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ABSRACT 

ASYMMETRIC SYNTHESIS OF TRYPTOPHAN DRIVIATIVES AND ITS APPLICATION TO STREAMLINED 
SYNTHESIS OF TRYPROSATAIN A AND B. 

BY 

Matthew Marcus Huisman 

 

The University of Wisconsin-Milwaukee, 2015 
Under the Supervision of Professor Mahmun M. Hossain 

 

Tryprostatins have been shown to be potential antitumor antimitotic agents. Tryprostatins have 

been isolated from the fermentation broth of marine fungal strain Aspergillus fumigatus in trace 

amounts. Our lab has developed a phase-transfer-catalyzed asymmetric alkylation reaction to 

produce protected tryptophans (Trp) with high enantioselectivity (90-95% ee) as synthetic 

precursors to Tryprostatins. Studies of Tryprostatins indicate that manipulation of ring-A may 

cause enhanced activity.  We propose a general synthetic route to several new tryprostatins that 

may be tolerant to ring-A analogues of gramine utilizing achiral reactants. The synthesis of 

Tryprostatin B has been completed with 20% overall yield in 7 steps. In the future our group will 

hopefully be able to utilize this chemistry to develop a large number of Tryprostatin analogs.  

We hope that one of these derivatives will be selective against cancer cells, with therapeutic 

concentrations in the nanomolar region.  
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1. INTRODUCTION 

1.1. Tryprostatin A and B and their Biological Activity. 
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R= OMe, Tryprostatin A (1) 

R=H,  Tryprostatin B (2) 

Figure 1. Tryprostatin A and B 

 

Tryprostatins A 1 and B 2 (Figure 1) are natural products with therapeutic activity 

against breast cancer.   The natural source for these compounds is a marine fungus, specifically, 

strain BM939 of Aspergillus fumigates. Tryprostatins A and B were isolated as secondary 

metabolites from fermentation broth.  Tryprostatins A 1 and B 2 were found to have high 

activity in tsFT210 cells with inhibitory concentrations of 50 µg/ml of 1 and 12.5 µg/ml of 2, 

respectively.  These molecules function to completely arrest microtubule formation during the 

G2/M phase, thus inhibiting cell cycle progression.1 Tryprostatins A 1 and B 2 contain a 2-

isoprenyl tryptophan moiety and a proline residue, the latter of which was located in the 

diketopiperazine unit.   
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In addition to tryprostatin A 1 and B 2, spirotryprostatins A 3 and B 4 (Figure 2) and 

cyclotryprostatins A-D5 (Figure 3) were isolated from the same species4 by Osada et al. 

Spirotryprostatins have the same biological function, arresting the cell cycle at the G2/M, but 

were less potent than Tryprostatins: IC50 values of 197.5 (3) and 14.0 µM (4).4  On the other 

hand, cyclotryprostatins A-D5, which belong to the family of Fumitregorins (Figure 4),6-11 showed 

good potency with IC50 values of 5.6µM, 19.5µM, 23.4µM, and 25.3µM, respectively.  Like 

Tryprostatins, these function medicinally to inhibit tsFT210 cell cycle progression during the 

G2/M phase.2 
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Figure 2. Spirotryprostatins 
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Figure 3. Cyclotryprostatins 
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Figure 4. Fumitremorgins 

 

The interesting biological activity of this family of alkaloids has piqued curiosity in their total 

synthesis.  The first total synthesis of the parent, tryprostatin B was reported by Danishefsky et 

al. 3 Via the chloroindolenine/borane approach, illustrated by the scheme below.  The N-

phthaloyl-L-tryptophan methyl ester was treated with tert-butyl hypochlorite to generate the 
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chloroindolenine intermediate at 0  ͦC. This intermediate was then treated with prenyl stannane 

and followed by rapid addition of boron trichloride (two equivalents) to provide the desired 2-

isoprenyl tryptophan derivative.  It is thought that the reaction of prenyl stannane with boron 

trichloride generated a nucleophilic prenylation species in situ.  This species is believed to react 

with the chloroindolenine to provide the “ate” like structure complexed to the indolenine Na-

nitrogen atom.  This step was followed by intramolecular delivery of the isoprenyl moiety to the 

indole C(2) position.  Smooth removal of the N-phthaloyl protecting group generated the 

required L-2-isoprenyltryptophan methyl ester.  The coupling reaction between the 2-isoprenyl 

tryptophan unit and the N-Boc-protected L-prolinyl acid fluoride furnished dipeptide as 

illustrated.  The Boc protecting group was removed on treatment of material with trimethylsilyl 

iodide to afford the free amine.  The free amine was stirred in a solution of ammonia/methanol 

for 24 h, the formation of the diketopiperazine unit resulted in tryprostatin B identical to the 

natural material. In 1996 Danishefsky’s group was able to accomplish the synthesis of 

Tryprostatin B in eight steps with 46% over all yield. 
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Scheme 1. Danishefsky’s 1996 synthesis of tryprostatin B 
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Microtubules have important roles in cell growth and division, making them promising targets 

for cancer therapeutics.  Tryprostatins target and inhibit microtubule growth and therefore have 

considerable value as potential drugs for treating cancer.2 

1.2. Development of this work by the Cook Group 

Synthesis of the starting material, Boc protected 6-methoxy-3-methylindole is shown below with 

a 67% yield.   

Scheme 2. Synthesis of starting material for Cook’s synthesis 

 

 

In 1997 the first total synthesis of tryprostatin A was completed by Gan in Cook’s group via a 

regiospecific bromination process coupled with the Schöllkopf chiral auxiliary.4  This approach 

provided the 2-bromo-6-methoxytryptophan as a key intermediate in good yield. 1-tert-
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butyloxycarbonyl-3-methylindole was prepared in four steps from m-anisidine via a Japp-

Klingemann/Fischer Indole protocol.  The azobisisobutyronitrile (AIBN) initiated regiospecific 

bromination of 3-methylindole at the allylic position was accomplished using N-

bromosuccinimide (NBS) as the brominating agent via a radical process. The coupling reaction 

between the benzylic bromide which resulted and the anion of the Schöllkopf chiral auxiliary 

provided the stable dihydropyrazine with diastereoselectivity. Electrophilic, regiospecific 

brominating of pyrazine with NBS at the indole C(2)-position generated under conditions of 

electrophilic substitution.  Using lithium-halogen exchange followed by addition of isoprenyl 

bromide, the desired C2-functionality was achieved.1d  Hydrolysis of the pyrazine unit in acidic 

conditions (THF, aq 2 NHCl) provided the ethyl ester.  Treatment of the tryptophan derivative 

with N-Troc-L-prolinyl chloride afforded the desired dipeptide after reductive cleavage of the 

protecting Troc  group.4 Cyclization to form the diketopiperazine and removal of the Boc 

protecting group generated tryprostatin A in a one pot process.  The optical rotation and 

spectral data of synthetic tryprostatin A were in agreement with those of the natural product.  

In 1997 Cook’s group was able to synthesis tryprostatin A in an enantiospecific fashion using 

sixteen steps 9.15 % yield.   

Scheme 3. Cook’s tryprostatin synthesis 
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In 2008, the synthesis of Tryprostatin A and B as well as their enantiomers was developed by 

Zhao in Cook’s group.2  In order to introduce the isoprenyl group at the indole C(2) position of 

and decrease the number of steps earlier reported by Gan et al.4 LDA was employed to form the 
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anion at C(2).  The indole was stirred with LDA at -78 ˚C followed by the addition of dry, pure 

isoprenyl bromide to furnish 2-isoprenylpyrazine.  This was an improvement in the synthesis of 

2-isoprenylpyrazine, this procedure was used for tryprostatin B.  Since the Schöllkopf chiral 

auxiliary can tolerate strongly alkaline conditions, it served well as a protecting group for the 

amino acid functional group and prevented racemization.  The pyrazine moiety was removed 

under acidic conditions (aq HCl, THF) in 92% yield to provide L-valine ethyl ester and 2-isoprenyl 

tryptophan.  Using the same conditions, the enantiomeric 2-isoprenyl tryptophans and were 

synthesized and employed for the enantiospecific synthesis of tryprostatins A and B.1d  In 2008 

Cook’s group was able to synthesize tryprostatin B in 40 % yield as well as the enantiomers and 

diastereomers in through the same procedure using the corresponding amino acids.   
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Scheme 4. Cook’s synthesis of diastereomers 

 

With the key 2-isoprenyltryptophan derivatives in hand, the diketopiperazine unit was built on 

as illustrated.  The various 2-isoprenyl-tryptophans were stirred with N-Fmoc-L-proline chloride 

in the presence of triethylamine in chloroform at room temperature this was followed by 

removal of the solvent.  The Fmoc protecting group was then removed by addition of 

diethylamine (DEA) in acetonitrile.  Solvents were removed under reduced pressure.  Formation 

of the diketopiperazine as well as the removal of the Boc protecting group from the indole N(H) 
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were achieved by heating in refluxing xylenes in high dilution.  A stereospecific, enantiospecific 

total synthesis of Tryprostatin A and B was accomplished via alkylation of the corresponding 2-

lithioindole derivatives.  This procedure was also applied to the enantiomers of tryprostatin A 

and tryprostatin B.  The optical rotations of the natural products and the enantiomers were in 

agreement with those reported by Osada et al. for the natural products.1a-c  This route was used 

for the total synthesis of the mismatched pairs of Tryprostatin A and B for biological screening.   

Scheme 5. Cook’s synthesis of enantiomers of tryprostatin 
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Scheme 6. Cook’s synthesis of diastereomers of tryprostatin 

 

 

1.3. Fukuyama’s synthesis 

In 2010 Fukuyama’s group decide to pursue the synthesis of Tryprostatins, interest from this 

sprung from the history of exploring radical mediated cyclization in the formation of the 2, 3 

substituted indole rings.5 They further speculated that they may be able use that chemistry to 

make natural products Tryprostatin A and Tryprostatin B. 

Fukuyama and co-workers began by making an aromatic iodide that they would be able to use a 

Sonoashira coupling, a palladium-mediated coupling to attach the aromatic ring to the desired 

alkyne.  From this intermediate they were able to make the ortho-alkenyl isocyanide in two 

steps.   
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Next the Fukuyama group proceeded to demonstrate their expertise over radical mediated 

cycliation of indoles by using a unique radical initiator to close the between the newly formed 2 

and 3 carbons.  This step also utilized tri butyl tin as a leaving group for the isoprenyl group 

undergoing addition at the indole C2 position.   

 

 

Figure 5. V-70 radical initiator 

 

Next steps include a ring opening, oxidation and peptide coupling.  This was followed by reflux in 

high boiling solvent N-methyl-2-pyrrolidone (NMP) to close the diketopiperzine ring.   The 

synthesis was achieved in ten steps in 39 percent yield.  
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Scheme 7. Fukuyama’s synthesis of tryprostatins 
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1.4. Cell Cycle and Anticancer Drugs 

 

Figure 6. The cell cycle 

 

The cell cycle is the process of one cell turning into two daughter cells.  This process is often 

broken into four parts consisting of G1, S, G2 and M.6  Interphase is often times used to describe 

the combination of G1, S, and G2. During interphase the cell grows and prepares for cell division 

by duplicating its DNA. The remaining mitotic (M) phase splits the cell into two daughter 
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cells.  M phase is followed by cyctokinesis where the cell completely divides.  See figure 6. 

 

Figure 7. Cell cycle representing G1, S, and G2 phases. 

 

Gap 0 (G0) Resting phase cell is not dividing.  Gap 1 (G1) Cells increase in size.  G1 check point 

ensures that the DNA is ready for replication.  Synthesis (S) DNA replication occurs.  Gap 2 (G2) 

the cell grows G2 checkpoint ensures that cell is ready to enter the M phase and divide.  Mitosis 

(M) Cell growth stops cell divides into two daughter cells, Metaphase checkpoint ensures that 

the cell is ready to complete cell division.  See figure 7. 
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Figure 8. Cell cycle showing mitosis. 

 

Furthermore, the Mitotic phase is broken down into five phases.  Furthermore, the Mitotic 

phase is broken down into five phases demonstrated by the acronym IPMAT.  Interphase as 

discussed earlier is the phase leading up to cell division.  During this resting phase gaining 

nutrients and the cell is not dividing.  During prophase the chromatin condenses and membrane 

surrounding the nucleus disappears.  During metaphase telomeres appear and the 
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chromosomes line up on the equatorial plane.  In anaphase the chromosomes divide and 

separate to opposite sides of the cell.  During Telophase the cell divides into two different cells.  

Cyclin-dependent kinases (CDKs) are a family of protein kinases, which regulate the cell. 6a, 6b 

They are present in all eukaryotes and their regulatory function in the cell cycle has been 

conserved over time.  They bind cyclin and without cyclin CDK has little kinase activity.  CDKs 

phosphorylate their substrates on serines and threonines.  Animal cells contain at least nine 

CDKs four of which are directly involved in cell cycle regulation.6c   

1.5. Inhibitors of Chromatin Function 

Topoisomerase inhibitors  

Topoisomerase inhibitors interfere with the enzymes that control the changes in DNA structure 

via a  mechanism that involves catalyzing the breaking and rejoining of the phosphodiester 

backbone of DNA strands during the cell cycle.7   

Microtubule Inhibitors  

Microtubules are a structural part of the cytoskeleton and are found in the cytoplasm.8  

Microtubules are formed by the combination of alpha and beta tubulin protein segments.  The 

formation and deconstruction of the microtubules are very rapid.  The purpose of microtubules 

is to maintain the structure of the cell.  Microtubules provide platforms for intracellular 

transport, by forming the structures on which motor proteins, dynein and kinesin move.  They 

act as the metaphorical train track and train cars of the cell.  Lastly the microtubules are used in 

cell division connecting to the mitotic spindles to the telomers on which the motor proteins pull 

the chromosomes apart.   Microtubules are long hollow tubes which polymerize end to end.9  In 

order for polymerization to occur dimers must be present above an established concentration.  
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Microtubules have polarity, the end with the alpha subunit exposed is (-) while the beta subunit 

is the (+).  Elongation only occurs from the (+) end.   

  

Figure 9. Microtubules roll in cell division 

 

Mitotic spindles also called spindle apparatus are present in all eukaryotes.  The job of the 

microtubules is to separate the cell’s sister chromosomes during anaphase in the process of cell 

division.  This spindle microtubules, microtubule-associated proteins (MAPS) and the 

microtubule organization center (MTOC)   are all involved in this dynamic process. 
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Figure 10. Chromosome division along microtubules 

 

Cytoskeletal drugs are molecules that interact with actin or tubulin.10  Some such as taxol 

stabilize the microtubules, while others prevent polymerization.  Cytochalasin D binds to actin 

monomers and prevents polymerization of actin filaments; this is an example of a destabilizing 

agent.  

1.5.1 Microtubules as drugable targets  

Many drugs have been able to bind to tubulin by modifying its activation site, the effect of this is 

that the microtubule dynamics are manipulated.11  This interference can prevent a cell from 

going into a cell cycle and can lead to programmed cell death or apoptosis.12  Both microtubule 

stabilizer and destabilizers can suppress microtubule dynamics.  The Taxane family of anti-

cancer drugs, which contains Taxol, is a well-known example of a member of this family.  These 
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compounds work by stabilizing the GDP bound tubulin, stopping depolymerization.  Vincristine 

and Colchicine have the opposite effect, blocking the polymerization of tubulin to microtubules.   

1.6. Inhibitors of Breast Cancer Resistance Protein 

Multidrug resistance (MDR) has been shown to be one of the most difficult obstacles to over-

come in treating cancer.  This resistance is often due to membrane bound proteins, driven by 

ATP push anticancer therapeutics out of the cell.   Breast Cancer Resistance Protein (BCRP) an 

ATP-binding cassette transporter has been shown to be one of these types of “problematic 

proteins.”13  Inhibition of this class of proteins has been shown to increase the intracellular drug 

accumulation and reverses BCRP-mediated multidrug resistance. 14  A better understanding of 

molecules that interact with multidrug resistance proteins such as BCRP or better understanding 

of the binding site is critical in the advancement of designing more effective therapeutic 

strategies.  BCRP was initially discovered as a placenta-specific adenosine triphosphate ATP) 

binding cassette transporter (ABCP), but was later found in an assortment of tumor types. Since 

BCRP is involved in exporting substrates from the cell, the pharmacological efficacy of drugs that 

are substrates of BCRP are compromised.15 BCRP has an ability to remove a wide variety of 

molecules from the cells.  Multidrug resistance protein is considered one of the major 

transporters causing drug resistance in mammalian cells.16   

 

1.7. Benzophenone Imine Glycine Schiff Base  

Catalytic asymmetric synthetic reactions are attractive because they don’t use the often times 

more expensive chiral control reagent in more than the standard twenty mole percent.  Chiral 

phase-transfer catalysis (PTC) are often preferred by organic chemists due to their mild 

conditions, simple reaction procedures, safe and inexpensive reagents and solvents, 

furthermore the PTC reactions have been shown to be tolerant to scale up, making them 
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incredibly useful for production of products on gram to kilo gram scale.17  O’Donnell’s laboratory 

originally developed  benzophenone imines of glycine alkyl esters in 1978 as an alternative 

method to obtain diethylacetamidomalonate, which is the starting material for the classical 

1903 Sörensen method for the synthesis of racemic α-amino acids.”18   

 

Figure 11. Comparison of Sörensen’s Glycine Anion and O’Donnell’s Glycine Anion 

 

Since its development the O’Donnell Schiff base or the benzophenone imine glycine ester has 

found applications in both chiral and racemic amino acids.17  A critical characteristic of the 

O’Donnell Schiff base it the selective monoalkylation of the substrate in base, due to the 

difference in acidity of the α-carbon’s proton in the starting material and the monoalkylated 

product.  This change in acidity [pKa (DMSO)] is essential for the stereoselectie addition of an 

alkyl group, without causing base induced racimization or making the dialkylated product.19 

N CO2RPh2C

Glycine Anion
pKa = 18.7

CO2RNPh

Ph Me

monoalkylated product
pKa = 22.8  

Figure 12. Comparison of acidity of protons on alpha carbon when not alkylated and when 
mono alkylated. 

 

1.7.1 Entry into Eantioselective PTC utilizing Cinchona Alkaloids  
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The Cinchona alkaloids have played a major role in the development of phase-transfer catalysis.  

Cinchonine and cinchonidine derived catalysts have been used commonly in chiral PTC due to 

the parent alkaloids being inexpensive and easily converted into effective phase-transfer 

catalysts.17 

 

Figure 13. First Generation Cinchona Alkaloids 

 

The first generation of Cinchona alkaloids gave enantioslective alkylations on the order of 66%ee 

using the O’Donnell Schiff base and Sodium Hydroxide.  The O’Donnell group made a large 

improvement to enantioselectivity by suggesting the O-alkylation of the Cinchona quaternary 

ammonium salt was the active catalyst.   From this idea came the second generation of 

Chinchona-Derived Catalysts.   

 

Figure 14. Second Generation Cinchona Alkaloids 
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The highest reported enantioselectivity for this generation of catalyst was 81%ee.  Solvent 

mixtures for the second generation of catalyst have been reported using 

toluene:dichloromethane in ratios of (7:3).  This solvent ratio has not changed much from this 

generation into the future.   

A number of groups have tried to further change the catalyst, these groups include Lygo,20 

Corey, who were simultaneously reported the third generation of catalyst which employed a 

larger and therefore more sterically locked aromatic ring as the quaternary portion of the 

ammonium salt, for this they used N-9-anthracenylmenthyl.  

 

Figure 15. Free OH compared with alkylated oxygen on the phase transfer catalyst 

 

Corey et al. suggested the enantioselectivity may be due to the key ion pair between enolate 

and catalyst, where the alkyl halide approaches the ion pair from the dashed arrow leading to 
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the S product in the case of the Cinchonindine catalyst.  Depicted on the top is the anion of the 

Schiff Base and on the bottom is the cation of the 3rd generation catalyst.   

 

Figure 16. Stereoview of the ion pair between the enolate of the O’Donnell Schiff base and the 
phase transfer catalyst 

 

Phase-transfer catalysis has been proven to be a powerful tool in synthetic organic chemistry 

because of its simplicity mild conditions, and suitability for scale up.  This field of highly 

enantioselective alkylations has become a promising area of green sustainable chemistry.  

Asymmetric transformations catalyzed by chiral onium salts and crown ethers have been used to 

synthesis an array of compounds from amino acids to natural product to synthetic drugs.21  

 

1.8. Asymetric Phase-Transfer Catalysis Utilizing Chiral Quaternary 

Ammonium Salts: Asymmetric  

Phase-transfer catalysts (PTCs) by definition help transfer a substrate molecule or ion from the 

aqueous phase to the organic phase.  The decrease in the amount of energy required to cross 

the phase barrier  
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Due to the shuttling of the PTC greatly increases the rate of the reaction.  Quaternary 

ammounium salts are the most commonly utilized PTC.  This reaction often proceeds due to the 

formation of an anion (Y-) in the organic phase due to the hydrophobic nature of organic phases 

in comparison to aqueous solutions the anion.  Substrate (Y-) is more reactive in the organic 

phase when ion paired to Q+Y- due to the ion pairs greater charge separation and lower 

hydration, this effect causes greatly increased reaction rates when compared to not using the 

PTC.22  

The controlled delivery of anion to the substrate causes greater selectivity when compared to 

PTCs alternative homogeneous reactions.  The reaction conditions are tolerant to most water-

immiscible organic solvents.  Although many times there are more reagents added to phase-

transfer catalyzed reactions, the reactions are often times easy to purify due to the two phase 

nature of the reactions, organic products into organic layer and ionic salts and other water-

miscible materials in the water layer. Lastly the catalysts are usually cheap and environmentally 

benign.  

 

Figure 17. Phase-transfer catalyst diagram of ion exchange 

 

1.8.1 Further development of Glycine Imines 
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O’Donnell reported the first asymmetric alkylation of the glycine imine ester utilizing phase-

transfer catalysis in 1989.19   These studies using the first generation N-benzyl Cinchona alkaloids 

were used, resulting in enantioselectivities ranging from 42-66% ee.  These studies led to the 

conformation that tert-butyl ester imine was the best substrate in terms of enantioselectivity 

and that the diastereoisomeric catalyst of cinchonine and cinchonidine were enantio-

complimntarey meaning they lead to the opposite chirality in the products.   

The phase-transfer catalysts, stemming from the Cinchona alkaloids, were found to undergo O-

benzylation under the reaction conditions.  This led to the development of prealkylated salts 

which gave similar enantioselectivity.  Ion-pair arrangement A accounts for the 

enantioselectivities obtained using Cinchona based phase-transfer catalysts.  “In this 

arrangement the Re-face of the enolate carbon is blocked by the quinolone ring of the 

quaternary ammonium salt, so preferential reaction via the Si-face would be expected.  

Alternate ion pair’s inspection of structure in ion-pair B suggested it should be less favored due 

to the increased charge separation required to accommodate the tert-butyl group in the 

“groove” between the quinolone and anthracene rings.“22 
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Figure 18. Ion pair between phase-transfer catalysit and O’Donnell Schiff base 

 

The drive to develop asymmetric phase-transfer alkylation reactions as a “green” alternative to 

its homogeneous counter parts and the reactions tolerance to non-chlorinated solvents, 

ambient temperature and aqueous base makes them environmentally benign in comparison.   

Good yields and above 90 percent enantioselectivity have been reported for the synthesis of a 

wide assortment of amino acids.23  Often times these products can be crystallized to reach high 

levels of enantiomericly pure products.   

1.9. Diketopiperizine rings and their significance 

2,5-Diketopiperazines (2,5-DKPs) are formed by closing a six membered ring made up of the 

backbones of two amino acids.  These cyclodipeptides are prevalent in nature.  The combination 

of these two things have allowed DKPs to become a unique class of naturally occurring 

privileged structures, allowing significant diversity due the readily available number and wide 
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range of  characteristics including functionality, hydrophobicity and charge at physiological pH 

throughout amino acids.  This family of compounds can bind to a wide assortment of biological 

receptors; this six membered cyclic dipeptide is constrained four, of the positions can be 

manipulated in terms of stereochemistry.  Due to the manipulation potential in terms of 

stereochemistry DKP are quite easy to chirally enrich using only amino acids in the synthesis.24 

 

Figure 19. Numbering system of 2,5-DKPs 

 

2,5-DKPs have been extensively examined using crystal and molecular structures.  Some of the 

DKP’s ability to bind to enzymes and receptors is due to the two H-bond acceptor and two H-

bond donor sites they contain that stem from the two cis-amide bonds.  2,5-DKPs exist as flat 

and slightly puckered boat isomers, separated by only a few kcal/mol because of it slightly rigid 

yet flexible conformation.24 All of the known active Typrostatins,Fumitremorgins and 

Spirotryprostatins contain both an indole ring and a diketopiperizine ring.   

Dipeptides can spontaneously cyclize to form a 2,5-DKP, although this requires an amine at one 

terminus and an ester at the other.  Coupling a nitrogen-protected α-amino acid and an α-amino 

acid ester the most commonly used synthetic procedure.24   
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Figure 20. Most common synthetic procedure for closing 2,5-DKP 

 

Deprotection of the nitrogen protecting group yields the dipeptide ester, now the nitrogen can 

act as a nucleophile and attack the carbonyl carbon displacing the ester insitu to make an amide.  

Cis-orientation of the amide bond is required for the closing of the six membered ring.  Ring 

closing is difficult if the cis-orientation is prevented due to steric or electronic effects.24-25  Other 

strategies that have been used to close dipeptide rings have involved refluxing in high boiling 

solvents for extended amounts of time.  An example of this was reported by Cooks group to 

close the DKP ring on Tryprostatin, conditions include refluxing in Xylenes for 48 hours.1d, 26 As of 

2006 Tullberg’s group has demonstrated DKP ring closures utilizing microwave heating. This 

procedure utilizes water as a solvent and has shown no epimerization and most importantly is 

tolerant to amino acid sequence.27  Due to the Boc protecting groups thermally labiality, Boc 

nitrogen protected dipeptides became standard in this synthetic procedure, leading to the 

deprotection and cyclization in one step.   
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2. BACKGROUND 

2.1. Development of the Acrylates 

The Hossain group has been working on acrylate chemistry since 1998 when they published a 

paper on the topic of catalytic iron Lewis acid catalyst activation of benzaldehydes to form 

acrylates.28  The products of this reaction are in competition with the minor product the beta 

keto ester. 28 

Scheme 8. Synthetic equation using iron Lewis acid catalysis to make acrylates 

 

CHO

R
N2CHCO2Et

CH2Cl2, 0° C

R

COOEt

R

O

CO2Et
10 mol %

Acrylate
32-70%

-Ketoester
19-56%

R=H, 4-Me, 4-MeO
2,4-MeO, 4-Cl, 4-NO2

OH

H

Fe
OC CO

O

BF4

 

 

In 2004, the group screened the reaction against other Lewis acids to evaluate the efficiency of 

the iron Lewis acid.  HBF4∙OEt2 is used in the production of the iron Lewis acid, so it was 

questioned whether residual HBF4∙OEt2 in the iron Lewis acid could be catalyzing this reaction.29 

Scheme 9. Comparison between Iron Lewis acid and HBF4 to make acrylate 
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CHO

R
CH2Cl2, 0 or -78° C

R

COOEt

R

O

CO2Et

HBF4OEt2 or 
Iron Lewis Acid
Catalyst 10 mol %
N2CHCO2Et

OH

H

A B C  

 

Table 1. Comparison of acrylate and beta-keto ester using Iron Lewis catalyst vs HBF4 

 

A R1 Cat ̊C Yield B Yield C 

H HBF4 rt 42 21 

  HBF4 -78 74 0 

  Fp+BF4
- rt 58 25 

  Fp+BF4
- 0 70 19 

  Fp+BF4
- -78 68 19 

4-MeO HBF4 0 75 15 

  HBF4 -78 90 0 

  Fp+BF4
- 0 60 20 

  Fp+BF4
- -78 4 0 

2-Me HBF4 0 60 35 

  Fp+BF4
- 0 74 15 

4-Br HBF4 0 55 34 

  Fp+BF4
- 0 62 17 

Letters in table correspond to the letter assignment of the molecules in the synthetic scheme. 

 

This reaction is expected to proceed in favor of the acrylate over the beta-keto ester due to the 

lowest energy Newman projection, compared to the second lowest energy projection, the 

temperature depression favors the lowest energy Newman projection in turn leading to higher 

acrylate yields. This reaction procedes through a unique 1,2-aryl shift instead of by a hydride 
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migration which has been shown in 1998 in the Hossain’s group.  The changes of in fine tuning 

of ratios of observed B and C were varing electron donating group which supports 1,2-aryl 

migration over hydride migration.   

Ar

CatO H

N2
+

CO2EtH

H

CatO Ar

N2
+

CO2EtH

1 2  

Figure 21. Newman projection of possible transition states between acrylate and beta-keto 
ester 

2.2. Acrylates to 3-ethylesterindoles 

In 2006, after identifying that HBF4∙OEt2 is the best catalyst for the reaction, and that -78 ̊C is the 

optimum temperature for regioselectivity of the acrylate over the beta-keto ester, the Hossain 

group began work on making the ortho-nitro-acrylates into 3-ethylesterindoles.30 

Scheme 10. 2-nitrobenzaldehyde through aldehyde to 3-ethylesterindole 

 

CHO

NO2R

HBF4OEt2 
(10 mol %) 
N2CHCO2Et

CH2Cl2,    
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NO2R

COOEt

OH

H

Pd/C, H2

MeOH N
H

R

COOEt

A B C    
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Table 2. Yield of benzaldehyde to acrylate 

 

A R Catalyst    ̊C Yield B 

H Fp+BF4
- 0 73 

  HBF4 0 73 

  HBF4 -78 75 

5-OCH3 Fp+BF4
- 0 68 

  HBF4 0 68 

  HBF4 -78 75 

4,5-OCH3 HBF4 -78 76 

4-OCH2O-5 HBF4 -78 86 

5-Cl Fp+BF4
- 0 35 

  HBF4 0 45 

  HBF4 -78 50 

Letters in table correspond to the substrate in the synthetic diagram. 

Table 3. Yields of acrylates to 3-ethylesterindole 

 

B Yield C 

H 90 

5-OCH3 62 

4,5-OCH3 76 

4-OCH2O-5 86 

5-Cl 66 

It is proposed that this reaction proceeded via the following mechanism.  
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Figure 22. Mechanism demonstrating reduction of acrylate and ring closing of indole 

 

2.3. 3-ethylesterindoles to gramines 

In 2009 the group published a procedure to convert the protected 3-ethylesterindole into a 3-

carboxamide using an amidoaluminum mediated mechanism.  From 3-ethylesterindole using 

DIBAL-H it was possible to convert the carboxamide to gramine.31 

Scheme 11. 3-ethylester indole to gramine 

1) PhMe, 100 °C
2) H2O

N

CO2Et

SO2Ph

R1

AlMe2(NMe2)2

N

SO2Ph

R1

O

N(Me)2 1) DIBAL-H
PhMe, 50 °C

2) H3O+
N

SO2Ph

R1

N(Me)2

A B C
indole-3-carboxamide  
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Table 4. Yield of 3-ethylesterindoles to gramines with ring A substitutions 

 

A R1 Yield B Yield C 

H 77 94 

5-MeO 73 87 

6-MeO 64 90 

5-Br 61 65 

 

This leads us to investigation of what has been done previously with gramines.  In the mid-1940s 

various groups were researching the conversion of gramine to racemic tryptophan.32 

Scheme 12. Synthesis of quaternary ammonium salt to racemic tryptophan 
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1,4 dioxane
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

-2CH2CH3

H2O
reflux

acetyltryptophan



Alkaline Hydrolysis

Saponification

.   

We wondered if it would be possible to make optically-pure tryptophan through a chiral phase 

transfer catalyst reaction using organo-catalyst.  We thought this would be interesting chemistry 

and would be likely to find industrial use, as tryptophans are important building blocks for 
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indoles a novel class of compounds. The Hossain group developed the following reaction to 

make tryptophan. 

Scheme 13. Initial screening to make optically active protected tryptophan 

 

N
H

NMe2

CH2Cl2
rt 0.5 h

CH3I
1 eq.

aq NaOH (20 eq),

N
O

O

Ph

Ph

1 eq.

PTC 20 mol%
CH2Cl2, rt N

H

O

O

N
Ph

Ph  

At this point we began screening for a catalyst that would give high enantiomeric excess (%ee).  

The catalysts that were screened are shown below.  All of the catalysts are derived from the 3rd 

generation of cinchonidine catalysts.31 
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Figure 23. Phase-transfer catalysts that were screened 

 

From this screening process found that O-Allyl-N-Anthrcenyl- bromide gave the highest % ee.  

The next thing that needed to be screened was the quaternization reagents.  Quaternization 

reagents screened are shown below.  Note that it is important for the reaction that the 

substrate is as soluble in the organic layer as possible; this forces the reaction to proceed via the 

phase transfer catalyst.33 
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R = CH3

OCF3

1) R-Br, solvent, 25 °C

Rxn time:       18h                6h                 5min

Note: No N-protecting group needed
to induce hydrophobicity
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CH3
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H

N
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R
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Figure 24. Screening of quaternization reagents 

 

Next the amount of base in the aqueous layer was varied and the results monitored.  Results are 

shown in the table below. 

Scheme 14. Synthesis of optically active tryptophan screening various bases and concentration 

of bases 
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Table 5. Screening of optically active tryptophan with bases at varying concentrations 

 

Run Conc(1a)[c] 
% Base 

Time (h) 
% 

Yield[d] 
% ee[e] 

(% aq) 

1 0.1 10% NaOH > 24 18 50 

2 0.1 50% NaOH 8 47 75 

3[b] 0.01 50% NaOH 16 42 71 

4 0.1 10% KOH 5 65 65 

5 0.1 45% KOH 2 >95 84 

6 0.1 10% KOH 2 97 80 

7 0.1 10% CsOH 3 18 59 

8 0.1 10% Ba(OH)2 13 16 46 

9 0.1 25% K2CO3 N.R.[f] 0 0 

Next, the catalyst loading was varied and monitored as shown in the reaction below; the results 

are shown in the table.33 

Scheme 15. Screening of amount of phase transfer catalyst that was used 
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Table 6. Screening of various amounts of phase-transfer catalyst loading  

 

Entry 
Substrate 

Conc. 
Base 

Catalyst 
Loading 

Reaction 
Time (h) 

% Yielda % eeb 

1 0.1 NaOH 0.2 11 18 59 

2     0.6 4 47 81 

3   KOH 0.2 22 9 59 

4     0.6 2 97 80 

5 0.5   0.6 1 99 75 

6 0.1 CsOH•H2O 0.2 3 39 53 

7     0.6 3 81 71 

8   Ba(OH)2•8H2O 0.2 13 16 49 

9     0.6 3 36 67 

10 0.25 K2CO3 0.6 2 0 0 

Following the same screening process we screened various organic solvents.    

Scheme 16. Solvent screening to make optically active tryptophans 
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Table 7. Solvent screening to make optically active tryptophan 

 

Entry Solvent  Time (h) 
% 

Yield[b] 
% ee[c] 

1 CH2Cl2 1 99 75 

2 1,4-Dioxane 2 95 84 

3 THF 4 85 6 

4 PhCH3 3 62 71 

The next thing we wanted to monitor was the effect of temperature on the reaction.  

Scheme 17. Monitoring the effect of temperature when making optically active tryptophan 

 

 

Table 8. Monitoring the effect of temperature depression on the synthesis of optically active 
tryptophan 

 

Entry  Temp C 
Rxn time 

(hrs) % Yield % ee 

1 25 1 86 75 

2 -30 8 80 84 

3 -78 15 81 83 
Next we wanted to monitor the effect the number of equivalents of water had on the synthesis 

of optically active tryptophan. 
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Scheme 18. Monitoring the effect of number of equivalents of water on the synthesis of 
optically active tryptophan 

 

 

Table 9. Monitoring the effect of number of equivalents of water on the synthesis of optically 
active tryptophan 

 

Entry Water (equiv) Time (h) 
% 

Yield[a] 
% ee[b] 

1 100 8 80 85 

2 6 18 80 92 

3 3 19 >95 83 

 

Summary of the screening shows that O-allyl-N-anthrcenyl-cinchonadinium bromide is the best 

catalyst, 4-trifluoromethoxybenzyl bromide is the best quaternarization reagent, KOH best 

yielding base, a minimum 6 eq. water for optimal %ee, dioxane is the best solvent in regards to 

%ee, and  dichloromethane is the best solvent in terms of yield.33 
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3. OBJECTIVE 

3.1. Optically active tryptophan derivatives  

The primary goal was to develop a method to asymmetrically synthesize tryptophan from 

gramines in a fashion that was tolerant to variations on the 4, 5, 6 and 7 position of the indole 

ring.  To make this objective an accomplished goal, we applied this procedure to 5-bromo, 5-

methoxy and 6-methoxy gramines to make the corresponding tryptophan derivatives.   

3.2. Using optically active tryptophan to synthesize natural product 

tryprostatin A and B 

After this goal was accomplished, our next goal was to develop a method that could utilize this 

asymmetric reaction yielding enantiopure tryptophans into a total synthesis of a natural 

product.  We decided our targets would be tryprostatin A and B.  These natural products have 

low natural abundance, lengthy synthesis, and the synthesis utilizes a protected L-tryptophan as 

starting material.   

3.3. Utilizing enantio-enriched tryptophan and tryprostatin synthesis to 

make derivatives of tryprostatin  

In the big picture we set out to develop a method that would asymmetrically synthesize 

tryptophan and derivatives of tryptophan.   We then utilized this newly developed method to 

streamline the synthesis of tryprostatin B and tryprostatin A.  We believe we have developed a 

procedure that is tolerant to ring-A gramine analogs and reaches far beyond the scope of 

previous syntheses because of this tolerance to ring-A substitution possibilities.  Lastly, although 

it was not a goal we initially set out to accomplish, we have also developed synthesis that very 

possibly has the potential to give an entry way into making C2-derivatized tryptophan.   
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4. RESULTS 

4.1. Synthesis of optically active tryptophan and three analogs 

We wanted to evaluate how tolerant the phase transfer catalyzed asymmetric reaction was to 

various substitution patterns on the indole ring.  HPLC was used to determine enantiomeric 

excess mobile phase was 6% Isopropyl alcohol 94 % Hexane at a flow rate of 1 mL/min using a 

Chiralcel OD column.34 

Scheme 19. Synthesis of 5 and 6 indole ring position tryptophan analogs 
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Table 10. Synthesis of 5 and 6 indole ring position tryptophan analogs 

 

Tryptophan  %ee 

R1 Yield %ee 
H 80 92 

5-MeO 75 91 
6-MeO 65 95 

5-Br 73 90 

4.2. Utilization of optically active tryptophan to synthesis natural 

product tryprostatin B 

From here we looked for an application of our newly developed chiral phase transfer catalyst 

reaction.  We proposed that we use this new reaction and apply it to the synthesis of 

tryprostatin and analogs of the parent structure.  Shown below is our proposed synthesis.   
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Scheme 20. Initial proposed synthesis of tryprostatin B 
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At this point we would have the shortest most concise synthesis of Tryprostatin B.  Our objective 

at this point was to shorten the synthesis making it viable for commercial applications and 

improve on the anticancer activity by making analogs. The whole time we had to keep in mind 

that the reaction scheme has to be analog tolerant.   

Like other anti-cancer microtubule inhibitors such as the vinka alkaloids including the vinblastine 

family, Tryprostatin has very low abundance in nature.  We chose to target the tryprostatin 

family of compounds due to their simpler synthesis when compared to the Vinblastine family of 

compounds.   
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Figure 25. Tryprostatin A and B 

 

4.3. Previous Tryprostatin syntheses 

The first synthesis of Tryprostatin B was completed by the Danishefsky’s group in 1996 using the 

following procedure.3a 
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Scheme 21. Danishefsky’s 1996 Tryprostatin B synthesis 
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Five years later the Cook group synthesized Tryprostatin A in 2002 and followed that by 

synthesizing a number of enantiomers, diastereomers and other substituted analogs in 2008 

using very similar procedures developed in 2002. In 2008 they substituted in unnatural amino 

acids or other substituted starting materials.  They achieved the synthesis of these new 

compounds using the reaction scheme shown below. 1d, 2 
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Scheme 22. Cook’s 2002 Tryprostatin B synthesis.  Further developed in 2008 to include 
diastereomers, enantiomers and a number of derivatives 
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One of the drawbacks to Cook’s synthesis is that it uses triphosgene to make the Schöllkopf 

Chiral Auxiliary.  Triphosgene is a chemical that is not preferred to be used by most chemists due 

to its decomposition to phosgene, which gained infamy due to its use as a chemical weapon 

during World War 1.  Therefore we desired to skip the use of triphosgene altogether. 

Scheme 23. Synthesis of Schöllkopf Chiral Auxiliary 
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In the synthesis they also have to Boc protect skatole shown below which is not reported as a 

step in the synthesis.  There are very few substituted skatoles commercially available to make 

Tryprostatin derivatives with. 
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Scheme 24. Boc protection of skatole 
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One of the more current syntheses from 2010 is shown in the synthetic scheme shown below.5 

Scheme 25. Fukuyama’s 2010 Tryprostatin A synthesis 
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This synthesis has 11 steps a 30% yield and utilizes a toxic tin coupling reagent and triphosgene.   

4.4. Our proposed synthesis 

We proceeded with our proposed procedure which is complementary to the Cook group 

synthesis.    

Scheme 26. Our proposed stream-lined tryprostatin B synthesis 
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This procedure was proceeding smoothly until the lithaiation isoprenyl bromination reaction, at 

this point it appeared that we isolated a compound that had the isoprenylation on the amino 

acids α-carbon.  
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Scheme 27. Isoprenylation at the alpha carbon position instead of the C-2 position 

 

 

Two compounds could have been expected.  We desired to identify proton NMR peaks for the 

C2 isoprenylated compound include the α-carbon’s proton at for one proton at 4.35 ppm (Figure 

shown above indicated as H), and the carbon at 14 ppm(indicated by CH2).  Unfortunately we 

found the α-carbon had been isoprenylated, this was determined by three signatures that 

indicated α-carbon isoprenylation: 1) lack of the  α-carbon’s proton, 2) two sets of 

diastereotopic protons and 3) a carbon peak at about 36 ppm.  Points are indicated by 1 2 and 3 

in the diagram.  



54 
 

This alkylation is consistent with O’Donnell’s work making unnatural amino acids. 19, 35 This α-

carbon isoprenylation was not seen in Cook’s procedure due to the difference in acidity of the 

proton in the Schöllkopf Chiral Auxiliary protected indole, compared to our very differently 

protected indole.  We think that resonance stability and migration of electrons to stabilizes the 

anion shown below. 
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Figure 26. Comparison of resonance stabilization between two proposed transition states 

 

Compared to Cook’s compound which cannot undergo this type of resonance stabilization due 

difference in the chosen protecting group.  Cook’s compound is shown in Figure 27.   
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Figure 27. Cook’s Schöllkopf Chiral Auxiliary protected indole 

 

4.5. Alternative proposed synthesis 

After this disappointing finding, we decided that we must take a new approach to adding the 

isoprenyl group to the C-2 position of the indole ring.  We decided we would attempt to put the 

isoprenyl group on before the phase transfer reaction following the outlined procedure below. 

Scheme 28. Alternative proposed synthesis of tryprostatin B 

 

 

  



56 
 

This procedure starts with the boc protection of gramine to protect the indolic nitrogen from 

the lithiating agent.  This reaction went as expected in over 90% yield.   

Scheme 29. Boc protection of gramine  

 

The next reaction had some challenges; we proposed the reaction would work as depicted in 

equation 30. 

Scheme 30. Proposed C-2 isoprenylation 
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What we had actually saw was that the isoprenyl bromide added to the graminic nitrogen 

instead of the indolic C-2 position as expected, this is depicted below. 
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Scheme 31. Actual isoprenylation to make isoprenyl quaternary ammonium salt 
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N
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After identifying this compound we wondered if it would be possible to use the isoprenyled 

nitrogen salt as our substrate for the phase transfer catalysis reaction.  This idea is shown in 

equation 32. 

Scheme 32. Utilization of isoprenyl quaternary ammonium salt to synthesis protected 
tryptophan 

 

N

N

Boc
N
H

N
Ph

Ph

O

OGlycinate 45% KOH
R,R cat 0.2eq, rt
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95% yield
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The identification of this protected tryptophan was exciting for us because it showed that we 

could use the isoprenyled nitrogen salt to carry out the phase transfer catalysis reaction.  At this 

point we decided that we should try to put two isoprenyl groups on the substrate and then try 

the phase transfer reaction as indicated below.  Important to point out at this we now had a 

procedure that used three steps to get to the “key” 2-isoprenyimineprtotectedt-

butylestertryptophan.  
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Scheme 33. Synthesis of C-2 isoprenylated and isoprenyl quaternary ammonium salt, which was 
able to undergo the phase-transfer catalyst reaction to make C-2 isoprenylated protected 
tryptophan 

 

 

Due to the magnitude of our entry to the most important intermediate in our pathway we later 

obtained a crystal structure of the diisopropyl boc protected gramine salt.   

Crystal Structure data  
CCDC 922382 
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Figure 28. Crystal structure of C-2 isoprenylated isoprenyl quaternary ammonium salt 

 

Blocks grown using slow diffusion method: Ethyl Acetate/Hexane 
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Analyzed by Xray diffraction at UCSD with Arnie Rheingold 

Unit Cell Dimensions:  a=8.5784(2); b=12.9668(3); c=13.5267(3)Å 
                                        α=109.266(2)° β=103.084(2)° γ=107.596(2)° 

Triclinic lattice, P1 space group, Z = 2 molecules per unit cell. R1 = 4.39%  

 

Contact: Matthew Huisman,  mhuisman@uwm.edu 
Authors: Matthew M. Huisman, Sarah Oehm M. Mahmun Hossain, Arnold L. Rheingold  
Table 1 Crystal data and structure refinement for Hossain01_0m 
Identification code        Hossain01_0m 
Empirical formula        C26H39N2O2Br 
Formula weight        491.50 
Temperature/K        273.15 
Crystal system        triclinic 
Space group        P1 
a/Å        8.5784(2) 
b/Å        12.9668(3) 
c/Å        13.5267(3) 
α/°        109.266(2) 
β/°        103.084(2) 
γ/°        107.596(2) 
Volume/Å3        1261.86(5) 
Z        2 
ρcalcmg/mm3        1.294 
m/mm 1        1.653 
F(000)        520.0 
Crystal size/mm3        0.3 × 0.24 × 0.18 
2Θ range for data collection        3.42 to 63.92° 
Index ranges        -12 ≤ h ≤ 12, -19 ≤ k ≤ 19, -20 ≤ l ≤ 20 
Reflections collected        23123 
Independent reflections        16463[R(int) = 0.0238] 
Data/restraints/parameters        16463/3/577 
Goodness-of-fit on F2        0.917 
Final R indexes [I>=2σ (I)]        R1 = 0.0440, wR2 = 0.1103 
Final R indexes [all data]        R1 = 0.0729, wR2 = 0.1451 
Largest diff. peak/hole / e Å-3        0.94/-0.52 
Flack parameter        0.21(2) 
 
chemical_name_systematic : N-((1-(tert-butoxycarbonyl)-2-(3-methylbut-2-en-1-yl)-1H-indol-3-
yl)methyl)-N,N,3-trimethylbut-e-en-1 aminium bromide  
 
_chemical_name_common             Compound synonym: boc protected 2 isoprenyl N isoprenyl 
gramine salt 
  

data_hossain1  
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4.6. Monitoring the effectiveness of the C-2 isoprenyl quaternary 

ammonium bromide salt  

We questioned the effectiveness of the phase transfer reaction with an altered substrate.  We 

compared our reaction to similar reactions we have done in the past screening dichloromethane 

against 1,4 dioxane using different concentrations of KOH to push this reaction.   

Scheme 34. Comparison between dichloromethane and dioxane in 10 and 45% aq. KOH 

 

 

Results indicated in table 11. 

Table 11. Comparison between dichloromethane and dioxane in 10 and 45% aq. KOH  

 

Screening comparison between CH2Cl2 and 1,4 dioxane  

Rxn # % KOH in water Solvent  Time in hours 
% 

Conversion % ee 

1 10% CH2Cl2  18 Trace   ND  

2 10% 
1,4 

Dioxane  18 Trace  ND  

3 45% CH2Cl2  18 5 44 

4 45% 
1,4 

Dioxane  18 95 42 
Percent conversion was determined by NMR monitoring the disappearance of the α-carbons 

protons on the Glycinate at 4.1 ppm and comparing it to the formation of the α-carbons proton 
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at 4.3 ppm.   Percent ee was determined by HPLC using Chiralcel OD and Hexane/IPA mobile 

phase. 

 

These results indicated that diluted solutions of KOH yielded little product, but when using high 

concentrations of KOH in water the reaction’s percent conversion was greatly improved.    

Next we wanted to observe the effect of solvent on the percent conversion and percent ee, this 

led us to solvent screening of the reaction.   

Scheme 35. Solvent screening of phase-transfer catalyst 

 

 

Table 12. Solvent screening of phase-transfer catalyst 

 

Solvent Screening  

Rxn # % KOH in water Solvent  Time in hours 
% 

Conversion % ee 

1 45% THF 18 95 3 

2 45% Ether 18 7 30 

3 45% Toluene 18 80 63 

4 45% EtOAc 18 10 37 
Percent conversion determined by NMR, percent ee determined by HPLC using Chiralcel OD and 

Hexane/IPA mobile phase. 
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We then screened the equivalents of water that were used in the reaction. 

Scheme 36. Screening the effect of equivalents of water  

 

 

Table 13. Screening the effect of equivalents of water 

 

Equivalents of Water 

Rxn # Water Equiv Time (hr) % Conversion % ee 

1 3 22 79 29 

2 6 22 51 26 

3 25 22 55 72 

4 100 22 54 62 
Next we wanted to observe the effect on percent yield and percent ee varying catalyst loading 

and temperature would have.   

Scheme 37. Screening temperature and catalyst loading 
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Table 14. Screening temperature and catalyst loading 

 

Temperature Screening and Catalyst Loading 

Rxn # C eq. cat  % Conversion % ee 

1 rt 0.2 100 42 

2 rt 0.6 100 24 

3 0 0.2 100 31 

4 0 0.6 81 52 

5 rt 0.2 100 34 

6 rt 0.1 100 41 

7 rt 0.05 100 79 

8 rt 0.025 100 47 

*9 rt 0.2 90 18 

*Solid KOH 
    

4.7. Attempts to synthesis Tryprostatin B 

We then began pursuing the synthesis of tryprostatin using the procedure below. 
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Scheme 38. Proposed synthesis of tryprostatin B 

 

 

We desired to accomplish three goals in our synthesis: 1) to make the synthesis of tryprostatin 

highly stream-lined 2) make the synthesis derivative tolerant and 3) make the synthesis more 

environmentally benign. 

After producing the free amine we approached a variety of methods to couple the Fmoc-L-Pro 

to the Trp amine.  One procedure we decided to pursue was Cook’s procedure using the Fmoc-

LPro-Cl.36 Shown in Equation 39. 
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Scheme 39. Dipeptide synthesis using proline acid chloride 
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C40H45N3O5
Mol. Wt.: 647.8  

Another possible synthetic route to the desired product was to use a peptide coupling reagent 

such as PyBOP and couple the peptides together.  We found that the peptide coupling reaction 

was our preferred method due to thionyl chlorides aggressive nature towards the equipment, 

especially the Tygon tubing. 
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Scheme 40. Dipeptide synthesis using peptide coupling reagent 

 

 

After synthesis of the protected 2-isoprenyltryptophan fmoc proline was completed, it was 

deprotected using a procedure modeled after the one described in 1d for the deprotection of 

fmoc.   
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Scheme 41. Deprotection of Fmoc from dipeptide 

 

 

This was successful in and the shown product was purified using column chromatography.  This 

was reattempted using the procedure for fmoc deprotection utilizing piperidine instead of 

diethyl amine.  This procedure formed the fmoc deprotection product as a solid, making it easier 

to purify, via filtration.37 

Scheme 42. Alternative method of Fmoc deprotection 

 

 

After this synthesis of the tbutylester2-isoprenyltryptophanproline dipeptide was completed we 

evaluated a number of ways to close the diketopiperizine (DKP) ring. Initially we attempted the 
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ring closing diketopiperzine formation following the method used by the Cook1d group which 

had successfully closed the ethyl ester of this compound.  This reaction returned a burn charred 

material, without any promising NMR peaks to indicate the closing of the ring, such as the loss 

of the t-butyl protecting group in the proton or the change of the ester to the amide in the 

carbon NMR.   

Scheme 43. First attempt to close DKP ring 

 

 

Next we tried a slightly altered version using a more polar dimethylformide (DMF) solvent 37 

utilizing the polarity of the solvent to help stabilize the partial positive carbonyl carbon, in turn 

making it more susceptible to nucleophilic attack.  Unfortunately this returned the starting 

material after the DMF was laboriously removed.   

At this point we became concerned that the tert-butyl group may require much more energy to 

overcome the larger activation energy and thus act as a leaving group.   
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Next we tried using microwave synthesis to get the ring to close in a 20% piperidine/DMF 

mixture in the microwave.37  Reaction deprotected the fmoc protecting group but unfortunately 

did not close the DKP ring. 

Scheme 44. Failed DKP ring closure without deprotecting Fmoc dipeptide 

 

 

We then made an effort to try and remove the t-butyl group using lithium hydroxide using a 

similar procedure that had been reported to work for different ester deprotection reactions. 

This reaction either did not yield well or the material got stuck in the water layer.  Acidification 

of this material did not result in it being organic soluble.  Water was removed and the material 

did not appear to be there either.  
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Scheme 45. Attempt to remove t-butyl using lithium hydroxide 

 

 

After this attempt we decided to pursue the deprotected t-butyl material using a different 

approach.38 This procedure used a refluxing 6 N hydrochloric acid (HCl) solution to remove the t-

butyl group.  This resulted in what appeared to be an acid charred material.  This reaction 

mixture showed little promise via proton NMR due to a strong t-butyl peak.   

Scheme 46. Attempt to remove t-butyl group using 6N HCl at reflux 

 

 

Next we attempted to deprotect the t-butyl peak using a 5N HCl solution at room temperature 

in chloroform.39 This crude reaction mixture also showed a strong t-butyl ester presence.   
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Scheme 47. Attempt to remove t-butyl using 5N HCl at room temp 

 

 

 

Next we tried to deprotect the t-butyl group by using phosphoric acid in dichloromethane.30 The 

proton NMR spectrum of this material indicated that the stubborn t-butyl group was still 

present.   

Scheme 48. Attempt to remove t-butyl group using phosphoric acid at room temp 
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Convinced deprotection of the t-butyl group was not going be an effective process to achieve 

the DKP cyclization.  We began pursuing other routes to close the diketopiperizing ring.  After 

many frustrating failures at attempts to close the DKP ring we decided that it may be 

advantageous to use a model reaction to find a procedure that was capable of cyclizing the DKP 

ring.  This route was pursued using a model reaction of the glycine Schiff base and Fmoc 

protected proline.   

4.8. DKP ring closure by microwave in water 

To begin this we synthesized the glycine Schiff on multigram scale.40 

Scheme 49. Model for DKP ring closure 

 

 

After we found a procedure that was capable of closing the DKP ring we successfully applied this 

procedure to the synthesis of tryprostatin B.   

Scheme 50. Total synthesis tryprostatin B 
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After completion of screening, synthesis of TPS A was pursued via the analogous scheme. 
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Scheme 51. Total synthesis tryprostatin A 

 

 

 

Now that we have shown the synthesis of tryprostatins is possible through our unpresidented 

procedure we would like to compare their activity against the past IC50 screenings to insure that 
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our synthesized compounds behave as the naturally isolated material.  In the past evaluation of 

tryprostatin has been done using percent cell survival compared to the phase of the cells that 

survived.1e  Turbimetric assays have been used to determine the stabilization or destabilization 

of microtubules.  Cell titer 96 AQueous from Promega has been used by the Cook group to 

measure the survival of cells in a solution of tryprostatin. 1d This microtiter plate has a MTS like 

compound in each of the wells this MTS is reduced by living cells to Formazan which has a 

purple/violet color to it; this color is used to determine the amount of living cells and lack of 

color to determine the amount of dead cells.   

OCH2CO2H

N N

N
N SO3

-

HN
S

CH3

H3C

NADPH
NADH

OCH2CO2H

N N

N
N SO3

-
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S
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H3C

H

MTS tetrazolium
(Owen's reagent)

Formazan 
Absorbance at 490nm  

Figure 29. Reducing agents in live cells change Owen's reagent into purple dye 

 

Osada’s group presented data comparing a control, various compounds and tryprostatin A and B 

at 25 and 50 µM concentrations to observe the number of living cells after they were incubated 

and grown for 24 hours.  They also observed the amount of DNA in the cells to predict what 

phase of the cell cycle the cells were in.1a 1b, 1c 
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Table 15. Shows chromosome content and percent cell survival, indicating tryprostatin A inhibits 
cell progression after chromosomes double in cell division  

 

Distribution of DNA content in asynchronous culture of 3Y1 cells treated with various 

drugs 

    DNA content    

Drug  Concentration (microM) 2C 

2C-

4C 4C Cell number (%) 

Control  0 65.4 12.3 22.3 161.8 

Stauroporine  0.02 76.9 8.5 11.1 143.1 

Colchicine  1 9.4 11.5 65.9 69.4 

TPS A 25 29.2 16.2 49.4 89.6 

  50 9 15.2 70.5 68.7 

TPS B 25 28.6 19.1 24.8 57.4 

  50 31.8 20.4 15.2 57.8 

 

Exponentially growing 3Y1 cells were treated with various compounds for 24 h and the 

distribution of DNA content and relative cell numbers were determined.  The cell number is the 

ratio of the number of cells at 24 h to that at 0 h expressed as a percentage.We plan to measure 

cell toxicity using a similar screening process. 

We are interested to see if it would be possible to make the diisoprenylgramine salt apply the 

phase-transfer procedure to a closed DKP ring.  Concerns with that procedure include the 
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glycine’s α-carbons proton may have reduced acidity than the starting material.  The acidity may 

be increased by adding an   ester group as shown below.   

Scheme 52. Proposed alternative method to tryprostatins 
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5. CONCLUSION 

5.1. Importance of tryptophan and asymmetric synthesis in medicinal 

chemistry 

Tryptophan is a natural amino acid, famous for making people tired after thanksgiving, 

although that is myth. One of the most interesting things about tryptophan is its unique 

side chain. Like all amino acids, tryptophan has a carboxylic acid connected to an alpha 

carbon connected to an amine. From the twenty natural amino acids organisms can make 

a wide assortment of peptides and proteins.  

The nitrogen-containing heterocycle that makes up the tryptophan side chain attached to 

its alpha carbon is called an indole. Indoles make up a large percent of neurotransmitters, 

prescription and recreational drugs. Due to unique characteristics of indoles, tryptophan 

derivatives have been at the center of extensive research for the last century. 

Furthermore in the area of medicinal chemistry, the discovery that in many drugs one 

enantiomer shows high biological activity compared to the low biological activity or even 

harmful effects of its mirror image has sparked a great deal of interest in asymmetric 

synthesis. A classic example of the importance of enantiomeric selectivity is 

demonstrated in thalidomide. The R-isomer is active against morning sickness, while its 

S-enantiomer causes severe birth defects.  The unfortunate administration of its racemic 

form caused tragic limb malformation in over ten thousand babies before it was pulled 

from the market.  Later it was discovered that the R-isomer racemizes upon metabolism 

and was not suitable during pregnancy.41 Similarly, naproxen, a common pain reliever 

and anti-inflammatory is sold commercially as the optically pure s-enantiomer, as its 
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mirror image causes liver damage.42  The interest to synthesize enantio-pure tryptophan 

building blocks is a well-established concern for discovery of new medicines.  

 

5.2. Our initial goals: 

We set out to develop an asymmetric procedure that could make optically active 

tryptophans. 

We were able to synthesize four ring-A substituted tryptophan derivatives in more than 90%ee.   

Next we desired to find an application of our new synthesis.  The 2-isoprenyl tryptophan 

moiety is an essential intermediate for the formation of tryprostatins.  This intermediate 

has been present as an intermediate in every known synthesis of tryprostatins to date.  

The protecting groups vary from synthesis to synthesis, but the 2-isoprenyl tryptophan 

remains the most crucial synthetic intermediate.   

 

In the first synthesis of tryprostatin3a Danishefsky’s group used tributyl tin to couple 

boron dichloride-3-methyl-1-butene with an amino protected tryptophan to the indolic 

nitrogen, which then relied on a rearrangement to form the protected 2-isoprenyl 

tryptophan.  

Alternatively in Cook’s group synthesis4 the isoprenyl group was added by using the 

Schöllkopf chiral auxiliary followed by LDA in THF and adding isoprenyl bromide, 

resulting in a protected 2-isoprenyl tryptophan.   

Fukuyama’s group became interested in the synthesis due to their history of using radical 

chemistry to make indole rings.5  Fukuyama’s group built the indole ring and then 
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utilized the resulting protected tryptophan to make tryprostatin.  The synthesis was 

achieved in ten steps in 39 percent yield.  

 

Our next and most challenging goal was removing steps in the already known procedures 

of the established syntheses.  We were able to reduce number of steps to six compared to 

the most current synthesis which is ten steps.  

We attempted to achieve the 2-isoprenyl tryptophan using a similar approach to the Cook 

group approach, by making the protected tryptophan and then attempting the alkylation 

using a lithiating reagent. 

 

The major isolated product had the isoprenyl group on the alpha carbon instead of the 2-

position of the indole ring.  To overcome this hurdle, we attempted to put the isoprenyl 

group on the C2-position using n-butyl lithium and isoprenyl bromide before doing the 

phase-transfer reaction to make tryptophan.  When attempting this synthesis with one 

equivalent of isoprenyl bromide only the graminic isoprenyl ammonium bromide was 

formed.  After this attempt we tried this with 2.25 eq of n-butyl lithium and an excess of 

isoprenyl bromide, we were able to isolate the 2-isoprenyl quaternary ammonium 

graminic nitrogen bromide salt.  This molecule was able to proceed through the phase-

transfer reaction as expected to make C2-isoprenyl tryptophan but with low enantiomeric 

excess.   
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Our procedure is one step shorter than Danishefsky’s, one step shorter than Cook’s 

(without including the synthesis of Schöllkopf chiral auxiliary which is three steps) and 

three steps shorter than Fukuyama’s ten step synthesis which utilizes V-70 as a radical 

initiator.  Danishefsky’s procedure is seven steps and has not been shown to work for the 

6-methoxy indole, which leads to tryprostatin A. 

 

This synthesis also starts from L-tryptophan.  It is well known that 6-methoxy tryptophan 

is difficult to obtain and very expensive. Economics is likely the reason this procedure 

has not been used to make tryprostatin A. To further support this claim, all the known 

tryprostatin A syntheses start from smaller building blocks than tryptophan. Although 

Danishefsky's synthesis is elegant in its simplicity, what it lacks is tolerance to ring-A 

substitution, which seriously limits its synthetic scope. 

5.3. Utilization asymmetric synthesis to make natural products 

tryprostatin A and B 

We then moved on and attempted to synthesize two known natural products, tryprostatins 

A and B.  These goals were also accomplished. At this point we are able to obtain 

enatiomeric excesses in the 50-60 % range.  Although this is not as high as we have 

reported for the phase-transfer catalyzed reactions without the isoprenyl group on the 2 

position of the indole ring, it does leave quite a bit of room for improvement.  The 

problem may be that the 2-isoprenyl group acts as a steric blocker and limits the amount 

of enantioselective alkylation.  It has been reported that sterically congested substrates 

yield lower %ee than their uncongested counterparts. Our unprecedented PTC still may 

have the potential to yield high enantiomeric excess with further screening during the 

crucial chiral center forming step.  
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5.4. The future plans of this project: 

In the future, the Hossain group is expected to publish the shortest known synthesis of 

tryprostatins A and B.  Furthermore, they are expected to use the method developed in 

our lab to make a variety of tryprostatins with ring-A substitutions and screen them in 

MTT assays to test cell viability.  If any of the newly synthesized compounds have higher 

cell toxicity than the previously known tryprostatins, the compounds will be tested 

further, along the lines of mechanism of action, target protein interaction, concentration 

of toxicity and selectivity for cancer cells.  Through Milwaukee Institute Drug Discovery 

(MIDD) and Open Innovation Drug Design (OIDD) Lilly has expressed interest in 

screening the new tryprostatin targets.    

We have shown that we can make ring-A substituted tryprostatins using our 

unprecedented shortest known synthesis.  We have demonstrated that this synthesis is 

shorter and more tolerant than any of its predecessors.  

It would be an effective use of time and energy to synthesize the material in a non-

asymmetric fashion then separate each diastereomer and measure its biological activity.  

Another interesting idea would be to make the 2-isoprenyl salt and see if it would be 

possible to couple the diketopiperizine ring directly.  

Lastly, it is important to identify the problem we are having with the asymmetry of this 

reaction. One plausible reason that the 2-isoprenyl gramine salt may not undergo the 

phase-transfer reaction as well as the 4-trifluoromethoxybenzyl salt may be caused 

simply by the added steric hindrance of the C2-isoprenyl on the indole ring.   

A good way to clarify if the 2-isoprenyl group were acting as a steric blocker would be to 

make the same isoprenyl ammonium salt without the isoprenyl indole C2-position and 

see if the phase-transfer reaction yields a high enantiomers excess.  
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6. EXPERIMENTAL SECTION 

General Procedure  

All procedures were performed under a dry nitrogen atmosphere using standard Schlenk 

techniques unless otherwise noted all reaction vessels were flame dried under vacuum and filled 

with nitrogen prior to use.  Reagents were purchased from Aldrich Chemicals and used as is.  

Flash chromatography was performed using EM Science F254 silica gel 60.  N-

(diphenylmethylene) glycine tert-butyl ester, sodium hydroxide, phase transfer catalysts and 

anhydrous sodium sulfate were purchased from Aldrich.  The chemical shifts (δ) are expressed in 

ppm relative to tetramethylsilane. CDCl3 was used as the solvent.  Previously 1H NMR or GC 

identified reported compounds.  All new compounds were additionally characterized by 1H 

NMR, 13C NMR and GCMS.   

Hexanes a mixture of isomers was purchased Aldrich in 200 L drums this solvent was similar to 

petroleum ether in Purification of Laboratory Chemicals 2nd Edition Perrin page 375.  Hexane 4 L 

was stirred over 75 mL of conc. H2SO4 for 24 to 48 hours.  500 mL of this was put into a 1 L 

separatory funnel along with 50 mL of 10 % H2SO4 (10 mL H2SO4 90 mL water) and 50 mL of 1% 

KnMnO4 (1 g KMnO4 in 99 mL of water 0.0063 M) and shaken.  (To remove unsaturated, 

including aromatic, hydrocarbons) until permanganate color persists. Wash with water (50 mL), 

aq. Na2CO3 (sat. 50 mL) and again with water (50 mL).  Dried over Na2SO4, and distilled over 

phosphorus pentoxide.     

5.2. Instrumentation 

All 1H (300 MHz), and 13C (75.5 MHz) NMRs were performed with a Burker 300 and samples 

dissolve in CDCl3 unless otherwise noted.  Enantioselectivity was obtained via chiral HPLC using a 
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Waters setup including an Inline Degasser AF, 2998 Photodiode Array Detector, 1525 Binary 

HPLC Pump equipped with Breeze Software.  This was equipped with a Chiralcel OD (column no. 

OD00CE-FF071) column using hexane and isopropanol at 254nm and a broad range channel 

from 200-600nm column temperature was room temperature flow rate was 1 mL/min unless 

otherwise stated.   HPLC grade solvents were used in all HPLC analysis.   

Synthetic Procedure for Amine Ester Protected Tryptophan  

Scheme 53. Synthesis of protected tryptophan 

 

 

 

Gramine (.15 g 0.862 mmol 1 eq) was dissolved in a solution of dichloromethane (6 mL) 4-

(Trifloromethoxy)-benzyl bromide (0.15 mL 0.938 mmol 1.1 eq) was added forming a solid 
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precipitate.   To this mixture O-Allyl-N-(9-anthracenyl-methyl)cinchonidinium bromide(0.100 g 

0.165 mmol 0.193 eq), N-(Diphenylmethylene)-glycine tert-butyl ester( 0.265 g 0.897 mmol 1.05 

eq), and 45% potassium hydroxide in water (2 mL) was added to the mixture and allowed to stir 

until the solution became clear and two layers could be seen.  Layers were separated and the 

organic layer was washed three times with water then dried over sodium sulfate.  Then 

compound was purified by column chromatography using 10% ethyl acetate and 90% pentane.   

Synthetic Procedure for N Boc Protected Tryptophan  

Scheme 54. Boc protection of tryptophan 

 

 

Tryptophan N-diphenylmethylamine t-buytyl ester ( 0.745g 1.755 mmol 1 eq) was dissolved in 

acetonitrile a catalytic amount of DMAP (0.043 g 0.35 mmol 0.2 eq) was added along with di 

tert-butyl dicarbonate ( 0.575g 02.63 mmol 1.5 eq) and stirred for 24 hours.  Product was 

purified using column chromatography with 10% ethyl acetate and 90% pentane.   

Synthetic procedure for N Boc Gramine 

Scheme 55. Boc protection of gramine 
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This reaction was modeled after a very similar reaction discussed in Tetrahedron 55 (1999) 

10989-11000, compound 8 to 9.  A solution of gramine (3.7 g 21 mmol 1 eq.) in THF (90 mL) was 

made.  This solution was put into an addition funnel on a 250 mL three necked reaction vessel in 

an ice water cooling bath and added dropwise to a stirred solution of di-t-butyl dicarbonate 

(5.50 g 25 mmol 1.2 eq.), 4-(dimethylamino)pyridine (257 mg, 2.1 mmol 0.1 eq.), triethylamine 

(3.5 mL, 2.5 mmol, 0.12 eq.) in THF (50 mL).  After stirring for 1.5 hours at room temperature, 

water (50) mL was added to the reaction mixture and the solvent was removed via roto vap.  

The organic layer was separated and the aqueous layer was extracted twice with ether (50 mL).  

The combined extract was washed three times with water and then with brine solution and 

dried over sodium sulfate, and evaporated.  The residue was chromatographed over silica gel 

using (could probably use ethyl acetate alone as mobile phase) hexane:ethyl acetate (1:2) as an 

eluent to give 5.18 g of Boc Gramine product in 90.0% yield.  Theoretical yield is 5.75 g.  

Apparatus set up shown below. 
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Figure 30. Boc protection of gramine 

 

Synthetic procedure for N+ diisoprenyl bromide salt of gramine 

Scheme 56. Diisoprenylation of Boc gramine 

 

 

5.0 g (18.2 mmol, 1 eq.) Boc Gramine was weighed out in a beaker.  500 mL three-neck with 

thermometer adapter round bottom flask was oven dried for 3 hours with stir bar inside.  It was 

removed from the oven and clamped.  On one neck rubber septum was inserted, in the other 

nitrogen outlet was inserted, at this point the boc gramine was charged to the flask via a powder 

funnel, and in the last neck nitrogen inlet was inserted,  as quickly as possible.  To the reaction 
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vessel blue distilled THF (245) mL was charged via syringe.   The reaction mixture was allowed to 

stir for 1 hour to insure that all of the starting material was dissolved in the solution.  At this 

point solution is orange/peach in color.  Reaction vessel was cooled in a dry ice/acetone bath 

until reaction was -70 °C.  At this time n-butyl lithium (14.58 mL 2.5 M 36.44 mmol 2.0 eq.) was 

added dropwise to the reaction vessel via a syringe over 1 hour, maintaining a temperature 

range between -65 and -70 °C.  At this point the reaction is bright red/orange.  After addition of 

n-butyl lithium reaction was let stir undisturbed for 1 hour and 30 minutes at -70 °C.  Isoprenyl 

bromide (9.4 mL 81.99 mmol 4.5 eq.) was added to the reaction dropwise.  After addition of 

isoprenyl bromide the color of the reaction mixture is orange.  At this point the reaction was left 

to warm overnight.  When returning the next day color of the reaction mixture was clear 

orange.  Deionized water (5 mL) was added to the reaction vessel, no reaction indicated that the 

n-butyl lithium was quenched.  At this point the solvent was removed using the roto vap.  After 

organic solvent was removed the water and residue was poured into a separatory funnel and 

extracted with dichloromethane three times (50 mL).   Organic layer was dried over sodium 

sulfate.  Solvent was removed via roto vap and high vac with cold finger.  (Purify immediately or 

freeze left on bench it turns an undesirable brown/black heat from the roto vap bath may also 

be the cause) Residue was purified using flash chromatography (10 x 6 cm silica gel) eluent was 

5% methanol: 95% dichloromethane to provide a light brown solid 6.14 g in 69% yield. See TLC 

plate developed in 9:1 Dichloromethane:Methanol observed with short range UV lamp and 

stained with ninhydrin stain and heated on a hot plate until colored.  Spot with Rf of 0.5 is 

product and has a purple/violet color when the TLC plate is developed in the ninhydrin stain.  

Recrystallization solvents that have been tried, material is soluble in ethanol, material with 

water and heat forms a white cloudy solution, attempts at purification by recrystallization has 

failed.   
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Figure 31. Diisoprenylation of Boc gramine 
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Figure 32. TLC plate of fractions eluted from column chromatography 

 

Synthesis of 2-isoprenyl-N-diphenylmethylene-t-butylestertryptophan 

Scheme 57. Phase-transfer catalyst using diisoprenylated quaternary ammonium bromide salt 

 

 

N-isoprenyl-2-isoprenylbocgramine (2.00 g, 4.069 mmol, 1 eq.) N-(diphenylmethylene) glycine 

tert-butyl ester (1.202 g, 4.069 mmol) and O-allyl-N-(9-anthracenylmethyl) cinchonidinium 

bromide (0.4961 g 0.8192 mmol, 0.2 eq) dissolved in acetonitrile (30 mL) in a 250 mL round 

bottom flask with a stir bar.  Reaction mixture was allowed to stir for 30 minutes.  At this point 

the reaction mixture is a dark brown color with a light yellow precipitate that appears to be the 

phase transfer catalyst.  At this point 20 mL 45% KOH solution was added to the reaction 

mixture and allowed to stir, the aqueous layer was on the bottom and was clear and light yellow 

and the organic layer was dark brown and on the top.  Reaction was allowed to stir for 20 hours; 

at this point the reaction has a dark layer on top and a clear orange layer on bottom.   A small 
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sample was pulled from the reaction vessel, dissolved in CDCl3 and taken to the 300 NMR where 

I looked for the singlet at 4.1 representing the CH2 peak from the glycinate, disappearance of 

this peak indicates that the reaction has gone to completion.  From previous attempts at this 

experiment if the singlet at 4.1 remains add more KOH and let the reaction continue.  After 

confirmation that the reaction has gone to completion, solvent was removed from the reaction 

by rotovap leaving water and an orange residue on top of the water.  Dichloromethane (3x 50 

mL) was added to the reaction vessel this solution was put into a separatory funnel with 50 mL 

deionized water diluting the water layer enough that the density becomes less than the 

dichloromethane.  Organic layer was collected and dried over sodium sulfate.  Solvent was 

removed weight of this portion is 2.9158 g.  Thin layer chromatography (TLC) was used to 

identify a solvent system for column chromatography, TLC indicated that mobile phase for the 

column should be 9:1 Hexane:Ethyl Acetate.  Colum used was 9 cm tall by 6 cm wide, isolating 

1.21 g of product in 60.5 % yield.   

 

 

Figure 33. Structure of glycine Schiff base 
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Figure 34. NMR of Glycine Schiff base 
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Figure 35. Structure of protected tryptophan 

 

 

 

Figure 36. NMR of protected tryptophan 

 

N
H

N

O
O



95 
 

 

Figure 37. Structure of diisoprenylated quaternary ammonium bromide salt 

 

 

Figure 38. NMR of diisoprenylated quaternary ammonium bromide salt 
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Screening of %ee N+ isoprenyl salt 

Scheme 58. Phase-transfer catalyst screening procedure 

 

 

 (0.1 g 0.203 mmol 1 eq.) of N+ salt was added to a 7.5 mL vial with a mini stir bar.  To this (0.07 

g 0.236 mmol 1.16 eq) of Schiff base and (0.03 g 0.04954 mmol 0.2440 eq) of phase transfer 

catalyst was added.   To the reaction mixture 2 mL of solvent was added and reaction mixture 

was let stir 30 min.  1 mL of 45% KOH was added to the reaction vessel.  This was let stir for 18 

hours.  Crude reaction mixture was run through a short silica plug using 25 mL of 20 % Ethyl 

Acetate and Hexane.  Percent conversion was monitored via proton NMR of organic layer by 

comparing the integration of the multipet at 4.2 and the singlet at 4.1.   
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Synthesis of 2-Isoprenylt-N-aminebutylestertryptophan 

Scheme 59. Deprotection of tryptophan amine 

 

 

Procedure adapted from Journal of Organic Chemistry Vol. 68, No. 11, 2003.  2-isoprenyl-N-

diphenylmethylene-t-butylestertryptophan (1.04 g 2.111 mol) was dissolved in THF (12.66 mL) 

reaction mixture is clear and orange in color.  To the reaction mixture 1 N HCl was added, upon 

addition of the HCl color changed from clear orange to dark red, and the reaction mixture was 

allowed to stir 2 hours. The reaction was monitored by TLC (mobile phase 1:2 Hexane:Ethyl 

Acetate) after 2 hours small amount of starting material in reaction mixture on the TLC indicated 

the reaction was not complete.  Reaction was let stir overnight for 16 hours.  TLC at this time 

indicated no starting material present in the reaction mixture.  The resulting mixture was 

washed with hexanes (2 x 43 mL) and then the aqueous phase was basified with solid sodium 

bicarbonate and extracted with dichloromethane (4 x 50 mL).  Dichloromethane extracts were 

dried over sodium sulfate and concentrated under reduced pressure (yielding 0.30 g of material, 

43.3%).  NMR of this product indicated the product was present but contained minor impurities.  

Reaction mixture was further purified by column chromatography 9:1 

Dichloromethane:Methanol.   
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Also there is similar chemistry in Organic Letters 2010 Vol. 12, No. 8 1688-1691 Supporting 

documents S-13.  2-isoprenyl-N-diphenylmethylene-t-butylestertryptophan simi pure was 

dissolved in THF (50 mL) and 1 N HCl (50 mL) was added at 0 °C.  After stirred for 4 hours, THF 

was removed under reduced pressure.  The resulting solution was washed with ether (3 x 25 mL) 

and aqueous layer was neutralized with NaHCO3. The mixture was then extracted with CH2Cl2 (3 

x 50 mL).  The ether and dichloromethane layers were dried over anhydrous Na2SO4.  Ether layer 

contained benzophenone and dichloromethane layer contained amine.  After filtration and 

concentration under reduced pressure, the product was obtained in % yield after purification by 

flash column chromatography using mixtures of CH2Cl2/MeOH (50:1) as eluent.  Also Ethyl 

Acetate:Hexane 3:7 may be used.  Material has an Rf value of 0.4 to 0.5.  This is especially useful 

if the PTC has not been removed previously.   

Synthesis of 2-isoprenyl tryptophan t-butyl ester hydrochloride amine 

Scheme 60. Attempted isolation of ammonium chloride salt 

 

 

Also there is similar chemistry in Organic Letters 2010 Vol. 12, No. 8 1688-1691 Supporting 

documents S-13.  2-isoprenyl-N-diphenylmethylene-t-butylestertryptophan simi pure (0.61 g 
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1.24 mmol 1 eq.) was dissolved in THF (20 mL) and 1 N HCl (20 mL) was added at 0 °C.  After 

stirred for 4 hours, THF was removed under reduced pressure.  The resulting solution was 

washed with ether (3 x 50 mL) and aqueous layer roto vaped to dryness.  NMR of this aqueous 

layer was taken in d2O ether extraction taken in CDCl3.  Aqueous layer mass 0.15 g and organic 

layers mass is 0.67 g.  Aqueous layer did not agree with product spectrum, organic layer looked 

like benzophenone and the amine.   

 

Synthesis of Fmoc Proline Acid Chloride  

Scheme 61. Synthesis of Fmoc proline acid chloride 

 

 

Fmoc-L-proline (1.53 g 3.01 mmol 1 eq) was dissolved in thionyl chloride (12.09 mL).  The 

solution which resulted was stirred overnight at rt.  Excess thionyl chloride was removed under 

reduced pressure, yielding 1.70 g of white yellow solid. 

  

Fmoc
N

Fmoc
NHO

O O

Cl

C20H19NO4
Mol. Wt.: 337.37

C20H18ClNO3
Mol. Wt.: 355.81

SOCl2



100 
 

Synthesis of 2-isoprenyltryptophan t-butylester fmoc proline  

Scheme 62. Synthesis of dipeptide using acid chloride 

 

 

This procedure was done following the procedure for a similar compound in H.D. Jain et al 

Bioorg. Med. Chem. 16 2008 4626-4651.  Fmoc-L-proline chloride (1.70 g 4.78 mol 1.59 eq) 

which resulted was dissolved in dry CHCl3 (12.09 mL).  This solution was added dropwise at 0° C 

to a solution of 2-isoprenyltryptophant-butylamine (0.99 g 3.01 mmol 1 eq) and triethylamine 

(0.762 g 0.00726mol 1.05 mL 2.5 eq) in dry CHCl3 (72.5 mL).  The mixture that resulted was 

stirred at 0 °C for 0.5 hr and then at rt overnight.  Solvent was remove under rotovap and oil 

pump to remove solvent producing 3.78 g of orange solid in 194 % yield purity determined by 

NMR in CDCl3.   
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Deprotection of the Fmoc protecting group on the 2-isoprenyltryptophan-t-butylester-

fmocproline 

Scheme 63. Deprotection of Fmoc 

 

 

This procedure was done following the procedure for a similar compound in H.D. Jain et al 

Bioorg. Med. Chem. 16 2008 4626-4651.  Crude solid material from the acid chloride reaction 

(see above) was dissolved in Acetonitrile (7.75 mL) and stirred via a stir bar until it made a 

homogeneous solution.  To this solution Diethyl amine (7.75 mL) was added dropwise to the 

reaction flask using an addition funnel.  The reaction was let stir overnight and progress was 

monitored by TLC.  Mobile Phase is 9:1 Dichloromethane:Methanol.  Fraction 1 is Flourne amine 

Fmoc deprotection side product Rf = 0.9.  Fraction 2 and 3 are undistinguishable by NMR 

unknowns Rf = 0.55-0.50.  Fraction 4 and 5 are product Rf = 0.50.  Fraction 6 and 7 are Proline 

derivatives Rf = 0.35. It is highly suggested to use the smallest collection vessels possible to 

collect fractions from Rf 0.6-0.4.  
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Figure 39. TLC of Fmoc deprotection 

 

Synthesis of Fmoc Proline Gycine ethyl ester  

Scheme 64. Peptide coupling of proline and ethyl ester glycine 

 

 

Following procedure found in V.L. Campo et al. Tetrahedron 65 (2009) 5343.  Also procedure in 

Org. Lett. 2011 vol. 13, No. 24 6334.    To a solution of FmocProline-OH (1.00g 2.96 mmol 1 eq) 
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in Dichloromethane (20 mL) at room temp, PyBOP (1.85 g 3.55 mole 1.2 eq) and Diisopropyl 

ethyl amine (DIEA) (1.15 g 8.90 mmol 3 eq) were added.  The reaction mixture was stirred for 10 

min before the glycineethylester HCl (0 .413 g 2.96 mmol 1 eq) was added to the reaction vessel.  

The reaction mixture was stirred overnight and concentrated on the rotovap and oil pump.  The 

crude material was purified by column chromatography using Hexane/EtOAc (7:3) to give 

FmocProlineGlycineethylester.  Material eluted with the byproduct of the coupling reagent, this 

gave an NMR that appeared to have THF like spectra.  It was not purified further.   

Synthesis of diketopiperazine 

Scheme 65. Attmpted DKP ring closure in DMF 

 

 

Procedure adapted from V.L. Campo et al. Tetrahedron 65 (2009) 5343-5349.  The protected 

dipeptide (0.25 g 0.555 mmol 1eq.) was treated with 20% piperidine 0.32 mL /DMF 1.28 mL (6 

eq.) and allowed to stir at room temperature for 18 hours.  After concentration in vacuo, the 

residue was purified by column chromatography (EtOAc/hexane 1:1v/v, DCM/MeOH 9/1 v/v).   
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Synthesis of 2-isoprenyl tryptophan ethyl ester benzophenone imine 

Scheme 66. Phase-transfer catalyst reaction using ethyl ester glycine 

 

 

2-isoprenyl Indole N+dimethyl isoprenyl bromide salt ( 0.1 g 0.2034 mmol 1 eq) N-

(diphenylmethylene) glycine ethyl ester ( 0.05438 g 0.2034 mmol 1 eq) and O-allyl-N-(9-

anthracenylmethyl) cinchonidinium bromide (0.02464 g 0.04069 mmol 0.2 eq) was dissolved in 

solvent (2 mL) in a 5 mL vial round bottom flask with stir bar stirring.  Reaction mixture was 

allowed to stir for 30 minutes.  At this point the reaction mixture is a dark brown color with a 

light yellow precipitate that appears to be the phase transfer catalyst.  TLC plate was taken of 

starters and crude mixture (see bleow).  TLCs were exposed to both cerium (lV) ammonium 

sulfate stain for alkaloids where the N+ salt turned red no effect on the other spots.  Ninhydrin 

stain was also used on TLC plate and two spots were sensitive to it, N+ salt purple, Schiff base is 

pink, and PTC shows no reaction.  At this point 1 mL 45% KOH was added to the reaction mixture 

and allowed to stir, the aqueous layer was on the bottom and was clear and light yellow and the 

organic layer was dark brown and on the top.  After about 10 minutes the organic layer turned 

from brown to dark red.  After 30 min the KOH layer was removed and replaced and the 

N

N

OO

Br

O
N

O

N
H

N

O
O

PTC
45% KOH

Acetonitrile

C26H39BrN2O2
Mol. Wt.: 491.5

C31H32N2O2
Mol. Wt.: 464.6

C17H17NO2
Mol. Wt.: 267.32

N

O N

H2C

Br

H2C

C37H37BrN2O
Mol. Wt.: 605.61



105 
 

reaction was continued to stir.  Shortly after this time color of organic layer was red and clear.  

Reaction was allowed to stir for 20 hours; at this point the reaction has a dark layer on top and a 

clear orange/yellow layer on bottom.  At this point the crude reaction mixture was monitored by 

TLC.  After 20 hours TLC was run Cerium (lV) ammonium sulfate stain indicates presence of 

indole in lane 4, ninhydrin stain indicated very weak signal for amines in lane 4.  NMR was taken 

of crude reaction mixture, which suggested that the reaction had gone at least to some extent 

to product.  Gradient column was run on the reaction mixture using Hexane:EtOAc 9:1, 8:2, 7:3 

in 100 mL portions product appears to be purple on TLC in high concentrations.   

 

Figure 40. TLC of reagents and crude reaction mixture 

 

  

1) N+ salt
2) PTC
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Synthesis of tert-butyl N-(Diphenylmethylene)glycinate   

Scheme 67. Synthesis of glicine schiff base 

 

 

See Eur. J. Org. Chem. 2005, 317-325, procedure is taken from there.   

A solution of tert-butyl 2-bromoacetate (5.8 mL 7.7 g, 39.5 mmol 1 eq) in acetonitrile (44 mL) 

was treated with benzophenonimine (6.6 mL 7.1 g, 39.3 mmol 1 eq) and diisopropylethylamine 

(6.8 mL, 5.0 g, 35.0 mmol 0.90 eq), and the mixture was then heated at reflux for 12 hours.  

After the system had cooled to room temperature, most of the acetonitrile was removed in 

vacuo.  The residue was partitioned between water (40 mL) and diethyl ether (60 mL) and the 

phases were separated.  The organic layer was dried with Na2SO4, filtered and concentrated in 

vacuo until the mixture became turbid.  Crystallization was done using ethanol/petroleum ether 

(in our case we substituted hexane for petroleum ether) 1:4.  The yield was 86 % slightly yellow 

solid.  
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Figure 41. Apperatus for synthesis of glycine schiff base 

 

Synthesis of 2-Isoprenylt-N-aminebutylestertryptophan 

Scheme 68. Deprotection of amine using 1 N HCl 

 

 

Procedure adapted from Organic Letters 2010 vol. 12, No. 8 1688-1691. Crude reaction mixture 

forming 2-isoprenyl-N-diphenylmethylene-t-butylestertryptophan (100.0 mg 0.24 mmol) was 

dissolved in THF (2 mL) and 1 N HCl (2 mL) was added at 0 ° C.  After stirred for 4 hours, THF was 
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removed under reduced pressure.  The resulting aqueous solution was washed with ether (3 x 

20 mL) and neutralized with NaHCO3.  The mixture was then extracted with CH2CCl2 (3 x 20 mL).  

The organic layers were combined and dried over anhydrous Na2SO4.  After filtration and 

concentration under reduced pressure, the product was obtained after purification by flash 

column chromatography using gradient mixtures of CH2CCl2/MeOH (98:2 95:5 90:10) as the 

eluent. 

Scheme 69. Attempted deprotection of t-butyl group 

 

 

tert-butyl 3-(2-(3-methylbut-2-enyl)-1H-indol-3-yl)-2-(pyrrolidine-2-carboxamido)propanoate 

(0.01 g 0.234 mmol 1 eq) in a round bottom flask.  4 mL of tetrahydrofuran was added to the 

reaction vessel along with 1 mL of water.  To this Lithium hydroxide (0.14 g 5.87 mmol 25 eq) 

were added as a solid. This reaction was heated to and let stir. Reaction was monitored by TLC 

and cerium ammounium sulfate (indole stain) using a 9:1 Dichloromethane:Methanol mobile 

phase until the stained spot changed Rf value from 0.5 to 0.1.  At this point the reaction was let 

cool then it was put on the roto vap to remove tetrahydrofuran and water.  To this deionized 

water was added to the reaction vessel and pH was taken indicating the mixture was strongly 

basic.  KHSO4 was added as a solid until the reaction mixture indicated a pH in between 2 and 3.  

At this point dichloromethane was added to the reaction mixture, and then the mixture was 
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poured into a separatory funnel.  Organic layer was removed and dried over Na2SO4.  Solvent 

was removed via roto vap and high vac on oil pump.  NMR was taken of the material in the 

organic layer this did not appear to be the product.   

Synthesis of 2-isoprenyl tryptophan hydrochloride  

Scheme 70. Attempted deprotection of t-butyl group 

 

 

 

Procedure adapted from a similar reaction discussed in in Organic Letters 2010 Vol. 12, No.8 

1688-1691 N diphenylmethylene t-butyl ester 2-isoprenyl tryptophan (0.18 g 0.3659 mmol 1 eq.) 

in a round bottom flask was put into a was heated to reflux with stirring in 6 M HCl (10 mL) 

under an N2 atmoshere for 24 hours.  After it was cooled, the reaction mixture was washed 

successively with CH2Cl2 (2 x 5 mL) and ether (2 x 5 mL) before concentration to dryness under 

vacuum and in 5 mL methanol.  Organic layer was evaluated with proton NMR this indicated the 

material was benzophenone.  Aqueous layer was evaporated and evaluated via proton NMR 

which did not appear to be the product.   
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Figure 42. Charred reaction product 

 

Synthesis of 2-isoprenyl tryptophan hydrochloride  

Scheme 71. Attempted deprotection of t-butyl group using 5 N HCl 

 

 

Procedure adapted from a similar reaction in J. Org. Chem., Vol. 62, No. 12, 1997.  To a round 

bottom flask 2-isoprenylN-diphenylmethylenet-butylester tryptophan (.05 g 0.0101 mmol 1 eq.), 

N
H

N

O
O

5 N HCl

CHCl3

N
H

NH3

OH
O

Cl

C33H36N2O2
Exact Mass: 492.28

Mol. Wt.: 492.65

C16H21ClN2O2
Exact Mass: 308.13

Mol. Wt.: 308.8



111 
 

0.1 mL 5N HCl and 1 mL of CHCl3 was added.  The reaction was stirred at room temperature for 

4 hours until tlc showed disappearance of starting material.   The CHCl3 was then removed, the 

aqueous layer was washed with CHCl3 (3 x 2.5 mL) and then separated, and the solvent was 

evaporated to give 2-isoprenylN-diphenylmethylenet-butylester tryptophan.  Reaction did not 

appear to deprotect t-butyl group.   

Synthesis of 2-isoprenyl proline tryptophan 

Scheme 72. Attempted synthesis of dipeptide proline salt 

 

 

Procedure adapted from J. Org. Chem., Vol. 62, No. 12, 1997. 2-isoprenyl t-butyl ester 

tryptophan proline was dissolved in 4 mL of CHCl3 to this a 0.25 mL of 4 N HCl was added and 

reaction was stirred for 7 hours TLC plate at this time indicated very little change.   Half of this 

reaction was worked up at this point, remaining reaction mixture was heated to 45 °C for an 

hour then the reaction mixture was let cool to room temperature and mixture was stirred for 16 

hours.  Both first half and second half were worked up in the same way organic layer was 

washed with water and then dried over Na2SO4.  NMRs were taken of the samples both looked 

like they contained the t-butyl ester peak.   
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Synthesis of 2-isoprenyl proline tryptophan 

Scheme 73. Attempted deprotection of t-butyl group 

 

 

Reaction adapted from J. Org. Chem., Vol. 71, No. 24, 2006 4675.  70 mg of 2-isoprenyl t-butyl 

ester tryptophan proline dissolved in 1 mL of dichloromethane and stirred.  To this 0.1 mL of 

phosphoric acid 85 wt % was added dropwise vial syringe dropwise.  The reaction was stirred for 

14 hours.  NMR of material indicated t-butyl group was still present.  

Synthesis of t–butyl glycinate 

Scheme 74. Deprotection of Glycine Schiff base 
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Procedure adapted from Organic Letters 2010 vol. 12, No. 8 1688-1691.  N-diphenylmethylene-

t-butylestertryptophan (0.5 g 1.69 mmol 1 eq) dissolved in 10.5 mL THF along with 10.5 mL of 1 

N HCl solution.  Reaction mixture was stirred at room temperature for 1 hour.  THF was 

rotovaped off.  Reaction mixture was washed with hexane three times; this layer was dried over 

Na2SO4 and rotovaped to dryness.  NMR indicates this is benzophenone.  Aqueous layer was 

basified using sodium bicarbonate, until adding solid gave no more bubbles.   Aqueous layer was 

extracted with dichloromethane three times.  Dichloromethane layer was dried over Na2SO4 and 

rotovaped to dryness.   

Synthesis of t–butyl glycinate 

Scheme 75. Deprotection of glycine Schiff base using 15% citric acid 
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3-26-13 Procedure adapted from Tetrahedron Letters 43 (2002) 6677-6679.  Glycine imine (1.4 g 

4.7 mmol 1 eq.) was dissolved in (23.3 mL) of tetrahydrofuran and (8.7 mL) of 15% aqueous 

citric acid.  Reaction mixture was stirred vigorously at room temperature for 18 h, and then 

diluted with 1 M hydrochloric acid (5.83 mL).  THF remove via rotovap.  The mixture is extracted 

with diethyl ether (2x11.66 mL) to remove the benzophenone, then the aqueous layer was 

basified (K2CO3) until no more K2CO3 would dissolve.  Extraction with chloroform (5x17.5 mL) 

followed by drying of the extracts (Na2SO4) and concentration under reduced pressure gives the 
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crude amino acid tert-butyl ester which can generally be purified by passing through a plug of 

silica.  Amine looked clean.  96 % Yield 0.6 g theoretical was 0.62 g.   

Synthesis of Fmoc-Proline glycine t-butylester dipeptide 

Scheme 76. Synthesis of glycine proline using acid chloride 

 

 

This procedure was done following the procedure for a similar compound in H.D. Jain et al 

Bioorg. Med. Chem. 16 2008 4626-4651.  Fmoc-L-proline chloride (1.71 g 0.00481 mol 1.85 eq) 

which resulted was dissolved in dry CHCl3 (12.09 mL).  This solution was added dropwise at 0° C 

to a solution of t-butyl ester glycine amine (0.34 g 0.00259 mol 1eq) and triethylamine (0.0.655 

g 0.00655 mol 0.90 mL 2.5 eq) in dry CHCl3 (72.5 mL).  The mixture that resulted was stirred at 0 

°C for 0.5 hr and then at rt overnight.  Solvent was remove under rotovap and oil pump to 

remove solvent producing 2.54 g of solid in 218% yield purity determined by NMR in CDCl3.  

Theoretical yield was 1.16 g.  NMR showed two large peaks at ca. 3.0 and 1.5 ppm. 
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Synthesis of t-butyl glycine proline  

Scheme 77. Deprotection of dipeptide 

 

 

Reaction was modeled after H. D. Jain Bioorg. Med. Chem. 16 2008 4626-4651.  0.5 g of the t-

butyl glycine fmoc proline was dissolved in acetonitrile (10 mL) and diethylamine (10 mL). The 

reaction mixture was stirred for two hours at room temperature.   

Synthesis of benzophenone imine glycine ethyl ester  

Scheme 78. Synthesis of ethyl ester glycine Schiff base 

 

 

Procedure from Chem. Eur. J. 2010, 16, 1153-1157.  A mixture of the corresponding 

benzophenone NH-imine (0.181 g 0.167 mL  mmol 1 eq. 1.08 g/mL), amino acid ester 

hydrochloride (0.153 g 1.1 mmol 1.1 eq) and MgSO4 (0.181 g 1.5 mmol 1.5 eq) were stirred in 
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dichloromethane (10 mL) at room temperature for 24 hours.  The reaction was filtered and the 

filtrate was washed with water and brine, and dried over MgSO4.  Filtration and solvent removal 

afford a-ketiminoesters which were used without further purification.  Theoretical yield 0.267 g.   

Synthesis of Fmoc proline glycine ethyl ester 

Scheme 79. Peptide coupling of proline and glycine ethyl ester 

 

 

4-10-13 Procedure adapted from Org. Lett. Vol. 15 No. 1, 2013 22-25.  Paper uses HATU as 

peptide coupling reagent I choose to use PyBOP because we had it as a peptide coupling 

reagent.  PyBOB (2.09 g 4.02 mmol 1.36 eq) and i-Pr2Net (0.8682 g 1.17 mL 6.72 mmol Density 

0.742 g/mL 2.27 eq) were added to a solution of proline (1.36 g 3.93 mmol 1.33 eq) and ethyl 

ester glycine (0.412 g 2.95 mmol 1 eq) in CH3CN (30 mL) and the reaction was stirred at room 

temperature for 4 hours.  The reaction was concentrated under reduced pressure, and the 

residue partitioned between CH2Cl2 (100 mL) and 1 M HCl (100 mL).  The layers were separated, 
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and the aqueous phase was extracted with CH2Cl2 (2 x 25 mL).  The combined organic layers 

were dried (MgSO4), filtered and concentrated under reduced pressure. The residue was 

purified by flash chromatography eluting with 60 % EtOAc/Hexane to give 1.18 g (95 % yield) of 

dipeptide as clear viscous oil.  

 

Synthesis of 2-isoprenyl tryptophan ethyl ester 

Scheme 80. Phase-transfer catalyst with glycine ethyl ester 

 

 

4-10-13 2-isoprenyl Indole N+dimethyl isoprenyl bromide salt ( 1.0 g 0.002034 mol 1 eq) N-

(diphenylmethylene) glycine ethyl ester ( 0.5438 g 0.002034 mol 1 eq) and O-allyl-N-(9-

anthracenylmethyl) cinchonidinium bromide (0.2464 g 0.4069 mmol 0.2 eq) was dissolved in 1,4 

dioxane (20 mL) in a round bottom flask with stir bar stirring.  Reaction mixture was allowed to 

stir for 30 minutes.  At this point the reaction mixture is a dark brown color with a light yellow 

precipitate that appears to be the phase transfer catalyst.  At this point 20 mL 45% KOH was 

added to the reaction mixture and allowed to stir, the aqueous layer was on the bottom and 
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was clear and light yellow and the organic layer was dark brown and on the top.  After about 10 

minutes the organic layer turned from brown to dark red.  Shortly after this time color of organic 

layer was red and clear.  Reaction was allowed to stir for 20 hours; at this point the reaction has 

a dark layer on top and a clear orange/yellow layer on bottom.  At this point the crude reaction 

mixture was monitored by TLC.  After 20 hours TLC was run Cerium (lV) ammonium sulfate stain 

indicates presence of indole in lane 4, ninhydrin stain indicated very weak signal for amines in 

lane 4.  NMR was taken of crude reaction mixture, which suggested that the reaction had gone 

at least to some extent to product.  Gradient column was run on the reaction mixture using 

Hexane:EtOAc 9:1, 8:2, 7:3 in 100 mL portions product appears to be purple on TLC in high 

concentrations.   

Synthesis of diketopiperizine  

Scheme 81. Attempted DKP ring closure 
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21 h.

C24H26N2O5
Exact Mass: 422.18

Mol. Wt.: 422.47

C7H10N2O2
Exact Mass: 154.07

Mol. Wt.: 154.17
 

Procedure adapted from Org. Lett., Vol. 15 No.1, 2013 pg. 22-25 Procedure on S21 of supporting 

documents.  1.34 times scale.   Et3N (2.80 g 3.86 mL  0.7255 g/mL 10 eq.) and 2-hydroxypyridine 
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(0.058 g 0.615 mmol 0.22 eq.) were added to a solution of dipeptide (1.18 g 2.79 mmol 1 eq.) in 

CH3CN (53.6 mL) and the reaction was heated under reflux for 21 hrs.  The reaction was cooled 

to room temperature and then concentrated to reduced pressure. The residue was partitioned 

between 1 M HCl (67 mL) and CH2Cl2 (134 mL).  The organic phase was removed, and the 

aqueous phase was extracted with CH2Cl2 (2 x 33.5 mL).  The organics were combined, washed 

with saturated aqueous NaCl (134 mL), then dried (MgSO4), filtered and concentrated under 

reduced pressure. The residue was purified by flash chromatography eluting with MeOH/CHCl3 

to give no promising looking material by NMR.  

Synthesis of Diketopiperzine  

Scheme 82. Attempted DKP ring closure 
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T-butyl glycine Fmoc proline was dissolved in a 4:1 ratio of THF/water (2.5 mL).   Next Lithium 

hydroxide was added to the reaction vessel (25 eq.)  The solution was heated at 50 ⁰C for 15 

hours.  The reaction was diluted with water (10 mL) then was acidified to a pH of 5 with KHKSO4.  

The aqueous layer was extracted with ethyl acetate (10 mL) four times.  The organic layers were 

combined and washed with water, brine, and dried over Na2SO4.  Material was concentrated in 

vacuo.  Organic layer contained no material.  Aqueous layer was evaporated and NMR was taken 

in d2O.  HMBC indicated that the material was the open dipeptide, due to the carbonyl carbon 
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not seeing the apha carbons proton or the other protons on the other side of the proline 

nitrogen. 

Scheme 83. Peptide coupling between t-butyl glycine and proline 
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Mol. Wt.: 131.17
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Mol. Wt.: 450.53

 

5-8-13 Procedure adapted from Org. Lett. Vol. 15 No. 1, 2013 22-25.  Paper uses HATU as 

peptide coupling reagent I choose to use PyBOP because we had it as a peptide coupling 

reagent.  PyBOB (2.49 g 4.78 mmol 1.36 eq) and i-Pr2NEt (1.03 g 1.39 mL 7.97 mmol Density 

0.742 g/mL 2.27 eq) were added to a solution of proline (1.61 g 4.77 mmol 1.33 eq) and t-butyl 

ester glycine (0.63 g 4.80 mmol 1 eq) in CH3CN (35.7 mL) and the reaction was stirred at room 

temperature for 4 hours.  The reaction was concentrated under reduced pressure, and the 

residue partitioned between CH2Cl2 (100 mL) and 1 M HCl (100 mL).  The layers were separated, 

and the aqueous phase was extracted with CH2Cl2 (2 x 25 mL).  The combined organic layers 

were dried (MgSO4), filtered and concentrated under reduced pressure. The residue was 
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purified by flash chromatography eluting with 60 % EtOAc/Hexane to give dipeptide as clear 

viscous oil.  Dipeptide is the spot at about 0.5 Rf in 1:2 Hex:EtOAc.   

 

Figure 43. TLC plate of crude reaction mixture 

 

Synthesis of Diketopiperazine Ring 

Scheme 84. Attempted DKP ring closure 
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Reaction was modeled after Molecules 2009, 14, 2836-2849.  Each dipeptitidyl ester (0.25 mmol 

0.113 g 1 eq.) was suspended in water:diethylamine (1 mL) and heated for 10 minutes at 250 ⁰C 

and 150 psi, using a CEM Discover microwave apparatus at 250 W.  The resulting suspension was 
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filtered through a Hirsch funnel and washed with water (5 mL); the solid was dried under high 

vacuum and analyzed without further purification by NMR.  Reaction did not work as well as the 

reaction in just water. 

Synthisis of Diketopiperazine Ring 

Scheme 85. Attempted DKP ring closure 
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5-13-13 Reaction was modeled after Molecules 2009, 14, 2836-2849.  Each dipeptitidyl ester 

(0.25 mmol 0.113 g 1 eq.) was suspended in water (1 mL) and heated for 10 minutes at 250 ⁰C 

and 150 psi, using a CEM Discover microwave apparatus at 250 W.  The resulting suspension was 

filtered through a Hirsch funnel and washed with water (5 mL); the solid was dried under high 

vacuum and analyzed without further purification by NMR.  The aqueous layer was dissolved in 

deuterated MeOH, the proton NMR was consistent with proton spec reported in J. Braz. Chem. 

Soc. Vol. 16, No. 6B, 1448-1453, 2005.  The carbon showed signature peaks of the amide 

carbons at 165.3, and 170.8 ppm, for carbon 1 and 7 respectively.  What appear to be Fmoc 

fragments were attempted to be removed by washing with hexane.   
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Synthesis of 2-isoprenyltryptophant-butyl ester fmoc proline  

Scheme 86. Peptide coupling of isoprenyl tryptophan and proline 

 

 

5-21-13 Procedure adapted from Org. Lett. Vol. 15 No. 1, 2013 22-25.  Paper uses HATU as 

peptide coupling reagent I choose to use PyBOP because we had it as a peptide coupling 

reagent.  PyBOB (0.642 g 1.24 mmol 1.36 eq) and i-Pr2NEt (0.270 g 0.361 mL 2.07 mmol Density 

0.742 g/mL 2.27 eq) were added to a solution of proline (0.410 g 1.21 mmol 1.33 eq) and 2-

isoprenyl tryptophan t-butyl ester (0.30 g 0.913 mmol 1 eq) in CH3CN (9 mL) and the reaction 

was stirred at room temperature for 4 hours.  The reaction was concentrated under reduced 

pressure, and the residue partitioned between CH2Cl2 (30 mL) and 1 M HCl (30 mL).  The layers 

were separated, and the aqueous phase was extracted with CH2Cl2 (2 x 7.5 mL).  The combined 

organic layers were dried (MgSO4), filtered and concentrated under reduced pressure. The 
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residue was purified by flash chromatography eluting with 1:1 EtOAc:Hexane to give 0.39 g 66 % 

yield of dipeptide as yellow oil.  Dipeptide is the spot at about 0.5 Rf in 1:1 Hex:EtOAc.   

 

Synthesis of Tryprostatin B 

Scheme 87. Attempted synthesis of tryprostatin B 

 

 

Reaction was modeled after Molecules 2009, 14, 2836-2849.  2-isoprenyltryptophanproline 

fmoc t-butyl ester (0.162 g 0.25 mmol 1 eq.) was suspended in water (1 mL) and heated for 10 

minutes at 250 ⁰C and 150 psi, using a CEM Discover microwave apparatus at 250 W.  The 

resulting suspension was filtered through a Hirsch funnel and washed with water (5 mL); the 

solid was dried under high vacuum and analyzed without further purification by NMR.  This 

material was purified by column chromatography material that was recovered did not look like 

Tryprostatin it looked more like the dipeptide with no t- butyl group. 
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Synthesis of Tryprostatin B 

Scheme 88. Synthesis of tryprostatin B 

 

 

5-24-13 Reaction was modeled after Molecules 2009, 14, 2836-2849.  2-

isoprenyltryptophanproline t-butyl ester (0.097 g 0.27 mmol 1 eq.) was suspended in water (1 

mL) and heated for 10 minutes at 250 ⁰C and 150 psi, using a CEM Discover microwave 

apparatus at 250 W.  The resulting suspension was filtered through a Hirsch funnel and washed 

with water (5 mL); the solid was dried under high vacuum and analyzed without further 

purification by NMR.  This material contained no t-butyl peak at 1.3 ppm in the proton and also 

contained 169.5 and 165.8 in the carbon NMR which is very close to the reported values of the 

amides for Tryprostatin B.  The starting material for this reaction has diasteriomeric esters and 

amides which come at 175.1 174.8 and 171.7 171.3 respectively.  This material was dry loaded 

onto a column and a gradient column was run on it using methanol:dichloromethane solutions 

from 0:100 to 15:85.  Material eluted with about 2% methanol:dichloromethane.  Theoretical 

yield 0.08016g.  Diastereomers isolated 0.05/0.08 = 62.5% ca. 63% of desired products 

Tryprostatin B (0.01 g) 13 % yield diastereomers of Tryprostatin B (0.04 g) in 38% yield.   
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Synthesis of Tryprostatin B 

Scheme 89. Attmepted synthesis of tryprostatin B 

 

 

Reaction was modeled after Molecules 2009, 14, 2836-2849 and V.L. Campo et al. Tetrahedron 

65 (2009) 5343-5349.  2-isoprenyltryptophanproline fmoc t-butyl ester (0.162 g 0.25 mmol 1 

eq.) was suspended in water (1 mL) and piperidine (0.25 mL) this was let stir at room temp for 

18 hours.  This material was then heated for 10 minutes at 250 ⁰C and 150 psi, using a CEM 

Discover microwave apparatus at 250 W.  The resulting suspension was filtered through a Hirsch 

funnel and washed with water (5 mL); the solid was dried under high vacuum and analyzed 

without further purification by NMR.  This material was purified by column chromatography 

material that was recovered did not look like Tryprostatin it looked more like the dipeptide with 

not butyl group. 
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Synthesis of Tryprostatin B 

Scheme 90. Attempted synthesis of tryprostatin B 

 

 

Reaction was modeled after Molecules 2009, 14, 2836-2849 and V.L. Campo et al. Tetrahedron 

65 (2009) 5343-5349.  2-isoprenyltryptophanproline fmoc t-butyl ester (0.162 g 0.25 mmol 1 

eq.) was suspended in water (1 mL) and piperidine (0.25 mL).  This material was then heated for 

10 minutes at 250 ⁰C and 150 psi, using a CEM Discover microwave apparatus at 250 W.  The 

resulting suspension was filtered through a Hirsch funnel and washed with water (5 mL); the 

solid was dried under high vacuum and analyzed without further purification by NMR.  This 

material was purified by column chromatography material that was recovered did not look like 

Tryprostatin it looked more like the dipeptide with no t-butyl group. 
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Synthesis of 2-isoprenyl tryptophan t–butyl ester amine 

Scheme 91. Synthesis of tryptophan amine 

 

 

Procedure adapted from Tetrahedron Letters 43 (2002) 6677-6679.  2-isoprenyltryptophan-t-

butyl ester diphenyl imine ( g  mmol 1 eq.) was dissolved in ( mL) of tetrahydrofuran and (mL) of 

15% aqueous citric acid.  Reaction mixture was stirred vigorously at room temperature for 18 h, 

and then diluted with 1 M hydrochloric acid (mL).  The mixture is extracted with diethyl ether 

(2x mL) to remove the benzophenone, then the aqueous layer was basified (K2CO3) until no 

more K2CO3 would dissolve.  Extraction with chloroform (5x mL) followed by drying of the 

extracts (Na2SO4) and concentration under reduced pressure gives the crude amino acid tert-

butyl ester which can generally be purified by passing through a plug of silica.  Amine looked 

clean.  97 % yield 0.6 g theoretical was 0.62 g.   
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Synthesis of ethyl ester glycine proline 

Scheme 92. Attmpted peptide coupling with DCC 

 

 

7-12-13 Procedure adapted from Eur. J. Org. Chem. 2009, 5717. 32 times scale.  DIC we did not 

have so we substituted DCC (1.97 g 9.55 mmol 1.1 eq.) and triethylamine (0.879 g 0.726 g/mL 

1.211 mL 1 eq.) and glycine ethyl ester hydrochloride (1.21 g 8.69 mmol 1 eq.) in DCM (50 mL) 

were successively added at room temperature to a stirred solution of L-Proline (1.0 g 8.69 mmol 

1 eq.) in DCM (100 mL).  Reaction mixture was stirred for 3 days and then diluted with DCM (mL) 

and HCl (0.1 N mL) the layers were separated the aqueous phase was extracted with DCM (3x 

mL) and the combined chlorinated extracts were washed with water, dried with MgSO4, filtered 

and concentrated under reduced pressure.  Crude residue was purified by flash chromatography 

hexane:EtOAc 80:20.   

N+ salt to amine  
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Procedure to attempt skipping the isolation step of the 2isopropyltryptopahn Schiff base was 

tried using HCl and 15% citric acid.  Phase transfer catalyst reaction was done on a 2.0 g scale.  

Crude reaction material weighed 2.75 g, about 10% of the material was used for each of these 

screenings.  Theoretically this should yield about 0.2 of material.   

Reaction 1) Followed procedure for Tett Lett 43 (2002) 6677-6679.  0.275 g crude reaction 

material from the N+ salt, PTC, Schiff base, 45% KOH reaction.  Material was dissolved in THF (2 

mL) and (0.75 mL) of 15% citric acid, reaction vessel was allowed to stir for 18 hours.  Then it 

was diluted with 1 M HCl (0.5 mL).  Mixture was extracted with diethyl ether (2 x 1.5 mL) to 

remove benzophenone then basified with K2CO3.  This was extracted with dichloromethane (5 x 

1.5 mL) and then dried over Na2SO4 and concentrated via rotovap.  NMR of material did not 

show any tryptophan amine.   

Reaction 2) Reaction was modeled after Org. Lett. 2010 vol 12 No. 8 pg. 1688. 0.275 g crude 

material reaction material from the N+ salt, PTC, Schiff base, 45% KOH reaction.  Material was 

dissolved in THF (0.5 mL) and 1 N HCl (0.5 mL) at 0° C.  After the reaction was stirred for 4 hours 

the THF was removed under reduced pressure.  The resulting aqueous layer was washed with 

ether (3 x 5 mL) and neutralized with NaHCO3.  Mixture was then extracted with 

dichloromethane (3x 5 mL) organic layers dried over anhydrous MgSO4.  The NMR of this 

material indicated that the product was there, but contained impurities mass of this material 

was 0.10 g.  This was attempted to be purified by running through a pipet column, mobile phase 

9:1 DCM:MeOH.   
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Synthesis of 6-Methoxybocgramine 

Scheme 93. Synthesis of 6-methoxygramine 

 

 

9-3-13 All glassware was oven dried for 4 hours previous to use.  A solution of 6-

methoxygramine (0.37 g 1.8 mmol 1 eq) was made in an addition funnel using THF (9 mL).  This 

addition funnel was put in top of a 100 mL three neck round bottom flask which was placed in 

an ice water cooling bath and added dropwise to a solution of ditert-butyldicarbonate (0.47 g 

2.2 mmol 1.2 eq) 4-Dimethylaminopyridine (22 mg 0.18 mmol 0.1 eq) and triethylamine (0.30 

mL 0.25 mmol 0.12 eq 0.726 g/mL) in THF (5 mL).  About half way through the addition the 

reaction mixture changed from clear to cloudy.  After stirring for one and a half hours the 

reaction water was added to the reaction mixture.  Solvent was removed via roto vap and the 

material was extracted with ether three times.  The extract was washed with brine and dried 

over sodium sulfate.  The mixture was run through a cotton plugged funnel to remove sodium 

sulfate and the solvent was removed via roto vap.  9-3-13 80% yield.   
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12-12-13 All glassware was oven dried for 4 hours previous to use.  A solution of 6-

methoxygramine (2.27 g 11.1 mmol 1 eq) was made in an addition funnel using THF (55 mL).  

This addition funnel was put in top of a 500 mL three neck round bottom flask which was placed 

in an ice water cooling bath and added dropwise to a solution of ditert-butyldicarbonate (2.91 g 

13.3 mmol 1.2 eq) 4-Dimethylaminopyridine (0.136 g 11.1 mmol 0.1 eq) and triethylamine 

(0.135 g 0.186 mL 1.33 mmol 0.12 eq 0.726 g/mL) in THF (30 mL).  About half way through the 

addition the reaction mixture changed from clear to cloudy.  After stirring for 16 hours water (25 

mL) was added to the reaction mixture.  Solvent was removed via roto vap and the material was 

extracted with ether two times.  The extract was washed with brine and dried over sodium 

sulfate.  The mixture was run through a cotton plugged funnel to remove sodium sulfate and the 

solvent was removed via roto vap.  12-12-13 3.28 g/3.38 g = 97% yield.   

 

Synthesis of N+ isoprenyl-6-methoxy-2-isoprenylbocgramine 

Scheme 94. Synthesis on diisoprenyl 6-methoxygramine salt 
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6-methoxy boc gramine (0.20 g 0.657mmol 1 eq.) was weighed out.  A 100 mL 3 neck flask was 

oven dried for 3 hours with a stir bar inside.  It was removed from the oven and clamped.  On 

two necks rubber septums were inserted, in the other a nitrogen inlet under oil bubbler was 

inserted boc gramine was charged to the flask using a powder funnel, under positive nitrogen 

flow.  To the reaction vessel blue distilled THF (9 mL) was charged.  The reaction mixture was 

allowed to stir for one hour to insure that all the starting material was dissolved in the solution.  

The color of the mixture at this point is clear with a brown tint.  Reaction vessel was cooled in a 

dry ice acetone bath until the reaction mixture was at -70 ̊C.  n-Butyl Lithium (1.05 0.5256 mL 2.5 

M 1.314 mmol 2.0 eq) was added dropwise over an hour maintaining a temperature range 

between -65 and -70  ̊C to the reaction mixture leaving the reaction mixture a bright red orange.  

After the addition of n-Butyl Lithium the reaction was let stir undisturbed for one and a half 

hours at -70 ̊C.  Isoprenyl bromide (0.314 mL 0.399 g 2.6 mmol 4 eq. 1.27 g/mL) was added 

dropwise to the reaction vessel.  At this point the reaction mixture was orange.  The reaction 

was then let warm to room temp overnight.  When returning the next day the color of the 

reaction mixture was clear orange.  Deionized water (5 mL) was added to the reaction mixture, 

no reaction from this indicated that the b-butyl lithium was quenched.  The solvent was 

removed using the rotovap.  After the solvent was removed the water and residue was poured 

into a separatory funnel and extracted with dichloromethane three times (10 mL).  Organic layer 

was dried over sodium sulfate.  Solvent was removed via rotovap and oil pump.  NMR was taken 

to see if material was present.  Material was purified with a pipet column using neutral alumina 

gel as stationary phase and DCM as mobile phase.  0.15 g of product was isolated in 40 % yield.   

Scale up 
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4-24-14 6-Methoxybocgramine (2.24 g 7.36 mmol 1 eq.) weighted out.  A 500 mL three neck 

round bottom flask was oven dried over night with stir bar inside was removed from oven and 

clamped.  To this vessel 6-Methoxybocgramine was charged via a powder funnel.  Nitrogen inlet, 

oil bubbler, and rubber septum were used to fill necks in round bottom flask.  Tetrahydrofuran 

100 mL (dry blue distilled) was used to solvate the material.  This was let stir for thirty minutes.  

Reaction vessel was submerged in an acetone/dry ice bath for one half to an hour until 

temperature was constant.  To the reaction mixture n–butyllitium (5.9 mL 2.5 M 14.75 mmol 

2.00 eq.) was added in a drop wise fashion using a syringe through the septum.  Reaction 

mixture was orange in color.  Reaction was let stir for one hour.  Isoprenyl Bromide (3.45 mL 

4.38 g 29.40 mmol 4.00 eq 1.27 g/mL) was added to the reaction mixture in a drop wise fashion.  

Reaction mixture was yellow/orange in color and was left to stir overnight for 16 hours.  Upon 

returning the next day reaction mixture was orange in color.  Reaction mixture was poured into 

a single neck round bottom flask and solvent was removed via roto vap and oil pump.  Column 

diameter was 6 cm x 9 cm tall.  Column was run on the material by slurry loading the silica gel on 

to the column and dry loading the crude sample.  Column was run using 9:1 

Dichloromethane:Methanol mobile phase void volume collected in beakers and fractions were 

collected in test tubes until they were half way full.   Fractions 2-5 mass 0.61 g, Frac 6-8 1.02 g, 

Frac 9-10 0.86 g, and Frac 11-12 0.83 g.  Totaling 3.32 g actual yield / 3.84 g theoretical yield = 

86% yield.  

Synthesis of N+ isoprenyl-6-methoxy-2-isoprenylbocgramine 

Scheme 95. Attempted synthesis using sec-BuLi 
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6-methoxy boc gramine (0.20 g 0.657mmol 1 eq.) was weighed out.  A 100 mL 3 neck flask was 

oven dried for 3 hours with a stir bar inside.  It was removed from the oven and clamped.  On 

two necks rubber septums were inserted, in the other a nitrogen inlet under oil bubbler was 

inserted boc gramine was charged to the flask using a powder funnel, under positive nitrogen 

flow.  To the reaction vessel blue distilled THF (9 mL) was charged.  The reaction mixture was 

allowed to stir for one hour to insure that all the starting material was dissolved in the solution.  

The color of the mixture at this point is clear with a brown tint.  Reaction vessel was cooled in a 

dry ice acetone bath until the reaction mixture was at -70 ̊C.  Sec Butyl Lithium (4.26 0.938 mL 

1.4 M 1.314 mmol 2.0 eq.) was added dropwise to the reaction mixture was orange and clear.  

After one hour of stirring isoprynyl bromide (0.3084 mL 0.3917 g 2.6284 mmol 4.0 eq) was 

added to the reaction mixture in a dropwise fashion this gives off a white gas reaction mixture at 

this point is light yellow. This reaction mixture was left to warm overnight.  Upon returning the 

next day the reaction color was red orange brown and clear.  Reaction was let stir overnight. 

Upon returning in the morning water was added (5 mL) the reaction was put on the rotovap to 

remove the THF.  Organic layer was extracted with DCM (3 x 10 mL) dried over sodium sulfate 

filtered using cotton plug and concentrated via roto vap, NMR indicated that the single 

isoprenylation salt was found.   
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Isoprenylated boc gramine salt 

Scheme 96. Single isoprenylation 

 

 

6-methoxy boc gramine (0.20 g 0.657mmol 1 eq.) was weighed out.  A 100 mL 3 neck flask was 

oven dried for 3 hours with a stir bar inside.  It was removed from the oven and clamped.  On 

two necks rubber septums were inserted, in the other a nitrogen inlet under oil bubbler was 

inserted boc gramine was charged to the flask using a powder funnel, under positive nitrogen 

flow.  To the reaction vessel blue distilled THF (9 mL) was charged.  The reaction mixture was 

allowed to stir for one hour to insure that all the starting material was dissolved in the solution.  

The color of the mixture at this point is clear.  After stirring for one hour isoprenyl bromide 

(0.3084 mL, 0.3917 g 2.6284 mmol 4 eq.) was added in a dropwise fashion.  Reaction was let stir 

overnight. 
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Synthesis of diisoprenylated boc gramine 

Scheme 97. Synthesis of diisoprenyl quaternary ammonium salt 

 

 

Reaction is being done to test if this reaction is not working because of the electronics of the 

6meogramine or if it is the procedure.  Boc gramine (0.20 g 0.7290 mmol 1 eq) was weighed out.  

A 100 mL 3 neck flask was oven dried for 3 hours with a stir bar inside.  It was removed from the 

oven and clamped.  On two necks rubber septums were inserted, in the other a nitrogen inlet 

under oil bubbler was inserted boc gramine was charged to the flask using a powder funnel, 

under positive nitrogen flow.  To the reaction vessel blue distilled THF (9 mL) was charged.  The 

reaction mixture was allowed to stir for one hour to insure that all the starting material was 

dissolved in the solution.  The color of the mixture at this point is light yellow and clear.  

Reaction vessel was cooled in a dry ice acetone bath until the reaction mixture was at -70 ̊C.  n-

Butyl Lithium (0.583 mL 2.5 M 1.458 mmol 2.0 eq) was added dropwise over an hour 

maintaining a temperature range between -65 and -70  ̊C to the reaction mixture leaving the 

reaction mixture a bright red orange.  After the addition of n-Butyl Lithium the reaction was let 

stir undisturbed for one and a half hours at -70 ̊C.  Isoprenyl bromide (0.314 mL 0.399 g 2.6 

mmol 4 eq. 1.27g/mL) was added dropwise to the reaction vessel.    
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Synthesis of 2-IsoprenylN-amine t-butylestertryptophan 

Scheme 98. PTC and deprotection steps combined 

 

 

Procedure adapted from Organic Letters 2010 vol. 12, No. 8 1688-1691. Crude reaction mixture 

starting with N-isoprenyl-2-isoprenylboc gramine (100.0 mg 0.203 mmol) was dissolved in THF (2 

mL) and 1 N HCl (2 mL) was added at 0 ° C.  After stirred for 4 hours, THF was removed under 

reduced pressure.  The resulting aqueous solution was washed with ether (3 x 20 mL) and 

neutralized with NaHCO3.  The mixture was then extracted with CH2CCl2 (3 x 20 mL).  The organic 

layers were combined and dried over anhydrous Na2SO4.  After filtration and concentration 

under reduced pressure, the product was obtained after purification by flash column 

chromatography using gradient mixtures of CH2CCl2/MeOH (98:2 95:5 90:10) as the eluent. 
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Synthesis of 6-MeO-2-isoprenyl t-buesterdiphenyl amine tryptophan 

Scheme 99. Synthesis of 6-MeOtryptophan 

 

 

6-MeON+ salt (0.1 g 0.192 mmol 1 eq.) was added to a 7.5 mL vial with a mini stir bar.  To this 

(0.07 g 0.237 mmol 1.23 eq) of Schiff base and (0.03 g 0.04954 mmol 0.2580 eq) of phase 

transfer catalyst was added.   To the reaction mixture 2 mL of toluene was added and reaction 

mixture was let stir 30 min.  1 mL of 45% KOH was added to the reaction vessel.  Crude reaction 

mixture was run through a short neutral alumina plug using 3:1 Hexane:Ethyl Acetate  and 

gradient to higher polarity.  Percent conversion was monitored via proton NMR of organic layer 

by comparing the integration of the multipet at 4.2 and the singlet at 4.1.   
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Synthesis of 6-Methoxy-2-isoprenyl-t-butylestertryptophanamine 

Scheme 100. Attempted deprotection of benzophenone imine 

 

 

Procedure adapted from Organic Letters 2010 vol. 12, No. 8 1688-1691 (S-13).  6-Methoxy-2-

isoprenyl-t-butylestertryptophandiphenylmethylene (0.03 g 0.00574 mmol 1 eq) was dissolved 

in 1 mL THF along with 1 mL of 1 N HCl solution.  Reaction mixture was stirred at 0˚ͦC for 4 hours.  

THF was rotovaped off.  Reaction mixture was washed with hexane three times; this layer was 

dried over Na2SO4 and rotovaped to dryness.  NMR indicates this is benzophenone.  Aqueous 

layer was basified using sodium bicarbonate, until adding solid gave no more bubbles.  Aqueous 

layer was extracted with dichloromethane three times.  Dichloromethane layer was dried over 

Na2SO4 and rotovaped to dryness.   
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Synthesis of 6Methoxy-2-isoprenyltryptophan t–butyl ester amine 

Scheme 101. Deprotection of benzophenone imine using citric acid 

 

 

5-19-14 Procedure adapted from Tetrahedron Letters Vol 43 Iss 37(2002) 6677-6679.  6-

Methoxy-2-isoprenyltryptophan-t-butyl ester diphenyl imine partially purified most of which is 

benzophenone (1.22 g mmol 1 eq.) was dissolved in tetrahydrofuran (4 mL) and of 15% aqueous 

citric acid (1.5 mL) added.  Reaction mixture was stirred vigorously at room temperature for 18 

h, and then diluted with 1 M hydrochloric acid (1 mL).  The mixture is extracted with diethyl 

ether (3 x 5 mL) to remove the benzophenone, then the aqueous layer was basified (K2CO3) until 

no more K2CO3 would dissolve.  Extraction with dichloromethane (5 x 5 mL) followed by drying 

of the extracts (Na2SO4) and concentration under reduced pressure gives the crude amino acid 

tert-butyl ester which can generally be purified by passing through a plug of silica or alumina.  

Gradient column was run using Hexane:Ethyl acetate 9:1, 7:3, 1:1 Dichloromethane, 

Dichloromethane:Methanol 9:1.  Appeared to come out with 1:1 Hex:EtOAc or DCM, but make 

sure to check earlier fractions. 
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Synthesis of 6Methoxy-2-isoprenyltbutylestertryptophanfmocprolinedipeptide 

Scheme 102. Peptide coupling of 6MeOtryptophan and proline 

 

 

7-2-14 Procedure adapted from Org. Lett. Vol. 15 No. 1, 2013 22-25 Supporting docs S20 

Dipeptide 13.  Paper uses HATU as peptide coupling reagent I choose to use PyBOP because we 

had it as a peptide coupling reagent.  PyBOB (0.197 g 0.379 mmol 1.36 eq) and i-Pr2NEt (0.0818 

g 0.110 mL 0.633 mmol Density 0.742 g/mL 2.27 eq) were added to a solution of Fmoc proline 

(0.125 g 0.371 mmol 1.33 eq) and 6-Methoxy2-isoprenyl tryptophan t-butyl ester amine (0.1 g 

0.279 mmol 1 eq) in CH3CN (3 mL) and the reaction was stirred at room temperature for 4 hours.  

The reaction was concentrated under reduced pressure, and the residue partitioned between 

CH2Cl2 (10 mL) and 1 M HCl (10 mL).  The layers were separated, and the aqueous phase was 

extracted with CH2Cl2 (2 x 5 mL).  The combined organic layers were dried (MgSO4), filtered and 

concentrated under reduced pressure. The residue was purified by flash chromatography eluting 
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with 1:1 EtOAc:Hexane to give 0.39 g 66 % yield of dipeptide as yellow oil.  Dipeptide is the spot 

at about 0.5 Rf in 1:1 Hex:EtOAc.   

Synthesis of 6-Methoxy-2-isoprenyltryptophanprolinetbutylester 

Scheme 103. Deprotection of Fmoc 

 

 

7-7-14Following H.D Jai et al. Bioorg. Med. Chem. 16 (2008) 4626-4651. Crude reaction mixture 

was dissolved in acetonitrile (3 ml) and to this diethylamine (3 mL).  The reaction mixture was 

stirred overnight.  The next day the mixture was TLCed and roto vaped to dryness.   
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Synthesis of Tryprostatin A 

Scheme 104. Synthesis of tryprostatin A 

 

 

Procedure was modeled after a similar procedure in Molecules 2009, 14, 2836-2849.  Material 

was transferred from previous vessel and evaporated to dryness using roto vap in microwave 

reaction vessel.  Water (1 mL) was then added to this reaction vessel, at this point the material 

made an orange milky suspension.  Microwave maximums were set to 250 ˚C and 150 PSI.  

Actual values were about 195 ˚C and 140 PSI.  After the reaction was complete the material was 

a dark brown oil.  This was submitted for mass spec to determine if product was present.  It may 

have been in a very small amount.  Mass spec provided evidence that tryprostatin A was 

present. 
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7. DATA 
Tryprostatain A 
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6-Methoxy-2-isoprenylt-butylestertryptophanamine 

 

1H Name: huis7-31-14 Expno: 1 Procno: 1 

13C Name: huis7-31-14 Expno: 3 Procno: 1 

HSQC Name: huis7-31-14 Expno: 2 Procno: 1 

HRMS Name: Huis7-31-14 Date: 8-5-2014 Time 11:31:00 PM 
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6-Methoxy-2-isoprenylt-butylesterdephenylmethylenetryptopan 

 

 

1H Name: huis3-8-14 Expno: 2 Procno: 1 

13C Name: huis3-8-14 Expno: 3 Procno: 1 

LRMS Name: Matt Date: 3-11-2014 Time 3:09:50 PM 

HRMS Name: Huis 8-11-14 (3) 
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6-Methoxydiisoprenylbocgramine 

 

 

1H Name: huis11-4-13 Expno:7  Procno: 1 

13C Name: huis11-4-13 Expno: 8 Procno: 1 

HSQC Name: huis11-4-13 Expno: 9 Procno: 1 

LRMS Name: Date 12-19-2013 Huis-010 Time 11:26:12 AM 

HRMS Name: Huis 8-11-14 (2) 
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6-Methoxybocgramine 

 

1H Name: huis9-5-13 Expno: 3 Procno: 1 

13C Name: huis9-5-13 Expno: 3 Procno: 1 

HSQC Name: huis9-5-13 Expno: 5 Procno: 1 

LRMS Name: Matt-Frac-3 Date: 9-30-13 Time: 4:02 

HRMS Name: Huis 8-11-14 (1) 
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N
H

N

O

O

C28H28N2O2
Mol. Wt.: 424.53  

1H Name: huis Expno:1 Procno: 1 Date: 20091117 

13C Name: huis Expno: 3 Procno: 1 Date: 20091117 

13C HSQC Name: huis Expno: 2 Procno: 1 Date: 20091117 
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HRMS 
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N
H

C33H36N2O2
Mol. Wt.: 492.65

N

O

O

 

1H Name: huis10-13-11 Expno: 1 Procno: 1 

13C Name: huis10-13-11 Expno: 3 Procno: 1 

LRMS 

HRMS 
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N

O O

N
Br

C26H39N2O2
+

Mol. Wt.: 411.6  

1H Name: huis1-23-13 Expno: 3 Procno: 1 

13C Name: huis1-23-13 Expno: 5 Procno: 1 

13C Dept135 Name: huis1-23-13 Expno: 6 Procno: 1 
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Crystal Structure data  
CCDC 922382 



185 
 

 

Blocks grown using slow diffusion method: Ethyl Acetate/Hexane 

Analyzed by Xray diffraction at UCSD with Arnie Rheingold 
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Unit Cell Dimensions:  a=8.5784(2); b=12.9668(3); c=13.5267(3)Å 
                                        α=109.266(2)° β=103.084(2)° γ=107.596(2)° 

Triclinic lattice, P1 space group, Z = 2 molecules per unit cell. R1 = 4.39%  

 

Contact: Matthew Huisman,  mhuisman@uwm.edu 
Authors: Matthew M. Huisman, Sarah Oehm M. Mahmun Hossain, Arnold L. Rheingold  
Table 1 Crystal data and structure refinement for Hossain01_0m 
Identification code        Hossain01_0m 
Empirical formula        C26H39N2O2Br 
Formula weight        491.50 
Temperature/K        273.15 
Crystal system        triclinic 
Space group        P1 
a/Å        8.5784(2) 
b/Å        12.9668(3) 
c/Å        13.5267(3) 
α/°        109.266(2) 
β/°        103.084(2) 
γ/°        107.596(2) 
Volume/Å3        1261.86(5) 
Z        2 
ρcalcmg/mm3        1.294 
m/mm 1        1.653 
F(000)        520.0 
Crystal size/mm3        0.3 × 0.24 × 0.18 
2Θ range for data collection        3.42 to 63.92° 
Index ranges        -12 ≤ h ≤ 12, -19 ≤ k ≤ 19, -20 ≤ l ≤ 20 
Reflections collected        23123 
Independent reflections        16463[R(int) = 0.0238] 
Data/restraints/parameters        16463/3/577 
Goodness-of-fit on F2        0.917 
Final R indexes [I>=2σ (I)]        R1 = 0.0440, wR2 = 0.1103 
Final R indexes [all data]        R1 = 0.0729, wR2 = 0.1451 
Largest diff. peak/hole / e Å-3        0.94/-0.52 
Flack parameter        0.21(2) 
 
chemical_name_systematic : N-((1-(tert-butoxycarbonyl)-2-(3-methylbut-2-en-1-yl)-1H-indol-3-
yl)methyl)-N,N,3-trimethylbut-e-en-1 aminium bromide  
 
_chemical_name_common             Compound synonym: boc protected 2 isoprenyl N isoprenyl 
gramine salt 
  

data_hossain1  
  

_audit_creation_method            SHELXL-97  
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_chemical_name_systematic  
;  
 ?  
;  
_chemical_name_common             ?  
_chemical_melting_point           ?  
_chemical_formula_moiety          ?  
_chemical_formula_sum  
 'C26 H39 Br N2 O2'  
_chemical_formula_weight          491.50  

  
loop_  
 _atom_type_symbol  
 _atom_type_description  
 _atom_type_scat_dispersion_real  
 _atom_type_scat_dispersion_imag  
 _atom_type_scat_source  
 'C'  'C'   0.0033   0.0016  
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'  
 'H'  'H'   0.0000   0.0000  
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'  
 'N'  'N'   0.0061   0.0033  
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'  
 'O'  'O'   0.0106   0.0060  
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'  
 'Br'  'Br'  -0.2901   2.4595  
 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'  
  
_symmetry_cell_setting            ?  
_symmetry_space_group_name_H-M    ?  

  
loop_  
 _symmetry_equiv_pos_as_xyz  
 'x, y, z'  
 '-x, -y, -z'  
  
_cell_length_a                    8.5784(2)  
_cell_length_b                    12.9668(3)  
_cell_length_c                    13.5267(3)  
_cell_angle_alpha                 109.266(2)  
_cell_angle_beta                  103.084(2)  
_cell_angle_gamma                 107.596(2)  
_cell_volume                      1261.86(5)  
_cell_formula_units_Z             2  
_cell_measurement_temperature     100(2)  
_cell_measurement_reflns_used     ?  
_cell_measurement_theta_min       ?  
_cell_measurement_theta_max       ?  
  
_exptl_crystal_description        ?  
_exptl_crystal_colour             ?  
_exptl_crystal_size_max           0.20  
_exptl_crystal_size_mid           0.15  
_exptl_crystal_size_min           0.15  
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_exptl_crystal_density_meas       ?  
_exptl_crystal_density_diffrn     1.294  
_exptl_crystal_density_method     'not measured'  
_exptl_crystal_F_000              520  
_exptl_absorpt_coefficient_mu     1.653  
_exptl_absorpt_correction_type    ?  
_exptl_absorpt_correction_T_min   0.7334  
_exptl_absorpt_correction_T_max   0.7896  
_exptl_absorpt_process_details    ?  
  
_exptl_special_details  
;  
 ?  
;  
  
_diffrn_ambient_temperature       100(2)  
_diffrn_radiation_wavelength      0.71073  
_diffrn_radiation_type            MoK\a  
_diffrn_radiation_source          'fine-focus sealed tube'  
_diffrn_radiation_monochromator   graphite  
_diffrn_measurement_device_type   ?  
_diffrn_measurement_method        ?  
_diffrn_detector_area_resol_mean  ?  
_diffrn_reflns_number             23097  
_diffrn_reflns_av_R_equivalents   0.0359  
_diffrn_reflns_av_sigmaI/netI     0.0501  
_diffrn_reflns_limit_h_min        -12  
_diffrn_reflns_limit_h_max        12  
_diffrn_reflns_limit_k_min        -19  
_diffrn_reflns_limit_k_max        19  
_diffrn_reflns_limit_l_min        -20  
_diffrn_reflns_limit_l_max        20  
_diffrn_reflns_theta_min          2.96  
_diffrn_reflns_theta_max          31.96  
_reflns_number_total              8628  
_reflns_number_gt                 6727  
_reflns_threshold_expression      >2sigma(I)  
  
_computing_data_collection        ?  
_computing_cell_refinement        ?  
_computing_data_reduction         ?  
_computing_structure_solution     'SHELXS-97 (Sheldrick, 2008)'  
_computing_structure_refinement   'SHELXL-97 (Sheldrick, 2008)'  
_computing_molecular_graphics     ?  
_computing_publication_material   ?  
  
_refine_special_details  
;  
 Refinement of F^2^ against ALL reflections.  The weighted R-factor 
wR and  
 goodness of fit S are based on F^2^, conventional R-factors R are 
based  
 on F, with F set to zero for negative F^2^. The threshold 
expression of  
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 F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. 
and is  
 not relevant to the choice of reflections for refinement.  R-
factors based  
 on F^2^ are statistically about twice as large as those based on F, 
and R-  
 factors based on ALL data will be even larger.  
;  
  
_refine_ls_structure_factor_coef  Fsqd   
_refine_ls_matrix_type            full  
_refine_ls_weighting_scheme       calc   
_refine_ls_weighting_details  
 'calc w=1/[\s^2^(Fo^2^)+(0.0514P)^2^+0.0082P] where 
P=(Fo^2^+2Fc^2^)/3'  
_atom_sites_solution_primary      direct  
_atom_sites_solution_secondary    difmap  
_atom_sites_solution_hydrogens    geom  
_refine_ls_hydrogen_treatment     mixed  
_refine_ls_extinction_method      none  
_refine_ls_extinction_coef        ?  
_refine_ls_number_reflns          8628  
_refine_ls_number_parameters      288  
_refine_ls_number_restraints      0  
_refine_ls_R_factor_all           0.0588  
_refine_ls_R_factor_gt            0.0383  
_refine_ls_wR_factor_ref          0.0932  
_refine_ls_wR_factor_gt           0.0851  
_refine_ls_goodness_of_fit_ref    1.002  
_refine_ls_restrained_S_all       1.002  
_refine_ls_shift/su_max           0.005  
_refine_ls_shift/su_mean          0.000  
  
loop_  
 _atom_site_label  
 _atom_site_type_symbol  
 _atom_site_fract_x  
 _atom_site_fract_y  
 _atom_site_fract_z  
 _atom_site_U_iso_or_equiv  
 _atom_site_adp_type  
 _atom_site_occupancy  
 _atom_site_symmetry_multiplicity  
 _atom_site_calc_flag  
 _atom_site_refinement_flags  
 _atom_site_disorder_assembly  
 _atom_site_disorder_group  
Br1 Br 0.26156(2) 0.907615(15) 0.128951(14) 0.02256(6) Uani 1 1 d . 
. .  
O1 O 0.09717(16) 0.64626(11) 0.35352(10) 0.0225(2) Uani 1 1 d . . .  
O2 O -0.14268(17) 0.66066(13) 0.26027(10) 0.0300(3) Uani 1 1 d . . .  
N1 N -0.00475(17) 0.77056(11) 0.44977(11) 0.0160(2) Uani 1 1 d . . .  
N2 N 0.21275(16) 0.96019(11) 0.83787(11) 0.0154(2) Uani 1 1 d . . .  
C1 C -0.1248(2) 0.82304(14) 0.46308(13) 0.0162(3) Uani 1 1 d . . .  
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C2 C -0.2837(2) 0.80211(15) 0.38790(14) 0.0198(3) Uani 1 1 d . . .  
H2A H -0.3311 0.7422 0.3128 0.024 Uiso 1 1 calc R . .  
C3 C -0.3704(2) 0.87209(15) 0.42681(14) 0.0213(3) Uani 1 1 d . . .  
H3A H -0.4788 0.8600 0.3770 0.026 Uiso 1 1 calc R . .  
C4 C -0.3024(2) 0.95980(15) 0.53715(14) 0.0208(3) Uani 1 1 d . . .  
H4A H -0.3648 1.0065 0.5610 0.025 Uiso 1 1 calc R . .  
C5 C -0.1464(2) 0.97930(15) 0.61168(14) 0.0183(3) Uani 1 1 d . . .  
H5A H -0.1004 1.0388 0.6869 0.022 Uiso 1 1 calc R . .  
C6 C -0.05673(19) 0.90973(13) 0.57441(13) 0.0153(3) Uani 1 1 d . . .  
C7 C 0.10789(19) 0.90980(13) 0.62936(12) 0.0148(3) Uani 1 1 d . . .  
C8 C 0.13886(19) 0.82623(13) 0.55342(13) 0.0153(3) Uani 1 1 d . . .  
C9 C 0.2969(2) 0.79779(14) 0.57135(13) 0.0177(3) Uani 1 1 d . . .  
H9A H 0.3909 0.8621 0.6422 0.021 Uiso 1 1 calc R . .  
H9B H 0.3399 0.7975 0.5093 0.021 Uiso 1 1 calc R . .  
C10 C 0.2635(2) 0.67882(15) 0.57709(14) 0.0195(3) Uani 1 1 d . . .  
H10A H 0.1449 0.6222 0.5468 0.023 Uiso 1 1 calc R . .  
C11 C 0.3849(2) 0.64669(15) 0.62055(15) 0.0226(3) Uani 1 1 d . . .  
C12 C 0.3380(3) 0.52332(17) 0.61499(18) 0.0306(4) Uani 1 1 d . . .  
H12A H 0.2114 0.4761 0.5749 0.046 Uiso 1 1 calc R . .  
H12B H 0.3704 0.5286 0.6913 0.046 Uiso 1 1 calc R . .  
H12C H 0.4015 0.4846 0.5751 0.046 Uiso 1 1 calc R . .  
C13 C 0.5772(2) 0.72660(18) 0.6740(2) 0.0356(5) Uani 1 1 d . . .  
H13A H 0.5940 0.8090 0.6878 0.053 Uiso 1 1 calc R . .  
H13B H 0.6370 0.6993 0.6237 0.053 Uiso 1 1 calc R . .  
H13C H 0.6263 0.7238 0.7454 0.053 Uiso 1 1 calc R . .  
C14 C 0.2305(2) 0.99903(14) 0.74480(12) 0.0159(3) Uani 1 1 d . . .  
H14A H 0.2119 1.0737 0.7611 0.019 Uiso 1 1 calc R . .  
H14B H 0.3522 1.0179 0.7466 0.019 Uiso 1 1 calc R . .  
C15 C 0.0274(2) 0.91355(16) 0.83170(14) 0.0210(3) Uani 1 1 d . . .  
H15A H -0.0457 0.8448 0.7589 0.031 Uiso 1 1 calc R . .  
H15B H -0.0157 0.9767 0.8400 0.031 Uiso 1 1 calc R . .  
H15C H 0.0218 0.8885 0.8922 0.031 Uiso 1 1 calc R . .  
C16 C 0.2782(2) 0.86466(14) 0.83030(14) 0.0198(3) Uani 1 1 d . . .  
H16A H 0.2072 0.7948 0.7580 0.030 Uiso 1 1 calc R . .  
H16B H 0.2693 0.8416 0.8916 0.030 Uiso 1 1 calc R . .  
H16C H 0.4010 0.8948 0.8364 0.030 Uiso 1 1 calc R . .  
C17 C 0.3288(2) 1.06740(14) 0.95033(13) 0.0182(3) Uani 1 1 d . . .  
H17A H 0.3337 1.0402 1.0108 0.022 Uiso 1 1 calc R . .  
H17B H 0.4495 1.0995 0.9507 0.022 Uiso 1 1 calc R . .  
C18 C 0.2668(2) 1.16523(15) 0.97513(14) 0.0216(3) Uani 1 1 d . . .  
H18A H 0.1619 1.1499 0.9910 0.026 Uiso 1 1 calc R . .  
C19 C 0.3441(2) 1.27206(15) 0.97723(14) 0.0226(3) Uani 1 1 d . . .  
C20 C 0.2701(3) 1.36419(18) 1.00961(17) 0.0341(4) Uani 1 1 d . . .  
H20A H 0.1613 1.3294 1.0214 0.051 Uiso 1 1 calc R . .  
H20B H 0.2454 1.3897 0.9494 0.051 Uiso 1 1 calc R . .  
H20C H 0.3554 1.4335 1.0791 0.051 Uiso 1 1 calc R . .  
C21 C 0.5024(3) 1.31118(17) 0.94698(17) 0.0314(4) Uani 1 1 d . . .  
H21A H 0.5436 1.2470 0.9283 0.047 Uiso 1 1 calc R . .  
H21B H 0.5955 1.3832 1.0108 0.047 Uiso 1 1 calc R . .  
H21C H 0.4717 1.3289 0.8820 0.047 Uiso 1 1 calc R . .  
C22 C -0.0258(2) 0.68790(14) 0.34429(13) 0.0178(3) Uani 1 1 d . . .  
C23 C 0.1041(2) 0.55761(15) 0.25343(14) 0.0217(3) Uani 1 1 d . . .  
C24 C 0.2593(3) 0.5350(2) 0.30555(17) 0.0400(5) Uani 1 1 d . . .  
H24A H 0.3653 0.6100 0.3427 0.060 Uiso 1 1 calc R . .  
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H24B H 0.2757 0.4755 0.2467 0.060 Uiso 1 1 calc R . .  
H24C H 0.2371 0.5050 0.3609 0.060 Uiso 1 1 calc R . .  
C25 C -0.0627(3) 0.44514(18) 0.1996(2) 0.0422(5) Uani 1 1 d . . .  
H25A H -0.1615 0.4623 0.1683 0.063 Uiso 1 1 calc R . .  
H25B H -0.0828 0.4166 0.2562 0.063 Uiso 1 1 calc R . .  
H25C H -0.0522 0.3834 0.1393 0.063 Uiso 1 1 calc R . .  
C26 C 0.1391(3) 0.61289(19) 0.17451(17) 0.0333(4) Uani 1 1 d . . .  
H26A H 0.0393 0.6299 0.1447 0.050 Uiso 1 1 calc R . .  
H26B H 0.1552 0.5572 0.1124 0.050 Uiso 1 1 calc R . .  
H26C H 0.2455 0.6876 0.2151 0.050 Uiso 1 1 calc R . .  
  
loop_  
 _atom_site_aniso_label  
 _atom_site_aniso_U_11  
 _atom_site_aniso_U_22  
 _atom_site_aniso_U_33  
 _atom_site_aniso_U_23  
 _atom_site_aniso_U_13  
 _atom_site_aniso_U_12  
Br1 0.02199(9) 0.02818(10) 0.02860(10) 0.01664(7) 0.01626(7) 
0.01419(7)  
O1 0.0257(6) 0.0246(6) 0.0174(6) 0.0050(5) 0.0070(5) 0.0157(5)  
O2 0.0271(6) 0.0448(8) 0.0162(6) 0.0063(5) 0.0055(5) 0.0216(6)  
N1 0.0161(6) 0.0158(6) 0.0153(6) 0.0056(5) 0.0055(5) 0.0067(5)  
N2 0.0134(6) 0.0171(6) 0.0161(6) 0.0079(5) 0.0057(5) 0.0056(5)  
C1 0.0153(7) 0.0169(7) 0.0191(7) 0.0093(6) 0.0081(6) 0.0068(6)  
C2 0.0182(7) 0.0213(8) 0.0189(7) 0.0087(6) 0.0055(6) 0.0078(6)  
C3 0.0160(7) 0.0259(8) 0.0250(8) 0.0142(7) 0.0065(6) 0.0096(7)  
C4 0.0198(7) 0.0236(8) 0.0264(8) 0.0140(7) 0.0115(6) 0.0124(7)  
C5 0.0196(7) 0.0200(8) 0.0205(8) 0.0110(6) 0.0099(6) 0.0104(6)  
C6 0.0155(7) 0.0163(7) 0.0173(7) 0.0094(6) 0.0076(6) 0.0071(6)  
C7 0.0135(6) 0.0157(7) 0.0158(7) 0.0078(6) 0.0061(5) 0.0051(6)  
C8 0.0137(6) 0.0154(7) 0.0172(7) 0.0080(6) 0.0062(5) 0.0050(6)  
C9 0.0143(7) 0.0198(8) 0.0194(7) 0.0080(6) 0.0073(6) 0.0071(6)  
C10 0.0146(7) 0.0205(8) 0.0215(8) 0.0075(6) 0.0066(6) 0.0063(6)  
C11 0.0199(8) 0.0238(8) 0.0260(8) 0.0113(7) 0.0099(7) 0.0096(7)  
C12 0.0266(9) 0.0301(10) 0.0414(11) 0.0202(9) 0.0114(8) 0.0146(8)  
C13 0.0199(8) 0.0329(10) 0.0545(13) 0.0206(10) 0.0081(8) 0.0131(8)  
C14 0.0167(7) 0.0172(7) 0.0153(7) 0.0081(6) 0.0075(6) 0.0065(6)  
C15 0.0138(7) 0.0278(9) 0.0236(8) 0.0142(7) 0.0091(6) 0.0063(6)  
C16 0.0219(8) 0.0184(8) 0.0207(8) 0.0094(6) 0.0077(6) 0.0093(6)  
C17 0.0172(7) 0.0188(7) 0.0156(7) 0.0066(6) 0.0045(6) 0.0054(6)  
C18 0.0243(8) 0.0245(8) 0.0180(7) 0.0079(6) 0.0112(6) 0.0114(7)  
C19 0.0286(9) 0.0215(8) 0.0149(7) 0.0052(6) 0.0070(6) 0.0103(7)  
C20 0.0508(12) 0.0290(10) 0.0291(10) 0.0110(8) 0.0172(9) 0.0242(9)  
C21 0.0311(10) 0.0230(9) 0.0340(10) 0.0109(8) 0.0116(8) 0.0048(8)  
C22 0.0171(7) 0.0187(7) 0.0193(7) 0.0090(6) 0.0086(6) 0.0071(6)  
C23 0.0255(8) 0.0209(8) 0.0191(8) 0.0048(6) 0.0098(6) 0.0128(7)  
C24 0.0516(13) 0.0498(13) 0.0276(10) 0.0100(9) 0.0125(9) 0.0407(11)  
C25 0.0417(12) 0.0240(10) 0.0461(13) -0.0002(9) 0.0241(10) 0.0057(9)  
C26 0.0450(11) 0.0405(11) 0.0355(10) 0.0220(9) 0.0273(9) 0.0286(10)  

  
_geom_special_details  
;  
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 All esds (except the esd in the dihedral angle between two l.s. 
planes)  
 are estimated using the full covariance matrix.  The cell esds are 
taken  
 into account individually in the estimation of esds in distances, 
angles  
 and torsion angles; correlations between esds in cell parameters 
are only  
 used when they are defined by crystal symmetry.  An approximate 
(isotropic)  
 treatment of cell esds is used for estimating esds involving l.s. 
planes.  
;  

  
loop_  
 _geom_bond_atom_site_label_1  
 _geom_bond_atom_site_label_2  
 _geom_bond_distance  
 _geom_bond_site_symmetry_2  
 _geom_bond_publ_flag  
O1 C22 1.3225(19) . ?  
O1 C23 1.4860(19) . ?  
O2 C22 1.195(2) . ?  
N1 C22 1.405(2) . ?  
N1 C1 1.4084(19) . ?  
N1 C8 1.4202(19) . ?  
N2 C16 1.4909(19) . ?  
N2 C15 1.4923(19) . ?  
N2 C14 1.5234(19) . ?  
N2 C17 1.523(2) . ?  
C1 C2 1.390(2) . ?  
C1 C6 1.400(2) . ?  
C2 C3 1.386(2) . ?  
C2 H2A 0.9500 . ?  
C3 C4 1.395(2) . ?  
C3 H3A 0.9500 . ?  
C4 C5 1.374(2) . ?  
C4 H4A 0.9500 . ?  
C5 C6 1.398(2) . ?  
C5 H5A 0.9500 . ?  
C6 C7 1.439(2) . ?  
C7 C8 1.365(2) . ?  
C7 C14 1.487(2) . ?  
C8 C9 1.499(2) . ?  
C9 C10 1.513(2) . ?  
C9 H9A 0.9900 . ?  
C9 H9B 0.9900 . ?  
C10 C11 1.323(2) . ?  
C10 H10A 0.9500 . ?  
C11 C12 1.498(3) . ?  
C11 C13 1.500(3) . ?  
C12 H12A 0.9800 . ?  
C12 H12B 0.9800 . ?  
C12 H12C 0.9800 . ?  
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C13 H13A 0.9800 . ?  
C13 H13B 0.9800 . ?  
C13 H13C 0.9800 . ?  
C14 H14A 0.9900 . ?  
C14 H14B 0.9900 . ?  
C15 H15A 0.9800 . ?  
C15 H15B 0.9800 . ?  
C15 H15C 0.9800 . ?  
C16 H16A 0.9800 . ?  
C16 H16B 0.9800 . ?  
C16 H16C 0.9800 . ?  
C17 C18 1.488(2) . ?  
C17 H17A 0.9900 . ?  
C17 H17B 0.9900 . ?  
C18 C19 1.330(2) . ?  
C18 H18A 0.9500 . ?  
C19 C21 1.497(3) . ?  
C19 C20 1.504(2) . ?  
C20 H20A 0.9800 . ?  
C20 H20B 0.9800 . ?  
C20 H20C 0.9800 . ?  
C21 H21A 0.9800 . ?  
C21 H21B 0.9800 . ?  
C21 H21C 0.9800 . ?  
C23 C26 1.504(3) . ?  
C23 C25 1.507(3) . ?  
C23 C24 1.518(3) . ?  
C24 H24A 0.9800 . ?  
C24 H24B 0.9800 . ?  
C24 H24C 0.9800 . ?  
C25 H25A 0.9800 . ?  
C25 H25B 0.9800 . ?  
C25 H25C 0.9800 . ?  
C26 H26A 0.9800 . ?  
C26 H26B 0.9800 . ?  
C26 H26C 0.9800 . ?  
  
loop_  
 _geom_angle_atom_site_label_1  
 _geom_angle_atom_site_label_2  
 _geom_angle_atom_site_label_3  
 _geom_angle  
 _geom_angle_site_symmetry_1  
 _geom_angle_site_symmetry_3  
 _geom_angle_publ_flag  
C22 O1 C23 121.20(13) . . ?  
C22 N1 C1 121.65(13) . . ?  
C22 N1 C8 129.42(13) . . ?  
C1 N1 C8 108.51(12) . . ?  
C16 N2 C15 108.57(12) . . ?  
C16 N2 C14 109.87(11) . . ?  
C15 N2 C14 112.22(12) . . ?  
C16 N2 C17 107.51(12) . . ?  
C15 N2 C17 110.41(12) . . ?  
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C14 N2 C17 108.15(11) . . ?  
C2 C1 C6 121.28(14) . . ?  
2 C1 N1 131.41(14) . . ?  
C6 C1 N1 107.31(13) . . ?  
C3 C2 C1 117.41(15) . . ?  
C3 C2 H2A 121.3 . . ?  
C1 C2 H2A 121.3 . . ?  
C2 C3 C4 121.74(15) . . ?  
C2 C3 H3A 119.1 . . ?  
C4 C3 H3A 119.1 . . ?  
C5 C4 C3 120.72(15) . . ?  
C5 C4 H4A 119.6 . . ?  
C3 C4 H4A 119.6 . . ?  
C4 C5 C6 118.58(15) . . ?  
C4 C5 H5A 120.7 . . ?  
C6 C5 H5A 120.7 . . ?  
C5 C6 C1 120.26(14) . . ?  
C5 C6 C7 132.10(15) . . ?  
C1 C6 C7 107.61(13) . . ?  
C8 C7 C6 108.49(13) . . ?  
C8 C7 C14 127.13(14) . . ?  
C6 C7 C14 123.87(13) . . ?  
C7 C8 N1 108.08(13) . . ?  
C7 C8 C9 127.56(14) . . ?  
N1 C8 C9 124.34(13) . . ?  
C8 C9 C10 114.05(12) . . ?  
C8 C9 H9A 108.7 . . ?  
C10 C9 H9A 108.7 . . ?  
C8 C9 H9B 108.7 . . ?  
C10 C9 H9B 108.7 . . ?  
H9A C9 H9B 107.6 . . ?  
C11 C10 C9 125.73(15) . . ?  
C11 C10 H10A 117.1 . . ?  
C9 C10 H10A 117.1 . . ?  
C10 C11 C12 121.22(16) . . ?  
C10 C11 C13 123.70(16) . . ?  
C12 C11 C13 115.03(15) . . ?  
C11 C12 H12A 109.5 . . ?  
C11 C12 H12B 109.5 . . ?  
H12A C12 H12B 109.5 . . ?  
C11 C12 H12C 109.5 . . ?  
H12A C12 H12C 109.5 . . ?  
H12B C12 H12C 109.5 . . ?  
C11 C13 H13A 109.5 . . ?  
C11 C13 H13B 109.5 . . ?  
H13A C13 H13B 109.5 . . ?  
C11 C13 H13C 109.5 . . ?  
H13A C13 H13C 109.5 . . ?  
H13B C13 H13C 109.5 . . ?  
C7 C14 N2 115.32(12) . . ?  
C7 C14 H14A 108.4 . . ?  
N2 C14 H14A 108.4 . . ?  
C7 C14 H14B 108.4 . . ?  
N2 C14 H14B 108.4 . . ?  
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H14A C14 H14B 107.5 . . ?  
N2 C15 H15A 109.5 . . ?  
N2 C15 H15B 109.5 . . ?  
H15A C15 H15B 109.5 . . ?  
N2 C15 H15C 109.5 . . ?  
H15A C15 H15C 109.5 . . ?  
H15B C15 H15C 109.5 . . ?  
N2 C16 H16A 109.5 . . ?  
N2 C16 H16B 109.5 . . ?  
H16A C16 H16B 109.5 . . ?  
N2 C16 H16C 109.5 . . ?  
H16A C16 H16C 109.5 . . ?  
H16B C16 H16C 109.5 . . ?  
C18 C17 N2 113.48(13) . . ?  
C18 C17 H17A 108.9 . . ?  
N2 C17 H17A 108.9 . . ?  
C18 C17 H17B 108.9 . . ?  
N2 C17 H17B 108.9 . . ?  
H17A C17 H17B 107.7 . . ?  
C19 C18 C17 126.26(16) . . ?  
C19 C18 H18A 116.9 . . ?  
C17 C18 H18A 116.9 . . ?  
C18 C19 C21 125.49(16) . . ?  
C18 C19 C20 119.98(17) . . ?  
C21 C19 C20 114.51(16) . . ?  
C19 C20 H20A 109.5 . . ?  
C19 C20 H20B 109.5 . . ?  
H20A C20 H20B 109.5 . . ?  
C19 C20 H20C 109.5 . . ?  
H20A C20 H20C 109.5 . . ?  
H20B C20 H20C 109.5 . . ?  
C19 C21 H21A 109.5 . . ?  
C19 C21 H21B 109.5 . . ?  
H21A C21 H21B 109.5 . . ?  
C19 C21 H21C 109.5 . . ?  
H21A C21 H21C 109.5 . . ?  
H21B C21 H21C 109.5 . . ?  
O2 C22 O1 126.88(15) . . ?  
O2 C22 N1 122.37(14) . . ?  
O1 C22 N1 110.75(13) . . ?  
O1 C23 C26 109.67(14) . . ?  
O1 C23 C25 109.57(14) . . ?  
C26 C23 C25 113.22(17) . . ?  
O1 C23 C24 101.88(13) . . ?  
C26 C23 C24 111.06(16) . . ?  
C25 C23 C24 110.85(17) . . ?  
C23 C24 H24A 109.5 . . ?  
C23 C24 H24B 109.5 . . ?  
H24A C24 H24B 109.5 . . ?  
C23 C24 H24C 109.5 . . ?  
H24A C24 H24C 109.5 . . ?  
H24B C24 H24C 109.5 . . ?  
C23 C25 H25A 109.5 . . ?  
C23 C25 H25B 109.5 . . ?  
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H25A C25 H25B 109.5 . . ?  
C23 C25 H25C 109.5 . . ?  
H25A C25 H25C 109.5 . . ?  
H25B C25 H25C 109.5 . . ?  
C23 C26 H26A 109.5 . . ?  
C23 C26 H26B 109.5 . . ?  
H26A C26 H26B 109.5 . . ?  
C23 C26 H26C 109.5 . . ?  
H26A C26 H26C 109.5 . . ?  
H26B C26 H26C 109.5 . . ?  
  
_diffrn_measured_fraction_theta_max    0.988  
_diffrn_reflns_theta_full              31.96  
_diffrn_measured_fraction_theta_full   0.988  
_refine_diff_density_max    0.882  
_refine_diff_density_min   -0.533  
_refine_diff_density_rms    0.075  

  

N

N

Br

O O

C21H31BrN2O2
Mol. Wt.: 423.39  

1H Name: huis4-25-11 Expno: 4 Procno: 1 
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N

N

O O

C16H22N2O2
Mol. Wt.: 274.36  

1H Name: huis5-15-12 Expno: 2 Procno: 1 

13C Name: huis5-15-12 Expno: 3 Procno: 1 
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13C HSQC Name: huis5-15-12 Expno: 4 Procno: 1  

HRMS 
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1H NMR of Boc protected Tryptophan N-diphenyl methylene t-butyl ester

 

N+ salt charicteration  
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N

O O

N

O
O

C38H44N2O4
Mol. Wt.: 592.77  

1H Name: huis7-20-10 Expno: 6 Procno: 1 

13C Name: huis7-20-10 Expno: 7 Procno: 1 

13C HSQC Name: huis7-20-10 Expno: 8 Procno: 1 
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N
H

NH2

O

O

C20H28N2O2
Mol. Wt.: 328.45  
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1H Name: huis2-20-12 Expno: 1 Procno: 1 

13C Name: huis2-20-12 Expno: 2 Procno: 1 

HSQC Name: huis2-20-12 Expt: 3 Procno: 1 
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HRMS



212 
 

 



213 
 

 



214 
 

 

N
H

O

OHN

O

N
H

C25H35N3O3
Mol. Wt.: 425.56  

1H Name: huis4-9-12 Expno: 3 Procno: 1 

13C Name: huis4-9-12 Expno: 4 Procno: 1 

13C HSQC Name: huis4-9-12 Expno: 5 Procno: 1  

13C Dept135 Name: huis4-9-12 Expno: 6 Procno: 1 

HRMS 
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1H Name: huis--13 Expno: 3 Procno: 1 

13C Name: huis--13 Expno: 4 Procno: 1 

13C HSQC Name: huis--13 Expno: 5 Procno: 1  

 

HPLC Racemic 9-28-2010 11 27 33 
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Racemic Trp 
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 Name Retention 
Time 

Area % 
Area 

Height Int 
Type 

Amount Units Peak Type Peak Codes 

1 R trp 15.999 566447 50.15 14127 BV   Found Q20  

2 S trp 17.747 563089 49.85 11235 VB   Found Q20  

 

 

 

 

 

HPLC of chiral trp 9-21-2010 time 3 32 18 

R
 t

rp
 -

 1
5
.9

9
9

S
 t

rp
 -

 1
7
.7

4
7

A
U

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

Minutes

14.00 14.20 14.40 14.60 14.80 15.00 15.20 15.40 15.60 15.80 16.00 16.20 16.40 16.60 16.80 17.00 17.20 17.40 17.60 17.80 18.00 18.20 18.40 18.60 18.80 19.00 19.20 19.40 19.60 19.80

n
m

220.00

240.00

260.00

280.00

300.00

Minutes

14.50 15.00 15.50 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50
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Chiral Trp 
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N
H

N

t-BuO

O

Ph

Ph

MeO

  

P
e
a
k
1
0
 -

 1
5
.8

6
9

P
e
a
k
1
1
 -

 1
7
.5

1
5

A
U

-0.010

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

0.100

Minutes

14.80 15.00 15.20 15.40 15.60 15.80 16.00 16.20 16.40 16.60 16.80 17.00 17.20 17.40 17.60 17.80 18.00 18.20 18.40 18.60

n
m

220.00

240.00

260.00

Minutes

14.50 15.00 15.50 16.00 16.50 17.00 17.50 18.00 18.50 19.00 19.50

 Name Retention 
Time 

Area % 
Area 

Height Int 
Type 

Amoun
t 

Units Peak Type Peak 
Codes 

1
0 

Peak10 15.869 35854
19 

7.33 77144 VV   Found Q20  

1
1 

Peak11 17.515 10766
41 

2.20 19864 VB   Found Q20  
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 Name Retention 
Time 

Area % Area Heigh
t 

Int 
Type 

Amoun
t 

Units Peak Type Peak 
Codes 

1 R 5 methoxy 
trp 

58.480 1131332 49.01 7599 BV   Found Q20  

2 S 5 methoxy 
trp 

63.288 1176911 50.99 6935 VB   Found Q20  

 

Racemic 5-methoxy trp ( 

Solvent: 2% IPA/Hexane; Flow rate: 1mL/min   

 

 

 

 

 

 

 

 

 

 

 

 

 

R
 5

 M
e
O

 t
rp

 -
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8
.4

8
0

S
 5
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e
O
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rp
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3
.2

8
8

A
U

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

Minutes

40.00 42.00 44.00 46.00 48.00 50.00 52.00 54.00 56.00 58.00 60.00 62.00 64.00 66.00 68.00 70.00 72.00 74.00 76.00 78.00 80.00
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 Name Retention 
Time 

Area % Area Height Int 
Type 

Amount Units Peak Type Peak 
Codes 

1 R 5 meo 
trp 

58.202 76088 4.41 584 VV   Found Q20  

2 S 5 meo 
trp 

62.282 1650931 95.59 10491 VB   Found Q20  

 

Compound with 91 % ee 

 

  

R
 5

 M
e
O

 t
rp

 -
 5

8
.2

0
2

S
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O
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rp
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2
.2

8
2

A
U

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

Minutes

40.00 42.00 44.00 46.00 48.00 50.00 52.00 54.00 56.00 58.00 60.00 62.00 64.00 66.00 68.00 70.00 72.00 74.00 76.00 78.00 80.00
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N
H

N

t-BuO

O

Ph

PhMeO
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 Name Retention 
Time 

Area % 
Area 

Height Int 
Type 

Amount Units Peak Type Peak 
Codes 

1 S 6 meo 
trp 

38.472 1474460 49.5
8 

19221 BV   Found Q20  

2 R 6 meo 
trp 

40.912 1499449 50.4
2 

18230 VB   Found Q20  

 

Racemic 6-methoxy trp 

Solvent: 10% IPA Hexane; Flow rate : 0.3mL/min  

 

 

 

 

 

 

 

 

 

 

 

 

 

S
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7
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R
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 4

0
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1
2

A
U

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

Minutes

32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00
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 Name Retention 
Time 

Area % Area Height Int 
Type 

Amount Units Peak Type Peak 
Codes 

3 S 6 meo 
trp 

38.508 1009973
1 

70.04 128171 VV   Found Q20  

4 R 6 meo 
trp 

41.243 505093 3.50 6235 VV   Found Q20  

 

Compound with 95 %ee  
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0.020

0.030
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0.050

0.060

0.070

0.080

0.090

0.100

0.110

0.120

0.130

Minutes

32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00
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N
H

N

t-BuO

O

Ph

Ph

Br
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 Name Retention 
Time 

Area % Area Height Int Type Amount Units Peak Type Peak 
Codes 

1 R 5 br trp 13.749 719288 49.41 19144 BV   Found Q20  

2 S 5 br trp 15.100 736576 50.59 17894 VB   Found Q20  

 

Racemic 5-bromo trp 

Solvent: 5% IPA Hexane; Flow rate: 1mL/min  
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0.004
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0.010

0.012

0.014
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Minutes

12.00 12.20 12.40 12.60 12.80 13.00 13.20 13.40 13.60 13.80 14.00 14.20 14.40 14.60 14.80 15.00 15.20 15.40 15.60 15.80 16.00 16.20 16.40 16.60 16.80 17.00
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 Name Retention 
Time 

Area % Area Height Int Type Amount Units Peak Type Peak 
Codes 

4 R 5 br trp 13.874 49506 3.25 1611 BV   Found Q20  

5 S 5 br trp 15.122 450865 29.57 11170 VB   Found Q20  
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