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ABSTRACT 

 

PORPHYRIN AS A SPECTROSCOPIC PROBE OF NET ELECTRIC FIELDS IN HEME PROTEINS 

 

by 

Hannah E. Wagie 

The University of Wisconsin–Milwaukee, 2015 

Under the Supervision of Professor Peter Geissinger 

 

 

Heme proteins have diverse functions as well as varied structures but share the same organic, 

conjugated cofactor. Similarly varied approaches have been taken to deduce how heme can take 

on different roles based on its protein environment. A unique approach is to view the protein 

matrix as a constellation of point charges that generates a defined, reproducible, net internal 

electric field that has influence over the electronic properties of the heme cofactor. This work 

considers how porphyrins, the basic chromophore building block of heme, can be used as a native 

spectroscopic sensor of internal electric field at the active site of heme proteins.  

First, a number of approaches to model the electrostatic nature of protein structure are 

described. One approach based on Coulomb’s law is used to estimate the net electric field in 

myoglobin, easily placing the internal electric field on the order of MV/cm.  

A closer inspection of myoglobin structure reveals that slight changes in position or strategic 

mutations can cause appreciable change in the field magnitude and direction. Then, the idea of 

a porphyrin probe is further developed, followed by a theoretical and spectral characterization 
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of porphyrins substituted into heme proteins for use in emission spectroscopy as non-emissive 

heme must be replaced by other porphyrin analogs with higher quantum yield. 

Once the porphyrin–protein system has been established as the guest–host system of interest, 

the hole-burning Stark spectroscopy method was used to quantitatively measure the magnitude 

and direction of the internal electric field vector generated by the protein. The collected Stark 

spectra had a more established classical analysis method for analysis, but a major aspect of this 

work is a quantum-mechanical analysis method that has been advanced for more practical and 

widespread usage. This novel quantum-mechanical approach to the method has promise for 

greater accuracy for internal electric field determination as well as the ability to resolve the field 

into spatial components in order to determine not just field magnitude but also direction. The 

results from the new analysis of experimental data for myoglobin of the in-plane components of 

the field places both at 1.7 MV/cm.  Finally, two ab initio excited-state methods, CIS and TDDFT, 

were used to calculate electronic state energies and transition dipole moment values in support 

of this new quantum-mechanical analysis method. The two methods are described thoroughly 

with presentation of benefits and drawbacks to each method.  
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Chapter 1 

Introduction 

1.1 Introduction to net electrostatics in proteins 

While electrostatic interactions are part of most investigations of the determinant of the 

function of biological systems (e.g. proteins), the level of complexity of describing these 

interactions is more often than not limited to assigning individual amino acids the characteristics 

of polar or non-polar, charged or neutral. This both limits the volume in which the effect influence 

is noted within a protein structure as well as the mechanism by which electrostatic interactions 

are noted to be effective (attraction or repulsion of a ligand). On the other hand, many reports 

of protein research invoke a more global electrostatic environment provided by the sum of the 

entire protein environment to explain protein function. These net electrostatic environments are 

also often given a rather vague description of “positive” or “negative,” because tools to quantify 

them are still in development. 

This work contributes towards the goal of developing a method to measure net electric fields 

generated by heme proteins using hole-burning Stark spectroscopy, and from these come to a 

more detailed description of the electrostatic environment of active sites.  Not only would this 

allow for a more detailed understanding of protein function in terms of contributions of the 

various amino acids and the importance of their location with respect to the active site, but allow 

for synthesis of artificial (i.e. non-biological) molecular environments that bestow a certain set of 

functional characteristics on a molecule of interest (e.g., synthesis of artificial blood substitutes). 
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The measurement of internal electric field at a microscopic level inside of a protein, however, 

requires a distinct approach from the routine measurement of such a field at a macroscopic level, 

e.g., across a semiconductor. The measurement of electric field around a macroscopic object can 

be performed by introducing another object as a measurement tool, e.g., a metal rod as a probe, 

in its vicinity. For microscopic objects, however, the introduction of a probe to measure electric 

field must be careful to not disturb the object itself, although for molecular probes the effect of 

the probe on the object to be measured may not be negligible. For internal electric field, it is 

implied that the region of interest is deep within some structure. This limits the tools to sense 

the field to native reporters (see examples in Chapter 3). Then, the necessarily remote sensing of 

the field leaves few choices for techniques with spectroscopy as a clear option to provide a 

window into the native probe’s state in the presence of the electric field.  

 Examples of the areas in protein science that invoke net electrostatic properties and 

interactions as part of functional mechanisms are 

• redox potential in metalloproteins (including heme proteins)1 

• ligand stabilization and discrimination2  

• electron transfer (especially in photosynthetic complexes) 3  

• general catalytic function4 

• and protein folding5 and dynamics6 

Three studies that call on net electrostatics mechanistically in a particularly compelling manner 

are described here. They have specifically been chosen as non-heme proteins because heme 

protein examples will arise later in the manuscript. 
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 The first report, “Electrostatic Steering of Substrate to Acetylcholinesterase: Analysis of 

Field Fluctuations,” 7  is a molecular dynamics study in support of previous experimental studies. 

The well-known neurotransmitter acetylcholine is hydrolyzed by the enzyme 

acetylcholinesterase as a way to end the neurological signal. The enzyme acts at a site deep inside 

its structure and the ligand must traverse down a “gorge” gated by a “bottleneck” opening. 

However, this enzyme acts extremely swiftly at nearly diffusion rate. It has been shown 

computationally in agreement with experimental observations that electrostatic “steering” of 

acetylcholine increases the rate of reaction for this system by two orders of magnitude. This 

electric field is thought to originate from charge distributions around the opening to the long 

path to the active site. Mutant studies of individual amino acids in this area do not significantly 

affect the reaction rate, leading to the conclusion that it is not just specific points in the protein 

that cause this large-scale effect but “rather from the whole constellation of partial charges in 

the enzyme.” In fact, this study goes beyond a static electric field to suggest that the fluctuations 

of the field also contributes to the effect of funneling acetylcholine down a particular path to the 

active site. The idea of a dynamic field arises naturally in this work when the statistical variations 

in myoglobin structure are-more closely examined in Chapter 3. 

 Another enzyme whose catalytic rate is diffusion limited has a mechanism that relies not 

on the electrostatics of a single amino acid but of a network. “Faster Superoxide Dismutase (SOD) 

Mutants Designed by Enhancing Electrostatic Guidance”8 does use site-specific mutants at four 

particular charged residue locations, however, the trend indicates that only by acting in concert 

are the kinetics enhanced. The human Cu,Zn–SOD enzyme examined in this study acts to disarm 

the harmful superoxide radical, O2
-, by using it to produce dioxygen, O2, and hydrogen peroxide, 
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H2O2. Like acetylcholinesterase, the superoxide substrate of SOD seems to be guided to the 

copper-ion active site electrostatically. Looking at the electrostatics of the wild-type enzyme in a 

more traditional way, the authors noted that the overall negative charge of the enzyme should 

prevent the negatively charged superoxide to reach the active site. The four-residue hydrogen-

bonded network at the entrance to the opening to the active site include two negatively charged 

glutamates. Surprisingly, mutations of these residues to positively charged glutamine residues in 

fact slows the kinetic rate of enzyme. The conclusion was that although the individual charges on 

these residues is usually viewed as disadvantageous, the individual electrostatic characteristics 

were essential in forming a network that stabilized the configuration of the residues around the 

active-site entrance: “structural interactions of electrostatically important side chains orient the 

electrostatic fields and provide a basis for understanding the resultant rates of mutant enzymes.” 

In this work, another discussion in Chapter 3 about electrostatic structure and Coulomb’s law 

also emphasizes the importance of not just charge but also position of the charge. 

 Finally, a 2014 study, “Extreme Electric Fields Power Catalysis in the Active Site of 

Ketosteroid Isomerase”9 has an experimental approach similar to the one used in this work in 

that it utilizes molecular probes as sensors of electric fields (see Chapter 4) with Stark 

spectroscopy (see Chapter 6). The enzyme of interest in this report, ketosteroid isomerase (KSI), 

is part of steroid biosynthesis and degradation. It acts by a proton transfer that results in a large 

increase in dipole moment along the carbonyl of a keto-intermediate. However, this high-energy 

formation step is performed with one of largest unimolecular rate constants known for an 

enzyme. One of the postulates for how the enzyme accomplishes this is that the protein itself 

generates and applies an electric field in a direction that mitigates such strong charge separation 



5 
 

and serves to stabilize the intermediate. Experimentally, the study measured the magnitude of 

the electric field at various points within the KSI structure with a carbonyl (CO) probe and 

compared the values with that at the active site. It was found the field strength at the active site 

was “extreme” compared to other sites in the enzyme, on the order of 1.5 MV/cm. Mutants to 

the active site decreased the field strength and it was found that the catalytic rate of the enzyme 

had a linear dependence on the magnitude of the electric field. The study also examined the 

source of such a large field. Two individual amino acids with –OH groups seemed to be candidates 

for large contributors to the field, but like the superoxide dismutase study, it was concluded that 

on their own, the two residues could not account for the magnitude of the measured fields. As 

concluded in the previous two studies, it is the overall field produced by the structure that seems 

to be the important agent for function.  

1.21.21.21.2 PPPPrevious efforts in the measurement of internal electric fields in revious efforts in the measurement of internal electric fields in revious efforts in the measurement of internal electric fields in revious efforts in the measurement of internal electric fields in proteinsproteinsproteinsproteins    

 

Given the importance of these electric fields for biological function, the development of 

methods to measure these fields were required. The challenge is to obtain information in a small 

region of space, i.e. the active site, within the much larger volume occupied by the entire 

biological systems under study.  Thus, experimental approaches had to be found that selective 

probe the active site regions for these electric fields.  Fortuitously, for heme cofactors, their 

optical absorption is in many cases quite distinct from that of the rest of the considered 

biosystem.  By tuning a (laser) light source selective to the heme absorption wavelength, these 

can be selectively addressed with the molecular environment (i.e. the amino acids) registered as 

a perturbation to the heme electronic states.  Alternatively, characteristic vibrational 
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spectroscopic signature may also be useful, as shown by Boxer et al.10 who considered the CO 

stretch frequency when CO was bound to heme. 

The use of electronic absorption measurements to determine electronic fields originated 

in the Kohler group at the University of California, Riverside and continued at the University of 

Wisconsin–Milwaukee in the Geissinger and Woehl groups. The interest in measuring internal 

electric fields with high-resolution Stark spectroscopy was at first applied to polyenes in n-alkane 

matrices (e.g., octatetraene in hexane) at low temperature.11 Using the spectral hole-burning 

technique to resolve the Stark shift in those solid matrices, the surprising results were that the 

non-polar bulk solvent produced a net electric field of considerable magnitude–on the order of 

MV/cm! Analysis was carried out at both molecular and atomic resolution to quantify the field 

along the length of linear polyene probe molecules. The extension of that work to biological 

systems turned naturally to heme proteins, where the porphyrin macrocycle is spectrally related 

to linear polyenes.12 The protein matrix was also recognized as a complicated but conserved 

polymer that would likely produce a specific internal electric field vector that could be measured 

reproducibly and that may have significant functional relevance for the protein as indicated by 

the studies mentioned above. The initial proteins of interest were myoglobin and cytochrome c 

and successful internal electric field measurements were made in these systems.13 In addition, a 

new method to analyze Stark spectra was pioneered taking a quantum-mechanical approach to 

the problem.11a, 14 This advance showed promise to improve accuracy over the classical approach 

as well as providing a way to deduce directional information from the internal electric field vector 

as well as magnitude. 
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Another research group interested in measuring internal electric field in biological 

systems with spectroscopy is the Boxer group at Stanford University. Earlier work by this group 

was related to ours with a focus on large photosynthetic complexes with embedded chlorophyll 

molecules (and other porphyrin-related chromophores) using hole-burning Stark spectroscopy 

to shed light on the effect of internal electric fields on electron transfer.1c, 3c-e, 15 The group has 

also employed other spectroscopic methods, namely electroabsorption16 and the vibrational 

Stark spectroscopy,17 for the study of both photosynthetic and other systems, e.g., green 

fluorescent protein,18 myoglobin,1c, 19 human aldose reductase.20 Most recently, the group’s 

focus has shifted to the calibration and implementation of diatomic ligand probes, carbonyl21 and 

nitrile,22 as described in the ketosteroid isomerase study above. A discussion of the use of 

different molecular probes and advantages of porphyrin over others is found in Chapter 4. 

The efforts described in this volume sought to address some shortcomings that arose with 

the use of porphyrin probes to measure internal electric fields in proteins. Experimentally, a gain 

in spectral resolution was sought to improve accuracy of the measured field value and a new 

experimental set-up with a more sophisticated cryostat, laser system, optics, and detection was 

purchased (see Chapter 6). Other porphyrin probes, especially metalloporphyrins, were desired 

to test the theory of reproducibility of the internal electric field in previously tested proteins as 

well as gauge the effects of a reaction field (induced by a metal center) and a “self” field 

generated by charged propionate groups (see Chapters 4 and 5). Finally, the implementation of 

the promising quantum-mechanical Stark analysis previously had practical challenges that were 

overcome with additional insight into the problem (see Chapter 7) as well as better 

computational resources (see Chapter 8).  



8 
 

1.3 Manuscript organization 

This manuscript has been organized topically to include both theory and experimental or 

computational work in each chapter with the idea that the reader has reference information 

nearby when looking at a particular section. The computational and experimental sections 

generally fall into separate chapters, with the exception being the materials and methods 

sections, Chapter 2, as simply a listing of instrumentation and computational tools that can be 

referenced as needed. 

The experimental chapters are Chapters 4, 5, and 6. Chapter 4, “Porphyrin Probes,” 

describes the idea of molecular probes (like that in the ketosteroid isomerase study) and 

specifically the use of porphyrin as a probe. It also presents procedures for substituting porphyrin 

for heme in heme proteins, as this work clearly distinguishes molecular probe from protein 

environment. The discussion of porphyrins continues in Chapter 5, “Spectral Characterization of 

Porphyrins in Heme Proteins,” with the well-established theory of porphyrin absorption spectra 

(Gouterman’s “four-orbital model”). Then the changes to absorption and emission spectra of 

porphyrins in different environments are detailed. The experimental method to measure net 

electric fields in heme proteins is laid out in Chapter 6, “Hole-Burning Stark Spectroscopy,” with 

limited results.  

The computational chapters, Chapters 3, 7, and 8, represent the bulk of this work’s 

contribution to measuring electric fields in proteins. The problem of modeling net electrostatics 

in proteins is tackled in Chapter 3, “Calculation of Internal Electric Field in Proteins.” This 

separation of the protein (environment) from the porphyrin (probe) is again representative of 
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the approach this work takes to measuring net electric fields. Theoretical descriptions of how to 

treat the protein as a field-generating matrix are given and quantitative results of calculations 

based on a Coulomb’s law as well as a quantum-mechanical approach are presented. Then, after 

the experimental chapters, the manuscript returns to the analysis of Stark spectroscopy data in 

order to extract the net electric field value that is the goal of this work. Chapter 7, “Quantum-

Mechanical Stark Analysis,” describes a major advancement in a unique quantum-mechanical 

approach to the analysis of the measurement technique detailed in Chapter 6. This opens the 

door for the more widespread implementation of an analysis method that is potentially more 

accurate for internal electric field determination over the more typical classical analysis. Finally, 

Chapter 8, “Ab initio Calculations of Ground and Excited-State Properties of Porphyrins,” contains 

a collection of computational work that includes essential excited-state input for the quantum-

mechanical Stark analysis method given in Chapter 7. In addition, some calculations on the 

ground-state of porphyrins to begin to quantify the effect of the field on the electronic structure 

of the cofactor. The manuscript wraps up with a summary of conclusions and future directions 

for this work in Chapter 9.  
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Chapter 2 

Materials & Methods 

2.1 Spectroscopic tools 

Spectral characterization is referenced throughout this text. The commercial instruments 

used to do so are described here in general terms. Details may be given in context of a particular 

experiment. Both absorption and emission spectroscopy were employed. 

2.1.1 Absorption spectroscopy 

Ultraviolet-visible (UV-VIS) absorption spectra were obtained with a Lambda 650 dual-

beam spectrophotometer (Perkin-Elmer, Waltham, MA). Typically, a spectrum was obtained in 

scanning mode in 1.0 nm increments at a 0.2 s integration time. The visible region was excited by 

a halogen lamp while the UV region was excited by a deuterium lamp. Samples were contained 

in a 1-cm cuvette. For aqueous samples, disposable methacrylate cuvettes (Sigma-Aldrich, 

Milwaukee, WI) were regularly employed. For organic solvents, quartz cuvettes (Starna Cells, 

Atascadero, CA) were used. For spectra that reached <350 nm, a Spectrosil cuvette (Aldrich 

Chemical, Milwaukee, WI) was required, e.g., monitoring tyrosine absorbance at 280 nm for 

protein samples. A blank, consisting solely of the analyte’s solvent, was placed in the second 

beam path to correct for any solvent absorption.  

Absorption spectra was also occasionally collected with an Agilent 8453 photodiode array 

(Agilent, Santa Clara, CA). This instrument does not scan but acquires a broadband spectrum of 

the entire UV-VIS region in approximately 100 ms. It had the advantage of avoiding a lamp change 
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in the region <380 nm. In addition, the quick acquisition time also lent this instrument to kinetics 

experiments. Samples were contained in cuvettes as above, however, in single-beam fashion with 

no simultaneous blank. 

2.1.2 Emission spectroscopy 

Fluorescence spectra were obtained with a Fluorolog-3 fluorometer (Jobin–Yvon [Horiba], 

Edison, NJ). The instrument was used in two modes: 1) emission scan, where a single excitation 

wavelength was employed while fluorescence detection was scanned over a specified 

wavelength range, and 2) fluorescence excitation scan, where a single emission wavelength was 

detected while the source excitation wavelength was scanned. Parameters like integration time 

and slit width were specified per experiment. For room temperature acquisition, a 1-cm cuvette 

with four transparent walls as described above was employed. For low temperature (77 K) 

acquisition, the instrument-specific liquid nitrogen dewar assembly (Horiba, Edison, NJ) was 

inserted into the sample compartment where the sample was immersed in liquid nitrogen. 

Spectra was collected at a 90° angle for liquid samples.  For solid samples, either frozen or in solid 

matrix, spectra was occasionally collected in “front-face reflection” (22° angle from incident 

beam) mode if scattering losses were high. 

2.2 Porphyrin sample preparation tools 

2.2.1 Ultrapure water 

All porphyrin and substituted protein preparations used distilled water purified with a 

Barnstead Nanopure ultrapure water system (Thermo Scientific, Marietta, OH). The system 

produced water with a resistivity of 18.2 MΩ, indicating low ion content, and relatively free of 
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organic contaminants, RNase, DNase, and bacteria. This was accomplished with a UV lamp, 

ultrafilter, and final 0.2 micron filter. 

2.2.2 Reagents 

All reagents and solvents without origin specification in this text were obtained from either 

Sigma–Aldrich (Milwaukee, WI), Fisher Scientific (Pittsburgh, PA), or VWR International (Radnor, 

PA). Reagents were employed without further purification. Glycerol for spectroscopy samples 

was purchased at ultrapure, spectrophotometric grade from VWR (Alfa Aesar label). 

2.2.3 pH 

Porphyrin and substituted proteins were created in solutions with carefully controlled pH. 

A VWR Symphony benchtop pH meter (VWR International, Radnor, PA) was employed for pH 

measurement and adjustment. The meter was able to measure accurately to 0.002 pH unit. The 

measurements were typically calibrated with three standard buffers (VWR): pH 4.00, pH 7.00, pH 

10.00. VWR Symphony probes used were either a glass, refillable, Ag/AgCl referenced with a 

separate epoxy automatic temperature correction (ATC) probe, or a combination gel, non-

refillable, Ag/AgCl pH probe with integrated ATC capability. 

2.2.4 Phosphate buffer 

Protein solutions were typically buffered with phosphate buffer. Using either sodium or 

potassium salts, the HPO4
2- (“dibasic phosphate”) / H2PO4

- (“monobasic phosphate”) system 

provided a pH range appropriate for working with myoglobin and hemoglobin. Stock solutions of 

1 M dibasic and 1 M monobasic phosphate were prepared. Then, the appropriate proportions 

were mixed to achieve the desired pH. Most experiments were performed at pH 7.3, which 
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required a mixture of 77% dibasic and 23% monobasic solution. Then, the resulting 1 M buffer 

was diluted to 0.1 or 0.05 M for use with protein solutions. Finally, the pH was checked with a pH 

meter and adjusted to 0.1 pH unit accuracy. 

2.2.5 Centrifugation 

Centrifugation was employed in preparation of substituted proteins for purification 

purposes as well as to recover precipitated protein. A Sorvall RC6 Plus floor-model centrifuge 

with Fiberlite composite rotor (Thermo Scientific, Marietta, OH) was used for samples >1 mL. 

Typically, an SH-3000 swinging bucket rotor was used at a maximum of 4400 rpm. The internal 

cooler was set to 4 °C for protein preparation. For samples <1 mL, an IEC Micromax 

microcentrifuge (Thermo Scientific, Marietta, OH) was used, which was kept to a temperature of 

approximately 4 °C or less in a walk-in cooler.  

2.2.6 High-performance liquid chromatography 

For some purification steps in substituted protein preparation, an AKTA high-performance 

liquid chromatography system (HPLC) (GE Healthcare Life Sciences, Pittsburgh, PA) was 

employed. Pre-packed ion-exchange and size-exclusion columns were implemented in the 

system. Details of column type and operating conditions are discussed in context of particular 

experiments. All samples and buffers were filtered with a 0.45 micron or smaller pore size before 

loading onto the HPLC. 

2.2.7 Long-term protein storage 

Once prepared, porphyrin-substituted proteins were stored in buffered solution in polymer 

microcentrifuge at low temperature in a CryoPro liquid-nitrogen storage dewar (VWR 
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International, Radnor, PA). Individual samples were placed in labeled aluminum ladles, which 

were submerged in cryogen.  

2.3 Computational tools 

2.3.1 Gaussian09 & GaussView 5 

For all ab initio, density functional theory, and semi-empirical calculations of molecular and 

excited-state energies and properties, Gaussian09, Rev. A.02 (Gaussian Inc., Wallingford, CT)1 

was used. For visualizing results and manipulating structures, GaussView 5 was used. The Linux 

version of Gaussian09 (G09) was installed and accessed on two high-performance computing 

clusters: 1) “Avi” (University of Wisconsin–Milwaukee research) and 2) “Cleve” (Department of 

Chemistry & Biochemistry at UWM). In addition, the programs were also installed and accessed 

on a desktop computer in the Department of Chemistry & Biochemistry.  

Details of practical usage of Gaussian09 can be found in Appendix A. Here, the basics of 

crafting an input file, are presented. Theoretical background of these methods are discussed in 

Chapter 8.  

2.3.2 Stark06 program 

A program that calculated internal electric field values from hole-burning Stark spectra, 

Stark06, was developed “in-house” by Dr. Barry J. Prince in 2003. The quantum-mechanical Stark 

analysis method described in Chapter 7 was implemented in this version of the program. Details 

of the program can be found in Appendix B, including examples of input files. 
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Chapter 3 

Calculation of Internal Electric Fields in Proteins 

3.1 Introduction 

As we have illustrated the role of net electrostatics in protein function in Chapter 1, we now 

turn to ways to predict the net electric field value as a way to validate the experimental values 

for heme proteins produced by the Stark spectroscopy method. Various methods have been 

established to model and quantify electrostatic properties in proteins.1 The methods can be 

divided into macroscopic and microscopic approaches. As computational resources become 

increasingly powerful and available, the methods have followed suit, becoming more and more 

detailed.  

Widely used approaches4 to quantify electrostatics of macromolecules include, on the 

macroscopic end, the Tanford–Kirkwood treatment (introduced in 1957),5 which views a protein 

as a substance with a single dielectric constant containing charged groups embedded on the 

surface of the spherical macromolecule. On the microscopic end, the Protein-Dipole–Langevin-

Dipole (PDLD) approach6 treats both protein and solvent as a collection of dipoles. In the middle 

of the spectrum are a variety of so-called Poisson–Boltzmann equation (PBE) solvers, such as the 

currently free APBS7 and DelPhi8 programs. These PBE solvers improve upon a simple 

macroscopic models, e.g., taking the irregular shape of the protein into account rather than 

approximating it as spherical; including dipoles at specific locations in the protein interior. 

Overall, they use some combination of treating the solvent as a dielectric as well as the protein 
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with assigned dielectric constant(s). Boundary conditions are also usually implemented in PBE 

solvers with the goal of realistically describing the charge distribution on the surface an in active 

sites of the protein.  

There are many, many types of electrostatic interactions in microscopic descriptions9 arising 

from the best description of a particular region of a protein, e.g., monopole, dipole, multipole, 

etc., with each interaction bearing its own mathematical description. In addition, the non-

covalent interactions sought with by these models can also be organized into short- (Born–Mayer 

[1/r12]; Van der Waals [1/r6]; hydrogen bonding), medium- (Coulombic [1/r], with its derivative 

being electric field), and long-range (solvent effects)10. It is important to define the aim of the 

works amongst the variety of electrostatic pursuits. The experimental method described in 

Chapter 6 specifically measures the 1/r2 electric field at the heme active site in heme proteins, 

which is generally in the interior of the protein. In addition, it is the net field at heme over its 

surface in the heme pocket, as opposed to any electrostatic mapping of the protein matrix itself. 

Thus, it is truly the medium-range electrostatic “experience” of the heme provided by the protein 

host that is described by our measurement. 

The following describes first, three approaches to modeling the net electric field in heme 

proteins that were explored to validate experimental results. Then, unique aspects of protein 

structure in general and then specifically of myoglobin, the model heme protein used in this work, 

are discussed. Finally, results for calculations are presented for internal electric field in 

myoglobin. 
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3.2 Modeling net electrostatic fields in proteins 

The experimental portion of this work views the net electrostatic environment inside of a 

heme protein as an electric field vector with both magnitude and direction.11 This is a result of 

the individual electrostatic structure unique to a particular protein that was discussed in the 

Introduction (Chapter 1). In attempting to model this electrostatic environment, we take on two 

other viewpoints as well: a point-charge model, where each individual atom has a specific partial 

atomic charge and position with respect to the heme active site; and a dielectric constant model, 

where the entire structure sums as a bulk material to influence the heme active site like a solvent. 

Each of these three electrostatic models has a unique perspective as discussed in the following. 

3.2.1 Point charge model 

Coulomb’s law forms the basis of the point charge model: 

� =
�

�����
         (3.1) 

where φ is the electrostatic potential, q is the magnitude of the point charge, ε0 is the dielectric 

permittivity in free space, and r is the distance between the point charge and the point where 

potential is measured. The first derivative of this quantity is then the electric field, which, as a 

vector, takes on the form: 

	
 = ∑ �

������
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�
        (3.2) 

where �
 indicates a vector. The expression sums over all point charges in the vicinity of the point 

in space where the field is measured. See illustration in Fig. 3.1. 
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For proteins, the point charges are individual atoms in the protein matrix. In this model, 

assignment of magnitude of the point charge, q, is dependent on the partial atomic charge 

method used, which will be necessarily arbitrary (see Section 3.5.2 below). Partial atomic charge 

distribution takes into account that neutral atoms and charged ions in a molecule, especially a 

macromolecule with salt bridges, hydrogen bonds, etc., will not carry charges of exactly zero or 

exactly ±1, ±2, etc.  

The position of these point charges, r, however, is often better defined based on 

structures from x-ray crystallography or nuclear magnetic resonance (NMR) methods. The 

position is taken as that of center of the nucleus of each atom. In heme proteins, the distance 

that r refers to is with reference to the iron center in the heme active site, where electric field 

will be calculated in this work. Yet, protein structure, too, has some variability that will also be 

discussed in further detail in Section 3.5.1 below.  

This point-charge approach has precedence in the development of a number of force 

fields implemented in molecular mechanics algorithms. When applied to proteins, the exercise 

results in the tabulation of bond lengths, bond angles, and partial atom charge values for 

individual amino acids.12 
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3.2.2 Electric field vector 

Modeling the electrostatics of a protein matrix as an electric field vector also has its origin in 

Coulomb’s law and also arises from the sum of contributions from a distribution of charges 

surrounding the point of measurement. The calculation of a molecular electric field vector, 

however, does not necessarily rely on assigning point charges but might use a wavefunction for 

the protein matrix instead in an ab initio calculation. From a quantum-mechanical perspective, 

electrostatic potential is given as:13 

���� = 	∑
��

|����|
� ∑ ��� �

���� ��!�� �

|��� |
��"     (3.3) 

where V(r) is the electrostatic potential at some point r (the heme iron in this work). The first part 

of the expression is the nuclear portion, which is a point charge: Z is the nuclear charge of atom 

A and RA is the position of the nucleus of atom A. The second part of the expression is the 

Figure 3.1. a) Illustration of one positive and one negative point charges with electric field lines 
formed between them. b) Surface model of myoglobin with electric field lines emanating from 
the surface as visualized with PyMOL.2 Field lines were calculated with the APBD plugin for 
PyMOL.  
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electronic portion, which is treated as a distribution: Pμν is the density matrix element of atom A; 

��and �� are orbital basis functions at position r1. 

In experiment, however, a static structure is not likely and the resulting vector is an average 

quantity that takes into account the variability in a dynamic protein.14 The vector itself might also 

be allowed dynamic nature, especially if the protein motion is periodic, e.g., protein 

“breathing.”15 

This viewpoint of the electrostatic structure also necessitates the specific term “internal 

electric field” vector (	
#$%) to differentiate it from a field that might exist outside the protein 

matrix itself (	
&'%).11 This external field might be applied as a perturbing field during an 

experiment (e.g., Stark spectroscopy) or may arise from naturally occurring environmental 

conditions (e.g., a solvent containing highly charged particles or an independent, charged 

structure in close proximity). The internal and external electric field vectors sum to yield the total 

electric field experienced at the heme protein’s active site: 

	
#$% + 	
&'% = 	
%)%        (3.4) 

The external field portion may be further modulated by the protein matrix itself, which will be 

further discussed in describing Stark spectroscopy in Chapter 6.  

3.2.3 Dielectric constant 

An entirely different approach to the electrostatic environment inside of heme proteins is 

to view the protein matrix with a singular, bulk parameter, the dielectric constant. It is very 

generally defined as the tendency of a material to undergo electric polarization from charge 
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displacement when an electric field is applied. From a microscopic point of view, high dielectric 

constant is correlated with polar materials and low dielectric constant with non-polar materials.  

For our purposes, we can define the quantity as a ratio of the permittivity of the material, 

ε (in farads per meter, F/m), to the absolute electric permittivity of free space, ε0, which is the 

ultimate insulator and theoretical minimum for a permittivity measurement. Dielectric constant 

is synonymous with relative permittivity, εr: 

	� =
�

��
          (3.5) 

This macroscopic quantity is related to the microscopic idea of polarizability, α, the tendency of 

a molecule’s electron distribution to be polarized in the presence of an electric field, often 

generated by a dipole in the vicinity of the molecule. The relationship between macroscopic and 

microscopic for a liquid or solid material is given by the Clausius–Mosotti equation: 
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Here, M is the molecular weight of a molecule of the material of interest; ρ is the material’s 

density; NA is Avogadro’s number. 

As mentioned earlier, the assignment of dielectric constant to proteins is integral to some 

methods for quantifying electrostatics in proteins and the determination of the value has become 

a pursuit in itself.16 Typically, the value assigned is very low, ε=2.5–4, but for some purpose can 

be as high as ε=40.4 However, it is strange to attempt to apply a continuum value to a discrete 

macromolecule because the dependence of the value on interacting dipoles assumes 

homogeneity. In addition, the assignment of a single value to any one protein is also 
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questionable, as the value likely changes from region to region (i.e., dipole to dipole) as well as 

over time in such a dynamic structure. Though the assignment of a macroscopic quantity to a 

microscopic structure is inherently flawed,17 the usefulness of treating the protein matrix as a 

“solvent” will become clearer in our discussion of porphyrin spectra in Chapter 5 as well as with 

application to calculations of porphyrin electronic structure below. As such, we will use the 

variable εp with the understanding that the protein dielectric constant is an effective value.  

3.3 Protein as a “glassy solvent” 

The viewpoint of protein matrix as a solvent for heme is reinforced by experiments which 

reveal glass-like properties of the material. The experiments in this work are done at low 

temperature (liquid-nitrogen and liquid-helium temperatures) dissolved in solvents (e.g., 

glycerol–water mixture, DMSO, etc.) that freeze to form amorphous solids. These conditions 

impart the unexpected glass-like properties. From x-ray crystallography, the tendency of proteins 

to crystallize is well documented. The orderly structures the technique reveals reflect the specific 

tertiary structure that has been so important in elucidating function. However, there are also 

components of randomness in protein structure that is comparable to glassy (i.e., amorphous) 

materials, which are characterized by structural relaxation that occurs even at temperatures in 

the millikelvin realm. These structural relaxations can be seen spectroscopically in time-resolved 

experiments.1819Changes in spectra can reveal the kinetics of small changes in the position of 

solvent atoms, side-groups, or molecules with respect to the chromophore. However, 

experiments that showed similarity of proteins to glasses also show that the extent of the 

randomness is not as great.18c We are left with a picture of overall organization of tertiary 

structure in proteins that nonetheless retains entropy in time and space.20 
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It is helpful to think of the miniscule changes in a glassy material in terms of an energy 

landscape that contains numerous local minima, most of them quite shallow.21  The same 

illustration has been applied to protein folding, with a deep global minimum representing the 

native folded structure (see Fig. 3.1). However, even inside the correct tertiary arrangement, the 

position of individual amino acids can have more than one option. Experiments at extremely low 

temperature show sampling of different conformations on an observable timescale for proteins 

as has been observed for glasses. This is represented by quantum-mechanical tunneling through 

the small barrier that separates one conformation from another. Experiments that raise the 

temperature of the system slightly and then re-cool the system also shows spectral changes that 

reveal conformational changes in both glasses and proteins.18b This is represented by the system 

obtaining enough energy as the temperature rises to overcome a larger energy barrier to then 

become trapped in the second minimum as the system is cooled again. The availability of a 

transition between one conformational state and another has been termed a “two-level system” 

(TLS).22 For a macromolecule, there are an enormous number of two-level systems for its native 

structure. One major difference between proteins and glasses is the extent of coupling between 

spatial regions in the solid system. Proteins are necessarily coupled between regions of the 

macromolecule while individual regions of glasses are not. This can be illustrated by areas of 

smoothness on a protein potential energy surface while a glassy solid’s is saturated with potential 
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wells.23 With respect to internal electric fields in proteins, it is clear that this description of 

proteins with glassy characteristics implies that the electrostatics are also dynamic. 

 

 

3.4 Model heme proteins 

In this work, we consider myoglobin as a model heme protein, being both well-studied and 

simple (the “hydrogen atom of biology”) as well as generating ongoing inquiry (a “paradigm of 

complexity”).24 As a point of contrast and comparison, we will also describe in this section two 

other heme proteins, hemoglobin and nitrophorin, as candidates for internal electric field 

calculations and experiment. In any description of a protein’s tertiary and/or quaternary 

arrangement, it is implied the we are discussing its electrostatic structure, i.e., the placement of 

residues with respect to the heme active site has significance as described by Coulomb’s law and 

not necessarily for steric effects. This gives specific structure a longer-range influence than might 

be initially recognized.  The native protein structure will be described followed by alterations that 

are expected to measurably change electrostatic structure. 

Figure 3.2. Two-level system illustrated for 
a protein. Local minima are seen in three 
successive enlarged regions of the 
potential energy funnel. Zooming in to the 
smooth minimum of the global well, 
surface roughness is revealed at better 
resolution. Then, two wells of the rough 
surface is then selected as the two-level 
system to be illustrated. Isolating one of 
these barriers between two small local 
minima defines three parameters: Δ = 
energy asymmetry parameter, d = distance 
between minima (along a configuration 
coordinate), and V0 = barrier height.3 
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3.4.1 Myoglobin 

The well-known myoglobin is a monomeric, globular protein that is known primarily for its 

dioxygen (O2) storage capabilities in mammalian muscle tissue. It was the first protein to have its 

three-dimensional structure elucidated by x-ray crystallography and published by John Kendrew 

in 1958.25 It is known to have a tertiary structure comprised of eight alpha helices, labeled A 

through H, that contain 153 amino acid residues and almost 2500 atoms (including hydrogens). 

It is approximately 30 Ǻ in diameter. It has five conserved cavities through which ligands can 

traverse: four “xenon holes” in the protein interior and one heme cavity (also known as the “distal 

cavity”). The seven residues that are typically considered to “line” the heme cavity are LEU 29, 

PHE 43, LYS 45, PHE 46, HIS 64, VAL 68, HIS 93 (using the number from the sequence in Table 3.2 

below; amino acid abbreviations are given in Appendix C). The entrance to the protein interior is 

unclear. See illustration in Fig. 3.3. 

 

The active site is the iron-centered heme macrocycle, which sits in the heme cavity 

approximately 10 Ǻ across with an edge that is solvent-exposed. It is at the iron that diatomic 

ligands covalently bind: O2, carbon monoxide (CO), nitric oxide (NO), and cyanide (CN-). 

Figure 3.3. Stick 
structure of myoglobin 
(PDB code 1mbo) with 
heme highlighted in 
yellow, nitrogen in blue, 
carbon in green, oxygen 
in red, and hydrogen in 
gray. 
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Obviously, it is the dioxygen ligand that mammals prefer, but, based on binding affinities, the 

heme actually has a preference for binding CO. Interestingly, a heme molecule in solution has a 

binding affinity for CO that is 30 000 – 100 000 times greater than O2. However, when the heme 

is embedded in myoglobin as a cofactor, that same ratio drops to 30!26 

Clearly, the protein matrix assists in the ligand selectivity but the mechanism by which it does 

so is not entirely clear. Factors likely include the binding geometry of the ligand (perpendicular 

to the heme plane for CO and angled for O2),27 steric effects of the protein matrix28 and distal 

histidine29 (which can hydrogen bond to a bound ligand), the redox potential of the iron,30 and 

the slight non-planarity of the heme macrocycle.31 In this work, we postulate that the directional 

net electric field, either static or dynamic, generated by the protein matrix may have some 

bearing on function via ligand specificity. Two suggestions for this mechanism are: 1) influencing 

the electron distribution over the heme ring, especially at the iron center, to alter bond strength 

and binding kinetics; 2) directing the rotation of a diatomic ligand in the protein interior cavities 

to enable or hinder a pathway of the small molecule to the binding site at the iron center. Two 

interesting perturbations to myoglobin, pH and mutations, should alter the protein’s electrostatic 

structure and hence the internal electric field. They are described below in a way that should 

inform future Stark spectroscopy experiments to attempt to sense the electrostatic changes and 

may serve as a way to calibrate sensitivity of the technique. 

3.4.1.1 pH perturbation 

As suggested by the discussion of two-level systems, myoglobin has a number of 

conformational substates. They can be induced by the presence or absence of a ligand. It is likely 

affected by solvent, as active forms of the protein have a one to two layer “hydration shell” with 
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a particular arrangement of water molecules that is unique compared to the solvent continuum. 

An interesting finding is that myoglobin, as opposed to a long-held belief, is allosteric with two 

defined functions (and possibly more) that are associated with three to four distinct 

conformational substates. These substates can be induced with adjustments to pH.32 Two 

substates have distinct roles: A1 performs the well-known oxygen storage role while A0 appears 

to convert NO to nitrate (NO3
-). A1 can be found at high pH values, which seems to keep the distal 

histidine inside of the heme pocket, and A0 can be induced by low pH values where the distal 

histidine leaves the protein interior and rotates out into the solvent. From the electrostatic 

structure point of view, these substates should generate distinct electric field vectors at the 

active site due the major shift in the position of an amino acid in close proximity to the heme 

iron. 

For myoglobin, with an isoelectric point (pI) of 7.2, “high pH” and “low pH” are with reference 

to this point. Experiments performed at pH ≈ 4 would induce a population of myoglobin primarily 

in the A0 substate. Experiments performed at pH ≈ 6 would induce a population mixed equally 

between A1 and A3, a substate which is characterized by the protonation of another heme pocket 

residue, HIS 97, that lies at approximately the same distance from the heme iron as HIS 64.  Table 

3.1 lists the types and quantities of the ionizable residues in the human myoglobin (PDB code: 

1mbo) along with typical pKa value for the residue type. This was used to build the Coulomb’s law 

model described below and can inform future models. 
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Table 3.1. Ionizable residues in myoglobin. 

Quantity Type of Amino Acid pKa Charge at pH 7.2 

4 ARG 12.48 + 

6 ASP 3.90 - 

14 GLU 4.07 - 

12 HIS 6.04 neutral 

19 LYS 10.54 + 

3 TYR 10.46 neutral 

 

3.4.1.1.1 Titration of glycerol–buffer solution 

 Because myoglobin experiments would be performed in a glassy glycerol–water mixture, 

another investigation that was performed to prepare for pH experiments was a titration of a 

glycerol–buffer mixture to see if that system behaved in a substantially different manner than a 

completely aqueous pH 7.0 phosphate buffer. As an alcohol with three ionizable protons, glycerol 

(C3H8O3) has the potential to contribute to the solution pH. There is typically only a single pKa≈ 

14 listed for glycerol,33 which should not be of concern for neutral-range solutions, but the effect 

of mixing with dilute aqueous buffer was unknown. Phosphate buffer (0.1 M) was created as 

described in Chapter 2, Materials and Methods, and mixed with glycerol in a 3:1 volume ratio 

overnight to assure the complete mixing of the aqueous component with the viscous glycerol 

component. 
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 First, a titration of the aqueous phosphate buffer (pH = 7.0) was performed by adding 0.1 

M NaOH dropwise to pH 12 and again, starting at neutral, by adding 0.1 M HCl dropwise to pH 2. 

The phosphate buffer system should contain three pK values. However, the experimental pH 

range showed two sigmoidal jumps when “pH vs. volume of acid or base added” was plotted, and 

only one “half-titration point,” which corresponded to pK2 (H2PO4
-�H++ HPO4

2-). The sigmoidal 

curve was then differentiated using the Origin 7.0 program (Analysis � Calculus� Differentiate) 

to determine inflection points. Then the pH at the volume exactly between the inflection points 

was taken as pK2.  

 The same experiment was repeated using the glycerol–buffer mixture, taking extra care 

to allow each addition to equilibrate. Because the solution contained organic solvent (glycerol), 

the pKa is not a strict measurement because, by definition, pH is a measurement of an aqueous 

system. However, we will use the term “apparent pKa” to apply to the mixture. At T ≈ 20° C, 

aqueous phosphate buffer (pH = 7.0) measured a pK2=6.703 and for a 3:1 glycerol:buffer mixture, 

the apparent pK2 = 7.054. This compared well to a report for such a mixture at a much lower 

glycerol concentration of pK2=6.74.34 

3.4.1.2 Mutations 

 Another major structural alteration that also informs both function and electrostatics is 

mutation. A number of mutations to the active site that can dramatically affect binding affinity 

and kinetics has been tabulated in Ref. [26]. Because Coulomb’s law is based on two variables, 

distance from the point of measurement and magnitude of charge, interesting mutants will vary: 

1) distance from the heme iron, especially at a position where the 1/r2 influence is strong; 2) the 

charge on the mutated residue (positive, negative, or neutral). 
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Table 3.2. Wild-type human myoglobin secondary sequence: 

Sequence 
Label 

Amino Acid Sequence 

1 GLSDGEWQQV  LNVWGKVEAD  IAGHGQEVLI  RLFTGHPETL  EKFDKFKHLK 

51 TEAEMKASED  LKKHGTVVLT  ALGGILKKKG      HHEAELKPLA  QSHATKHKIP 

101 
IKYLEFISDA       IIHVLHSKHP   GDFGADAQGA  MTKALELFRN  DIAAKYKELG 

 

151      FQG 

 

 Efforts were made to research which myoglobin mutants might yield interesting results 

for Stark spectroscopy experiments. Referencing Springer (1994), values for ratios of equilibrium 

constants for CO to O2 binding in myoglobin (KCO / KO2)are tabulated in Table 1 in Ref. 26 and 

provided guidance. However, only human, sperm whale, and pig myoglobin species were 

provided in that report while our experiments would use equine myoglobin to compare to 

previous experiments. A sequence comparison with the online tool NCBI BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed 25 July 2014) revealed that equine myoglobin 

is 88% similar to Homo sapien (human) and Physeter catadon (sperm whale) myoglobin. The high 

degree of alignment suggested that the tabulated values likely still apply to equine myoglobin. 

Then, a consideration of which mutants would provide a reasonable alteration to the 

electrostatic structure, based on change in position and charge per Coulomb’s law, was made. As 

a result, three mutants to the distal histidine, HIS 64, are suggested for Stark spectroscopy 

experiments. 
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First, a H64V mutation is suggested. The mutation from HIS to VAL in sperm whale 

myoglobin shows in increase of KCO / KO2 from 25 to 33 after the mutation. When visualized with 

the WinCOOT program (http://www.ysbl.york.ac.uk/~lohkamp/coot/wincoot-download.html), it 

was clear that valine will remove electron density from the vicinity of the heme ring but is not 

too small so that structural collapse might be prevented. In addition, the removal of HIS 64 

seemed to allow LYS 45 (a positively charged residue) more access to the active site. The H64V 

mutant has been successfully made for equine myoglobin and the crystal structure has been 

deposited in the Brookhaven Protein Data Bank (PDB; http://www.rcsb.org/) under the PDB ID 

number 3HC9.29c 

Second, the H64Y mutant is also suggested. A mutation from HIS to TYR allows the 

mutated residue to sit at about the same distance from the heme ring and also with an overall 

neutral charge.35 However, a WinCOOT visualization revealed that the TYR version would have 

more electron density near the active site than HIS. More convincingly, this mutation had a huge 

100-fold increase in preference for CO over the wild-type protein! The H64Y equine myoglobin 

structure has also been deposited in the PBD under the code 1YMA.36 

Finally, the H64E mutant may be interesting. There is no published equilibrium constant data 

nor a crystal structure for the mutation from HIS to GLU. However, visualization with WinCOOT 

showed that the GLU residue was about the same size as HIS but would be negatively charged. 

In preparation for future mutant production, sequences and primers were determined for 

the three mutants above and obtained along with E. Coli cells and purification columns. Vectors 

were ordered from Genscript (Piscataway, NJ) with the sequence given in Table 3.2 but with the 
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highlighted HIS in position 64 replaced with V, Y, and E for the three respective pUC57 vectors. A 

stop codon was included and the following restriction sites were avoided: XBA1, BSA1, NDE1, 

BAMH1, XHO1. For ligation of the specified vectors to pE-SUMO or pET-15b plasmids in a 

polymerase chain reaction (PCR), the following primer sequences were generated with 

Primer3Plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) and obtained 

from Integrated DNA Technologies (IDT, Coralville, IA): 

• Forward primer in SUMO: GGT CTC AAG GTG CTC AGT CAC ACG CTA CCA A 

• Reverse primer in SUMO: GCT CTA GAT CAA ACC CTG AAA GCC CAG TTC T 

• Forward primer in pET-15b: GGA TTC CAT ATG GAA AAC CTG TAT TTT CAG GGT GCT 

CAG TCA CAC GCT ACC AA 

• Reverse primer in pET-15b: CGG GAT CCA ACC CTG AAA GCC CAG TTC T 

Finally, competent E. Coli cells were purchased from New England Biolabs (NEB; Ipswich, MA) 

and a nickel-containing HIS-trap column for purification was purchased from GE Healthcare 

(Uppsala, Sweden). 

3.4.2 Hemoglobin 

Hemoglobin, like myoglobin, also represents a classic, well-studied heme protein that 

continues to generate new research and ideas about its mechanism of allostery.37 It is known 

even colloquially for its role in carrying O2 in the bloodstream of mammals and delivering it to 

cells in respiration. The quaternary structure is made up of four subunits, two alpha- and two 

beta-subunits with individual sequences, to form a “dimer of dimers.” Each subunit’s tertiary 

structure resembles myoglobin in that each is globular with a heme active site where diatomic 
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ligands bind, including CO and NO. This gives a ratio of four heme binding sites per hemoglobin 

molecule. See Fig. 3.4. 

   

The cooperativity displayed in oxygen binding and release has a number of competing 

theories with the Monod–Wyman–Changeux (MCW) / Perutz model being the best known.38 This 

model postulates that a global conformational change from the T (tense) state to the R (relaxed) 

state is induced by binding the first of four oxygen molecules. The conformational change 

increases the affinity of the other three binding sites for hemoglobin. The notion of conformation 

change being associated with a change in function suggests that the electrostatic structure 

change could be sensed and Stark experiments to measure internal electric field at individual 

subunits would be revealing. A description of how hemoglobin samples might be generated for 

such an experiment is given in Chapter 4. 

3.4.3 Nitrophorin 

A heme protein with distinct electrostatic structure and function from the related globins 

described above would make a good comparison for Stark spectroscopy experiments. 

Figure 3.4. A dimer of 
α- and β-subunits of 
hemoglobin with 
heme highlighted in 
yellow (PDB code 
1HHO) illustrated 
with PyMOL. 
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Nitrophorin is such a candidate. The protein is produced in the saliva of blood-sucking insects 

such as the kissing bug.39 While in the lower pH saliva environment (pH 5-6) of the insect, the 

heme binds NO. However, once the enzyme has been injected into the bloodstream of a 

mammalian victim, the slightly higher pH ≈7 environment causes a conformational change that 

induces NO release. The destination for the NO ligand is soluble guanylate cyclase (sGC) where it 

begins the process of vasodilation in the victim, ultimately increasing the flow of blood for the 

feeding insect. In addition, nitrophorin also binds histamine to the heme once NO has been 

released, preventing an immune response in the victim and further enlarging the insect’s meal 

volume.40 

In terms of electrostatic structure, it has a tertiary structure that contains a single heme 

molecule inside a beta-barrel motif. The cavity is overall negatively charged, which would make 

a good comparison to the non-polar myoglobin heme cavity. In addition, the heme is ligated to 

the protein by a single covalent bond to a proximal histidine.41 



41 
 

      

 

3.5 Theoretical calculations of internal electric field in myoglobin 

Using a point charge model, internal electric field for myoglobin was calculated. An in-house 

program (proteinfield.c) that evaluates Coulomb’s law by plugging in values for the two variables 

for the program for each atom in the protein matrix used. The two variables according to Eq. 3.2 

are r, distance from the point of measurement, and q, magnitude of charge. We will discuss each 

of these variables in turn. 

3.5.1 Determining position of protein matrix atoms 

Crystal structures provided an excellent resource for determining r in this type of 

calculation. An oxygenated human myoglobin was chosen and located in the PDB with code 

1mbo. To prepare the file for use in a Coulomb’s law calculation, the following steps were taken: 

1) any non-polypeptide molecules were removed (discrete water molecules and inorganic 

Figure 3.5. Nitrophorin’s beta barrel structure with heme highlighted in yellow (PDB code 1ERX) 
illustrated with PyMOL. 
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artifacts of crystallization) except for the cofactor (heme); 2) hydrogen atoms were added using 

the PyMOL program; 3) the structure was translated and rotated to position the origin at the 

heme iron and the x–y plane in the heme plane, using nitrogen pyrrole atoms as references of 

the x- and y-axes (see Appendix D for instructions on this step using the GaussView 5 program); 

4) the heme cofactor was removed to leave only the 2496 protein matrix atoms. The internal 

electric field was then calculated at the origin of the coordinate system, which is where the heme 

iron was virtually positioned. 

Examining the 1mbo file, it was found that four residues actually had two distinct positions 

with equal probability (i.e., two sets of coordinates with an occupancy of 0.50): VAL 13, LEU 86, 

LEU 89, and GLN 128. See visualization in Fig. 3.6. Individual myoglobin structures were generated 

to account for each of two alternate positions of these four residues (42 = 16 structures) and the 

internal field calculation was performed for each structure. In addition, mutants were created 

with the PyMOL program at two residue positions that are part of the heme cavity and deemed 

influential in terms of ligand discrimination based on Table 1 in Ref. [26]: HIS 64 (distal histidine) 

and LEU 29. 

    

Figure 3.6. Four residues with alternate 
positions according to the 1mbo PDB file 
are highlighted in red. Distance to the 
heme iron is labeled for each. Heme is 
highlighted in yellow. Green residues are 
other heme cavity residues that are 
considered influential per the distance to 
the heme iron. 
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Because Coulomb’s law states that point charges lose influence with distance scaling as 

1/r2, an analysis was performed to determine whether there is a “cutoff radius” in the myoglobin 

matrix where it can be expected that most of the internal electric field is generated at the heme 

iron. This information is useful for determining where the most impactful mutations might lie as 

well as for methods like QM/MM (quantum-mechanics/molecular mechanics; a.k.a. “ONIOM”)42 

in which proteins are modeled explicitly near a point of interest (e.g., active site) and less 

explicitly farther away. This exercise assumed equal charge of every atom, which, of course, is 

not physical but allows for this general partition into “likely to be influential” and “not likely to 

be influential.” Using the rotated and protonated 1mbo coordinates, the distance to the origin, 

r, was calculated for each atom using the Pythagorean theorem, � = √�3, + 4, + 5,�. Then the 

1/r2 term for each atom was calculated. Finally, each distance was normalized with respect to the 

closest atom (a nitrogen atom in HIS 93, the proximal histidine, that bonds covalently to the heme 

iron) to allow sorting by distance and to assign the percentage of influence. Conveniently it was 

found that atoms that lie within 10 Ǻ of the heme iron likely make up about 95% of the internal 

electric field. See Fig. 3.7.  In addition, the positions of atoms in each individual residue were 

averaged and a list of the top twenty closest residues were determined and are given in Table 

3.3 below. 
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Table 3.3. Top 17 closest residues to the heme iron in 1mbo. Highlighted residues indicate those 

considered as heme cavity residues. 

Residue 

Proximity 

to Fe (Ǻ) Residue 

Proximity 

to Fe (Ǻ) Residue 

Proximity 

to Fe (Ǻ) 

HIS 93 5.259 PHE 43 7.435 ALA 71 8.514 

VAL 68 5.956 ILE 107 7.840 LYS 42 8.937 

HIS 64 6.696 SER 92 7.893 GLY 65 9.239 

HIS 97 6.768 THR 67 8.023 ALA 90 9.277 

ILE 99 6.967 LEU 104 8.062 LEU 72 9.407 

LEU 89 7.150 LEU 29 8.399   

 

3.5.2 Determining partial atomic charge in myoglobin 

As mentioned in Section 3.2.1, q is determined in this model by assigning a partial atomic 

charge for each atom in the protein matrix, which will always be an ultimately arbitrary 

Figure. 3.7. A 
visualization of the 
volume of myoglobin that 
contains the most 
influential residues as 
given by Table 3.3 with 
respect to the heme 
active site as compared 
to the full myoglobin 
perimeter. 
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assignment but can have logical constraints to the scheme. In general, for amino acids, the 

magnitude of charge is kept to ±1 for neutral atoms. Known ions in the protein can take on full 

charge. Also, the sum of partial atomic charges must add up to the overall charge on the protein. 

In the case of myoglobin, the net charge should sum to zero. Besides the method for determining 

distribution of charge, one can also take one of two approaches in terms of resolution: 1) 

calculate partial atomic charge for each atom type, e.g., terminal carbons, carbonyl oxygens, etc., 

that recur in various amino acids; 2) calculate partial atomic charge for each individual atom in 

the protein based on its unique surroundings, both bonded and in proximity in the tertiary 

structure. Both approaches were taken and compared in this exercise.  

The first approach has been tabulated in several reports.12c, 43 The method here is to use an 

empirical force field, (CNDO/2, AMBER, and CHARMM, respectively) to generate molecular 

parameters for each of the common amino acids and the polypeptide backbone, including bond 

lengths, bond angles as well as partial atomic charge. The results are reported structurally with 

each atom given an atom type that can be found across all of the residues and backbone, which 

can usually be found to have the same partial atomic charge value. For use in Coulomb’s law, an 

initial step is to list all atom types available for the method (which can vary) and then to associate 

a partial atomic charge value. The CNDO/2 (“complete neglect of differential overlap”) results, 

which were used in this work, are obtained with a self-consistent field method (SCF) that treats 

all valence electrons but also electron interactions. The method also was carried out in an atom-

centered manner, i.e., all charge was collapsed onto the nucleus and not in a lone-pair or bond 

location, which makes it especially appropriate for this implementation. Interestingly, the 

authors also introduced an effective dielectric constant of about 4 to move the resulting 
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structures away from gas phase and into a protein crystal, assuming there is a constant value for 

any protein. 

A second approach was to calculate values for each atom in the protein individually. This 

calculation was able to be performed with an ab initio method using a low-level basis set. (More 

details about ab initio calculations will be discussed in Chapter 8.) Using the Gaussian09 package, 

a Hartree-Fock (HF) calculation at both the STO-3G and 3-21G levels also performs a Mulliken 

population analysis44 by default, which returns partial atomic charges for each atom in the 

starting structure. Based on the molecular orbital coefficients that the HF method generates, a 

density matrix is formed, which, in combination with the overlap matrix, gives a population 

matrix. The population matrix allows for calculation of electron density as a function of space. 

The partial atomic charge, then, is the difference between the nuclear charge and the electron 

density assigned to it. For Mulliken population analysis, the electron density is assigned to an 

atom by cutting a bond in half and partitioning electron density equally between the two atoms. 

The partitioning step is one of the aspects that differentiates one partial atomic charge scheme 

from another when molecular orbitals are used. (Other partial atomic charge schemes available 

in G09 include Natural Bond Orbital Analysis [NBO], CHelpG, Merz-Kollman-Singh [MKS], Atoms-

in-Molecules [AIM]45.) The rotated 1mbo structure with added hydrogens described in the 

previous section was used for the calculation without additional optimization, which is justified 

in this case because experimental coordinates in a rigid structure were used and no additional 

solvation was included (i.e., the calculation was performed in vacuo).  
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3.5.33.5.33.5.33.5.3 ResultsResultsResultsResults    

3.5.3.13.5.3.13.5.3.13.5.3.1 Alternate positions using the CNDO/2Alternate positions using the CNDO/2Alternate positions using the CNDO/2Alternate positions using the CNDO/2    schemeschemeschemescheme    

Results for potential and the three spatial components of internal electric field at the 

heme iron are given in Table 3.4. for the rotated and protonated 1mbo with partial atom charges 

assigned based on the CNDO/2 scheme given in Ref. [12c]. Each structural version is defined in 

Table 3.5. The perpendicular component of the field (z) is the most variable with alternate 

positions. The position of LEU 29, which was determined to be the sixth closest residue to the 

heme iron, seems to be the most influential. 

  



48 
 

Table 3.4. Electrostatic potential and components of the internal electric field for 1mbo as 

calculated with Coulomb’s law. 

Version 

Potential 

(V) 

Electric Field x 

(V/cm) 

Electric Field y 

(V/cm) 

Electric Field z 

(V/cm) 

A 2.3318 -5.0054E+07 -7.3946E+06 5.5097E+05 

B 2.3324 -5.0099E+07 -7.4286E+06 4.1846E+05 

C 2.3311 -5.0059E+07 -7.3937E+06 5.5853E+05 

D 2.3332 -5.0084E+07 -7.4327E+06 4.1698E+05 

E 2.3320 -5.0062E+07 -7.3903E+06 5.4221E+05 

F 2.3317 -5.0057E+07 -7.3957E+06 5.5365E+05 

G 2.3318 -5.0065E+07 -7.3914E+06 5.4488E+05 

H 2.3330 -5.0087E+07 -7.4337E+06 4.1966E+05 

I 2.3309 -5.0062E+07 -7.3948E+06 5.6121E+05 

J 2.3333 -5.0091E+07 -7.4284E+06 4.0822E+05 

K 2.3312 -5.0067E+07 -7.3895E+06 5.4977E+05 

L 2.3325 -5.0089E+07 -7.4318E+06 4.2454E+05 

M 2.3331 -5.0094E+07 -7.4295E+06 4.1090E+05 

N 2.3326 -5.0097E+07 -7.4275E+06 4.1578E+05 

O 2.3323 -5.0092E+07 -7.4329E+06 4.2722E+05 

P 2.3310 -5.0070E+07 -7.3905E+06 5.5244E+05 

% Deviation ±0.051456% ±0.028956% ±0.29818% ±15.781% 

Average 2.3321 -5.0077E+07 -7.4116E+06 4.8471E+05 

Range high 0.0012 1.4812E+04 2.2100E+04 7.6496E+04 

Range low 0.0012 1.4188E+04 2.2100E+04 7.6494E+04 
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Table 3.5. Sixteen unique combinations of the two alternate positions, a and b, of four residues 

(visualized in Fig. 3.6) noted in the crystal structure of 1mbo defines sixteen distinct structures 

of myoglobin.  

Version VAL13 LEU86 LEU89 GLN128 

A a a a a 

B b b b b 

C a a a b 

D a a b a 

E a b a a 

F b a a a 

G b b a a 

H b a b a 

I b a a b 

J a b b a 

K a b a b 

L a a b b 

M b b b a 

N a b b b 

O b a b b 

P b b a b 

 

3.5.3.23.5.3.23.5.3.23.5.3.2 MutantsMutantsMutantsMutants    

The results for potential and internal electric field in Table 3.6 should be compared to the 

results for Version A in Table 3.4. Again, the z component appears to be the most variable, which 

is not unexpected based on the positions of each of these residues hovering above the heme 
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ring. See visualizations in Fig. 3.8a–i of the mutated residues with respect to the heme ring; 

carbon is shown in green, oxygen in red, nitrogen in blue, hydrogen in white, and iron in orange. 

Table 3.6. Potential and internal electric field for seven mutants of 1mbo using Version A 

structure as defined above. The absolute change in average position of each residue is also noted. 

Version 
Potential 

(V) 
Electric Field 

x (V/cm) 
Electric Field 

y (V/cm) 
Electric Field 

z (V/cm) 
Change in 

Distance (Å) 
H64G 2.2028 -4.4758E+07 -8.4309E+06 -1.2985E+06 4.2 

H64L 2.2029 -4.4758E+07 -8.4240E+06 -1.1629E+06 3.6 

H64A 2.2064 -4.4859E+07 -8.3929E+06 -1.1546E+06 3.7 

H64I 2.2054 -4.4836E+07 -8.3799E+06 -1.1478E+06 2.1 

H64V 2.2082 -4.4911E+07 -8.3993E+06 -1.1712E+06 2.2 

L29I 2.1354 -4.2665E+07 -8.6580E+06 -1.0937E+06 0.9 - 1.1 

L29A 2.1356 -4.2660E+07 -8.6351E+06 -1.0671E+06 2.4 

 

 

Figure 3.8a. Oxygenated heme. 
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Figure 3.8b. Wild type 
1mbo with HIS64 (ring 
structure at 4.5 Ǻ from 
heme iron) and LEU29 
(branched structure at 7.4 
Ǻ from heme iron). 

Figure 3.8c. Mutant H64G. 

Figure 3.8d. Mutant H64L. 
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Figure 3.8e. Mutant H64A. 

Figure 3.8f. Mutant H64I. 

Figure 3.8g. Mutant H64V. 
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3.5.3.33.5.3.33.5.3.33.5.3.3 Results using Results using Results using Results using ab initioab initioab initioab initio    partial atomic charge schemepartial atomic charge schemepartial atomic charge schemepartial atomic charge scheme    

Presented in Table 3.7 are results for internal electric field components compared for 

rotated and protonated 1mbo (Version A) comparing partial atomic charge schemes calculated 

with the Hartree-Fock ab initio method (two basis sets, STO-3G and 3-21G) to the Table 3.4 

Version A. The differences are large, one to two orders of magnitude. This is reflected in Table 

3.8, which compares the partial atomic charge values generated by each method. The HF results 

are often ten times larger for the valine example used than the CNDO/2 values. CNDO/2 scheme 

Figure 3.8h. Mutant L29I. 

Figure 3.8i. Mutant L29A. 
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treated all VAL residues as identical, regardless of placement in the protein, which, in general, 

assigns partial atomic charge values that are much, much lower than the ab initio values. 

Gaussian09/HF values are Mulliken population analysis values calculated on the rotated and 

protonated 1mbo structure for 8 individual valine residues. Note that VAL 1 is the protein’s N-

terminus for which partial atomic charges are, at times, quite distinct from interior residues. Also 

note that VAL 68 is considered a heme cavity residue and the second-closest residue to the heme 

iron. A structure of valine with atom types is given in Fig. 3.9. 

Table. 3.7. Internal electric field in myoglobin calculated with three different partial atomic 

charge schemes. 

Method 
Electric Field x 

(V/cm) 
Electric Field y 

(V/cm) 
Electric Field z 

(V/cm) 

HF/STO-3G 9.2458E+07 1.6118E+09 1.5125E+09 

HF/3-21G 3.1568E+08 5.8422E+09 3.9284E+09 

CNDO/212c 1.8089E+07 1.7725E+07 4.3579E+07 
 

   

 

Figure 3.9. Valine 
with atom types 
labeled as used in 
Table 3.8. 
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Table 3.8. Comparison of partial atomic charge values for valine per atom type and atom label between CNDO/2 and HF/3-21G 

results. Atom labels are illustrated in Fig. 3.9; the remaining atom label that do not appear in the illustration are peptide backbone 

residues. 

Atom 
Type 

Atom 
Label 

CNDO/2 
(1975) 

VAL 1 – N-
terminus 

(Gaussian0
9, HF) 

VAL 10 
(Gaussian0

9, HF) 

VAL 13 
(Gaussian0

9, HF) 

VAL 17 
(Gaussian0

9, HF) 

VAL 21 
(Gaussian0

9, HF) 

VAL 66 
(Gaussian0

9, HF) 

VAL 68 
(Gaussian0

9, HF) 

VAL 114 
(Gaussian0

9, HF) 

Average 
for HF 

C CG2 -0.072 -0.572 -0.594 -0.581 -0.586 -0.561 -0.591 -0.589 -0.584 -0.582 

C CG1 -0.072 -0.558 -0.582 -0.603 -0.575 -0.579 -0.561 -0.586 -0.586 -0.579 

C CB 0.008 -0.360 -0.342 -0.366 -0.367 -0.346 -0.357 -0.367 -0.326 -0.354 

C CA 0.064 -0.158 -0.065 -0.044 -0.035 -0.063 -0.036 -0.072 -0.060 -0.067 

C C 0.450 0.936 0.959 0.951 0.928 1.007 0.963 0.985 0.945 0.959 

H HB 0.016 0.310 0.248 0.285 0.291 0.203 0.260 0.218 0.250 0.258 

H HA 0.020 0.324 0.277 0.239 0.278 0.310 0.285 0.305 0.257 0.284 

H 3HG2 0.025 0.266 0.246 0.185 0.218 0.228 0.252 0.221 0.220 0.229 

H 3HG1 0.025 0.149 0.233 0.233 0.205 0.230 0.213 0.278 0.228 0.221 

H 2HG2 0.025 0.145 0.210 0.233 0.208 0.226 0.192 0.274 0.181 0.209 

H 2HG1 0.025 0.238 0.199 0.246 0.192 0.208 0.213 0.189 0.204 0.211 

H 1HG2 0.025 0.272 0.206 0.198 0.203 0.216 0.188 0.199 0.226 0.213 

H 1HG1 0.025 0.273 0.206 0.228 0.216 0.224 0.195 0.207 0.228 0.222 



 

 

5
6

 

H 1H 0.176 0.452 0.420 0.417 0.430 0.403 0.419 0.451 0.442 0.429 

H 2H  0.176 0.439                 

H 3H  0.176 0.459                 

N N -0.356 -0.850 -0.938 -0.921 -0.924 -0.910 -0.931 -0.946 -0.926 -0.918 

O O -0.384 -0.655 -0.693 -0.710 -0.725 -0.699 -0.741 -0.709 -0.714 -0.706 
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3.63.63.63.6 Conclusions    

Evolving a viewpoint from individual electrostatic residues, surfaces, or smaller areas 

to view a protein matrix as the source of a global field has options for quantification 

(Coulomb’s law vs. a bulk dielectric property). The effect of different environments on the 

electronic structure of porphyrin is briefly explored in Chapter 8, and the key to 

connecting net electric field to function relies on such a viewpoint. Along with this global 

viewpoint of the protein matrix is that of a glassy solvent with a constantly dynamic 

structure. The effect of global changes due to pH or temperature on net electric field may 

also be a useful viewpoint in beginning to model the changes in function due such 

perturbations and, depending on the sensitivity of the method, should be able to be 

sensed with the Stark spectroscopy method for the measurement of internal electric field 

discussed in Chapter 6.  

Quantification of net electric field in proteins with Coulomb’s law is a simplistic 

approach for determining the value but yielded some interesting insights. Because each 

scheme for calculating partial atomic charge produces widely varied results when 

summed for internal electric field values, the usefulness of the exercise is probably not in 

the absolute value it produces but in the relative values. For example, the insight that 

slight position changes of individual residues can alter the field values so dramatically (as 

in Table 3.4) is a set of relative values that provides some real physical conclusions. Or 

using the calculation to predict mutations that would be highly impactful on the net 

electric field of the protein matrix would be another way to avoid the variability of the 

partial atomic charge scheme in this application
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Chapter 4 

Porphyrin Probes 

4.1 Introduction: “molecular probes” 

Porphyrins have a number of properties that recommend their usage as molecular probes in 

heme proteins. First, however, let us define “molecular probe.” In this context, “guest–host” 

system is an appropriate term, with our molecular probe as the “guest” surrounded by the 

protein “host.” The experimental technique then monitors the guest probe as it senses changes 

in the host environment. Employing UV-VIS spectroscopy here, we are monitoring the effect of 

the protein matrix (i.e., the tertiary structure of the polypeptide) on the electronic properties of 

the porphyrin probe, which is necessarily a chromophore with a conjugated structure. The 

protein matrix has both steric and electrostatic influences that the probe will sense and, in turn, 

report spectroscopically.  

A number of studies have employed molecular probes in biological systems, which are 

interesting to compare and contrast this idea of using porphyrins as a spectroscopic probe: 

Nitrile probes: Since about 2000, nitrile (C–N-based) probes have been investigated.1 Here 

the vibrational stretch frequency is monitored with infrared spectroscopy as it responds to 

electrostatic environment. As this group is relatively simple to incorporate into a variety of 

proteins using amino acid substitution with artificial residues, the method is can be used at very 

specific locations in a variety of proteins that accept such mutations but will, in turn, only have 

the capability of reporting the electrostatic conditions over the very small area of that two-atom 
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probe. Investigated proteins include myoglobin mutants,2 human aldose reductase,3 and 

bacterial dihydrofolate reductase.4 

Heme coordinating ligands: This includes diatomic ligands, carbon monoxide (C–O) and 

nitric oxide (N–O); and nitrogen-based heterocycles such as imidazole, nicotine, and histamine. 

These provide a number of tools for probing heme proteins. The probes sit at the heme cofactor 

in these proteins, which is often the active site, but only indirectly interact with the protein 

environment as its major interaction is with the heme itself.5 

Chlorophyll probes in chlorosome antennae: Related in structure to porphyrins and, in turn, 

acting similarly as chromophores, chlorophyll in chlorosome antennae represent the active sites 

in these supramolecular structures. However, in contrast to probing the protein matrix, the 

chlorophyll exist in aggregates and as a molecular probe, likely reports interactions with other 

chlorophyll molecules.6 

Thus, the approach we take using porphyrin as a full molecular probe has the advantage of 

sitting precisely where the heme active site resides with the same spatial relationship to the 

protein that influences it (Fig. 4.1). In addition, this approach considers the full surface area of 

the cofactor as affected by the net electrostatic environment, which means the electronic 

properties of the cofactor as a whole can be considered (e.g., dipole moment, partial atomic 

charge of the metal as well as bonded atoms, etc.). This is in contrast to an atomic resolution 

method developed as an extension of this molecular resolution method, which certainly has 

utility for systems where heterogeneity of the field is relevant.7 
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What can we learn about the protein environment from molecular probes?8 The locality of 

the probe is advantageous in these measurements. When placed in a position of importance, i.e., 

the active site, conditions in that functional space are described. One property is the physical free 

volume of the active site, as reflected by compressibility measurements around the probe. The 

variability of the probe’s immediate environment is quantifiable by noting spectral diffusion and 

gives information about protein dynamics and the excursion across its multi-dimensional 

potential energy surface. Access to protein dynamics opens the door for insights into folding 

processes. The local electrostatic environment can be detected by changes to the molecular 

probe’s electronic transition energies. In this work, it is the net electric field generated by the 

entire protein matrix that will be deduced from our spectral probe. 

4.2 Molecular properties of porphyrin probes 

Porphyrins are a diverse class of molecules that share a highly conjugated, nitrogen-

containing heterocycle center, porphin. Species differ by type, number, and placement of 

substituents to the porphin center. In addition, porphyrins may be metallated, in which the four 

Figure 4.1. A ribbon 

structure of myoglobin 

highlighting the position 

of the heme cofactor in 

a stick structure. 
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pyrrole nitrogen atoms chelate a transition or rare-earth metal (Fig. 4.2a), or it may be “free-

base”, in which the pyrrole nitrogens individually bond hydrogen rather than a metal (Fig. 4.2b). 

                 

This work considers free-base porphin and zinc porphin (containing no substituents, see 

portion of Fig. 4.2b boxed in red) as the theoretical molecular probes of interest. However, 

because we are interested in sensing heme protein environment, the experimental probes are 

heme analogs: free-base protoporphyrin IX and zinc protoporphyrin IX. In spectroscopic 

experiments, analog substitution (procedure described below) is necessary because iron-

centered heme typically does not fluoresce, having a short lifetime because of efficient, 

radiationless decay. The analogs contain the same substituents: methyl, vinyl, and, most notably, 

two propionate groups. Thus, these substituents are considered part of the environment 

influencing the porphin probe. In both metallated and free-base protoporphyrin IX (PPIX), the 

Figure 4.2. a) Iron-centered heme is the native cofactor in myoglobin and hemoglobin. The 

central iron atom may be replaced by various metals. b) Free-base protoporphyrin IX is a 

heme analog with no metal center. The center portion boxed in red is the structure of 

porphin. 

a) b) 
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propionate groups have a pKa of 5.7, which causes each them to be deprotonated at physiological 

pH (pH ≈ 7) and each to carry a -1 charge. The two carboxylate ion oxygen atoms share the charge 

as it is delocalized across the resonance bonds, but crystal structures and optimized theoretical 

structures show each three-carbon chain to curl in opposite directions along the perpendicular 

axis to the planar porphin ring (Fig. 4.3a), placing the center of charge approximately 6–8 

angstroms from the center of the ring. The close proximity of these highly charged groups makes 

them strong contributors to the net electric field sensed by the conjugated porphin probe. The 

electrostatic influence of these propionate groups likely has physiological significance,9 but the 

aim of this work is to probe the protein matrix itself. To retain the important spatial features of 

heme-analog porphyrins but to remove any additional source of electric field, protoporphyrin IX 

dimethyl ester (PPIX DME) was also characterized. PPIX DME is structurally similar to PPIX but the 

charged carboxylate ion is instead capped with a methyl ester group (Fig. 4.3b).  

  

For 

free-base 

PPIX, the inner hydrogens also have individual pKa values. Using the nomenclature of Falk,10 the 

nitrogens that are effectively always protonated (pK1 = pK2 ≈ 16) are referred to as “pyrrole 

Figure 4.3. a) Another view of protoporphyrin IX with non-planar propionate groups 

above and below the ring plane. b) Protoporphyrin IX dimethyl ester has propionate 

groups capped with methyl groups. 

a) 

b) 
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nitrogens” and are arranged in a trans position from one another in porphin’s most stable form. 

(The cis tautomer – and rapid interconversion between the two - has been explored for some 

porphyrins11 but the trans form is generally accepted as the lowest energy12 and will be used as 

the model here.) The other two nitrogens are referred to as “pyrrolenine nitrogens” and have 

pK3 ≈ pK4 as high as 7.2 when the propionate side groups are charged. 

Although the choice of which two nitrogen atoms are protonated “pyrrole” atoms in free-

base porphin is arbitrary based on its high symmetry, however, in PPIX, closer examination 

reveals that the positions of the vinyl substituents renders this porphyrin non-symmetric 

(observe Fig. 4.2). This non-equivalent tautomerization of inner hydrogen atoms is the 

mechanism for spectral hole burning (discussed in Chapter 6) with free-base porphyrins. 

Spectroscopically, however, both free-base (D2h symmetry) and metalloporphyrins (higher D4h 

symmetry) have inversion-symmetry characteristics that are retained by the central porphin 

despite symmetry-breaking substituents.13 In the context of a specific protein environment, it is 

precisely this symmetry that gives porphyrins their sensitivity as molecular probes. “Symmetry 

breaking,” imposed on the porphyrin by steric or electrostatic factors inside of a protein,14 gives 

rise to properties that are not, in a neutral environment, possessed by centrosymmetric 

molecules. For example, a centrosymmetric molecule theoretically has a difference dipole 

moment, ∆��, equal to zero.  This quantity is the change in permanent dipole moment between 

the ground and first electronic excited state, which can be measured using Stark spectroscopy 

(discussed in Chapter 6).15 Symmetry concepts will be used throughout the following 

spectroscopy discussions. 
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4.3 Methods 

4.3.1 Preparation of apo-globins 

In order to implement the porphyrins described above as molecular probes in heme 

proteins, a method to remove heme must first be employed. Two major, well-established 

methods are currently used to remove heme from myoglobin and hemoglobin: 1) the acid-

acetone method16 and 2) Teale’s 2-butanone (methyl ethyl ketone) method.16b, 17 Both methods 

were performed so that the proteins were removed of the heme cofactor as completely as 

possible from sample, but as heme is non-radiative, it is not necessarily a contaminant for use in 

fluorescence experiments. 

 Extracted proteins in lyophilized powder form were purchased from Sigma–Aldrich, 

Milwaukee, WI at a purity of: 1) myoglobin from equine skeletal muscle, 95-100% purity, 

“essentially salt free”; 2) equine hemoglobin. 

 Equine myoglobin is a single chain globular protein of 153 residues containing a single 

heme cofactor. Its molecular weight is approximately 17,500 Da. Solubility for myoglobin is about 

20 mg/mL. 

 Equine hemoglobin is tetrameric protein, each subunit resembling myoglobin’s globular 

structure containing a single heme for a total of four heme molecules per hemoglobin. Its 

molecular weight is approximately 64,500 Da. Solubility for hemoglobin is also about 20 mg/mL. 

4.3.2 Acid–acetone method of heme removal 

Typically, a 0.2 – 0.6 mM aqueous solution of protein was prepared in cold ultrapure 

water. First, the heme protein is oxidized to assure a met-globin state (Fe3+) and, consequently, 
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no bound ligands throughout the sample. This is accomplished with potassium ferricyanide 

(K3[Fe(CN)6]) added to an aqueous solution of protein in a ratio of two oxidizers per heme and 

allowed to stir in the cold and dark for several hours. This step is followed by exhaustive dialysis 

in cold (4 °C) ultrapure water to remove any trace of oxidizer. Acid–acetone was prepared by as 

20%–2 M hydrochloric acid (HCl) in acetone18 and cooled to –20 °C. Then, the acid–acetone 

solution was added to the protein solution in a 15-20 volume excess and vortexed for 5-10 min. 

The protein was then allowed to precipitate at -20 °C for 2-3 hours. The cloudy brown solution 

was then centrifuged in several microcentrifuge tubes at 4 °C at 13 200 rpm for 15 min. The 

brown supernatant (containing heme) was decanted from each tube and discarded, leaving a 

grayish pellet. Each pellet was washed twice by re-suspending in pure, - 20 °C acetone and spun 

down again in identical fashion. The resulting clean apo-protein pellet was then re-dissolved in 

cold ultrapure water and placed in cold ultrapure water for exhaustive dialysis. 

4.3.3 Methyl ethyl ketone method 

As with the acid–acetone method, the heme protein was first oxidized with K3[Fe(CN)6]. 

After dialysis, the aqueous protein solution was transferred to a beaker on ice with stirring. Cold 

1-M HCl was added dropwise to the protein solution to a pH < 1.5. In a 4 °C walk-in cooler, the 

acidic protein solution was transferred to a glass separatory funnel along with cold 2-butanone 

(also known commonly as methyl ethyl ketone) in a 2:1 volume ratio. Then funnel was then 

capped and shaken vigorously and the layers allowed to separate (about 10 min). Once fully 

separated (which was simple to verify visually), the tan aqueous layer (containing protein) was 

dispensed through the stopcock into one container, while the dark brown organic layer was 

decanted into a waste container. This separation was repeated three more times but with a 1:1 
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volume ratio of organic to aqueous solvent. (Typically, the second extraction took much longer 

than the others (about 30 min) as it tended to form a large, emulsified, intermediate layer.) The 

final aqueous solution contained the apo-protein; apo-myoglobin was typically a bright yellow 

tint and apo-hemoglobin typically had a greenish tint. 

The apo-protein solution was then transferred to a cold 1 L - 0.6 mM sodium bicarbonate 

(NaHCO3) dialysis bath and repeated once. This step is intended to precipitate any remaining 

holo-protein17b but appeared to precipitate aggregate as well. A cold ultrapure water dialysis bath 

followed. Next, the apo-protein was placed in a 0.1 mM sodium ethylene diamine tetra-acetic 

acid (Na2EDTA) solution to remove any heavy metals, which can destabilize the apo-protein over 

time. Finally, the pH was adjusted with a pH 7.3 sodium phosphate buffer dialysis bath. 

The neutral apo-protein solution absorption spectrum was then taken (scanning λ = 250 

– 700 nm) to 1) determine the completeness of the heme removal and 2) determine the 

concentration of the protein in solution. The presence of heme could be noted with a Soret peak 

(the most intense peak characteristic of porphyrins) around 410 nm. Concentration of protein 

was determined with Beer’s law (� = � �� ∙ 
�⁄  ), where c = concentration in M, A = absorbance 

units, l = pathlength of cuvette, and ε = molar absorptivity coefficient in mM-1 ∙ cm-1. For 

myoglobin, the molar absorptivity coefficient at 280 nm (ε280 = 15.8 mM-1 ∙ cm-1). For hemoglobin, 

the average molar absorptivity coefficient for individual subunits (averaging alpha and beta) is 

12.7 mM-1 ∙ cm-1. 

Apo-protein solutions were either immediately substituted or stored in apo-form for later 

substitution. If prepared for storage, the apo-protein solution was concentrated using a SpinX 
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centrifuge filter tube and then transferred to polypropylene microcentrifuge tubes in aliquots of 

< 1 mL for storage in a liquid nitrogen storage dewar.  

4.3.4 Comparison of heme removal methods 

In general, the methyl ethyl ketone extraction method proved the most convenient for 

myoglobin and hemoglobin heme removal. The visual confirmation of removal is clearer and an 

extra extraction step is simple to enact if the deep brown heme seems to linger in the aqueous 

layer. In addition, the method does not rely on precipitation so the yield of recovered protein 

appears to be higher, despite literature comments that the methods have equivalent yields. 

Finally, this method is said to be appropriate for unstable proteins (especially apo-globins), 

avoiding denaturation that accompanies precipitation.16b 

4.4 Reconstitution of apo-globins with porphyrin probes 

The essentially planar heme, once removed from globular proteins, can be replaced with a 

variety of planar, conjugated molecules, most importantly other porphyrins.19 The goal of these 

studies is to preserve the protein matrix structure while improving the luminescence properties 

of the porphyrin probe, so closely related heme analogs were chosen for substitution.  

For these high-resolution spectroscopic studies, the most disruptive contaminants are 

porphyrins that are not correctly substituted into a protein host. As a result, steps were taken to 

prevent and remove any porphyrins in free solution as well as porphyrins entangled in aggregated 

apo-protein. At the present time, the Brookhaven Protein Data Bank (www.rcsb.org) does not 

contain any myoglobin or hemoglobin substituted with free-base protoporphyrin IX, so a 
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“correct” substituted structure is not known, especially without a metal to ligate covalently to 

the distal histidine.  

4.4.1 Substitution with free-base and zinc protoporphyrin IX17b, 20 

Both free-base (>97% purity, MW = 562.66)  and zinc PPIX (MW = 626.05) (Frontier 

Scientific, formerly Porphyrin Products, Logan, UT) were dissolved in 0.1 M NaOH solution (pH > 

12) to assure that the molecules’ propionate groups were negatively charged (and were 

consequently in their most soluble form). These porphyrin solutions were made up in 50 – 100 

mL volumes at a concentration of 0.16 mM and kept wrapped in foil to avoid photobleaching as 

they were stored. For substitution, porphyrin and apo-protein were mixed in a ratio of one 

porphyrin to two heme binding sites to avoid unsubstituted porphyrin. Apo-protein was dissolved 

in a dilute buffered solution and the basic porphyrin solution added to it in a much smaller 

volume to avoid major pH changes. The combined solutions were allowed to stir in the cold and 

dark overnight. Porphyrin is spontaneously taken up by myoglobin and hemoglobin. Subsequent 

purification and concentration steps are described below. 

4.4.2 Substitution with hydrophobic protoporphyrin IX dimethyl ester 

For substitution with the electrostatically neutral PPIX DME, the porphyrin, not being 

water soluble, required a modified substitution procedure.21 A concentrated, rose-pink 10-μM 

solution of iridescent, violet PPIX DME crystals (Frontier Scientific, Logan, UT, >97% purity, MW 

= 590.7113) in 1% v/v pyridine in methanol was created, heating briefly to avoid solvent loss.  

(Solubility is 12 μM  in methanol.)22 The substitution procedure was similar to the water-soluble 

porphyrins but the porphyrin–protein mixture needed to be kept <10% methanol by volume. As 

a result, additional concentration steps were required as described below. 
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4.4.3 Metallation of free-base porphyrins 

To broaden options for proteins substituted with both metallo- and free-base porphyrins, 

a procedure to metallate metal-free porphyrins was explored.10, 23 In particular, the neutral 

protoporphyrin IX dimethyl ester species did not have a commercially available metalloporphyrin 

analog. The following procedure successfully produced a zinc analog of PPIX DME, which was 

clearly identified spectroscopically by the collapse of four Q-bands characteristic of free-base 

porphyrins into two Q-bands characteristics of metalloporphyrins (see Chapter 5 for theoretical 

details and a spectrum). The procedure is generally useful with manganese, iron, cobalt, nickel, 

and copper derivatives reported along with zinc. 

About 60 mg of PPIX DME was dissolved in 2 mL chloroform and refluxed for about 15 

min. Meanwhile, 0.8819 g of zinc acetate was weighed out into a 25-mL roundbottom flask and 

dissolved in 10 mL glacial acetic acid. The zinc solution was stirred and heated under a condenser, 

but only partial dissolution was achieved (solubility of zinc acetate is 43 g / 100 mL) as the white 

inorganic powder was apparent. A 2.5-mL portion of the zinc slurry was added to the refluxing 

PPIX DME solution and allowed to continue reflux for two hours. No solid material was left at the 

end of this step. Then the reddish-purple metal and porphyrin solution was transferred to a 

separatory funnel and an equal amount of ultrapure water was added to wash. This wash step 

was repeated four times, adding chloroform to rinse the walls of porphyrin. The washed solution 

was transferred to a 50-mL roundbottom flask and rotoevaporated at 45 °C to dryness. The 

reddish-purple crystals were re-dissolved in a small amount of chloroform and poured onto a 

large watchglass for a final rinse with a 1:1 mixture of chloroform:methanol. Finally, the 
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metallated porphyrin was allowed to air dry. Subsequent use in protein substitution would 

benefit from further purification on a separation column. 

4.4.4 Purification procedure 

Original procedures for the preparation of heme-free myoglobin and hemoglobin and 

subsequent reconstitution with a porphyrin called for lengthy column separations. Following the 

final EDTA dialysis of apo-protein, anion-exchange chromatography at pH 8.3 (Tris-HCl buffer) 

was indicated to remove free heme and any remaining met-globin. After reconstitution, a gel 

filtration (size exclusion) column was used to remove any porphyrin not taken up by the apo-

protein.  

Both of these separation types are lengthy and require access to a high-performance 

liquid chromatography system outside of the immediate lab. Thus, exploration of alternative 

purification procedures was undertaken. First, thoughtful consideration of what constituted a 

“contaminant” was considered. The samples prepared for hole-burning Stark spectroscopy 

experiments required that the molecular probe reported a single environment type; therefore 

free solution (unsubstituted) porphyrin was to be avoided as well as incorrectly substituted 

porphyrin. Incorrect substitution might take the form of either misfolded, aggregated target 

protein or might be a protein other than the target protein that occurs as an impurity in the 

purchased native sample. Finally, salt may be a contaminant and can affect protein stability. 

Because photoexcited heme relaxes non-radiatively, it is not considered a contaminant for the 

purposes of luminescence experiments; however, enough heme must be removed to provide for 

a reasonable high concentration of substituted porphyrin. Based on this criteria, only a size-based 
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separation is necessary to ensure a “pure sample” of substituted proteins for the experiments 

described in Chapter 6. 

If the initial native protein purity is questionable, an HPLC size-exclusion (e.g., HiPrep 

26/60 Sephacryl S100 from GE Healthcare Bio-Sciences) column should be used before or after 

the substitution to assure a single protein type. In addition, soluble aggregate may also be 

addressed this way (though a typical preparation of substituted myoglobin did not appear to 

contain any appreciable amount of aggregate as Chapter 5). 

To address the issue of salt or free solution porphyrin, a simpler approach can be taken 

because of the disparate sizes of protein and contaminant. Three types of columns were explored 

to substitute for the lengthy columns previously indicated: 1) solid-phase extraction (SPE) tubes 

(vacuum), SpinX centrifugal concentrator tubes (Corning, Inc., Corning, NY) and 3) Pierce 

polyacrylamide desalting spin columns (Thermo Scientific, Waltham, MA). The methods above 

were compared spectroscopically. The presence of protein was monitored with absorbance at 

280 nm; the presence of porphyrin was monitored around 400 nm. Each phase, retained fraction 

vs. runoff, was compared per method to determine the effectiveness of the separation. 

Three types of SPE tubes were investigated: 1) strong anion exchange (SAX), 2) strong 

cation exchange (SCX), and 3) retention of nonpolar organic molecules (C18). The tubes were 

attached to a vacuum flask to flow through the column with the goal of trapping contaminating 

free porphyrin and elute the target protein. Working with myoglobin, the protein’s isoelectric 

point of pH ≈ 7.2 was the basis for setting up a pH gradient using phosphate buffer for the ion 

exchange tubes. The propionate pKa of free protoporphyrin IX, 5.7, provided the boundary 
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between negatively charged and neutral forms of the molecule. The C18 tube was determined to 

not be effective for retaining the neutral form of protoporphyrin IX. Both ion-exchange tubes 

failed to separate the protein and porphyrin, except at the extreme ends of their respective pH 

ranges. It was concluded that the SPE columns did not meet the criteria of simplifying separation. 

For a second comparison, a 20-mL SpinX centrifugal concentrator tube with a 5000 

molecular-weight cutoff (MWCO) for its polyethersulfone membrane was used to retain protein 

with MW > 5000 Da while smaller molecules passed through the filter into the runoff. (Porphyrins 

used in this study have molecular weights less than 650 g / mol). The SpinX tubes were used with 

a bucket rotor at a maximum speed of 4.2 rpm. The retained portion contained evidence of 

substituted myoglobin (both peaks at 280 nm and at 400 nm), but the runoff did not show a 

spectral signature at all 

Finally, a 0.7 mL desalting spin column with a 7000 MWCO, in which small molecules are 

retained in the resin bed while larger molecules pass through, was investigated. The column was 

loaded and spun at 6000 rpm in a microcentrifuge with a fixed angle rotor. Additional phosphate 

buffer and spin time eluted any retained molecules from the size-exclusion bed. The initial 

protein fraction revealed a substituted myoglobin, and the subsequent fractions revealed a 

smaller amount of protein. The final fractions revealed free porphyrin with no remaining protein, 

showing no peak at 280 nm but a peak at 400 nm. 

It was concluded that the desalting column was an easy-to-use substitute for a size-

exclusion column for the step of separating free solution porphyrin from substituted protein. A 
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gravity desalting column gave similar results with a larger, 10-mL volume (Pierce polyacrylamide 

desalting columns, 6000 MWCO, Thermo Scientific, Waltham, MA).  

4.4.5 Kinetics of reconstitution 

To understand when experimental samples would be ready at an equilibrium state, the 

kinetics of myoglobin reconstitution were examined. A similar experiment using a single subunit 

of hemoglobin was reported by Vasudevan and McDonald with cyanide-coordinated protohemin 

(an iron-centered porphyrin).24 This previous experiment revealed that the mechanism of 

porphyrin uptake into a heme protein is more complex than a simple bimolecular event and rate 

constants for each of four steps were reported. Here, tin (IV) protoporphyrin IX dimethyl ester 

(SnPPIX) was used to reconstitute apo-myoglobin as an example of a metalloporphyrin which 

likely forms a covalent bond with the protein’s proximal histidine. In addition, this porphyrin has 

an intense Soret peak that red-shifted appreciably as it was taken up by the protein.  

The heme-free proteins prepared in Section 4.3.1 certainly have a tertiary structure that 

is different than the holo-protein. However, there is evidence that it retains a looser but distinct 

“molten globule” structure with more than one intermediate form and measurable 

conformational entropy.25 In addition to the initial insertion step, porphyrin substitution then 

requires side-chain rearrangement, which may occur in phases.  

Here, the kinetics of SnPPIX substitution into apo-myoglobin was studied with absorption 

spectroscopy. The porphyrin was dissolved in a 0.1 M NaOH solution and added to an aqueous 

solution of apo-myoglobin in overwhelming excess (10 : 1 ratio) at room temperature to assure 

the reaction proceeded readily. First, a photodiode array took broadband spectra every 30 
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seconds for five hours. This monitored the shift in the easy-to-see Soret band of SnPPIX as the 

substitution proceeded (Fig. 4.4a). In addition, a scanning spectrophotometer monitored 

absorbance at 421 nm (the visible wavelength of greatest intensity increase) over four hours in 

another trial of the same substitution (Fig. 4.4b). 

 

 

The results showed a red-shift of the Soret band maximum approximately 10 nm and 

increasing absorption intensity, which characteristics of a porphyrin uptake into apo-

myoglobin.26 Like the Vasudevan and McDonald results, a plot of absorbance vs. time over four 

hours indeed seems to show a four-phase reaction, each with a characteristic rate. Figure 4.4b 

captures the spectrum at the apparent phase changes. The first phase shows a rapid jump in 

Soret peak intensity (from A = 0.3 in solution to A = 0.7 after 1.50 seconds reaction time) as well 

as a 10 nm shift to lower energy. The second phase continues the intensity increase at a slower 

Figure 4.4. a) Red-shift and intensification of Soret band as SnPPIX is substituted into myoglobin 

from pH 7.0 buffer (green) immediately after mixing with protein (black) to 5 hours after 

reaction time (red). b) Intensity of Soret peak over 5 hours reveals a number of steps with 

individual rates. The change in slope for the plot is indicated by arrows. 

a) b) 
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rate. The third and fourth phase are characterized by a slow drift to the red, but intensity seems 

to be constant at those stages. The total reaction time is greater than several hours at room 

temperature. Thus, the reaction seems to be comprised of an initial bimolecular, fast step 

followed by three unimolecular, slow steps of comparable magnitude 

For the purposes of preparing substituted myoglobin and hemoglobin for internal electric 

field measurements, the results of the above kinetics study indicates that any newly prepared 

sample should be allowed to equilibrate for several hours, or longer if kept at cold temperatures, 

before use or storage in liquid nitrogen. 

4.5 Hemoglobin subunit isolation 

Because hemoglobin’s native quaternary structure is comprised two distinct subunits, 

alpha and beta, each with its own heme active site,27 it was desirable for the purpose of these 

experiments to have the ability to substitute only one of the two subunit types in a given 

quaternary structure. This, in effect, would allow only either the alpha or beta subunit 

environment to be reported spectroscopically while the other, still containing the native heme, 

would be invisible in a fluorescence experiment. There are a number of hemoglobin subunit 

separation methods summarized by Bucci28, some of which are species specific, and with some 

appropriate for the holo-protein and others for the apo-protein. The following procedure was 

explored to separate native equine hemoglobin subunits and does so after the heme has been 

removed using one of the heme removal methods detailed earlier. Once subunits are separated, 

subsequent substitution can take place one at a time and then mixed with excess beta subunit, 

where the quaternary structure apparently reassembles spontaneously.26 
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4.5.1 Mercaptoethanol / urea method for apo-subunits28-29 

Using either the acid-acetone or methyl ethyl ketone method for heme removal as 

described above, apo-hemoglobin was produced from a native sample as completely as possible. 

The sample was then separated into subunits on a cation-exchange column (5-mL HiTrap SP 

Sepharose FF Column, GE Healthcare Bio-Sciences, Uppsala, Sweden). The sample was first 

dialyzed in a 50-fold greater volume of the starting buffer of 8 M urea (CH4N2O) and 0.05 M 2-

mercaptoethanol (C2H6OS) in pH 6.7 phosphate buffer. Once loaded onto the column, a two-

column volume of starting buffer removed impurities. Then, the elution buffer, which was the 

starting buffer plus 1 M NaCl, introduced a sodium ion gradient over a period of 30 min or more 

at a flow rate of 1 mL / min. The two subunits are to elute in distinct peaks, the beta subunit first 

followed by the alpha subunit. This was not achieved in the course of this work, however, both 

better control of pH as well as a decrease in the sodium ion gradient might improve results. 

4.6 Conclusions 

Molecular probes are well established as sensors of electrostatic field in proteins. The use of 

porphyrins as molecular probes to quantitatively report net internal electric field in heme 

proteins is being developed. The well-known structural properties of porphyrins assist this 

development and indicates careful control of sample pH. Advantages of a relatively large 

molecular probe over a diatomic or atomic-resolution method include the ability to sense the net 

environment at an active site as opposed to microenvironment at that does not describe the 

cofactor’s electrostatic experience. In addition, as heme analogs, the effect of the net 

environment on electronic properties, such as partial atomic charge on individual atoms and 

induced dipole moment, of the porphyrin probes can be extended to the native heme. 
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Efforts to create myoglobin and hemoglobin samples containing porphyrin probes of high 

purity for use with such experiments has been described. Purification criteria has been 

established and a number of tools have been assessed for purification procedures. A look at the 

kinetics of porphyrin probe substitution revealed a long equilibrium time, which should also be 

taken into account when preparing a high-quality sample. 

Options for porphyrin probes in future experiments include both free-base and zinc 

metalloporphyrins in addition to charged and capped (neutral) propionate substituents. A 

metallation procedure has been reviewed and provides access to classes of porphyrins that may 

not be commercially available in with zinc metal. Hemoglobin samples have the potential for 

mixtures of probes using a subunit separation step. 
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Chapter 5 

Spectral Characterization of Porphyrins in Heme Proteins 

5.15.15.15.1     IntroductionIntroductionIntroductionIntroduction    

The porphyrin probes described in Chapter 4 were characterized spectrally with absorbance 

and emission spectra. The porphyrins of interest are treated in solution and substituted into 

protein as well as in a number of solvents and at room and low (77 K) temperature. These 

characterizations were performed in preparation for use with hole-burning Stark spectroscopy 

(described in Chapter 6). 

First, the well-developed porphyrin theory known as the four-orbital model is discussed. 

Then, inhomogeneous broadening as a factor in spectra is also described theoretically to gain a 

better understanding of some interesting “splitting” revealed during spectral collection 

(described in Section 5.3.3.2). Experimental results follow with tabulated maxima for porphyrins 

in different environments, which demonstrates the sensitivity of the probe towards its 

surroundings. Much of the experimental section is devoted to developing a method to collect 

spectra of porphyrin solutions submerged in liquid nitrogen followed by results that show the 

unexpected splitting in the spectra. The remainder of the chapter attempts to deduce the cause 

of spectral splitting. 
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5.25.25.25.2    Theory of Theory of Theory of Theory of pppporphyrin UVorphyrin UVorphyrin UVorphyrin UV––––VIS VIS VIS VIS sssspectrapectrapectrapectra        

5.2.1 5.2.1 5.2.1 5.2.1 Gouterman’s Gouterman’s Gouterman’s Gouterman’s “f“f“f“fourourourour----oooorbital rbital rbital rbital mmmmodelodelodelodel””””    

As established in the previous chapter, porphyrin’s symmetry properties lends 

predictability to its electronic spectrum. A theory was developed by Gouterman in the late 1950s 

to explain the consistent pattern of peaks in the UV–VIS spectrum of porphyrins. 1-2 It became 

known as the “four-orbital model,” using only the two highest-occupied and two lowest-

unoccupied molecular orbitals in a simplified picture. It is based on Hückel’s LCAO-MO (linear 

combination of atomic orbitals – molecular orbitals) theory to establish the energies of the 

transitions in the UV–VIS region but also importantly brings in configuration interaction (CI) to 

explain the distinct differences in intensity between transitions seen specifically in porphyrins.  

Experimentally, a porphyrin’s absorption spectrum typically consists of a high-intensity 

peak near the UV region (~350-450 nm), known as the Soret (or B) band, as well as peak of much 

lower intensity in the visible region ~(550-650 nm), known as the Q (“quasi-allowed”) band. The 

difference in intensity between these two bands is 100 fold. The Q band is accompanied by a 

resolved vibronic band of similar intensity at slightly higher energy (~500 nm), which may be 

denoted as Qelec and Qvib, respectively. Further, in free-base porphyrins, where symmetry is 

reduced, the Q band splits into a lower-energy Qx peak and higher-energy Qy peak, each with 

accompanying vibronic band (see Fig. 5.1). 
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This typical spectral pattern holds under a remarkable number of perturbations. However, 

the energetic position and relative intensities of the peaks can be affected by varying any of the 

following:3 type of metal center (or removal of the metal), electron-donating or –withdrawing 

substituents, symmetry of substituent placement around the ring, solvent, dimerization or 

aggregation, and protein substitution. It is important to understand the factors influencing 

porphyrin spectra because the method described in this work of measuring internal electric fields 

in heme proteins treats the surrounding electrostatic environment as a perturbation to the 

theoretical probe, free-base or metallic porphin. Thus we begin with a presentation of this basic 

four-orbital model theory of porphyrin spectra. 

Figure 5.1. A typical UV-VIS absorption spectrum for a) free-base porphyrin and b) 

metalloporphyrin. (Author’s data.) 

a) b) 
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Figure 5.2. Chelation of zinc 

by protoporphyrin IX 

dimethyl ester as described 

in Ch. 4 illustrates the 

evolution of the Q-band 

region of free-base to 

metalloporphyrin. 

(Author’s data.) a) Before 

chelation, b) incomplete 

chelation, c) complete 

chelation.  In a) and b), 

Roman numerals tag 

individual peaks in the Q-

band region from low to 

high energy. 

a) 

b) 

c) 
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First, spatial orientation and nomenclature must be established (see Fig. 2). The porphyrin 

ring lies in the x–y plane with in-plane axes cutting through the pyrrole nitrogens. In free-base 

porphyrin, the x-axis is specified as the one that cuts through the two inner hydrogens and the y-

axis cuts through the pyrrolenine nitrogens, which each have a lone pair. As a result, the in-plane 

axes in free-base porphin are not equivalent, but for metallic porphin, they are degenerate. The 

outer pyrrole carbons are numbered 1–8 clockwise, starting at the positive y-axis; the methine 

bridge carbons are labeled clockwise α–δ. Pyrrole rings are also labeled clockwise with Roman 

numerals, I–IV.  

 

Visible transitions in porphin are π–π transitions. The four orbitals alluded to are the HOMO 

and HOMO-1 with symmetry a2u and a1u, and the LUMO and LUMO+1, both with symmetry eg. 

However, the relative positions each HOMO orbital and each LUMO with respect to one another 

are influenced by the perturbations mentioned above. Because the four-orbital model can still 

be applied to porphyrins that do not retain strict symmetry, the HOMO orbitals are labeled b1 

and b2 and the LUMO orbitals are labeled c1 and c2 (see Fig. 5.3). Molecular orbital calculations in 

Figure 5.3. Nomenclature and 

spatial orientation of porphyrin 

ring skeleton. (Figure from Ref. 1.) 
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porphyrins give b1 a higher absolute energy than b2. As a result, the two transitions originating 

from the b1 orbital (b1c1 and b1c2) are assigned as Q transitions while the two originating from 

the b2 orbital (b2c1 and b2c2) are assigned as B transitions. However, one of the important insights 

contributed by Gouterman based on CI is that this situation should result in Q and B bands of 

similar intensity due to orbital mixing, i.e., intensity “borrowing” from the highly allowed B-band 

by the technically forbidden Q-band. For this theory, then an assumption was made that the two 

HOMO levels, b1 and b2, are “accidentally degenerate.”  

 In metallic porphin, with D4h symmetry, the identical symmetry LUMO orbitals are 

energetically degenerate. In free-base porphin, however, the c1 LUMO molecular orbital has 

density on the pyrrolenine nitrogens (along the y-axis) while the c2 has density on the pyrrole 

nitrogens, which are protonated along the x-axis. It is assumed the hydrogens have a stabilizing 

effect on the c2 orbital, so, for free-base porphyrin, c2 is assigned to have lower energy than c1. 
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For free-base porphyrins, it has been shown by fluorescence polarization experiments4 that 

both the Q-band and B-band each contain two transitions, as predicted, that are polarized 

perpendicularly to one another along the x- and y-axes. For metalloporphyrins, the degenerate 

transitions make further differentiation impossible, however, for free-base porphyrins, the 

distinct splitting in the now non-degenerate Q-region makes assignment of the higher (~550 nm) 

and lower (~650 nm) energy peaks as either x-polarized or y-polarized possible. Further 

arguments from the four-orbital model, especially the CI insight, and observations from 

experiment assign the lowest-energy Q-peak as Qx and the higher-energy Q-peak as Qy in free-

base porphin, as explained in the following. 

Experiments designed to intentionally raise or lower the HOMO energies have predictable 

effects on the Q-band intensity, recalling that the proximity of the b1 and b2 states dictate the 

Figure 5.4. The four orbitals of porphin (two HOMO and two LUMO) with possible 

energetic arrangements. Possibility A is shown theoretically to be the likely 

arrangement. (Figure from Ref. 1.) 
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extent of mixing according to Eq. 5.1 and 5.2, noting that only the same polarization is available 

for mixing: 

�� = ��� + �����       (5.1a) 

�� = ��� + �����       (5.1b) 

�� = 	
���� − ������ − 
���� − �������/2Δ   (5.2a) 

�� = 	
���� − ������ − 
���� − �������/2Δ   (5.2b) 

where Δ is the initial energy gap between the Q-band and the B-band; ε(x) is the energy of x 

orbital; and Q0 and B0 are the transition intensities pre-mixing. From the equations, the conditions 

that produce a larger amount of mixing (i.e., largest λ value) are those in which the pairs of 

transitions with the same polarization have the largest difference in transition energy. Therefore, 

experiments that can adjust the energies of the four orbitals individually might reveal the identity 

of each with respect to the porphin structure by noting the effect on band intensity. 
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Such experimental observations came from the addition of symmetric octa-alkyl 

substituents to the free-base porphin ring at positions 1–8. Looking at MO plots of porphin (see 

Fig. 5.5) it can be seen that substituents in those positions would affect orbitals, b2, c1, and c2 but 

not b1.  As the substituents become larger and more electron donating, the energy of these 

Figure 5.5. Plots of MO coefficients for porphyrin. The inner hydrogens of porphin 

specifically have density in the c2 orbital. Also note where density lies for positions 1–

8 to interpret the experiments that follow. (Figure from Ref. 1.) 
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orbitals can expect to rise. The spectral effect observed was that the intensity of the Q-bands 

increases at the same rate. This would occur if the λ term also increased, indicating that the 

difference in energy between Q- and B-transitions of both polarizations became more 

exaggerated. This is only possible if b2, being raised in energy by the substituents, was already 

higher than b1
, which remains stationary in this substitution, and moved farther apart.  The same 

substituents, now applied along one axis or the other as 1,2,5,6-tetra-alkylporphin (y-axis, 

affecting b2 and c1) and 3,4,7,8-tetra-alkylporphin (x-axis, affecting b2 and c2), have the effect of 

lessening the intensity between the Q-bands and increasing them, respectively. 

5.2.15.2.15.2.15.2.1 Inhomogeneous broadeniInhomogeneous broadeniInhomogeneous broadeniInhomogeneous broadening of spectrang of spectrang of spectrang of spectra    

In addition to the environment discretely shifting the transition energy of the UV-VIS 

spectrum (in addition to rotational and vibrational transitions), like all chromophores in solid 

environments, porphyrins are also subject to inhomogeneous broadening of spectral bands.5 

Each guest chromophore in the ensemble will have an individual homogeneous linewidth whose 

frequency and width is influenced by the variety of steric and energetic microenvironments 

provided by the host, for example, the two-level systems in proteins as discussed in Chapter 3. 

Then, the summation of all of the individual homogeneous linewidths is the inhomogeneously 

broadened band as seen in an experimental spectrum. The results are bands that are spread out, 

reducing intensity and covering a wider energetic range. This often causes spectral details to be 

obscured.  For measurement of internal electric fields by Stark spectroscopy, this poses a special 

challenge because the expected Stark shifts for porphyrins in heme protein are far smaller than 

the width of inhomogeneously broadened bands. The theory of inhomogeneous broadening 

presented here will help to understand the subtle changes that broadband spectra display in 



97 
 

different environments presented in this chapter; then, overcoming inhomogeneous broadening 

to resolve Stark shifts by spectral hole burning will be discussed in Chapter 6. 

First, the homogeneous linewidth produced by a single guest molecule (or several with 

accidentally degenerate energetic environments) in an ensemble in a solid host is established by 

two quantities: electronic excited lifetime (τ1) and phonon scattering, which also has an 

associated lifetime (τ2). Each process its own temperature dependence, both leading to line 

broadening as temperature increases. Thus, in this work, many of the spectra are collected at 

low temperature (T < 77K), necessitating our treatment of homogeneous linewidths in a solid 

host matrix.  

Two distinct parts comprise the shape actual homogeneous spectrum, each related to the 

lifetime quantities. In the limit of low temperature (T = 0 K), the spectrum is only made up of the 

zero-phonon line (ZPL), which is Lorentzian in shape and whose width given by: 

Γ����0� =  �
��∙�∙� ���  !"�     (5.3) 

which reflects that a long excited-state lifetime, and the radiative pathway is more probable. As 

temperature begins to rise, vibrations in the solid host matrix (i.e., phonons) and the result is a 

shorter excited-state lifetime as well as the introduction of an additional guest-electron–host-

phonon interaction lifetime, τ2, which acts through dephasing the wavefunction of the guest 

molecule, temporarily “resetting” it.  This τ2 lifetime also contributes to the width of the ZPL. At 

temperatures above 0 K, the homogeneous linewidth is:  

Γ����# > 0 %� =  �
�� & �

� �'� + �
�(�'�)     (5.4) 
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 As phonons arise in the solid host matrix, an additional phonon side band (PSB) also 

appears independently of the ZPL. Aside from the width, the combination of ZPL and PSB 

functions into a homogeneous lineshape function is also of interest: 

*+,�-� =  . ∙ /0+�-� + �1 − .� ∙ 02��-�    (5.5) 

where α is the Debye–Waller factor, the ratio of the ZPL intensity over the total homogeneous 

line intensity (see Fig. 5.5a): 

.�#� = 3456
345673589

       (5.6)   

Thus, temperature contributes to overall linewidth by affecting the guest molecule lifetimes and 

in turn the homogeneous linewidth. In some systems, the temperature dependence can be very 

large, on the order of T7. 

The superposition of individual homogeneous linewidths in a statistical distribution, on 

the other hand, are what comprise an inhomogeneously broadened band (see Fig. 5.5b). The 

energetic position of the ZPL is established by not only the identity of guest molecule but also by 

the type and intensity of influence of the host environment. An environmental influence might 

be steric factors (or strain fields in solid hosts) that alter the guest molecule’s bond lengths or 

bond angles. This can often be the largest contributor to inhomogeneous broadening.6 Other 

factors are necessarily electrostatic: internal electric fields generated by charged groups in the 

host and dispersive interactions, often associated with solvent shifts.7  
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The resulting broadened band tends to be Gaussian-shaped in general. However, 

theoretically, point dipole perturbations result in a Lorentzian distribution but the 

inhomogeneous broadening is much larger than the Lorentzian distribution, which results in the 

overall Gaussian shape familiar in absorption spectra.6 The extent of broadening in PPIX-

substituted myoglobin has been measured at 4 × 104 times the homogeneous linewidth at T = 1.5 

K.8 

Figure 5.6. a) Two examples of 

a homogeneous line. Left: high 

Debye–Waller factor sharpens 

the ZPL. Right: lower Debye–

Waller factor moves intensity 

from the ZPL to the PSB. Total 

area under each curve remains 

constant. b) A distribution of 

homogeneous lines in an 

inhomogeneously broadened 

band. 

a) 

b) 
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 Two general types of solid hosts characterize the extreme limits of broadening 

environments (see Fig. 5.6). At the narrow limit, crystalline hosts, by definition, form periodic 

matrices with little variation for a guest molecule to sense. In fact, a perfect crystal without defect 

may, in theory, reveal the true homogeneous linewidth. At the broadest limit, amorphous hosts 

are characterized by random orientations where guest molecules may sample the full distribution 

of microenvironments that result. In this work, analysis relies on the existence of a completely 

random spatial distribution of chromophores. Thus, both protein-substituted and non-

substituted porphyrins have been characterized in glycerol solutions when analyzed at low 

temperature.  In addition, in Chapter 3, we have already characterized the protein matrix itself 

as a glassy system like frozen glycerol, i.e., a solid amorphous host, where structural relaxations 

continue to contribute to overall entropy even at very low temperature.  

    

Figure 5.7. a) A crystalline host matrix in which each planar guest chromophore, e.g., 

porphyrin, experiences approximately the same environment. b) An amorphous host 

matrix in which each individual guest experiences slightly different microenvironments. 

a) b) 
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 Finally, broadened spectra also may be due to not only a distribution of environments but 

in fact may conceal a mixture of distinct environments. One example that concerns this work is 

tendency of porphyrins to form dimers and larger aggregates when in solution because of the 

tendency of these planar molecule to undergo pi-stacking.9 Another example is a sample 

containing both correctly protein-substituted and unsubstituted porphyrin, which we have 

described as being contaminants. We will see that the energetic distance between these two 

porphyrin environments can be greater than 10 nm in an absorption spectrum. The success of 

these experiments relies on being able to assume the measurement of the average of a 

distributed but sole environment. 

5.35.35.35.3 Experimental Experimental Experimental Experimental pppporphyrin orphyrin orphyrin orphyrin sssspectrapectrapectrapectra    

Broadband absorption and emission spectra were collected for porphyrins in preparation for 

Stark spectroscopy analysis, where the spectral window is on the order of a thousandth of a 

nanometer and peak maxima are targeted. The porphyrins of interest were analyzed with a 

commercial absorption spectrophotometer and fluorimeter to locate the absorption maxima 

(see Chapter 2, Materials & Methods). The porphyrins studied were protoporphyrin IX, zinc 

protoporphyrin IX, protoporphyrin IX dimethyl ester, zinc protoporphyrin IX dimethyl ester, and 

tin protoporphyrin IX dimethyl ester. A number of environments were studied: aqueous (or 

organic in the case of dimethyl ester porphyrins) solution vs. glycerol solution; myoglobin 

substituted vs. solution; room temperature vs. low temperature (77 K). The maxima for each UV–

VIS band are tabulated here. 
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5.3.15.3.15.3.15.3.1 Tabulated Tabulated Tabulated Tabulated rrrroomoomoomoom----ttttemperature emperature emperature emperature sssspectrapectrapectrapectra    

See pages following. 
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5.3.1.15.3.1.15.3.1.15.3.1.1     Protoporphyrin IXProtoporphyrin IXProtoporphyrin IXProtoporphyrin IX    

Table 5.1. Peak maxima (wavelength in nm) in absorbance spectra for protoporphyrin IX (PPIX) in a number of local environments at 

room temperature. Molar absorptivity coefficient for PPIX in aqueous solution at ε407 nm = 4.4 x 104 M-1 cm-1.10 Molar absorptivity 

coefficient for PPIX-myoglobin at ε405nm= 8 ×104 M-1 cm-1
.
11  

 

 

Absorbance Measurement for Protoporphyrin IX 

Protein Solvent Notes Soret (nm) Qy,vib (nm) Qy,elec (nm) Qx,vib (nm) Qx,elec (nm) 

None Aqueous pH 7.0 phosphate buffer 374 484 536 589 643 

None 3:1 glycerol:water  397 506 540 565 643 

None DMSO  407 505 541 574 629 

Myoglobin Aqueous pH 7.0 phosphate buffer 410 507 544 583 626 

Myoglobin 3:1 glycerol:water  419 481 543 584 625 
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Table 5.2. Peak maxima (wavelength in nm) in emission spectra for protoporphyrin IX (PPIX) in a number of local environments at 

room temperature. Excitation region and wavelength in nm are given in parentheses following emission peak position. 

Emission Measurement for Protoporphyrin IX 

Protein Solvent Notes 
Peak 1 

(Excitation) 

Peak 2 

(Excitation) 

Peak 3 

(Excitation) 

Peak 4 

(Excitation) 

Peak 5 

(Excitation) 

None Aqueous 
pH 7.0 

phosphate 
buffer 

618 
(Soret,397) 

676 
(Soret,397) 

   

None 
3:1 

glycerol:water 
 

623 
(Soret,378) 

624 
(Qx,vib,482) 

623 
(Qx, elec,541) 

646 
(Qy,vib,593) 

652 
(Qx, elec,644) 

Myoglobin Aqueous 
pH 7.0 

phosphate 
buffer 

653 
(Soret,400) 

    

Myoglobin 
3:1 

glycerol:water 
 

434 
(Soret,410) 

630 
(Soret,410) 

672 
(Soret,410) 
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5.3.1.25.3.1.25.3.1.25.3.1.2 Zinc protoporphyrin Zinc protoporphyrin Zinc protoporphyrin Zinc protoporphyrin IXIXIXIX 

Table 5.3. Peak maxima (wavelength in nm) in absorbance spectra for zinc protoporphyrin IX (ZnPPIX) in a number of local 

environments at room temperature. Molar absorptivity coefficient for ZnPPIX-hemoglobin subunits is at ε423nm=122 mM-1 cm-1, 

which was used as a comparable value for ZnPPIX-myoglobin.12 

Absorbance Measurement for Zinc Protoporphyrin IX 

Protein Solvent Notes Soret (nm) Qvib (nm) Qelec (nm) 

None Aqueous pH 7.0 phosphate buffer 405 544 580 

None 3:1 glycerol:water  411 544 580 

None DMSO  422 548 586 

Myoglobin Aqueous pH 7.0 phosphate buffer 423 550 584 

Myoglobin 3:1 glycerol:water  423 551 584 
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Table 5.4. Peak maxima (wavelength in nm) in emission spectra for zinc protoporphyrin IX (ZnPPIX) in a number of local 

environments at room temperature. Excitation region and wavelength in nm are given in parentheses following emission peak 

position. 

Emission Measurement for Zinc Protoporphyrin IX 

Protein Solvent Notes 
Peak 1 

(Excitation) 

Peak 2 

(Excitation) 

Peak 3 

(Excitation) 

Peak 4 

(Excitation) 

Peak 5 

(Excitation) 

Peak 6 

(Excitation) 

None Aqueous 
0.1 M 
NaOH 

587 
(Soret,410 ) 

635 
(Soret,410) 

    

None 
3:1 

glycerol:water 
 

582 
(Soret,410 ) 

582 
(Qelec,578 ) 

585 
(Qvib,543) 

627 
(Soret,410) 

630 
(Qelec,578) 

632 
(Qvib,543) 

Myoglobin Aqueous 
pH 7.0 

phosphate 
buffer 

      

Myoglobin 
3:1 

glycerol:water 

pH 7.0 
phosphate 

buffer 

465 
(Soret,410) 

594 
(Qvib,543) 

595 
(Qelec,410) 

624 
(Soret,410) 

624 
(Qelec,578) 
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5.3.1.35.3.1.35.3.1.35.3.1.3 ProtoporphyrinProtoporphyrinProtoporphyrinProtoporphyrin IX dimethyl esterIX dimethyl esterIX dimethyl esterIX dimethyl ester 

 

Table 5.5. Peak maxima (wavelength in nm) in absorbance spectra for protoporphyrin IX dimethyl ester (PPIX DME) in a number of 

local environments at room temperature. Molar absorptivity coefficient for PPIX DME-myoglobin is ε407nm=145 mM-1 cm-1.13 

Absorbance Measurement for Protoporphyrin IX Dimethyl Ester 

Protein Solvent Notes 
Soret 

(nm) 
Qy,vib (nm) Qy,elec (nm) Qx,vib (nm) Qx,elec (nm) 

None Chloroform  424 506 542 576 631 

None 
Methanol / 
1% pyridine 

 401 502 538 573 628 

None 
3:1 glycerol: 
Methanol / 
1% pyridine 

 402 486 
542 

(shoulder 
at 566) 

595 645 

Myoglobin Aqueous 
pH 7.3 

phosphate 
buffer 

427 Unobserved 553 597 610 

Myoglobin 
3:1 

glycerol:water 

Summed 
fluorescence 

excitation 
428 506 553 Unobserved Unobserved 
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Table 5.6. Peak maxima (wavelength in nm) in emission spectra for protoporphyrin IX dimethyl ester (PPIX DME) in a number of local 

environments at room temperature. Excitation region and wavelength in nm are given in parentheses following emission peak 

position. 

Emission Measurement for Protoporphyrin IX Dimethyl Ester 

Protein Solvent Notes 
Peak 1 

(Excitation) 

Peak 2 

(Excitation) 

Peak 3 

(Excitation) 

Peak 4 

(Excitation) 

Peak 5 

(Excitation) 

Peak 6 

(Excitation) 

None 
Methanol / 
1% pyridine 

 
675 

(Soret,401) 
740 

(Soret,401) 
675 

(Qy,vib,502) 
740 

(Qy,vib,502) 
633 

(Qy,elec,538) 
675 

(Qy,elec,538) 

None 
Methanol / 
1% pyridine 

Cont’d 
741 

(Qy,elec,538) 
633 

(Qx,vib,573) 
675 

(Qx,vib,573) 
739 

(Qx,vib,573) 
740 

(Qx,elec,628) 
 

None 
3:1 glycerol: 
Methanol / 
1% pyridine 

 
487 

(Soret,402) 
708 

(Soret,401) 
569 

(Qy,vib,486) 
711 

(Qy,vib,486) 
672 

(Qy,elec,542) 

714 
(Qy,elec,542) 

None 
3:1 glycerol: 
Methanol / 
1% pyridine 

Cont’d 
715 

(Qx,vib,595)  
700 

(Qx,elec,643) 
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5.3.1.45.3.1.45.3.1.45.3.1.4 Zinc protoporphyrin IX dimethyl esterZinc protoporphyrin IX dimethyl esterZinc protoporphyrin IX dimethyl esterZinc protoporphyrin IX dimethyl ester    

Table 5.7. Peak maxima (wavelength in nm) in absorbance spectra for zinc protoporphyrin IX dimethyl ester (ZnPPIX DME) in a 

number of local environments at room temperature. 

Absorbance Measurement for Zinc Protoporphyrin IX Dimethyl Ester 

Protein Solvent Notes Soret (nm) Qvib (nm) Qelec (nm) 

None Chloroform  409 540 577 

None Ethanol Absolute grade 416 546 583 

None 
50:50 

ethanol:glycerol 
 414 543 579 

 

  



 

 
 

1
1

0 

Table 5.8. Peak maxima (wavelength in nm) in emission spectra for zinc protoporphyrin IX dimethyl ester (ZnPPIX DME) in a single 

local environment at room temperature. Excitation region wavelength in nm are given in parentheses following emission peak 

position. 

Emission Measurement for Zinc Protoporphyrin IX Dimethyl Ester 

Protein Solvent Notes 
Peak 1 

(Excitation) 

Peak 2 

(Excitation) 

Peak 3 

(Excitation) 

Peak 4 

(Excitation) 

Peak 5 

(Excitation) 

Peak 6 

(Excitation) 

None Chloroform  
582 

(Soret,409) 
631 

(Soret,409) 
581 

(Qvib,541) 
630 

(Qvib,541) 
582 

(Qelec,577) 
630 

(Qelec,577) 

None 
50:50 

ethanol: 
glycerol 

No emission 
features 
with Qelec 
excitation 

471 
(Soret,414) 

580 
(Soret,414) 

632 
(Soret,414) 

667 
(Soret,414) 

581 
(Qvib,543) 

666 
(Qvib,543) 
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5.3.1.55.3.1.55.3.1.55.3.1.5 Tin protoporphyrin IX Tin protoporphyrin IX Tin protoporphyrin IX Tin protoporphyrin IX dimethyl ester (SnPPIX DME)dimethyl ester (SnPPIX DME)dimethyl ester (SnPPIX DME)dimethyl ester (SnPPIX DME) 

Table 5.9. Peak maxima in absorbance spectra for tin protoporphyrin IX dimethyl ester (SnPPIX DME) in a number of local 

environments at room temperature. 

Absorbance Measurement for Tin Protoporphyrin IX Dimethyl Ester 

Protein Solvent Notes Soret (nm) Qvib (nm) Qelec (nm) 

None Aqueous pH 7.0 phosphate buffer 406 541 580 

None 
3:1 

glycerol:water 
 411 543 582 

Myoglobin Aqueous pH 7.0 phosphate buffer 416 546 590 
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Table 5.10. Peak maximum (wavelength in nm) in emission spectra for tin protoporphyrin IX dimethyl ester (SnPPIX DME) in a single 

local environment at room temperature. Excitation region wavelength in nm are given in parentheses following emission peak 

position. 

Emission Measurement for Tin Protoporphyrin IX Dimethyl Ester 

Protein Solvent Notes 
Peak 1 

(Excitation) 

Peak 2 

(Excitation) 

Peak 3 

(Excitation) 

Peak 4 

(Excitation) 

Peak 5 

(Excitation) 

Peak 6 

(Excitation) 

None 
3:1 

glycerol:
water 

 
584 

(Soret,411) 
637 

(Soret,411) 
584 

(Qvib,541) 
637 

(Qvib,541) 
584 

(Qelec,582) 
637 

(Qelec,582) 
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5.3.25.3.25.3.25.3.2 Trends in porphyrin spectra in various environmentsTrends in porphyrin spectra in various environmentsTrends in porphyrin spectra in various environmentsTrends in porphyrin spectra in various environments    

In absorbance spectra, a few trends appear for the protoporphyrin species analyzed (see Fig. 

5.5). First, between solution and protein substitution, there is a general contraction of the spread 

of energies, i.e., the Soret band tend to red-shift while the Q bands tend to blue shift. However, 

the influence on individual bands can vary considerably. Between different solvents, there is a 

general trend of the Soret band toward lower energies with decreasing dielectric constant:14 

aqueous buffer (ε≈78), 3:1 glycerol:water mixture (ε≈50),15 dimethyl sulfoxide (ε≈47), methanol 

/ pyridine mixture (ε≈30), and chloroform (ε≈5). Interestingly, protein’s dielectric constant, as 

questionable as the bulk parameter’s application to a macromolecule might be, is typically noted 

as ε≈2–4. The shift in Soret band to lower energies is consistent with the trends seen in the 

solvent series.  

In emission spectra, the appearance of certain maxima is certainly subject to resolution and 

chromophore concentration, so the data above is not complete. However, it is interesting to note 

that strong emission maxima appear in the same position for most of the chromophores 

regardless of whether the excitation was made in the Soret region or a Q region. This may indicate 

that a typical emission pathway may include a non-radiative relaxation to the lower-energy Q 

region before radiative relaxation from that position. This idea is reinforced in analyzing low-

temperature fluorescence excitation spectra below. 
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5.3.35.3.35.3.35.3.3 LowLowLowLow----temperature (77 K) spectratemperature (77 K) spectratemperature (77 K) spectratemperature (77 K) spectra    

Because Stark spectroscopy would be performed at liquid helium temperatures (>4 K), 

absorption maxima in a frozen glycerol–water sample were desirable. Spectroscopic 

measurements using cryogens have well-known difficulties,16 and the following describes a 

general simplification of the process. A small (a few hundred milliliters), homemade optical 

cryostat placed in a commercial spectrophotometer was first employed. The sample was placed 

in a glass test-tube attached to a rod topped with a rubber stopper. The cryostat was filled with 

liquid nitrogen and the sample immersed in the cryogen where it solidified immediately, often 

cracking visibly. Major issues with this direct approach arose. First, the scattering losses were far 

too great for a transmission experiment. The incident beam of the spectrophotometer 

encountered the sample only after passing through an outer flat quartz window, an identical 

inner window, vigorously bubbling cryogen, and the cylindrical test tube wall. Exiting the sample, 

the light encountered the same optical obstacles as transmission was detected at 180°. In 

addition, the homemade cryostat, though it contained an evacuated jacket between the inner 

Figure 5.8. Absorbance spectra of 

zinc protoporphyrin IX in various 

environments (from top to 

bottom): frozen in glycerol:buffer, 

as a dimethyl ester derivative, 

substituted into myoglobin, room 

temperature in glycerol:buffer, and 

in aqueous buffered solution. 

(Spectra are scaled and offset for 

clarity to emphasize lineshapes.) 
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and outer walls, failed to insulate effectively and the optical windows began to quickly frost over, 

especially in humid summer conditions. It was clear that another approach was necessary. 

5.3.3.15.3.3.15.3.3.15.3.3.1 Summed fluorescence excitation spectra Summed fluorescence excitation spectra Summed fluorescence excitation spectra Summed fluorescence excitation spectra     

To circumvent the overwhelming scattering losses using the direct absorbance measurement 

with an optical cryostat, it was thought to try to “hunt” for absorption maxima by measuring 

emission intensity and noting the excitation wavelength that gave the most intense emission. 

Emission spectra would not be subject to scattering losses that absorption would for two reasons: 

1) the measurement does not rely on the detection of an incident beam that undergoes a loss to 

its intensity during the course of a measurement but rather the luminescence generated by the 

sample itself; 2) the emission measurement is not done at 180° but rather 90° (“right-angle 

collection”) as typical or in “front-face collection” mode (22.5°), specifically designed for solid 

samples. 

However, the problem of frosted windows remained. An initial solution was to direct a 

stream of dry-grade compressed air from a cylinder over the windows, which improved the signal 

enough for a “proof of concept” set of spectra. The homemade cryostat, which was suspended 

on a ring stand, had the additional issue of altering the position of its flat windows slightly with 

respect to the incident beam and detector as the experiment proceeded. This caused variations 

in intensity trial to trial and after more cryogen was adding mid-experiment. Fortunately, the 

commercial fluorometer had available a liquid-nitrogen dewar add-on sample holder (see 

Chapter 2, Materials & Methods). This accessory bolted directly to the existing sample stage to 

reduce variation in position, had a permanent vacuum jacket that prevented frosting, and sealed 
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around the sample tube well enough to give greater than 30 minutes experiment time before 

refilling cryogen. 

In fact, “hunting” for maxima was not necessary because, as a fluorophore with high 

quantum yield (i.e., a large proportion of absorbed light is emitted as fluorescence), the 

fluorescence excitation spectra of porphyrins can be summed to yield an absorption profile and 

peak maxima can be determined. A fluorescence excitation spectrum is the collection of emission 

intensity at a specified wavelength while a range of excitation wavelengths is scanned. Then, 

emission intensity is collected at regular intervals over a range of emission wavelengths that has 

been determined as an active region by previous emission experiments (see tabulated data 

above). The summed fluorescence excitation spectrum is then produced by adding up all of the 

emission intensity produced by a single excitation wavelength and plotting total emission 

intensity vs. the scanned excitation region. The result is analogous to an absorption spectrum. 
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Figure 5.9. 

Fluorescence excitation 

spectra of zinc 

protoporphyrin IX-

substituted myoglobin 

immersed in liquid 

nitrogen evolves 

dramatically as the 

emission window 

moves approximately 

10 nm.  

a) Emission at 605 nm, 

b) emission at 610 nm, 

c) emission at 615 nm. 

a) 

b) 

c) 
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For the initial experiments, emission was sampled at every 5 nm across the active emission 

region with an excitation scan at 1-nm increments. Later experiments sampled emission as well 

as excitation wavelengths in 1-nm increments. In this case, resolution, determined by the 

fluorometer’s bandpass setting, needed additional consideration. The instrument contained two 

monochromators for excitation and two for emission (a “double/double monochromator”), each 

with a grating groove density of 1200 grooves / mm. This produced a linear dispersion of 2.1 nm 

spectral width per mm slit width. Bandpass is then given by: 

Bandpass (nm) = slit width (mm) × dispersion (nm / mm)   (5.7) 

Adjusting the slit width, then, allowed for consistent sampling. For a 2-nm bandpass, the slit-

width was set to 0.95 mm for both emission and excitation. Using 1-nm increments, this produced 

overlap of 1 nm from one position to the next, essentially sampling each wavelength twice per 

trial and providing twice the intensity. At 5-nm increments, the resolution was poorer but 

Figure 5.10. The summed fluorescence excitation method produces a comparable 

line shape to absorption spectroscopy. a) Absorbance spectrum of zinc 

protoporphyrin IX-substituted myoglobin at room temperature. b) Summed 

fluorescence excitation spectrum of the same species at low temperature. 

a) b) 
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sufficient to provide the survey necessary to determine absorption maxima in low-temperature 

samples. 

 For seven species of interest for Stark spectroscopy experiments, the maximum position 

of the lowest-energy Q band while the sample was immersed in liquid nitrogen is given in Table 

5.11. 

Table 5.11. Peak maxima in summed fluorescence excitation spectra for seven porphyrin 

species provides the location of the lowest-energy Q band at low temperature. 

Porphyrin Species 
Maximum of Lowest-Energy Q Band 

(nm) 
Solvent 

PPIX 618.5 
3:1 glycerol:aqueous 

buffer 

PPIX DME 636.0 3:1 glycerol:ethanol 

PPIX-myoglobin 620.0 
3:1 glycerol:aqueous 

buffer 

PPIX DME-
myoglobin 

624.0 
3:1 glycerol:aqueous 

buffer 

ZnPPIX 574.5 
3:1 glycerol:aqueous 

buffer 

ZnPPIX DME 580.5 3:1 glycerol:ethanol 

ZnPPIX-myoglobin 581.0 
3:1 glycerol:aqueous 

buffer 

 

5.3.3.25.3.3.25.3.3.25.3.3.2 Band splitting in individual fluorescence excitation spectraBand splitting in individual fluorescence excitation spectraBand splitting in individual fluorescence excitation spectraBand splitting in individual fluorescence excitation spectra    

The individual fluorescence excitation spectra in Fig. 5.8 show some unexpected splitting in the 

Soret region that required further investigation. Splitting in the Soret and/or Q bands was present 

to various degrees in the initial fluorescence excitation spectra of each porphyrin species listed 
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in Table 5.11 when immersed in liquid nitrogen. As discussed in Section 5.1 and demonstrated in 

Fig. 5.1, a typical porphyrin spectrum has a single Soret peak and a pattern of two Q peaks for 

metalloporphyrins or four Q peaks for free-base porphyrins. Occasionally, a shoulder might 

appear as part of the Soret band (see Fig. 5.9b), which has been attributed to a vibronic 

sideband.17 However, the complete resolution of two bands which independently grow and 

shrink in intensity on the red and blue sides of the band depending on emission wavelength 

seemed unusual, especially for well-studied protoporphyrin species. First, it was confirmed that 

the special liquid nitrogen apparatus itself was not the source of the extra peak. Then, efforts to 

establish precedence for this kind of spectral behavior in porphyrins were made. Finally, a 

number of possible explanations were formulated. 

 Reports of splitting in the Soret peak as well as electronic Q peaks in spectra of porphyrins 

certainly exist. The mechanisms were either further lifting the degeneracy of the transitions that 

lay within a peak or reducing the inhomogeneous broadening that obscured details within a 

band. The reports seem to be sorted into three general conditions where either the degeneracy 

of the transitions in the peak were further lifted: 1) in dimers and aggregates,18 2) with large 

substituents or ligands,19 and 3) substituted into proteins.20 Many examples also were also noted 

under conditions of low temperature, some overlaying the spectra of many temperatures to note 

exactly where splitting appeared. However, the access this “two-dimensional” spectral method 

gave to the individual emission contributions of otherwise obscured transitions in the Soret 

bands did not seem to be reported and was worth pursuing further.  

 A number of questions arose regarding the origin of the unusual spectral behavior. Did 

the splitting arise due to low temperature or to the solid matrix it was confined in? Was it induced 
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by the glycerol–water solvent or might it occur in other amorphous solids? Was dimerization or 

aggregation causing splitting in the solution samples like some of the existing reports pointed to? 

Because that would indicate a mixture of species, could the protein-substituted samples contain 

contamination in the form of a mixture of substituted and unsubstituted proteins? Could pH 

induce two subpopulations with individual spectral signatures? 

 If the effect was independent of the contaminants and environments described above, 

which existing transitions were being resolved? Was it the nearly degenerate pair of B transitions 

in the Soret band? Were vibronic sidebands appearing out of the inhomogeneously broadened 

band? 

5.3.3.35.3.3.35.3.3.35.3.3.3 LowLowLowLow----temperature fluorescence excitation spectra in various solventstemperature fluorescence excitation spectra in various solventstemperature fluorescence excitation spectra in various solventstemperature fluorescence excitation spectra in various solvents    

To test the solvent effect on the spectra, two amorphous-solid forming matrices were 

explored. First, a silica-based sol gel glass had been reported to encapsulate both porphyrins and 

proteins.21 Sol gel glasses could provide an easily formed solid matrix at both room and low 

temperature to test whether the immobilization of the chromophore was the source of splitting, 

which might indicate coupling between them, or if low temperature was the necessary condition, 

which might indicate simply an increase in spectral resolution to reveal hidden bands. Second, 

dimethyl sulfoxide (DMSO) was known to both dissolve porphyrins readily at room temperature 

and to form an amorphous solid when frozen, so was also chosen as a solvent to compare results. 

For this comparison, free-base protoporphyrin IX and zinc protoporphyrin IX were the 

chromophores used.  
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5.3.3.3.15.3.3.3.15.3.3.3.15.3.3.3.1 SolSolSolSol----gelgelgelgel    glass matrixglass matrixglass matrixglass matrix    

Sol gel glass was prepared with the following procedure.22 To a cell-culture tube, 7 mL of 

tetramethylorthosilicate (Si(OCH3)4, TMOS) was added along with 1.7 mL ultrapure water and 0.1 

mL 0.04 M HCl. The tubes containing the TMOS mixture was placed in a test-tube rack and were 

sonicated in a room-temperature water bath for 20 min. During sonication, a pipette was used 

to mix the contents every 3 min. After sonication, the contents were transferred evenly into 

three, 1-cm, disposable methacrylate cuvettes. Then, 0.53 mL of a neutral solution containing the 

chromophore to be studied was added. The sol gel solution was left to solidify overnight at 4 °C. 

This procedure yielded a total of about 9 mL of solution, divided into 3 – 3-mL aliquots. The 

dielectric constant of the solidified sol gel glass is very low, likely less than 5.23 

Fluorescence excitation spectra for this experiment did not show any splitting for PPIX or 

ZnPPIX in sol gel at room temperature. The room-temperature spectra were taken in the 

transparent methacrylate cuvettes. However, when both samples were crushed and placed in 

the liquid nitrogen dewar assembly, splitting was revealed when immersed in liquid nitrogen. 

From these experiments, it was concluded that low temperatures appears to resolve hidden 

spectral bands. 

5.3.3.3.25.3.3.3.25.3.3.3.25.3.3.3.2 DMSODMSODMSODMSO    

Similar spectra were taken of PPIX and ZnPPIX dissolved in DMSO. Again, room 

temperature spectra did not show splitting when a sufficiently dilute concentration was used (10-

6 M) but the same samples at low temperature showed splitting in B and/or Q bands. It was 

concluded that the effect was not solvent dependent and again reinforced the idea that low 

temperature was improving resolution. 
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More concentrated solutions were also mistakenly created and analyzed, producing 

spectra with peaks of intensity beyond the typical porphyrin pattern as well as extra peaks (see 

Fig. 5.11). This indicated that dimerization and aggregation might be a player in the peak splitting 

behavior and prompted the dilution experiments described next. 

 

 

5.3.3.45.3.3.45.3.3.45.3.3.4 LowLowLowLow----temperature fluorescence excitation spectra at various concentrationstemperature fluorescence excitation spectra at various concentrationstemperature fluorescence excitation spectra at various concentrationstemperature fluorescence excitation spectra at various concentrations    

Interestingly, a literature search revealed a claim by White in “The Porphyrins” that 

porphyrins tend to aggregate only in aqueous solution, suggesting that the low dielectric constant 

of organic solvents prevents the process.9 The source also noted that zinc porphyrins in particular 

resist aggregation. However, the experiments performed here seem to contradict that. To 

determine the concentrations at which PPIX and ZnPPIX tend to dimerize and/or aggregate, a 

spectral method was devised invoking the linearity predicted by Beer’s Law, about which White 

references deviation as a sign of aggregation.  

Figure 5.11. Illustration of concentration effect on fluorescence excitation spectra of 

PPIX in DMSO, even at room temperature. Both spectra were taken monitoring the 

same emission wavelength, 740 nm.  a) M = 7.46 × 10-4; b) M = 7.46 × 10-6. 

a) b) 
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The spectra in these experiments were taken at room temperature. Both absorbance and 

fluorescence spectra were collected. The comparison of the two spectral methods further 

showed that fluorescence excitation can be a more sensitive tool, showing changes with 

concentration that a simple absorbance spectrum did not reveal. The spectral series also used 

two solvents of similar dielectric constant, 3:1 glycerol: water and DMSO, to see if the aggregation 

process was solvent dependent. 

 Solutions of PPIX and ZnPPIX in 3:1 glycerol:water and in DMSO at a known high 

concentration, ~7 × 10-4 M, were made precisely in a volumetric flask. Then, the original solution 

was serially diluted by a factor of ten until an extremely dilute concentration of 7 × 10-11 M was 

created, far past the point of visible color in the deeply colored porphyrin solutions. The 

micromolar range was then tested with more resolution, taking the 10-6 M solutions and diluting 

by a factor of two until reaching 10-7 M. 

 Quantitative comparison of the spectra’s linearity was done by referencing the Soret peak 

intensity in each run. Then, the absorbance (a.u.) or emission (cps) intensity value of that peak 

was plotted against the porphyrin concentration. The points were fit using the linear regression 

tool in Microsoft Excel, adding points of increasing concentration to determine where deviation 

from linearity occurred. Based on these results, Table 5.12 recommends maximum working 

concentrations for porphyrin–solvent combinations to avoid apparent dimerization or 

aggregation. In general, approximately 1 × 10-6 M seems to be a concentration where the 

porphyrin population exists in monomer form. 
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Table 5.12. Recommended working concentrations of PPIX and ZnPPIX for spectral experiments 

to avoid dimerization or aggregation. 

Chromophore Solvent Maximum Concentration (M) 

PPIX 3:1 glycerol:buffer 3.75 × 10-6 

PPIX DMSO 1.865 × 10-6 

ZnPPIX 3:1 glycerol:buffer 1.865 × 10-6 

ZnPPIX DMSO 1.865 × 10-6 

 

 Finally, a series of similar spectra were taken with PPIX-substituted myoglobin and 

ZnPPIX-substituted myoglobin in 3:1 glycerol:water. It was not expected that these species would 

be affected by aggregation as pi-stacking would not be possible like in solution but the possibility 

of some other interaction between individual proteins was to be explored. The results showed 

linearity of Soret peak maxima with concentration and concentrations of porphyrin up to 10-4 M 

showed no additional peaks, so it was deduced that proteins either did not aggregate at the 

tested concentrations or that any aggregation did not affect the porphyrin spectra. 

5.3.3.55.3.3.55.3.3.55.3.3.5 LowLowLowLow----temperature fluorescence excitation spectra with contaminantstemperature fluorescence excitation spectra with contaminantstemperature fluorescence excitation spectra with contaminantstemperature fluorescence excitation spectra with contaminants    

Having ruled out aggregation in porphyrin-substituted myoglobin, the possibility of 

contamination was explored. As defined earlier, “contamination” in the context of porphyrin-

substituted proteins means porphyrins existing in solution outside of a properly substituted 

protein matrix. In Ch. 4, the substitution procedure used a ratio of 1 porphyrin : 2 apo-protein in 
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an effort to avoid and porphyrin remaining in solution. Here, the Soret band was made the focus 

spectral area. 

5.3.3.5.15.3.3.5.15.3.3.5.15.3.3.5.1 Experiments with PPIX DME Experiments with PPIX DME Experiments with PPIX DME Experiments with PPIX DME ----    myoglobinmyoglobinmyoglobinmyoglobin    

The following experiments used PPIX DME–substituted myoglobin for two reasons: 1) the 

substituted protein is analyzed in aqueous solution but the chromophore itself is not water 

soluble, making any unsubstituted porphyrin easier to filter out in the substitution process; 2) 

the capped propionate groups in the dimethyl ester porphyrin took away the possibility that the 

pH conditions of the solvent would affect the chromophore. A series of fluorescence excitation 

spectra taken at 1-nm excitation and 1-nm emission increments was taken of PPIX DME–

myoglobin in 3:1 glycerol:buffer at neutral pH immersed in liquid nitrogen. See Fig. 5.12 for a 

contour plot of the experiment; contour colors indicate emission intensity at that combination 

of excitation and emission energies. More apparent in Fig. 5.13a is that four excitation maxima 

are noted and individual emission scans at these four wavelengths in Fig. 5.13b can reveal 

possible sources. 

 

Figure 5.12. Compilation of 

emission scans taken at 1-

nm excitation wavelength 

increments of PPIX DME–

substituted myoglobin in 3:1 

glycerol:buffer at neutral pH 

immersed in liquid nitrogen. 

Red indicates a peak 

maximum. 
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The first attempt to intentionally contaminate a sample of PPIX DME–myoglobin was to add 

water-insoluble PPIX DME to a solution of PPIX DME–myoglobin in aqueous buffer. The result 

was deep-purple particles suspended in solution; this mixture was further mixed into glycerol for 

a final 3:1 ratio. While particles remained suspended, the mixture was immersed in liquid 

nitrogen. A sample without any protein was created in a similar manner for comparison. Fig. 5.14 

shows the two samples’ compiled emission spectra; compared to Fig. 5.12, any unsubstituted 

PPIX DME, assuming it took on a particulate form during the long substitution process, has a quite 

Figure 5.13. PPIX 

DME-myoglobin at 

neutral pH. a) 

Another view of 

fluorescence 

excitation with two 

frequency axes. 

Four excitation 

maxima are noted 

with arrows: 406 

nm, 415 nm, 428 

nm, and 438 nm. b) 

Emission spectra at 

the four excitation 

maxima with 

individual colors 

(legend lists 

wavelength in nm). 

406 nm  

428 nm  

415 nm  

438 nm  

a) 

b) 
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distinct spectral signature. The particulate porphyrin spectrum lacks the splitting features seen 

in the protein and shows a ridge constant across the Soret band at an emission wavelength of 

approximately 680 nm, well out of the maximum emission range of the substituted protein. It 

was concluded that unsubstituted PPIX DME was not present in typical preparations of PPIX 

DME–myoglobin and that the splitting noted in the original sample was not due to unsubstituted 

porphyrin. 

   

The second attempt to recreate a “contaminated” sample involved inducing denaturation of 

PPIX DME-substituted myoglobin so a sample of incorrectly substituted protein might be 

assessed. Denaturation was induced by lowering the protein sample to pH = 2 by adding 

concentrated 1 M HCl dropwise into the same PPIX DME-myoglobin in 3:1 glycerol:water. The 

sample was quickly immersed in liquid nitrogen. It was expected that a mixture of species would 

be created. The resulting emission scans compiled in Fig. 5.15 compared to the solution at neutral 

pH revealed that the sample is indeed a mixture. 

Figure 5.14. The spectral signature of particulate PPIX DME in aqueous solution. a) 

Combination of PPIX DME-substituted myoglobin (spectral signature on the lower half of the 

plot) and particulate PPIX DME (upper half of the plot); b) Particulate PPIX DME alone. 

a) b) 
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The global emission maximum moves along both frequency axes to higher energy approximately 

15 nm at λex, max = 415 nm and λem, max = 580 nm along with a maximum of similar magnitude at 

λex, max = 410 nm and λem, max = 595 nm. A much smaller local maximum does indeed appear in the 

low pH plot at approximately the position of the neutral pH maximum (λex, max = 428 nm, λem, max 

= 595 nm), revealing that proteins with conformations as at neutral pH exist in solution, but 

incorrectly substituted/denatured proteins dominate the plot at low pH. It is interesting to note 

that these new maxima are unlike the spectra produced by the particulate plots, indicating that 

the solution created by denatured protein has an influence of its own on the porphyrins. A 

comparison with the Fig. 5.13b shows that the low-pH maxima correspond well with the peaks 

produced with excitation at 415 nm. This seems to indicate that the change in conformation 

induced by low pH also exists to some extent in typical preparation of PPIX DME-myoglobin. As a 

result further efforts were taken to separate different conformations of the substituted protein 

with a size-exclusion column, but the results of this single effort seemed to strip the porphyrin 

from the protein. More attempts at this purification step need to be made.  

Figure 5.15. Contour 

plot of PPIX DME-

myoglobin in 3:1 

glycerol:buffer at pH 2. 
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5.3.3.5.25.3.3.5.25.3.3.5.25.3.3.5.2 Experiments with PPIXExperiments with PPIXExperiments with PPIXExperiments with PPIX----myoglobinmyoglobinmyoglobinmyoglobin    

After the apparent instability of PPIX DME-myoglobin post-purification column, PPIX-

myoglobin preparations were undertaken again. This time, to further explore the effect of 

unsubstituted porphyrin on spectra, they were done with varying ratios of porphyrin to apo-

protein: A) 2 porphyrin : 1 apo-myoglobin; B) 1 porphyrin : 1 apo-protein; C) 1 porphyrin : 2 apo-

protein. (Sample C represents a typical preparation of substituted porphyrin in this work.)  The 

expectation was that excess, unsubstituted porphyrin would produce a clear spectral signature. 

Here, fluorescence excitation data in Fig. 5.16 is simply the Soret region overlaid with a single 

frequency axis.  

 

Figure 5.16. PPIX-myoglobin 

fluorescence excitation spectra, 

Soret region. a) 2 porphyrin : 1 

apo-myoglobin; b) 1 porphyrin : 1 

apo-protein; c) 1 porphyrin : 2 

apo-protein. 

a) b) 

c) 
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 First, no splitting is noticed in the Soret region with higher resolution data, which is 

consistent with earlier, lower resolution data that showed splitting only in the Qx-band region for 

PPIX-myoglobin. This may indicate that PPIX-myoglobin has a very wide distribution of “correctly 

substituted” species, unlike PPIX DME-myoglobin, which seemed to have distinct peaks for 

“correct” and “incorrect” substitutions. Both of these substituted proteins would benefit from a 

crystal structure to clarify the way the porphyrin sits in the myoglobin heme cavity and if there is 

a distribution of conformations.  

A surprising observation is that there is no additional band for Sample A, even though there 

should be an equal amount of substituted and unsubstituted porphyrin. Free-base 

protoporphyrin IX in glycerol–water solution typically has an absorption maximum at 397 nm, 

which, with a lower molar absorptivity coefficient than the substituted protein, may be hidden 

beneath the broadened Soret band. The unsubstituted porphyrin may also have a shifted 

maximum as the dissolved protein may alter the solution’s dielectric constant enough to shift the 

Soret peak closer to that of the substituted protein.  

Another surprising observation is the non-linearity of the Soret band intensity. With a 

mixture of substituted and unsubstituted porphyrin, Sample A is not expected to be linear in the 

intensification of its Soret band over Samples B and C. However, between Samples B and C, there 

should only be substituted porphyrins and twice the amount in B as in C; however, the Soret band 

intensifies approximately two and a half times between the two samples at its peak. It may be 

interesting to further investigate how apo-protein affects the solution characteristics over holo-

protein. 
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5.3.3.5.35.3.3.5.35.3.3.5.35.3.3.5.3 Experiments with ZnPPIXExperiments with ZnPPIXExperiments with ZnPPIXExperiments with ZnPPIX----myoglobinmyoglobinmyoglobinmyoglobin    

Finally the above experiment with PPIX-myoglobin was repeated with ZnPPIX –myoglobin 

with Samples A, B, and C prepared in the same manner (Fig. 5.17): 

 

 

Contrary to the PPIX-myoglobin experiment, there is clear splitting in this sample. Although 

crystal structures are not available for either, it can be assumed that the protein is covalently 

attached to the porphyrin through the zinc atom, while that option is not available for the free-

base porphyrins.  However, like the PPIX-myoglobin sample, there is also no extra peak that 

appears when there is porphyrin in stoichiometric excess of protein in Sample A. In fact, the 

samples look qualitatively very similar. However, in glycerol–water solution, the solution 

Figure 5.17. ZnPPIX-myoglobin 

fluorescence excitation spectra, 

Soret region. a) 2 porphyrin : 1 

apo-myoglobin; b) 1 porphyrin : 1 

apo-protein; c) 1 porphyrin : 2 

apo-protein. 

a) b) 

c) 
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chromophore should peak about 410 nm, which, again, might be obsured in these plots. Another 

possible explanation is that the porphyrins essentially dimerize inside of the substituted protein, 

giving a ratio of 2 porphyrins per myoglobin. 

To test this, ZnPPIX in glycerol–water solution was added on top of the existing Sample B 

with twice the amount of free porphyrin to porphyrin-substituted protein. The homogeneous 

solution was mixed but not allowed to equilibrate for any length of time so the possibility of 

substitution was minimized (Fig. 5.18). Here an additional peak does appear at 405 nm and, in 

fact, dominates! This indicates that, for ZnPPIX–myoglobin, unsubstituted porphyrin does not 

seem to be a major contaminant. 

 

Finally, a denaturation was performed, but this time thermally, since the propionate side 

groups in protoporphyrin IX would protonate at low pH. An aliquot of Sample C was heated to 

approximately 90 °C for several minutes and immediately transferred to the liquid-nitrogen 

sample holder and brought to low temperature by immersion. The denaturation is apparent in 

Fig. 5.19, with the peak at 405 nm again dominating. 

Figure 5.18. ZnPPIX-

myoglobin fluorescence 

excitation spectra, Soret 

region, with additional, 

unequilibrated solution 

porphyrin.  
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Some comparison between species of ZnPPIX in glycerol–water solutions at low 

temperature are found in Fig. 5.20. It is clear that protein-substitution is required for Soret-peak 

splitting in ZnPPIX as well as low temperature. In addition, it shows that the preparations 

(Samples A, B, and C) that were allowed to equilibrate with porphyrin in apo-protein, have similar 

shapes distinct from other treatments. 

Figure 5.19. ZnPPIX-

myoglobin fluorescence 

excitation spectra, Soret 

region, Sample C subject 

to thermal denaturation.  
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5.3.3.65.3.3.65.3.3.65.3.3.6 Possible explanation for SoretPossible explanation for SoretPossible explanation for SoretPossible explanation for Soret----band splitting in ZnPPIXband splitting in ZnPPIXband splitting in ZnPPIXband splitting in ZnPPIX––––myoglobinmyoglobinmyoglobinmyoglobin    

Further purification of ZnPPIX–myoglobin Sample C on a size-exclusion column produced a 

single peak, indicating that aggregation of apo-protein in this sample was not present in large 

amounts. This, along with the spectral data presented in the last section, seems to rule out 

contamination as a source of splitting, at least for ZnPPIX–myoglobin. The assessment from Fig. 

5.21 below points to the resolution of vibronic sidebands as a source of splitting in this region. 

Like Fig. 5.13b, Fig. 5.21 is the emission spectra produced at each of five excitation maxima from 

individual fluorescence excitation spectra. For this species, the emission maxima occur at similar 

positions, indicating that radiative relaxation shares points of energetic origin, as tabulated in 

Table 5.13. 

Figure 5.20. ZnPPIX-myoglobin 

fluorescence excitation spectra, 

Soret region comparing various 

treatments of the chromophore 

and viewed at different emission 

wavelengths in the same region. 

a) λem = 605 nm; b) λem = 610 nm; 

c) λem = 615 nm. 

a) b) 

c) 
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Table 5.13. Emission maxima of five peak excitation positions for ZnPPIX–myoglobin. 

Excitation 

Peak Position 

(nm) 

Emission Peak 

1 (nm) 

Emission Peak 

2 (nm) 

Emission Peak 

3 (nm) 

Emission Peak 

4 (nm) 

405 593.5 609.0 620.5 640.5 

430 594.5  621.5 643.0 

440 *shoulder 609.5 *shoulder  

450 593.5 612.5 620.0  

460 594  622  
 

5.45.45.45.4 ConclusionsConclusionsConclusionsConclusions    

The peak maxima for the absorption and emission spectra of a number of porphyrins in a 

variety of environments have been tabulated in support of future hole-burning Stark experiments 

with high resolution but very narrow spectral windows. The porphyrin species tested are 

protoporphyrin IX (PPIX), zinc protoporphyrin IX (ZnPPIX), protoporphyrin IX dimethyl ester (PPIX 

DME), zinc protoporphyrin IX dimethyl ester (ZnPPIX DME), and tin protoporphyrin IX dimethyl 

ester (SnPPIX DME). Both free solution porphyrins as well as myoglobin-substituted porphyrins 

were tested. The solvents used were water and 3:1 glycerol:water mixture for water-soluble 

Figure 5.21. ZnPPIX-

myoglobin emission 

pattern comparison in 

Soret region for five 

excitation peaks 

(wavelength in nm). 
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chromophores; ethanol, chloroform, and their glycerol mixtures for non-polar chromophores; 

and neutral phosphate buffer and its 3:1 glycerol:buffer mixture for proteins.  

Because hole-burning Stark spectroscopy is performed at very low temperatures, spectra 

of the porphyrin species and environments listed above were also taken while immersed in liquid 

nitrogen. A method was devised to accomplish these conditions using a commercial instrument. 

Unusual spectra that revealed splitting in some bands of porphyrins in the UV–VIS region, 

especially the Soret band, at low-temperature prompted further exploration into the cause. It 

was determined that porphyrins in solution exhibited band splitting at higher concentrations and 

was resolved at lower micromolar concentrations. However, band splitting in porphyrin-

substituted myoglobin persisted at all concentrations. The cause of splitting seemed to vary 

based on the porphyrin. PPIX–myoglobin did not show any Soret-band splitting but did exhibit 

some Q-band splitting. PPIX DME–myoglobin appeared to have Soret splitting at least partially as 

a results of a mixture of species, i.e., different conformations of the porphyrin substituted into 

the protein. ZnPPIX–myoglobin, however, seemed to be a sample with a single species and Soret-

band splitting appears to be simply the resolution of vibronic bands associated with the electronic 

Soret transitions. 
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Chapter 6 

Hole-Burning Stark Spectroscopy 

6.1   Introduction 

The experimental measurement of internal electric fields in heme proteins has been 

conducted using Stark spectroscopy, which is the application of an external electric field while a 

spectrum is collected. The Stark shift that results in the porphyrin spectrum allows for the 

measurement of a change of the energy levels of the chromophore. From this, the internal 

electric field vector can be extracted mathematically. However, as described in Chapter 5, the 

significant inhomogeneous broadening present in porphyrin spectra obscures the Stark shift. As 

a means of increasing resolution to measure the Stark shift, spectral hole burning is employed. 

The theoretical underpinnings of both Stark spectroscopy as well as spectral hole burning 

will be presented here in general terms. Further details on the quantum-mechanical Stark 

analysis, which this work has helped to advance, will be discussed in Chapter 7. Then, the 

experimental setup for Stark hole-burning experiments will be described. In addition, a related 

measurement of the dielectric constant of low-temperature glasses will be considered. Finally, 

experimental spectra of PPIX–myoglobin obtained with the Stark hole-burning apparatus will be 

presented. 
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6.2       Theory 

6.2.1 Stark spectroscopy 

When a spectroscopy sample is placed between charged parallel-plate electrodes, the 

resulting electric field (������ ) causes a perturbation to the energy levels of the chromophores in 

the sample.2 The magnitude of the applied field is limited by the point of dielectric breakdown 

for the sample material (i.e., where it begins to conduct electricity). For this experiment’s frozen 

glycerol–water glass solvent, an appropriate range for ������ is about 1 – 20 kV/cm. The Stark 

energy-level shift increases as the magnitude of the applied field increases. This shift can be 

described with either a classical or quantum-mechanical approach. 

First, the classical Stark equation is: 

∆�	������
 = − 
� �Δ�� ∙ ������ + 

� ������ ∙ ∆�� ∙ ������ + ⋯ �   (6.1) 

where Δν is the Stark shift, i.e., change in transition frequency of the chromophore (in 

wavenumbers); h is Planck’s constant; c is the speed of light in a vacuum. Let us define, Δ��, the 

difference dipole moment and ∆��, the difference polarizability, more carefully in Eq. 6.2 and Eq. 

6.3; the difference dipole moment is also illustrated in Fig. 6.1.3 The subscripts “0” and “1” refer 

to the ground and first electronic excited states, respectively: 

∆�� = ��,���� − ���,����       (6.2) 

∆�� =  �� ����         (6.3) 
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Clearly, the expression in Eq. 6.1 is a truncated series. Beyond the linear term, containing Δ��, 

and quadratic term, containing ∆��, higher order terms, containing respective hyperpolarizability 

coefficients (β, γ, etc.), may also contribute to the classical description of the Stark shift 

depending on the extent of the non-linear optical nature of the sample. From Eq. 6.1, the field 

functions by interacting with the electron distribution of the chromophore. The quadratic term 

in the equation leads to a physical insight into the nature of the interaction: the external electric 

field interacting with the polarizability of the chromophore creates an induced dipole moment 

(��� !).4 This is distinct from the permanent dipole moment found in Eq. 6.1 because it accounts 

for the additional charge polarization when the external electric field is applied: 

∆��� ! =  ∆�� ∙ ������      (6.4) 

 Considering now not just a single molecule but a population randomly distributed in a 

glassy solvent, the linear Stark shift in a molecule with a vanishing permanent-dipole-moment 

difference can be understood.1, 5 As shown in Fig. 6.2, the colored arrows arranged in circular 

Figure 6.1. Difference dipole 

moment dramatized for 

chlorophyll, which would 

exhibit symmetry-breaking to 

have a non-zero ∆�� value. The 

red arrow represents the 

ground-state permanent dipole 

moment vector; the blue arrow 

represent the first-excited-state 

permanent dipole moment; the 

green dashed arrow represents 

the difference dipole moment, 

∆��. 
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distribution represent the permanent dipole moment vectors of a distribution of chromophores. 

The external electric field vector, as it is applied during a Stark experiment, falls incident upon 

this distribution and interacts to a different extent, depending on the angle. If we simplify the 

interaction to three scenarios, we can correspond a spectral change to each: 1) the difference 

dipole moment vector parallel to the applied field (red arrows) causes a shift in spectrum to lower 

energy (red curve); 2) the vector perpendicular to the applied field (green arrows) leaves the 

spectrum relatively unchanged in terms of energy (green curve); 3) the vector anti-parallel (blue 

arrows) to the applied field causes a shift to higher energy (blue curve). Intuitively, the shifts in 

spectra correspond to these interactions like one force “opposes” or “encourages” another. Thus, 

for a random distribution of chromophores, a Stark “shift” will manifest as a spectral broadening. 

The “zero-field spectrum” (i.e., before the external electric field is applied) and the spectrum 

after a field has been applied will encompass the same area under the curve because the same 

number of chromophores are sampled in each spectrum. 

 

Figure 6.2. The spectrum before the field has been applied is the most intense and 

shown in black. The three general interactions shown by the vectors have 

corresponding, less-intense curves that shift in energy accordingly. (Figure adapted 

from Ref. 1.) 
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 Another factor that arises for a population of chromophores in a glassy solvent is that 

������ encounters the chromophores’ surroundings before interacting with the chromophore. In 

this work, the surroundings for the chromophores includes not only the frozen glycerol–water 

solvent but also the protein matrix in which the porphyrin chromophore is substituted. As might 

be expected, the external electric field is mitigated by the dielectric solvent with contributions 

from both the glass and the protein and scales with their respective dielectric constant values. 

However, the geometry of the cavity where the chromophore sits is also a factor, which can, in 

fact, serve to magnify the field intensity. For myoglobin, the heme cavity is an elongated space 

with an ill-defined border; however, because an exact treatment for a spherical cavity exists, will 

serve as the approximation for the heme cavity. These factors are defined by the Lorentz local 

field factor, f: 

" = #$�
%         (6.5) 

where ε is the effective dielectric constant of the glycerol–water and protein matrix combined. 

The local field factor, when considered, is then used as a coefficient for the applied field.6 

 Where does the internal electric field arise in this analysis? From Chapter 3, we defined 

total electric field (����&�) as the sum of internal electric field (generated by the protein matrix) 

and external electric field (applied during a Stark experiment) in Eq. 3.3. The classical expression 

given in Eq. 6.1 when an internal electric field is present contains not solely ������ but ����&�. Now 

that we see the field as it interacts with the solvent, we can define ����&� more precisely: 

����&� =  ���� � + "�∙ ������       (6.6)  
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 Often, the classical Stark equation will be truncated at only the linear term.7 This may be 

due to the difficulty in obtaining experimental values for polarizabilities in excited states, which 

would be required to generate the ∆�� coefficient for the quadratic term. Errors arise when 

neglecting higher-order terms, especially when working with a centrosymmetric molecule such 

as porphin. This is because molecules with inversion symmetry theoretically will have a dipole 

moment equal to zero in both the ground and excited states, therefore ∆�� = 0. The linear term 

on its own would then not be sufficient to describe the Stark shift that results. For substituted 

myoglobin, the possibility of an induced dipole moment in porphyrins, however, is significant. 

With the definition in Eq. 6.4, ��� ! can be captured to properly describe our system of interest. 

However, we again rely on the quadratic term for a proper description. Finally, the subpopulation 

of randomly oriented molecules described in Fig. 6.2 that lies perpendicular with ∆�� 

perpendicular to the external electric field does not exhibit a linear Stark shift. However, it may 

undergo a shift that is governed by higher-order terms are thus necessary to properly analyze 

this subset of sample.8 It is clear that, especially for our system of interest, we cannot rely on a 

simple linear analysis.9 

 Might there be a better method for elucidation of internal electric field from Stark shifts 

in porphyrin-substituted myoglobin?10 A distinct quantum-mechanical (QM) approach was 

developed by Kohler, et al. starting in 1992.11 Here, the energy shift is expressed by a 

perturbation term to the Hamiltonian: 

*+ = *+� − ����&� ∙ ��, = *+� − (���� � + " ∙ ������) ∙ ��,     (6.7) 
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where *+ is the total Hamiltonian (energy) and *+� contains all of the contributions to energy 

except the total electric field, e.g., any conformational changes induced by the protein, short-

range electrostatics, etc. The perturbation term, ����&� ∙ ��, , is the scalar product of the total electric 

field (defined in Eq. 6.6) and the dipole moment operator. The dipole moment matrix element is 

defined as: 

�� = ./�0��,0/12 = ./�03 ∙ 4�,0/12     (6.8) 

with subscripts i and j referring to electronic states. For i=j, the expression describes the 

permanent dipole moment; for i≠j, the expression describes the transition dipole moment, 

which relates to the probability of transition between states i and j. This QM approach describes 

the interaction of the field and chromophore in a unique way. The perturbation term states that 

the electric field is sensed as a “projection” onto the dipole moment of the chromophore. This 

has the consequence of defining the resolution of this analysis method: the expression yields the 

exact internal fields in the limit of the point dipole approximation. This means that the measured 

internal electric field in this work is essentially averaged over the surface of the porphyrin probe 

(see discussion in Chapter 4).  

 The QM Stark analysis introduced here will be expanded in detail along with challenges 

and possible solutions in the next chapter. 

6.2.2 Spectral hole burning 

The Stark shift in porphyrin-substituted myoglobin is on the order of 10-2–10-3 nm for a 

reasonable external electric field strength. However, the spectral width of the lowest-energy 

electronic Q band, which is monitored in our experiments, is on the order of 20 nm. Clearly, the 
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shift would be entirely obscured if no modification to the spectrum were made. Resolution is re-

gained through spectral hole burning.12 

Hole burning selects a subset of chromophores in the sample that resonate at the same 

energy. The technique essentially photobleaches that subgroup by focusing a narrow-linewidth 

laser at a particular frequency on the sample, affecting the spatial volume that falls within the 

beam’s cross-section and penetration depth. When the “burned” spectral region is scanned for 

a second time as readout, the resulting change to the spectrum exhibits a “dip” at the burning 

frequency. The hole depth and width is dependent on burning time and burning laser intensity, 

and represents the number of burned chromophores at that frequency. Because the laser 

linewidth is should ideally be narrower than the homogeneous linewidth of the transition under 

study (see definition in Chapter 5), the subset that is affected by the burning laser can be accessed 

at any point in the distribution that the laser crosses in frequency space. This can be visualized 

with Fig. 5.6b. If any single frequency is chosen for burning, it may lie either at the peak of a 

homogeneous line or may lie at the overlapping wings of any two, which would give the burning 

laser access to a subset over both homogeneous lines. The resulting spectral hole reflects both 

the burning action as well as the light absorbed during the scanning process that is performed in 

order to read out the hole. After these steps, the spectral hole is, in the ideal case, Lorentzian in 

shape (although inverted from the homogeneous lineshapes illustrated in Fig. 5.6) with a width 

that is twice the homogeneous linewidth, reflecting both the width of the burning step and the 

probing step: 

5�&6� = 2Γ�&�        (6.9) 
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What is the physical process of spectral hole burning? Hole-burning mechanisms are 

molecular-species-dependent and can be divided into two categories: 1) photochemical burning 

and 2) photophysical burning.13 For free-base protoporphyrin IX, the hole-burning mechanism is 

photochemical, meaning the probe molecule itself undergoes a rearrangement that breaks and 

make covalent bonds. In this species, it is postulated that an isomerization of the inner 

hydrogens, i.e., changing positions from one trans position to the other, results in a spectral hole 

because the pyrrole-nitrogen positions at the center of the porphyrin ring are not equivalent due 

to non-symmetric positions of the vinyl substituents (see Fig. 4.2)14 and because of the disordered 

local environment. For metalloporphyrins like zinc protoporphyrin IX, the inner-hydrogen-

isomerization option is not available. Thus it is thought that this species undergoes a 

photophysical process instead. This a less specific mechanism and involves the rearrangement of 

the chromophore’s surroundings or possibly less drastic conformational changes rather than a 

chemical process.15 For either mechanism, photochemical or photophysical, the effect is to move 

the resonance frequency for the burned subset so that the number of molecules absorbing at the 

burning frequency is depopulated. At very low temperatures (e.g., <4 K), the photoconversion 

can persist as long as the temperature remains low enough to prevent the reverse reaction and 

the spectral hole is permanent under such conditions. 

Extensive lineshape theories for spectral holes have been developed.16 These complex 

expressions nevertheless are interesting in the number of variables that are encompassed, which 

help to gain a handle on the number of physical factors involved in the process of spectral hole 

burning. As mentioned above, spectral holes contain contributions from both the burning and 

the readout (”scanning” or “probing” step), fB and fP respectively. The polarization of the laser in 
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these two steps with respect to the transition dipole moment of the chromophore also plays a 

role in the resulting lineshape of the hole. Here, the angles θ (the in-plane polar angle) and ϕ (the 

azimuthal angle, i.e., the projection onto the perpendicular plane) play a role. The overall hole 

shape for a photochemical process as a function of frequency (Γ�&6�(�)) is given as: 

Γ�&6�(�) = 8� − 9
:; < => ∙ sin B�;

� < CD$E
�E F"G(B), �′I ∙ "J(B, >) ∙ *KL(�� − �M)=�′  

          (6.10) 

where A0 is the absorption intensity at the burning frequency (ν0) before burning; σ is the 

absorbance cross-section of the chromophore; N is the number of molecules in the burn volume; 

ν’ is the center frequency of the homogenous line; the normalized homogeneous lineshape 

function is designated by *KL(�� − �M). The burning and scanning steps can be performed 

parallel (∥) or perpendicular (⊥) to one another. These vectors interacting with the 

chromophore’s transition dipole moment are illustrated in Fig. 6.3. The polarization factors of 

those steps (with respect to the transition dipole moment) are: 

"G(B) = PQR� B         (6.11) 

"J∥ = PQR�B          (6.12) 

"JS = RTU�BRTU�>         (6.13) 

The burning function is further defined: 

CDF"G(B), �′I = C�(�′) ∙ VWX �− 9∙Y
�Z[

\] ∙ "G(B) ∙ *KL(�� − �′)�  (6.14) 
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where C�(�′) is the inhomogeneous distribution function before burning; I is the intensity of 

the burning laser; η is the quantum yield of the burning process (i.e., the proportion of the 

absorbed photons that results in a chromophore photoconversion to a “burned” product); τ is 

the burn time.  

 

 When an external electric field is applied to a spectral hole, a Stark shift occurs. However, 

there are two distinct effects that can be observed and that depend on the angle of the applied 

field with respect to the laser polarization: 1) a broadening or 2) a splitting. The two effects can 

be seen for a single hole in a single sample when the applied field is switched from a parallel to 

perpendicular interaction with the scanning and burning laser polarization. See Fig. 6.4a for 

examples of broadened spectral holes and Fig. 6.4b for examples of split holes.  

Figure 6.3. Three interacting 

vectors in a hole-burning 

experiment: transition dipole 

moment of a porphyrin 

chromophore (green with the 

symmetric porphin core boxed in 

red); external electric field (gray); 

the burning and probing laser 

(applied parallel in this case in 

orange). 
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6.3  Experimental 

With the aim of measuring internal electric field in heme proteins, an apparatus for hole-

burning Stark spectroscopy was assembled by group member Brad Moran. Limited results with 

the current experimental set-up were obtained and are given here. 

6.3.1 Current hole-burning Stark spectroscopy apparatus 

The basic components of an experimental set-up for hole-burning Stark spectroscopy are a 

burning laser and a scanning laser (which in this case are the same) a wavemeter to establish 

position in frequency space, a polarizer for laser light, a cryostat, a sample holder with electrodes 

to generate an external electric field, detectors for absorbance or emission, and a way to process 

Figure 6.4. Spectral holes 

burned in the Qx band of 

PPIX–myoglobin at two 

different orientations of 

laser polarization with 

respect to external electric 

field.  The Stark shift 

increases as external electric 

field increases clockwise in 

each panel with values noted 

in kV/cm. a) broadened holes 

with a perpendicular 

orientation; b) split holes 

with a parallel orientation. 

a) 

b) 

2.8 

kV/cm 

5.5 

kV/cm 

8.3 

kV/cm 
11.1 

kV/cm 

2.8 

kV/cm 

5.5 
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the resulting spectra. In this work, a 5–6 watt, continuous wave, 532-nm Millenia Pro frequency-

doubled Nd:YAG laser (Spectra Physics / Newport Co., Santa Clara, CA) was used to pump a 

Matisse ring dye jet laser (Sirah Lasertechnik, Grevenbroich, Germany). The dye laser had a 

continuously tunable frequency range, both by the type of dye used and by scanning optics that 

adjust the size of the laser cavity. The dye with appropriate wavelength range for working with 

free-base protoporphyrin IX is dicyanomethylene (DCM, 620–670 nm); for blue-shifted 

metalloporphyrins, rhodamine 6G (R6G) provides a range 570–620 nm.. From the dye laser, part 

of the beam entered a wavemeter (High Finesse, Tübingen, Germany) to monitor frequency 

position. After a series of focusing optics, including polarizing elements, the laser beam entered 

a cryostat via optical fiber and directed to the bottom of the cryostat where the porphyrin-

substituted protein sample in glycerol–water solvent was placed.  The sample holder was 

configured to contain the sample between parallel-plate electrodes, which were charged with a 

direct-current power supply (Bertram [now Pearse–Bertram, Bloomfield, CT]) with a range of up 

to 25 kV. The fluorescence resulting from laser excitation was captured above the sample where 

the excitation light entered the cryostat. The fluorescence, which was emitted well red-shifted 

to the excitation light, was detected by an avalanche photodiode (APD, Perkin-Elmer, Waltham, 

MA). Thus, the spectra collected is a fluorescence excitation spectrum where the x-axis is 

excitation energy and the y-axis is fluorescence intensity. A basic scheme for hole-burning Stark 

spectroscopy is shown in Fig. 6.5: 
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The careful alignment of the number of optical components in this experiment set-up was 

essential for the excitation light to reach the sample. A laser power stabilizer (“noise eater”; 

Cambridge Research and Instrumentation, Woburn, MA) was employed to correct intensity 

fluctuations from the laser source. One corrective element placed in the beam path was a beam 

stabilizer (Newport Corp. / New Focus, Santa Clara, CA). This was deemed necessary because the 

scanning process used by the dye laser results in a slight “beam walk” (see Fig. 6.6), which can 

displace the beam a few hundred nanometers and cause it to miss a target mirror, lens, or optical-

fiber coupling port. The beam stabilizer was actually comprised of several optical elements: a 

beam sampler to redirect <10% of the laser beam to a position sensitive detector that controls 

Figure 6.5. Hole-burning Stark spectroscopy experimental set-up. The green 

laser beam from the pump laser is transformed to a lower-energy orange beam 

by the ring dye laser. The path of the beam is followed through the components 

described above. 
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the position of highly reflective mirrors on motorized mounts to actively correct the beam path 

in real time. 

 

Once the laser beam traversed the optics on the table, it entered the cryostat, where the 

sample resided. Based on the discussion of inhomogeneous broadening as well as the need to 

create persistent spectral holes, the porphyrin-substituted protein was analyzed in a custom-

built liquid-helium cryostat (Janis Research Company, Inc., Woburn, MA). The cryostat was 

comprised of an outer vacuum jacket, a cryogen layer, another vacuum jacket, and an inner 

sample compartment that could be connected to the cold cryogen gas or could be isolated in 

vacuum. The cryogen layer was first cooled to liquid nitrogen temperature (77 K), which was 

subsequently siphoned out, and replaced with liquid helium (4 K). When the liquid helium was 

placed under vacuum, the temperature was dropped to 1.4 K. The number of steps involved with 

cooling made it a challenge to achieve the very low temperature required for a successful 

experiment. 

Figure 6.6. Laser beam path 

through a Brewster plate, 

which is the optical element 

in the dye laser responsible 

for the scanning capability, 

allows for calculation of the 

beam displacement it 

causes.  
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Another challenge with the experimental set-up in this work was an appropriate sample 

holder for the cryostat described, which resided at the bottom of the > 4-foot-tall vessel. The 

main criterion for an effective design was that the electrodes needed to sit about a millimeter 

apart to generate field strengths of 5–20 kV/cm, leaving the sample volume to reside in a narrow 

channel of insulating material. Explored designs began with a glass microscope slide with 

electrode-lined channels. First, an attempt was made to deposit layers of nickel–chromium and 

aluminum by thermoevaporation to a thickness tall enough to form channels. However, the 

metal flaked away from the glass easily. Then, mounting 1-mm-thick foam tape onto the glass to 

form a channel and covering it with conductive silver paint was tried, but the adhesive was not 

appropriate for a low-temperature environment. A similar attempt with gluing cut glass onto the 

glass mount and covering the surface of the channel with copper tape was made. This, too, had 

gaps under the adhered channel edges where solvent could escape the channel. Finally, a more 

complex polypropylene holder with a milled sample channel was obtained. The channel was lined 

with thin pieces of copper secured without adhesive. Initially, experiments were performed with 

solvent directly touching the copper electrodes. However, once electric field was applied, it 

became apparent that the sample needed insulation from the field because heating occurred of 

the sample compartment when the field was applied. The sample was then placed in a square, 

glass capillary tube that fit into the narrow channel snugly.  

Because the sample resided a few feet away from the detector, the small sample volume 

need to produce enough fluorescence to register several hundred photon counts on the sensitive 

APD detector. The signal was impacted not only by the concentration of chromophores but also 

by the intensity of the incoming laser light (which could fluctuate dramatically over several hours) 
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as well as the alignment of the sample with respect to the focused beam’s focal point. The 

alignment process was exacerbated by the inability to know the absolute location of the sample 

inside of the enclosed, opaque cryostat. In addition, piezo-controlled coarse and fine positioning 

motors lacked the ability to meter the spatial distance covered when an impulse was sent to 

initiate movement.  However, once an appropriate concentration of chromophores was found 

(3.03 x 10-3 M PPIX at 50% substitution in myoglobin), the alignment issues were eventually 

overcome. 

Finally, the experimental set-up described was capable of producing spectral holes with 

PPIX–myoglobin. However, the production of an electric field large enough to produce a 

measureable Stark shift was impeded in a sample chamber under vacuum, which is required to 

bring the temperature below 4 K. Introducing cold cryogen gas (helium) into the sample chamber 

allowed for a larger field, but brought the temperature higher than was tolerable to retain 

resolution.  

6.3.2 Past hole-burning Stark spectroscopy apparatus 

Because the spectral holes collected with the current apparatus were not able to have an 

electric field applied (see results and discussion below), the advances in QM Stark analysis 

described in the next chapter (Chapter 7) were tested using previously collected spectral holes, 

namely the spectra shown in Fig. 6.4. (The set was labelled Myo A 16131 in past files.) That data 

collection used an experimental set-up with some differences from the current one.17 First, the 

pump and dye laser combination was different:   a 7.0 W, 514- nm Coherent Sabre TSM20 argon-

ion pump laser with a tunable Coherent 699-29 single frequency ring dye laser operating with 

Kiton Red 620 in a mixture of methanol and ethylene glycol. Then, the sample holder was a 
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cylindrical, 1-mm glass capillary, which was immersed in a home-made glass optical cryostat. The 

exciting laser light fell incident upon the sample directly through the quartz cryostat windows as 

opposed to the confocal set-up described in the current set-up. The excitation (for reference) 

and fluorescence were detected with cooled Burle C31034 photomultiplier tube (PMT) (rather 

than the avalanche photodiodes used in the current set-up) and then amplified 25 times 

(Stanford Research Systems SR445) before reaching a photon counter (Stanford Research 

Systems SR400). Finally, to apply an electric field to the sample, the high-voltage cable ran 

through the helium gas and require insulation in an evacuated stainless-steel tube. 

6.3.3 Results and discussion 

The following series of spectral holes were created in PPIX–myoglobin in glycerol–water at 

< 4 K. They were burned in a number of locations in the Qx band at approximately 620 nm (exact 

location given in GHz).  Figures 6.7a –e show the effect of burn time on spectral holes. It was 

determined that a 12-second burn time with this particular sample and set of optics was the most 

effective. In addition, it can be noted that the post-burn spectrum (i.e., the scanning step) loses 

intensity, which is certainly a consequence of photobleaching and had been mitigated somewhat 

by scanning at lower intensity by way of filters. A series of repeated scanning steps was 

performed and shown in Figure 6.8. 
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Figure 6.7a. Long burn 

time (20 s) manifests in a 

triangular shaped hole 

rather than a Lorentzian 

line shape.  

Figure 6.7c. 12-second 

burn time shows a 

Lorentzian line shape. 

Figure 6.7b. 15-second 

burn time shows a 

Lorentzian line shape. 
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Figure 6.7d. 10-second 

burn time shows a 

Lorentzian line shape. 

Figure 6.7e. Under-

burning (8 sec) also 

deviates from a 

Lorentzian line shape, 

leaving the hole 

minimum unclear. 

Figure 6.8. A total of 

four scans after the 

creation of a spectral 

hole clearly shows 

gradual photobleaching 

of the scanned sample 

volume. 
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6.46.46.46.4   Conclusions    

Stark spectroscopy can be used to measure the internal electric field inside of heme proteins 

when they are substituted with porphyrins that exhibit fluorescence. For porphyrins that suffer 

from significant inhomogeneous broadening, spectral hole burning is used. An extensive 

experimental set-up to accomplish hole-burning Stark spectroscopy has been assembled and 

continuous improvements towards the goal of collecting high-resolution data are being made. 

Spectral holes at liquid helium temperature have been created in PPIX–myoglobin. However, the 

ability to apply an electric field for Stark experiments in the vacuum environment required for 

temperatures <4 K is a barrier and the trade-off between these two conditions requires future 

negotiation. 

  



163 

 

6.5   References 

 

1. Boxer, S. G., Stark Realities. Journal of Physical Chemistry 2009, 113 (2972-2983). 

 

2. Samoilenko, V. D.; Rasumova, N. V.; Personov, R. I., Stark effect in narrow gaps in the 

absorption bands of complex molecules. Optika i spektroskopiia 1982, 52 (4), 346-348. 

 

3. (a) Boxer, S. G.; Goldstein, R. A.; Lockhart, D. J.; Middendorf, T. R.; Takiff, L., Excited 

States, Electron-Transfer Reactions, and Intermediates in Bacterial Photosynthetic Reaction 

Centers. Journal of Physical Chemistry 1989, 93, 8280-8294; (b) Hammes, S. L.; Mazzola, L.; 

Boxer, S. G.; Gaul, D. F.; Schenck, C. C., Stark spectroscopy of the Rhodobacter sphaeroides 

reaction center heterodimer mutant. Proceedings of the National Academy of Sciences 1990, 87 

(15), 5682-5686; (c) Lockhart, D. J.; Hammes, S.; Franzen, S.; Boxer, S. G., Electric Fieid Effects 

on Emission Line Shapes When Electron Transfer Competes wlth Emission: An Example from 

Photosynthetic Reaction Centers. Journal of Physical Chemistry 1991, 95 (2217-2226). 

 

4. Altmann, R. B.; Renge, I.; Kador, L.; Haarer, D., Dipole moment differences of nonpolar 

dyes in polymeric matrices: Stark effect and photochemical hole burning. I. The Journal of 

Chemical Physics 1992, 97 (8), 5316-5322. 

 

5. Bublitz, G. U.; Boxer, S. G., Stark Spectroscopy: Applications in Chemistry, Biology, and 

Physics. In Annual Review of Physical Chemistry, 1997; Vol. 48, pp 213-242. 

 

6. (a) Geissinger, P., Kohler, Bryan E., Woehl, Jorg C., Electric Field and Structure in the 

Myoglobin Heme Pocket. J. Phys. Chem. 1995, 99, 16527-16529; (b) Andrews, S. S.; Boxer, S. G., 

Vibrational Stark Effects of Nitriles I. Methods and Experimental Results. The Journal of Physical 

Chemistry A 2000, 104 (51), 11853-11863; (c) Hashimoto, H.; Fujii, R.; Yanagi, K.; Kusumoto, T.; 

Gardiner, A. T.; Cogdell, R. J.; Roszak, A. W.; Issacs, N. W.; Pendon, Z.; Niedzwiedski, D.; Frank, 

H. A., Structures and functions of carotenoids bound to reaction centers from purple 

photosynthetic bacteria. Pure Applied Chemistry 2006, 78 (8), 1505-1518; (d) Kanchanawong, 

P.; Dahlbom, M. G.; Treynor, T. P.; Reimers, J. R.; Hush, N. S.; Boxer, S. G., Charge Delocalization 

in the Special-Pair Radical Cation of Mutant Reaction Centers of Rhodobacter sphaeroides from 

Stark Spectra and Nonadiabatic Spectral Simulations. The Journal of Physical Chemistry B 2006, 

110 (37), 18688-18702. 

 

7. (a) Sandberg, D. J.; Rudnitskaya, A. N.; Gascon, J. A., QM/MM Prediction of the Stark 

Shift in the Active Site of a Protein. Journal of Chemical Theory and Computation 2012, 8 (8), 

2817-2823; (b) Suydam, I. T.; Snow, C. D.; Pande, V. S.; Boxer, S. G., Electric Fields at the Active 

Site of an Enzyme: Direct Comparison of Experiment with Theory. Science 2006, 313 (5784), 

200-204. 

 



164 

 

8. Drobizhev, M.; Tillo, S.; Makarov, N. S.; Hughes, T. E.; Rebane, A., Color Hues in Red 

Fluorescent Proteins Are Due to Internal Quadratic Stark Effect. The Journal of Physical 

Chemistry B 2009, 113 (39), 12860-12864. 

 

9. Geissinger, P., Quantitative Measurement of Internal Molecular Electric Fields in Solids. 

In Anisotropic Organic Materials: Approaches to Polar Order, Glaser, R., Kaszynski, Piotr, Ed. 

American Chemical Society: Washington, DC, 2002. 

 

10. (a) Kohler, B.; Woehl, J. C., Classical and quantum mechanical models for Stark 

experiments. Molecular Crystals Liquid Crystals 1996, 291, 119-134; (b) Geissinger, P., Woehl, 

Jorg C., Prince, Barry J., A quantum-mechanical model for the determination of internal electric 

fields at protein active sites from the Stark effect on persistent spectral holes. Journal of 

Luminescence 2004, 107, 220-229. 

 

11. Gradl, G.; Kohler, B. E.; Westerfield, C., Electric field splitting of the octatetraene 1 1Ag--

>2 1Ag transition in n-hexane. Journal of Chemical Physics 1992, 97 (9), 6064. 

 

12. (a) Purchase, R.; Sellars, M. J.; Krausz, E.; Manson, N. B., Electric-field-induced 

broadening of spectral holes in zinc phthalocyanine. Chemical Physics Letters 2000, 327 (3-4), 

189-196; (b) Jankowiak, R.; Reppert, M.; Zazubovich, V.; Pieper, J.; Reinot, T., Site Selective and 

Single Complex Laser-Based Spectroscopies: A Window on Excited State Electronic Structure, 

Excitation Energy Transfer, and Electron-Phonon Coupling of Selected Photosynthetic 

Complexes. Chem. Rev. (Washington, DC, U. S.) 2011, 111 (8), 4546-4598; (c) Volker, S., Hole-

Burning Spectroscopy. Annu. Rev. Phys. Chem. 1989, 40, 499-530; (d) Jankowiak, R.; Hayes, J. 

M.; Small, G. J., Spectral Hole-Burning Spectroscopy in Amorphous Molecular Solids and 

Proteins. Chem. Rev. (Washington, DC, U. S.) 1993, 93 (4), 1471-1502; (e) Kohler, B. E.; 

Personov, R. I.; Woehl, J. C., Electric Field Effects in Molecular Systems Studied via Persistent 

Hole Burning. In Laser Techniques in Chemistry, Myers, A. B.; Rizzo, T. R., Eds. John Wiley & 

Sons, Inc.: 1995; pp 283-323; (f) Friedrich, J., Hole Burning Spectroscopy and Physics of Proteins. 

In Methods in Enzymology, Sauer, K., Ed. Academic Press: 1995; Vol. Volume 246, pp 226-259. 

 

13. Friedrich, J.; Haarer, D., Photochemical Hole Burning: A Spectroscopic Study of 

Relaxation Processes in Polymers and Glasses. Angew. Chem., Int. Ed. Engl. 1984, 23 (2), 113-

140. 

 

14. Volker, S.; van der Waals, J. H., Laser-Induced Photochemical Isomerization of Free Base 

Porphyrin in an n-Octane Crystal at 4.2 K. Mol. Phys. 1976, 32 (6), 1703-1718. 

 

15. Carter, T. P.; Small, G. J., Nonphotochemical Hole Burning of Self-Aggregated Dimers of 

Chlorophyll a in Polystyrene. J. Phys. Chem. 1986, 90 (10), 1997-1998. 

 

16. (a) Haarer, D., Photochemical Hole-Burning in Electronic Transitions. In Persistent 

Spectral Hole-Burning: Science and Applications, Moerner, W. E., Ed. Springer-Verlag: New York, 

1987; Vol. 44; (b) Rebane, K. K.; Rebane, L. A., Basic Principles and Methods of Persistent 



165 

 

Spectral Hole-Burning. In Persistent Spectral Hole-Burning: Science and Applications, Moerner, 

W. E., Ed. Springer-Verlag: New York, 1987; Vol. 44. 

 

17. Woehl, J. C. Measuring Internal Electrostatic Fields and Potentials at Molecular and 

Atomic Resolution using Hole-Burning Spectroscopy. University of California, Riverside, 

Riverside, CA, 1996. 

 



166 
 

Chapter 7 

Quantum-Mechanical Stark Analysis 

7.1  Introduction 

The quantum-mechanical (QM) Stark analysis method briefly introduced in Chapter 6 is 

expanded in detail here. First, the theory and method of analysis is continued, followed by an 

explanation of a number of challenges in implementation. Then, an in-house line-fitting program 

to implement the QM Stark analysis, Stark06, is described. Attempts to overcome the previously 

incomplete implementation are made and eventually achieved. Theoretical underpinnings of the 

new implementation process are offered. Finally, a complete protocol for the QM Stark analysis 

is presented. 

7.2 QM Stark Analysis Theory 

An expansion of Eq. 6.8 reveals that the QM approach to Stark analysis is also a series like 

the classical approach in Eq. 6.1: 

� � = ��(�) − 
�� ∙ ��� − �� ∑ ∑ ������ ������ −  …     (7.1) 

where ����is the electric quadrupole moment operator. Further terms in the expression are based 

on the subsequent multipole expansion (octapole, hexadecapole, etc.). Here, we restrict the 

expression to the dipole moment term, which is not an arbitrary neglect of terms but rather an 

approximation that the gradient of the electric field (
������) is zero. This means that we are 

measuring the field as homogeneous over the plane of the porphin probe and will yield an exact 

value within this point-dipole approximation. 
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 Expressing Eq. 7.1 specifically for porphin in matrix form (Eq. 7.2), the diagonal contains 

electronic state energies (because the permanent dipole moment - ���� where i=j – is equal to 

zero in the centrosymmetric molecule) and the off-diagonal elements contains the product of the 

electric field and transition dipole moment for the transition between the two electronic states, 

i and j. Solving this equation means that a diagonalization procedure calculates new electronic 

state energies taking the perturbation terms in the off-diagonal elements into account. In other 

words, the goal is to find the new electronic state energies once the electric field is applied. 

Solving the equation also requires calculated input for all transitions in the matrix: 1) transition 

dipole moment and 2) state energy of each electronic state considered in the matrix. This 

amounts to calculating N electronic states for the diagonal of an N x N matrix and [(N2 / 2) – N] 

unique transition dipole moment values for the off-diagonal elements of the matrix (considering 

that ��� =  ��� in this case). The process of calculating these excited-state values with ab initio 

and density functional theory methods in the Gaussian09 (G09) computational package will be 

detailed in Chapter 8. 

 

�� =

�
���
��

0           −
��!"−
��!"           #!"(�) −
$�!%−
�� ∙ ���&
−
��'" −
$�'%−
�� ∙ ���( −
�� ∙ ���)−
$�!%  −
�� ∙ ��&� #!%(�) −
�� ∙ ��&( −
�� ∙ ��&)−
��'" −
�� ∙ ��(�−
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�� ∙ ��)�

−
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�� ∙ ��)&
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      (7.2) 

To 

State j From 

State i 
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This 5 x 5 matrix accounts for only the electronic transitions in the visible region of porphin 

(Qx, Qy, Bx, By,) but reveals that the quantum-mechanical analysis of Stark shifts relies not only on 

the experimental transition of interest (here the Qx transition between the state 0 (the ground 

state) and state 1 (the first excited state)) but also transitions surrounding it. In fact, theoretically, 

all other electronic states beyond the states of interest (comprising the experimental transition 

of interest) can influence the analysis. The application of an electric field to a sample in a Stark 

experiment has the effect of extensive mixing between electronic states, unlike the Zeeman 

effect where the application of a magnetic field is relatively straightforward in its effect. The 

effect of electronic-state mixing in this case amounts to a kind of repulsion between electronic 

states when an electric field is applied, increasing or decreasing the energy of individual states 

(see Fig. 7.1). The extent of repulsion increases with the strength of the applied electric field but 

no linearly as the varying influence of other electronic states must be accounted for. 
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 The influence of one state on another is not constant but varies in coupling strength according 

to Eq. 7.3: 

-.�/�0/.�1-.�/�2/.�1
3�(4)53�(4)    (7.3) 

where 6.�7�07.�8 is the transition dipole moment between two states, i and j, and #(�)is the 

electronic state energy of the coupled states. The subscripts r and s refer to the components of 

the transition dipole moment vector, i.e. they reflect the spatial polarization of the transition 

dipole moment For centrosymmetric porphin oriented according to Gouterman (see Chapter 5 

and Fig. 7.2), all transition dipole moments are polarized along a single axis, x, y, or z, so the 

Figure 7.1. The effect of an applied electric field on the energetic positions on electronic state 
energies of a chromophore in a Stark experiment. State energies required for QM analysis 
depend on the number of other states considered. 
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numerator in Eq. 7.3 is simply the square of the transition dipole moment for the transition 

considered. 

 

Unfortunately, molecules theoretically have an infinite number of electronic states, which is 

a seemingly insurmountable barrier to implementing this approach to the analysis of Stark 

spectra. However, examining Eq. 7.3, we can see how the most influential electronic states on 

our transition of interest might be elucidated. First, the denominator simply states that the 

farther an electronic state is from the two states, 0 and 1, in our transition of interest (Qx), the 

smaller the influence it has, which is intuitive. This suggests that there may be a point where a 

state is just too far away to have significance in the analysis. Then, the numerator contains a 

value (transition dipole moment) that gives the probability of that particular transition occurring. 

For centrosymmetric molecules like porphin, the physical basis of spectroscopic selection rules is 

symmetry: two electronic states of identical symmetry will have a transition dipole moment of 

zero while two electronic states of differing symmetry will have a non-zero transition dipole 

Figure 7.2. Free-base porphin with 
axes aligned in a standard 
orientation according to 
Gouterman. This orientation is 
adhered to throughout the 
following computational results. 
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moment. (This is also why the permanent dipole moment of any electronic state of porphin is 

zero.) This might suggest that an extremely probable transition might overcome a large energy 

difference, especially because the numerator is squared while the denominator is not. However, 

there appears to be a theoretical limit to the transition dipole moment value that is related to 

transition energy that will become apparent in the discussion of oscillator strength below. 

7.3  Generating a finite matrix 

As mentioned above, the theoretically infinite number of electronic states required to solve 

the Hamiltonian in the QM Stark analysis was the major barrier to effective implementation of 

the method to determine internal electric field. A couple of studies were undertaken by 

Geissinger, et al. previously to try to determine which electronic states were necessary for the 

analysis of porphyrin-substituted protein.2 Limited largely by insufficient computational 

resources, the completeness of the set of excited-state values was never certain. However, these 

studies made it clear that the final experimental value for internal electric field analyzed in this 

manner relies heavily on the number of states included in the analysis, i.e., the matrix 

dimensions. (Comparisons between methods to calculate excited-state properties, i.e., state 

energies and transition dipole moment, will be made in Chapter 8, where these earlier results 

will be discussed.) 

The following two sections describe two attempts at gauging completeness of a matrix to 

thoroughly analyze existing Stark spectra but with the computational resources to examine a 

matrix of much larger dimensions. Here, access to 252 electronic states (see Fig. 7.3a and 7.3b) 

for analysis are used, as opposed to ≤17 states previously available. Figures 7.3a and 7.3b are the 
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same data presented in two formats, the number of states populating higher energies much more 

densely than lower energies near the transition of interest (Qx, ground- to first-excited state). 

 

 

  

7.3.1 Completeness via sum-over-states polarizability 

A first attempt to understand whether the number of excited states included in analysis were 

sufficient was gauged using the sum-over-states (SOS) polarizability (αSOS) (see derivation in 

Appendix E). Eq. 7.4 is familiar in comparison to Eq. 7.3: 

9:;:,02 = −2 ∑ -.�/�0/.�1-.�/�2/.�1
3�(4)53�(4)�>�        (7.4)  

where variables are defined as in Eq. 7.3. Here, instead of gauging the influence on one state on 

another, the sum of these contributions is an approximation of the physical property of 

polarizability, which was described in Chapter 6 with respect to the classical Stark analysis. While 

polarizability does not enter into the QM Stark analysis directly like the classical, this interesting 

Figure 7.3. 252 electronic states of porphin calculated with CIS / sdd (method / 
basis set). a) A “hierarchy” viewpoint that emphasizes the low-energy transition of 
interest and the large number of states at much higher energy of potential 
influence. b) The exponential growth of the density of electronic states from low 
to high energy. 

a) b) 
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perspective allows us to see the “piece-by-piece” contributions of each electronic state that 

exists for a molecular probe. 

The calculation of electronic properties of the ground state of porphin using the HF / sdd 

method and basis set in G09 yielded an “approximate polarizability,” which is calculated using 

the perturbation theory “sum-over-states” method, in addition to an “exact polarizability,” which 

is defined as 9?�@AB = �Cℇ����C, the second derivative of the molecular energy (ε) with respect to an 

applied electric field (
��). The polarizability, as a tensor, yields nine components, of which only 

three are non-zero for porphin and represent the components parallel to the three axes. For free-

base porphin, this method yielded αxx = 411.991 a.u.; αyy = 383.297 a.u.; αzz = 95.998 a.u., where 

a.u. are atomic units (see Appendix F for conversions between atomic units and typical units for 

a number of electronic properties). Not surprisingly, the x- and y-polarized components, which 

are in-plane, are about the same magnitude, while the z-polarized component, which is 

perpendicular to the plane, is much smaller. Figures 7.4a, 7.4b, and 7.4c plot the SOS 

polarizability (calculated with Eq. 7.4) as more electronic states are considered. Then, the 

percentage of the total SOS polarizability is compared at N=10 states are included and at N=250 

states included. For the x- and y-components, the SOS polarizability is reasonably well-described 

at 86.9% and 90.0%, respectively. However, the slope of the progress to 100% total SOS 

polarizability becomes quite shallow by N=250 and likely requires many more states to fully 

describe the property. On the other hand, the z-component is not at all completely described at 

N=250 (only 14.1% of the total SOS polarizability), even though its absolute value is so much 

smaller than the in-plane components. This indicates that z-polarized electronic transitions tend 

to be much higher energy than in-plane transitions, which is also not surprising physically. This is 
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one of the first indications that the z-component of the internal electric field is not adequately 

measured with a planar porphin model. 
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Figure 7.4a. The x-
component of the summed 
SOS polarizability as more 
electronic state are 
included in the sum.  

Figure 7.4b. The y-
component of the summed 
SOS polarizability as more 
electronic state are 
included in the sum.  

Figure 7.4c. The z-
component of the summed 
SOS polarizability as more 
electronic state are 
included in the sum.  
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This examination of progress towards total SOS polarizability gives an indication that the number 

of electronic states calculated is a reasonably complete description for the x- and y-components 

but a 250 x 250 matrix would make for a burdensome calculation of internal electric field. 

7.3.2 Completeness via the change in Qx transition energy 

Another viewpoint for gauging completeness of the matrix used for QM Stark analysis is to 

focus on the transition of interest, the Qx transition in porphin, which is the value used for internal 

field calculation once the diagonalization step is complete. According to the denominator in Eq. 

7.3, the influence of higher lying states scales with energetic “distance” from the states of 

interest. It seems, then, that there may be a point where electronic states are so far away from 

states 0 (ground state) and 1 (first-excited state) that it can be approximated as having the same 

influence on each. The absolute energies of these two states may continue to evolve as more 

electronic states are added to the matrix, but the difference in energy (i.e., the transition energy) 

of the two states will remain approximately the same after a certain number of electronic states 

are included.  

Now, because we are not interested in the coupling between any two states, i¸and j, we will 

now use the n to designate a state of interest (0 or 1) and p to designate a higher lying electronic 

state. First, the influence of each electronic state higher than the states of interest (p = states 2 

– 252) were evaluated with respect to state n  = 0 and then again to state n = 1 according to Eq. 

7.3. Then, the difference in value for each individual state was calculated per Eq. 7.5 and plotted 

in order of energy. Here, α refers not to the summed polarizability value but to individual 

contributions from Eq. 7.3. The result are predictive plots for electronic states of influence on the 
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Qx transition of porphin. The plots in Figs. 7.5a, 7.5b, and 7.5c show the behavior of individual x-

, y-, and z-components for porphin; Fig. 7.5d shows all three components combined. 

(9��,�E − 9��,�E) + (9$$,�E − 9$$,�E) +  (9GG,�E − 9GG,�E) =: 9�E − 9�E  (7.5) 

 

 

Figure 7.5a. Predictive plot for 
x-polarized states of influence 
on the Qx transition of planar 
porphin. 

Figure 7.5b. Predictive plot for 
y-polarized states of influence 
on the Qx transition of planar 
porphin. 
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The 

plots for the x- and y-polarized states show convergence for influence certainly for p > 100 and 

possibly by p > 50. For z-polarized states, no convergence is seen by p = 252. This is reflective of 

the results for progress to SOS polarizability given in Figs. 7.4a–c. Again, this suggests that the z-

Figure 7.5d. Predictive plot for all states of influence on the Qx transition of planar 
porphin. The inset shows more detail for states p = 1–20. 

Figure 7.5c. Predictive plot 
for z-polarized states of 
influence on the Qx transition 
of planar porphin. 
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component of the internal electric field may not be adequately sensed by a planar probe 

molecule. Combining the three components, the results are similar to the more influential x- and 

y-component plots: states with very large influence from p = 1–20 followed by less influential 

states and essentially no additional influence past p = 100.  

 These results suggested that there may indeed be finite number of relatively influential 

electronic states on our transition of interest, which would allow for the implementation of the 

QM Stark analysis method with reasonable certainty of completeness. A 100 x 100 matrix (10 000 

elements) is certainly still a large matrix, but a sizable reduction from the initially considered 250 

x 250 matrix (62 500 elements).  

7.3.3 Determining essential electronic states 

Now that a reasonable selection of states based on the energy denominator of Eq. 7.3 could 

be made by finding a convergence point for the change in Qx transition energy, further narrowing 

the list of the most influential electronic states was undertaken. Based on perturbation theory, 

an equation to rank electronic states that couple directly to the states of interest, n = 0, 1, was 

derived. Then, further consideration of indirectly coupled electronic states to the states of 

interest was made. Indirect coupling refers to electronic states that may not affect the ground 

and first-excited state with a large transition dipole moment but certainly couple strongly to a 

state that does, having influence through an intermediate state. 

Perturbation theory begins with the unperturbed energy of a molecular state n, #I(�), and 

adds a series of perturbation terms to yield the overall perturbed energy of that molecular 

electronic state, #I : 
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#I = #I(�) + #I(�) + #I(&) + #I(() + #I()) + ⋯      (7.6) 

For our application, the unperturbed energy is the Qx transition energy of the porphyrin–

substituted myoglobin with no electric field. The first-order energy correction, #I(�), for 

centrosymmetric porphin vanishes. This is because the correction is the simply , in which 

the permanent dipole moment for either n=0 or n=1 is zero. Then, the second-order energy 

correction, #I(&), corresponds to the influence of electronic states directly coupled states on the 

Qx transition energy. The third-order energy correction, #I((), corresponds to the influence of the 

states indirectly coupled to the Qx transition energy by way of the second-order correction states. 

The higher-order energy corrections also correspond to indirectly coupled states, however, not 

by way of the second-order correction states but one level removed by way of the third- and 

higher-order correction states. Then, influence on the transition of interest uses the same idea 

as presented in Eq. 7.5, i.e., to look not only at the influence on each state n individually, but at 

the difference between the two:  

#�(&) + #�(() + #�()) + ⋯ − #�(&) − #�(() − #�()) − ⋯     (7.7) 

Formulas for the second- and third-order corrections (i.e., single- and double-state coupling, 

respectively) are given and discussed below. (See Appendix G for derivation of each of these 

correction terms.) 

7.3.3.1 Single-state coupling (2nd-order energy correction) 

A very familiar formulation arises for the second-order correction term (Eq. 7.8), looking 

quite like the SOS polarizability in Eq. 7.4.:  

−
�

E ⋅
�

µ
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#I(&) = ∑ -KL
�� ∙ ���LM1-ML
�� ∙ ��� LK1
3N(4)53O(4)E>I = ∑ 
PNO& PNOC

3N(4)53O(4)E>I     (7.8) 

Here, the equation is specific for other electronic states, p, and their influence on states of 

interest, n. In this work, p will always be a higher-lying state (and may be referred to as such) 

because the states of interest are n=0,1. In addition, the familiar transition dipole moment also 

includes the perturbation, 
PNO, the component of the electric field projected onto the dipole 

moment, �IE. Specific for porphin, or other centrosymmetric probe molecules, the transition 

dipole moment lies along only one molecular axis and the numerator is simply the square of the 

scalar value. For the purposes of ranking influence of states p on states n, the direction of the 

transition is not relevant. Then, the influence on the transition (not just individual states) is given 

by: 

Q#�(&) − #�(&)R = 2
P4S& P4SC
3S(4)534(4) + ∑ T
P4O& P4OC

3O(4)534(4) − 
PSO& PSOC
3O(4)53S(4)UE>�,�   (7.9) 

Because we are only comparing the influence of higher-lying states, the absolute value of this 

expression is not important and the perturbing electric field terms, 
PNO& , are set to unity. In 

addition, because the first term is a constant, it can be neglected when used for ranking purposes. 

Considering only the directly coupled states on the transition of interest, a unique form 

of the Hamiltonian matrix arises (Eq. 7.10). This means that the only elements that are occupied 

are contained on the diagonal and in the first and second rows and columns. All other off-

diagonal elements are set to zero. This was a significant improvement over the previous matrix 

dimensions and contributed to the analysis routine’s efficiency. In addition, a new variable is 

introduce, Ai, to indicate matrix position, not in terms of energy, but in terms of influence. The 
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matrix in Eq. 7.10 has the states of interest, n=0 and 1, in the first and second positions. The third 

position, then, is occupied by the higher-lying state, p, that has the highest value for Eq. 7.9. 

�� =
�
��
��
�     #�(�)           −
�� ∙ ���� −
�� ∙ ���VC −
�� ∙ ���VW ⋯ −
�� ∙ ���VX−
�� ∙ ����          #�(�) −
�� ∙ ���VC −
�� ∙ ���VW −
�� ∙ ���VX−
�� ∙ ��VC� −
�� ∙ ��VC�−
�� ∙ ��VW�⋮−
�� ∙ ��VX�

−
�� ∙ ��VW�
−
�� ∙ ��VX�

#VC(�)
0 0#VW(�)
0      0

⋯
⋱

00
#VX(�) *

++
++
,

  (7.10) 

7.3.3.2 Double-state coupling (3rd-order energy correction) 

The third-order energy correction involves not just the influence of higher-lying state, p, 

on states of interest, n, but also the influence of another higher-lying state, q, on state p, 

hypothesizing that strong interaction between the two remote states could have an indirect 

influence on the transition of interest: 

#I(() = − ∑ ∑ 
PNO[>IE>I 
PO\
P\N PNOPO\P\N]3N(4)53O(4)^]3N(4)53\(4)^ + 
PN�I ∑ 
PNO&E>I PNOC
]3N(4)53O(4)^C  

          (7.11) 

This evaluation of indirectly coupled states was for the purpose of populating the off-

diagonal elements in Eq. 7.10. The third-order correction difference between states n=0 and 1 

then is expressed: 

Q#�(() − #�(()R = 2
P4S P4S3S(4)534(4) ∑ _
P4O
PSO T P4OPSO3O(4)534(4) + P4OPSO3O(4)53S(4)U`E>�,� +
∑ ∑ _
PO\�E[ T
P4O
P4\ P4OP4\]3O(4)534(4)^]3\(4)534(4)^ − 
PSO
PS\ PSOPS\]3O(4)53S(4)^]3\(4)53S(4)^U`[>�,�E>�,�   

          (7.12) 
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The electric field in this expression cannot simply be set to unity as with the second-order 

correction, but it is reasonable to assume that the values are about equal. For the evaluation of 

this expression, the field was set to 1 MV/cm = 1.94 x 10-4 a.u. 

The first term in Eq. 7.12 can be called the “weighting term” and the second term the 

“ranking term.” The weighting term considers only the direct-coupling influence of state p. The 

ranking term includes the indirectly coupled state, q, but mitigated by the directly coupled state, 

p. However, thoroughly considering a set of higher lying electronic states (N=2–100 in this case) 

means that each state has a “turn” acting as p and another acting as q. This does not have an 

effect on the ranking term but does have an effect on the weighting term, depending on which 

state is under consideration as state p. For example, if the (p,q) pair is the third excited state and 

the twenty-third excited state, the value of Q#�(() − #�(()REa(,[a&( ≠ Q#�(() − #�(()REa&(,[a(. This is 

problematic for this application because the interest is in evaluating pairs of higher-lying 

electronic states. This means that any two mirrored values in the Hamiltonian matrix will be equal 

(i.e., −
�� ∙ ��(,&( = −
�� ∙ ��&(,(), so the corresponding terms from Eq. 7.12 should also be equal. 

The weighting term can be adjusted to account for this. The coefficient, 2, is distributed as each 

state in the pair acts as p’ (the directly coupled state under consideration) in turn: 

���#�(�) − #�(�) c de��EfaE��EfaE#EfaE(�) − #�(�) + ��EfaE��EfaE#EfaE(�) − #�(�) + ��Efa[��Efa[#Efa[(�) − #�(�) + ��Efa[��Efa[#Efa[(�) − #�(�) ghE>�,�E>[
 

           (7.13) 
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 Once this accommodation had been made, the almost 10,000 possible pairs were 

evaluated and plotted in Fig. 7.6. The comparison shows that less than 10% of those pairs have 

any possibility of a significant influence, again greatly limiting the size of the Hamiltonian matrix 

that must be evaluated. 

 

7.4  Internal Electric Field Calculation with Stark06 

The next step then was to do the actual internal electric field calculation using the QM Stark 

analysis method, increasing the number of included states for each calculation. First, the states 

were added according to energy to see whether the convergence region predicted by Figs. 7.5a-

d was accurate for the calculated internal electric field, i.e., that the field value did not change 

appreciably with higher energy states than ~N=100. Then, another set of internal electric field 

calculations was performed, i.e., a “perturbation sequence.” Here, calculations using only directly 

coupled states were initially performed, where states were added one by one to the internal field 

calculation in the order of influence determined by Eq. 7.9 to yield a converged value. Following 

Figure 7.6. The values of 
the third-order (double-
state coupling) terms 
show that the influence  
drops off steeply. 
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that determination, indirectly coupled states were added to the number of directly coupled 

states required for a converged value in the order of influence determined by Eq. 7.12  

 The internal electric field calculation from experimental hole-burning Stark spectra was 

performed with the in-house Stark06 program (written by a former postdoctoral research 

associate, Dr. Barry Prince, which had implemented QM analysis. The number of electronic states 

included in the analysis was flexible and designated by the user for each calculation. Thus an 

effective comparison between an analysis using just a few p states and an analysis using 100 p 

states was possible. 

7.4.1 Stark06 program 

This line-fitting program takes three types of input to calculate internal electric field: 1) 

spectral data; 2) excited-state values (state energy and transition dipole moment) for the 

Hamiltonian matrix; 3) line-fitting parameters. Table 7.1 lists values required for each type. The 

spectral data is uploaded in the form of a .DAT file for the actual data points for the Stark spectra 

and also a .SPL file for the environmental parameters like applied field strength. The excited-state 

data is uploaded in the form of a .HST file. An example of each of these unique file types is given 

in Appendix B.  
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Table 7.1. Three types of required input for Stark06 program.  

Spectral Data Hamiltonian States Fitting Parameters 

FWHM of the Lorentzian-
shaped spectral hole before 

Eext is applied (cm-1) 
Electronic state energies (cm-1) 

Lorentz local field 
tensor (f) 

Angle of the laser 
polarization (hole-burning & 
scanning with respect to Eext 

Transition dipole moment for each 
pair of states (D) 

Number of steps in 
orientational averaging 

over all Euler angles 

Applied Field Eext (V/cm) 
Polarization of the transition 

(x,y,z) 

Number of excited 
states (N) to include in 
the Hamiltonian matrix 

Spectral data: fluorescence 
intensity vs. frequency 

applied (cm-1) 
 

Initial internal electric 
field (Eint) guesses for 

each component 

  
Vertex: initial excursion 

distance for 
optimization 

 

 This is the general process for Stark06. The analysis starts with diagonalization of the 

Hamiltonian using an initial guess for the internal electric field, which yields H’, the perturbed 

energy of the transition of interest. Then, a Stark spectrum is generated for the entered 

parameters. Finally, this generated spectrum is compared to the experimental spectral holes 

loaded as spectral data files. The process is repeated until pre-determined fitting criteria are met. 

This process is detailed in the following. 

 The first diagonalization step utilizes the Hamiltonian states information: electronic state 

energies, transition dipole moment, and the polarization of each transition. The matrix is then 

built but requires a value for 
�� for the off-diagonal elements. This value is the total electric field, 

defined earlier by Eq. 6.6: 


��BiB =  
���IB + jk∙ 
��?�B        (6.6) 
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The external electric field is the value applied during the experiment as the voltage applied over 

the gap between the electrodes. The local field factor is given by the Lorentz field factor (Eq. 6.5). 

Here the value for jk is chosen to be 2.1 (see Refs. 2a, 3). Then, an initial guess for internal electric 

field must be provided to generate the matrix. This is loaded as individual spatial components, x, 

y, and z. Each component is then considered separately with the transition dipole moment values 

of a particular polarization contributing to the corresponding component. For example, if no z-

polarized transition dipole moment values are included in the matrix, then no z-component of 

the internal electric field can be generated. The Stark shift is then the difference between the 

unperturbed Qx transition energy entered as part of the .HST file and the calculated perturbed 

value generated by the diagonalization procedure. 

 The next step that the program undertakes is to generate a “stick spectrum” based on the 

perturbed energy. However, if only a single value was used for the placement of the perturbed 

energy, there would not be a distributed spectrum. The distribution is a result of the various 

orientations of chromophores with respect to the applied field (see Section 6.2.1). This spatial 

distribution of probe molecules can be taken into account through an orientational averaging 

procedure because experiments were specifically conducted in an amorphous, glass-forming 

solvent, meaning the statistical distribution of orientations is truly random. Thus, the weight of 

each orientation is equal and calculating the intensity of each orientation at its respective 

energetic position (ν’) is based only on the angle of its transition dipole moment with respect to 

the burning and scanning laser (see Eqs. 6.11–6.13). It was previously determined that stepping 

through the angles θ (with a range of 180°) and ϕ (with a range of 360°) in 6° increments was 

sufficient resolution for the analysis. Therefore, 90 considered orientations (180/6 +360/6=90 



188 
 

steps) generate 90 “sticks” at individual perturbed energies and with individual intensity values. 

Once the stick spectrum has been generated, a line is fit over the top. 

 Once the theoretical stick spectrum is produced for a particular internal electric field 

value, it is compared to the corresponding experimental spectra (many of which are included in 

the fitting process simultaneously). Then the goodness of fit for all spectra included in the analysis 

is quantified with a least squares fitting process. The smaller the least-squares residual value, the 

better the internal electric field value. The process of adjusting internal electric field value to re-

diagonalize the matrix and produce a new stick spectrum for comparison to the experimental 

spectrum is done iteratively. New internal field values are chosen according to a “vertex” value 

specified by the user. In these calculations, a high value of 1000 was chosen, meaning that smaller 

steps in internal electric field guesses were made. The program terminates when a minimum 

residuals value is found. 

 For the following “energy sequence” and “perturbation sequence,” a set of eight Stark 

spectra (shown in Fig. 6.4) previously acquired were re-analyzed, with the four split holes (laser 

polarization parallel to the external field) weighted double, i.e., analyzed twice per iteration, 

because they exhibited a better signal-to-noise ratio than those recorded with the laser 

polarization perpendicular to the external field. Using this set of experimental spectra allowed 

direct comparison to the results presented in Geissinger (2004)2a and Geissinger (2005).2b As 

electronic states were added for each new analysis, the effect was new fit “landscape” with a 

unique set of local maxima and minima. For each analysis, the goal was to find the new 

landscape’s global minimum. A map of the converged value’s “fit landscape” is given in Fig. 7.7a–

c with the x-axis corresponding to the x-components of the internal electric field (
���) and the y-
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axis corresponding to the y-components of the internal electric field (
��$). The colored contours 

correspond to fit values (least-squares residuals) with a low value being a minimum. The plots 

contain the same data but each panel further “zoomed in” to a pairing of 
��� and 
��$. 

 

 

Figure 7.7a. The “fit 
landscape” for the analysis 
of Stark spectra created in 
PPIX-myoglobin with the 
inclusion of 35 essential 
states in the Stark06 
analysis. The borders of the 
colored region represent 
values where the fit value 
was essentially infinity. 

Figure 7.7b.The minimum 
area from the above plot 
seems to restrict the best 
fit values to less than 2.5 
MV/cm for Ey and less than 
7.5 MV/cm for Ex. Shown 
here is a square area for 
each component less than 
2.0 MV/cm. 
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7.4.2 Energy sequence 

First, internal electric field values were calculated with the Stark06 program to a minimum 

least-squares residual value (approximately 0.13 for this spectral data and Hamiltonian states). 

The higher-lying states, p, were added in order of energy (i.e., p = 2 was the state involved in the 

Qy transition, p = 3 was the state involved in the Bx transition, etc.)  to the states of interest, n = 

0,1. The matrix dimensions started with a 3 x 3 matrix and states were added one by one until 

about p = 17; then, states were added five by five until a 140 x 140 matrix as defined by the row 

matrix in Eq. 7.10 was achieved. The results for each spatial component of the electric field, 
���, 


��$, 
��G, are given in Figs. 7.8a, 7.8b, and 7.8c respectively.  

Figure 7.7c. Further 
resolution of the minimum 
area pinpoints the global 
minimum to 1.7–1.8 MV 
for Ex and 1.6–1.7 MV/cm 
for Ey. 
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Figure 7.8a. Evolution of 
��� as 
higher-lying electronic states are 
added to the analysis in order of 
energy. 

Figure 7.8b. Evolution of 
��$ as 
higher-lying electronic states are 
added to the analysis in order of 
energy. 

Figure 7.8c. Evolution of 
��G as 
higher-lying electronic states are 
added to the analysis in order of 
energy. 
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 For the x- and y-components, Figs. 7.8a and 7.8b both show quite a bit of oscillation for 

about N = 100 electronic states included until the value stabilizes considerably at 
��� = 1.701 

MV/cm and 
��$ = 1.746 MV/cm. For 
���, the values prior to convergence vary over a range from 

0.7 – 2.3 MV/cm; for 
��$, the values vary over a range from 0.9 – 2.5 MV/cm. In contrast to the 

in-plane components, however, the out-of-plane z-component, Fig. 7.8c does not show a gradual 

convergence for 
��G in a range of 140 states but a rather sudden one about N = 100 like the other 

two components. This trend seems unlike the other two and may indicate that the energy 

denominator in the SOS polarizability equation could be the key component in convergence. 

Three conclusions are apparent from this exercise: 1) this QM Stark analysis method is sensitive 

to the number of Hamiltonian states included in the process; 2) convergence in eventually 

achieved; 3) the method of predicting convergence described in Section 3.2 and illustrated in Fig. 

7.5 appears to the useful. 

 As a way to more generally assess the impact of indirectly coupled states, more electronic 

states were added to the set of N = 100 determined in the exercise above. States were added in 

this manner: electronic transitions from each state p = 2 – 100 to states 2 -252 were considered 

with Eq. 7.4. The resulting values were sorted for each state p in order of influence. Then, the 

highest influence value for each state p was added to the 100 x 100 converged-value row matrix 

from above, and the internal electric field value calculated (labeled as “2nd order” in Fig. 7.9 

below). That calculation was followed by another in which the two highest influence values were 

added (“3rd order” in Fig. 7.9). This was continued until four indirectly coupled states were 

included. This exercise is equivalent to adding a pair of mirrored off-diagonal elements in every 
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row for each calculation. Figure 7.9 shows that the value determined with only directly coupled 

states does not change appreciably with the addition of indirectly coupled states. This suggests 

that for this particular set of spectral and Hamiltonian-states data, the electronic states directly 

coupled to the transition of interest are sufficient for QM Stark analysis. 

 

7.4.3 Perturbation sequence 

Next, a more intentional series of calculations was performed. Instead of adding higher-

lying electronic states, p, in order of energy, the higher-lying states were ranked in order of 

influence according to Eq. 7.9 for directly coupled states. Here, we refer to adding electronic 

states in terms of matrix position, Ai. The internal field calculations were performed as in the 

energy sequence but with the new ordering according to the perturbation theory equations. 

Results are given in Figs. 7.10a, 7.10b, and 7.10c.  

Figure 7.9. Relatively stable values 

for 
���IB when states indirectly 
coupled to the transition of 
interest added 100 at a time based 
on coupling strength to higher-
lying states, p. 
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Figure 7.10a. Evolution of 
��� as higher-lying electronic 
states are added to the 
analysis in order of 
perturbation influence. 

Figure 7.10b. Evolution of 
��$ 
as higher-lying electronic 
states are added to the 
analysis in order of 
perturbation influence. 

Figure 7.10a. Evolution of 
��G 
as higher-lying electronic 
states are added to the 
analysis in order of 
perturbation influence. 
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 The results for the perturbation sequence has similarities to the energy sequence in that 

the values of the internal electric field for smaller matrices oscillate and then converge for the in-

plane components. However, the convergence point appears much more quickly, at 

approximately Ai = 35 states rather than 100. The internal electric field value at this point is Eint,x 

= 1.700 MV/cm and Eint,y = 1.700 MV/cm. The calculations were performed for this set of 

calculations one by one until 35 states had been added to the matrix, and then five by five until 

100 states had been added. The out-of-plane z-component clearly lacks at convergence point at 

35 states like the in-plane components did. Further conclusions from this set of calculations are: 

1) faster convergence of the internal electric field value can be achieved for the QM Stark analysis 

by adding the states in order of perturbation influence according to Eq. 7.9; 2) the out-of-plane 

component is not adequately modeled by a planar porphin model. 

 The results illustrated in Fig. 7.9 suggested that indirectly coupled states, q, likely are not 

influential for this particular data set. However, using Eq. 7.12, the effect was tested more 

quantitatively. The pairs of states plotted in Fig. 7.6 were added one at a time to the 35 x 35 row 

matrix containing directly coupled states and the internal electric field calculated as above. 

Interestingly, the initial matrix dimensions had to be expanded slightly to accommodate two 

indirectly coupled states that acted through directly coupled states that did not initially appear 

in the 35 x 35 row matrix. This indicates that the transition of interest might indeed be indirectly 

affected by a higher-lying electronic state, q, to a significant degree via a weakly coupled state, 

p, that does not have a relatively strong influence. In the end, after making approximately 14 q-

state additions to the matrix, the internal electric field value was hardly affected and it was 

confirmed that indirectly coupled states do not have influence for this data set.  
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 For the QM Stark analysis of PPIX-myoglobin with the current set of Hamiltonian state 

values, 35 essential directly coupled states were determined to be sufficient for convergence. 

These values are provided in Appendix H. The two most influential states, not surprisingly, are 

the highly allowed and close in energy Soret transitions, Bx and By. 

7.4.4 Perturbed visible transition energies with QM Stark analysis 

In addition to returning an internal electric field value, the Stark06 program also returns 

the perturbed transition values for all of the states included in the matrix as a result of the 

diagonalization process. Plotting the transition energies of the four visible transitions as returned 

with the energy sequence of calculations (Figs. 7.11a–d), the pattern of oscillation and eventual 

convergence is familiar from the internal field values themselves as the changes are only fractions 

of the total transition energy. This is true for the x- and y-components of the field, which 

correlates with the polarizations of the four visible transitions: Qx, Qy, Bx, By. 

 

Figure 7.11a. Evolution of the Qx 
transition energy as more higher-
lying electronic states, p, are added 
to the analysis in order of energy. 
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Figure 7.11c. Evolution of the Qy 
transition energy as more higher-
lying electronic states, p, are 
added to the analysis in order of 
energy. 

Figure 7.11d. Evolution of the By 
transition energy as more higher-
lying electronic states, p, are added 
to the analysis in order of energy. 

Figure 7.11b. Evolution of the Bx 
transition energy as more higher-
lying electronic states, p, are added 
to the analysis in order of energy. 
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7.4.5 Non-planar porphin model 

Based on the conclusion from Section 4.3 that a planar porphin model is not adequate to 

calculate the out-of-plane, 
��G value, a non-planar porphin model was explored. That the heme 

plane is distorted in proteins is well-established by x-ray crystal structures, and patterns of 

distortion have been linked functionally to various heme proteins with various enzymatic tasks 

by the Shelnutt group.1, 4 Six out-of-plane conformations of the heme macrocycle (i.e., the 

porphin core), were characterized and illustrated in Fig. 7.12. 

  

 It was hypothesized that retaining the x–y symmetry while distributing the spatial 

coordinates along the z-axis would increase the intensity of z-polarized transition dipole 

moments without losing the intensity of the in-plane transition dipole moments. For this 

purpose, a domed porphin structure was chosen because of the symmetry as well as the 

occurrence of this conformation specifically in myoglobin.  

Figure 7.12. Six out-of-plane 
conformations of the heme 
macrocycle: saddling, ruffling, 
doming, waving (x- and y- 
polarized), and propellering. 
(Figure from Ref. 1) 
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 Once a method to optimize a domed structure was determined (details in Chapter 8), the 

displacement along the z-axis of the pyrrole nitrogens with respect to eight hydrogen atoms on 

the edge of the ring was adjusted. A structure with a z-displacement of 0.400000 Ǻ was used to 

execute the same perturbation sequence procedure described in Section 4.3. The results showed 

that the sum of z-polarized transition dipole moment values for 250 excited states coupled to 

states of interest, n = 0,1, did indeed increase by 25% while retaining comparable magnitude for 

in-plane polarizations.  The latter is expected, as the spectroscopic signature of the porphyrin is 

clearly identifiable when incorporated into the protein and subject to the distortion induced by 

the protein environment.  Subsequent plots of Eq. 7.5 for this structure gave predictions for the 

convergence of internal electric field values. The in-plane components converged similarly to the 

plots in Figs. 7.5a and 7.5b for planar porphin. The z-component did not converge as hoped. The 

exercise was repeated for an increased displacement of porphin along the z-axis of 0.600000 Ǻ. 

Results were similar. Displacement past this point was deemed both unphysical (with 0.4–0.5 Ǻ 

being the average for myoglobin structures) and difficult to optimize. 

 

Figure 7.13a. Predictive plot 
for x-polarized states of 
influence on the Qx transition 
of domed porphin (0.6 
angstrom displacement). 
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 However, the z-polarized transitions did seem to affect the transition of interest 

differently as the structure took on a greater domed character. As a way to begin to quantify the 

effect, the  z-polarized transitions dipole moments coupled to states 0 and 1 were summed as 

the absolute value (∑7�G,IE7 ) (where n=0,1 and p=2-252) for three conformations of porphin: 

14.0758 a.u. for the planar model, 17.6648 a.u. for the 0.400000 Ǻ domed model, and 18.7900 

a.u. for the 0.600000 Ǻ domed model. This was the desired trend in examining a domed 

conformation: an increase in magnitude of z-polarized transition dipole moment values. 

Figure 7.13b. Predictive plot 
for y-polarized states of 
influence on the Qx transition 
of domed porphin (0.6 
angstrom displacement). 

Figure 7.13c. Predictive plot 
for z-polarized states of 
influence on the Qx transition 
of domed porphin (0.6 
angstrom displacement). 
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In addition, the sum of difference z-polarized sum-over-states polarizability values 

(∑79:;:,G,�E − 9:;:,G,�E7, i.e., the sum of values in Figs. 7.5c and 7.13c) for each of the three 

conformations was calculated. This number attempts to capture how disparately the set of z-

polarized transitions affects the two states in the transition of interest, i.e., whether, in general, 

they tend to influence the ground state over the first excited state or vice versa. Interestingly, 

this number was calculated as 285.342 a.u. for the planar model, then dropped dramatically to 

21.108 a.u. for the 0.400000 Ǻ domed model, and then finally to 8.3407 a.u. for the 0.600000 Ǻ 

domed model. While this does not definitively show an “improvement” of this non-planar model 

over the planar one for purposes of calculating the out-of-plane internal electric field, it does 

encourage further exploration of the topic. 

7.5 Theoretical evidence for convergence 

Finally, is the observed convergence of internal electric field values in the QM Stark analysis 

with a relatively low-energy set of electronic states something to be expected? If the theory 

behind the QM Stark equation invokes an infinite number of electronic states, is it reasonable to 

see convergence at a finite number of values and as few as the results gave? As rare as it might 

be, could there be an electronic state that lies high above the observed with a transition dipole 

moment coupled to the states of interest that is so large that it entirely overcomes the energy 

denominator to dominate the analysis? Two theoretical pieces of evidence provide reasonable 

assurance that this special case will not arise and that convergence with this analysis method is 

entirely to be expected. See also Appendix I for derivations related to these two theoretical 

topics. 
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7.5.1 Oscillator strength & maximum transition dipole moment 

The first piece of evidence lies in the definition of oscillator strength (fosc). This is a value 

well known to experimental spectroscopists as quantitative measure of a transition’s intensity. It 

is typically calculated by integrating under the peak of experimental spectra and expressed as the 

ratio of this value to the value obtained for the harmonic oscillator, i.e., the “ideal” transition.5 

However, oscillator strength can also be defined as a bridge between classical notions of 

transition intensity and the quantum-mechanical notion, i.e., the transition dipole moment. This 

expression essentially is the ratio of transition dipole moment of the species of interest to the 

transition dipole moment of the ideal harmonic oscillator: 

j;2A,E[ = lmCnop(?Cq 7��E[7&
        (7.14) 

where me = electron mass, e = elementary charge, h = Planck’s constant, ν = frequency of the 

transition of interest, and µ01= transition dipole moment between states p and q. Because this 

value is a ratio, fosc = 1 implies a fully allowed transition. This is not a perfect comparison as a 

molecular transition like porphin cannot be reduced to the harmonic oscillator model. Indeed 

many experimental values for strongly allowed transitions, like the Soret transitions in porphin, 

result in oscillator strength values greater than one. However, it is a reference with a physical 

basis that can be calculated exactly.  

 Examining Eq. 7.13, we can see that frequency of the transition is inversely related to 

transition dipole moment. If we are concerned about the possibility of a fully allowed transition 

far away from the transition of interest, this equation states that the higher energy the transition 

is, the lower the transition dipole moment will be. This is very helpful when implementing Eq. 7.8 
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because influence decreases for transitions “far away” from the transition of interest via the 

denominator, but now Eq. 7.13 also guarantees that the transition dipole moment coupling the 

states will also decrease. In addition, it is the square of the transition dipole moment in Eq. 7.8 

that appears in the numerator, which even more rapidly diminishes the influence of very high-

lying states. 

 A quantitative example allows us to gauge the possible “missing” influence from states 

past the N = 100 convergence region determined above. Choosing state n = 100 (energy ε = 

0.4133 Ha) as an electronic state well within the convergence region, an “ideal transition” from 

ground state has a transition dipole moment of 1.9 a.u. with Eq. 7.13. This compares to the most 

influential Soret (B-band) transition of 3.8 a.u. Then, estimating contribution of a state with those 

excited-state properties with Eq. 7.4, the maximum influence on the ground state is αsos ≈ 8.8. 

This would be about 2.6% of the total sum-over-states polarizability for the lowest 100 states 

combined. It can be safely assumed that such an “ideal” higher-lying transition is exceedingly rare 

and, if existed, would be marginally influential.  

7.5.2 f-sum rule 

The Thomas-Reiche-Kuhn f - sum rule6 says that the sum of oscillator strengths from one 

state n to all other states is equal to 3Z, where Z = number of electrons in the molecule: 

∑ ji2A,IE = 3s          (7.15) 

In answer to the concern that the convergence approach to this QM Stark analysis must neglect 

an infinite set of electronic state, Eq. 7.14 states that there is a finite value for oscillator strengths, 

therefore any other quantity derived from transition dipole moment, e.g., polarizability, must 
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also be finite. These electronic properties are measurable and no doubt have finite values. It can 

then be concluded that an infinite set of electronic states is not necessary for this analysis. 

7.67.67.67.6   Conclusions    

The quantum-mechanical Stark analysis method conceived of previously showed promise for 

more accurate determination internal electric fields. A line-fitting program, Stark06, had be 

written to implement the method. However, implementation was challenging because of the 

theoretical requirement that an infinite number of excited-states be accounted for in the 

analysis. With a large number of excited-state energies and transition dipole moment values in 

hand (see Chapter 8 for methods used to obtain the values), the sum-over-states polarizability of 

the ground state was first used to try to gauge how complete that set of values was. Then, a 

method was tested to search for a point of convergence in the internal electric field calculated in 

Stark06, with the number of excited states included. When the difference between sum-over-

states polarizability values between the ground and first-excited state was plotted against the 

number of states included, that convergence point was found. At that point, it was concluded 

that a finite set of excited states could be used for QM Stark analysis. 

Then, the protocol was refined to pull out only the most influential electronic states within 

the set of values required for convergence. Based on perturbation theory, equations for single-

state (direct) coupling to the transition of interest as well as double- and triple-state (both 

indirect) coupling were derived. For PPIX–myoglobin, it was determined that only directly 

coupled excited states were necessary for a thorough analysis and that only 35 states were 

deemed essential. In addition, it was also shown that only the in-plane components of the 

internal electric field for porphin converged while the z-component of the field could not be 
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adequately sensed by a planar porphin model. As a result, a domed porphin model was also 

explored to increase the sensitivity of the probe to that component but no firm conclusions were 

reached. 

Finally, two theoretical pieces of evidence that a finite set of excited states could be used 

with this method were presented. First, the quantum-mechanical definition of oscillator strength 

made it clear that as transition frequency increased, the maximum transition dipole moment 

value had to decrease. This put to rest fears of extremely high-lying states with very large 

transition dipole moment values that could not be neglected and allowed for an error calculation 

of the contribution that might be lost if high-lying states were not included in analysis. Then, an 

examination of the Thomas–Reiche–Kuhn f-sum rule provided a separate reassurance that a 

finite set of input was entirely to be expected. 
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Chapter 8 

Ab initio Calculations of Ground- and 

Excited-State Properties in Porphyrins 

8.1  Introduction 

Computational resources to calculate excited-state energies and properties of porphyrins 

were available with the Gaussian09, Rev. A.02 (G09) computational package1 and abundantly 

enough with a 144-core, 12-node computational cluster (the Department of Chemistry & 

Biochemistry’s “Cleve”) to produce 252 electronic excited states of the relatively large 38-atom 

porphin system. Details of the methods to produce these calculations, configuration interaction 

– singles (CIS) and time-dependent density functional theory (TDDFT) are provided here and a 

comparison of the capabilities of the methods is also made. Then, a look at the SOS polarizability 

of ground and excited states to gauge accuracy of excited-state results in porphin is made along 

with the higher-order SOS hyperpolarizability. The impact of accuracy on QM internal electric 

field calculations with the Stark06 program is examined. Finally, results for a number of structural 

perturbations to the porphin ring are presented.  

The computational resources were also engaged to calculate ground-state electronic 

properties of porphyrin with interest in modeling the internal electric field produced by 

myoglobin. These calculations come full circle from Chapter 3, where approaches to modeling 

the internal electric field were first discussed. The influence of medium-range electrostatics on 

electron distribution is illustrated with qualitative conclusions about the sensitivity of the porphin 

probe to its environment. Finally, inquiries about the effect high-energy transitions, such as the 
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ones discussed in Chapter 7, on the integrity of the porphin structure are entertained with 

calculations of ionization and dissociation energy. 

8.2 Procedure for performing ab initio calculations 

The process for calculating any molecular property, whether energy or electronic property, 

whether ground or excited state, starts with a geometry optimization. Then, the position of that 

structure on the molecule’s potential energy surface, e.g., potential well, saddle point, etc., is 

checked with a frequency calculation. Finally, the wavefunction of the ground or excited state 

can be calculated based on this optimized structure, which makes available a plethora of energies 

and electronic properties. In addition, G09 has the capability to alter the environment of the 

system of interest from virtual vacuum (no environmental constraints) to a number of solvents 

to applied electrostatics in the form of a field or point charges. Various keywords and examples 

of route sections applicable to this work is given in Appendix A. 

8.2.1 Geometry optimization 

All ab initio calculations require a starting structure of nuclear coordinates for the molecular 

system of interest. However, the structure must undergo refinement to arrive at the 

conformation that produces a wavefunction of minimum energy in order to carry out a single-

point energy calculation. This minimum may be either local or global potential wells, 

corresponding to different equilibrium conformations of the molecule. The other option for a 

minimum is a saddle-point on the potential energy surface of the molecule, which corresponds 

not to an equilibrium conformation but to a transition state. These two different types stationary 

points on the potential energy surface can be differentiated with a calculation of vibrational 
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frequencies: all real frequencies indicates that the structure is at a potential minimum while one 

imaginary frequency indicates a saddle point. Geometry optimizations are iterative and proceed 

by making incremental changes to the given nuclear coordinates and checking the energy of the 

molecule at that point to find a minimum. This is rather like slowly crawling around a hilly 

landscape and getting trapped in a valley. Thus, the optimization is most likely to find whatever 

minimum, global or not, is closest to the structure provided by the user at the outset. An idea of 

experimental structures can greatly assist in the process of arriving at a reasonable molecular 

geometry. For porphyrins, it is known that a planar configuration for species with relatively small 

substituents is lowest energy in solution. However, results below show that for even a relatively 

well-known structure like porphin, this optimization step is quite influential on results.  

8.2.2 Ground-state calculations 

Once a molecular geometry has been optimized, an energy calculation on the ground state 

of that molecule can be performed along with a number of electronic properties such as dipole 

moment, partial atomic charge, polarizability, etc. Two methods were used in this work: 1) 

Hartree-Fock (HF) and 2) density functional theory (DFT). The approaches begin with unique ways 

of modeling electron distribution and, as a result, can produce distinct results. A simple 

description of these ground-state methods is given here. 

8.2.2.1 Hartree-Fock theory (HF)3 

This approach begins with the Schrödinger equation, which relies on wavefunctions, ψ,  

to describe electron distribution in a molecular system. The square of the wavefunction, |�|�, 

gives the electrons’ probability density within the molecule. The time-independent version is 
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used as a basis for HF and can be expressed in terms of the Hamiltonian operator, ��, to yield the 

system’s energy: 

������	 = �����	         (8.1) 

where ε is the energy of the system, which is now only dependent on the position of the system’s 

electrons and nuclei. The Hamiltonian operator consists of the kinetic (�) and potential (� ) 

energy of the electrons and nuclei.  

�� = ��������	 + ���������� + ��������������, ��� + ��������	 + ����������  (8.2) 

This expression accounts for the kinetic energy of particles (�	 with massive size differences as 

well as both attractive potential (��������������, ��� between electrons and nuclei) and repulsive 

potential (between particles of the same type, ��������	 and ����������). The nuclear part of the 

problem is more straightforward than the electronic part, so Hartree-Fock theory is solely 

concerned with the solution to the electronic part of Eq. 8.2. Fortunately this is accomplished 

with the Born–Oppenheimer approximation (i.e., the nuclear motion can be neglected relative 

to the very fast-moving electrons). Thus the energy contributions for the two types of particles 

are separable. 

 The electronic wavefunction is described by molecular-orbital (MO) theory as a 

combination of a set of molecular orbitals, ��, that are normalized and orthogonal. In the orbital 

representation, the Hartree product combines molecular orbitals as: 

����	 = ������	������	 … ������	       (8.3) 
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A basis set, then, expresses MOs as linear combinations of single-electron, nuclei-centered 

functions: 

�� = ∑ !"�#"" = ∑ !"��∑ $"%&%% �"        (8.4) 

where c is the molecular orbital expansion coefficient and χ is some basis function, which is 

usually modeled as a Gaussian function, g, and d is a weight for the basis function. Different forms 

of Gaussian functions, for example, are utilized for the uniquely shaped s,p, and d orbitals. The 

size of the combination of g functions can influence the accuracy of calculations that uses it and 

is specified as a pre-packaged basis set at the start of any ab initio calculation.  

Unfortunately, Eq. 8.3 does not meet all of the criteria required to locate an electron 

within a molecular system. First, as fermions, electrons must be described by an antisymmetric 

function, i.e., if any two electrons are interchanged, their wavefunction must change sign. In 

addition, electron spin must be accounted for in double-occupancy molecular orbitals. To meet 

these criteria, a wavefunction in HF is expressed as a determinant, not simply a product of the 

MOs but rows and columns with every combination of position and spin. This leads to the physical 

description of a location probability, not a set location. 

Now with a way to solve for molecular orbitals, φi, by way of Eq. 8.4 by specifying a basis 

set and then a way to incorporate the molecular orbitals into a wavefunction that follows all of 

the rules for electrons by way of a determinant, a successful Hartree–Fock method then needs 

to solve for the molecular orbital expansion coefficient, c. The method relies on the variational 

principle to iteratively solve for c, which means it seeks the coefficients that converge at the 
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lowest energy for the given wavefunction. A formulation for values of c is provided by the 

Roothaan–Hall equations, of which a matrix form is: 

'! = (!�          (8.5) 

With interest in the physical factors considered, we will not define the variables with equations. 

However, F, the Fock matrix, expresses the influence of all of the electrons in the system on a 

particular orbital. It relies on a density matrix for occupied orbitals. Then, S is the overlap matrix 

describing overlap between orbitals. The orbital energy matrix, ε, contains single-electron orbital 

energies comprising the basis function, χ, for a molecular orbital, φ. The iterative procedure to 

search for c is called the Self-Consistent Field (SCF), which produces a set of occupied and 

unoccupied orbitals (utilized by the CIS method described below). 

 The Hartree–Fock method is then limited in accuracy by the chosen basis set, the 

effectiveness of the algorithm that iteratively searches for molecular orbital coefficients, c, and 

also by the incomplete treatment of electron correlation. The problem of electron correlation, 

i.e., instead experiencing an average field, electrons “see” and avoid other individual electrons, 

can be addressed by a configuration interaction (CI) procedure, which will be explained in the CIS 

section as well. 

8.2.2.2 Density functional theory (DFT)3a, 4 

Density functional theory, on the other hand, does not deal with wavefunctions. Rather, 

DFT energies involve functions of the electron density, )���	, called functionals. Focusing again 

on the electronic part of the problem, the electronic energy contributions in typical DFT 
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functionals according to Kohn & Sham have some familiar pieces in kinetic (T) and potential (V) 

energy: 

����� = � + � + * + �+,         (8.6) 

The other terms are J, the Coulomb self-interaction, and εXC, the exchange-correlation energy, 

which are not stated explicitly in HF but play a role when CI is included (see CIS section below). 

The term J is described as “Coulomb self-interaction” rather than electron–electron repulsion 

according to Hohenberg–Kohn theorem (the original work proposing the use of functionals) 

because an external potential is used in its place. 

 Different DFT functionals can have strengths and weaknesses in describing various parts 

of the sum in Eq. 8.6, especially the exchange–correlation part. However, the method is certainly 

an improvement over HF-quality calculations as this pivotal contribution to the energy is not well 

addressed in an HF approach. In a DFT calculation, a functional is specified for the calculation, 

but a basis set is also required in order to calculate the kinetic energy terms, which cannot be 

described in terms of electron density. DFT calculations in G09 also use a specified Gaussian basis 

set for a procedure called “density fitting” for increased calculation efficiency.5 

8.2.3 Excited-state calculations 

The two excited-state methods explored in this work take two distinct approaches to 

modeling electronic transitions. CIS is an older method6 and TDDFT is a more recent 

development.7 CIS focuses on the “physics of the state,” i.e., the excited state itself, while TDDFT 

focuses on the “physics of the transition,” i.e., the excitation from ground to excited state. As 
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implemented in G09, however, both methods are capable of excited-state structure optimization 

and therefore can calculate electronic properties of excited states. 

A distinction in the type of excited-state transitions must be made for this work. The 

transitions observed in the spectroscopic experiments are vertical transitions with reference to 

Franck-Condon principle, meaning that transitions originating from the lowest vibrational state 

of the electronic ground state will often reach the electronic excited state at a higher vibrational 

level in the instantaneous timeframe of such a transition. The relaxation process then is slow 

enough to allow a non-radiative transition to the lowest vibrational level of the excited state 

before a final radiative transition (i.e., luminescent emission) back to the electronic ground state. 

This cycle can be viewed in terms of molecular geometry equilibria: a transition from an 

equilibrium ground state to a non-equilibrium excited state followed by relaxation to an 

equilibrium position of the excited state and termination upon transition back to an equilibrium 

ground state.   

This has bearing on how excited-state calculations are carried out to yield the vertical 

transitions required by QM Stark analysis. A typical calculation in which an optimized molecular 

structure is used to request excited-state energies and transition dipole moments are the 

transitions originating solely from the electronic ground state, n = 0, of the molecule. The 

returned values are for vertical transitions. However, obtaining vertical transition values for 

excited-state-to-excited-state transitions are not automatically returned. Based on the 

conclusions in Chapter 7, transitions originating from the first excited state (n = 1) are necessary 

to include for QM Stark analysis of the PPIX–myoglobin system, and transitions from other 

excited states might be necessary for the analysis of other molecular systems. The energy of a 
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vertical transition from one excited state, p, to another, q, is a straightforward calculation from 

ground-state values: 

�-. − �-% = �%.         (8.7) 

i.e., the difference in energy between the two transitions from the ground state. However, the 

transition dipole moment between the two excited states is not able to be calculated based on 

their transitions from the ground state. The method typically employed by G09 to calculate 

properties for excited states involves the optimization of that state, followed by another excited 

state calculation to determine energies and transition dipole moment values. However, for our 

application, that would amount to transition dipole moment values originating from an excited 

state at equilibrium geometry, which are not “vertical.” Fortunately, an internal option (“IOps”) 

for the calculation of the desired vertical transition dipole moment values from non-equilibrium 

excited states was available in G09 Rev. A.02, but only for the CIS method (see Appendix A). 

Although it will be seen that TDDFT had some advantage in accuracy over CIS, this availability 

ultimately restricted the values that could be used for subsequent use in QM Stark analysis to 

those generated by CIS. 

8.2.3.1 Configuration interaction – singles (CIS)3a, 4a, 6 

As mentioned above, including electron correlation with a configuration interaction (CI) 

matrix in an HF calculation improves the method’s results. Understanding this CI process, which 

is intended to better describe the ground state, can set the stage for understanding the related 

excited-state method, CIS. The CI process involves promoting one or more electrons in an HF 

determinant from occupied to unoccupied orbitals, which are generated as part of the SCF 
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process in an HF calculation. As substitutions of unoccupied orbitals enter the original HF 

determinant, a new determinant is formed and a collection of determinants is created as more 

substitutions are made. If all possible substitutions are made, “full CI” is reached as the initial HF 

determinant is combined with substituted ones: 

� = !-�01 + ∑ ∑ !�2��2 + ∑ ∑ !�324��324 + ⋯6�78�2�294:���%��;�936�78�2�2:���%��;�   (8.8) 

This description sounds a lot like mimicking electronic transitions, which the CI process is 

essentially doing. However, for the CIS process, the ground-state HF determinant is used as a 

reference determinant in order to generate excited-state wavefunctions: 

�,<= = ∑ ∑ !�2��26�78�2�2:���%��;�        (8.9) 

The method uses only singly-excited wavefunctions in a linear combination, as stated in Eq. 8.9, 

followed by diagonalization.   

 The excited-state energies generated by the method are eigenvalues of: 

>��2?�?�34@ = A�01 + �2 − ��B − �CD‖FG	      (8.10) 

where �01 is the HF ground-state energy, �2 the energy of unoccupied orbital a, �� the energy of 

occupied orbital i, and the final term is the anti-symmetrized two-electron integral. In addition, 

an excited-state potential energy surface is constructed with the calculation because a 

wavefunction is generated, making an excited-state optimization possible. Historically, the 

optimization was the strength of the method, with quantitative values like state energies less 

reliable and are considered “roughly HF quality.”4a 



217 
 

8.2.3.2 Time-dependent density functional theory (TDDFT) 

Rather than calculating the excited state itself like CIS, TDDFT takes the approach of applying 

a perturbation to the ground state to model a transition incurred by the application of 

electromagnetic radiation. When small perturbations applied, the time-dependence can be 

modeled with some approximations. Runge & Gross developed TDDFT by treating the external 

potential portion of the DFT equation in a time-dependent fashion. The way that most 

computational programs go about modeling perturbations and to calculate excited state energies 

is to search for the poles of a linear response function, AH���, I	B. This is the point where the value 

of the function increases very quickly. The model must be that of a true small perturbation, thus 

the excited state density is similar to that of the ground state. The linear density–density 

response function quantifies how the ground state responds to a perturbation of the external 

potential as part of the exchange-correlation kernel: 

HJ�AKL=B���, ��′, I − I′� = MNOP�7�,8	M��7�′,8′	       (8.11) 

where nGS is the ground-state density and νxc is the exchange-correlation potential. This describes 

how the density at �� and t changes if it is perturbed at ��′ and t’.  

 This simplistic description of the method nevertheless demonstrates that TDDFT is a 

distinct approach to calculating excited states. The results can be expected to also be distinct 

from the CIS results, which will be demonstrated in this work. Accuracy of TDDFT calculations 

depends heavily on the functional used like DFT, again largely due to the exchange-correlation 

formulation of the functional. 
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8.3  Results of excited-state calculations 

For the following calculations, the process of geometry optimization followed by a check of 

stationary point type (minimum or saddle point) with a frequency calculation was upheld before 

proceeding to any excited-state calculation. For all TDDFT calculations, the porphin structure was 

optimized with DFT using the same functional and basis set combination used for the excited-

state calculation. For all CIS calculations, the porphin structure was optimized with HF using the 

same basis set used for the excited-state calculation. Differences in the structure of porphin arose 

between the two optimization methods, which will be discussed after the excited-state 

calibration process. 

8.3.1 Calibration process 

The ongoing challenge for ab initio calculations is the selection of an appropriate basis set 

and, for DFT calculations, a functional. For well-characterized systems like porphin, for which 

experimental transition values are readily available, a “calibration” process is best for choosing a 

basis set and functional, i.e., calculating known values with a number of such parameters and 

comparing the accuracy of results to the published experimental values. For TDDFT, functionals 

can be categorized into families of related formulations that can be expected to return similar 

results, so only choosing a functional from each of families can assist with the initial calibration 

process. Then the functionals from within the family that best matches known values can be 

further assessed for accuracy. For free-base porphin, the four visible transitions, Qx, Qy, Bx, By, 

serve as the values for comparison in a functional / basis set calibration.   
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8.3.1.1 Previously published results for porphin 

Accepted experimental values for the transition energy and oscillator strengths of the four 

visible transitions of gas-phase porphin are given in Table 8.1.8 These are the values used for 

comparison to calculated results in the calibration process. 
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Table 8.1. Accepted experimental values for the transition energies and oscillator strengths of 

the four visible transitions of gas-phase porphin. 

Transition Transition Energy (various units) 
Oscillator 

Strength 

Transition 

Dipole 

Moment 

Units eV nm cm-1 Hartree 

(a.u.) 
No units a.u. 

1 (Qx) 1.98 626 15970 0.0728 0.02 0.642 
 

2 (Qy) 2.42 512 19519 0.0890 0.07 1.09 

3 (Bx) 3.33 372 26858 0.1225 1.15 3.75 

4 (By) 3.33 372 26858 0.1225 1.15 3.75 
 

Because a number of computational studies have used porphin as a highly symmetric test 

molecule, there are many results available for comparison.2 Fig. 8.1 plots the Qx transition energy 

calculated by various computational methods and suggests TDDFT as a high accuracy method for 

the molecule. 

 

 

Figure 8.1. Thirty values of the Qx 
transition energy of porphin as 
calculated by a number of methods 
and reports collected in Ref. 2 as 
compared to the experimental value 
that sits on the red line. The methods 
of interest, CIS and TDDFT, sit slightly 
below the experimental value 
(higher energy) with TDDFT more 
accurate than CIS. 
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8.3.1.1.1 Results of calibrations 

8.3.1.1.1.1 TDDFT calibration 

First, the TDDFT method was calibrated. The seven functional families (groups of functionals 

that have a common formulation) that were examined initially with the functional representative 

used in the calibration are given here: 

1) LSDA (local spin-density approximation) family: LSDA functional 

2) GGA (generalized gradient approximation) family: BVP86 functional 

3) M-GGA (meta-generalized gradient approximation) family: TPSS functional 

4) H-GGA (hybrid-generalized gradient approximation) family: B3LYP functional 

5) HM-GGA (hybrid–meta-generalized gradient approximation) family: M06 and M06-2X 

functionals 

6) long-range correction family: CAM-B3LYP functional 

The first three families are considered “pure functionals,” i.e., HF exchange is not included 

explicitly. The two hybrid functional families begin to incorporate HF exchange. The HM-GGA 

family encompassed two functionals that had very different amounts of HF exchange, M06 with 

a small percentage and M06-2X with a much larger amount, so both were included. The final 

long-range correction functional extends the “tail” of the functional. Transition energy results are 

plotted against experimental transition energies in Fig. 8.2. The H-GGA functional family was 

chosen as the most accurate in this calibration. 
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Next, five available functionals in the H-GGA functional family were calibrated in the same 

manner. The H-GGA functionals examined were: 

1) B3LYP 

2) O3LYP 

3) B3P86 

4) B3VP86 

5) PBE1PBE 

Results are plotted in Fig. 8.3 similarly to the functional family calibration. The O3LYP functional 

was chosen as the most accurate in this calibration as compared to experimental transition 

energy values, especially for the Qy, Bx, and By transitions. In general, the Qx transition energy is 

the least accurately reproduced energy, with most TDDFT functionals predicting too high an 

energy for the transition. 

 

Figure 8.2. TDDFT functional family 
calibration plots transition 
energies returned by various 
functionals versus experimental 
values. The H-GGA family, 
represented by B3LYP, returned 
the most accurate values. 
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The first two TDDFT calibration steps above were performed using the 6-311++G** (also 

sometimes labelled 6-311++G(d,p)) basis set as a reasonably large basis set. However, as the size 

of basis set does not guarantee accuracy, a final basis-set calibration using the O3LYP functional 

was performed. The twenty basis sets examined were: 

1) STO-3G 

2) 3-21G 

3) 6-31G 

4) 6-31G* 

5) 6-31+G* 

6) 6-31+G** 

7) 6-31++G** 

8) 6-311G 

9) 6-311G* 

10) 6-311+G* 

11) 6-311+G** 

Figure 8.3. TDDFT H-GGA 
functional calibration plots 
transition energies returned by 
various functionals versus 
experimental values. The O3LYP 
functional appears to be most 
accurate. 
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12) 6-311++G** 

13) cc-pVDZ 

14) cc-pVTZ 

15) cc-pVQZ 

16) LanL2DZ 

17) SDD 

18) DGDZVP 

19) DGDZVP2 

20) DGTZVP 

Results are plotted in Fig. 8.4 as above. In this case, the choice of basis set was more difficult as 

the functional performed reasonably well with a number of basis sets. A combination of accuracy 

and computational efficiency was found with the cc-pVDZ basis set. The related cc-pVTZ and cc-

pVQZ technically returned slightly more accurate values, however the computational time 

increased exponentially with the larger basis sets and their use would have made calculation of 

a large number of excited state (as was deemed necessary in Chapter 7) rather impractical. 

 

Figure 8.4. The TDDFT 
basis-set calibration plots 
transition energies 
returned by various basis 
sets used with the O3LYP 
functional versus 
experimental values. The 
cc-pVDZ basis set was 
determined as the most 
appropriate basis set to use 
in combination with the 
O3LYP functional. 
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8.3.1.1.1.1.1 CIS calibration 

Then, a similar process with the CIS method was undertaken to calibrate the method and 

choose a basis set. [Note that the state-energy axis has changed to state-energies in electron-

volts (eV) from wavelength in nm in the TDDFT calibration section.] The results for the transition 

energies are plotted versus experimental values in Fig. 8.5. The same twenty basis sets were used 

for CIS as with TDDFT. All of the basis sets significantly overestimated the energy of all four 

transitions, much more than TDDFT. Most of the basis sets performed similarly within the 

method, other than two that overestimated the energies even more. Not surprisingly the two 

most inaccurate basis sets were the smallest, STO-3G, and a related basis set, lanl2mb.  A closer 

look at the middle “pack” reveals the moderately sized sdd and related lanl2dz basis set as the 

most accurate with sdd returning slightly more accurate results in terms of transition energy. 

 

 

 In addition to a transition energy calibration, the oscillator strengths returned by CIS were 

also examined here. The results of the four most accurate basis sets in terms of oscillator strength 

Figure 8.5. The CIS basis-set 
calibration plots transition 
energies returned by various basis 
sets versus experimental values. 
The sdd and lanl2dz basis sets were 
determined as the most accurate 
basis sets in terms of transition 
energy results. 
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are plotted in Fig. 8.6. Interestingly, the transition energy accuracy is not a predictor of oscillator 

strength accuracy as both STO-3G and lanl2mb generate the most accurate oscillator strength 

values. It was determined that sdd returned the best combination of transition energy and 

oscillator strength with the CIS method. 

 

8.3.1.1.2 Calibration comparison 

The results from the TDDFT and CIS calibrations are compared in Fig. 8.7 (transition 

energy) and Fig. 8.8 (oscillator strength). It is determined that TDDFT returns more accurate 

transition energies for free-base porphin but CIS returns more accurate oscillator strengths for 

the molecule. However, CIS showed positive qualities in both categories where TDDFT did not. 

Although the absolute values of transition energies were incorrect with TDDFT, the trend given 

by CIS / sdd values mirrored the experimental values, i.e., had a more consistent error. (See, 

however, discussion of errors in transition polarization in optimization section below.) More 

strikingly, TDDFT generated a more serious error with oscillator strength values when it returned 

a value of zero for one of the two strongly allowed Soret (B) transitions. 

Figure 8.6. The CIS basis-set 
calibration plots oscillator 
strengths returned by four basis 
sets versus experimental values. 
The STO-3G and lanl2mb basis sets 
were determined as the most 
accurate basis set in terms of 
oscillator strength, which was one 
of the least accurate in terms of 
transition energy. 
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In addition, Table 8.2 gives tabulated values for experimental, TDDFT, CIS, and ZINDO 

transition energies and oscillator strengths. ZINDO is a semi-empirical method that had been 

used in earlier reports related to this work9 and is included for comparison. The impact of these 

various methods’ excited-state results on internal electric field calculations is discussed below. 

Figure 8.7. Comparison of the 
visible transition energies of 
porphin as determined 
experimentally and calculated with 
two excited-state methods, CIS and 
TDDFT. TDDFT returns results 
closest to experimental data. 

Figure 8.8. Comparison of the 
visible transition oscillator 
strengths of free-base porphin as 
determined experimentally and 
calculated with two excited-state 
methods, CIS and TDDFT. CIS 
returns results closest to 
experimental. 
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Table 8.2. Values, both experimental and calculated, related to the four visible-region transitions 

of free-base porphin. 

 

 

8.3.1.1.3 Optimized porphin structures 

8.3.1.1.4 Planar structures 

The optimization process performed prior to the excited-state calculations described 

above have bearing on the results, with each method producing small but significant differences. 

(The structure files for each are given as Cartesian coordinates in Appendix J.) Each for each 

method, HF (for use with CIS) and DFT (for use with TDDFT), a structure of identical symmetry 

was provided for the optimization process: a planar D2h structure with inner hydrogens in the 

trans position and oriented as illustrated by Fig. 7.2. Both methods retained the planarity of the 

macrocycle. However, while DFT retained the inversion symmetry of the initial structure at the 

end of optimization, HF generated a structure with two pyrrole nitrogens slightly displaced by 

0.014485 Ǻ along the negative x-axis. This appears as pyrrole rings I and IV rotated slightly 

clockwise and counterclockwise, respectively, although the deviation is so slight that it is only 

visual upon careful inspection. The non-symmetric structure can be traced to the optimization 

process. When a totally symmetric file was loaded to optimize with the HF method, the stationary 

Transition 

from 

ground 

state 

Transition Energy (eV) Oscillator Strength 

Experi-

mental 

TDDFT/ 

O3LYP/ 

cc-pVDZ 

CIS/ 

sdd 
ZINDO 

Experi-

mental 

TDDFT/ 

O3LYP/ 

cc-pVDZ 

CIS/

sdd 
ZINDO 

1 1.98 2.23 2.88 1.71 0.02 3.00 × 10-4 0.01 0.02 

2 2.42 2.38 3.42 2.05 0.07 3.00 × 10-4 0.01 0.03 

3 3.33 3.20 4.63 3.39 1.15 0.28 1.58 1.64 

4 3.33 3.23 4.63 3.55 1.15 0.00 1.61 2.49 
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point at which the job termination was found to be not a minimum but a saddle point, i.e., the 

subsequent frequency job produced one imaginary frequency. A tactic to move the structure 

away from the saddle point is to animate the imaginary frequency and displace the coordinates 

along that frequency’s normal mode axis. Not surprisingly the displacement used to move the 

structure away from the saddle point remained as a slight asymmetry when the structure found 

a nearby minimum.  

Interestingly, this slightly asymmetric structure produced excited-state results that were 

unexpected in two aspects. First, the HF-optimized structure predicted transition polarizations 

with the CIS method that were opposite to the experimental and TDDFT-method results. The CIS 

jobs calculated the first and third transitions (Qx and Bx, respectively) as y-polarized and the 

second and fourth transitions (Qy and By, respectively) as x-polarized. Second, even though the 

asymmetry was significant enough to apparently switch transition polarizations, it was not 

significant enough to mix polarizations for individual transitions, i.e., each transition remained 

exclusively polarized along a single axis (x, y, or z). 

These results prompted a closer look to determine whether this was an anomaly of 

method /basis set combination. The switched polarizations were in fact consistent across the CIS-

method results with the asymmetry, regardless of basis set. In addition, when the symmetric 

structure that technically landed on a saddle point of the potential energy surface was fed into a 

CIS calculation, the polarizations returned to the experimental positions. However, this tactic 

cannot be taken as correct for a ground-state structure described by HF as it does not reside in a 

potential-energy minimum.  Another tool for determining the accuracy of an optimized structure 
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is through a wavefunction stability test (keyword: stable for a G09 energy job). An HF 

wavefunction calculated for a totally symmetric porphin structure returned as unstable.  

An additional set of calculations looked at whether the porphin structure with slightly 

deviated pyrrole nitrogens was the only asymmetric structure to find a minimum. Other normal-

mode deviations were explored to produce other asymmetric porphin structures, including 

elongating the structure along the inner hydrogens and rotating both pyrrole rings clockwise. In 

each case, the structure returned to the symmetric saddle point rather than finding a new 

minimum. It was determined that HF did not consider the totally symmetric structure to be the 

lowest-energy ground-state structure. One plausible explanation might be that the HF method 

could be assessing the repulsive interaction of inner hydrogens as more unfavorable than the 

DFT method, enough so that the generally favorable symmetry advantages do not overcome this 

unfavorable contribution. 

8.3.1.1.5 Non-planar structures 

The domed porphin model explored in Chapter 7 to try to increase the intensity of z-

polarized transitions (i.e. perpendicular to the porphin plane) required some constraints to 

successfully optimize such a structure, especially since structure optimizations allowed to 

optimize freely found planar configurations, regardless of method. The tactic used to 

accomplish this was to freeze certain coordinates to guarantee a z-displacement, while 

retaining in-plane x–y symmetry. This was best accomplished with a symbolic Cartesian input 

format, where coordinates are labelled as either variable (allow to optimize) or constant (frozen 

along that axis during optimization). This option had the advantage of being able to fix a 

displacement in the z-direction while optimization could still proceed in the x- and y-directions, 
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even for “frozen” atoms. The frozen atoms were chosen as eight peripheral hydrogens bonded 

to pyrrole rings at z = 0.000000 and the four pyrrole nitrogens at z = 0.400000 or 0.600000. An 

example of a non-planar porphin input files in symbolic Cartesian coordinates is also given in 

Appendix A. 

8.3.1.2 Variance of SOS polarizability with basis set 

The approach to predicting convergence for internal electric field calculations with 

difference in SOS polarizability described in Chapter 7 was shown to be effective. However, only 

results from a single basis set was presented, CIS / sdd. The approach was examined with the 

twenty basis sets listed earlier to see if a convergence point was generally found for the x- and y- 

components and none for the z-component. This was found to be the case across all basis sets as 

calculated with CIS. Figs. 8.9a–d show the x- and y-components for two basis sets, STO-3G and 

cc-pVDZ, which are distinct in formulation from sdd. Convergence is found well within 50 states.  

 

Figure 8.9a. Difference in 
SOS polarizability for two 
basis sets calculated with 
CIS show convergence; x-

component, STO-3G. 
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Figure 8.9b. Difference in 
SOS polarizability for two 
basis sets calculated with 
CIS show convergence; y-
component, STO-3G. 

Figure 8.9c. Difference in 
SOS polarizability for two 
basis sets calculated with 
CIS show convergence; x-
component, cc-pVDZ. 

Figure 8.9d. Difference in 
SOS polarizability for two 
basis sets calculated with 
CIS show convergence; y-
component, cc-pVDZ. 
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8.3.1.3 SOS hyperpolarizability 

As an approach to gauge the accuracy of excited-state calculations, the sum-over-states 

(SOS) hyperpolarizability, β, was calculated: 

QR,JST = ∑ ∑ >U?V̂J?X@YXZ[V̂SZ\]>\?V̂T?U@
�^_�^`	�^a�^`	.bR%bR      (8.11) 

where m is the electronic state of interest, p and q are directly and indirectly coupled electronic 

states, and x, y, and z spatial components. Hyperpolarizability is a tensor with twenty-seven 

components: xxx, xxy, xxz, xyx, xyy, xyz, xzx, xzy, xzz, yxx, yxy, yxz, yyx, yyy, yyz, yzx, yzy, yzz, zxx, 

zxy, zxz, zyx, zyy, zyz, zzx, zzy, zzz. It appears in the classical Stark equation (Eq. 6.1) in the third-

order term as Δβ. Like the first-order term in the equation containing the difference dipole 

moment (Δμ), this first hyperpolarizability term should also vanish because of porphin’s inversion 

symmetry.  

 Using the data calculated with CIS / sdd, hyperpolarizability values for 252 excited states 

of porphin were calculated. Interestingly, twenty out of the twenty-seven components were 

indeed zero and each of the seven non-zero components occurred with the same x-containing 

polarizations for each and every state of interest. This seems as if it may be related to the slight 

deviation from symmetry along the x-axis. (Contribution to the hyperpolarizability of conjugated 

molecules in this “sum-over-states” fashion is also explored in 10.) 

8.3.1.4 Comparison of methods with Stark06  

The results from the excited-state calculations were implemented in Stark06 to calculate 

internal electric field and to compare to previous results generated with excited-state input from 
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the semi-empirical method, ZINDO. The previous results had just 17 electronic states to use in 

internal electric field calculations and so the 17 lowest-energy, x- or y-polarized states were used 

for each method to generate the results shown in Table 8.3. In addition to the results from ZINDO, 

CIS / sdd, and TDDFT / O3LYP / cc-pVDZ, a calculation using a mixture of the more accurate TDDFT 

transition energies and the more accurate CIS oscillator-strength values was performed. All of 

the results were distinct in terms of direction (see angle column) but fall within about an order 

of magnitude, with the x-component larger than the y-component for all but the mixed CIS / 

TDDFT calculation, where the magnitude was about the same for each component.  
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Table 8.3. Comparison of internal electric field values generated with difference method / basis 

set combinations. 

Method / Basis Set Ex Final (V / cm) Ey Final (V / cm) Angle 

(degrees) 

ZINDO 6.14 x 105 8.68 x 105 55 
CIS/sdd 3.44 x 105 8.37 x 105 68 

TDDFT / O3LYP/cc-pVDZ 7.34 x 105 1.07 x 106 56 
TDDFT / CIS Mix (εn / fosc) 5.27 x 105 4.09 x 105 38 

 

8.3.2 Electronic properties of excited states 

As described in the theoretical basis of CIS, the method was developed to be able to 

optimize excited-state structures. To examine some electronic properties of the first excited 

states (i.e., state of interest, n = 1), the excited-state structure was optimized with CIS / sdd.  

8.3.2.1 Excited-state optimization 

Excited-state optimization yielded a structure with total energy compared to the ground-

state in Table 8.4. The keywords related to this optimization and the coordinates of the optimized 

structure are presented in Appendix J.  

Table 8.4. Total energy of the ground state and first excited state of free-base porphin as 

calculated with HF / sdd. 

Electronic State SCF Energy (a.u.) 
Zero-Point Energy 

Correction (a.u.) 
Total Energy (a.u.) 

n = 0 (ground) -982.9589936 0.31516948212 -982.6438241 
n = 1 (1st excited 

state) 
-982.9553994 0.31367172504 -982.6417277 

Δε (difference)   0.0020965 
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 As expected, the first-excited state has a higher (less negative) energy than the ground state.  

8.3.2.2 Polarizability of excited states 

Once a structure was optimized, a frequency calculation yields the exact polarizability of 

the ground state and first excited state of porphin using HF / sdd. The centrosymmetric molecule, 

as predicted by theory, generated only the three diagonal components, αxx, αyy, αzz, of the nine 

polarizability tensor components. Values for exact polarizability of two states is given in Table 

8.5. Theoretically, the polarizability of an excited state should be greater than that of the ground 

state, and that expectation is met with this ab initio calculation for all three components, which 

was not the case for comparable semi-empirical ZINDO calculations.11 

Table 8.5. Exact polarizability of the ground and first-excited state of porphin as calculated with 

HF / sdd, given as the three non-zero components. 

Electronic 

State 

αxx Tensor 

Component (a.u.) 

αyy Tensor 

Component (a.u.) 

αzz Tensor 

Component (a.u.) 

n = 0 
(ground) 

407.770 391.212 90.526 

n = 1 
(1st excited 

state) 
445.916 433.789 91.288 

 

 The optimized first excited state of porphin was also used to calculate transitions from 

that state using CIS / sdd. The SOS polarizability was calculated for this state and plotted below 

in Figs. 8.10a–c as more electronic states are included in the calculation similarly to the series of 

plots in Chapter 7 for the ground state in Figs. 7.4a–c. The first-excited-state SOS polarizability 

for the in-plane components reaches to not even half the exact polarizability at N = 252 states, 
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where the ground state reaches to almost 90% for the same number of states included. In 

addition, the first excited-state plots of the in-plane components also show a much sharper 

increase before 25 states are included followed by a very slow increase over the next 225 states. 

The progression of the z-component in Fig. 8.10c is similar to that for the ground state: very slow, 

more linear progression. Figure 8.11 plots the SOS polarizability of the combined spatial 

components for the ground and first excited state up to N = 252. Even though the total exact 

polarizability shows that the excited state is more polarizable than the ground state as expected, 

the proportion contributed by much higher-lying states is far greater for the excited state. 
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Figure 8.10. SOS 
polarizability of the first 
excited state of porphin 
(CIS / sdd) for 
comparison to Figs. 7.4 
for the ground state. a) 
x-polarized; b) y-
polarized; c) z-
polarized. 

a) 

b) 

c) 
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8.3.2.3 Implementation in classical Stark analysis 

A motivation for calculating electronic properties of the excited state of porphin was to 

open a path to perform an analogous classical Stark analysis (Eq. 6.1) with the data for 

comparison to the QM Stark analysis. While an algorithm for such a comparison calculation 

remains in progress, the pivotal difference polarizability value is generated with the data in Table 

8.5, the definition of difference polarizability (Δα) from Eq. 6.3, and the relevant Eq. 8.12a–c 

below. The difference polarizability value produced with CIS / sdd is calculated to be Δc-� =
3.990 D. h. 
ci%7����%2� 2J�j = kcJJ 0 00 cSS 00 0 cTT

l      (8.12a) 

(!DmD� c = �n ���c	o����        (8.12b) 

���c	 = ∑ c��         (8.12c) 

Figure 8.11. SOS polarizability of 
the ground and first excited state 
of porphin (CIS / sdd) shows 
different progress towards the 
exact values as more states are 
included in the analysis. 
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8.3.3 Excited-state transitions in perturbations to porphin  

Beyond the model probe, porphin, the real, experimental systems of interest have unique 

transition energies. Different small “perturbations” to the highly symmetric theoretical probe 

will, of course, alter transition energies: metallation with zinc, adding substituents to yield 

protoporphyrin, and finally subtle conformation changes, especially to ring planarity, in real 

systems such as the real heme conformation in the 1MBO file of oxygenated human myoglobin. 

Computational method comparisons were made for several of these perturbations for future 

reference. [Note that in the figures below the energy axis is again presented as wavelengths in 

nm.] 

8.3.3.1 Metallation 

First, free-base porphin was compared to zinc porphin in terms of transition energy to 

gauge the effect of metallation on the macrocycle and to examine how theoretical methods dealt 

with the addition of a transition metal, which sometimes poses a problem computationally. 

Porphin energies are reported as calculated in the calibration section above with gas-phase 

experimental values reported from the same source. Zinc porphin, however, has comparatively 

few spectroscopic values reported. Apparently, the molecule is synthesized from free-base 

porphin in solution, so no gas-phase values could be obtained for comparison. The available 

sources gave spectra for zinc porphin only in in organic solvents12, and a low dielectric-constant 

source was used (n-octane, ε ≈ 2) for the comparison below. The results in Figs. 8.12a and 8.12b 

show that TDDFT / O3LYP / cc-pVDZ makes a very reasonable prediction for both the free-base 

and metallated versions, even predicting the degenerate nature of both the Q and B transitions 
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in the metallated porphin.  This means that TDDFT as a computational method can be robust with 

transition metals (at least when no unpaired electrons are present). 

 

 

8.3.3.2 Substituents 

Next, substituents were added to porphin to create protoporphyrin IX as described in 

Chapter 3, i.e., two negatively charged propionate groups in addition to methyl and vinyl groups. 

The optimization process was initiated with a fully planar model; however, these optimizations 

were quickly unsuccessful, meaning that a minimum on the potential energy surface could not 

Figure 8.12. The four visible 
transitions of porphin 
calculated with two 
computational methods 
compared to experimental 
values. a) Free-base 
porphin; b) zinc porphin. 

a) 

b) 
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be located within the default parameters in terms of number of iterations or in terms of step size. 

The solution arrived with a structural “clean-up” feature in GaussView 5 that uses a quick force-

field calculation to arrive at a plausible structure. This step altered the PPIX structure immediately 

to force this in vacuo structure to curl each charged propionate group in opposite directions 

either above or below the porphin plane to look quite similar to their respective conformation 

when heme is in the protein environment (Fig. 3.8a). Clearly, the negative charge on the 

propionates needed distance in the optimized structure. The optimized structure of PPIX is 

provided in Appendix J. 

An unexpected result occurred during calculations of transition energies for any form of 

PPIX: the O3LYP functional that was so successful for porphin predicted transition energies for 

these substituted porphyrins well into the infrared (IR) region. This was clearly incorrect, so 

another calibration was undertaken to see if a functional existed to predict reasonable values for 

PPIX. An HM-GGA functional with a larger amount of HF exchange, M06-2X made reasonable 

predictions for PPIX-based structures. It is unclear whether the overall -2 charge or the 

substituents themselves caused the breakdown in accuracy for the O3LYP functional. The values 

in Figs. 8.13a-b are compared to PPIX and ZnPPIX in neutral phosphate buffer, so these do not 

provide exact comparison to the in vacuo calculations, but give a reasonable idea of how each 

method performs. The TDDFT / M06-2X functional gave results similar results to the CIS results. 

The metallation with zinc gives similar performance. Note the large break in the energy axis.  
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8.3.3.3 Planarity of porphyrin ring 

Finally, the effect of small deviations to the PPIX structure when substituted in myoglobin 

were examined. The structure of the heme ring from the 1MBO PDB file was isolated, protonated, 

and the iron atom was removed. For the 1MBO PPIX structure, two inner hydrogens were added; 

for the 1MBO ZnPPIX structure, the iron atom was replaced with zinc. The structures visually 

showed some torsion in the macrocycle. After optimization in vacuo, which did not produce a 

planar ring but retained much of its crystal-structure character, transition energies were 

calculated as before (see Figs. 8.14a-b). The experimental energies are those found for the PPIX- 

Figure 8.13. The four 
visible transitions of 
protoporphyrin IX 
calculated with two 
computational methods 
compared to 
experimental values. a) 
Free-base PPIX; b) 
ZnPPIX. 

a) 

 b) 
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and ZnPPIX-myoglobin in neutral phosphate buffer, so are subject to some error as above. A 

similar pattern of accuracy emerged like the planar PPIX structures, with TDDFT / M06-2X 

producing the most reasonable energies and certainly better than TDDFT / O3LYP results. 

 

 

 A discussion ensued following these results as to whether the optimization step must be 

taken for experimentally-obtained structures. Because these 1MBO porphyrin structures were 

removed from the forces that induced the non-planarity, i.e., the steric and electrostatic forces 

present inside the protein matrix, to undergo calculations essentially in vacuum, the structure 

Figure 8.14. The four 
visible transitions of non-
planar, 1MBO 
protoporphyrin IX 
calculated with two 
computational methods 
compared to experimental 
values. a) Free-base 1MBO 
PPIX; b) 1MBO ZnPPIX. 

a) 

b) 
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was likely not at a minimum on the potential energy surface, which is the criteria for any 

computational method to return valid results. Thus, an optimization process was undertaken for 

these structures. Had the protein matrix been modeled along with the porphyrin with 

experimental parameters, then the optimization step may not have been necessary. For 

comparison, transition energies for a non-optimized structure of PPIX were calculated. The values 

presented in Table 8.6 show clearly that the optimization step has a profound effect on returned 

transition energies. 

Table 8.6. Comparison of transition energies calculated for optimized and non-optimized 

structures of 1MBO PPIX and 1MBO ZnPPIX. 

Species / State 

Experimental 

Transition Energies 

(nm) 

Optimized 

Structure (TDDFT/ 

M06-2X) 

Non-optimized 

structure (TDDFT/ 

M06-2X) 

1MBO PPIX    
State 1 626 555 841 
State 2 544 531 744 
State 3 410 524 706 
State 4 410 485 699 

    
1MBO ZnPPIX    

State 1 584 543 764 
State 2 550 529 698 
State 3 423 514 698 
State 4 423 491 691 

 

8.4  Results of ground-state calculations under perturbation 

Several calculations were made for ground-state zinc porphyrins in various environments:  

• charged propionate groups vs. neutral dimethyl ester substituents;  

• solvated in different dielectric constant values;  
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• planar porphin ring vs. non-planar conformation found in the 1MBO protein structure;  

• with an applied field;  

• with point charges at the position of myoglobin atoms.  

The purpose of these calculations was to begin to quantify the kind of effect an electric field 

has on a cofactor molecule like porphyrin and the cursory results only serve to dramatize the 

influence such electrostatic changes might have on an active site molecule. 

First, the value that was examined was electric field generated by the porphyrin itself, i.e., 

the “self” field. This is not a value that arises experimentally with the QM Stark method because 

the porphyrin acts as a probe whose own electrostatics is not sensed by the transition dipoles. 

However, in this context, a qualitative picture of how sensitive this property of the molecule is to 

its surroundings is interesting. Then, a few electronic properties of zinc porphyrin are tallied 

under various environments: permanent dipole moment and the partial atomic charge on 

oxygen, pyrrole nitrogens, and the central metal. 

8.4.1 “Self” electric field vector 

The electric field was calculated for the molecule of interest in G09 by including the 

“Prop=Field” keyword in an energy job. All calculations were performed at the DFT / M06-2X 

level. Electric field results were returned numerically resolved into x-, y-, and z-components for 

the standard orientation with the origin at the metal center and the porphin ring oriented in the 

x-y plane with nitrogen atoms situated on the axes; the vector value was then generated and 

plotted. The common origin of the three-dimensional plots represent the spatial position of the 

zinc atom of the porphyrin. The vector labeled ZnPPIX is the value calculated in vacuo. 
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Overall, the results show that the relative magintude of the field is not nearly as sensitive 

to various environments as direction. Two comparisons of interest from these calculations are 

shown below: solvent effect (Fig. 8.15) and applied field vs. point charge effect (Fig. 8.16). 

Structures were solvated using the “SCRF” keyword (self-consistent reaction field) for pre-

defined solvents in G09.13 This method uses bulk dielectric constant values as well as solvent 

molecule size to solvate the molecule interest. Three solvents of vastly different dielectric 

constant values were applied: water (ε = 78.3553); acetonitrile (ε = 35.668); chloroform (ε = 

4.7113). 

 

Then, electrostatic influences were added to the environment of 1MBO ZnPPIX without a 

specific molecular structure to generate them. An applied electric field can be generated with 

the “Field” keyword and specified in magnitude and direction by loading individual components 

by adding, for example, “Field=X+10,” to apply an electric field in the x-direction of 0.001 a.u., 

which is about 1 MV/cm. Results in Fig. 8.16 show that fields in the range of 0.1–1.0 MV/cm have 

Figure 8.15. 
Calculated “self” 
electric-field vector 
for ZnPPIX in various 
solvents: water, 
acetonitrile, and 
chloroform. 
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minimal effect on shifting the direction of the “self” electric field vector, even if applied opposing 

to the direction of that vector. Increasing the magnitude of the field to about 10 MV/cm, 

however, did cause a noticeable shift. 

In addition, 133 point charges representing myoglobin’s active site atoms (as defined in 

Chapter 3) were added to the environment using the “Charge” keyword, coordinates from 1MBO, 

and partial atomic charges given by the AMBER-based results in Ref. 14. This representation of 

the protein atom nearest to the active site had an influence that was highly significant in terms 

of magnitude and direction, especially in the z-direction, as illustrated in Fig. 8.16. 

 

8.4.2 Electronic properties of zinc porphyrin in various environments 

The following Table 8.7 tabulates dipole moment and partial atomic charge at the oxygen, 

nitrogen, and metal atoms in various species of ZnPPIX as described. The most dramatic 

perturbation in this set was to cap the propionate groups as dimethyl ester substituents; the 

magnitude of the dipole moment almost disappears without the two full charges of the 

Figure 8.16. Calculated 
“self” electric-field 
vector for 1MBO ZnPPIX 
in various electrostatic 
environments. The 
point charge model was 
the most dramatically 
influential, a visual 
inspection placing it on 
par with the application 
of 10 MV/cm of an 
external electric field. 
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propionate groups, which reaffirm s earlier conclusions that the charged propionates are the 

main contributor the in-plane internal electric field. 

  



250 
 

Table 8.7. A comparison of electrostatic properties of zinc porphyrins under various 

environments. 

Species 
Dipole 

Moment (D) 

Average 

Charge at 

Oxygen 

Average 

Charge at 

Pyrrole 

Nitrogen 

Charge on Zinc 

ZnPPIX, in vacuo 39.9177 -0.44115 -0.46872 0.78157 

ZnPPIX in water 49.9926 -0.46532 -0.46060 0.85748 

ZnPPIX in electric 
field 

31.8672 -0.44118 -0.46851 0.78099 

ZnPPIX DME 3.2476 -0.27830 -0.46774 0.79993 

ZnPPIX DME in 
water 

4.8083 -0.29610 -0.45856 0.87109 

1MBO ZnPPIX 44.8045 -0.42915 -0.50204 0.81265 

1MBO ZnPPIX in 
electric field 

44.5744 -0.42889 -0.50207 0.81263 

 

8.4.3 Effect of high energy on porphin structure 

Finally, when reporting the number and energies of influential high-lying states in the QM 

Stark analysis, the question of impact to the porphin structure is often posed. It is important to 

clarify that the analysis takes into account the influence of these high-energy states is included in 

the analysis as part of the diagonalization but a transition to the influential states is never 

undergone, neither experimentally nor theoretically. Nonetheless, the energy of various 
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processes that alter molecular structure were calculated for free-base porphin with 

TDDFT/O3LYP/cc-pVDZ: single ionization energy, double ionization energy, proton affinity 

energy, and total dissociation energy. This exercise serves to better define the energy range 

described by the QM Stark analysis but does not represent a real event to cause concern in the 

experimental process. 

The basic computational procedure to calculate the energy of such processes is to optimize 

and calculate energy for the molecular species “before” and “after,” i.e., for ionization energy, 

the “before” is neutral porphin and “after” is the porphin monocation. Then the difference in 

energy represents the process energy. In addition, the proper procedure not only includes the 

DFT (analogous to the SCRF energy in HF) but also the zero-point energy (ZPE) as obtained from 

a frequency calculation. The magnitude of energy differences between species in a particular 

process can be on the order of the ZPE and its inclusion is clearly necessary. The process energy 

is reported in a.u. and also converted to wavenumber in cm-1 to place the energy in terms of 

transition frequency. 

8.4.3.1 Ionization energy 

Table 8.8. The single ionization energy of porphin, i.e., the loss of an electron, which aligns 

energetically with the energy of the electronic transition to higher-lying state, p = 14. 

Molecule Energy (a.u.) Zero-Point Energy (a.u.) Total Energy (a.u.) 

PH2 (neutral 
porphin) 

-989.072159269 0.29285430 -988.7793050 

PH2
+ (porphin 
cation) 

-988.830794035 0.29175528 -988.5390388 

Ionization 

Energy 
-- -- 

0.2402662 a.u. 
52732 cm-1 
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Table 8.9. The double ionization energy of porphin, i.e., the loss of two electrons, which aligns 

energetically with the energy of the electronic transition of a higher-lying state p>>252. 

Molecule Energy (a.u.) Zero-Point Energy (a.u.) Total Energy (a.u.) 

PH2 (neutral 
porphin) 

-
989.072159269 

0.29285430 -988.7793050 

PHx
2+ (porphin 

dication) 
-988.44777 0.292807 -988.1549628 

Ionization Energy -- -- 
1.3282055 a.u. 
291 507 cm-1 

 

8.4.3.2  Proton affinity 

Table 8.10. The proton affinity energy of porphin, i.e., a single deprotonation to leave the 

molecule negatively charged, which aligns energetically with the energy of the electronic 

transition of a higher-lying state p>252. 

Molecule Energy (a.u.) Zero-Point Energy (a.u.) Total Energy (a.u.) 

PH2 (neutral 
porphin) 

-989.072159269 0.29285430 -988.7793050 

PH- (porphin 
anion) 

-988.480598125 0.27644740 -988.2041508 

Proton 

Affinity 

Energy 

-- -- 
0.5751542 a.u. 
126 231 cm-1 
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8.4.3.3 Total dissociation energy 

Table 8.11. The total dissociation energy of porphin, i.e., the obliteration of the molecule into its 

constituent atoms, which is far beyond any energy within reasonable range to calculate, 

approximately 20 times the transition to p = 100 and 16 times the transition to p = 252. 

Molecule Energy (a.u.) Zero-Point Energy (a.u.) Total Energy (a.u.) 

PH2 (neutral 
porphin) 

-989.072159269 0.29285430 -988.7793050 

Atom Energy (a.u.) Number of Atom Type Total Energy (a.u.) 

H -0.496095884369 14 -6.945342388 
C -37.7689193571 20 -755.3783871 
N -54.4672590676 4 -217.8690363 

Total 

Atomic 

Energy 

  
-980.1927658 

 

    
Total 

Dissociation 

Energy 

-- -- 
8.5806845 a.u. 

883 243 cm-1 

 

8.58.58.58.5  Conclusions 

Methods to calculate the excited-state energies and transition dipole moment values 

required for successful QM Stark analysis were explored. Two distinct excited-state methods 

were calibrated: CIS and TDDFT. It was determined that TDDFT returned more accurate transition 

energies for porphin, zinc porphin, protoporphyrin IX, and zinc protoporphyrin IX (both planar 

and the conformation found in the 1MBO coordinates). For the porphin structures, the O3LYP 

functional with the cc-pVDZ basis set performed the best compared to experimental values. For 

the protoporphyrin structures, the M06-2X functional was superior to the O3LYP functional. 

However, the CIS method with the sdd basis set produced more reasonable transition dipole 
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moment values for free-base porphin. Additionally, because it was determined in Chapter 7 that 

excited states coupled to both the ground and first-excited state are necessary for analysis, CIS 

was the only method available to produce transition dipole moments originating from the first-

excited state. Thus, it was determined that the values calculated with CIS were currently the best 

to be used with QM Stark analysis. It is clear, however, that the accuracy of calculations with this 

method can be improved, especially because it optimized a porphin that was not totally 

symmetric as the DFT method did.  

In addition, the available computational resources were used to calculate some ground-state 

properties of porphyrins in various environments to begin to quantify the effect of electric fields 

on porphyrin electronic structure. The “self” electric field vector of zinc porphyrin was visualized 

in solvents with different dielectric constants as well as with applied field fields (0.1 – 10 MV/cm) 

and point charges representing the myoglobin matrix. It was clear that the direction of the self 

field was the most sensitive to surroundings. Calculations that compared charged versus neutral 

propionate groups in zinc protoporphyrin IX showed a substantial change in the permanent 

dipole moment of the molecule. Finally, after the discussion of very high-energy electronic states 

in Chapter 7, the ionization energies, proton affinity, and total dissociation energy of porphin 

were calculated. Although it must be emphasized that the analysis including such states is not 

equivalent to the molecule physically undergoing that transition, it was determined that within 

the energies of essential states, a single ionization might occur but no structural alteration would 

be expected. 
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Chapter 9 

Conclusions & Future Directions 

9.1 Conclusions 

 Having established the functional implications of a net internal electric field, ������, in heme 

proteins, this work contributed towards the goal of quantifying such a field. Three viewpoints for 

modeling the overall electrostatics of a protein matrix were proposed: a bulk dielectric constant, 

a net electric field vector, and a point-charge model. The simplistic Coulomb’s law method 

explored in Chapter 3 for estimating ������, has usefulness in terms of relative values. The field 

values can be expected to change with such structural perturbations such as the “two-level 

system” statistical range of positions for individual amino acids, mutations, and global dynamics 

(protein “breathing”). This approach is unique in that it treats the protein matrix as an 

“electrostatic structure” with an overall effect at a single point in the system, e.g., at the active 

site. 

Porphyrin as a probe of ������ has the advantage of being a native reporter in this approach as 

a heme analog that can sense the electrostatic environment’s effects as a whole on the cofactor. 

This means that the sum of the field can be seen on the porphyrin’s electronic properties, not 

just a small portion of it. Methods for substituting porphyrins that are good spectroscopic probes 

for heme have been streamlined and a variety of porphyrin species have been prepared for that 

purpose, allowing for metallated and free-base options as well as highly-charged (e.g. with 

propionic and neutral (i.e., dimethyl ester derivatives) options. In addition, porphyrins under a 
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number of environmental conditions have been characterized spectrally. The increase in 

resolution afforded by fluorescence measurements at low temperature also revealed the 

opportunity to assure sample purity, which is essential to the success of the method proposed to 

measure ������, especially as the hole-burning Stark spectral resolution improves. In addition, the 

unexpected splitting in those low-temperature spectra qualitatively supports the notion that the 

protein matrix provides a consistent energetic environment for its cofactor, because only 

porphyrins substituted into protein exhibited the dramatic decrease in inhomogeneous 

broadening. This idea that a particular protein species provides a reproducible environment 

(within a dynamic range) is an important foundation for the very postulate that an internal 

electric field exists in proteins and can be measured. 

  Experimentally, it had been established that Stark spectroscopy can be used to measure 

������. Spectral hole-burning at liquid-helium temperatures had also been shown to be an 

indispensable technique for improving resolution for samples like porphyrins that suffer from 

inhomogeneous line broadening. An updated experimental set-up has been constructed and 

preliminary data collected on PPIX–myoglobin. As the instrumentation becomes streamlined, the 

opportunity for a number of perturbations to the basis system becomes possible (see Future 

Directions). These experiments can be expected to capture some of the dynamic nature of the 

protein matrix suggested by calculations in Chapter 3. 

The classical approach to Stark spectroscopy analysis has limitations for systems that do not 

exhibit a strictly linear shift. In addition, it does not allow for the deduction of a directional vector. 

A quantum-mechanical Stark analysis had been proposed that would not require arbitrarily 
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excluding higher-order terms in the analysis and would also allow for the resolution of the 

calculated ������ value into spatial components (x,y,z). However, some serious practical barriers 

prevented implementation because the method theoretically called for an infinite number of 

electronic excited states to be calculated and used as input for the method. This work offered 

relief from this burdensome criteria by showing that electronic states with energies higher than 

some predictable cutoff point did not appreciably influence the analysis, i.e., the internal electric 

field value would converge with the inclusion of a finite number of states. Additional support for 

the expectation of convergence was gathered from theoretical arguments based on oscillator 

strength and the f-sum rule. Then, with a now finite set of electronic states that energetically lay 

within range of the transition of interest, a method to deduce the most influential states within 

that set was developed using perturbation theory. The internal electric field value was indeed 

shown to converge using this new protocol (approximately 1.7 MV/cm for each of the two in-

plane components of the field), essentially moving the QM Stark analysis from a purely 

theoretical to a much more practical realm in terms of usefulness. This analysis also strongly 

suggested that a planar porphin model was not sufficient for sensing the z-component of ������ 

but could possibly be included with a domed porphin structure.  

Now with a protocol for QM Stark analysis in hand, methods for generating a large number 

electronic excited-state calculations were explored and compared, especially CIS and TDDFT. A 

proposal for “calibrating” a computational method was developed and described. Each method 

had advantages, CIS with transition dipole moment accuracy and TDDFT with accuracy for state 

energies, but current resources pointed to CIS as the only option for generating the excited-state 

to excited-state transition dipole moment values that were deemed necessary for the improved 
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QM Stark analysis protocol. Finally, computational methods with application to ground-state 

porphyrins were also explored with the intent of characterizing the electronic properties of the 

probe molecule. Environmental perturbations to the structure were applied to begin to quantify 

the effect that a net electric field of such large magnitude might have on an active site’s electron 

distribution. 

The current work supports future directions from both experimental and theoretical 

perspectives as described below.  

9.2 Future directions 

9.2.1 Experimental 

 Previous hole-burning Stark experiments used free-base PPIX–myoglobin to measure 

������. However, as described in Chapter 4, the lack of a metal center in the free-base porphyrin is 

problematic both because it is not covalently linked to the protein and because a reaction field 

does not arise in the same way as with heme. Experiments with zinc PPIX can address these 

concerns as well as provide a point of comparison with previous measurements to test the 

hypothesis of a “well-defined field” (i.e., is the same ������ value deduced with a different probe). 

ZnPPIX–myoglobin samples have been prepared, characterized, and stored for this future 

experiment. 

Another issue related to porphyrin structure (again described in Chapter 4) is the influence 

of highly-charged propionate groups in proximity to the porphin ring on the measured ������ 

because it is the protein matrix of interest in this measurement. A possibility for mitigating the 

influence of such an interference is to use dimethyl ester porphyrin species to cap the charged 
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substituents. Calculations in Chapter 8 show a dramatic change to electronic properties of zinc 

porphyrin when propionate groups are capped with methyl groups (see Table 8.7). PPIX DME–

myoglobin has also been prepared, characterized, and stored for such an experiment.   

The accuracy of an ������ calculation depends on an accurate local field factor, which, in turn, 

depends on an accurate dielectric constant value for the sample solvent. Experimentally, 

measuring the dielectric constant of 3:1 glycerol:water at low temperatures as well as that same 

solvent with dissolved protein would assist in improving its accuracy (or possibly confirming the 

current value). The effect of protein concentration on dielectric constant could inform the overall 

local field factor as well as the effect of various tertiary structures (globular vs. beta barrel, etc.). 

The challenges of measuring dielectric constant of a frozen liquid sample in a cryostat need to be 

overcome, with a capacitance method most likely to succeed but an optical method employing 

Brewster’s angle might also be useful if an optical cryostat is employed. 

With calculations pointing to the importance of protein dynamics on ������, intentionally 

altering the protein structure for different replicates of the measurement could reveal the 

sensitivity of the hole-burning Stark spectroscopy method. This could be accomplished with 

temperature cycling, solvents with different pH values, and solvents with different polarities. 

Temperature cycling capabilities are available with the current experimental set-up. In 

preparation for pH experiments, this work described explorations of the effect of pH on the 

myoglobin structure as well as a titration of a glycerol–water mixture (see Chapter 3). 

Information about using non-aqueous solvents in experiments with proteins can be found in Ref. 

1. 
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The current experimental set-up also has the potential to carry out single-molecule 

experiments. Single-molecule Stark spectroscopy in comparison to the ensemble experiments 

with hole-burning also would be an important piece of information to support or refute the idea 

of a conserved ������ value for a particular protein species as well as establish the dynamic range 

of the value under some environmental conditions. 

Finally, the ultimate test for this method’s capabilities to quantify ������ is to use a series of 

protein species with heme cavities that are known to have different electrostatic qualities based 

on crystal structures. For example, while myoglobin has a neutral heme cavity, nitrophorin’s has 

an overall negative charge while cytochrome c has an overall positive charge. If differences in 

������ values for such a series differs appreciably, the method’s reliability and resolution might be 

demonstrated. 

9.2.2 Theoretical 

 For improving calculations of internal electric field using the Coulomb’s law method, 

choosing an accurate partial atomic charge scheme is key. Although it has been mentioned that 

such partitioning schemes are ultimately arbitrary, there are certainly some that are more 

physically accurate than others. Bader’s Atoms-in-Molecules (AIM) scheme2 is suggested because 

it is available in G09 along with exploring the possibility of bond-centered charges in addition to 

atom-centered charges (which could be accomplished with dummy atoms in G09).  

 Beyond the Coulomb’s law method, calculating the internal electric field with a quantum-

mechanical method (including the “prop” keyword in an energy job – see Appendix A) could be 
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improved using a more extensive basis set beyond the STO-3G and 3-21G basis sets used for such 

a calculation in this work (see Chapter 3). In combination with the ONIOM (also known as 

QM/MM) approach, resource limitations would not be a concern. The calculations to determine 

influential residues (also Chapter 3) showed that the atoms with the most electrostatic 

contribution lie within about 10 Ǻ of the heme iron. Using these results, the ONIOM layers could 

be established, i.e., the most influential residues would be modeled with an ab initio method 

while residues further away would be modeled with a molecular mechanics method. This should 

improve values for internal electric field because the influence of residues on each other in 

addition to the porphyrin would be accounted for. “Calibrating” basis sets for a method like this 

might be possible if visualized and compared to experimental electron densities reported by x-

ray crystallography techniques. The dynamic nature of the internal electric field might also be 

captured with a molecular mechanics simulation under physiological conditions to obtain a time-

resolved trajectory of atomic coordinates. The changes to the field at different points in time 

could be modeled with a vector that fluctuates in intensity and direction as the protein matrix 

evolves over the cycle of its “breathing” motion. 

 Further work on the effect of different electrostatic environments on the heme cofactor’s 

electronic properties might also reveal some correlation between internal electric field and 

function. For example, how does the electron density change on the iron atom if a point-charge 

models of different proteins like myoglobin and nitrophorin are applied to heme? What about 

the direction of the field within the heme cavity to encourage or oppose the optimal binding 

angle of a ligand like CO or O2 with respect to the metal? 
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 Different porphyrin probes are desired for future experimental work and a complete set 

of excited-state energies and transition dipole moment values for different metallo-porphin 

probes, e.g., zinc porphin, are needed. Further work on the accuracy of excited-state energies 

and transition dipole moments is necessary to yield a reliable value for internal electric field 

calculated with the QM Stark analysis method. A higher-level excited-state method, CASSCF, has 

the ability to calculate the required excited-state to excited-state transition dipole moment 

values in Gaussian09, Revision D.01. This method should calibrated for calculating porphyrin 

excited states.  

 Improving the accuracy of excited-states calculations will also occur with a better model 

of the porphyrin itself. The “unperturbed” energy values required by the QM Stark analysis 

method actually should include all of the factors in energy except for the internal electric field 

itself. Thus, a planar porphin molecule in vacuo is missing factors such as substituents, structural 

strain on the ring (such as a domed configuration), and other environmental factors like solvation 

that could be included in a model of porphyrin for excited-state calculations. 

Finally, beyond biological applications, the concept of net electrostatics does not seem to 

have been extended to inorganic catalysts. In particular, the increasing number of reports about 

metal–organic frameworks (MOF) seems applicable to this work, especially those that 

encapsulate heme to control the metalloporphyrin’s binding capabilities. 3 In this way, these 

macro-structures imitate heme proteins but with a framework that is far simplified compared to 

even a small protein matrix like myoglobin. These MOFs could be utilized to study internal electric 

fields both experimentally and computationally to manipulate a structure systematically while 
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avoiding the specific conditions that a biological system needs for mutation. In addition, once the 

role of internal electric field is better understood with respect to function, the consideration of 

these net electrostatics would become a part of the engineering process for catalysts like MOFs. 
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Appendix A 

Gaussian09 Input 

A brief introduction to the mechanics of running calculations with Gaussian09 is given 

here. A more thorough introduction for a beginner can be found in Ref. 1, Exploring Chemistry 

with Electronic Structure Methods, by James Foresman and Aileen Frisch. A number of test jobs 

that correspond with the book’s examples can be downloaded at 

http://www.gaussian.com/g_tech/1.htm (under “Exploring Chemistry examples and exercises”). 

The G09 User’s Manual is not an instruction manual for a beginner like the above reference is 

intended to be but can certainly be helpful to determine options and to clarify keywords. 

An example of an input file for running an energy job on water at the Hartree-Fock level 

with the 6-31G* basis set is given here: 
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---------------------------------------------------- 

%NProcShared=12 

%Mem=47GB 

%chk=water_test.chk 

# hf/6-31G(d) test 

 

My test program: Water -- single point energy 

 

0 1 

O   -0.464   0.177   0.0 

H   -0.646   1.137   0.0 

H    0.441  -0.143   0.0 

--------------------------------------------------------- 

Input for Gaussian09 to run on a computational cluster such as Cleve typically requires the 

following sections given in the example above. In general, the input is not case-sensitive but is 

sensitive to extra spaces and extra lines. A terminal empty line should be included at the end of 

an input file. (A program like Notepad++ that displays non-character keystrokes is helpful for 

determining whether subtle input mistakes are causing errors.) Input files have a .com extension 

for use with a Linux operating system (often the case for computational clusters) and a .gjf 

extension for use with a Windows operating system. 

• Number of processors (cores) to be used for the job (%NProcShared=) 

• Amount of memory designated for the job with units, e.g., GB, etc. (%Mem=) 

• The name of a checkpoint file for information to be accessed and deposited; if a .chk file 

exists in the same folder as the input file, the input file can call on the. chk for information 
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(e.g., optimized geometry using keyword geom=allcheck) but will also overwrite this file 

with information from the current job (%chk=[filename].chk) 

• A route section to specify the job parameters, including options for geometry coordinates 

and environments, e.g., solvation, electrostatic fields, or point charges (begins with #) 

• Optional title card (no format requirements) 

• Charge and multiplicity of the structure (two numbers separated by a space; negative 

charge specified by a negative sign) (not necessary if the geom=allcheck option is included 

that references a .chk file with existing information) 

• Coordinates for structure geometry (unless an option such as geom=allcheck is used); 

default is Cartesian coordinates but z-matrix and symbolic Cartesian are two of several 

other options 

As described in Chapter 8, a typical procedure for calculating energy will be a geometry 

optimization followed by a frequency job to check for imaginary frequencies, and finally an 

energy job (either ground-state or excited-state). The route sections corresponding to such jobs 

for a Hartree–Fock (HF) level calculation using the sdd basis set are: 

• Optimization: # opt hf/sdd 

• Frequency: # freq hf/sdd 

• Ground-state energy: # hf/sdd 

• Excited-state energy to request 10 excited states: # cis=(nstates=10)/sdd 

The same types of jobs using DFT require a specified functional and basis set. Examples of 

route sections using the O3LYP functional and cc-pVDZ basis set are given here. In addition, an 
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optimization followed immediately by a frequency job can be requested for any method as shown 

here. An excited-state optimization route section is also given here, where “root=2” specifies 

that the second excited state be optimized, and can also be used with any excited-state method. 

• Optimization immediately followed by Frequency: # opt freq o3lyp/cc-pvdz 

• Ground-state energy: # o3lyp/cc-pvdz 

• Excited-state energy to request 10 excited states: # td=(nstates=10) o3lyp/cc-pvdz 

• Optimization / Frequency of excited state: # td=(nstates=10,root=2) opt freq o3lyp/cc-

pvdz 

Finally, some further options relevant to this work are: 

• Requesting excited-state to excited-state transition dipole moments (for CIS method 

only): #p cis(nstate=252)/sdd density=alltransition iop(9/44=3) pop=none 

• Requesting calculation of potential and electric field for a system of interest: include 

“prop” keyword in the route section of an energy job 

• Solvation: include “scrf=[solventname]” in route section of any job type (list of available 

solvents at http://www.gaussian.com/g_tech/g_ur/k_scrf.htm) 

• Applied electric field to system of interest: include “field=[direction: x,y, or 

z]+[magnitude in 0.001 a.u.]” to route section of any job type 

• Including point charges in system of interest: include “charge” keyword to route section 

of any job type and following coordinate list of system of interest with position and charge 

of point charges as x y z charge (one line per charge); note that the coordinates of point 
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charges must be entered in the standard orientation of the system of interest (may need 

to check this with a preliminary job) 

• Using symbolic Cartesian coordinates for freezing one component of coordinates: input 

file for a domed porphin in its entirety given in subsequent pages 
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Optimization input file for a non-planar porphin using symbolic Cartesian coordinates: 

--------------------------------------------------------------------------------------------------------------- 

%nprocshared=12     

%mem=47GB     

%chk=Domed_Porphin_opt_hf_sdd_symcart.chk     

#p opt=(calcfc,z-matrix) freq hf/sdd     

     

Domed Porphin Opt, 50% displacement with starting structure      

     

0 1     

N 0 x0001 y0001 zdisp 

H 0 x0002 y0002 z0002 

N 0 x0003 y0003 zdisp 

H 0 x0004 y0004 z0004 

N 0 x0005 y0005 zdisp 

N 0 x0006 y0006 zdisp 

C 0 x0007 y0007 z0007 

C 0 x0008 y0008 z0008 

C 0 x0009 y0009 z0009 

C 0 x0010 y0010 z0010 

C 0 x0011 y0011 z0011 

H 0 x0012 y0012 zzero 

H 0 x0013 y0013 zzero 

H 0 x0014 y0014 z0014 

C 0 x0015 y0015 z0015 

C 0 x0016 y0016 z0016 

C 0 x0017 y0017 z0017 

C 0 x0018 y0018 z0018 
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C 0 x0019 y0019 z0019 

H 0 x0020 y0020 zzero 

H 0 x0021 y0021 zzero 

H 0 x0022 y0022 z0022 

C 0 x0023 y0023 z0023 

C 0 x0024 y0024 z0024 

C 0 x0025 y0025 z0025 

C 0 x0026 y0026 z0026 

H 0 x0027 y0027 zzero 

H 0 x0028 y0028 zzero 

C 0 x0029 y0029 z0029 

H 0 x0030 y0030 z0030 

C 0 x0031 y0031 z0031 

C 0 x0032 y0032 z0032 

C 0 x0033 y0033 z0033 

C 0 x0034 y0034 z0034 

C 0 x0035 y0035 z0035 

H 0 x0036 y0036 zzero 

H 0 x0037 y0037 zzero 

H 0 x0038 y0038 z0038   

Variables:     

y0001 =  0.000000    

x0001 =  2.130183    

z0002 =  0.000000    

y0002 =  0.000000    

x0002 =  1.115693    

y0003 =  0.000000    

x0003 = -2.130183    
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z0004 =  0.000000    

y0004 =  0.000000    

x0004 = -1.115693    

y0005 =  2.036917    

x0005 =  0.000000    

y0006 = -2.036917    

x0006 =  0.000000    

z0007 =  0.000000    

y0007 = -1.129296    

x0007 =  2.903830    

z0008 =  0.000000    

y0008 =  1.129296    

x0008 =  2.903830    

z0009 =  0.000000    

y0009 = -0.687482    

x0009 =  4.269410    

z0010 =  0.000000    

y0010 =  0.687482    

x0010 =  4.269410    

z0011 =  0.000000    

y0011 = -2.442227    

x0011 =  2.423865    

y0012 = -1.351377    

x0012 =  5.130435    

y0013 =  1.351377    

x0013 =  5.130435    

z0014 =  0.000000    

y0014 = -3.223296    
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x0014 =  3.185443    

z0015 =  0.000000    

y0015 = -2.861996    

x0015 =  1.083860    

z0016 =  0.000000    

y0016 = -2.861996    

x0016 = -1.083860    

z0017 =  0.000000    

y0017 = -4.264845    

x0017 =  0.679888    

z0018 =  0.000000    

y0018 = -4.264845    

x0018 = -0.679888    

z0019 =  0.000000    

y0019 = -2.442227    

x0019 = -2.423865    

y0020 = -5.119182    

x0020 =  1.354693    

y0021 = -5.119182    

x0021 = -1.354693    

z0022 =  0.000000    

y0022 = -3.223296    

x0022 = -3.185443    

z0023 =  0.000000    

y0023 = -1.129296    

x0023 = -2.903830    

z0024 =  0.000000    

y0024 = -0.687482    
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x0024 = -4.269410    

z0025 =  0.000000    

y0025 =  0.687482    

x0025 = -4.269410    

z0026 =  0.000000    

y0026 =  1.129296    

x0026 = -2.903830    

y0027 = -1.351377    

x0027 = -5.130435    

y0028 =  1.351377    

x0028 = -5.130435    

z0029 =  0.000000    

y0029 =  2.442227    

x0029 = -2.423865    

z0030 =  0.000000    

y0030 =  3.223296    

x0030 = -3.185443    

z0031 =  0.000000    

y0031 =  2.861996    

x0031 = -1.083860    

z0032 =  0.000000    

y0032 =  4.264845    

x0032 = -0.679888    

z0033 =  0.000000    

y0033 =  4.264845    

x0033 =  0.679888    

z0034 =  0.000000    

y0034 =  2.861996    
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x0034 =  1.083860    

z0035 =  0.000000    

y0035 =  2.442227    

x0035 =  2.423865    

y0036 =  5.119182    

x0036 = -1.354693    

y0037 =  5.119182    

x0037 =  1.354693    

z0038 =  0.000000    

y0038 =  3.223296    

x0038 =  3.185443    

Constants:     

zdisp =  0.600000    

zzero =  0.000000     
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Appendix B 

Stark06 Input Files 

 

Three types of input files are required for QM Stark analysis with Stark06: Hamiltonian 

states file (.HST), spectral data file (.DAT), and spectral parameter file (.SPL). Examples of the .HST 

file and the .SPL file are given here; the .DAT file contains two columns with individual points 

collected for Stark spectra: energy in cm-1 and an intensity value. In addition a screen shot is also 

included of the pop-up box where the remainder of the input is entered: Lorentz local field factor, 

steps for orientational averaging, states to include in the Hamiltonian (out of the maximum 

uploaded in a .HST file), observed transition (i.e., excited-state in the experimental spectra), 

factor for first amoeba vertex set (fitting routine step size), initial values for all three components 

of the internal electric field (������), and check boxes to designate which components are to be 

calculated (“allowed to vary”). 
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Table B.1. .HST file for free-base porphin (CIS / sdd) with directly coupled states only (2nd order terms) as described in Chapter 7. 

Wavenumbers 

Transition to 

State 

Transition Dipole 

(D) 

Transition 

Polarization 

Transition to 

State 

Transition Dipole 

(D) 

Transition 

Polarization 

23207 0 0.8464 Y    

37361 0 9.5648 X 1 1.8557 Y 

37342 0 9.4876 Y 1 2.1239 X 

51567 0 0.6761 Y 1 6.2888 X 

41380 0 -7.4905 Y 1 0.6212 X 

49783 0 -4.1575 X 1 6.2957 Y 

55393 0 -0.9605 Y 1 5.9477 X 

42360 0 7.3319 X 1 1.9729 Y 

55546 0 -0.6776 X 1 -5.4696 Y 

54605 0 -3.7326 Y 1 -0.1634 X 

83022 0 4.249 Y 1 0.0366 X 

66752 0 3.5419 X 1 -0.7305 Y 

63796 0 0.9237 Y 1 -2.4088 X 

72734 0 3.0107 X 1 0.1182 Y 

52351 0 3.1317 X 1 1.3591 Y 

78826 0 -2.7817 X 1 0.093 Y 

75536 0 -2.7446 Y 1 0.5775 X 

85147 0 2.4401 X 1 -0.0475 Y 

87699 0 -2.4469 Y 1 -0.1001 X 

63421 0 2.0715 X 1 0.5099 Y 

80292 0 2.1081 Y 1 -0.3022 X 

82000 0 -2.1038 Y 1 0.4046 X 

83172 0 -2.0021 X 1 0.231 Y 

90096 0 -2.0621 X 1 0.1395 Y 

66683 0 1.7261 Y 1 0.2687 X 
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Wavenumbers 

Transition to 

State 

Transition Dipole 

(D) 

Transition 

Polarization 

Transition to 

State 

Transition Dipole 

(D) 

Transition 

Polarization 

51300 0 -1.7612 X 1 1.6898 Y 

52549 0 0.6365 Y 1 -1.1339 X 

81244 0 -1.6227 Z 1 0 0 

27575 0 0.9811 X 1 0.518 Y 

89135 0 1.5883 X 1 0.349 Y 

77412 0 0.7971 X 1 1.3164 Y 

72109 0 -0.5195 X 1 -1.1415 Y 

77332 0 -0.7933 Y 1 -1.2691 X 

83947 0 -1.3499 X 1 0.1645 Y 

85802 0 1.312 X 1 0.3665 Y 

70176 0 -0.2267 X 1 0.929 Y 

71349 0 -0.3497 Y 1 -0.9254 X 

76084 0 0.3101 X 1 0.8006 Y 

79847 0 -1.0551 Y 1 0.4194 X 

82990 0 0.9308 Z 1 0 0 

65330 0 -1.8461 X 1 1.6028 Y 

82596 0 -0.8878 Y 1 0.2537 X 

85421 0 0.0206 Y 1 0.6784 X 

84278 0 -0.7361 Z 1 0 0 

83500 0 -0.1632 X 1 0.6189 Y 

46864 0 0.4979 Z 1 0 0 

73944 0 0.5635 Z 1 0 0 

86046 0 -0.6001 Z 1 0 0 

87347 0 -0.6464 X 1 -0.2227 Y 

73373 0 0.3874 Y 1 0.548 X 

84806 0 0.5737 Z 1 0 0 
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Wavenumbers 

Transition to 

State 

Transition Dipole 

(D) 

Transition 

Polarization 

Transition to 

State 

Transition Dipole 

(D) 

Transition 

Polarization 

87742 0 0.5587 Z 1 0 0 

86757 0 -0.5617 Y 1 0.1238 X 

60911 0 0.3691 X 1 -0.4293 Y 

78842 0 0.4392 Y 1 0.0829 X 

49595 0 -1.4999 Y 1 1.1166 X 

85090 0 0 0 1 -0.3391 Z 

90337 0 -0.4095 Z 1 0 0 

60396 0 0.3111 Z 1 0 0 

46777 0 0 0 1 -0.1845 Z 

84854 0 0.3487 Z 1 0 0 

87378 0 0.3086 Z 1 0 0 

90550 0 -0.3007 Z 1 0 0 

83692 0 0 0 1 -0.2336 Z 

83947 0 0 0 1 -0.2323 Z 

82311 0 0 0 1 0.2262 Z 

88201 0 0 0 1 -0.2077 Z 

89025 0 -0.2323 Z 1 0 0 

61283 0 -1.0236 Y 1 -0.794 X 

75754 0 0 0 1 -0.1645 Z 

88250 0 0.2049 Z 1 0 0 

80052 0 0 0 1 -0.1586 Z 

80031 0 0.1617 Z 1 0 0 

89902 0 -0.1723 Y 1 -0.0325 X 

74581 0 -0.151 Z 1 0 0 

88907 0 0 0 1 0.1301 Z 

82031 0 0 0 1 -0.12 Z 

69834 0 0.2313 Y 1 0.1591 X 
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Wavenumbers 

Transition to 

State 

Transition Dipole 

(D) 

Transition 

Polarization 

Transition to 

State 

Transition Dipole 

(D) 

Transition 

Polarization 

88068 0 0 0 1 -0.12 Z 

85253 0 0 0 1 -0.1159 Z 

85852 0 0 0 1 0.1037 Z 

60246 0 0 0 1 -0.0735 Z 

87930 0 0.0813 Z 1 0 0 

70853 0 0 0 1 -0.0524 Z 

90003 0 0 0 1 -0.0587 Z 

76236 0 0 0 1 -0.0485 Z 

84257 0 0 0 1 -0.0508 Z 

71088 0 -0.0519 Z 1 0 0 

88700 0 -0.0463 Z 1 0 0 

74117 0 0 0 1 -0.0287 Z 

82457 0 0.0308 Z 1 0 0 

75523 0 -0.0244 Z 1 0 0 

74956 0 0 0 1 0.0165 Z 

72734 0 -0.0188 Z 1 0 0 

80214 0 -0.018 Z 1 0 0 

86557 0 0 0 1 0.0145 Z 

83196 0 0 0 1 0.0117 Z 

76506 0 0.0122 Z 1 0 0 

90700 0 0 0 1 -0.0053 Z 

72108 0 0 0 1 0.002 Z 
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Table B.2. .SPL file for PPIX-substituted myoglobin weighted spectral data set (Myo A 16131) used for analysis in Chapter 7. 

Filename Applied field (V/cm) 

Angle between laser 

polarisation and applied 

field (radians) 

Zero-field lorentzian hole 

width (FWHM) 

PP9MB218.DAT 11051 0 0.014001 

PP9MB219.DAT 8288.4 0 0.014001 

PP9MB220.DAT 5525.6 0 0.014001 

PP9MB221.DAT 2762.8 0 0.014001 

PP9MB918.DAT 11051 0 0.014001 

PP9MB919.DAT 8288.4 0 0.014001 

PP9MB920.DAT 5525.6 0 0.014001 

PP9MB921.DAT 2762.8 0 0.014001 

PP9MB265.DAT 11051 1.570796 0.012087 

PP9MB266.DAT 8288.4 1.570796 0.012087 

PP9MB267.DAT 5525.4 1.570796 0.012087 

PP9MB268.DAT 2762.8 1.570796 0.012087 
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Figure B.1. Screen shot of the pop-up box for entry of other input parameters for a Stark06 calculation with a background of the .SPL 

file displayed. 
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Appendix C 

Amino Acid Abbreviation and Charge 

Amino Acid 
Three-letter 

abbreviation 

One-letter 

abbreviation 

Charged residue 

at pH 7? 

Alanine ALA A No 

Aspartate ASP D Yes 

Cysteine CYS C No 

Glutamate GLU E Yes 

Phenylalanine PHE F No 

Glycine GLY G No 

Histidine HIS H Sometimes 

Isoleucine ISE I No 

Lysine LYS K Yes 

Leucine LEU L No 

Methionine MET M No 

Asparagine ASN N No 

Proline PRO P No 

Glutamine GLN Q No 

Arginine ARG R Yes 

Serine SER S No 

Threonine THR T No 

Valine VAL V No 

Tryptophan TRP W No 

Tyrosine TYR Y No 



287 

 

Appendix D 

Rotating Protein Data Bank Files for Heme Proteins into Standard 

Orientation 

1. From the Protein Data Bank (www.rcsb.org/pdb/), search for the desired biological 

macromolecule. Be aware of parameters like species of origin, ligands, mutations, and 

environmental conditions (such as temperature, pressure, and pH) of the crystallization 

of that particular study. This information should be contained in the file header as 

REMARK 200 under EXPERIMENTAL DETAILS. For example, 1MBO is of sperm whale origin 

and oxygenated at the heme center; water and one sulfate ion also appear as 

heteroatoms (HETATM) in this file. One the file’s summary page, there may also be 

“related structures” linked, i.e., the same or similar proteins under different conditions. 

2. On the upper right corner of the summary page, go to “Download Files” � PDB File (Text) 

� Open with � Notepad. Save with a .pdb extension, not .txt. 

3. Open the .pdb file (preferably in a program like Notepad++ that will retain the space-

delimited format, which is required for input files for G09). Delete all HEADER, REMARKS 

, CONECT, etc., leaving only ATOM and desired HETATM (such as heme [HEM]). In 

addition, any solvent molecules in the file to be included or not should be considered. 

Save again as a .pdb under a new file name that is clear it is not the original downloaded 

file. 

4. Structures that have residues with more than one probable location can be identified by 

an entry in Column 17, the Alternate Location Indicator (an A, B, etc. preceding the 
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Residue Name). All of the possible structures should be evaluated (e.g., 1MBO has four 

residues that have two equally probable locations). Inspect each possible structure in a 

visualization program like PyMOL (which displays both positions simultaneously) to verify 

that it is sterically sound. 

5. Open one version file in GaussView 5. Right click on the structure � Edit � PDB Residues 

� Rows � Select All � click one button under the Highlight column (all should turn an 

aquamarine color � unhighlight HETATM residues) � Edit � Add Hydrogens to Selected 

Residues. (The “Add Hydrogens” in PyMOL labels the added atoms ambiguously.) 

6. The structure should be oriented in a way that vector quantities have a reference (e.g., 

electric field components, transition dipole moments, etc.).For 1MBO, the heme iron 

should be the origin of the coordinate file, and the four pyrrole nitrogens should establish 

the x–y plane: 

a. Right click on the structure in GaussView 5 � View �Cartesian Axes, which allow 

visualization of the Cartesian axes. 

b. Right click � Edit � Atom List, which allows access to both Cartesian and Z-matrix 

coordinates (bond/angle/dihedral) 

c. Find the atom you want to be the origin (or create a dummy atom, X) and change 

its Tag to 1. The other atoms will re-Tag automatically. 

d. Create three dummy atoms to establish axes: 
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Table D.1. Position of dummy atoms in rotation process. 

Atom 

Type 

Tag Description X Y Z 

X 2 x-axis unit 0.000 0.000 1.000 

X 3 y-axis unit 1.000 0.000 0.000 

X 4 z-axis unit 0.000 1.000 0.000 

 

e. For heme, give pyrrole nitrogens tags as follows: 

Table D.2. Tag for pyrrole nitrogens in rotation process. 

Atom Tag 

NC 5 

NB 6 

NA 7 

ND 8 

 

f. Right click � File � Save � .gjf � uncheck “Write Cartesians � Check “New 

Molecule Group” 

g. Reload the .gjf file in GaussView. Tag 1 is now at the Cartesian origin (view the 

axes as before).  

h. In the Atom List Editor, establish the reference system so that the dummy atoms 

are reference by only two key atoms. For heme, NC (Tag 5) and NB (Tag 6) are the 

key atoms. Scan the file to be sure no other atoms reference the dummy atoms. 

Dummy atoms reference only the origin and each other. Save as a .gjf as before. 

i. Instead of loading in GaussView 5, open the .gjf in Notepad. Change the Z-matrix 

components for the key atoms. If a variable (e.g., D2, A3, etc.) is altered, the line 

that defines the variable at the end of the file must be deleted. (If Z-matrix values 
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in the GaussView 5 Atom List Editor, only the key atoms will move and the rest of 

the structure will not follow because the program may re-Tag or re-Reference 

automatically.) 

j. Reload the oriented .gjf file into GaussView 5. Right click � File � Save� .pdb 

file � Check “Write Cartesians.” 

k. To use with the proteinfield.c program (described in Chapter 3 for calculating 

internal electric field with Coulomb’s law), delete HEADER, CONECT, TER, and all 

HETATM (leaving only ATOM and END lines). If the atoms are not grouped by 

residue number, load into GaussView 5, open the Atom List Editor: 

i. Columns � PDB Data � Check Residue Number 

ii. Rows � Select All � Hit one Highlight button so they are all highlighted 

iii. Click on the Residue Number column � Rows � Sort Selected � 

Ascending by Residue Number 

iv. Edit � Reorder � All Atoms by Row 

l. To create a G09 input file, open a .pdb file with GaussView 5: 

i. Right click � Calculate � Gaussian Calculation Setup 

ii. The program will default to an energy calculation and method, basis set, 

charge, multiplicity, etc. will need to be chosen.  

iii. Click “Submit” button � Save (Gaussian input file) � .gjf 

iv. Resave as a .com file by opening .gjf with Notepad++ and giving it a 

different extension while selecting file type = “All Files.” 
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Appendix E 

Derivation of Sum-Over-States Polarizability Term and Difference 

Term Used in QM Stark Analysis 

E.1  Stark effect: classical description 

Starting with a classical description of the Stark effect, let ��  be the electric field vector. The 

energy of the state n in the presence of an electric field is 

�� = ��(�) − �� ∙ ��� − � �� ∙ ��� ∙ ��       (E.1) 

where ���is the permanent dipole moment vector in state n and ��� is the polarizability tensor of 

state n. The transition energy of states n & m is then 

�� − �� = ��(�) −  ��(�) − �� ∙ �� + �� ∙ �� − � �� ∙ ��� ∙ �� + �� ∙ ��� ∙ �� = ��(�) − ��(�) − �� ∙
(��� − ���) − � �� ∙ (��� − ���) ∙ ��      (E.2) 

where (��� − ���) =: ∆���� and (��� − ���) =: Δ����. 

Here ��  is assumed to be a homogeneous field. Particle (atoms or molecule) is assumed to be 

neutral (and polarizable). 

E.2  Stark effect: quantum-mechanical description 

From time-independent perturbation theory, the Hamiltonian is 

�� = ��� + ���          (E.3) 
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where ��� is the perturbation term. Under the influence of the perturbation, the energy levels of 

the system, ���, change to  

�� = ��(�) + ��������� + ∑ ��������� �!
"#($)%"&($) +�'� …     (E.4) 

Let ��� = −�� ∙ ��) . Then the first-order correction is 

��������� = −�����)��� ∙ ��         (E.5) 

where the expectation value of permanent dipole moment vector of state n is �����)���. If state n 

is non-polar, the first-order correction vanishes. 

The second-order correction is 

∑ ��������� �!
"#($)%"&($) = ∑ ����−�� ∙ ��)�����'��'�       (E.6) 

Taking a look at matrix elements with spatial components: 

����−�� ∙ ��)���� = ���−�� ∙ ��)������−�� ∙ ��)���   

= ����*�̂* + �,�̂, + �-�̂-���(−1)����*�̂* + �,�̂, + �-�̂-���(−1) = /0�|�*�̂*|�2 +
����,�̂,��� + 0�|�-�̂-|�23 × /0�|�*�̂*|�2 + ����,�̂,��� + 0�|�-�̂-|�23 =
0�|�̂*|�20�|�̂*|�2�* + 0�|�̂*|�2����̂,����*�, + 0�|�̂*|�20�|�̂-|�2�*�- +
����̂,���0�|�̂*|�2�,�* + ����̂,�������̂,����, + ����̂,���0�|�̂-|�2�,�- +
0�|�̂-|�20�|�̂*|�2�-�* + 0�|�̂-|�2����̂,����-�, + 0�|�̂*|�20�|�̂*|�2�- = |0�|�̂*|�2|�* +
�����̂,�����, + |0�|�̂-|�2|�- + /0�|�̂*|�2����̂,��� + ����̂,���0�|�̂*|�23�*�, +
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50�|�̂*|�20�|�̂-|�2 + 0�|�̂-|�20�|�̂*|�26�*�- + /����̂,���0�|�̂-|�2 +
0�|�̂-|�2����̂,���3�,�-    (E.7) 

Now writing out the classical 2nd-order term: 

− � �� ∙ ��� ∙ �� = − � 7�*�,�-
8 9∝** ∝*, ∝*-∝,* ∝,, ∝,-∝-* ∝-, ∝-- ; 7�*�,�-

8   (E.8a) 

Because the tensor is symmetric, i.e., �<= = �=<, 

= − � 7�*�,�-
8 7∝** �* ∝*, �, ∝*- �-∝,* �* ∝,, �, ∝,- �-∝-* �* ∝-, �, ∝-- �-

8     (E.8b)   

  

= − � /�**�* + �*,�*�, + �*-�*�- + �,*�,�* + �,,�, + �,-�,�- + �-*�-�* + �-,�-�, +
�--�-3        (E.8c)   

The quantum-mechanical 2nd-order term is 

∑ �"#($)%"&($) >|0�|�̂*|�2|�* + �����̂,�����, + |0�|�̂-|�2|�- + /0�|�̂*|�2����̂,��� +�'�
����̂,���0�|�̂*|�23�*�, + 50�|�̂*|�20�|�̂-|�2 + 0�|�̂-|�20�|�̂*|�26�*�- +
/����̂,���0�|�̂-|�2 + 0�|�̂-|�2����̂,���3�,�-? (E.9) 

Comparing the classical and quantum-mechanical: 

∑ �"#($)%"&($)�'� |0�|�̂*|�2|�* == − � �**�*    (E.10) 

Rearranging 
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�** =-2∑ �����̂*����!
"#($)%"&($)�'�        (E.11)  

Likewise 

∑ �"#($)%"&($)�'� ����̂,���0�|�̂*|�2�*�, = − � �*,�*�,   (E.12) 

Rearranging 

�*, = −2 ∑ �"#($)%"&($)�'� ����̂,���0�|�̂*|�2     (E.13) 

The remaining components are 

�*- = −2 ∑ ����̂*�������̂-���"#($)%"&($)�'�       (E.14) 

�,* = −2 ∑ ����̂,�� ����̂*���
"#($)%"&($)�'�       (E.15) 

By symmetry, �,* = �*,, so then ����̂,���0�|�̂*|�2 = 0�|�̂*|�2����̂,��� and the remaining y- 

and z-containing components are then 

�,, =-2∑ �����̂,�� �!
"#($)%"&($)�'�        (E.16) 

�,- = −2 ∑ ����̂,�� ����̂-���
"#($)%"&($) = �-,�'�      (E.17) 

�-* = −2 ∑ ����̂-�������̂*���"#($)%"&($) = �*-�'�      (E.18) 

�-, = −2 ∑ ����̂-�������̂,�� 
"#($)%"&($) = �,-�'�      (E.19) 
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�-- =-2∑ �����̂-����!
"#($)%"&($)�'�        (E.20) 

In a generalized form 

�AB,� = −2 ∑ ����̂A�� ����̂B���
"#($)%"&($)�'�       (E.21) 

where D, E = F, G, H. 

The difference between the polarizability of two states, n and l, is 

∆�AB,I� = �AB,I − �AB,� = −2 ∑ �J��̂A�� ����̂B�J�
"K($)%"&($)�'I + 2 ∑ ����̂A�� ����̂B���

"#($)%"&($)�'� =
−2 ∑ �J��̂A�� ����̂B�J�

"K($)%"&($)�'I,� − 2 �J��̂A�� ����̂B�J�
"K($)%"#($) + 2 ∑ ����̂A�� ����̂B���

"#($)%"&($)�'�,I + 2 ����̂A�J �J��̂B���
"#($)%"K($)  

       (E.22a)      

     

Rearranging 

∆�AB,I� = −2 ∑ L�J��̂A�� ����̂B�J�
"K($)%"&($) − ����̂A�� ����̂B���

"#($)%"&($) M�'�,I − 2 �J��̂A�� ����̂B�J�
"K($)%"#($) −

2 ����̂A�J �J��̂B���
"K($)%"#($) = −2 ∑ L�J��̂A�� ����̂B�J�

"K($)%"&($) − ����̂A�� ����̂B���
"#($)%"&($) M�'�,I −

"K($)%"#($) /�J��̂A���0�|�̂B|J2 + �J��̂A���0�|�̂B|J23    (E.22b) 

Now, in the principal axis system, �� is diagonal (i.e., set p=r) and Eq. E.22b becomes 
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∆�AB,I� = −2 ∑ N��J��̂A�� �!
"K($)%"&($) − �����̂A�� �!

"#($)%"&($) O�'�,I − "K($)%"#($) >��J��̂A���� + |0�|�̂B|J2|? =
−2 ∑ N��J��̂A�� �!

"K($)%"&($) − �����̂A�� �!
"#($)%"&($) O�'�,I − P"K($)%"#($) ��J��̂A����

   (E.23) 

Breaking up the sum into two sums 

∑ = ∑ +�Q�RSTU�'�,I�'�,I ∑�V�RSTU�'�,I       (E.24) 

where mcrit is the value at which ��(�) ≫ �I(�) ∧ ��(�) ≫ ��(�)
. 

∆�AB,I� = −2 ∑ N��J��̂A�� �!
"K($)%"&($) − �����̂A�� �!

"#($)%"&($) O�Q�RSTU − 2 ∑ N��J��̂A�� �!
"K($)%"&($) − �����̂A�� �!

"#($)%"&($) O�V�RSTU�'�,I −
P"K($)%"#($) ��J��̂A����

      (E.25) 

Under the condition ��(�) ≫ �I(�), ��(�)
, 

∆�AA,I� ≈ −2 ∑ N��J��̂A�� �!
(%"&($)) − �����̂A�� �!

(%"&($)) O�Q�RSTU − 2 ∑ N��J��̂A�� �!
"K($)%"&($) − �����̂A�� �!

"#($)%"&($) O�V�RSTU�'�,I −
P"K($)%"#($) ��J��̂A����

      (E.26a) 

Collecting terms, 

∆�AA,I� ≈ ∑ "&($) >��J��̂A���� − �����̂A����?�Q�RSTU − 2 ∑ N��J��̂A�� �!
"K($)%"&($) − �����̂A�� �!

"#($)%"&($) O�V�RSTU�'�,I −
P"K($)%"#($) ��J��̂A����

      (E.26b) 

Thus, the behavior of ∆�AA,I� for large values of � ≥ �[B<\ is governed by the first term, 
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∑ "&($) >��J��̂A���� − �����̂A����?�Q�RSTU     (E.27a) 

where �J��̂A��� ≔ �A,I�,  and Eq. E.27a can be written  

∑ "&($) /�A,I� − �A,�� 3�Q�RSTU       (E.27b) 
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Appendix F 

Applicable Constants and Conversion Factors1 

 

The following constants and conversions are applicable to this work.  

Constants 

Electron charge (e) = 1.602176487 × 10-19 Coulombs (C) 

Planck’s constant (h) = 6.62606896 × 10-34 Joule-secs (J-s) 

Hartree (Eh; energy atomic unit)  = 4.3597439 × 10-18 J 

Speed of light in vacuum (c) = 2.99792458 × 108 m / s 

Conversions 

1 Electron volt (eV) = 1.60217649 × 10-19 J 

1 Hartree = 27.2114 eV = 219474.63 cm-1  

1 atomic unit of electric field = 5.142206 × 1011 V / m (volts per meter) 

1 atomic unit of electric polarizability = 1.648777 × 10-41 C2-m2 / J 

1 atomic unit of electric dipole moment = 1 Bohr-electron = 8.478352 × 10-30 C-m  = 2.541746 

Debye 

Transition energies in nm = 1/ cm-1 x (1 x 107) 

 

References 

1. P. J. Mohr, B. N. Taylor and D. B. Newell, Reviews of Modern Physics 80 (2), 633-730 (2008). 

2.          http://www.gaussian.com/g_tech/g_ur/k_constants.htm 
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Appendix G 

Derivation of Perturbation Terms in 

Quantum-Mechanical Stark Analysis 

 

The perturbation ranking terms used in Chapter 7 to develop a protocol for determining 

the most influential electronic states in quantum-mechanical Stark analysis are derived here. 

The shift in transition frequency ∆µij
 between two states i and j in the presence of an 

electric field :  

    (G.1) 

Electric field perturbation in the point dipole approximation 

  (G.2) 

and beyond: 

           (G.3)

 

In the point dipole approximation, the effect of an electric field on the energy of an 

unperturbed, non-degenerate energy level εn

0( )  can be expressed as an infinite sum of 

(decreasing) correction terms:  

 
εn = εn

(0) + εn

(1) + εn

(2) + εn

(3) + εn

(4 ) +�,   (G.4) 
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According to (time-independent) perturbation theory, the first-, second-, third-, and fourth-

order energy correction terms are 

  (G.5)

 

  (G.6) 

 (G.7)

(G.8) 

     Infinite-order perturbation theory is equivalent to the numerical diagonalization of the 

perturbed Hamiltonian containing an infinite number of states ( N → ∞ ): 
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 (G.9) 

 

For a centrosymmetric system like porphin that exhibits no permanent dipole moments ( µi = 0

), the energy corrections according to perturbation theory reduce to:   

��
(�)

= 0           (G.10) 

��
(�)

= ∑ 
��
�

���

��
�

��
(�)
��

(�)         (G.11) 

��
(�)

= ∑ ∑ 
����� 
��
������

�������

(��
(�)
��

(�)
)(��

(�)
���

(�)
)
      (G.12) 

��
(�)

= ∑ ∑ ∑ 
��
��
���
���
����������

(��
(�)
��

(�)
)(��

(�)
���

(�)
)(��

(�)
���

(�)
)
−���������

∑ ∑ 
��
� 
���

� ��
� ���

�

(��
(�)
��

(�)
)(��

(�)
���

(�)
)

������        (G.13) 

Using only the first four excited states of porphin, this can be written as 

  (G.14) 
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First level correction to Hamiltonian: addition of  terms on diagonal according to 

their contribution to ε
1

1( ) − ε
0

1( )
, all of which are zero (this gives the unperturbed Hamiltonian in 

our case): 

  (G.15) 
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Second level correction to Hamiltonian (direct coupling, or better: single-state coupling): 

 (G.16)

 

 

For single-state coupling, states Ai
 are successively added to the matrix according to the 

contribution of single sums to 
 
ε

1

2( ) − ε
0

2( ) + ε
1

3( ) − ε
0

3( ) + −�, which scales, for arbitrary electric 

fields, according to 

  

           (G.17) 

ε
1

2( ) − ε
0

2( ) = Eµ1 p

2
µ

1p

2

ε
1

0( ) − ε p

0( )
p≠1

∑ − Eµ0 p

2
µ

0 p

2

ε
0

0( ) − ε p

0( )
p≠0

∑

= Eµ10

2 µ
10

2

ε
1

0( ) − ε
0

0( )
+ Eµ1 p

2
µ

1p

2

ε
1

0( ) − ε p

0( )
p≠0,1

∑

− Eµ01

2 µ
01

2

ε
0

0( )
− ε

1

0( )
+ Eµ0 p

2
µ

0 p

2

ε
0

0( )
− ε p

0( )
p≠0,1

∑










= 2Eµ01

2 µ
01

2

ε
1

0( ) − ε
0

0( )
+ Eµ1 p

2
µ

1p

2

ε
1

0( ) − ε p

0( )
− Eµ0 p

2
µ

0 p

2

ε
0

0( ) − ε p

0( )











p≠0,1

∑

= 2Eµ01

2 µ
01

2

ε
1

0( )
− ε

0

0( )
+ Eµ0 p

2
µ

0 p

2

ε p

0( )
− ε

0

0( )
− Eµ1 p

2
µ

1p

2

ε p

0( )
− ε

1

0( )











p≠0,1

∑

 (G.18) 
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Third level correction to Hamiltonian (indirect coupling between pairs of states Ai
 and Aj

, or 

better: double-state coupling):   

  

  

For double-state coupling, pairs Ai , A j( ) are successively added according to the contribution of 

double sums to 
 
ε

1

3( ) − ε
0

3( ) + ε
1

4( ) − ε
0

4( ) + −�, which scales, for arbitrary electric fields, according 

to 

 

 

µAiA j

µ
0 Ai

µ
0 A j

ε Ai

0( ) − ε
0

0( )( ) εA j

0( ) − ε
0

0( )( )
−

µ
1Ai

µ
1A j

εAi

0( ) − ε
1

0( )( ) ε A j

0( ) − ε
1

0( )( )















+�   (G.20) 

(Double-sum contributions from higher-order perturbation terms are again neglected 

compared to the double-sum contribution from the third-order perturbation term given above.) 
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εn

3( ) = − Eµnp
Eµpq

Eµqn

µnpµpqµqn

εn

0( )
− ε p

0( )( ) εn

0( )
− εq

0( )( )q≠n

∑
p≠n

∑

= − Eµnp
Eµpm

Eµmn

µnpµpmµmn

εn

0( )
− ε p

0( )( ) εn

0( )
− εm

0( )( )
+ Eµnp

Eµpq
Eµqn

µnpµpqµqn

εn

0( )
− ε p

0( )( ) εn

0( )
− εq

0( )( )q≠m ,n

∑










p≠n

∑

= − Eµm
µmEµmn

2 µmn

2

εn

0( ) − εm

0( )( )
2

+ Eµnm
Eµmq

Eµqn

µnmµmqµqn

ε
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0( ) − ε
m

0( )( ) ε
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0( ) − ε
q

0( )( )q≠m,n

∑
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Eµmn

µnpµpmµmn

ε
n

0( ) − ε
p

0( )( ) ε
n

0( ) − ε
m

0( )( )
+ Eµnp

Eµpq
Eµqn

µnpµpqµqn

ε
n

0( ) − ε
p

0( )( ) ε
n

0( ) − ε
q

0( )( )q≠m,n

∑










p≠m ,n
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= −2Eµnm

µnm

εn

0( ) − εm

0( )
Eµmq

Eµqn

µmqµqn

εn

0( ) − εq

0( )
q≠m,n

∑ − Eµnp
Eµpq

Eµqn

µnpµpqµqn

ε
n

0( ) − ε
p

0( )( ) ε
n

0( ) − ε
q

0( )( )q≠m,n

∑
p≠m,n

∑

(G.21) 

  

 

ε1

3( ) − ε0

3( ) = −2Eµ10

µ
10

ε1

0( ) − ε0
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Eµ0 q
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0qµq1

ε1

0( ) − εq
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(G.22) 

 

Fourth level correction to Hamiltonian (indirect coupling between triples Ai , A j , Ak( )  or better: 

triple-state coupling): 
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For triple-state coupling, triples Ai , A j , Ak( )  are successively added according to the 

contribution of triple sums to 
 
ε

1

4( ) − ε
0

4( ) + ε
1

5( ) − ε
0

5( ) + −�. 
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 (G.23) 
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Appendix H 

35 Essential States for QM Stark Analysis of Porphin (CIS / sdd) 

Table H.1. List of 35 essential states for quantum-mechanical Stark analysis of free-base porphin 

determined in Chapter 7 calculated with CIS / sdd. 

Transition 

to State 

Delta 

alpha Wavenumbers 

Transition 

from 

State 

Transition 

Dipole (D) 

Transition 

Polarization 

Transition 

from 

State 

Transition 

Dipole (D) 

Transition 

Polarization 

4 74.9232 37361 0 9.5648 X 1 1.8557 Y 

3 71.0511 37342 0 9.4876 Y 1 2.1239 X 

12 47.0750 51567 0 0.6761 Y 1 6.2888 X 

5 45.3433 41380 0 -7.4905 Y 1 0.6212 X 

10 38.8699 49783 0 -4.1575 X 1 6.2957 Y 

16 36.7725 55393 0 -0.9605 Y 1 5.9477 X 

6 36.2095 42360 0 7.3319 X 1 1.9729 Y 

17 31.1462 55546 0 -0.6776 X 1 -5.4696 Y 

15 8.6389 54605 0 -3.7326 Y 1 -0.1634 X 

63 7.3871 83022 0 4.249 Y 1 0.0366 X 

26 5.9684 66752 0 3.5419 X 1 -0.7305 Y 

23 4.4022 63796 0 0.9237 Y 1 -2.4088 X 

34 4.2242 72734 0 3.0107 X 1 0.1182 Y 

13 4.2114 52351 0 3.1317 X 1 1.3591 Y 

49 3.3296 78826 0 -2.7817 X 1 0.093 Y 

42 3.1714 75536 0 -2.7446 Y 1 0.5775 X 

75 2.3743 85147 0 2.4401 X 1 -0.0475 Y 

85 2.3142 87699 0 -2.4469 Y 1 -0.1001 X 

22 2.0791 63421 0 2.0715 X 1 0.5099 Y 

55 1.8260 80292 0 2.1081 Y 1 -0.3022 X 

57 1.7391 82000 0 -2.1038 Y 1 0.4046 X 

64 1.6071 83172 0 -2.0021 X 1 0.231 Y 

97 1.5936 90096 0 -2.0621 X 1 0.1395 Y 

25 1.4615 66683 0 1.7261 Y 1 0.2687 X 

11 1.3987 51300 0 -1.7612 X 1 1.6898 Y 

14 1.2267 52549 0 0.6365 Y 1 -1.1339 X 

56 1.1010 81244 0 -1.6227 Z 1 0 0 

2 0.9008 27575 0 0.9811 X 1 0.518 Y 

94 0.8988 89135 0 1.5883 X 1 0.349 Y 

48 0.8072 77412 0 0.7971 X 1 1.3164 Y 

33 0.7780 72109 0 -0.5195 X 1 -1.1415 Y 

47 0.7345 77332 0 -0.7933 Y 1 -1.2691 X 

68 0.7223 83947 0 -1.3499 X 1 0.1645 Y 

78 0.6087 85802 0 1.312 X 1 0.3665 Y 
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Appendix I 

Derivation of Oscillator Strength with Perturbation Theory 

Starting with time-dependent perturbation theory, the perturbation continues with 

adiabatic turn-on as 

�������� = ��	 + ��
�ℏ

���������
������� + ��∗

�ℏ
���������
�������       (I.1) 

where the initial condition is ���� = −∞� = ��	. 

The time-dependent wavefunction, 

|����� = ∑ ��������
ℏ �!� |"�       (I.2) 

with substitution from Eq. I.1 becomes 

|����� = ���
ℏ ! #|$� + ∑ %��

�ℏ
�����

������� + ��∗
�ℏ

����
����&��' |"��(	 )   (I.3) 

with the term in square brackets representing the perturbed part of the wavefunction oscillating 

with the frequency of the perturbation. 

If |*| ≪ |*�	| (where * = 2-. and *�	 = � ��/�� �/�
ℏ  ) 

|����� >≅ ���
ℏ ! #|$� + ∑ 23,��!�

 � � |"��(	 )      (I.4) 

in the limit 5"|6����|$� ≅ 7"89����!8$:, where 6���� ≡  ����!9�	. 
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I.1  Classical Theory of Dispersion 

Electrodynamics gives the Maxwell relation 

=> = ?           (I.5) 

where n is refractive index and ε is dielectric constant. Then, the electric displacement, @AAB, is 

@AAB = ?CAB = CAB + 4-EB = �1 + 4-G�CAB       (I.6) 

where CAB is an electric field, EB is the polarization, and G is the electric susceptibility. 

Thus 

=> = 1 + 4-G          (I.7) 

and polarization is  

EB = GCAB = HICAB         (I.8) 

Then 

JB = ICAB          (I.9) 

which is the dipole moment, JB , of an atom induced by the field CAB and where α is the polarizability 

and N is the number density. 

Now 

=> = 1 + 4-HI         (I.10) 

Representing an atom with a series of harmonic oscillators (classical model), the equation of 

motion of an oscillator, μ, when driven with no damping is 
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"KLM + "*M>KM = �CN���!        (I.11) 

Then rearranging for the solution to the oscillator 

KM = �
���OP ��P� CN���!        (I.12) 

The dipole moment for the oscillator is 

JBM = �KBM = IMC         (I.13) 

where e is the elementary charge and x is position. Substituting Eq. I.12 for KBM into that for dipole 

moment in Eq. I.13, 

� � /����
���OP ��P� = IMC = IMCN���!       (I.14) 

Polarizability, α, is then defined as  

IM = �P
���OP ��P�         (I.15) 

Polarizability for a set of oscillators is then 

I = ∑ IMQM = ∑ �P
���OP ��P� QMMM        (I.16) 

where an important factor arises, QM, the oscillator strength of oscillator μ as a weighting factor 

for the set. 

I.2   Quantum-Mechanical Theory of Dispersion 

Starting with the time-dependent, quantum-mechanical definition of dipole moment, 

E��� = 〈� ∙ K���〉 = 5����|� ∙ KB|�����      (I.17) 
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and 

���� = ���
ℏ !U|$� + ∑ ��	����(	 |"�V      (I.18) 

and  

��	��� = ��
�ℏ

�����
������� + ��∗

�ℏ
����

����&��       (I.19)  

and 

9�	 = −W5"|�KB ∙ XB|$�        (I.20) 

where F is the amplitude of the electromagnetic field and XB is the polarization vector. The 

perturbing field in the x-direction is 

9�	 = −W5"|� ∙ K|$� = −WY�	       (I.21) 

where d is the dipole matrix element. Substituting the wavefunction into the QM definition of 

the dipole moment 

E��� = 7|$� + ∑ ��	∗ ����(	 |"�8� ∙ K8|$� + ∑ ��	����(	 |"�: = 5$|� ∙ K|$� +
∑ ��	���5$|� ∙ K|"� +�(	 ∑ ��	∗ ���5"|� ∙ K|$��(	      (I.22) 

If the molecular system has no permanent dipole moment due to symmetry, then 5$|� ∙ K|$� = 0. 

Making substitutions from Eq. I.17–I.20: 

E��� = ∑ #[�
ℏ

\�����
������ + [�∗

ℏ
\∗����

���&��)�(	 Y	� + ∑ #[�∗
ℏ

\∗����
������ + [�

ℏ
\����

���&��)�(	 Y�	 =

∑ |[�|P
ℏ�(	 # \�����

������ + \∗����
���&�� + \∗����

������ + \����
���&��) = ∑ |[�|P

ℏ�(	 #W����! ] �
������ +
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�
���&��^ + W∗���! ] �

���&�� + �
������^) = ∑ |[�|P

ℏ�(	 >��′��P ��P _W����! + W∗���!` =

∑ �P
����P ��P��(	

>��′ℏ 8K�′	8>W���       (I.23) 

because it is recognized that W��� ≡ W����! + W∗���! and |Y�	|> = �>8K�′	8>
. 

In addition, because Eq. I.9 gives JB = ICAB, it is identified that 

I ≡ ∑ �P
����P ��P��(	

>��′ℏ 8K�′	8>
       (I.24) 

Classically, we found that polarizability is also 

I = ∑ �P
���OP ��P� QMM          (I.25) 

Comparing the two Eq. I.24 and I.25 and seeing that a = "′$, 

∑ �P
����P ��P��(	

>��′ℏ 8K�′	8> = ∑ �P
����′P ��P� Q�′	�(	     (I.26) 

A definition for oscillator strength arises: 

Q�′	 = >���′ℏ 8K�′	8>
         (I.27) 

Thus 

I = �P
� ∑ b�′���′P ��P��′(	         (I.28) 

Then a definition of dipole moment  

E��� = IW��� = �P
� ∑ b�′

]��′
P ��P^�′(	 W���      (I.29) 
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and one for refractive index 

=> = 1 + 4-HI = 1 + cde
� �> ∑ b�′

]��′
P ��P^�′f	      (I.30) 

Now assuming * ≫ *�′	, i.e., *�′	> − *> ≈ −*>, then 

=> = 1 − cde�P
��P ∑ Q�′	�′(	         (I.31) 

Then, what is ∑ Q�′	�′(	 ? The f-sum rule arises. Starting with  

Q�′	 = >���′ℏ 8K�′	8>
         (I.32) 

and defining *�′	 = �
ℏ �C�′ − C	�, 

Q�′	 = 2 �
ℏP �C�′ − C	�5$|K|"′�5"′|K|$� = 2 �

ℏP UC�′5$|K|"′�5"′|K|$� −
C	5$|K|"′�5"′|K|$�V = 2 �

ℏP U5$|KC�′|"′�5"′|K|$� − 5$|K|"′�5"′|KC	|$�V 

 (I.33) 

The Schrödinger equation gives us C�′|"′� = 6i8"′� and C	|$� = 6i8$�, so now 

Q�′	 = 2 �
ℏP _7$8K6i8"′:5"′|K|$� − 5$|K|"′�7"′8K6i8$:`    (I.34) 

The sum of oscillator strength is now 

∑ Q�′	�′(	 = ∑ Q�′	 =�′ 2 �
ℏP _7$8K6i8"′:5"′|K|$� − 5$|K|"′�7"′8K6i8$:` 

 (I.35) 

where l is not exempt in sum because there is no permanent dipole moment, i.e., 5$|E|$� = 0. 

Now 
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∑ Q�′	 =�′ 2 �
ℏP _7$8K6i ∑ |"′�5"′|K|$��′ − 7$8K ∑ 8"′�7"′|K6i8$��′ `  

 (I.36) 

By definition, ∑ |"′�5"′|�′ = ∑ 5"′|"′� = 1�′ , so then 

∑ Q�′	 =�′ 2 �
ℏP _7$8K6iK8$: − 7$8K>6i8$:` = 2 �

ℏP _7$8K6iK − K>68$:`2 �
ℏP _7$8K�6iK − K6i�8$:` =

2 �
ℏP _7$8K[6i, K]8$:`  (I.37) 

This commutator of the Hamiltonian and position operators, l6i, Kmn, is defined as 

l6i, Kmn = ] omP
>� + p^ Km − Km ] omP

>� + p^ = �
>� UÊ>Km + pKm − KmÊ> − KmpV = �

>� [Ê>, Km] + �
>� �Ê> ×

Ê>� − �
>� �Ê> × Ê>� = �

>� _Ê>Km − KmÊ> + �Ê Km Ê � − �Ê Km Es �` = UÊ�ÊKm − KmÊ� + �ÊKm −
KmÊ�ÊV �

>� = �
>� Ê[Ê, Km] + �

>� [Ê, Km]Ê     (I.38) 

The commutator of momentum operator and position is [Ê, Km] = ℏ
� , and then 

l6i, Kmn = �
>� Ê ℏ

� + �
>�

ℏ
� Ê = �

�
ℏ
� Ê       (I.39) 

Back to developing the sum of oscillator strength: 

∑ Q�′	 =�′ 2 �
ℏP t$uK ∙ �

�
ℏ
� Êu$v = >

�ℏ 5$|K ∙ Ê|$� = �
�ℏ U5$|K ∙ Ê|$� + 5$|K ∙ Ê|$�V =

�
�ℏ U5$|KÊ − ÊK + KÊ + ÊK|$�V        (I.40) 

Inserting KÊ − ÊK = − ℏ
� , 

∑ Q�′	 = �
�ℏ #t$u− ℏ

� u$v + 5$|KÊ + ÊK|$�) = 5$|$��′ + �
�ℏ 5$|KÊ + ÊK|$�  (I.41) 
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Again 5$|$� = 1 and 
�
�ℏ is imaginary so the second term drops out and the f-sum rule appears: 

∑ Q�′	 = 1�′           (I.42) 

Returning to Eq. I.31, 

=> = 1 − cde�P
��P ∑ Q�′	�′(	         (I.31) 

now Eq. I.42 is substituted to arrive at 

w=> = 1 − cde�P
��P w         (I.43) 

Also returning to Eq. I.7,  

=> = 1 + 4-G → = = y1 + 4-G       (I.44) 

A Taylor expansion about χ=0 gives 

= ≃ �y1 + 4-G�8{|N + } cd
>y�&cd{~�{|N G + ⋯     (I.45) 

The first term in the series at G = 0 becomes 1; the second term is  
�b
�{u�

{|N
, which approximates  

= ≈ 1 + 2-G          (I.46) 

Rearranging Eqs. I.8 and I.16,  

G = HI = H ∑ �P
����′P ��P� Q�′	�′(	        (I.47) 

 

and then substituting into Eq. I.46, 
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= ≈ 1 + >de�P
� ∑ b�′���′P ��P��′(	        (I.48) 

Bringing back the definition of oscillator strength in Eq. I.32, 

Q�′	 = >���′ℏ 8K�′	8>
         (I.32) 

Eq. I.48 becomes 

= ≃ 1 + 2-H�>
" � 1

�*�′	> − *>��′(	
2"
ℏ *�′	8K�′	8> ≃ 1 + 4-H�>

ℏ � *�′	8K�′	8>

�*�′	> − *>��′(	
 

           (I.49) 

As above, *�′	 = �
ℏ �C�′ − C	�, then 

= ≃ 1 + cde�P
ℏ ∑ 3

ℏ] �′� ^
�}3

ℏ] �′� ^~P��P�
8K�′	8>

�′(	 = 1 +

4-H�> ∑ ] �′� ^
�}] �′� ^~P��P�

8K�′	8>
�′(	       (I.50) 

If C	  is the energy of the initial state, now the oscillator strength is 

Q�′	 = >�
ℏ

�
ℏ �C�′ − C	�8K�′	8> = >�

ℏP �C�′ − C	�8K�′	8>
   (I.51) 

If |$� is the ground state (|$� = |1�), then C�′ − C� > 0 and Q�′	 > 0. This results in positive 

dispersion (attenuation) of the radiation field. If |$� is the excited state, e.g., |$� = |2� and 

|"′� = |1� (i.e., emission), then C�′ − C> < 0 and Q�> < 0. This results in negative dispersion 

(amplification) of the radiation field. 
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Appendix J 

Optimized Input Files 

 

The following coordinates were optimized for ground-state planar porphin (HF and DFT), 

first excited-state porphin (HF), zinc porphin (HF and DFT), protoporphyrin IX (HF and DFT), zinc 

protoporphyrin IX (HF and DFT), and domed porphin (HF). The route section of each are included. 

Note that the porphin files are rotated centered in the x–y plane but PPIX files are not. 

 

Hartree–Fock: # opt freq hf / sdd   

Planar Ground-State Porphin, HF / sdd 

Atom Type X Y Z 

N 2.11160 0.00000 0.00000 

N -0.01449 -2.05302 0.00000 

N -0.01449 2.05302 0.00000 

N -2.09603 0.00000 0.00000 

H 1.11416 0.00000 0.00000 

H 5.08385 -1.34351 0.00000 

H 3.17236 -3.22028 0.00000 

H 3.17236 3.22028 0.00000 

H 5.08385 1.34351 0.00000 

H 1.33274 -5.12403 0.00000 

H 1.33274 5.12403 0.00000 

H -1.34062 -5.09647 0.00000 

H -1.34062 5.09647 0.00000 

H -3.18785 -3.19867 0.00000 

H -3.18785 3.19867 0.00000 

H -5.10750 -1.32601 0.00000 

H -1.10010 0.00000 0.00000 

H -5.10750 1.32601 0.00000 

C 2.89362 -1.12232 0.00000 

C 2.89362 1.12232 0.00000 

C 4.23330 -0.69844 0.00000 

C 2.41212 -2.46213 0.00000 

C 2.41212 2.46213 0.00000 
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C 4.23330 0.69844 0.00000 

C 1.11644 -2.87781 0.00000 

C 1.11644 2.87781 0.00000 

C 0.68019 -4.27781 0.00000 

C 0.68019 4.27781 0.00000 

C -0.66998 -4.26505 0.00000 

C -1.07548 -2.85036 0.00000 

C -1.07548 2.85036 0.00000 

C -0.66998 4.26505 0.00000 

C -2.44140 -2.42903 0.00000 

C -2.44140 2.42903 0.00000 

C -2.87231 -1.13960 0.00000 

C -2.87231 1.13960 0.00000 

C -4.26202 -0.67411 0.00000 

C -4.26202 0.67411 0.00000 

 

Porphin, DFT / O3LYP / cc-pVDZ 

Atom Type X Y Z 

 N 2.13446 0.00000 0.00000 

 N -2.13446 0.00000 0.00000 

 N 0.00000 2.04475 0.00000 

 N 0.00000 -2.04475 0.00000 

 H 1.11966 0.00000 0.00000 

 H -1.11966 0.00000 0.00000 

 H 5.15174 -1.35042 0.00000 

 H 5.15174 1.35042 0.00000 

 H 3.20493 -3.23846 0.00000 

 H 1.35471 -5.14061 0.00000 

 H -1.35471 -5.14061 0.00000 

 H -3.20493 -3.23846 0.00000 

 H -5.15174 -1.35042 0.00000 

 H -5.15174 1.35042 0.00000 

 H -3.20493 3.23846 0.00000 

 H -1.35471 5.14061 0.00000 

 H 1.35471 5.14061 0.00000 

 H 3.20493 3.23846 0.00000 

 C 2.92022 -1.14012 0.00000 

 C 2.92022 1.14012 0.00000 

 C 4.29356 -0.69254 0.00000 

 C 4.29356 0.69254 0.00000 

 C 2.44610 -2.46041 0.00000 

 C 1.10294 -2.88105 0.00000 
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 C -1.10294 -2.88105 0.00000 

 C 0.68565 -4.28953 0.00000 

 C -0.68565 -4.28953 0.00000 

 C -2.44610 -2.46041 0.00000 

 C -2.92022 -1.14012 0.00000 

 C -4.29356 -0.69254 0.00000 

 C -4.29356 0.69254 0.00000 

 C -2.92022 1.14012 0.00000 

 C -2.44610 2.46041 0.00000 

 C -1.10294 2.88105 0.00000 

 C -0.68565 4.28953 0.00000 

 C 0.68565 4.28953 0.00000 

 C 1.10294 2.88105 0.00000 

 C 2.44610 2.46041 0.00000 
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Optimized First Excited-State Porphin 

# rcis(root=1,read)/sdd opt guess=read 

Atom Type X Y Z 

 N 2.10447 0.00000 0.00000 

 N -0.00157 -2.05260 0.00000 

 N -0.00157 2.05260 0.00000 

 N -2.10771 0.00000 0.00000 

 H 1.10693 0.00000 0.00000 

 H 5.10124 -1.33357 0.00000 

 H 3.18366 -3.20918 0.00000 

 H 3.18366 3.20918 0.00000 

 H 5.10124 1.33357 0.00000 

 H 1.33712 -5.10887 0.00000 

 H 1.33712 5.10887 0.00000 

 H -1.34062 -5.10856 0.00000 

 H -1.34062 5.10856 0.00000 

 H -3.18677 -3.20914 0.00000 

 H -3.18677 3.20914 0.00000 

 H -5.10505 -1.33304 0.00000 

 H -1.11019 0.00000 0.00000 

 H -5.10505 1.33304 0.00000 

 C 2.88410 -1.13210 0.00000 

 C 2.88410 1.13210 0.00000 

 C 4.25455 -0.68372 0.00000 

 C 2.43040 -2.44539 0.00000 

 C 2.43040 2.44539 0.00000 

 C 4.25455 0.68372 0.00000 

 C 1.09400 -2.86745 0.00000 

 C 1.09400 2.86745 0.00000 

 C 0.67636 -4.26926 0.00000 

 C 0.67636 4.26926 0.00000 

 C -0.67973 -4.26910 0.00000 

 C -1.09739 -2.86721 0.00000 

 C -1.09739 2.86721 0.00000 

 C -0.67973 4.26910 0.00000 

 C -2.43366 -2.44523 0.00000 

 C -2.43366 2.44523 0.00000 

 C -2.88771 -1.13195 0.00000 

 C -2.88771 1.13195 0.00000 

 C -4.25790 -0.68372 0.00000 

 C -4.25790 0.68372 0.00000 
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Zinc Porphin, DFT / O3LYP / cc-pVDZ 

# opt o3lyp/cc-pvdz 

Atom Type X Y Z 

 Zn 0.00300 0.00000 0.00000 

 N 2.06237 0.00000 0.00000 

 N -2.05637 0.00000 0.00000 

 N 0.00300 2.05828 0.00000 

 N 0.00300 -2.05828 0.00000 

 H 5.11916 -1.35353 0.00000 

 H 5.11916 1.35353 0.00000 

 H 3.20426 -3.20218 0.00000 

 H 1.35608 -5.11555 0.00000 

 H -1.35008 -5.11555 0.00000 

 H -3.19826 -3.20218 0.00000 

 H -5.11316 -1.35353 0.00000 

 H -5.11316 1.35353 0.00000 

 H -3.19826 3.20218 0.00000 

 H -1.35008 5.11555 0.00000 

 H 1.35608 5.11555 0.00000 

 H 3.20426 3.20218 0.00000 

 C 2.87821 -1.10244 0.00000 

 C 2.87821 1.10244 0.00000 

 C 4.26169 -0.68352 0.00000 

 C 4.26169 0.68352 0.00000 

 C 2.43339 -2.43011 0.00000 

 C 1.10551 -2.87453 0.00000 

 C -1.09951 -2.87453 0.00000 

 C 0.68647 -4.25773 0.00000 

 C -0.68047 -4.25773 0.00000 

 C -2.42739 -2.43011 0.00000 

 C -2.87221 -1.10244 0.00000 

 C -4.25569 -0.68352 0.00000 

 C -4.25569 0.68352 0.00000 

 C -2.87221 1.10244 0.00000 

 C -2.42739 2.43011 0.00000 

 C -1.09951 2.87453 0.00000 

 C -0.68047 4.25773 0.00000 

 C 0.68647 4.25773 0.00000 

 C 1.10551 2.87453 0.00000 

 C 2.43339 2.43011 0.00000 
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Zinc Porphin, HF / cc-pVDZ 

# opt hf/cc-pvdz 

Atom Type X Y Z 

Zn 0.00300 0.00000 0.00000 

N 2.05626 0.00000 0.00000 

 N -2.05026 0.00000 0.00000 

 N 0.00300 2.05304 0.00000 

 N 0.00300 -2.05304 0.00000 

 H 5.08783 -1.34060 0.00000 

 H 5.08783 1.34060 0.00000 

 H 3.18192 -3.17936 0.00000 

 H 1.34330 -5.08490 0.00000 

 H -1.33730 -5.08490 0.00000 

 H -3.17592 -3.17936 0.00000 

 H -5.08183 -1.34060 0.00000 

 H -5.08183 1.34060 0.00000 

 H -3.17592 3.17936 0.00000 

 H -1.33730 5.08490 0.00000 

 H 1.34330 5.08490 0.00000 

 H 3.18192 3.17936 0.00000 

 C 2.85480 -1.09332 0.00000 

 C 2.85480 1.09332 0.00000 

 C 4.23845 -0.67575 0.00000 

 C 4.23845 0.67575 0.00000 

 C 2.41764 -2.41467 0.00000 

 C 1.09623 -2.85187 0.00000 

 C -1.09023 -2.85187 0.00000 

 C 0.67873 -4.23529 0.00000 

 C -0.67273 -4.23529 0.00000 

 C -2.41164 -2.41467 0.00000 

 C -2.84880 -1.09332 0.00000 

 C -4.23245 -0.67575 0.00000 

 C -4.23245 0.67575 0.00000 

 C -2.84880 1.09332 0.00000 

 C -2.41164 2.41467 0.00000 

 C -1.09023 2.85187 0.00000 

 C -0.67273 4.23529 0.00000 

 C 0.67873 4.23529 0.00000 

 C 1.09623 2.85187 0.00000 

 C 2.41764 2.41467 0.00000 
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Protoporphyrin IX, DFT / O3LYP / cc-pVDZ 

# opt o3lyp/cc-pvdz, -2 charge 

Atom Type X Y Z 

O -5.31723 2.06927 5.47096 

O -5.69553 0.03395 4.53863 

O 4.74973 -1.97901 6.11482 

O 5.14110 0.07065 5.21995 

N -1.39977 -0.16724 0.26317 

N 1.63215 0.13146 -2.47478 

N -1.27381 -0.19556 -2.72790 

N 1.47265 0.13270 0.53406 

 H -0.23500 -0.01300 3.44273 

 H 4.56068 0.47567 -0.78941 

 H 0.44394 -0.01660 -5.64314 

 H -4.35520 -0.48289 -1.35885 

 H 2.40136 -0.30670 -6.47268 

 H -5.17292 -1.03916 -3.24696 

 H -2.13643 -0.61411 4.28684 

 H -3.82486 -0.98123 3.89254 

 H -3.49925 1.86127 3.48154 

 H -2.87073 1.45850 5.06869 

 H 3.30366 1.01398 4.38524 

 H 1.59578 0.56282 4.55987 

 H 2.33429 -1.45683 5.45443 

 H 3.14003 -1.84958 3.94812 

 H -6.43011 -0.56675 -5.21196 

 H -4.94169 0.10479 -6.09806 

 H 4.94567 1.38293 -6.07718 

 H 4.23418 0.67373 -7.64230 

 H -2.50420 0.53784 -6.75454 

 H -1.28495 -0.74742 -6.72920 

 H -3.00700 -1.15279 -6.59873 

 H 5.66733 -0.02898 -4.32522 

 H 5.60717 1.49976 -3.43216 

 H 5.72711 -0.02977 -2.55084 

 H 5.10393 0.45078 3.01553 

 H 5.47674 -0.22458 1.40937 

 H 5.23816 1.52112 1.58785 

 H -5.54095 0.25407 0.64449 

 H -5.36388 -1.49582 0.85005 

 H -5.40600 -0.42432 2.28241 

 H -0.60284 -0.09127 -1.97313 
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Protoporphyrin IX, DFT / O3LYP / cc-pVDZ (cont’d) 

Atom Type X Y Z 

 H 0.77877 0.05182 -0.20046 

 C -1.33585 -0.14083 1.62335 

 C -2.72921 -0.30548 -0.02143 

 C -2.67323 -0.27316 2.24570 

 C -3.54834 -0.37132 1.19416 

 C -0.14129 -0.01559 2.35884 

 C 1.15962 0.11075 1.86567 

 C 2.82227 0.28299 0.35795 

 C 2.40153 0.25780 2.60985 

 C 3.41979 0.36337 1.67340 

 C 3.48243 0.34765 -0.86761 

 C 2.95106 0.27526 -2.17322 

 C 3.77003 0.34769 -3.38035 

 C 2.88757 0.24451 -4.44259 

 C 1.55730 0.09892 -3.83123 

 C 0.36338 -0.03846 -4.55813 

 C -0.93788 -0.18123 -4.05915 

 C -2.15591 -0.33581 -4.79952 

 C -3.20341 -0.43188 -3.87365 

 C -2.61803 -0.34623 -2.55094 

 C -3.27230 -0.38536 -1.31205 

 C 3.14694 0.22896 -5.87386 

 C -4.62801 -0.62328 -4.09997 

 C -5.35905 -0.35266 -5.20102 

 C 4.16862 0.78692 -6.55728 

 C -3.00516 -0.26905 3.70574 

 C -3.52132 1.08304 4.26256 

 C 2.54870 0.26376 4.09967 

 C 3.05447 -1.06515 4.71852 

 C -5.00213 1.04900 4.81957 

 C 4.46380 -0.97361 5.43000 

 C -2.23958 -0.42800 -6.28964 

 C 5.26128 0.45072 -3.42282 

 C 4.88190 0.53714 1.94063 

 C -5.03707 -0.51885 1.25011 
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Protoporphyrin IX, HF / cc-pVDZ 

# opt hf / cc-pvdz, -2 charge 

Atom Type X Y Z 

 O -1.16602 -1.63252 9.05416 

 O 0.92913 -1.65041 8.28762 

 O 6.23896 -6.55895 3.68446 

 O 4.06921 -6.09699 3.92664 

 N 0.63466 0.32183 2.31092 

 N 2.93504 1.50900 -0.83869 

 N 0.26486 2.30005 0.09305 

 N 3.20773 -0.48025 1.32439 

 H 2.14744 -2.10739 4.06683 

 H 5.79863 -0.24451 -0.79283 

 H 1.37981 3.83816 -2.71409 

 H -2.22032 2.11451 2.36748 

 H 3.44794 4.52787 -3.67082 

 H -3.50974 3.21093 1.07397 

 H 1.11127 -1.17739 5.98265 

 H 0.01643 -2.39140 5.40093 

 H -1.82718 -1.38983 6.69235 

 H -0.91161 0.09245 6.92041 

 H 4.62560 -3.01759 4.29044 

 H 3.48477 -3.91219 3.33552 

 H 5.46291 -4.66151 1.85270 

 H 6.49734 -4.16202 3.18259 

 H -4.64466 5.15655 0.38865 

 H -3.21842 5.72386 -0.62825 

 H 4.48146 2.23431 -5.40535 

 H 4.16784 3.98949 -5.89277 

 H -1.15607 5.83042 -1.82797 

 H -0.55496 4.70029 -3.03692 

 H -2.23361 4.62116 -2.51967 

 H 6.13654 0.46268 -3.32095 

 H 6.33325 2.19190 -3.62255 

 H 6.81333 1.49857 -2.07099 

 H 6.92028 -2.85795 1.60385 

 H 6.42231 -2.66326 -0.07445 

 H 7.10449 -1.29788 0.80844 

 H -2.36692 1.72735 4.90383 

 H -3.17709 0.61323 3.80287 

 H -2.63906 0.05503 5.38226 

 H 0.98258 1.66998 0.38580 
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Protoporphyrin IX, HF / cc-pVDZ (cont’d) 

Atom Type X Y Z 

 H 2.52276 0.20724 1.09801 

 C 0.92397 -0.51432 3.26436 

 C -0.59294 0.87617 2.65505 

 C -0.10077 -0.53097 4.36095 

 C -1.06123 0.30886 3.93979 

 C 2.08333 -1.38118 3.27394 

 C 3.08883 -1.35786 2.37138 

 C 4.38287 -0.65389 0.67604 

 C 4.29920 -2.22455 2.34274 

 C 5.08887 -1.75572 1.35413 

 C 4.83090 0.03354 -0.41094 

 C 4.12216 1.05601 -1.12258 

 C 4.69337 1.71457 -2.32277 

 C 3.75143 2.57845 -2.74623 

 C 2.62847 2.45727 -1.80026 

 C 1.47225 3.15045 -1.88751 

 C 0.33672 3.09824 -1.01179 

 C -0.84474 3.81981 -1.09168 

 C -1.64186 3.43167 0.01851 

 C -0.90583 2.47538 0.73076 

 C -1.27503 1.80397 1.95399 

 C 3.78470 3.51767 -3.88262 

 C -2.98692 3.87587 0.39645 

 C -3.64157 4.97339 0.02387 

 C 4.16857 3.23077 -5.11924 

 C 0.08847 -1.32325 5.63524 

 C -0.81781 -0.99502 6.82089 

 C 4.44495 -3.40096 3.28062 

 C 5.48105 -4.46932 2.93139 

 C -0.28909 -1.49525 8.19870 

 C 5.23146 -5.85423 3.60294 

 C -1.21296 4.79410 -2.17386 

 C 6.06661 1.45506 -2.86659 

 C 6.45955 -2.17497 0.90319 

 C -2.38089 0.69339 4.54763 
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Zinc Protoporphyrin IX, DFT / O3LYP / cc-pVDZ 

# opt o3lyp/cc-pvdz, -2 charge 

Atom Type X Y Z 

 Zn 1.75602 0.84315 0.75520 

 O -0.75317 -0.53830 9.03430 

 O -2.22244 -1.23839 7.45120 

 O 5.73526 -6.63604 2.86855 

 O 7.01119 -4.77429 3.11346 

 N 0.59960 0.28741 2.34755 

 N 2.91749 1.43001 -0.87376 

 N 0.27017 2.15801 0.12409 

 N 3.22041 -0.45733 1.34721 

 H 2.23687 -2.05253 4.16897 

 H 5.84577 -0.29370 -0.78271 

 H 1.27380 3.77517 -2.68594 

 H -2.32056 1.99672 2.30906 

 H 2.64241 3.61633 -4.30011 

 H -3.60468 3.07259 0.98653 

 H 0.47738 -2.47880 5.36860 

 H -1.21786 -2.02922 5.63171 

 H 0.36833 0.15325 6.66917 

 H 0.98347 -1.34424 7.34284 

 H 5.84576 -3.00723 3.81264 

 H 4.20701 -2.89941 4.48250 

 H 3.90085 -5.09960 3.78324 

 H 4.12315 -4.61468 2.11345 

 H -4.69203 5.12118 0.43504 

 H -3.19694 5.75682 -0.46862 

 H 5.71930 3.71242 -4.38897 

 H 4.48070 4.50704 -5.52455 

 H -0.99428 5.72446 -1.94001 

 H -0.74857 4.42621 -3.11933 

 H -2.34683 4.67397 -2.38921 

 H 5.89384 1.37141 -4.13065 

 H 6.77575 1.96706 -2.71492 

 H 6.31487 0.26089 -2.81206 

 H 6.87394 -3.00360 1.71867 

 H 6.59504 -2.49998 0.03393 

 H 7.31804 -1.35673 1.17643 

 H -2.60986 1.47271 4.71267 

 H -3.30416 0.07707 3.87310 

 H -2.55443 -0.13024 5.48462 
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Zinc Protoporphyrin IX, DFT / O3LYP / cc-pVDZ (cont’d) 

Atom Type X Y Z 

 C 0.92101 -0.63076 3.31512 

 C -0.64982 0.76267 2.66412 

 C -0.16708 -0.75055 4.29061 

 C -1.14476 0.12889 3.87505 

 C 2.12039 -1.35344 3.34367 

 C 3.18999 -1.28471 2.43982 

 C 4.43077 -0.67341 0.73130 

 C 4.42991 -2.06216 2.53090 

 C 5.19986 -1.67182 1.45547 

 C 4.85545 -0.01793 -0.42467 

 C 4.16736 0.95149 -1.17622 

 C 4.66772 1.58542 -2.37489 

 C 3.68037 2.47232 -2.79432 

 C 2.58831 2.34502 -1.83665 

 C 1.38308 3.05740 -1.87546 

 C 0.30615 2.97359 -0.98244 

 C -0.92015 3.73187 -1.08210 

 C -1.70431 3.35708 0.00407 

 C -0.93200 2.36065 0.73886 

 C -1.34453 1.71686 1.91740 

 C 3.64706 3.34706 -3.95635 

 C -3.04284 3.78922 0.37861 

 C -3.67120 4.94701 0.08686 

 C 4.67451 3.87132 -4.65717 

 C -0.20081 -1.62378 5.50651 

 C 0.10504 -0.90324 6.84516 

 C 4.77626 -3.09247 3.56125 

 C 4.59080 -4.56470 3.11091 

 C -1.08652 -0.90179 7.88555 

 C 5.92477 -5.41076 3.02838 

 C -1.26636 4.68215 -2.18412 

 C 5.97328 1.28023 -3.03747 

 C 6.56499 -2.15970 1.08292 

 C -2.46830 0.39543 4.52146 
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Zinc Protoporphyrin IX, HF / cc-pVDZ 

# opt hf / cc-pvdz, -2 charge 

Atom Type X Y Z 

 Zn 1.77630 0.90475 0.71450 

 O -1.20822 -1.56022 9.04493 

 O 0.89703 -1.53797 8.30597 

 O 6.20919 -6.49875 3.80792 

 O 4.04428 -6.01129 4.03889 

 N 0.63228 0.36197 2.31303 

 N 2.93362 1.49173 -0.89861 

 N 0.29360 2.21675 0.11154 

 N 3.20533 -0.43460 1.31034 

 H 2.23195 -1.98447 4.12566 

 H 5.79517 -0.30850 -0.83214 

 H 1.26570 3.82247 -2.68671 

 H -2.26094 2.07331 2.28737 

 H 3.06996 4.35979 -3.78385 

 H -3.66173 3.05474 0.73221 

 H 1.09574 -1.17915 5.99973 

 H 0.01292 -2.39811 5.40374 

 H -1.84668 -1.40995 6.67187 

 H -0.97127 0.10198 6.86059 

 H 4.64996 -2.92978 4.32522 

 H 3.48621 -3.82519 3.39789 

 H 5.43585 -4.64478 1.92216 

 H 6.49202 -4.12535 3.22625 

 H -4.51230 5.28519 0.61445 

 H -2.88646 5.92036 0.01089 

 H 4.95499 2.49987 -5.29625 

 H 4.25972 4.12699 -5.81526 

 H -0.77456 5.72929 -2.01332 

 H -0.91072 4.38692 -3.14660 

 H -2.32387 4.91333 -2.22856 

 H 5.98616 0.70107 -3.79718 

 H 6.42414 2.35415 -3.37422 

 H 6.73585 1.04568 -2.24296 

 H 6.95191 -2.83511 1.63655 

 H 6.40646 -2.79574 -0.03607 

 H 7.11906 -1.35741 0.69466 

 H -2.45510 1.61803 4.81700 

 H -3.17750 0.47543 3.68569 

 H -2.67413 -0.06595 5.28319 
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Zinc Protoporphyrin IX, HF / cc-pVDZ (cont’d) 

Atom Type X Y Z 

 C 0.98135 -0.52069 3.29652 

 C -0.58765 0.84812 2.62815 

 C -0.07981 -0.54973 4.34841 

 C -1.05925 0.25646 3.89637 

 C 2.10751 -1.29858 3.30470 

 C 3.14542 -1.27887 2.32655 

 C 4.40313 -0.66620 0.65370 

 C 4.32686 -2.17584 2.35035 

 C 5.11545 -1.75178 1.33750 

 C 4.83215 -0.01027 -0.44864 

 C 4.16141 1.01611 -1.20055 

 C 4.66940 1.64848 -2.35558 

 C 3.68107 2.54615 -2.76743 

 C 2.62179 2.42157 -1.83208 

 C 1.38718 3.13023 -1.86732 

 C 0.34159 3.03887 -1.00081 

 C -0.90025 3.79061 -1.08399 

 C -1.65338 3.41342 -0.01845 

 C -0.86923 2.41170 0.71329 

 C -1.30091 1.77649 1.90023 

 C 3.68402 3.47333 -3.90596 

 C -3.00870 3.84079 0.36704 

 C -3.49064 5.07689 0.32092 

 C 4.33863 3.35585 -5.05827 

 C 0.08093 -1.32932 5.63363 

 C -0.84936 -0.98529 6.79701 

 C 4.45317 -3.32895 3.32403 

 C 5.46829 -4.42427 2.99541 

 C -0.32390 -1.42461 8.19726 

 C 5.20811 -5.78646 3.70665 

 C -1.24764 4.75707 -2.17757 

 C 6.02098 1.42252 -2.97409 

 C 6.47287 -2.21659 0.88893 

 C -2.41350 0.58530 4.45960 
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Non-planar, Domed Ground-State Porphin, HF / sdd 

# opt=(calcfc,z-matrix) hf/sdd 

Atom Type X Y Z 

N 2.13788 0.04961 0.60000 

N -2.09981 -0.01527 0.60000 

N -0.03444 2.08685 0.60000 

N 0.02892 -2.05317 0.60000 

H 1.14918 0.03448 0.73216 

H -1.11157 -0.00014 0.72496 

H 5.07144 -1.24794 0.00000 

H 5.03035 1.43633 0.00000 

H 3.22365 -3.14473 0.25143 

H 1.42065 -5.04716 0.00000 

H -1.25101 -5.05868 0.00000 

H -3.11814 -3.22085 0.25766 

H -5.03348 -1.38523 0.00000 

H -5.07403 1.26428 0.00000 

H -3.21576 3.15766 0.25766 

H -1.40578 5.05177 0.00000 

H 1.26499 5.12204 0.00000 

H 3.12538 3.27568 0.25143 

C 2.92244 -1.06064 0.43849 

C 2.88809 1.18335 0.43849 

C 4.23264 -0.61685 0.19574 

C 4.21126 0.77986 0.19574 

C 2.45829 -2.40635 0.39934 

C 1.17164 -2.84673 0.43988 

C -1.01912 -2.85137 0.43756 

C 0.75671 -4.23180 0.19244 

C -0.59318 -4.23799 0.18753 

C -2.38987 -2.44707 0.40102 

C -2.84323 -1.16606 0.43256 

C -4.22006 -0.72167 0.19655 

C -4.24069 0.62592 0.19655 

C -2.87810 1.11224 0.43256 

C -2.46416 2.40652 0.40102 

C -1.10642 2.85259 0.43756 

C -0.72313 4.25160 0.18752 

C 0.62632 4.28673 0.19243 

C 1.08345 2.91502 0.43988 

C 2.38297 2.51422 0.39934 
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