11.0201 Computer Programming Programmer, General

11 11.0202 Computer Programmung, Specific Applicahons

11 11.0203 Computer Programming. Vendor/Product Certification
11 11.0299 Computer Programming Other

11 11.0301 Data Processing and Data Processing Technology/ Technician

11 11.0401 Information Science/Studies

11 11.0501 Conrputer Systems Analysis/Analyst

11 11.0701 Computer Science

11 11.0801 Web Page. Digital Multimedia and Information Resources Design

11 11.0802 Data Modeling Warehousing and Database Adnunistration

11 11.0803 Computer Graphics

11 11,0804 Modeling. Virtual Environments and Simulation

11 11.0899 Computer Software and Media Applications, Other

11 11.0901 Computer Systems Networking and Telecommunications

11 11,1001 Network and System Administration/ Adnunistrator

11 11,1002 System, Networking and LAN'WAN Management/Manager

11 11.1003 Computer and Information Systems Security/Information Assurance

11 11.1004 Web/Multimedia Management and Webmaster

11 11.1005 Information Technology Project Management

11 111006 |Computer Support Specialist

11 11.1099 Computer/Information Technology Services Administration and Management. Other
13 13.0501 Educational/Instructional Technology

13 13.0601 Educational Evaluation and Research

13 13.0603 Educational Statistics and Research Methods

14 14.XXXX Ig_nm

15 15.0000  |Engineering Technology, General

15 15.0101 Architectural Engineening Technology/Technician

15 15.0201 Civil Engineering Technology/ Technician

15 15.0303  |Electrical. Electronic and Comnmmnications Engineering Technology/ Technician
15 15.0304 Laser and Optical Technology/ Technician

15 15.0305 Telecommunications Technology Technician

15 150306 |Integrated Circuit Design

15 15.0399 Electrical and Electronic Engineering Technologies/ Technicians, Other
15 15.0401 Biomedical Technology Technician

135 15.0403 Electromechanical Technology/Electromechanical Engineering Technology
15 15.0404 Instrumentation Technology Technician

15 15.0405 Robotics Technology Technician

15 15.0406 Automation Engineer Technology/ Technician

15 15.0409 Electromechamcal and Instrumentation and Mamtenance Technologies Technicians, Other
15 15.0501 Heatng. Vennlation, Air Conditioning and Refrigeration Engineering Technology Technician
15 15.0503 Energy Management and Systems Technology Technician

15 15.0505 Solar Energy Technology Technician

15 150506 |Water Quality and Wastewater Treatment Management and Recycling Technology Techmician
15 15.0507 Environmental Engineering Technology/Environmental Technology

15 15.0508 Hazardous Matenals Management and Waste Technology/ Techmician
13 15.0599 Environmental Control Technologies/Technicians. Other

15 15.0607 __[Plastics and Polymer Engincering Technology Technician

15 15.0611 Metallurgical Technology Technician

15 15.0612 Industrial Technology/ Technician

15 150613 |Manufacturing Engineering Technology/ Technician
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15.0614

'Welding Engineering Technology/Technician

15 15.0615 Chenucal Engineering Technology Technician

15 15.0616 Senuconductor Manufacturing Technology

15 15.0699 Industrial Production Technologies Technicians, Other

15 15.0701 Occupational Safety and Health Technology/ Techmician

15 15.0702 Quality Control Technology Technician

15 15.0703 Industrial Safety Technology/Technician

15 15.0704 Hazardous Matenals Information Systems Technology Technician
15 150799 Quality Control and Safety Techaologies Techmicians, Other
15 15.0801 Aﬂumuucalmmue Engmeering Technology/ Technician
15 15.0803 tive Engineening Technology Technician

15 15.0805 Med:amcz.l EngineenngMechanical Technology Technician
15 15.0899 Mechanical Engineening Related Technologies Technicians, Other
15 15.0001 Mmmg Technology Technician

15 15.0903 leum Technology Technician

15 15.0000 ang and Petroleum Technologies Techmcians, Other

15 15.1001 Construction Engineering Technology Technician

15 15.1102 Surveying Technology/Surveving

15 15.1103 Hydraulics and Fluid Power Technology Techmcian

15 15.1199 Engineering-Related Technologies. Other

15 15.1201 Computer Engineering Technology Technician

15 15.1202 Computer Technology/Computer Systems Technology

15 15.1203 Computer Hardware Technology Technician

15 15.1204 Computer Software Technology/ Techmician

15 15.1209 Computer Engineenng Technologies Technicians, Other

15 151301 Drafting and Design Technology Technician, General

15 15.1302 CAD/CADD Drafting and/or Design Technology Technician
15 15.1303 Archatectural Drafting and Architectural CAD/CADD

15 15.1304 Cnl Drafting and Civil Enginecxing_C‘ADfCADD

15 15.1305 Electrical Electronics Drafting and FlectncalElectronics CAD/CADD
15 15.1306 Mechanical Drafting and Mechanical Drafing CAD CADD
15 15.1399 Drafting/ Design Engineering Technologies Technicians, Other
15 15.1401 Nuclear Engineering Technology/Technician

15 15.1501 Engineering Industnal Management

15 15.1502 Engineering Design

15 15.1503 |Packaging Science

15 15.1599 I -Related Fields, Other

15 15.1601 Nanotechnology

15 15.9999 Engineering Technologies and Engineering-Related Fields, Other
26 263000 |Biological and Beonecheal Sciences

27 27300 [Mathematics and Statistics

28 280501 Aur Science/ Aurpower Studies

28 28.0502 Aur and Space Operational Ast and Science

28 28.0505 [Naval Science and Operational Studies

29 29.0201 Intelligence, General

29 200202 Strategic Intelligence

29 29.0203 Signal/Geospatial

20 200204 Command & Control (C3, C4I) Systems and Operations

29 20.0205 Information Operations/Jomt Information Operations

29 20.0206 Information/Psychological Warfare and Military Media Relations
29 20.0207 Cyber/Electronic Operations and Warfare

29 20.0200 Intelligence. Command Control and Information Operations. Other
20 20.0301 Combat Systems Engineering

2 29.0302 Directed Energy Systems

20 200303 Engineering Acoustics

X 200304 Low-Observables and Stealth Technology

20 200305 Space Systems Operations

P 29.0306 Operational Oceanography

20 20.0307 Undersea Warfare

20 29.0399 Military Applied Sciences, Other

20 20.0401 Aerospace Ground Equupment Technology

29 29.0402 Air and Space Operations Technology

2 20.0403 Aiarcraft A Systems Technology

29 20.0404 Explosive Ordinance Bomb Disposal

20 20 0405 Joint Command Task Foree (C3, C4I) Systems
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APPENDIX N:

Results of one-way ANOVA to select predictors — persistence model

One-way ANOVA to determine significant predictors for logistic regression - persistence model

Sum of MWean
df F Sig.
squares Square
Between
4076 3 1359 3.125 0.026
Groups
Self-efficacy related to —
i ) Within
applying chemistry

123924 285

0.435
. Groups
strategies

Total 128.000 238
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self-efficacy, outcome expectations and performance.
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M.S. Inorganic Chemistry, Dec 2005
Purdue University — West Lafayette, IN
Thesis: Alloy mediated synthesis of metal-semiconductor composites.

B.S. Chemistry, Dec 2001

Purdue University — West Lafayette, IN
Project: Examining metal-mediated protein cross links in a mussel adhesive.

RESEARCH EXPERIENCE

Doctoral research - Chemical Education Jan 2012 to May 2017
University of Wisconsin — Milwaukee, W/
Advisor: Dr. Kristen Murphy

* Developed and adapted surveys to assess students’ outcome expectations and self-
efficacy in several general chemistry courses

» Established interview protocols, conducted student interviews and analyzed resulting
data to validate surveys and develop affective profiles for at-risk students

» Designed and tested interventions (using Qualtrics) to offset lack of persistence in at-risk
student groups

» Developed and tested eye-tracking stimuli to assess usability and efficacy of
interventions

Research Assistant (Summer) — Chemical Education Jan 2013 to Dec 2016
University of Wisconsin — River Falls (UWRF) and University of Wisconsin — Milwaukee

PI: Dr. Jamie Schneider and Co-Pl: Dr. Kristen Murphy

The effect of feedback on multiple - choice chemistry assessment (NSF - DUE 1140914)
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* Evaluated test statistics for chemistry assessments (practice exams) offered at UWRF

* Examined impact of various feedback mechanisms on exam performance

* Assessed exam complexity (using complexity ratings from multiple researchers), student
confidence and their combined effects on exam performance under varied feedback
modes

* Collaborated with postdoctoral researcher from UWRF to conduct analyses and present
results during weekly meetings

Research Assistant — Nanomaterials Chemistry Jan 2009 to June 2009
Florida International University, Miami, FL

* Synthesized water-soluble conjugated polymer nanoparticles (CPNs), via organic routes,
for use in drug testing

* Conducted size and molecular weight analyses of CPNs using SEM and ZetaSizer Nano
respectively

* Managed and supervised laboratory inventory, safety protocol and general maintenance
of the research laboratory

Research Assistant — Materials Chemistry June 2002 to Dec 2005
Purdue University — West Lafayette, IN

» Synthesized metal-semiconductor composite electrodes via an inter-metallic alloy
mediated synthetic route

e Examined properties of electrodes using various techniques —microscopy (SEM/EDS,
TEM, AFM), and X-ray diffraction

» Supervised research projects of two undergraduate students and trained them on the
use of laboratory equipment and techniques.

SELECTED RESEARCH SKILLS / TECHNIQUES

* Managing, organizing and formatting large, complex datasets

» Employing appropriate methods to explore and analyze qualitative and quantitative data

« Expertise in a wide range of multivariate statistical methods — factor analyses (exploratory
and confirmatory), cluster analyses, multiple and logistic regression, discriminant
analyses, Monte carlo PCA for parallel analysis

» Developing and evaluating psychometric properties of assessments and surveys

» Establishing protocols and stimuli for conducting student interviews — response process,
eye tracking, transcribing and coding

* Proficiency in SPSS, SAS, IMP, Excel, Qualtrics
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CONFERENCE PRESENTATIONS

« Srinivasan, S."; Murphy, K.L. (2016). “Development and preliminary testing of a STEM
persistence model”, 24t Biennial Conference on Chemical Education, University of Northern
Colorado, Greeley, CO. (Paper)

 Srinivasan, S."; Murphy, K.L. (2016). “Affective profiles to target at-risk students: Evaluating
the impact of interventions on students’ STEM persistence”, 24t Biennial Conference on
Chemical Education, University of Northern Colorado, Greeley, CO. (Paper)

« Srinivasan, S.”; Murphy, K.L. (2016). “Development and preliminary testing of a STEM
persistence model: Using a subset instrument to generate affective profiles”, 2515 ACS
National Meeting, San Diego, CA. (Paper)

« Srinivasan, S.”; Murphy, K.L. (2015). “Persistence in STEM: Using a subset instrument to
measure subtle changes in self-efficacy and outcome expectations”, 250" ACS National
Meeting, Boston, MA. (Paper)

« Srinivasan, S.”; Murphy, K.L. (2014). “Development and preliminary testing of a persistence
instrument: Measuring outcome expectations”, 23 Biennial Conference on Chemical
Education, Grand Valley State University, Allendale, MI. (Paper)

« Srinivasan, S.”; Murphy, K.L. (2014). “Development and preliminary testing of a persistence
instrument: Measuring self-efficacy and outcome expectations”, Engendering Change: The
4th Annual Gender and Sexualities Graduate Student Conference, Northwestern University,
Evanston, IL. (Paper)

 Srinivasan, S."; Murphy, K.L. (2013). “Development and preliminary testing of a persistence
instrument: Measuring self-efficacy”, Chemistry Education Research Conference, Miami
University, Oxford, OH. (Poster)

 Srinivasan, S."; Murphy, K.L. (2013). “Development and preliminary testing of a persistence
instrument: Measuring self-efficacy”, Sci-Mix: 244" ACS National Meeting, Indianapolis,
Indiana. (Poster)

 Srinivasan, S."; Murphy, K.L. (2013). “Development and preliminary testing of a persistence
instrument: Measuring self-efficacy”, 244™ ACS National Meeting, Indianapolis, IN. (Paper)

« Srinivasan, S.; Murphy, K.L. (2013). “Development and preliminary testing of a persistence

instrument: Measuring self-efficacy”, 40" Annual Great Lakes Regional Meeting, La Crosse,
WI. (Paper)
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DEPARTMENTAL PRESENTATIONS

Srinivasan, S.”; Murphy, K.L. (2015). “Persistence in STEM: Using a subset instrument to
measures subtle changes in self-efficacy and outcome expectations”, Department of
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Srinivasan, S.”; Murphy, K.L. (2014). “Development and preliminary testing of a persistence
instrument: Measuring outcome expectations”, Department of Chemistry and Biochemistry
Awards Day Symposium, University of Wisconsin, Milwaukee, WI. (Poster)

Srinivasan, S.”; Murphy, K.L. (2014). “Development and preliminary testing of a persistence
instrument: Measuring self-efficacy”, Department of Chemistry and Biochemistry Awards
Day Symposium, University of Wisconsin, Milwaukee, WI. (Poster)

MANUSCRIPTS IN PREPARATION

Srinivasan S., Murphy K. (2017). Development and preliminary testing of a persistence
instrument: Measuring outcome expectations.

Srinivasan S., Murphy K. (2017). Development and preliminary testing of a persistence
instrument: Measuring self-efficacy.

Srinivasan S., Murphy K. (2017). Using a shortened subset instrument to develop affective
profiles: Tracking finer changes in the persistence model

Srinivasan S., Murphy K. (2017). Integrating performance and affective measures in the
development of a longitudinal STEM persistence model
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Tan Y, Srinivasan S, Choi K.S. (2005). Electrochemical deposition of mesoporous nickel
hydroxide films from dilute surfactant solutions. Journal of the American Chemical Society,
127, 3596-3604.

Sever M.J., Weisser J.T., Monahan J, Srinivasan S, Wilker J.J. (2004). Metal Mediated cross-

linking in the generation of a marine mussel adhesive. Angewandte Chemie - International
Edition, 43, 448-450.
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« Co-organizer and Presider of a symposium for the 23" Biennial Conference on Chemical
Education, Grand Valley State University, Allendale, Ml
Importance of the affective domain in research and teaching (2014); Shalini Srinivasan
and Kristen Murphy (University of Wisconsin — Milwaukee)
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American Chemical Society’s Younger Chemists Committee, University of Wisconsin,
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Profession — Membership:

+ Member, American Chemical Society. Jan 2012 — present
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» Chancellor’s Graduate Fellowship Jan 2012 — present
» Teaching assistant of the year — General chemistry for engineers 2014 - 2015
+ 3"place best poster — Chemistry department research symposium April 2015
* Chemistry Department Graduate Student Travel Award May 2015
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* Dean’s List & Semester honors Aug. 2000 to Dec 2001
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Chemistry for Engineers (CHEM 105) Jan 2015 — May 2016

* Coordinated and led teaching efforts in support of “flipped classroom” model for a class
of 150 students — sole teaching assistant for five discussion sections
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» Evaluated success of each lesson module in preparation for next Sl session
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Undergraduate students

¢ Mentored undergraduate students in several chemical education research projects
* Guided students in formulating a research hypothesis and developing proposals
e Assisted students in preparing posters to present at departmental research symposia

*  “The use of reported confidence versus reported mental workload of students in
introductory chemistry when working informal review items” — Nicole Endres (5t
place best undergraduate poster at the Chemistry department research
symposium)

= “Student attitudes towards the subject of chemistry inventory: Changes during a
first-year course” — Kyle Duquaine

=  “Exploring the affective domain in introductory chemistry courses — A cluster
analyses study” — Andrew Schuster

= “Cluster analyses of the Chemistry Self-Efficacy Survey for CHEM 105 (Chemistry
for Engineers)” — Evan Pagano

» “Grading and analysis of Immediate Feedback Assessment Technique (IF-AT)
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Teaching Assistant — Department of Chemistry and Biochemistry
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¢ Chemistry for Engineers — “Flipped classroom” model Jan 2015 — May 2016
= Sole TA for five discussions (~150 students)

¢ Chemistry for Engineers — “Traditional classroom” model Sep 2013 — Dec 2014
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* Preparatory Chemistry Jan —May 2012
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e General Chemistry Il Jan — May 2003
¢ General Chemistry for Engineers | Aug — Dec 2003
¢ General Chemistry for Engineers Il Jan — May 2004
* Advanced General Chemistry (Honors course) Aug — Dec 2004
Assistant Course Supervisor — Department of Chemistry Jan — Dec 2005

Purdue University — West Lafayette, IN

» Co-supervised 8 teaching assistants for General Chemistry Il

* Conducted micro-teaching training for new teaching assistants

» Assisted course supervisor in developing handbook for teaching assistants

* Evaluated teaching assistants and provided feedback and support as required
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* Wisconsin Science Olympiad hosted by University of Wisconsin — Milwaukee — Volunteer
GEMS (Girls Engineering Math and Science) — Volunteer
= Presented poster on retention in STEM
» QOrganized activities for kids to participate in e.g. online games, career quizzes
MAGIC (More Active Girls In Computing) Mentor
= Developed a chemistry project for a middle school student and mentored the
student by providing guidance on experiments, writing a report and making a final
presentation
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