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ABSTRACT

CHEMICAL SELF-ASSEMBLY STRATEGIES TOWARD THE

DESIGN OF MOLECULAR ELECTRONIC CIRCUITS

by

Dustin R. Olson

The University of Wisconsin-Milwaukee, 2019
Under the Supervision of Professor Wilfred T. Tysoe

The field of molecular electronics is generally divided into one of two major cat-

egories, the first focusing on the unique functionalization of single molecules to pro-

duce electronic behavior, the other utilizing large assemblies of molecules to produce

electronic behavior. The former approach is largely attributed to the seminal paper

by Aviram and Ratner in which they proposed a molecular donor-bridge-acceptor

(D − B − A) type architecture could lead to single molecule rectification producing

electronic effects similar to conventional semiconductor based diodes. Extensive re-

search has been carried out in both fields as it is foreseen that new approaches to elec-

tronics miniaturization will be necessary in the near future.

In the following research, the focus turns to a seemingly overlooked area of molec-

ular electronics, this being the necessity for designed interconnects of nanoscale elec-

trodes. The approach to problem utilized the well studied oligomerization proper-

ties of 1,4-phenylene diisocyanide (PDI), which upon exposure to gold incorporates

gold adatoms to form conductive one-dimensional oligomers of the form -(Au-PDI)n-.

Monte Carlo simulations along with conductivity studies of nanoparticle arrays both

suggest the oligomerization is inherently self-limiting, providing a potential avenue to-

ward controlled interconnection of nanoelectrodes and design of molecular electronic

circuits.
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Chapter 1

Introduction

Since the invention of the semiconductor-based integrated circuit by Jack Kilby in

1958 [1], and its following integration into consumer electronics, the semiconductor

industry has expanded to become a $429 billion market annually. The common theme

of this industry is the continual decrease in the size of single transistors that can be

fabricated, allowing for the packing of more and more devices into smaller packages

improving both efficiency and computational power. It was predicted in 1965 by Gor-

don Moore one of the founders of intel, that the number of transistors on integrated

chips would double every year, and this prediction is now referred to as "Moore’s

law" [2] and has stood the test of time for nearly six decades.

The industry approach to this continual decrease in the size of components of an

integrated circuit can be regarded as a "top-down" approach to electronic circuit minia-

turization, as the methods to do so rely on the improvement of photolithography tech-

niques, in which large silicon wafers are transformed into integrated circuits. It is

predicted that these conventional techniques are reaching their limits, effectively end-

ing the long standing prediction of "Moores law", and if further miniaturization is to

continue new approaches must be used.

One of the first suggestions to a new approach which can be viewed as a "bottom-

up" approach toward the design of circuits, was Richard Feynman’s "Plenty of room at
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Chapter 1. Introduction

the bottom" [3] lecture at an annual APS meeting in 1959, where he suggested the enor-

mous possibilities the could come from the ability to store information on an atomic

scale. Since this seminal speech, enormous amounts of research have been done in

fields such as quantum computation, and spintronics both attempting to encode in-

formation into single, or coupled atoms. An alternative approach is that of molecular

electronics, a field focused on functionalization of single molecules to produce elec-

tronic behaviour similar to conventional silicon-based electronics.

Largely accredited with the growth of interest in molecular electronics was a paper

by Aviram and Ratner that proposed a molecular architecture that could produce sin-

gle molecule rectification by tuning the alignment of molecular orbital energies relative

to the Fermi level of the electrodes [4]. The ability to acquire electrical measurements

of single molecules largely eluded experimentation until the invention of the scanning

tunneling microscope (STM). Following its development in 1982, some of the first sin-

gle molecule coductivity studies were conducted [5]. This work, focuses not only on

the functionalization of single molecules, but also on the application of molecular self-

assembly as a means to interconnect nanoelectrodes, a necessity if true molecular based

circuits are to be realized.

This dissertation begins by introducing the equipment necessary to achieve and

maintain high and ultrahigh vacuum conditions (1 × 10−8 − 1 × 10−10 Torr) used in

a majority of the work that follows. Descriptions of the working mechanisms for the

common vacuum pumps used in the lab are provided (Chapter 2). In Chapter 3 the de-

tails for both experimental and theoretical methods applied throughout the remaining

chapters are given. Details are provided for sample preparation both of single crys-

tal samples and gold nanoparticle arrays used for electrical measurements, as well as

descriptions of the theory and working principles of experimental techniques used in

UHV.
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The design of molecular electronic circuits will require the development of strate-

gies for making controlled interconnections between nanoelectrodes. The simplest ex-

ample of a molecular electronic component consists of aryl rings with para-anchoring

functionalities, commonly isocyanide or thiol groups. In particular, 1,4-phenylene di-

isocyanide (1,4-PDI) has been shown to form conductive one-dimensional, oligomeric

chains that are composed of alternating gold and 1,4-PDI units in which a gold adatom

is linked to two trans isocyanide groups [6]. Density functional theory (DFT) calcula-

tions of the oligomerization pathway reveal that growth occurs via a vertical, mobile

Au–PDI adatom complex that forms by binding to the gold substrate and oligomer-

izes by the gold adatom attaching to the isocyanide terminus of a growing chain. In

this case, the gold atoms in the oligomer derive from the gold substrate [7]. In prin-

ciple, bridging between adjacent electrodes could be tuned by controlling the 1,4-PDI

dose [8]. However, because both nucleation of the adatom complex and the subsequent

oligomerization reactions occur at the periphery of gold nanoparticles, it is postulated

that oligomer growth is inherently self-limiting. In (Chapter 4) an analytical model

is developed for this process that demonstrates the existence of self-limiting growth.

This is modeled in greater detail using kinetic Monte Carlo simulations with the en-

ergy parameters derived from DFT calculation on gold that confirm that the growth is

self-limiting and predicts that bridging between nanoelectrodes should only occur for

spacings less than ∼12 nm and is depicted in Figure 1.1.

In order to test the postulated self-limiting oligomerization predicted for 1,4-PDI

on nanoparticle by Monte Carlo simulations two types of nanoparticle arrays are fab-

ricated and their conductivity investigated in (Chapter 5). The first device consisting

of electrodes with a separation of (0.25 mm), upon which gold nanoparticles are de-

posited in vacuum. We find that increasing nanoparticle separation results in a de-

crease in the change in conductivity when exposed to PDI in vacuum. In order to
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FIGURE 1.1: Monte Carlo simulations, predicting the self-limiting oliog-
merization of 1,4-PDI, demonstrated by the lack of connectivity between

nodal points with separations of >12nm.

more accurately investigate the self-limiting properties of PDI, nanogap samples are

prepared by means of electron beam lithography. We find that no change in conduc-

tivity is observed for gaps of 30 nm when saturated with PDI, whereas when the gap

is reduce to ∼10 nm by the deposition of gold nanoparticles a significant change is ob-

served during exposure(Fig 1.2) Both of the fabricated nanoparticle samples are found

to suggest the predicted self-limiting behavior of oligomer formation by PDI, suggest-

ing oligomeric structures formed by PDI could be used for targeted briging of nano-

electrodes.

Following the proposal of Aviram and Ratner that a properly functionalized single

molecule could act as a molecular rectifier [4], in Chapter 6 we investigate a potential

molecular diode candidate 4-isocyanophenyl disulfide(ICPD). It is assumed that ad-

sorption on a gold surface will lead to the dissociation of the disulfide bond producing

a para-substituted ring with both isocyanide and thiolate functionality. The surface

chemistry of ICPD is studied on a Au(111) surface by the combination of reflection

absorbtion infrared spectroscopy (RAIRS), and temperature programmed desorption
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FIGURE 1.2: Depiction of experimental observation of self-limiting
oligomerization. No increase in conductivity is observed for 30 nm gaps
upon exposure to PDI, whereas when the gap is reduced by the addition

of nanoparticles, a significant change in conductivity is observed.

(TPD). The presence of the well known surface bound isocyanide mode in infrared

suggests the formation of oligomeric species in accord with those previously observed

for 1,4-PDI.

The use of dithiols as molecular electronic components has seen extensive research

[9] due largely to the ability of thiols to deprotonate and form strong thiolate binding

with gold. It has been previously suggested that dithiols, similarly to diisocyanides,

form oligomeric chains by the incoperation of gold adatoms [10] between molecules.

In Chapter 7, we interrogate the oligomeric structures formed by 1,4-BDT on Au(111)

with a combination of STM, and density functional theory (DFT), finding agreement

with the previously postulated structures of the oligomers.
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Chapter 2

Ultrahigh Vacuum Systems

2.1 Why UHV?

Ultrahigh vacuum (UHV) refers to pressures on the order of 1 × 10−8 − 1 × 10−10 Torr,

roughly a ten billion fold reduction in pressure relative to atmosphere. Achieving pres-

sures of this magnitude not only requires sophisticated vacuum pumps, but can require

days of baking the vacuum chamber to drive off any residual gases that have adsorbed

onto the walls. The obvious question then becomes why would someone go through

the difficulty of achieving these pressures, what are the advantages?

Main issues due to the frequency of collisions at atmospheric pressure are largely

resoved by the extremely long mean-free path of atoms present in a UHV system.

Where here the mean-free path refers to the average distance a molecule can travel

between collisions. We approximate that gas molecules behave as hard, elastic spheres

although this is generally not true due to electrostatic interactions between colliding

molecules. [1] Nonetheless, this approximation allows us to define the average diame-

ter of a moving molecule as σ as well as using Boltzmann statistics of average molec-

ular velocity to define the mean free path as λ = 1√
2πnσ2 , [2] where n is defined as the

average number of gas molecules per unit volume, which is given by n = NAP
RT , result-

ing in the following definition for the mean-free path λ = RT√
2πσ2NAP

, where here NA is
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Avogadros number, P is the pressure, T the temperature, and R the gas constant.

The above idea is important for a number of reasons, the most substantial being that

it allows for the use of electron and ion based spectroscopic and diffraction techniques

such as low-energy electron diffraction (LEED) and X-ray photoelectron spectroscopy

(XPS) which are only a few of many common surface analytically techniques. To un-

derstand this, we can use the above equation to calculate the mean-free path at various

pressures. For example, at atmospheric pressure an oxygen molecule can travel an

average of roughly 100 nm before a collision occurs. In contrast, under UHV condi-

tions, this average distance is on the order of 10 km. This large mean free path allows

electrons and ions to travel the necessary distances to probe surfaces and return for

detection.

The second advantage to working in UHV conditions is the ideal conditions under

which experiments can be performed. This can be understood though deriving a unit

of measure essential to UHV the Langmuir. We can begin the derivation by defining

the exposure or number of particles colliding with a surface per unit area by

Φ =
∫

Jndt (2.1)

where Jn here is the number flux, or the number of gas molecules that pass through a

surface per unit time and is derived from kinetic theory. The resulting number flux for

an ideal gas is then found to be Jn = p
√

1
2πkTm . We can then derive the units of the

Langmuir by making the approximation that an average surface has roughly 1 × 1015

atoms/cm2, and assuming that we have a sticking probability of 1, which indicates that

every gas molecule that impacts the surface will adsorb. Under these assumptions, we

find one Langmuir to be equivalent to 1 × 106 Torr×s, which under the assumptions

made leads to a surface coverage of one monolayer of adsorbed species in 1 second.

This helps to clarify the point that surfaces under UHV conditions (∼ 1 × 10−10 Torr)
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will remain clean for on the order of a few hours as one Langmuir at this pressure

would correspond to 10,000s. This allows the ability to perform experiments for long

times with the assurance that their surface of interest will remain mostly free of con-

taminating species.

2.2 Vacuum Pumps

2.2.1 Rotary Vane Pumps

The first stage in the vacuum system typically starts with a rotary vane pump, also

known as a roughing, or mechanical pump. These pumps fall under the classification

of gas displacement pumps as their mechanism of gas removal is through mechanical

displacement of gases. These pumps consist of a rotor which spins eccentrically within

a fixed stator, the rotor is equipped with two metal vanes which are forced outward by

internal springs. The close contact of these vanes with the stator walls during rotation

are responsible for the pumping mechanism. The entire system is submerged in oil

which acts as both a sealant, and a lubricant for the system.

Depicted in Figure 2.1 is each stage of a one complete pumping cycle performed

by a rotary vane pump, which begins the with suction of gas into the stator. The gas

is then transported by the vanes as the rotor revolves within the system. Following

transport of the gases the compression stage begins, in which a sealed outlet valve

forces compression of the gas within the stator. The final stage is reached when the gas

is compressed to a point in which it overcomes the force of the outlet valve releasing

the gas from the system.

The importance of the rotary vane pump comes from their ability to operate at

atmospheric pressures, and achieve pressures on the order of milliTorr, suitable for the

next stages of pumping to begin operation. These pumps generally require very little
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(A) Suction. (B) Transport.

(C) Compression. (D) Emission.

FIGURE 2.1: Rotary Vane Pump Operation.

maintenance apart from periodically changing the oil in the system. One potential

issue limiting efficiency of these pumps is the dissolution of compressed gases within

the oil, thereby lowering the minimum vacuum achievable by the pump. This issue has

largly been resolved in modern pumps with the addition of a gas ballast which allows

the addition of atmospheric gas to the compression stroke of a pumping cycle. The

addition of atmopheric pressure gas causes the partial pressure of the unwanted vapor
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to become a very small portion of the overall pressure preventing its condensation in

the pump [3].

2.2.2 Turbo Molecular Pumps

The second stage of pumping for the majority of our chambers utilizes a turbo molec-

ular pump also known as just turbo pumps for short. These types of pumps are clas-

sified as kinetic molecular pumps as their pumping mechanism relies on gas species

acquiring directional momentum from collisions with spinning rotor blades, a simi-

lar mechanism occurs in jet turbines. Figure 2.2 shows a cutaway diagram of a typical

turbo pump. It can be seen that in addition to the stack of spinning rotor blades, a series

of fixed stator blades are also present between each set of rotor blades. As the blades

spin they are capable of imparting momentum to gas molecules, effectively driving

them down through the nearest stator blade. It can be seen in the cutaway (Fig. 2.2)

that the geometry of the stators is such that they are designed to inhibit diffusion of

gas molecules back through the pump. A very important aspect of turbo pumps is the

proximity of the rotor and stator blades, in order for the pumps to work effectively

the pressure must be sufficiently low such that the mean free path of the molecules is

larger than the separation of the blades. This requires that turbo pumps be backed by

rotary mechanical pumps bringing the pressure down to ∼ 1 × 10−3 Torr before start

up.

It can be seen in Figure 2.2 that the rotor and stator blade have continually increas-

ing angles going towards the rear of the pump. This results in an increasing compres-

sion of gases toward the rear of the pump reducing the chamber pressure. An equation

can be derived for the maximum compression ratio of a turbo pump resulting in [2],

Kmax ≈ exp

(

νbM1/2

(2kbNAT)1/2

)

f (θ) (2.2)
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FIGURE 2.2: Cutaway of a turbomolecular pump showing inner stack of
alternating rotor and stator blades [4].

A number of important points can be observed from Equation 2.2. The first being

the exponential dependence of compression on the velocity of the rotor blades, as a

result turbo pumps generally operate at ∼75,000 RPM. These high speeds along with

the thinness of the blades result in turbo pumps to be very susceptible to damage. We

can also see that the molar mass of the gases being pumped has an effect on the maxi-

mum compression, and this results in the ultimate pressures being determined by the

compression ratio of light gases. Under typical operation turbo pumps provide an ef-

fective way to achieve clean vacuum, capable of reaching base pressures of 10−10 Torr.
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Although under certain conditions, when vibrational isolation is necessary, alternative

pumping methods may be required due to the mechanical nature of turbo pumps.

2.2.3 Oil Diffusion Pumps

Oil diffusion pumps, or known better simply as diffusion pumps are also classified as

kinetic molecular pump similar to turbo pumps. The pumping mechanism of diffusion

pumps also relies on the transfer of momentum to gas molecules causing their eventual

removal from the vacuum system. In the case of a diffusion pump this momentum

transfer is done by a supersonic vapor jet of oil, that is created when oil vapor is force

through the cones shown in Figure ??. The vapor jet is required to be supersonic in

order to impart directional momentum to the gas molecules in vacuum, effectively

forcing them to a lower stage in the pump to be removed by a mechanical backing

pump.

Diffusion pumps, similarly to turbo pumps, require the backing of a mechanical

pump before the can become effective. In addition to the backing pump there is the

requirement of cooling typically by means of cooling rings for water circulation. In

our lab these pumps are typically reserved for use on gas-lines, although when op-

erated with a cold trap maintained with liquid nitrogen diffusion pumps can acheive

and maintain UHV conditions with the main limitation being the specific oil used in

the pump. Advantages of diffusion pump are their ease of maintenance as there are no

moving parts in the pump, in addition they are capable of very high pumping speeds

that are only limited by the diameter of the inlet to the pump [2]. Although they come

with some downsides, primarily being that they require large amounts of liquid nitro-

gen to maintain UHV, as well as can result in the back streaming of oil into the chamber

contaminating both instrumentation and the sample being studied.
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FIGURE 2.3: Depiction of diffusion pump, oil heated at the base is vapor-
ized and forced through pumping stages resulting in a vapor jet that forces

gas molecules downward to be removed by a mechanical pump.

2.2.4 Ion Pumps

Ion pumps, also known as sputter-ion, or getter-ion pumps provide a clean, non-

mechanical method of achieving and maintaining UHV. The working principle of an

ion-pump is ionization of gas molecules followed by either gettering or sputtering of

the ionized species, this requires both a permanent magnetic field, and high voltages

(∼ 3000 − 7000) kV [2, 5]. The high voltage applied between the anode and cathode

of a pumping element Figure 2.4B results in electrical discharge, and in the presence

of the magnetic field, these stray electrons move toward the anode in a spiral-shaped
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motion, increasing the likelihood that they will collide with a gas molecule. Following

collision the gas species will form a positive ion, as well as secondary electrons that

can contribute to the ionization of other species. The positive ion is then attracted to

the cathode by the strong electric field present, the cathode is typically made from ti-

tanium as it a very chemically active surface. Upon collision with the cathode the gas

can be pumped by one of two typical methods. Firstly, the species can be a reactive

gas that forms a stable chemical species with titanium, or secondly it can be physically

buried in the cathode as is the case for noble gases such as argon. Many advances have

been made to improve the efficiency of pumping for noble gases, one main approach

is changing the geometry of the cathode such that ions impact the surface at shallow

grazing angles providing higher pumping speeds for noble gases [5].

FIGURE 2.4: (A) shows the general shape of an ionization pump, exter-
nally the main connection is a single high-voltage feedthrough. (B) shows
a single pumping element of an ion pump with the cathode and anode

indicated.

Ion pumps, like turbo and diffusion pumps require vacuum prior to start up. This

typically requires that a turbo pump is used to achieve initial vacuum pressures before

an ion pump can be used. Ion pumps have a number of key factors that make them
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very useful, the first being they consist of zero moving parts and as such can maintain

UHV conditions for systems that require complete vibration isolation. They also have

quite high pumping speeds making them very efficient, and finally are typically self-

serviceable, in that new pumping elements can be easily exchanged withing the pump,

although due to the large heavy magnets present they tend to be difficult to move.

2.3 Gas Handling systems

2.3.1 Gas-Line

Introduction of gases into the vacuum system is typically handled by a gas-line system

depicted in Figure 2.5. The gas-line is constructed mainly from Pyrex gas with the

exception of locations where Swagelok valves are attached requiring glass to metal

transitions. It is pumped down by a combination of mechanical and diffusion pumps

and is capable of reaching base pressures of ∼ 1 × 10−6 Torr.

As seen in Fig. 2.5 the typical gas-line features a number of available connections

through Swagelok valves to gas or liquid sources for introduction to the UHV chamber.

Teflon valves are used to isolate different sides of the gas-line allowing the presence of

two gases in the line simultaneously, for instance argon and oxygen required for crystal

cleaning. Introduction of gases into the chamber is done by means of a variable leak

valve that allows for precise control over the leak rate. The pressure of the gas-line

when at pressures greater than ∼ 1 × 10−3 is measured by a diaphragm manometer,

and is used to monitor pressures when filling the line from a gas cylinder. A cold-

cathode gauge is used to monitor the base pressure of the line when pumped by means

of the diffusion pump.

The gas-line also provides a means to purify samples through a technique known

as freeze-pump-thaw. Briefly, a gas sample vial containing a liquid to be purified is
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FIGURE 2.5: Diagram of typical gas-line system pumped by mechanically
backed diffusion pump, allowing for introduction of gases to vacuum

chamber.

submerged in liquid nitrogen until frozen solid, at which point the valve to the gas-

line is opened to pump on the sample and the liquid nitrogen is removed. During the

thaw dissolved gases and other contaminant present in the sample with greater vapor

pressures sublimate first and are pumped away. This process is generally repeated

until the formation of bubbles is no longer observed during the thawing process.
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2.3.2 Knudsen Source

In order to introduce molecules that have sufficiently low vapor pressures, home built

Knudsen sources are constructed as shown in Figure 2.6. They are assembled utilizing

two 23
4" flanges that have welded 1

4" stainless steel tubes through the center. The tubes

on either side are then connected to 1
4" Swagelok valves and, each side is connected in

the center by a T, where the sample vial or holder can be affixed. It should be noted that

great care must be taken during assembly to follow manufacture specified tightening

of Swagelok connections as they are not intended for use in UHV and are therefore

unfortunately prone to leaking.

FIGURE 2.6: Diagram of Knudsen source used to introduce low-vapor-
pressure compounds into UHV.
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During use the Knudsen source is pumped by means of a turbo pump though one

of the Swagelok valves to reduce the pressure of the system, while the valve connected

to the chamber is closed until gas exposure is desired. Depending on the particular

application the sample can be affixed though either a glass vial, or commonly for solid

samples placed directly in a blank Swagelok connector. The use of a glass vial allows

samples to be cooled by means of submersion in an ice or cryogenic bath allowing the

control of vapor pressure and therefore exposure. As an alternative for compounds

with extremely low-vapor-pressure the use of a blank for solid samples allows for the

entire Knudsen source to be wrapped with heating tape allowing for another avenue

to control the vapor pressure of the particular sample.

2.4 Vacuum Chambers

The construction of modern UHV systems utilizes stainless steel for the large majority

of its components since it provides both a low outgassing rate and ease of fabrication

[6]. A typical vacuum chamber body is outfitted with a number of standard flanges

that can be used for the attachment of instrumentation. Shown in Figure 2.7 is a top

down view of the UHV chamber used for electrical measurements of gold nanoparticle

arrays. This particular chamber was pumped by the combination of turbo, and ion

pump to reach a base pressure of ∼1×10−8 without baking.

In order to achieve UHV conditions flanges are connected by means of a Con-

flat connection which utilizes oxygen free copper gaskets between the two sides of

a flange machined with a knife-edge, creating a UHV suitable seal. The use of com-

mon flange sizes allows for enormous customization of UHV chambers to meet the

particular needs of the experimenter. In order to reach UHV conditions it is required

that vacuum chambers be "baked" referring to heating of the chamber to a consistent

∼120 oC for a period of ∼ 36 hours. This process is used to drive off adsorbed water
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FIGURE 2.7: Top down schematic of the vacuum chamber used for electri-
cal measurements of nanoparticle samples, not shown are vacuum pumps

and sample manipulator.

that is the result of a chamber being open to air. To reduce adsorbed contaminants it

is also advised that a chamber be vented using liquid nitrogen introduced through a

leak valve, the use of liquid nitrogen ensures the vacuum chamber does not become

over pressurized. Once a chamber has reached UHV conditions it can generally main-

tain those pressures for as long as needed, with the exemption of particularly harsh

experiments that may require periodic baking to return to UHV conditions.
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Chapter 3

Experimental and Theoretical Methods

3.1 Experimental Techniques

3.1.1 Current/Voltage Measurements

In order to measure current-voltage characteristics of molecularly linked nanoparticle

arrays we employ the use of a Labview controlled National Instruments analog to dig-

ital (A/D) converter card. The Labview software is used to generate a ramped voltage

over a range specified by the user, where the maximum voltage is ±10 V. The volt-

age output from the A/D card is applied to the sample by means of flange outfitted

with multiple BNC feedthroughs. The current through the sample is then measured by

connecting another BNC feedthrough to a Keithley picoammeter that can produce an

output voltage corresponding to the measured sample current. This output voltage is

then feed back into the A/D card and is then plotted against the applied voltage in the

Labview software. A block diagram showing the connection scheme for current/volt-

age measurement is given in Figure 3.1. In order to acquire low noise measurements

two main approaches are taken, the first method being a user adjustable averaging

function present in the I/V software. Secondly, the utilization of shielded BNC cables,

and careful grounding of the measurement assembly is necessary in order to acquire

low noise measurements.
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FIGURE 3.1: Block diagram of I/V curve measurement assembly. A Lab-
view controlled national instruments A/D card is used to generate a
ramped voltage applied to the nanogap samples, the current is measured
by a Keithley picoammeter, a corresponding voltage is fed back into the

A/D card and plotted in Labview.

Connection to the nanoparticle arrays prepared on silica required the construction

of a specialized sample holder shown in Figure 3.2 which allowed for electrical isola-

tion of the sample, was fabricated in the UWM machine shop. The sample holder was

constructed in two halves, one is responsible for physically holding the sample while

the lower half could be outfitted with a coiled heating element, or allowing a ther-

mocouple connection to the base of the sample. The nanoparticle arrays were held in

place between two sapphire washers using spring clips isolating them from the body

of the sample holder, Kapton wires connected to the arrays were then feed through the

feedthroughs indicated in Fig. 3.2. The sample holder is also connected physically by

copper rod to a liquid nitrogen reservoir allowing the arrays to be cooled to ∼100 K

and the temperature dependent conductivity to be measured.
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FIGURE 3.2: Sample holder fabricated for electrical measurements of
nanoparticle arrays on silica, allowing for both cooling and heating of the
arrays. The silica sample is sandwiched between two insulating sapphire
washers, and insulated wires are connected through the sample holder

then connected to BNC feedthroughs.

3.1.2 Scanning Electron Microscopy

The scanning electron microscope (SEM), originally developed in 1958 by Everhart and

Thornley [1], has become one of the most widely used imaging technologies utilized by

a variety of disciplines. Its necessity arises from the limitations of optical microscopy,

in that the wavelength of light determines the ultimate resolution. The SEM surmounts

this obstacle by using electrons as a structural probe, whose wavelength and therefore

resolution can be tuned by changing the kinetic energy. For example a 10 kV electron

(commonly used for nanoparticle imaging in the following work) will have a wave-

length on the order of 10 pm, much smaller than that of visible light.

The working principle of a SEM is depicted in Figure 3.3, where electrons generated

by an electron gun are accelerated to the desired kinetic energy by a potential applied

to the anode. Following acceleration, the electrons will travel through a series of elec-

tromagnetic lenses that serve two purposes, the first being the primary focusing of the

electron beam, and secondly though signals sent from a computer control, generate a
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FIGURE 3.3: Working principle of a SEM, electrons are generated by an
electron gun and focused through a series of magnetic lenses to a point on

the sample, where backscattered and secondary electrons are detected.

raster scan over the sample. The focused electron beam can then interact with the sam-

ple in a number of ways. However, primarily used for imaging are backscattered, and

secondary electrons ejected from valance bands of the scanned sample that are then

detected by an electron detector and used to generate an image.

3.1.3 Temperature-Programmed Desorption

Temperature-programmed desorption (TPD) also known as thermal desorption spec-

troscopy (TDS) is a technique widely used to study the desorption of adsorbates from

surfaces, TPD can thus provides us with fundamental information on the strength of
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the adsorbate bond with the substrate. In TPD, compounds are dosed at low temper-

atures onto the surface of the substrate through either a variable leak valve or from a

Knudsen source, the sample is then heated in a controlled manner typically at a lin-

ear rate, desorption of the species is then monitored by means of a quadruple mass

spectrometer. In addition to simple desorption, reactions on surfaces can be studied

by following decomposition or reaction products using TPD.

Desorption of adsorbate species is an activated process that follows Arrhenius be-

havior, and according to the Polanyi-Wigner equation, the rate of desorption can be

written as follows,

rd = −dθ

dt
= vθn exp

(−Ed

kbT

)

(3.1)

where rd is the rate of desorption, v is the frequency factor, θ is the coverage of the

adsorbate species, Ed is the activation energy of desorption, kb is the Boltzmann con-

stant, and T is the absolute temperature. During a TPD experiment the temperature is

raised, thereby causing a constant increase in the rate of desorption, however during

this process the coverage of surface species decreases. It is these two effects that give

rise to peak observed by TPD and can be seen in Figure 3.4.

We can then derive a useful approximation that allows for an estimation of desorp-

tion activation energies from the peak temperature. The derivation begins by taking

into account the fact that we are using a linear heating rate β = dT
dt which can be incor-

porated into equation 3.1

rd

β
= − dθ

dT
=

vθn

β
exp

(−Ed

kbT

)

(3.2)

considering now that at the peak temperature (T = Tp) of the desorption profile the

derivative with respect to dT of 3.2 can be set to 0, allowing us to obtain
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FIGURE 3.4: Origin of observed peak in TPD spectra.

d2θ

dT2 = 0 =
v

β

(

θnEd

kbT2 exp
(−Ed

kbT

)

+ nθn−1 dθ

dT
exp

(−Ed

kbT

))

(3.3)

If we now assume that we are dealing with a first-order process (in which (n = 1)),

as well as substituting into equation 3.2, we can obtain the following relationship

Ed

kbT2 =
v

β
exp

(−Ed

kbT

)

(3.4)

We can observe an important point from equation 3.4 in that, for a first order des-

orption process, the peak temperature does not depend on θ, and is therefore inde-

pendent of the initial coverage of adsorbates on the surface. A empircal solution for

equation 3.4 was obtained in 1962 by Redhead [2] which is now referred to as the Red-

head equation,
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Ed = kbTln

(

vTp

β

)

− 3.64 (3.5)

The Redhead equation provides a way to calculate an approximation of the desorp-

tion energy from just the peak temperature, in which we also need to assume that the

desorption process is first order, and that the value of v the frequency factor is ∼ 10−13.

Although there can be errors associated with the use of equation 3.5, it nonetheless pro-

vides us with a reasonable estimate for the activation energy of desorption.

An alternative approach toward obtaining more accurate values for the desorption

energy is the use of simulated TPD spectra, which can be obtained through numerical

integration of equation 3.1. In general an estimation of the desorption energy is needed

and can be obtained through the use of the Redhead equation or DFT calculations.

Parameters such as the initial coverage, and frequency factor can then be adjusted

in order to obtain reasonable fits to the experimental data. In addition to providing

a more accurate method for the determination of kinetic parameters in experimental

data, it also provides a way to become familiar with the effects the parameters have on

both peak shape and temperature.

The spectra shown in Figure 3.5 were simulated using the parameters from refer-

ence [3] using the TPD simulation program (included in Appendix A) used in later

chapters to fit experimental data. A number of important observations can be made by

simply observing a desorption spectra, and familiarity with them can provide insight

in to the processes occurring on the surface. One of the most informative aspects of a

desorption profile is the peak shape as it can indicate the reaction order for the process

being observed as shown in Figure 3.5A,B where a first order process for instance a

simple decomposition will have an asymmetric peak shape that is independent of cov-

erage. However, a second order process displays a symmetric peak shape along with

a shifting to lower temperature with increasing coverage.
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FIGURE 3.5: Figure A. shows the effect of increasing coverage on a first-
order desorption profile, B. shows the effect of increasing coverage for
second-order desorption, figures C, D show the effect of increasing activa-
tion energy and pre-exponential factor for a first-order desorption process.

3.1.4 Scanning Tunneling Microscopy

Introduction

Following the development of the scanning tunneling microscope (STM) in 1982 by

Gerd Binning and Heinrich Roher [4,5] the pair were awarded the Nobel Prize in 1986.

The STM quickly became an indisposable tool for the imaging and characterization of

surface structure, and is now a key instrument in many surface science laboratories.

Initially used as a means to observe only the structure of surfaces the STM has con-

tinued to develop an is now applied in the study of high pressure catalysis [6], most
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recently with the use of radiation from a synchrotron light source STM was capable

of directly identifing chemical signature [7, 8], finally another great advance is fast-

scanning STM in which entire images can be recorded on the time scale of a second

and can be used to study diffusion on surfaces [9]. STM continues to be an incredibly

useful tool in the surface sciences and is continually increasing its capabilities in the

field.

Theory

According to classical physics a particle approaching a potential barrier should only be

able to pass though the barrier should it have kinetic energy greater than the potential

of the barrier. However, due to the quantum nature of the electron it is able to penetrate

such a potential barrier with a non-zero probability allowing for the measurement of a

tunneling current which is the essence of STM and is depicted in Figure 3.6.

In the case of a particle approaching the potential barrier from the left, we can define

the wave functions in the three regions as follows,

ψI = a1eik1x + b1e−ik1x, ψI I = a2ek2x, ψI I I = a3eik3x (3.6)

where we can define the wave vectors of the given wave functions as

k1 = k3 =

√
2mE

ℏ
and k2 =

√

2m(V0 − E)

ℏ
(3.7)

We can then utilize the fact that the wavefunction and its first derivative are contin-

uous to solve respective amplitudes of the given wavefunctions. This will allow for the

calculation of the transmission coefficient T(E) = |Jt|
|Ji| where J is the probability current

of the transmitted and incident wave functions respectively, and is defined as
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FIGURE 3.6: Tunneling of electron through a potential barrier; ψ1 repre-
sents the wave function of the electron approaching the barrier, ψ11 the
electron in the barrier, and ψ111 the electron after tunneling through the

barrier.

~J =
ℏ

2mi

(

ψ∗ ∂

∂x
ψ − ψ

∂

∂x
ψ∗
)

(3.8)

Solving the equations at the boundaries (x = 0 ,and x = L) and calculating the

transmission coefficient for the given wave functions we obtain,

T(E) =
1

1 +
(

k2
1+k2

2
2k1k2

)

sinh2 (k2L)
(3.9)

The resulting transmission coefficient can be further simplified to the following

T(E) ∝ exp

(

−2L

√

2m(V0−E)
ℏ

)

[10] which is proportional to the tunneling current from
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electrons penetrating the barrier. Although this is a simplified one-dimentional ap-

proximation it demonstrates a very important point in that the tunneling current mea-

sured by STM is exponentially dependent on the separation between the tip and the

sample. In typical operation this requires that the tip be positioned on the order of a

few Angstroms from the sample surface. Displacements of this order rely on the use of

precision piezo electronic legs, capable of moving laterally and vertically by fractions

of an Angstrom.

Application

There are a number of other very important factors that play a role in obtaining high

quality images by STM including, but not limited to vibrational isolation, and fabri-

cation of ideally atomically sharp tips. The first of these factors is addressed largely

by the fact that entire instrument is mounted on air legs that can be inflated to sus-

pend the chamber greatly dampening vibrations. Additionally, during an experiment

vacuum is maintained though the use on only ion pumps, and all unnecessary connec-

tions to the chamber are removed. Typically, STM chambers are also locate in basement

laboratories adding an additional stage of vibration isolation to the instrument.

The fabrication of atomically sharp tips is addressed by the use of electrochemical

etching of tungsten wire, and the application of the drop off technique [11, 12]. Briefly,

in this technique a tungsten wire, preferably single crystalline is placed through a ring

shaped gold, or platinum electrode, one end of the wire is then place in a concentrated

NaCl solution, the other held by a small chuck. Filling the small ring shaped electrode

with 1-2 M KOH (or NaOH) such that the droplet is held in the ring forming a thin film

around the tungsten wire, allows for a voltage to be applied (3-4 Volts) between the tip

and the ring electrode resulting in the following electrochemical reaction.
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Cathode: 6 H2O + 6 e– 3 H2 + 6 OH–

Anode: W(s) + 8 OH– WO 2–
4 + 4 H2O + 6 e–

Overall: W(s) + 2 OH– + 2 H2O WO 2–
4 + 3 H2

The drop-off techniques’ usefulness comes from the fact that the tungsten tip effec-

tively acts as a switch in the system, the moment the tip is etched through, the circuit

becomes open, immediately stopping the etching process. This is key to obtaining

atomically sharp tips for scanning, as any further etching would reduce the sharpness

of the tips apex. Figure 3.7 displays the three stages of the tip etching process using

the drop off method, firstly it is very important that droplet forms a very thin film

around the tungsten wire shown in the first image. The second image shows the wire

after some time of etching, during the process it can be seen that the process begins to

slow and the bubbles produced will begin to decrease. At this point the initial droplet

should be dried, and replace with fresh solution for the final etching. The voltage is

then reapplied until the drop off occurs, the tip should then be visually inspected for

any clear signs of damage to the apex. Upon passing the visual inspection the prepared

tip can then be transferred into vacuum and tested in the instrument.

FIGURE 3.7: Three stages of the tip etching process, the first shows early
stages of etching, in the second, clear etching of the tungsten wire can be

observed, and finally after the lower wire has fallen.
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The importance of a sharp tip for high-resolution STM is depicted in Figure 3.8,

which shows a STM tip scanning over an atomic step. As described earlier the tunnel-

ing current between the tip and sample is the origin of the images obtained by STM,

in the case of a large STM tip (Fig. 3.8A) the local area contributing to the tunneling

current is much larger resulting in reduced resolution over such features. However,

for a nearly atomically sharp tip (Fig. 3.6B), the localized tunneling area is largely re-

duced allowing for greatly improved lateral resolution. It is for this reason that a great

amount of work has gone into the fabrication process of atomically sharp STM tips.

FIGURE 3.8: Importance of tip sharpness, in (A) there are tunneling con-
tributions from a larger area reducing resolution, whereas in (B) a sharp

tip results in more localized tunneling contribution.

3.1.5 Reflection Adsorption Infrared Spectroscopy

Introduction

Infrared spectroscopy is a very common and well established means of obtaining chem-

ical information through the use of infrared radiation. The technique traditionally ap-

plied to gases, liquids, and thin films can also be extended to probe adsorbed layers on

surfaces which is referred to as Reflection Adsorption Infrared Spectroscopy (RAIRS)

the details of which will be discussed below. The working principle of IR spectroscopy

is the absorption of IR radiation by molecules having a net dipole moment, allowing
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the access of different vibrational energy levels depending on the specific energy of the

radiation. Due to the selective absorption of radiation due to molecular composition

we can utilize IR spectroscopy to determine chemical structure, and through the use of

RAIRS with the surface selection rules, molecular orientation on a surface.

Surface Selection Rules

A key aspect of RAIRS is the fact that a set of surface selection rules apply to vibrations

that are allowed to be observed that differ from gas- and liquid-phase IR. The first of

these rules arises from the fact that a metal surface can only support an electric field

perpendicular to its surface, this is a result of the image dipole effect that forms in a

metal surface. Because of this, on a metal surface only vibrational modes with a dipole

component normal to the surface will be active and therefore visible in RAIRS [13].

This is depicted in Fig 3.9 in which (A) depicts a parallel dipole that is canceled by the

image dipole of the surface, and (B) which show an IR active perpendicular dipole that

can will be enhanced by the image dipole of the surface.

The second component arises from the metals interaction with different polariza-

tions of radiation. Historically RAIRS suffered from very low signal coming from both

the small amount of sample present in an adsorption experiment, and absorbtion of

radiation by the substrate. This was investigated theoretically in 1966 by Greenler [14]

which indicated that for greatest IR signal p-polarized radiation should be used at a

grazing incidence to the sample. This can be understood by considering the electric

fields that would be produced by the the IR beam on a clean metal surface, this is

depicted in Fig 3.10. It can be seen that, for any angle of incidence, the resulting elec-

tric field from s-polarized radiation is near zero due to a near 180o phase shift, and

therefore does not interact strongly with surface dipoles. Although p-polarized light

also suffers a phase shift it can be seen that the resulting electric field perpendicular
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(A) Canceled parallel dipole. (B) Allowed perpendicular dipole.

FIGURE 3.9: Illustration of the image dipole effect.

to the surface can be nearly doubled at a grazing incidence, and can therefore interact

strongly with a perpendicular surface dipole. If we then assume that the absorbance

will be proportional to the square of the electric field at the surface, Ep
2, we can see that

this will increase as 1/cos(θ) where θ is the angle between the incident radiation and

the surface normal. We can then conclude that the absorbance will be proportional

to Ep
2/cos(θ), and this function is sharply peaked at grazing angles clearly demon-

strating the importance of a high angle of incidence [15]. We can see that both photon

dipole and electron dipole interactions play a role in the surface selection rules. Al-

though certain dipole moments may be invisible to RAIRS, the surface selection rules

more often than not yield detailed information into the geometry of adsorbed species

on a surface.
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FIGURE 3.10: Diagram of electric field vectors produced from an IR beam
striking a metal surface at a grazing incidence.

Application

In order to collect RAIRS spectra we utilize a commercially available bench top Fourier

transform infrared (FTIR) spectrometer (Bruker Vertex). The light path from the spec-

trometer is completely enclosed in plexiglass boxes which are continually purged with

dry air in order to largely reduced absorbance by atmospheric water and carbon diox-

ide thereby greatly improving the spectra. In the light path, the sample (in this work

a Au(111) single crystal) is located in a 6-way gold-plated cell connected to a UHV

chamber, with opposing KBr windows allowing transmission of IR radiation. Prior

to probing the sample surface the IR beam is deflected by a number of gold- plated

mirrors before passing though a polarizer perpendicular to the surface of the sample,

finally after reflection the beam is detected by a liquid nitrogen cooled mercury cad-

mium telluride (MCT) detector. The sample is connected to a transfer arm allowing for

movement into the UHV chamber for sample preparation. In addition, liquid nitrogen

can be flowed through the transfer arm allowing experiments to be conducted at tem-

peratures down to ∼90 K. In a typical kinetic study used to investigate either uptake,
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or the effects of heating, spectra are recorded at a rate of 1/min yielding ∼ 350 scans at

4 cm−1 resolution which are the conditions applied in experiments carried out in this

thesis.

3.2 Theoretical Techniques

3.2.1 Monte Carlo Simulations

Introduction

The essence of a Monte Carlo simulation is the application of random numbers gener-

ated during a simulation, which allow for the modeling of processes that proceed by

a stochastic manner. This approach can be accurately applied to a number of natural

phenomena such as percolation of a lattice, and Brownian motion [16]. In the past, the

application of Monte Carlo simulations was largely restricted by computational power,

as the working principle of Monte Carlo is inherently computationally expensive. With

the growth in computing power, and sophisticated programming techniques the appli-

cations of Monte Carlo simulations has also grown. In this thesis, we investigate the

self-assembly of PDI, the stochastic nature makes it an ideal system to be simulated by

Monte Carlo.

Theory

In the simulations described in later chapters we use a lattice gas model, where the

surface is represented by an array of N = L × L, where L is the linear size of the array.

Periodic boundary conditions are imposed to represent an infinitely large system. Each

site can be occupied by a monomeric unit, where the monomeric unit is also given a

value of an alignment parameter corresponding to one of the three surface directions.
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In the following, fixed, low-coordination growth nucleation sites will be referred to

as nodes or nodal points. As will be seen later, the nodes have a remarkable influence

on the resulting self-assembled structures. In our model, the interaction of nodal points

with Au-PDI monomers is considered to be attractive and to occur only in the direction

of the axis determined by alignment parameter of the monomer. Then, the adsorbed

phase, in the canonical ensemble (at fixed coverage), is characterized by the following

Hamiltonian:

H = −w ∑
i,j

int{|~rij ·~sj||~rji ·~si| (1 − ci)
(

1 − cj

)

}

− w ∑
i,j

[

int{|~rij ·~sj|
(

1 − cj

)

ci}+ int{|~rji ·~si| (1 − ci) cj}
]

(3.10)

Here, the sums are over pairs 〈i, j〉 of nearest-neighbor (NN) sites; the occupation

of one site by the Au-PDI monomer is described by the vector~si = {0, ~xk}, which takes

the value 0 if the site is empty and ~xk if it is occupied, giving as well the orientation

of the monomer in one of the k directions of the lattice; ~rij is the vector connecting site

i with the site j; the node occupation variable is given by, ci = 0, 1, where ci takes the

value 0 when the site does not have a nodal point; w represents the lateral interaction

between two adsorbed monomers located in two NN sites or the lateral interaction

between a monomer and a NN node. In this model, the interaction between nods is

not considered since they form a regular array and are far apart from each other. Thus,

the first term on the right hand side of equation 3.10 represents the contribution of

the Hamiltonian corresponding to particles located at sites i and j, which are nearest

neighbors; sites may or may not be occupied by monomers, which have orientations

given by ~si and ~sj monomers contribute with energy w, if and only if both are oriented

in the direction of the vector connecting the two sites ~rij or ~rji; the final contribution is
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0 or 1, due to the function int, which takes the integer part of this factor. Finally, the

factor (1 − ci)(1 − cj) avoids the presence of nodal points at both i and j sites.

The second term represents the contribution to the Hamiltonian due to a monomer

located at site j(i) and a nodal point located at site i(j). Note that, in the absence

of nodes, the model is the well-known rigid-rod model, which has been extensively

studied by others. For more details on the self-assembled rigid-rod model, see [17] and

references therein.

The growth kinetics have been investigated by means of a standard-importance

sampling Monte Carlo method in the canonical ensemble. As mentioned above, the

simulation lattice is a triangular array of N = L × L sites with conventional peri-

odic boundary conditions. Thermodynamic equilibrium is obtained by following the

Kawasaki dynamic [18]. As an initial configuration a fixed number of nodes can be lo-

cated at random or in a regular array (in what follows, only regular arrays can be con-

sidered); then, a predefined number of monomers is added to the system in fixed in-

tervals of Monte Carlo steps simulating a constant flux of 1,4-PDI. Initially, monomers

modeling the adatom complex are randomly adsorbed on only edge sites of nodes,

they are then allowed to diffuse randomly across the surface until they are adjacent

another adatom complex or oligomer chain; if then selected randomly the species can

then become, or add to an existing oligomer. Then, the system is allowed to reorganize

itself based on the following rules. First, one of two possible events, migration or ro-

tation, is chosen at random. For a migration event, an occupied site and an empty site

are selected randomly, establishing its coordinates. Then, the difference between the

energies of the final and initial states, ∆E = E f − Ei, is calculated; a random number

ξ uniformly distributed in the interval (0 ≤ ξ ≤ 1) is chosen, and compared with a

probability P = min[1, exp(−β∆E)], where β = 1/kBT, and kB is the Boltzmann con-

stant; an exchange between the occupation of the sites is carried out if P > ξ, i.e., if the
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probability P is larger than the random number ξ.

For monomer rotation, the rotational state of the selected monomer is changed fol-

lowing the same procedure described above. A final rotational state is considered, and

the energy of the monomer is calculated. Finally, the energy change between the initial

and final rotated states is computed. The new rotated state is accepted after consider-

ing the comparison between a random number and the probability as described above.

A Monte Carlo step (MCs) is defined as N = L × L attempts to change the state

of occupation and rotation of a surface site. Typically, the equilibrium state is reached

after 1x105 MCs, as will be shown later. In order to simplify the comparison of interac-

tion energies, we will assume a temperature of 298K. However, it should be noted that,

given ∆E/kBT term in the probability equation, when discussing changes in energy,

this would be equivalent to inverse change in temperature.

3.3 Sample Preparation

3.3.1 Single Crystal Cleaning

In order to study ideal systems under UHV conditions, it is required that single crys-

tal surfaces be free of surface contaminants. In general, this is done by a combination

of surface bombardment, and annealing. However, reactive metals such as palladium

require additional oxygen roasting cycles to remove surface bound carbon. The bom-

bardment process is done by acceleration of argon ions toward the crystal surface us-

ing an ion gun, the resulting emission current is then measured and adjusted to the

desired value in µA. This process effectively drives off surface impurities into vacuum,

but leaves the resulting surface very rough. In order to return the smoothness of the

surface, the crystal must be held at its annealing temperature for typically ∼30 min,
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although this process varies depending on the specific metal. Included below are the

common recipes for cleaning crystals used in labs.

Au(111)

Bombard with Ar+ at a current of ∼2.0µA with an acceleration voltage of 500V for a

period of 30 min. Following bombardment the sample should be annealed for a period

of 5 min at 620oC (24 mV) followed by 30 min at 420oC (16 mV). This procedure is re-

peated until cleanliness is observed by available techniques such as AES, or resolution

of the Herringbone reconstruction with STM.

Cu(111),(100)

Bombard with Ar+ at a current of ∼2.0µA and acceleration voltage of 1 kV for a period

of 30 min. Following bombardment anneal the sample at 650oC (25 mV) for 30 min.

Repeat procedure until AES or available technique confirms cleanliness of sample.

Pd(111)

Bombard with Ar+ (1 kV) with a current of ∼4 µA for a period of 30 min. Following

bombardment the sample should be annealed at 1000 K for 5 min. The sample should

now be heated between 740 K and 875 K while dosing O2 at a pressure of ∼5×10−8

for 30 min, adjusting the temperature in the given range during this time. After the 30

min the sample should be flashed to 1000 K, then allowed to cool to 550 K under O2

at a pressure of ∼5×10−8. The final two steps should be repeated until an O2 TPD, or

AES confirm cleanliness of the sample.
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Fe(100)

Bombard with Ar+ (0.5 kV) with a sample current of 4µA for 30 min. Following bom-

bardment anneal sample to 22 mV (830 K) for 30 min. Great care must be taken not to

exceed 36 mV (1100 K) due to a phase transition of the Fe single crystal.

3.3.2 Alumina Tube Furnace

In order to deposit gold nanoparticles in situ a alumina tube furnace was constructed as

shown in Figure 3.11. A 2 3
4" power feedthrough is used which features two 1

4" copper

rods to which we affix 2 mm tantalum rods. A tungsten coiled alumina tube is then

mounted to the end of the tantalum rods, into which gold wire is placed for deposition,

although the same source can be used for a variety of metals. The furnaces can also

be outfitted with a thermocouple for temperature measurement that can be placed in

the back of the alumina tube. Deposition is done by resistively heating the furnace

with a high current power supply connected to the external copper rods, for gold this

typically requires about 15 A at ∼4 V applied, but this will depend significantly on the

particular geometry of the source.

3.3.3 Quartz Crystal Microbalance

One of the most commonly used instruments for precision thin film thickness measure-

ments is the quartz crystal microbalance (QCM). The operating principle of a QCM uti-

lizes the piezoelectric properties of quartz, those being that a quartz crystal cut along

a specific crystallographic direction possesses a specific resonance frequency when an

appropriate alternating current is applied. It was found that a change in this reso-

nance frequency ∆ f can be monitored and linearly related to a change of mass ∆m by

Equation 3.11 [19]
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FIGURE 3.11: Tube furnace used for in vacuo deposition of gold nanopar-
ticles, using a tungsten coil wrapped alumina tube, mounted on a 2 3

4 "
power feedthrough.

∆m = −C × ∆ f (3.11)

where C is a constant depending on the specific crystal used, thus providing a method

to measure thin film thickness directly in vacuum. The QCM has applications not

only in thin film measurments but has been shown accurate enough to measure gas

adsorption down to masses on the order of 1 ng/cm2 [20].

FIGURE 3.12: Quartz crystal microbalance used for monitoring film thick-
ness for preparation of nanoparticle films in vacuum.

The QCM utilized in following experiments is depicted in Figure 3.12, is mounted
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on a 2 3
4" conflat flange allowing it to be easily exchanged between chambers as nec-

essary. The QCM also features a linear motion drive allowing it to be translated into

and out of the chamber, and this feature allows it to be placed in front of the sample

and effectively act as a flag until the desired deposition rate is established. A single

BNC feedthough is used to connect the instrument to the controller where the depo-

sition rate and thickness can be monitored. In the following experiments the QCM

described is used to monitor gold nanoparticle film thickness as deposited in vacuum

for electrical measurements.

3.3.4 Nanoparticle Array Fabrication

In order to test the conductivity of molecular linked nanoparticle arrays, devices were

fabricated by the means of photo-lithography, a technique used to transfer a geometric

pattern onto a substrate [21]. The first step of this process requires spin-coating of the

substrate (mica or silica) with a photosensitive resist. For large array devices prepared

at UWM a home-built spin coater was prepared using a commercial 120 V fan with

an indicated RPM of ∼3000 Figure 3.13, which corresponds to the desired rotational

frequency needed from the spin curve of our resist (AZ-1512). Commercially available

spin coaters rely on the use of a centered vacuum port to hold the substrate in place, but

here an inverted suction cup was used to mimic a vacuum source allowing substrates

to be removed without causing damage. Generally samples are spun for ∼60 s at the

maximum speed of the fan, and a Variac is used to power the fan in order to allow a

slow increase to the maximum speed.

Following spin coating of the resist the substrate has be baked in order to cure the

resist. This process is used to remove any solvent initially present in the photoresist,

leaving behind a more robust film that is well adhered to the substrate. The baking

procedure is typically done by placing the resist-coated substrate on a hot-plate for
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FIGURE 3.13: Home built spin coater used for the fabrication of large-
array nanoparticle devices.

a specified time, and for the large array samples this was typically ∼60 s at 100oC.

Following the bake, the sample is ready for exposure of the mask pattern by UV radi-

ation. Here we use a chromium mask shown in ?? which results in a exposure of only

the transparent areas of the mask. For large array samples a TLC lamp is used as a

UV source and requires an exposure time of ∼45 min. Since we are using a positive

photoresist the chemical change that occurs in the resist causes the exposed areas to

become soluble for the development step.
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FIGURE 3.14: A) shows the chromium mask used to fabricate large-array
samples as well as contact pads for nanogap devices, B) show resulting

large array samples on an SiO2 substrate.

During the development step the exposed substrate is place in a developer solu-

tion, and we used 8% tetramethylammonium hydroxide as a common developer. The

samples were submerged until the UV exposed portions of the resist were clearly re-

moved (∼30 s), then rinsed thoroughly with deionized water. Following development

the substrate is ready for metal evaporation to form the gold electrodes. Due to the

weak adhesion of gold films, a thin chromel adhesion layer is first evaporated (∼30

nm), followed by a ∼200 nm film of gold. Evaporation of both films takes place in

a bell jar evaporator pumped to ∼1×10−8 Torr by means of a liquid nitrogen cooled

diffusion pump (Cooke Vacuum Products) shown in Figure 3.15.

Following deposition the substrate is ready for the final stage of lithography re-

ferred to as lift-off. The lift-off process utilizes a solvent capable of dissolving the

unexposed photo-resist, such as acetone. The substrate now with covered by a gold

film is placed in a bath of acetone and sonicated until the resist is completely removed.

This leaves behind a thin gold film in the pattern of the original mask to be used as

gold electrodes shown in Figure 3.14B. The silica wafer is now ready to be cleaved into
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FIGURE 3.15: A) Bell jar evaporator used to deposit gold electrodes for
large array devices, B) Tungsten basket used for depositing chromel, and

gold films.

single devices consisting of four electrodes. In order to avoid shorting through the

oxide film insulated wires are adhered using conductive silver epoxy (H-21D) before

finally being placed in the chamber for nanoparticle deposition.

3.3.5 Hybrid Device Fabrication

In order to more precisely investigate the limiting oligomerization of PDI, gold na-

noelectrodes were fabricated by means of electron beam lithography. This technique

has many similarities with the procedure for photolithography described above. The

major difference being the replacement of a physical mask and UV source, with a high

energy electron beam that operates using the same principles as SEM. In electron beam

lithography the physical mask is replaced by a CAD software designed geometry, that

the electron beam system then uses as a guide to control the electron beam, effectively

writing the geometry onto the resist coated substrate. The specifics for the fabrication

of the gold nanoelectrodes used in this thesis is provided below.
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The gold nanoelectrodes were fabricated using a JOEL model JBX-6300FS electron

beam lithography system at the Center for Functional Nanomaterials at the Brookhaven

National Laboratory. A uniform film of (1:2) ZEP520A:Anisole resist, was spin-coated

on a SiO2 wafer with a 300 nm-thick oxide layer at 2 krpm for 60s and then baked on

a hot plate at 180oC for 3 min. Gold electrodes were defined using an electron dose

between 300-600 µC/cm2 using a beam current of 1 nA with a design gap of 0nm. [22]

The film was developed in cold hexyl acetate at -20 oC for 90 sec. Following devel-

opment, nanogaps were fabricated by e-beam evaporating a chromium adhesion layer

which was 3nm thick and deposited at a rate of 0.5 A/s followed by a 30 nm-thick film

of gold deposited at a rate of 1.0 A/s, using a Kurt J. Lesker PVD-75 Evaporator. The

final lift-off took place by sonication in pure acetone.

Contact pads were fabricated using photolithography that was carried out using

a Karl Zeiss MA6 Mask Aligner using S1811 photoresist, which was spin coated at

4krpm for 60s, then baked at 110 oC for 3 min. A chromium mask was aligned with the

previously fabricated nanogaps and exposed to UV radiation for 8.5 s, then developed

in MF-312/H2O 2:3 for 75s. A 3 nm thick chromium adhesion layer was deposited,

followed by a 100 nm thick gold film using the conditions given above. The resist was

then lifted-off in remover 1165 at 80 0C. The resulting nanogaps are shown in Figure

3.16.

FIGURE 3.16: Resulting nanogap electrodes fabricated by electron beam
lithography, typical electrodes have a separation of ∼30 nm.
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Chapter 4

Monte Carlo Studies of Nano-Particle

Arrays: Modeling Chemical

Self-Assembly and Self-Limiting

Oligomerization

4.1 Introduction

Following the proposal by Aviram and Ratner that, in principle, electronic devices can

be fabricated from individual molecular units [1], there has been a significant effort

to understand molecular conductivity. The simplest architecture for building molec-

ular wires comprises pi-conjugated systems wit two terminal anchoring -SH or -NC

groups to attach the molecular wire to gold nanoelectrodes; such molecules have been

used as linkers for single-molecule conductivity experiments. [2–22] However, in or-

der to design molecular-electronic circuits it is necessary to be able to make controlled

electrical connections between nanoelectrodes. This can, in principle, be accomplished

by designing a self-assembly strategy in which the growth kinetics of a conducting

molecular wire is controlled to selectively connect between gold nodes with different
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spacings. [23] A possible strategy to achieve this is to use functionalized nanoparti-

cles to provide molecular linkages between adjacent nanoelectrodes, [24–26] but this

approach cannot specifically tune the inter electrode connectivity. An alternative ap-

proach is to selectively self-assemble conductive electrical bridges between adjacent

nanoelectrodes and this stategy is illustrated in the following using the oligomeriza-

tion chemistry found for 1,4-phenylene diisocyanobenzene (1,4-PDI) on an Au(111)

surface, decribed in greater detail below. In addition, recent work has shown that it

is possible to template the distribution of gold nanoparticles on a surface suggesting

that organized (gold nanoparticle) nodes can be fabricated as a basis for implementing

such circuits. [27]

The experimental approach is based on the discovery that 1,4-PDI self-assembles

on an Au(111) substrate to form long one-dimensional, oligomeric chains. The chains

are comprised of alternating gold and 1,4-PDI units [28–32] in which a gold adatom

is linked to two trans isocyanide groups. In this case, the gold atoms in the oligomer

derive from the gold substrate. Density functional theory (DFT) calculations of the

oligomerization pathway reveal that growth occurs via a vertical, mobile Au-PDI adatom

complex that forms by binding to gold substrate and oligomerizes by the gold adatom

attaching to the isocyanide terminus of a growing chain. [33] This process is depicted

in Figure 4.1, which illustrates how the interaction of the vertical Au-PDI adatom com-

pex with the terminus of a growing chain forms linear, gold-containing oligomers. It

has been shown that 1,4-PDI and analogous molecular can form conductive molecu-

lar bridges between adjacent nanoparticles [6, 7, 31, 34, 35] and oligomer-linked gold

nanoparticles have been directly imaged using STM. [31]

The original concept for selectively tuning the interconnectivity between gold na-

noelectrodes relied on carefully adjusting the dose of the gas-phase oligomer-forming

species (in this case, 1,4-PDI) to halt the oligomerization process when the required
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FIGURE 4.1: Schematic depiction of the oligomerization pathway of 1,4-
PDI on Au(111) showing the initial approach of a 1,4-PDI/Au adatom
complex to the terminus of a 1,4-PDI molecule adsorbed at a step edge or
other defect on the Au(111) surface, followed by insertion of the adatom
complex into the terminus of the bound 1,4-PDI molecule to initiate self-
assembly of Au-1,4-PDI oligomer chains. Adapted with permission from

reference [33]. Copyright 2014 American Chemical Society.

bridges had been formed. This necessitates careful control over the dose, internode

spacing and the temperature at which the reaction is carried out (to control the vari-

ous surface reaction rates). In the following, it is shown that the growth of oligomer

chains nucleated by gold nanoparticles arrays by reaction with 1,4-PDI is inherently

self-limiting, thus eliminating the sensitivity of the interparticle linking process to the

reactant dose. This occurs because, on an extended Au(111) substrate, the supply of

gold sites required to form the propagating Au-PDI adatom complex is essentially infi-

nite, thereby allowing long oligomer chains to grow essentially uninhibited. In the case

of reactions occurring at nodes consisting of gold nanoparticles, both mobile Au-PDI

adatom complex formation and the propagation of the oligomer chain are proposed

to take place at the peripheral sites on the gold nanoparticle. This suggest that the

initiation and growth of oligomer chains block the sites at which the Au-PDI adatom

complexes are formed, eventually quenching the reaction to prevent the growth of fur-

ther oligomers. This process is inherently self-limiting and thus simplifies the strategy
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for precisely and selectively linking between carefully spaced nodes that will facilitate

the targeted design of nanoelectronic circuits.

The feasibility of this process is investigated in the following by studying the bridg-

ing of oligomers formed by dosing 1,4-PDI and the connectivity between gold elec-

trodes as a function of the separation between them. The reaction barriers for the self-

assembly process are obtained from the results of previous DFT calculations of the en-

ergy barriers for the various elementary step reactions found on a gold substrate. [33]

While the reaction barriers found on a pure gold substrate are likely to differ some-

what from those for gold nanoparticles on an insulating substrate, and thus may differ

in the kinetic details, these results will provide a test of the feasibility of this approach

and will yield predictions of the results of experimental tests of these ideas.

Monte Carlo simulations have been used previously to model the kinetics of rel-

atively complex processes such as catalytic reaction pathways where the kinetics de-

pend on the local enviroment, [36,37] but have also been used to explore self-assembly

processes, [38, 39] and provide an ideal approach to studying the kinetics of complex

chemical phenomena.

4.2 Results

4.2.1 Analytical Model of Self-Limiting Growth Kinetics

The following simple mean-field kinetic model is developed to illustrate the self-limiting

oligomerization kinetics described above. The kinetics will be simulated in greater de-

tail using kinetic Monte Carlo methods in greater detail below. It is assumed that the

formation of both the Au-PDI adatom complexes that initiate the reaction (see Figure

4.1) and the growth of the oligomers both occur at the edge sites of the gold nanopar-

ticle nucleus. It is assumed that the proportion of the peripheral sites occupied by the
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adatom complexes is given by Pad and the proportion of sites having reacting oligomers

is Preact, so that, if the proportion of unoccupied peripheral sites is Pv, then;

Pv + Pad + Preact = 1 (4.1)

It is assumed that the 1,4-PDI adsorbs on the surface with Langmuirian kinetics

with a rate of adsorption given by kadsPvF, where kads is an adsorption rate constand

and F is the incident flux. The adsorbed adatom complex is also allowed to desorb 1,4-

PDI into the gas phase (kdesPv), diffuse away from the periphery of the gold nanopar-

ticle to form oligomers (k1Pad), or tilt to form a terminus to nucleate the growth of an

oligomer (k2Pad) and, assuming steady state, gives;

dPad

dt
= kadsPvF − kdesPv − k1Pad − k2Pad = 0 (4.2)

where it is assumed that k2 >> k1 to allow oligomers to form. This provides a

relationship between Pads and k2Pv and substituting from Eqn. 4.1 yields;

Pad = α (1 − Preact) (4.3)

where α = kadsF
(kdes+k1+k2)

. Since the reactive species are proposed to form from the

adatom complex at a rate given by k2Pad, from Eqn. 4.3:

Preact = 1 − exp (−At) (4.4)

where A = k2α
1+α and allows an equation for Pad to be derives as:

Pad =
A

k2
exp (−At) (4.5)
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The oligomers form from a reaction between mobile adatom complexes on the sur-

face of the insulating substrate between gold nanoparticle and the reactive site, so that

the rate of oligomerization,
dPoligomer

dt is written as a second-order process with a rate

constant k3, as:

dPoligomer

dt
= k3Preactθad (4.6)

where θad is the coverage of the reacting adatom complex on the surface and is,

for simplicity assumed to be in equilibrium with the adatom complex formed on the

periphery of the gold nanoparticle; θad
Pad

= K. This yields a time dependence of the

average oligomer length given by:

Poligomer =
k3K

2k2
(1 − 2exp (−At) + exp (−2At)) (4.7)

Since the term in brackets tends asymptotically to unity, the limiting oligomer length

is given by k3K
2k2

, while the rate at which they form depends on the parameter A.

The variation in the proportion of the gold nanoparticle sites occupied by reactive

sites (Preact) and adatom complexes (Pad) are plotted as a function of time for α = 5,k2

and k1 = 0.002 and K = 10 in Figure 4.2. At the beginning of the reaction, only adatom

compexes (•) and a small proportion of vacant sites are present. As the reaction pro-

ceeds, the proportion of adatom complexes decreases exponentially (4.5), while the

proportion of active sites ( ) increases, eventually occupying all sites on the periphery

of the gold nanoparticle, thereby quenching the reaction. This is illustrated in Figure

4.3 using the same kinetic parameters as for Figure 4.2, where the oligomers initially

grow slowly as the reactive sites are initiated, but then slow and eventually sease when

there are no more available sites for the adatom complexes to form (Figure 4.2), in this
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FIGURE 4.2: Plot of variation in the proportion of the gold nanoparticle
sites occupied by reactive sites (Preact) and adatom complexes (Pad) plotted

as a function of time for α = 5, k2 and k1 = 0.002 and K = 10.

case at an average oligomer length of 6 units. While this is a simplified model, it illus-

trated the salient points of the self-limiting assembly of conducting Au-PDI oligomer

chains.

4.2.2 Monte Carlo Simulations of Self-Limiting Growth Kinetics

The effect of particle separation on the ability of oligomers to form conducting bridges

between gold nanoparticles is studied using the model system schematically illus-

trated in Figure 4.4. This shows a series of hexagonal gold nanoparticles (in yellow)

on an insulating substrate for various increasing particle separations, with Panel (a)

showing the smallest separation and Panel (d) showing the larges separation used for
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FIGURE 4.3: Plot of average oligomer length plotted as a function of time
for α = 5, k2 and k1 = 0.002 and K = 10.

the simulations. Each of the simulations are carried out using a constant 1,4-PDI ar-

rival rate (proportional to the flux). The 1,4-PDI is allowed to adsorb only on the edge

sites of the gold nanoparticle. Note that the 1,4-PDI could also adsorb on top of the

gold nanoparticle. [40] Note that 1,4-PDI can then diffuse to adsorb to an edge site,

this 1,4-PDI could contribute to the growth of an oligomer chain and would result in

an effectively higher edge-site arrival rate and an acceleration of the overall growth ki-

netics. The 1,4-PDI could, in principle, also adsorb on the insulating substrate but, be-

cause this cannot form an Au-PDI adatom complex, it does not contribute to the overall

growth kinetics. As noted above, the simulation parameters were derived from the en-

ergy barriers obtained from DFT calculations. [33] The final structures after the comple-

tion of self-limited growth are also indicated in 4.4, showing the resulting oligomeric

assemblies in red and remaining peripheral adatom complexes in orange. Figure 4.4(d)

61



Chapter 4. Monte Carlo Studies of Nano-Particle Arrays: Modeling Chemical

Self-Assembly and Self-Limiting Oligomerization

shows the final structures with a node separation that prohibits oligomer bridges from

forming between nano-particles and reveals the formation of oligomers at almost all

peripheral sites on the nanoparticle. Closer examination shows a few edge sites that

contain an adatom complex, but they are surrounded by loops of oligomers detected

prevoiusly by STM [31] and are therefore trapped and not able to diffuse away from

the gold nanoparticles.

FIGURE 4.4: Depiction of typical model nanoparticles systems used for the
simulations. The diameters of the hexagonal gold nanoparticles (depicted
in yellow) are maintained at a constant value of seven units across. The
growing Au–PDI oligomer units are depicted in red on the same scale as
the atoms in the gold nanoparticles. The nearest-neighbor separations are

varied from (a) 5, (b) 8, (c) 11 and (d) 13 units.

Smaller interparticle spacings (Figure 4.4b) lead to the formation of oligomeric bridges

between nanoparticle nodes that form when two oligomers from adjacent nanoparti-

cles join to provide a longer oligomer. In almost all cases for this nanoparticle spacing,

the nanoparticles are linked by a single oligomer, suggesting that it may be possible

to judiciously select interparticle spacings to form single conductive linkages. As the

interparticle spacing decreases (Figure 4.4a), multiple bridges can form.
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The kinetics are summarized graphically in Figure 4.5 as a function of intermolecu-

lar separation plotted as ln(MCS) to emphasize the behavior at short times. In all cases,

the edge sites are populated by only Au-PDI adatom complexes for the first ∼10 MCS,

after which the adatom complexes can diffuse and react with another reactive adatom

complex to initially form dimers (chain lenght = 2). At longer times, more oligomers

are nucleated and increase in number as a function of time to reach constant values as

the assembly process self-limits. The exception is the formation of dimers where the

proportion of dimers rapidly increases, but then decreases once again indicating that

the rate of growth of dimers by reaction of adatom complex exceeds the rate at which

they are formed.

The final chain-length distribution is shown in Figure 4.6, which distinguishes be-

tween those oligomers that can form conductive bridges, and those that do not. As

expected, for systems in which the nanoparticles are too far apart to form bridges (Fig-

ure ??d,e), the chain length distributions are identical. The chain-length distribution

differs from a Schultz-Flory distribution [41] because of a limited inventory of propa-

gating monomers. As the nanoparticles become closer to each other (Figure 4.6c), the

distribution of nonbridging oligomers is sightly perturbed resulting in the formation

of oligomers longer than 8 units because of bridging between the gold nanoparticles,

where the oligomer distribution is dictated by the distances between sites on the edges

of the nanoparticles. The distribution becomes even more perturbed from that found

for the nonbridging systems with smaller internodal spacings.

Finally, Figure 4.7 plots the total number of percolation pathways for a system with

a nanoparticle spacing of 5 monomers, where conductive bridges are formed. Here

percolation paths are defined as the ability to connect a site on one edge of a sample

to a site on the opposite edge following a NN pathway, where only oligomer species
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FIGURE 4.5: Plots of the population of Au-PDI oligomer units with dif-
ferent chain lengths as a function of the number of MCSs, which varies
linearly with real time, using a constant incident flux of 1,4-PDI. A chain
length of unity refers to the population of Au-PDI adatom complexes. The
time variation of the distribution is shown for NN separarations of (a) 3,

(b) 5, (c) 8, (d) 11, and (e) 13 monomer units.
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FIGURE 4.6: Histograms of the final, self-limiting chain-length distribu-
tions for the NN separations (a) 3, (b) 5, (c) 8, (d) 11, and (e) 13 monomer
units. The histograms highlighted in red show the length distribution
for nonbridging oligomers, while the crossed-hatched histograms give the

distributions for the bridging oligomers.
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and nodes can contribute to percolation. Not that for greater than ∼11 monomer spac-

ings, no conductive bridges are predicted to occur and so that no significant increase in

conductivity is expected to occur for gold nanoparticles placed farther apart than this.

The resulting total number of percolation paths is plotted as a function of MCS show-

ing a similar general form for the simple model in Figure 4.3, where there is an initial

slow increase in percolation pathways for short times as oligomerization is initiated,

and some bridges start to form. The number of percolation pathways then increase

quite rapidly as more bridges form to eventually saturate to lead to a maximum value

in conductivity. Note that the change in total number of percolation pathways can be

related to the change in conduction [42, 43] to enable the results to be compared with

the experiment.

The above analytical and Monte Carlo theroy analyses predict that the bridgin

of gold nanoparticles by conductive Au-PDI oligomer chains should be self-limiting

because both the initiation of the growth of oligomers by the formation of mobile

adatom complexes and the propagation of the oligomers themselves occur at the pe-

ripheral edge sites of the gold nanoparticles. This suggests that judiciously spaced

gold-nanoparticle nodes will enable them to be selectively bridged either by single(Figure

4.4b) or multiple (Figure 4.4a) conductive oligomer chains. This approach can, in prin-

ciple, be used to design molecular-electronic architectures that might eventually form

the basis for designing functional electronic circuits based on the assembly of molecu-

lar units. It is argued that, because the Monte Carlo simulations were carried out for

reactions occuring at room temperature (∼298 K), using energies for the oligomeriza-

tion of 1,4-PDI on gold from DFT calculations, the theoretical predictions should be

reasonably accurate. In particular, if the monomer separation is taken to be equal to

the periodicity of the oligomer chains formed from 1,4-PDI on Au(111) surfaces [29,31]

of ∼1.1 nm, bridging between nanoelectrodes should only occur for spacing less than
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FIGURE 4.7: Plot of total number of percolation pathways as a function of
MCSs at a constant flux of 1,4-PDI.

∼12nm. For smaller spacing, the variation in conductivity as a function of total 1,4-

PDI dose (pressure × time) should initially increase slowly, but accelerate with further

dosing to reach a constant value of conductivity. The simple analytical model outlined

in Section 4.2.1 suggests that the growth kinetics depend on the incident flux, but that

the final chain length (and thus conductivity) is independent of the flux.
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4.3 Conclusion

The work reported here suggests that the spontaneous oligomerization of 1,4-PDI,

which is found on the Au(111) surface to form long, conducting oligomer chains, in-

stead forms self-limiting oligomers on gold nanoparticles on an insulating substrate.

It has been shown experimentally that the conductivities of gold-nanoparticle arrays

increase when dosed with a range of diisocyanides, but the influence of nanoparti-

cle separation has not yet been investigated for these systems in a controlled way. It

has also been found that analogous dithiols similarly form gold-containing oligomeric

species [44] suggesting that similar targeted nanoparticle bridging should be possible

for other bifunctional molecules. It is noted that the simulations were carried out for

energies for 1,4-PDI with the temperature set to ∼298 K to correspond to the most con-

venient experimental temperature. However, changing the reaction temperature will

also change the relative rates of the various self-assembly processes thereby offering

the possibility of tuning the range of distances over which the molecules can bridge

merely by changing the reaction temperature.
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Chapter 5

Chemical Self-Assembly Strategies for

Designing Molecular Electronic Circuits

5.1 Introduction

It is a significant experimental challenge to devise self-assembly strategies for the tar-

geted design of electronic circuits based on molecules. [1–3] We recently proposed

a self-limiting self-assembly method for selectively making controlled electrical con-

nections between gold nano-electrode nodes [4] based on the oligomerization of 1,4-

phenylene diisocyanide(1,4-PDI). 1,4-PDI self-assembles on gold to form conductive,

one-dimensional, oligomeric chains that are comprised of alternating gold and 1,4-PDI

units [5–9] in which a gold adatom is linked to two trans isocyanide groups. It was

proposed in Chapter 4 that oligomer growth that is nucleated by gold nanoparticles

is inherently self-limiting, thereby eliminating the sensitivity of the interparticle link-

ing process to the reactant dose. [10] The self-limiting kinetics were modeled using an

oligomer formation mechanism derived from density functional theory (DFT) calcu-

lations, which showed that oligomerization is initiated by the formation of a vertical,

mobile Au-1,4-PDI adatom complex that forms by binding to the gold substrate, which
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then oligomerizes by the gold adatom attaching to the isocyanide terminus of a grow-

ing chain. [11] The DFT calculations also determined the activation barriers for the var-

ious elementary-step processes and showed that the diffusion barrier for the motion of

the Au-1,4-PDI adatom complex was low, while the activation energy for the oligomer-

ization was found to be 152 kJ/mol. A kinetic Monte Carlo analysis demonstrated that

the extent of oligomerization was limited because both the formation of the mobile Au-

1,4-PDI adatom complex and the propagation of the oligomer chain take place at the

peripheral sites on the gold nanoparticle. As a result, the initiation and growth of

oligomer chains eventually block the sites at which the Au-1,4-PDI adatom complexes

are formed, thereby quenching the reaction to prevent the growth of further oligomers

and is therefore inherently self-limiting. [4] Using kinetic parameters found for the for-

mation of oligomers on Au(111), the model predicted that the oligomers should be

able to bridge gold nanoparticle nodes that were less than ∼ 12 nm apart. It has pre-

viously been demonstrated that 1,4-PDI and analogous molecules comprising two ter-

minal anchoring -SH groups can form conductive molecular bridges between adjacent

nanoparticles deposited onto an insulating mica substrate. [8, 12–15] Oligomer-linked

gold nanoparticles have been directly imaged using STM [8] and have been used in

single-molecule conductivity experiments. [13, 14, 16–34] While these experiments on

an insulating mica substrate did not measure the conductivity as a function of parti-

cle separation, they do demonstrate the ability of these bifunctional molecules to link

between nanoparticles on surfaces.

The following tests the prediction that the formation of conductive linkages be-

tween gold nanoparticles on and insulating support is self-limiting by measuring the

conductivity of a relatively large array (∼ 0.25 mm between the gold electrodes) of
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gold nanoparticles deposited by evaporating gold onto a silica substrate in high vac-

uum as a function of gold film thickness. While his approach did not lead to nanopar-

ticle spacings as large as the limiting value of ∼ 12 nm predicted by kinetic Monte

Carlo simulations, it reveals a decrease in the change in conductivity after dosing with

1,4-PDI as the average gold nanoparticle spacing increased.

The ability to bridge nanogaps was therefore explored in greater detail using de-

vices consisting of lithographically fabricated nanoelectrodes with gap spacings of

∼ 30nm, significantly larger than the limiting spacing measured from kinetic Monte

Carlo simulations. They showed no conductivity after dosing with 1,4-PDI. Hybrid

devices were also fabricated by depositing a thin film of gold on the nanoelectrode

devices by evaporation in vacuo to form nanoparticles in the interelectrode region to

reduce the gap. [35] These hybrid devices displayed significant electron conductivity

thereby experimentally verifying the postulate discussed above. [4]

5.2 Experimental Methods

5.2.1 Fabrication of Gold Nanogaps

The gold nanoelectrodes were fabricated using a JOEL model JBX-6300FS electron

beam lithography system at the Center for Functional Nanomaterials at the Brookhaven

National Laboratory. A uniform film of (1:2) ZEP520A:Anisole resist, was spin-coated

on a SiO2 wafer with a 300 nm-thick oxide layer at 2 krpm for 60s and then baked on

a hot plate at 180oC for 3 min. Gold electrodes were defined using an electron dose

between 300-600 µC/cm2 using a beam current of 1 nA with a design gap of 0nm. [36]

The film was developed in cold hexyl acetate at -20 oC for 90 sec. Following devel-

opment, nanogaps were fabricated by e-beam evaporating a chromium adhesion layer

which was 3nm thick and deposited at a rate of 0.5/s followed by a 30 nm-thick film of
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gold deposited at a rate of 1.0 /s, using a Kurt J. Lesker PVD-75 Evaporator. The final

lift-off took place by sonication in pure acetone.

Contact pads were fabricated using photolithography that was carried out using

a Karl Zeiss MA6 Mask Aligner using S1811 photoresist, which was spin coated at

4krpm for 60s, then baked at 110oC for 3 min. A chromium mask was aligned with the

previously fabricated nanogaps and exposed to UV radiation for 8.5 s, then developed

in MF-312/H2O 2:3 for 75s. A 3 nm thick chromium adhesion layer was deposited,

followed by a 100 nm thick gold film using the conditions given above. The resist was

then lifted-off in remover 1165 at 80 0C.

5.2.2 Fabrication of Gold Nanoparticle Array

The electrical characteristics were measured for larger-scale nanoparticle arrays to pre-

cisely monitor the change in current with 1,4-PDI dose. They were fabricated using

gold electrodes deposited onto an oxidized silica substrate to create a gap of 0.25 mm

between the gold electrodes. The electrode gap was defined using a chromium mask.

The pattern was developed by photolithography using AZ 1512 resist spun onto a sil-

ica substrate using a spin-coater at ∼3 krpm for 60 s. The resist was exposed using an

ultra violet lamp (TLC) for 30 min and then developed in 8% TMAH (tetramethylam-

monium hydroxide). A chromel adhesion layer (∼5 nm thick) was deposited on the

silica prior to evaporating a ∼200 nm thick film of gold in a vacuum evaporator. The

film thicknesses were estimated from the total amount of material flash-evaporated

and the distance from the source to the silica sample.

The sample was then attached to a sample manipulator in a high vacuum chamber

operating at a base pressure of ∼ 1× 10−8 Torr. Gold was deposited from a home-built

alumina tube furnace at a rate of ∼ 0.02 A/s and was monitored by a QCM (Sigma

Instruments SQM-160) until the final desired film thickness was obtained.
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5.2.3 Measurment of I/V Curves

The I/V characteristics were measured by applying a voltage between the gold elec-

trodes via a D/A converter and the resulting current measured by means of a picoam-

meter that was monitored by a A/D converter to yeild I/V curves directly. No changes

were found in the I/V curves for repeated experiments indicating that the sample re-

mained stable. The temperature dependence of the conductivity was measured by

allowing a cooled sample to warm slowly to ambient temperature. 1,4-PDI was dosed

onto the sample via a home built Knudsen source [37] where the flux was gauged by

the increase in background pressure in the vacuum chamber and was varied by chang-

ing the temperature of the 1,4-PDI sample.

5.2.4 Estimation of Nanoparticle Separation

Scanning Electron Microscope (SEM) images of gold nanoparticles deposited in vacuo

on silica are displayed in Figure 5.4 for various total film thicknesses, t, which are mea-

sured using a quartz crystal microbalance and are used as a basis for estimating the

average particle separation as a function of film thickness. The SEM images were an-

alyzed using ImageJ [38], where the contrast is first enchanced to more easily identify

the particles. The images were analyzed to count the number of particles per unit area

and the results are shown plotted in Figure 5.1 ( ) as a function of the thickness of the

film, and fitted to a allometric function:

N(t) = N0tn (5.1)

where N0 = 4.6 ± 0.2 × 10−2 particles/nm2 and n = −1.55 ± 0.10.

The SEM images were analyzed to measure the proportion of the surface covered

by gold as a function of the film thickness and the results are displayed in Figure 5.2
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FIGURE 5.1: Plot of the number of nanoparticles per unit area as a function
of film thickness on silica.

( ) and fits are also shown to an allometric growth equation:

α(t) = α0tm (5.2)

where α0 = 0.29 ± 0.01 and m = 0.36 ± 0.03.

It is not possible to use image analysis software to measure the closest interparticle

distances as a function of film thickness. However, an estimate of the variation in in-

terparticle distance can be made from the measurements of N(t) and α(t) as follows. It

is assumed that circular particles with average diameter d(t) are uniformly distributed

on the surface with an average separation s(t) so that the number of nanoparticles per

unit area is given by:
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FIGURE 5.2: Plot of the proportion of the silica surface covered by gold
nanoparticles as a function of total gold film thickness.

N(t) =
2√

3(s(t) + d(t))2
(5.3)

The area occupied by a particle is πd2

4 , so that the total area occupied by nanoparti-

cles per unit area is given by:

α(t) =
πN(t)d(t)2

4
(5.4)

The value of s(t) is obtained by eliminating d(t) from Eqns. 5.2.4 and 5.2.4 to yield

an estimate for the average particle separation as a function film thickness as:

82



5.2. Experimental Methods

s(t) ∝
1

√

N(t)

(√

2√
3
−
√

4α(t)

π

)

(5.5)

The results of Eqn. 5.2.4 are compared to those of direct measurements of the

nanoparticle spacings measured manually from the SEm images of the nanoparticle

covered surface as a function of film thickness in Figure 5.3( ), where the variation in

particle separation as a function of film thickness is in accord with the simple analytical

model.

FIGURE 5.3: Plot of average particle separation obtained from Eqn. 5.2.4
(red line, using a scaling factor of 1.25), as a function of total gold film
thickness compared with the results of direct measurements of interparti-

cle spacings ( ).
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5.3 Results and Discussion

Experiments were initially carried out on thin gold films between gold electrodes sep-

arated by ∼0.25 mm as a function of film thickness. As shown in Figure 5.4, the gold

coalesces into nanoparticles, where it is expected that the separation between nanopar-

ticles will very as a function of the film thickness of the gold film. The samples were

then exposed to a constant flux of 1,4-PDI and the conductivity of the samples was

monitored as a function of time. In all cases, the conductivity of the samples rises with

increasing 1,4-PDI dose to reach a satruation conductivity that depends on the thick-

ness of the initial gold film. All samples showed a variation in the conductivity with

temperature and a typical plot of the temperature dependence, in this case for a 6.5

nm thick gold film, is shown in Figure 5.5, where ln (σ) varies as 1/
√

T, where σ is

the conductivity of the sample and T is the absolute temperature. This behavior has

been observed for arrays of gold nanoparticles deposited onto mica [8, 12, 15, 35] and

is typical for electron transport through disordered nanoparticle arrays. [39–42]. The

conductivity between linked nanoparticles comprises an electron tunneling term that

varies as ∼ exp
(

−Ec
kBT

)

where Ec is the Coulomb charging energy, kB is the Boltzmann

constant and T is the absolute temperature and leads to the experimentally observed

temperature dependence. [43]

The initial and final conductivities of nanoparticle arrays before and after saturat-

ing with 1,4-PDI are displayed in Figure 5.6 as a function of the thickness of the gold

film. SEM images of the nanoparticle films were analysed to estimate the average inter-

particle spacings as a function of film thickness (Section 5.2.4), and the ratio of the final

to initial conductivities are plotted versus the estimated interparticle separation inset

in Figure 5.6, where conductivity ratios are plotted to take into account the different

percolation pathways on the films with different film thicknesses. Extrapolating this

line shows the ratio becomes unity at an interparticle separation of 7 ± 2 nm, indicating
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FIGURE 5.4: Plot of conductivity change versus 1,4-PDI dosing time at a
background pressure of 1 × 10−8 Torr at a sample temperature of 280 K
for various thicknesses of gold evaporated onto a silica substrate, where
the film thicknesses are indicated. 1,4-PDI dosing was commenced at 500
s and stopped after 2000 s. The inset shows the data for thinner gold films.
Shown also are selected SEM images (400 nm × 400 nm) of the films where
the left-hand part of the images shows the raw data and the right-hand

images are processed to more clearly show the nanoparticles.

that the bridging of initially separated gold nanoparticles by conducting -(1,4-PDI-Au)-

oligomers is indeed self-limiting.

In order to confirm this, and to more accurately estimate the limiting distance, ex-

periments were carried out using a 30-nm nanogap between gold electrodes as de-

picted in Figure 5.7. The design of the nanogaps is shown in Figs. 5.7 (a) to (d), where

Fig. 5.7(d) shows that the gap separation is ∼30 nm. The sample was then saturated
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FIGURE 5.5: Plot of ln(σ), where σ is the film conductivity, versus 1/
√

T
where T is the sample temperature for an array of nanoparticles grown by
gold evaporation on a silica substrate dosed to saturation with 1,4-PDI in
high vacuum. Shown are SEM images of the film where the top images
shows the raw data and the bottom is processed to more clearly show the

nanoparticles.

with 1,4-PDI and the I/V curve measured (Fig. 5.7(e)). This shows no conductivity be-

tween the electrodes within the detection sensitivity. To determine whether decreasing

the gap size leads to bridging by conductive 1,4-PDI oligomers, hybrid devices were

fabricated by evaporating a thin film of gold onto the nanogap devices in vacuo. Two

types of structures were observed. The first, shown in Figure 5.8B comprised nanopar-

ticles located between the gold nanoelectrodes, highlighted in yellow, where the aver-

age diameter d of the nanoparticles between the gold electrodes is 11.2 ± 0.4 nm and

s
d = 0.46 ± 0.03, where s is the average interparticle separation. This 1,4-PDI-bridged
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FIGURE 5.6: Plot of the initial and final conductivity for a series of
nanoparticle arrays grown by gold evaporation on a silica support in UHV,
values shown are for before and after saturation with 1,4-PDI. Shown in
the inset is the ratio of final to the initial conductivity plotted versus the

estimated particle separation.

hybrid system shows a significant change in conductivity after saturating with 1,4-

PDI (Figure 5.8A), indicating that the oligomers can bridge a ∼5 nm gap. This device

configuration shows a conductivity that depends significantly on temperature with an

Arrhenius dependence (Fig. 5.8C) where ln(R), where R is the low-voltage resistance

of the hybrid device, varies linearly with 1/T, with a slope of 2.02 ± 0.07 kJ/mol. As

expected for a system consisting of nanoscale inter-gap nodes, the conductivity has a

significant Coulomb charging energy contribution. The Coulomb charging energy is

given by:

Ec =
e2

4πǫ0ǫ

s
d

d
(

1
2 +

s
d

) (5.6)

where e is the charge on the electron, ǫ0 is the permittivity of free space and ǫ is the
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dielectric constant taken to be 3.5 for 1,4-PDI [44]. This results in a calculated Coulomb

charging energy of 1.7±0.1 kJ/mol, in good agreement with experiment.

FIGURE 5.7: Depiction of the gold nanogaps fabricated on Silica. (A)
shows the wiring of the connection pads, (B) shows the connecting pads
and the nanoelectrodes, (C,D) show high-resolution SEM images of the
gold nanogaps, and (e) displays an I/V curve after dosing with 1,4-PDI.

A second type of hybrid device was found as shown in Figure 5.9, where the nanopar-

ticles decorate one of the nanoelectrodes (highlighted in yellow in the image shown as

an inset to Fig. 5.9) to decrease the nanogap to 9.2±0.3 nm. The resulting I/V curve

for a 1,4-PDI saturated gap shown in Fig. 5.9 has a resistance that is close to infinity for

|V| < 1.5 V, which decreases drastically at higher voltages. This behavior differs from

the theoretical [?] and experimental [?] single-molecule conductivities of gold-bridged

1,4-PDI where the high-resistance region occurs for |V| < 0.5 V, in accord with the
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FIGURE 5.8: (a) Plot of the change in the I/V curve for the 1,4-PDI sat-
urated hybrid device shown in (b) the SEM image is 300 nm across the
gold nanoelectrodes and nanoparticles in the gap are highlighted in yel-
low,(c) Plot of ln(R), where R is the resistance of the device, versus 1/T,
which shows good Arrhenius behavior. The Coulomb charging energy

measured from the slope of the Arrhenius plot is 2.02±0.07 kJ/mol.

linkers between the nanoparticles in the device shown in Fig. 5.9 being oligomeric

species, and not single molecules. The I/V curves also show a very weak temperature

dependence consistent with the oligomer bridging two nanoelectrodes.

This work tests the postulate that the growth of 1,4-PDI-Au oligomers nucleated by

gold nanoparticles is inherently self-limiting because both the nucleation and growth

occur at the peripheries of the nanoparticles so that the eventual sturation of the edge

sites on the gold nanoparticles by oligomers prevent them from growing, inherently

leading to self-limiting growth. Monte Carlo simulations of this process using kinetic

parameters previously found for oligomerization on a Au(111) substrate estimated that

the maximum gap between gold nanoparticles that could be bridged by oligomers
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FIGURE 5.9: Plot of the I/V curve for the 1,4-PDI saturated hybrid device
shown in the inset, where the gold nanoelectrodes and the gold nanoparti-
cles within the gap are highlighted in yellow. This device shows negligible

change in conductivity with temperature.

was ∼10 nm. [4] This postulate was tested on relatively large nanoparticle arrays, dis-

crete nanogaps of ∼30 nm, and hybride devices consisting of thin gold films evap-

orated onto gold nanogap devices that all produced data that were consistent with

this proposal; a nanogap of ∼30 nm showed no conductivity when dosed with 1,4-

PDI, while hybrid devices for which the interparticle separations were ∼5 and 10 nm

showed a significant increase in conductivity. It should be emphasized that, while

there are currently no direct structural measurements of gold-containing oligomers be-

tween nanoparticles on silica, such linkages have been directly observed by STM on

Au(111), [8] a combination of conductivity measurements on gold nanoparticle arrays
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on silica and mica and measurements on hybrid devices allow a preliminary conclu-

sions to be drawn that this approach provides a strategy for fabricating molecular-

electronic circuits by judiciously changing the spacings between interconnecting gold

nano-electrodes.

5.4 Conclusion

It was found that hybrid devices that contained discrete nanoparticles located within

the gap showed an Arrhenius temperature dependence with an activation energy con-

sistent with the calculated Coulomb charging energy, while the narrow gaps with-

out inter-gap particles showed negligible temperature dependence. This suggests that

even such simple molecular-electronic architectures can be used as molecular-electronic

components. For example, devices containing nanoparticles within the gap (Fig. 5.8)

can be used as temperature sensors, while those with narrow gaps with strongly non-

linear I/V curves (Fig. 5.9) could find applications as voltage regulators where the

regulation voltage can be adjusted by altering the oligomer length by changing the

interelectrode separation.
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Chapter 6

Surface Chemistry of an Asymmetric

Molecular Linker

4-Isocyanophenyldisulfide on Au(111)

6.1 Introduction

In the 1970’s, Aviram and Ratner proposed that electronic devices could be fabricated

by individual molecules. [1] The simplest architectural basis for molecular electronic

components comprises two terminal anchoring groups, often SH or -N≡C groups

that bind strongly to gold. To facilitate electron transport through the molecule, the

backbone is constructed from π-conjugated systems so that molecules such as 1,4-

phenylene diisocyandide (PDI) and 1,4-benzenedithiol (BDT) have been extensively

used as prototypes for single-molecule conductivity experments. [2–22]

It has been found that PDI self-assembles on Au(111) to form one-dimensional,

oligomeric chains comprising alternating gold and 1,4-PDI units. [23–27] THe propa-

gating monomer for oligomer growth consists of a vertical, mobile Au-PDI adataom

complex that oligomerizes by the gold adatom attaching to the isocyanide terminus
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of a growing chain. [28] This oligomerization chemistry can be used to form conduc-

tive bridges between gold nanoparticles using a similar process in which the PDI ex-

tracts gold atoms from the gold nanoparticles to form oligomeric bridges between

them. [26, 29] In particular, it has been found that the chain growth between gold

nanoparticles is inherently self-limiting since the creation of the Au-PDI adatom com-

plex and the nucleation of oligomer growth both occur at the periphery of the gold

nanoparticle. As a consequence, the formation of the adatom complexes is eventually

quenched by the formation of growing oligomer chains, thereby preventing the chains

from growing further. This provides an ideal strategy for constructing nanoelectronic

architectures where the linkages between nanoparticles that can be tailored by adjust-

ing the interparticle separations.

Similar behavior has been found for BDT, another prototypical molecule for ex-

amining electron transport through molecules, [8–11, 13, 15, 16, 18–21, 30–36] which,

rather than forming SAMS on gold, oligomerize in a similar way by gold adatoms in

the chain, to form benzenedithiolate-gold adatom oligomers [36–40],Chapter 7. These

junctions are relatively stable for reasonable measurement times and are likely to be

formed reproducibly because of the strong Au-S bond.

This raises the possibility of forming similar oligomers when the molecular linker

contains different linking groups and of making linkers that have asymmetric electri-

cal properties to from molecular rectifiers. [41] The obvious candidate for testing this

idea is to use an asymmetric structure of BDT and PDI, HS-C6H4-NC. However it is a

synthetic challenge to specifically functionalize such molecules and instead we use 4-

isocyanophenyl disulfide (CN-C6H4-S-S-C6H4-NC)(ICPD)Figure 6.1. In this case, the

molecule is expected to adsorb onto gold by cleavage of the weak S-S bond to form

thiolate species on the surface, analogous to the chemistry found for dithiols. The

following explores the surface chemistry on ICPD on an Au(111) single crystal using
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reflection-absorption infrared spectroscopy (RAIRS) and temperature-programmed des-

orption (TPD).

FIGURE 6.1: Optimized structure of gas-phase 4-ICPD.

6.2 Experimental Methods

6.2.1 Synthesis of 4-Isocyanophenyldisulfide (4-ICPD)

4-isocyanophenyl disulfide was prepared by first synthesizing 4-formamidophenyl

disulfide. 0.9672 g of 4-aminophenyl disulfide was combined with 40 ml of formic

acid and refluxed for 2 days. Formic acid was then removed using a rotary evapora-

tor and the resulting product was stirred with 1 M HCl for ∼1 hour to dissolve any

remaining starting material. Insoluble material was filtered and rinsed with distilled

water and placed under vacuum to dry giving a 70% yield of crude product this was

dissolved in ethanol and filtered while hot. 25 mL of hot toluene was then added, and

the solution was concentrated to a total volume of ∼10 mL. The solution was cooled

overnight to crystallize, and the resulting crystals were collected by filtration and dried
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under vacuum (MP: 157-159 oC). This was used in a second synthesis to make to make

4,4’-diisocyanobiphenyl disulfide. 4-formamidophenyl disulfide(245.4 mg) was com-

bined with CH2Cl2(40 mL) and Et3N(1.0 mL) in a two-necked, round bottom flask.

The apparatus was flushed with nitrogen gas and cooled to 0oC. To this a solution of

triphosgene in CH2Cl2(0.176 M, 5.0 mL) was added dropwise over a 5-minute period

and refluxed until the starting material disappeared. The mixture was allowed to cool

to room temperature and combined with a saturated Na2CO3 solution (25 mL) and

stirred for 1 hour. The layers were then separated, and the aqueous layer extracted

with CH2Cl2. The organic layers were combined and washed with a pH 7 buffer, dried

over MgSO4 and concetrated to dryness. The product was initially purified on silica

gel and crystallized from hexanes:CH2Cl2(2:1, 6 mL).

6.2.2 Ultrahigh and High Vacuum Experiments

Experiments were carried out in ultrahigh vacuum (UHV) using an Au(111) single

crystal (Princeton Scientific) that was cleaned with cycles of ion bombardment using 1

keV argon ions for 30 minutes (1 µA/cm2), annealing to 900 K for 5 minutes and then

to 600 K for 30 minutes. Temperature-programmed desorption (TPD) and reflection-

absorption infrared spectroscopy (RAIRS) measurements were made in separate ultra-

high vacuum (UHV) chambers operating at base pressures of ∼ 2 × 10−10 Torr after

bakeout. RAIRS experiments were carried out in a Bruker Equinox spectrometer, typ-

ically for 1000 scans at a resolution of 4 cm−1 as described elsewhere [42]. The sample

could be cooled to ∼80 K in both chambers by thermal contact to a liquid-nitrogen-

filled reservoir and resistively heated to ∼ 1200 K. This chamber was also equipped

with a Hiden quadrupole mass spectrometer for leak checking, monitoring the purity

of the introduced gases and for carrying out temperature-programmed desorption ex-

periments. ICPD, as prepared as in Section 6.2.1 was purified by heating under high
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vacuum and introduced into UHV via a gate valve isolating a crucible source contain-

ing the ICPD sample.

6.3 Results

The surface chemistry of ICPD adsorbed on a Au(111) surface is investiaged to as-

certain whether ligation onto the surface is initiated by S-S scission to form adsorbed

thiolate species [43] or whether the molecule is bound via the isocyanide group. The

nature of the initial precusor will influence the subsequent putative oligomerization

chemistry. For example, if the formation of the initial precursor occurs exclusively by

thiolate formation, subsequent oligomerization is anticipated to lead to aligned Au-

ICPD oligomers. It has also been suggested that the oligomer formation kinetics can

be influenced by an imposed electric field acting on a dipolar adsorbate [28] possibly

leading to aligned asymmetric oligomers that could exhibit asymmetric conductivity.

The desorption behavior is studied by TPD by monitoring 268 amu (the parent

mass of ICPD) and 134 amu (the CN-C6H6S fragment). The desorption profiles were

identical for both masses, while the 134-amu signal was the most intense, and the des-

orption profiles collected at this mass are shown plotted as a function of exposure in

Figure 6.2. The presence of both 268 and 134 amu fragments indicates that the desorp-

tion profiles are due to the desorption of molecular ICPD from the surface. No other

desorption products were detected implying that the desorption is reversible and is in

accord with the proposal that ICPD adsorbs by S-S bond scission and desorbs in two

states, centered at ∼400 and 467 K. The formation of dithiols from the recombinative

desorption of adsorbed thiolates on Au(111) has beeen observed previously for alkyl

thiols [44] where desorption occurs in two states with the low-temperature state being

due to the evolution of a thiolate with first order kinetics, while a high-temperature

desorption state is due to the formation of the dithiol with second-order kinetics. Since
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both desorption states for ICPD are due to molecular desorption, the surface chemistry

of ICPD appears to differ from that for simple alkyl thiolates so that the desorption pro-

files were fit to two second-order processes. Such desorption kinetics will give rise to

symmetric desorption profiles [45] and, while the desorption features overlap at higher

ICPD coverage, the low-coverage profiles are symmetric, in accord with the proposed

second-order kinetics. Since the area under the desorption profile scales with coverage

the TPD data in Figure 6.2 are shown and plotted as a function of relative ICPD cover-

age. The profiles were fit using the Polanyi-Wigner equation, − dθ
dt = Aθ2 exp −Eact

kBT for

a second-order kinetics for a linear heating rate of 5 K/s, where A is a pre-exponential

factor, Eact is the desorption activation energy, kB is the Boltzmann constant and,T the

absolute temperature. The Polanyi-Wigner equation was numerically integrated over

small time steps, where the time steps were varied to be sufficiently small so that no

differences were found in the shapes of the calculated desorption profiles and fit to two

desorption processes, Appendix A summarized the code used for the calculations. The

resulting fits to the data are shown as solid lines that overlay the experimental profiles.

The resulting relative coverages of each of the adsorption states are displayed in

Figure 6.3. This shows that only the high-temperature (∼467 K) desorption state is

present for ICPD coverages below ∼0.2 ML, after which both the low-(∼400 K) and

high-(∼467 K) temperature desorption states grow approximately linearly with to-

tal ICPD coverage. The corresponding desorption activation energies are plotted as

a function of ICPD coverage in Figure 6.3B. The desorption activation energy of the

high-temperature state initially increases up to a relative ICPD coverate of ∼0.1 ML

from ∼93 kJ/mol to ∼99 kJ/mol, but then remains constant at this value close to satu-

ration coverage where it increases slightly to ∼101 kJ/mol. The low-temperature state

has a desorption activation energy of ∼ 88 kJ/mol, again showing a slight increase as

the overlayer approaches saturation coverage.

104



6.3. Results

FIGURE 6.2: Desorption profiles of ICPD adsorbed on Au(111) at 300 K
using a heating rate of 5 K/s monitored at 134 amu as a function of ICPD
dose. The spectra are shown plotted as a function of relative ICPD cov-
erage by assuming that the area under each curve is proportiona to the

coverage of adsorbed ICPD.

RAIRS was used to monitor the surface species obtained from ICPD adsorption.

The infrared spectra were continually recorded at a sample temperature of 300 K while

dosing ICPD directly from a crucible source heated to 353 K, where the source was

degassed for 30 min prior to exposure, by recording spectra at a rate of 1/min with a

resolution of 4 cm−1 for 350 scans. The results are displayed in Figure 6.4 and show

features at 829, 1011, 1072, 1482, 1576, 2121 and 2153 cm−1. The spectra were assigned

using previous assignments of PDI [2,27,46] and 1,4-BDT [36] and supplemented using

vibrational frequencies calculated by Gaussian and the assignments are summarized

in Table 6.1. Of particular interest are the isocyanide modes at 2153 and 2121 cm−1,

where the feature at 2121 cm−1 is due to a free isocyanide, while that at ∼2153−1 is due

to an isocyanide bound to gold. This spectral region is highlighted in Figure 6.5(A) to
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FIGURE 6.3: A. Plot of relative coverages of the 400( ) and 467(•) K fea-
tures as a function of the relative coverages of ICPD on Au(111) obtained
from the fitted profiles to the TPD data in Figure 6.2 B. Plot of the desorp-
tion activation energies of the 400( ) and 467(•) K features as a function of

relative coverages of ICPD on Au(111) from the fitted profiles in 6.2.

more clearly show the evolution of the isocyanide stretching features as a function of

exposure. The peaks in the spectra were fit to Gaussian functions and the relative inte-

grated intensities of the components are shown in Figure 6.5(B). This reveals that ICPD

adsorbs at low exposure (≤ 0.5L) to initially only form adsorbates with free isocyanide

modes ( ). However, bound isocyanides (•) start to form at higher exposures as the

coverage of free isocyanide saturates at an exposure of ∼0.5 ML, while the coverage

of bound isocyanides continues to grow up to an exposure of ∼1.2 L. Note that the

integrated absorbance of the bound isocyanide mode is larger than that of the free iso-

cyanide vibration at saturation. Since the free isocyanide is likely to be oriented more

perpendicularly to the surface than the bound isocyanide and to therefore adsorb in-

frared radiation more strongly, [47] the coverage of the bound isocyanides is likely to

be greater than the free species. In addition, in the case of PDI oligomers on Au(111),

where the aryl group lies parallel to the surface, only a 813 cm −1 out-of-plane ring
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mode is detected, while additional ring modes are observed for ICPD. However, gold-

containing oligomers obtained from 1,4-BDT on Au(111) does exhibit additional ring

modes at 1182 and 1108 cm−1 due to distortion of the ring from being planar to the

surface induced by the hybridization of the sulfur-gold linkages [36].

ICPD Vibrational Frequency/cm−1

Solution IR Multilayer ICPD Monolayer ICPD DFT Assignment Symmetry

2155 Bound-NC
2122 2131 2121 2126 Free-NC
1586 1589 1576 1629 C=C
1570 1570 1570 1593 C=C
1484 1484 1482 1524 In-plane C-H Bend B1u

1402 1403 In-plane C-H B2u

1302 1301
1194 1197
1167 1166
1115 1114 In-plane C-H B2u

1101 1101
1075 1076 1072 1084

1047 1044 In-plane ring
1014 1014 1011 1016 In-plane C-H B1u

956 915 Out of plane wag
941 898 Out of plane wag
817 831 829 875 Out of plane B3u

738 745 Ring chair mode
667 669
586 586 C-S Stretch
508 516 NC Rocking
486 475 Disulfide

TABLE 6.1: Assignments of the infrared spectra of multilayar and
solution-phase ICPD, and ICPD adsorved on Au(111) at 300 K. The vi-
brational frequencies were calculated for the structure optimized using
Gaussian 09 software package [48] and the optimized structure of molec-

ular ICPD is shown in Figure 6.1.

In order to correlate the presence of the surface species with the desorption profile

(Figure6.2), an ICPD-saturated overlayer was heated at a ramp rate of 5 K/min while

recording spectra at a rate of 1 spectra/min with a resolution of 4 cm−1 for 350 scans

and the results are displayed in Figure6.6. This shows a general decrease in intensity

of all the vibrational modes due to the removal of ICPD from the surface. There are
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FIGURE 6.4: Infrared spectra of the uptake of ICPD at a sample tempera-
ture of 300 K as a function of exposure. ICPD was dosed from a crucible
located in the infrared cell and was heated to 353 K and was degassed
for 30 min prior to exposure. Spectra were continually recorded at a rate
of 1/min with a resolution of 4cm−1, and ∼350 scans/spectra. The cor-
responding ICPD exposures are indicated on the right hand axis of the

figure.

particularly significant changes in the relative intensities of the isocyanide stretching

modes, which are highlighted in Figure 6.6A. This shows that the feature at ∼2153

cm−1 due to the bound isocyanide decreases in intensity with increasing temperature

more rapidly than the mode at 2121 cm−1, due to a free isocyanide. This behavior is

emphasized by the plot of the integrated areas in Figure 6.6B, showing that the peak

due to the bound isocyanide (•) starts to decrease in intensity as the sample is heated

above ∼300 K while the intensity of the free isocyanide mode ( ) remains constant in

intensity up to ∼400 K, and then rapidly attenuates. Note that the removal of the free

108



6.3. Results

FIGURE 6.5: (A) Infrared spectra of ICPD as a function of exposure show-
ing the isocyanide stretching region displaying the free (2121 cm−1) and
bound (2155 cm−1) isocyanide modes and (B) plots of the integrated in-
tensities of the free ( ) and bound (•) isocyanide modes as a function of

exposure.

and bound isocyanides on Au(111) are the reverse of the adsorption behavior (6.5),

where the free isocyanide species are formed initially during adsorption (Fig.6.5B), but

are removed at the highest temperature, after the bound species has disappeared (Fig.

6.6B).

Finally, to explore the transitions occurring at lower temperatures, temperature de-

pendent infrared spectra were collected for a multilayer of ICPD on Au(111)6.8. The

spectral features obtained for the multilayer at low temperatures are identical to those

found for ICPD in solution(6.1). The infrared spectrum does not change on heating to

∼-200 K, but significant changes occur at higher temperatures. In particular, the skele-

tal features at 1486 and 832 cm−1, as well as that due to the free isocyanide (2123 cm−1),
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FIGURE 6.6: Infrared spectra of a saturated monolayer of ICPD adsorbed
at 300 K on Au(111) and heating at a linear rate of 5 K/min. The infrared
spectra were recorded at a rate of 1/min with a resolution of 4cm−1, and
∼350 scans/spectra. The corresponding sample temperatures are indi-

cated on the right-hand axis of the figure.

all increase in intensity. The symmetry of para-substituted aryl rings is described by

the D2h point group, where the corresponding irreducible representations of the in-

frared active modes are given in Table 6.1. The variation in the relative intensity of

the most drastically varying modes is displayed in Figure 6.9. The intensity of the free

isocyanide stretching mode (at 2123 cm−1, blue line) increases in two stages starting

at ∼210 K and then increases again to have a maximum intensity at ∼267 K, and then

decreases in intensity at ∼289 K, due to the desorption of the multilayer. This confirms

that the spectra in Fig. 6.4 is due to ICPD adsorbed on the surface and does not con-

tain contributions from the multilayer. This also suggests that the isocyanide group on
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FIGURE 6.7: (A) Infrared spectra of ICPD as a function of temperature
showing the isocyanide stretching region displaying the free (2121 cm−1)
and bound (2155 cm−1) isocyanide modes and (B) plots of the integrated
intensities of the free ( ) and bound (•) isocyanide modes as a function of
temperature.C) shows the relative coverages of the free ( ) and bound (•)
isocyanide species as a function of temperature from the parameters used
to fit the TPD data (Fig. 6.2) using a heating rate of 5 K/min used to collect

the infrared spectra.

ICPD becomes oriented more closely to parallel to the surface. Since the pendant iso-

cyanide group is colinear with the z axis of the aryl ring, B1u modes (at 1482 and 1014
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cm−1, Table 6.1) that transform as z are expected to change similarly in intensity as

the isocyanide mode. This is illustrated by the change in intensity of the most-intense

B1u mode at 1486 cm−1(Fig. 6.9, blue line), which mirrors the change in intensity of

the isocyanide stretching vibration. This intensity change is mirrored by the intensity

variation of the less intense 1014 cm−1 mode (Fig. 6.8.

FIGURE 6.8: Infrared spectra of multilayers of ICPD adsorbed on Au(111)
to prevent water adsorption then cooled to 90K. The temperature was then
ramped at 3K/min and spectra were recorded at a rate of 1 min/spectra

However, modes that transform as y (which bisects the aryl ring and is oriented

perpendicular to the plane of the ring) at 1403 and 1114 cm−1 show little change in
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FIGURE 6.9: The integrated areas of selected peaks from the spectra shown
in Fig. 6.8, where the areas were obtained using Gaussian fits to the spec-
tral profiles for the 2123 cm−1 (free isocyanide mode, blue trace), 1486
cm−1 (in-plane ring mode, red trace) and 832 (out-of-plane ring mode,

black trace) peaks.

intensity with heating (Fig. 6.8). However, if the plane of the z axis of the para-

coordinated aryl ring were perpendicular to the surface, vibrational modes that trans-

form as x (which lies perpendiuclar to the aryl ring with B3u symmetry) should also

not change with temperature. However, the intense mode at 832 cm−1, B3u, mirrors

the 2123 and 1486 cm−1 modes (Fig. 6.9, black line), indicating that the aryl plane

of the aryl ring is tilted with respect to the surface. These changes suggest that the -

SC6H4-NC moiety becomes more ordered on heating above ∼200 K. However, a small

additional peak appears at ∼2155 cm−1 on heating above ∼200 K (Fig. 6.8) assigned to
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a bound isocyanide, implying that oligomerization also occurs as soon as the S-S bond

scission takes place in ICPD.

6.4 Discussion

Previous work has shown that PDI oligomerizes by forming a mobile gold-adatom

complex that forms oligomers by the gold adatom inserting into the isocyanide termi-

nus of a growing chain to form linear, conductive gold containing oligomers. [28] A

key indicator for the formation of such self-assembled oligomers is the appearance of

an isocyanide mode that is shifted to higher frequencies than that for a free isocyanide

vibration ( of 2121 cm−1). The isocyanide streching mode for two isocyanide groups

located trans to a gold adatom in the oligomer varies from ∼2150 cm−1 at low PDI

doses to ∼2137 cm−1 at saturation. [27] This effect is ascribed to a coupling between

isocyanide groups in adjacent PDI molecules in the linker, where short chains exhibit

a N≡C stretching frequency of ∼2153 cm−1 at low doses and ∼2137 cm−1 for long

chains. However, isocyanide containing self-assembled monolayers, presumably sim-

ilar to the adatom complex show isocyanide frequencies at ∼2180 cm−1.

Similar oligomers are formed from BDT implying that the dithiol similarly forms

mobile gold-containing complexes [37, 38, 40] that oligomerize in a similar fashion

as that proposed for PDI. In order to provide similar oligomer, but with asymmetric

molecules we used ICPD (Fig. 6.1), which contains pendant isocyanide groups, but

a disulfide rather than an S-H group based on the idea that disulfides and thols bind

similarly to gold, [49, 50] and should therefore exhibit similar chemistry as thiols. It

is also anticipated that the S-S linkage should be labile, thus resulting in the preferen-

tial formation of a sulfur-linked adatom complex that should, according to the kinetic

model outlined above, lead to the formation of aligned, conductive oligomers.
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TPD indicates the desorption of ICPD in two states centered at ∼400 and 467 K (Fig.

6.2), where the ICPD is formed via second -order kinetics. This is in general accord with

the idea that the ICPD adsorbs dissociatively, where ICPD is reformed by the second-

order reaction of the fragments with activation energies of ∼88 and 99 kJ/mol (Fig.

6.3B). The relative contributions of the desorption states as a function of coverage are

given in (Fig. 6.3A), where up to coverages of ∼0.3 ML desorption is due exclusively

to the high-temperature state (∼467 K), afterwards desorption occurs simultaneously

from both states.

In order to identify the nature of the surface species formed following ICPD adsorp-

tion, infrared spectra were collected as a function of ICPD exposure at 300 K (Fig. 6.4),

revealing the presence of two distinct isocyanide vibrational modes at 2155 and 2121

cm−1 (Fig. 6.5A, and Table 6.1). Based on the above, they are assigned to free (2121

cm−1) and bound isocyanide modes (2155 cm−1). However, in the case of PDI-derived

oligomers, the isocyanide modes that initially form at an ICPD exposure of ∼0.8 L are

at lower frequencies than that found at higher exposures. The most prominent differ-

ence is the fact that the formation of the free isocyanide mode precedes the formation of

the bound isocyanide (Fig. 6.5), completely different to the case for oligomers formed

from PDI. In the latter case, the isocyanides in the initially formed oligomers eventu-

ally de-coordinate as the PDI exposure increases, and enables other adsorbates such as

CO to occupy the resulting sites. [51]

In order to correlate the species formed on the surface with the desorption states

found in TPD(Fig. 6.2), a saturated overlayer of ICPD formed at 300 K, was heated

(at a rate of 5K/min) while recording the infrared spectra (Fig. 6.6). The isocyanide

stretching modes decrease in intensity as a function of temperature to eventually dis-

appear completely after heating to ∼450 K. The resulting variation in the intensity of

the free and bound isocyanide modes is shown in (Fig. 6.7B), where the free isocyanide
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mode decreases at high annealing temperatures, suggesting that it is associated with

desorption in the high-temperature (467 K) state in TPD (Fig. 6.2), while the bound

isocyanide is associated with the low-temperature (∼400 K) state. This is further illus-

trated in (Fig. 6.7C), which uses the desorption parameters from the TPD data (Fig.

6.2) to calculate the variation in intensity of the free and bound isocyanide modes as a

function of temperature at a heating rate of 5 K/min, used to collect the infrared data

in (Fig. 6.6). This reveals that the variation in the desorption yeilds of free isocyanide

closely mimics the variation in coverage of this species measured by infrared spec-

troscopy, while there are differences between the bound isocyanide coverages from

TPD and infrared. Finally, the removal of the free and bound isocyanide modes as

a function of temperature (Fig. 6.7B) mirror the variation in the coverages of these

species during adsorption (Fig. 6.5B), implying that the desorption kinetics are the

reverse of the kinetic processes occurring during adsorption.

These results, taken together, indicate that the formation of thiolate species from the

dissociation of disulfide linkages differs from those formed from deprotonation of -SH

groups. Based on the oligomerization chemistry of BDT described above, each thiolate

species appears to be coordinated to a gold adatom that allows the gold-containing

oligomers to form. This appears not to occur for disulfide linkers suggesting that both

thiolate species bind to the same gold adatom. [37, 38, 40] In this case, one of the re-

sulting thiolate species would be available to form gold containing oligomers with an

isocyanide stretching frequency at 2155 cm−1, while the other ICPD moiety will remain

uncoordinated and have a free isocyanide vibrational frequency at 2121−1. This model

is broadly in accord with the ICPD adsorption kinetics (Fig. 6.4,6.5) where ICPD ini-

tially adsorbs to exhibit mainly free isocyanides for exposures up to ∼0.7 L, with the

formation of a small portion of bound isocyanides (Fig. 6.5B). There is no evidence of

the isocyanide group initially binding to a gold adatom, as this would give rise to a
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vibrational mode at ∼2180 cm−1, which is not observed.

The data in Fig. 6.8 provide some information that this occurs when there is an

ordering of the system on heating to above ∼210 K (Fig. 6.9) and the concomitant

appearance of a peak at ∼2155 cm−1 (Fig. 6.8) indicative of oligomer formation. In

addition, the isocyanide stretching frequency for the ICPD-derived oligomer at satu-

ration coverage occurs at ∼2155 cm−1, while the isocyanide frequency of PDI-derived

oligomers is at a lower frequency (2137 cm−1). This implies that the isocyanide is not

a -N≡C-Au-C≡N- fragment and is thus assigned to a -S-Au-C≡N- vibration, as ex-

pected from a -SC6H4-NC propagating species.

However, the simple model descrived above would suggest that the variation in

coverage of Au-SC6H4-NC adatom species and the fragment in the oligomer should

appear in equimolar ratios, while clearly, they do not. This implies that both of the -

SC6H4-NC moieties of the dissociated ICPD bound to a gold adatom can form oligomeric

linkages. The desorption behavior approximately mirrors the adsorption kinetics (Fig.

6.3) where, comparing Figs. (6.7A, 6.7B), the 467 K feature derives primarily from

the formation of ICPD from Au-SC6H4-NC adatom species and is formed with an ac-

tivation energy of ∼99 kJ/mol (Fig. 6.7B). The lower-temperature state appears to

be fromed from the molecular fragments both in the oligomer and from the adatom

species.

6.5 Conclusion

The adsorption of an asymmetric molecule comprising moieties with an aryl ring with

para isocyanide and sulfide groups, (4-isocyanophenyl disulfide), is studied on a Au(111)

surface to explore whether it can from the basis for molecular electronic devices through

a self-assembly process found previously for symmetric molecules, PDI and BDT. Ev-

idence is presented to suggest that ICPD adsorbs by S-S bond scission where both
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sulfurs bind to the same adatom. While there is no direct evidence that oligomeric

species are formed from ICPD on Au(111), adsorption at room temperatures yield sur-

face species with an isocyanide stretching frequency that is consistent with the forma-

tion of an oligomeric species. The infrared spectrum also contains a species with free,

pendent isocyanide groups characteristic of a Au-S-C6H4-NC adatom species due to

the dissociative adsorption of ICPD on a single gold adatom site. The surface science

results suggest that ICPD is likely to self-assemble to form aligned gold-containing

oligomers. The adsorbed species are quite stable and thermally desorb above ∼370 K

via a second-order reaction to reform ICPD. This structure still needs to be confirmed

by direct imaging and the conductivity of the putative self-assembled oligomers to be

measured. However, the relatively large calculated dipole moment of the -S-C6H4-NC

moiety (of 1.5 Debye) suggest that it might be possible to align the oligomer in an

external electric field. [51]
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Chapter 7

Surface Structure of 1,4-Benzenedithiol

on Au(111)

7.1 Introduction

The electron transport properties of the prototypical molecular electronic component

1,4-benzene dithiol (1,4-BDT), have been extensively studied though the use of STM,

and mechanical break-junction experiments [1–5]. The interest in di-thiols as molecular

electronic components is largely due to their formation of strong thiolate bonds with

gold and other metals [6–8]. The exact binding geometry of thiols, and disulfides on

gold has been largely under discussion for many years, but it was found that similarly

to the structures observed for PDI, the thiolate binds to gold though an adatom [9–11].

The formation of oligomeric chains analogous to those formed by PDI by the incor-

poration of gold adatoms upon exposure of 1,4-BDT to Au(111) has been previously

observed, resulting in predominately zigzag chains, where it is postulated that their

formation is due to a trans configured oligomer chain consisting of -(Au-1,4-BDT)-

oligomer units [12]. In the following, we the test the previously postulated geome-

tries for 1,4-BDT oligomers by a combination of scanning tunneling microscopy, and

density functional theory (DFT) calculations.
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7.2 Experimental Methods

Scanning tunneling microscopy measurements were made in a ultrahigh vacuum (UHV)

chamber operating at base pressure of ∼2×10−10 Torr after bakeout. STM experiments

were carried out using an RHK UHV 350 dual AFM/STM, as described elsewhere, [13]

along with the methods used to prepare the tungsten tip. 1,4-BDT was dosed via a

knudsen source with a directional dosing tube that is ∼0.25" in diameter directed to-

ward the sample to minimize background contamination. The vial containing 1,4-BDT

could be cooled by submersion in a cryogenic bath, generally consisting of ice water

bath to control the vapor pressure and thus the exposure.

The Au(111) single crystal (Princeton Scientific) was cleaned with cycles of ion bom-

bardment using 1 keV argon ions for 30 min (1 µA/cm2), annealing to 900 K for 5 min

and then to 600 K for 30 min. The sample could be cooled to ∼95 K in the infrared

chamber and to ∼120 K in the STM chambers by thermal contact to a liquid-nitrogen-

filled reservoir, and resistively heated to ∼1200 K.

Density functional theory (DFT) calculations were performed with the projector

augmented wave (PAW) method [14, 15] as implemented in the Vienna ab initio simu-

lationpackage, VASP. [16, 17] The exchange-correlation potential was described using

the generalized gradient approximation (GGA) of Perdew, Burke, and Ernzerhof. [18]

A cutoff of 400 eV was used for the planewave basis set, and the wave functions and

electron density were converged to within 1×10−5 eV. The first Brillouin zone was sam-

pled with a 4×4×1 Γ-centered k-point mesh. Geometric relaxations were considered to

be converged when the force was less than 0.02 eV/Å on all unrestricted atoms. STM

simulations were performed by using the Tersoff-Hamann method [19] for comparison

to experiment.
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7.3 Results and Discussion

The resulting STM images acquired for high, and low coverages of 1,4-BDT dosed on

Au(111) at 300 K are shown in Figure 7.1. Figure 7.1A shows an image of a high cov-

erage film of 1,4-BDT, displaying close packed domains constructed largely of zigzag

chains of 1,4-BDT, where bends in the chains result in directional changes of the chains

of 120 degrees. It was previously postulated that the origin of the oligomer structure

is due to the sp3 bonding of sulfur, causing the thiolate structure to adopt trans and cis

configurations when bound to a gold adatom [12], where the trans motif is responsible

for the linear oligomer chains and dominates the observed oligomer structures. Shown

in Figure 7.1B, is a STM image of a low coverage of 1,4-BDT, where the BDT sample was

cooled via an ice bath to lower the vapor pressure and thus the dose, the observed large

domains appear to grow preferentially from the step edge in the lower right corner of

the image, consistent with the suggestion that gold adatoms are extracted from low

coordination sites. Similar to the oligomerization mechanism proposed for phenylene

disocyanide (PDI) [20], it was found that 1,4-BDT initially adsorbs in a similar manner

via an mobile upright η1 adatom complex [12] that can then diffuse until inserting into

an growing oligomer chain. The initially adsorbed mobile adatom complex is consitent

with the preference to grow domains, and the lack of single monomer species in the

low coverage STM image. Figure 7.1C, shows an additional image of a low coverage of

1,4-BDT on Au(111) where here the herringbone reconstruction [21] of the substrate is

still visible, and the oligomer chains appear to grow preferentially between the solitons

of the reconstruction.

The results of DFT calculations are shown in Figure 7.2 for the relaxed trans struc-

ture of the 1,4-BDT oligomer chains, where Figure 7.2A provides a top view of the

oligomer structure, Figure 7.2B shows an angled view, and Figure 7.2C shows a side
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FIGURE 7.1: STM images of 1,4-BDT on Au(111) adsorbed at 300K. (A)
High coverage film showing close-packed features consisting of chains
of oligomers rotating by 120o(It=0.254 nA, Vt=-0.64 V). (B) Low coverage
film showing close packed domain of BDT growing from a step edge, sur-
rounded by a clean terrace((It=0.143 nA, Vt=-0.75 V). (C) Low coverage
film of BDT, herring bone reconstruction is clearly present with isolated
oligomer patches growing preferentially between reconstruction(It=0.65

nA, Vt=-0.394 V).

view. The optimized geometry for the DFT calculations was found by first running sin-

gle point calculations and by varying the separation between the linear chains, from

there for the minimum energy structure, one chain was laterally offset with respect to

the other, and the resulting lowest energy structure is shown. Provided in Figure 7.3A

are the distances between sulfurs within a chain, as well as the the S-S distance to the

neighboring chain allowing for comparison to the distances measured experimentally.

Shown in Figure 7.3B are ladder-like features formed by two neighboring oligomer

chains comprised of only trans oligomeric units. The corresponding experimental dis-

tances are found to be 0.982 nm (neighboring chain, Fig. 7.3C), and 0.934 nm (in chain,

Fig. 7.3D) for the ladder-like oligomer formation, both in good agreement with the

DFT calculated structure. In accord with the previous predictions based on RAIR spec-

tra of 1,4-BDT on Au(111) [12], we find that for the trans oligomer configuration the

aryl ring lies parallel to the surface

In order to confirm the incorporation of gold adatoms in the self-assembled oligomer
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FIGURE 7.2: Structure of -(Au-BDT)- oligomers on gold calculated using
density functional theory showing (A) a top view, (B) an angled view,
and (C) a side view of the oligomer chains, where gold adatoms are high-

lighted in orange.

FIGURE 7.3: A) Structure of -(Au-BDT)- oligomers on gold with the sur-
face removed for clarity, optimized structure has the S-S distance within
the chain as 0.876 nm, and the S-S distance between chains as 1.053 nm. B)
Experimentally observed ladder feature(It=0.33 nA, Vt=-0.63 V), and cor-
responding line scans (C,D) indicating the S-S distance within the chain as

0.982 nm, and between chains as 0.934 nm.

chains observed by STM for 1,4-BDT, STM simuations were done using the relaxed

structures shown in Figure 7.2 using the Tersoff-Hamann method. The results of the
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simulation are shown in Figure 7.4B, where the simulated image is overlapped with the

oligomer structure to clarify the origin of the STM simulation, where the surface is also

removed for clarity. For comparison, a magnified STM image showing features con-

sistent with the STM simulation is provided in Figure 7.4A, suggesting that the ladder

like features seen in STM originate from two parallel BDT oligomer chains consisting

of -(Au-BDT)- units.

FIGURE 7.4: A)Magnification of STM image shown in Fig. ??B high-
lighting ladder feature in circle, B) Result of simulated STM of ladder
feature consisting of two BDT oligomers using Tersoff-Hamann method
(blurred with 25 point smoothing to account for tip radius) overlapped

with oligomer structure for clarity.

In order to investigate the effect of film annealing, a common techique used to

acheive well ordered self-assembled monolayers (SAMs) [22], a high coverage film of

1,4-BDT was heated to 400 K and held at that temperature for 60 min, and the resulting

STM images are provided in Figure 7.5A,B. The resulting layers are nearly defect free,

as opposed to un-annealed high coverage films that have vacant patches (Fig 7.1A).

In Figure 7.5A, the zigzag features can no longer be discerned, suggesting the entire

domain of oligomer chains has adapted the same geometry.
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FIGURE 7.5: STM images of a high coverage film of 1,4-BDT on Au(111)
annealed to 400 K after adsorption, (A,B) Well ordered monolayer of 1,4-
BDT formed after annealing for 1 hr, imaged at 300 K (It=0.22 nA, Vt=0.60

V).

7.4 Conclusion

STM images were collected for low, and high coverages of 1,4-BDT adsorbed on Au(111)

at 300 K, and the resulting oligomeric structure modeled by DFT calculations. At low

coverage, we observe isolated domains growing from a step edge (7.1B) surrounded

by clean Au(111) regions, consistent with a mobile adatom complex as the initiator

to oligomerization. Contrary to the oligomers observered for PDI on Au(111) which

demonstrate a interchain repulsive interaction [23], 1,4-BDT has the preference to grow

as close packed domains as observed by STM. This is corroborated computationally by

the stability gained for the optimized structure with a chain separation of 1.053 nm,

as opposed to chains calculated with larger or smaller separation. The simulated STM

images, along with the dimensions of the optimized oligomer chains in DFT agree very

well with both previously postulated adsorption geometries [12], and the STM images
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included here, confirming that the observed 1,4-BDT oligomers are comprised of -(Au-

BDT)- units analogous to those found for PDI.
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Appendix A

Temperature Programmed Desorption

Simulator

/*

* F i l e : TPD . cpp

* Author : Dustin Olson

*

* Created on August 2 , 2019 , 1 1 :0 3 AM

*/

# include <iostream >

# include <cmath>

# include <iomanip>

# include < c s t d l i b >

using namespace std ;
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double Eact1 = 80000 ; // J /mol

double Eact2 = 101000 ; // J /mol

double n1 = 1 ;

double n2 = 2 ;

double Theta01 = 50000000000000;

double Theta02 = 50000000000000;

const double A = 1000000000000000; // s−1

const double A2 = 100000000000000;

const double T0 = 2 2 0 ; //Kelvin

const double Beta = 2 . 0 ; //k s−1

const double dt = . 0 1 ; // s

const double R = 8 . 3 2 ;

double dT = Beta * dt ;

double TimeScale [ 2 0 0 0 0 ] ;

double TempScale [ 2 0 0 0 0 ] ;

double Theta1 [ 2 ] [ 2 0 0 0 0 ] ;

double Rate [ 1 0 ] [ 2 0 0 0 0 ] ;

double Rate2 [ 1 0 ] [ 2 0 0 0 0 ] ;

double Tota l [ 1 0 ] [ 2 0 0 0 0 ] ;

double dTheta [ 2 ] [ 2 0 0 0 0 ] ;

void Theta ( void ) ;
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void dTheta1 ( void ) ;

void d a t a f i l e ( void ) ;

FILE * t e x t _ f i l e ;

# def ine f i l e _ f i l a "TPD_Sim.dat"

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

void Time ( void ) {

TimeScale [ 0 ] = 0 ;

f o r ( i n t i = 1 ; i < 20000 ; i ++) {

TimeScale [ i ] = TimeScale [ 0 ] + i * dt ;

}

}

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

void TempRamp( void ) {

TempScale [ 0 ] = T0 ;

f o r ( i n t i = 1 ; i < 20000 ; i ++) {

TempScale [ i ] = TempScale [ i −1] + dT ;

}

}

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

void Theta ( void ) {

Theta1 [ 0 ] [ 0 ] = Theta01 ;

Theta1 [ 1 ] [ 0 ] = Theta02 ;
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f o r ( i n t j = 0 ; j < 20000 ; j ++) {

dTheta [ 0 ] [ j ] = −A* exp ((( − Eact1 ) / (R * TempScale [ j ] ) ) )

* pow( Theta1 [ 0 ] [ j ] , n1 ) * dt ;

dTheta [ 1 ] [ j ] = −A2* exp ((( − Eact2 ) / (R * TempScale [ j ] ) ) )

* pow( Theta1 [ 1 ] [ j ] , n2 ) * dt ;

Theta1 [ 0 ] [ j + 1 ] = Theta1 [ 0 ] [ j ] + dTheta [ 0 ] [ j ] ;

Theta1 [ 1 ] [ j + 1 ] = Theta1 [ 1 ] [ j ] + dTheta [ 1 ] [ j ] ;

i f ( Theta1 [ 0 ] [ j + 1 ] < 0) {

Theta1 [ 0 ] [ j + 1 ] = 0 ;

}

e l s e i f ( Theta1 [ 1 ] [ j + 1 ] < 0) {

Theta1 [ 1 ] [ j + 1 ] = 0 ;

}

}

}

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

i n t main ( void ) {

srandom ( time (NULL) ) ;

Time ( ) ;

TempRamp ( ) ;

Theta ( ) ;

f o r ( i n t j = 0 ; j < 20000 ; j ++) {

Rate [ 0 ] [ j ] = (−dTheta [ 0 ] [ j ] / dt ) ;

Rate2 [ 0 ] [ j ] = (−dTheta [ 1 ] [ j ] / dt ) ;
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Tota l [ 0 ] [ j ] = ( Rate [ 0 ] [ j ]+ Rate2 [ 0 ] [ j ] ) ;

}

d a t a f i l e ( ) ;

re turn 0 ;

}

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/

void d a t a f i l e ( void ) {

i f ( ( t e x t _ f i l e = fopen ( f i l e _ f i l a , "wt" ) ) == NULL) {

p r i n t f ( "Error\n" ) ;

}

f o r ( i n t i = 0 ; i < 20000 ; i ++) {

f p r i n t f ( t e x t _ f i l e , "␣%1.20f␣%1.20f␣%1.20f␣%1.20f\n" ,

TempScale [ i ] ,

Rate [ 0 ] [ i ] ,

Rate2 [ 0 ] [ i ] ,

Tota l [ 0 ] [ i ]

) ;

}

f c l o s e ( t e x t _ f i l e ) ;

}

/*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
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